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Abbreviations
AI Artificial Intelligence
AM Asset Management
CAPEX Capital Expenditure
CBM Condition-based Maintenance
CMS Condition Monitoring System
FM Field Management
FMEA Failure Modes and Effects Analysis
HM Health Monitoring
HPP Homogenous Poisson Process
IM Information Management
MM Maintenance Management
MV Medium Voltage
OEM Original Equipment Manufacturer
O&M Operations & Maintenance
OM Operations Management
OPEX Operational Expenditure
PLP Power Law Process
RCM Reliability-Centered Maintenance
SCADA Supervision Control and Data Acquisition
SCIG Squirrel Cage Induction Generator
SPARTA System Performance, Availability and Reliability Trend Analysis
WF Wind Farm
WT Wind Turbine

Nomenclature
k(t) Failure intensity function
t Time
Ni Number of wind turbines
Ti Total time period (hours)
ni, k Number of failures of subassembly k
b Shape parameter
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k Failure rate
ϱ Scale parameter

2.11.1 Introduction

The remarkable growth in the installed wind power capacity worldwide over the last two decades poses significant technical and
economic challenges. As wind turbines (WT) are rapidly evolving in complexity and size, as well as moving to more remote and harsh
offshore environments, there is an urgent need of high reliability and cost-effective Operations and Maintenance (O&M) strategies to
increase the profitability of wind power assets. Unplanned downtime, associated to extended overhauls or replacements of major
components, represents one of the main cost drivers of the Operational Expenditure (OPEX) in a modern wind farm (WF). Timely and
effective detection, diagnosis and prognosis of developing damages in the most unreliable WT components are essential for minimizing
unplanned downtime. They enable operators to adopt preventive maintenance strategies rather than proceed with corrective actions.
Hence, a thorough understanding of when and how WT components fail is crucial for developing profitable preventive maintenance
approaches. WT reliability statistics, in terms of frequency of failure occurrences and downtimes, can be obtained from statistical
analysis of historical failure databases and maintenance logbooks provided by manufacturers and WF operators.

This Chapter outlines the current knowledge in the field of WT reliability and maintenance. Firstly, recent published WT
reliability studies are summarized and the subassemblies that are of most concern for O&M are identified. This is followed by a
description of the state of the art of WT maintenance, looking at new emerging techniques currently being researched, with a
particular focus on the economic benefits of maintenance strategies optimization. In the Conclusions, the main points, lessons and
opportunities are summarized.

2.11.2 Wind turbine reliability

Reliability is critical for the economic success of wind power assets throughout their entire lifecycle. Quantitative reliability assessment
allows past performance assessment as well as future performance prediction (Billinton and Allan, 1992). It indicates how a systemmay
fail, shows the consequences of failures and provides information to enable stakeholders to relate the system quality to economics and
capital investment. Reliability and Failure Modes and Effects Analysis (FMEA) analyses provide feedback for identifying weak areas in
parts and subassemblies needing reinforcement and improvement, thus leading to better and more economic designs (Arabian-
Hoseynabadia et al., 2010). Poor reliability can increase capital expenditures (CAPEX) due to overdesign, excessive prototyping and
testing, together with warranty and insurance requirements (Sheng and O'Connor, 2017). It also directly affects projects’ revenue
streams through reduced availability and increased OPEX, leading to reduced annual energy production. A thorough understanding of
the main WT components’ reliability is instrumental in achieving cost-effective O&M best practices, especially in offshore installations.

If appropriate reliability statistics are available, their systematic and thorough assessment can bring considerable technical and
economic benefits to the O&M wind power industry.

This Section first provides a brief introduction to the basic reliability theory and metrics. Then, it presents a comprehensive and
systematic overview of publicly available knowledge on WT reliability, both onshore and offshore, followed by the analysis of
fundamental data trends, highlighting the main issues and bottlenecks as well as the current initiatives and standards that aim to
achieve their alleviation.

Fig. 1 Bathtub curve (Tavner, 2021). From Tavner PJ (2021) Offshore Wind Power - Reliability Availability and Maintenance, 2nd edn. London,
UK: The Institution of Engineering and Technology.
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2.11.2.1 Elements of reliability engineering theory

The reliability of an item is defined as the probability that it will perform a required function without failure under stated (environmental
and operating) conditions for a stated period of time (O’Connor and Kleyner, 2012). In our context, the item can be the entire WT or a
turbine component. A WT is a complex machine and its reliability is affected by the reliabilities of its subsystems, including both
hardware and software and how they are interlinked. When predicting or measuring reliability it is important to distinguish
between non-repairable and repairable systems. A non-repairable system is one which is discarded the first time it fails. Examples
are small batteries or light bulbs. A repairable system is one that, when a failure occurs, can be restored into operational condition
after any action of repair, other than replacement of the entire system. Examples are WTs, car engines and electrical generators
(Tavner, 2021). The fundamentals of classical reliability theory for both repairable and non-repairable systems can be found in
Billinton and Allan (1992) and O’Connor and Kleyner (2012).

In some applications, it is practical to evaluate the unreliability or probability of system failure rather than evaluating the
reliability or probability of system success, where system success and system failure are complementary events. For repairable
systems, such as WTs, the unreliability variation throughout their lifetime can be modelled in terms of the failure intensity
function, (t), by the bathtub curve shown in Fig. 1 and described by the Power Law Process (PLP):

lðtÞ ¼ ϱbtb�1 ð1Þ

where ϱ is the scale parameter, b is the shape parameter and t is time (Spinato, 2008). l(t) usually expresses the failures per item (e.
g. an entire WT or a sub-assembly) per year. The bathtub curve is a conceptual and mathematical model that represents three
different phases of engineering systems dynamic behavior, as shown in Fig. 1. The shape parameter b can model these three
different phases of the failure intensity function:

(a) Early failure phase (b o 1): During this period, also known as infant mortality phase, failures typically occur because of
improper design, manufacturing flaws or poor understanding of operating conditions. Failure rates at the beginning of this
stage are high, but then decrease with time as the early failures are removed. This first section of the bathtub curve shows rapid
reliability improvement with time, with the rate mainly depending on the maturity of the design and the manufacturing
process. During its early development, the wind power industry has suffered of early failures and struggled to change
the image.

(b) Intrinsic failure phase (b ¼ 1): This is the bottom of the bathtub curve, also known as useful life period or normal operating
phase, where the intensity function of the PLP is constant and equal to ϱ. In this case, the process becomes an Homogenous
Poisson Process (HPP), meaning that the failures are caused by randomly occurring defects. The failure rate, l, is generally
defined as the failure intensity during the intrinsic failure phase, where the failure intensity is approximately constant and
largely dependent on random failures. In this case, the time-periods between failures are considered independent and
identically distributed exponential random variables. This is the most significant phase for reliability prediction and eva-
luation activities. The majority of the currently operating WTs lie in their useful life phase. It is difficult to assess precisely the
length of the useful period for WTs because, as is also valid for other repairable systems, they undergo continuous component
maintenance. Adequate maintenance actions effectively move the system backwards in its operational life.

(c) Deterioration phase (b 4 1): This is the final phase of the bathtub curve, also known as wear- out phase, where the failure
intensity function increases rapidly with time as the components begin to wear out and break down. In this phase, com-
ponents start to deteriorate to such a degree that they reach the end of their useful life. The wear-out period for entire WT
systems is not yet upon the industry as machines are designed for a 20- or 25-year life.

Systems should be designed for reliability such that the useful life period is extended and so that the early life and wear-out
failure periods are reduced in time or, ideally, removed entirely.

More details on the reliability theory used to analyze failure data can be found in Billinton and Allan (1992) and, for the
particular case of WTs, in Spinato (2008) and Tavner (2021).

2.11.2.2 Wind turbine reliability databases

Understanding WT reliability statistics is difficult because of the variety of designs and sizes now in service worldwide but also
because studies available in literature are conducted independently under various operating conditions in different countries
(Pinar Pérez et al., 2013). As discussed in the previous Section, most of the currently operating WTs are at the bottom of their
bathtub curve modelled by the HPP and characterized by a constant failure rate, which represents the likelihood of a system to fail
within a specific time-period. Based on this assumption, reliability studies collecting data from a large number of WTs refer to
average failure rates at a given time interval. In particular, the failure rate per WT per year, l, is given by (Tavner et al., 2006):

l¼
PI

i ¼ 1

PK
k ¼ 1 ni;k=Ni

PI
i ¼ 1 Ti=8760

ð2Þ

where I is the number of intervals for which data is collected, K is the total number of subassemblies in the WT, ni,k is the number
of failures of subassembly k, Ni is the number of WTs and Ti is the length (in hours) of the total time-period. The numerator of Eq.
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(2) represents the total number of failures in all periods per WT and the denominator represents the total number of years within
the survey.

Another important reliability performance indicator is downtime, defined as the total time between stop and restart of
operation of a considered unit while the unit is in a down state (Pfaffel et al., 2017). It represents the time during which a WT is
not operational (i.e. is not producing energy) due to a failure. It includes various subcategories such as the time delay due to
mobilization and logistics, the time delay to attain a favorable weather window, the administrative delays, the transportation time,
the failure detection and finally the repair time.

In contrast with the well-established standardization practices for data collection in the oil and gas industry (ISO 14224:2016),
the wind power industry has not yet standardized its methods for reliability reporting. Stemming also from the commercial
sensitivity of such data, for a long time, WT reliability data, including failure rate and downtime, were difficult to obtain, share and
compare, with only a few publicly available databases for onshore WTs (Spinato, 2008). Only recently a wider variety of initiatives
have rendered available reliability data for modern and, in some cases, offshore WTs. The main characteristics of the reliability
databases that can be fully accessed in the public domain to date are given in the synoptic Table 1, for both onshore and offshore
WTs. Internal company initiatives as well as initiatives lacking any publications are not considered. For each database, the location,
the number of WTs, the WT type and rating, the reporting period and the key characteristics and reference(s) are given in Table 1,
where databases are listed according to their size. Database and the population size are reported to provide an indication of the
statistical significance of the data collected. Some databases present a low level of detail which does not allow to provide a
sufficient description of some quantities in Table 1. The WT type is defined according to the nomenclature reported in Tavner
(2021):

(a) Type A: fixed� /dual-speed, stall-regulated WT with a geared-drive squirrel cage induction generator (SCIG);
(b) Type B: fixed� /dual-speed, stall-regulated/variable-speed, controlled-stall-regulated WT with a geared-drive wound rotor

induction generator (WRIG) with variable rotor resistance;
(c) Type C: variable-speed, variable-pitch WT with a geared-drive doubly fed induction generator (DFIG);
(d) Type D: variable-speed, variable-pitch WT with a direct-drive (DD) wound rotor synchronous generator with exciter/per-

manent magnet synchronous generator/SCIG with a fully rated converter connected to the stator.

Table 1 lists 15 reliability databases for onshore WTs out of which most refer to machines located in Europe (including UK),
with either a single database per country (Denmark, Finland and Sweden) or multiple databases from the same country (Ger-
many). Only two databases (CIRCE and EPRI) are from the Unites States and five from Asia, i.e. four (CWEA, Huadian, Nanjing,
SE China) from China and one (Muppandal) from India. The majority of the data refers to combinations of small (few hundred
kW) to medium (few MW) WTs. Only four offshore databases are currently publicly available as listed in Table 1. Unlike onshore
data, the offshore databases contain a relatively small number of WTs and only reliability data from Europe (including UK). This
reflects the dominance of European countries in offshore wind power installations. The most recent are the Strathclyde (offshore)
and SPARTA databases and refer to a larger WT population and reporting period, compared with the other two sources, which refer
to one or only a few WFs in their early operation. Among the offshore databases, of particular relevance is SPARTA (System
Performance, Availability and Reliability Trend Analysis) a collaborative ongoing initiative between ORE Catapult, The Crown
Estate and offshore WF owners/operators, started in 2013 in the UK (Catapult, 2020). SPARTA gathers reliability data at subsystem
level from the participating operators and outputs monthly benchmarks. The databases reported in Table 1 present some
inconsistencies, together with different levels of data quality and availability, due to the lack of an harmonized practice for WT
reliability data collection, processing and publication, as discussed in detail in Sheng and O'Connor (2017) and Leahy et al.
(2019). For example, in some cases, they adopt different definitions for failure/downtime and lack of an homogenous WT
taxonomy. Failure is generally defined as an event requiring a repair action, hence a visit to the WT for a maintenance activity, as in
Carroll et al. (2016). However, in some studies, only events associated to downtime over a certain time threshold are classified as
failures (Wilkinson, 2011). Conversely, in other databases, such as the CREW (USA) and the one of the University of Nanjing
(China), every stop event is reported. Some of these events might be only due to unusual operating conditions and can be resolved
by remote reset without requiring a visit to the WT to perform a proper maintenance action.

When counting remote resets, the failure rates recorded are normally higher. Similarly, the NoordzeeWind OWEZ database
reports stop/alarm events and not all of them are necessarily real failures. In some cases, it is unclear whether repairs, replacements
or both are considered in the results (Pfaffel et al., 2017). Another contributor to the database inconsistencies has been identified
in the use of project-specific or undocumented taxonomies, as in the case of the CREW and Muppandal initiatives, respectively. In
other cases, slightly different WT taxonomies are adopted. For example, some statistics report rotor data in separate categories for
blades, hub, air brakes and pitch systems, as in the case of CIRCE, while others combine them together presenting single reliability
data for the whole rotor subsystem, as in the case of the Muppandal and the University of Nanjing initiatives (Pfaffel et al., 2017).

This variation in the way WT data are broken down makes many sources of reliability statistics not feasible to be directly
comparable. Several efforts have been made in the past to develop a WT taxonomy to facilitate the categorization and comparison
of failure statistics (Reder et al., 2016). Richardson (2010) discussed the differences between some of the proposed taxonomies
and the problems associated with non-uniform data treatment in failure analyses.

Two of the most recent and widely accepted initiatives are the ReliaWind taxonomy (Wilkinson, 2011) and the Reference
Designation System for Power Plants (RDS-PP) taxonomy (VGB Powertech, 2012). The first was developed by the EU FP7
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Table 1 Onshore and offshore WT reliability databases.

Size of survey
No of WTs

Reporting
Period

WT Rating
(MW)

Onshore/
Offshore

WT Type,
see Tavner
(2021)

Database Name Country Data collection References

From To From To From To

1 4300 4300 2013 2016 0.3 3.0 Onshore C, D CIRCE Spain Large database
Based on failure logs and SCADA alarms from 14 wind turbine
manufacturers.
No absolute values provided.
Failures normalized to the total number of recorded failures.
Downtimes expressed as component's contribution to the
overall downtime.

Reder et al. (2016) and Gonzalez
et al. (2016)

2 1295 4285 1995 2004 0.1 2.5 Onshore A, B, C WSD
WindStats

Germany Large database.
Failure rate and downtime data collected manually by
maintenance technicians.
Quarterly reports.

Windstats newsletter
(1987–Present), Spinato
(2008), and Tavner et al.
(2006)

3 851 2345 1994 2004 0.1 2.5 Onshore A, B, C WSDK
WindStats

Denmark Large database
Only failure rate data collected manually by maintenance
technicians.
Monthly reports.

Windstats newsletter
(1987–Present), Spinato
(2008), and Tavner et al.
(2006)

4 2222 2222 2009 2014 1.5 2.5 Onshore C, D Strathclyde UK Failure rates only of generators and converters for two turbine
configurations & not downtime.
From OEM work order and inventory databases.
Failures broken down into severity categories depending on
material cost of repair or replacement.

Carroll et al. (2015)

5 1347 1347 2013 2021 2.0 6.0 Offshore C, D SPARTA UK Monthly average repairs from 19 UK wind farms due to failures
only, not downtime data.

SPARTA (2021)

6 800 900 2011 2015 1.3 1.4 Onshore A, B, C CREW USA Stop rate data not failure rate only
Data originally published in 2011, with two updates in 2012 and
2016.

Peters et al. (2011, 2012) and
Karlson et al., (2016)

7 527 723 1997 2005 0.5 1.5 Onshore A, B, C, D Elforsk/
Vindstat

Sweden Failure rate and downtime data for the entire period. Original
source in Swedish, data also summarized in English.

Ribrant (2006) and Ribrant and
Bertling (2007)

8 158 643 1993 2006 0.225 1.8 Onshore A, B, C LWK Germany Failure rate and downtime data for WTs in the Northern Germany
(Schleswig- Holstein)
Manually reported annually.

Tavner et al. (2008), Spinato
et al. (2009), and Pettersson
et al. (2010)

9 1500 1500 1989 2006 0.03 1.8 Onshore A, B, C WMEP Germany SCADA alarms and maintenance reports collected by the
Fraunhofer Institute for wind energy systems
Data collected manually by maintenance technicians.

Hahn et al. (2007) and Faulstich
et al. (2008, 2011)

10 1313 1313 2012 2012 - - Onshore - Huadian China No absolute values provided, data reported in percentages and
estimated based on number of failures and total number of
available WTs.

Ma et al. (2015)

11 640 640 2010 2012 1.5 6.0 Onshore C, D CWEA China Only failure data of 7 critical subassemblies (converter, gearbox,
generator, pitch, yaw, blades, and brakes) from 47
manufacturers.

Lin et al. (2016)

(Continued )
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Table 1 Continued

Size of survey
No of WTs

Reporting
Period

WT Rating
(MW)

Onshore/
Offshore

WT Type,
see Tavner
(2021)

Database Name Country Data collection References

From To From To From To

12 350 350 2011 2016 2.0 4.0 Offshore - Strathclyde UK Only repair time not downtime reported from maintenance
inventory and cost databases
Failures broken down into severity categories depending on
material cost of repair or replacement.

Carroll et al. (2016)

13 290 290 1986 1987 0.04 0.6 Onshore A, B EPRI USA Data reported for some Californian wind farms. Calvert et al. (1997)
14 134 134 2011 2011 1.5 1.5 Onshore D SE China China No absolute values provided

Data from a single coastal wind farm in SE China. Reported in
percentage and estimated with the available total number of WTs
and number of failures.

Bi et al. (2014)

15 120 120 2004 2007 2.0 3.0 Offshore C Round 1 UK UK Data from 4 wind farms in early operation.
Dominated by gearbox failures, which lead to large numbers of
gearbox replacements.
Compare with Noordzee experience.

Feng et al. (2010)

16 108 108 2009 2013 1.5 2.0 Onshore A, B, C University of
Nanjing

China Only stop rates & no failure rates reported from a single wind farm
in Jiangsu Province.

Su et al. (2016)

17 72 72 1996 2008 0.075 3.0 Onshore A, B, C, D VTT Finland Failure rate data reported in a conference paper and thesis in
Finnish.

Stenberg and Holttinen (2010)
and Stenberg (2010)

18 36 36 2007 2009 3.0 3.0 Offshore C NoordzeeWind
OWEZ

Netherlands Only stop rate, not failure rates reported from Egmond aan zee
wind farm.
Dominanted by gearbox and generator failures.

NoordzeeWind (2008, 2009,
2010)

19 15 15 2000 2004 0.225 0.225 Onshore A Muppandal India Only failure data, no downtime reported from a wind farm at
Muppandal, South India.

Herbert et al. (2010)

Totals,
Minima,
Maxima

16078 21343 1986 2021 0.03 6.00

From To From To From To
Size of survey,
No of WTs

Reporting
Period

WT Rating
(MW)

Adapted from Pinar Pérez JM, García Márquez FP, Tobias A, and Papaelias M (2013) Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews 23: 463–472; Pfaffel S, Faulstich S, and Rohrig K (2017) Performance and reliability of
wind turbines: A review. Energies 10(11): 1904; Artigao E, Martín-Martínez S, Honrubia-Escribano A, and Gómez-Lázaro E (2018) Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Applied Energy 228:
1569–1583; Dao C, Kazemtabrizi B, and Crabtree C (2019) Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy 22: 1848–1871; Cevasco D, Koukoura S, and Kolios AJ (2021) Reliability, availability, maintainability
data review for the identification of trends in offshore wind energy applications. Renewable and Sustainable Energy Reviews, 136: 110414.
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ReliaWind Consortium for an extensive failure data study and comprises of a total of 257 components. This is a reliability-
oriented, simple to apply and internationally recognized taxonomy that has been adopted by several studies on WT reliability such
as (Faulstich et al., 2011; Reder et al., 2016; Gonzalez et al., 2016; Pfaffel et al., 2017; Dao et al., 2019). A full description is
provided in Chapter 11 of (Tavner, 2021). The RDS-PP taxonomy has been adapted from similar industry taxonomies and was
designed to be consistent with designations of other power systems. It provides a high level of detail for both system and
subsystem identification and components’ technical information. It is currently employed for offshore data collection such as the
SPARTA and WinD-Pool (Fraunhofer and Dresden, 2021) initiatives.

The different degrees of granularity of the information provided by the reliability databases make a straight cross-comparison
between them difficult. However, several quantitative studies have been performed to map initiative-specific reliability data to
homogeneous standardized statistics and taxonomies with the aim to identify trends in the data (e.g. according to WT location,
population size and mean power rating), draw universal conclusions and/or carry out comparisons. In the next Section, some of
the main results of these review studies based on publicly available data are presented.

2.11.2.3 Trends in the reliability statistics

The Dutch Offshore Wind Energy Converter (DOWEC) research project (1998–2003) was a pioneer in the quantitative analysis of
WT reliability, emphasizing its crucial role for the offshore development (DOWEC, 2002). A group of experts analyzed reliability
data from WTs located in northern Germany, recorded by WSD, WSDK, LWK and WMEP up to 2001, and estimated an onshore
average failure rate per WT per year equal to 2.20 (van Bussel and Zaaijer, 2003). The study did not include the EPRI dataset in the
comparative study due to the outdated technology of the WTs surveyed in it.

Three of the largest and oldest databases of European onshore WTs, the WMEP, LWK and Elforsk/Vindstat, are compared in
Fig. 2. Failure rates and downtime, categorized by WT subassembly, refer to a period of 13 years (between 1993 and 2006). These
databases are quite old and present some important limitations, such as they refer to mixed and changing WT populations, with
outdated technologies and a much lower power than modern WTs. However, they are among the most comprehensive data
publicly available so far and show significant similarities, giving valuable insights into the reliability of the drivetrain components.
A common feature is that the highest failure rate subassemblies in onshore installations do not necessarily cause the most
downtime. While electrical subassemblies appear to have higher failure rates and shorter downtimes, mechanical subassemblies,
including blades, gearbox and generator components, tend to have relatively low failure rates but the longest downtimes. The long
downtime of the mechanical subassemblies is clearly not due to their unreliability but rather to the complex logistical and
technical repair procedures in the field (such as the acquisition time for the spare part and for the required maintenance
equipment). This will be aggravated particularly in offshore applications, where any maintenance actions require favorable

Fig. 2 Failure rates and downtime for onshore WTs from the WMEP, LWK and Elforsk/Vindstat (Swedish survey) initiatives (Ribrant and Bertling,
2007; Tavner et al., 2010). From Ribrant J and Bertling L (2007) Survey of failures in wind power systems with focus on Swedish wind power
plants during 1997–2005. IEEE Power Engineering Society General Meeting, 1–8.; Tavner PJ, Faulstich S, Hahn B, and Van Bussel GJ (2010)
Reliability & availability of wind turbine electrical & electronic components. EPE Journal, 45–50.
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weather windows, special lifting equipment and vessels. In particular, Fig. 2 shows that the gearbox is among the top-three
contributors to WT downtime per failure, being one of the most critical subassemblies for onshore WT availability.

An interesting study by (Faulstich et al., 2011) shows that, in onshore installations, 75% of failures are responsible for only 5% of
the WT downtime, whereas only 25% of failures cause 95% of downtime. A few large faults, many of which associated with gearboxes,
generators and blades, dominate onshore downtime as they usually require complex and costly maintenance actions. The replacement
of major WT components, such as the gearbox, has been shown to be responsible for up to 80% of the cost of corrective maintenance
(Besnard, 2013). This suggests that large drivetrain subassemblies require the most attention. The 75% of faults causing 5% of the
downtime are mainly electrical faults, and in the majority of the cases, can be easily fixed via remote/local resets. However, the effect of
these failures on the WT availability can be amplified when moving offshore due to the limited accessibility, the longer time delay and
the travel and repair times, leading to increase of the downtime contribution of these subassemblies (Tavner et al., 2010).

Similar results have been later confirmed by (Pinar Pérez et al., 2013) who brought together and compared data from a
selection of major reliability surveys in the literature, i.e. Elforsk/Vindstat, VTT, LWK, WSD, WSDK and the results from the
DOWEC and CONMOW (Braam and Rademakers, 2004) European projects.

One the first extensive surveys of wind reliability from the European experience was compiled by the ReliaWind project (European
Commission, 2013), between 2008 and 2011, which developed a systematic and consistent approach to deal with the WT taxonomy and
detailed data collected from operational WFs. This included the analysis of 10-min average Supervision Control and Data Acquisition
(SCADA) data, fault logs and O&M reports. In the ReliaWind project, in order to compare an homogenous WT population, only WFs with
at least 15 WTs and variable-speed, pitch-regulated machines with rating greater than/equal to 850 kW were included. Data from around
350 WTs from multiple manufacturers were collected, over a period of more than 10 years, from various databases, including WSD and
WSDK. For confidentiality reasons, the results of the ReliaWind project do not show the actual failure rate and downtime but only the
percentage distribution (Wilkinson, 2011). Despite of the diverse technologies and power ratings, they are broadly comparable with the
WMEP, LWK and Elforsk/Vindstat (Swedish survey) shown in Fig. 2 and the same failure rate trend emerges.

However, the downtime shows much greater emphasis on the rotor and power modules because it is believed that the variable-
speed WTs analyzed in this study have not yet experienced major gearbox, generator or blade failures to-date in service (Tavner, 2021).

Four more recent studies have contributed to compare available onshore, and in some cases offshore, data with the latest study
published in 2021. Since a detailed description of the WT location, type and manufacturer is missing in most of the single
initiative listed in Table 1, the independence of the single results compared in these review studies cannot be fully assessed.

Fig. 3 Failure rates (failure per WT per year) and mean downtimes (weighted according to their occurrences) per failure of onshore WTs
according to seven (7) publicly available databases (Pfaffel et al., 2017). From Pfaffel S, Faulstich S, and Rohrig K (2017) Performance and
reliability of wind turbines: A review. Energies 10(11): 1904.
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The review by (Pfaffel et al., 2017) collates results from to-date available reliability statistics, both onshore and offshore,
including data from outside Europe. Failure data from 15 initiatives is harmonized according to the RDS-PP taxonomy. Based on
the considered time-period and the country/region they refer to, as well as on their expertise, the authors state that overlaps
between databases are likely between LWK and WMEP as well as SPARTA and Strathclyde (Offshore). Only seven (none of them
offshore) data sources provide also downtime information; results are summarized in Fig. 3. Due to the different levels of data
quality and availability, a comparison between initiatives is difficult. The mean WT downtime per failure, shown in Fig. 3, varies
significantly between 0.18 and 7.29 days per failure. This is mainly caused by diverse failure definitions adopted by the data
sources, as discussed in the previous Section. However, overall Fig. 3 confirms previous studies as it shows that the (mechanical)
drivetrain of onshore WTs, although presenting a quite low failure rate, has on average the largest share of downtime and it is
responsible for about a fourth of the total downtime. On the other hand, electrical components, such as the transmission and
control system, cause more failures but lower total downtime. The highest failure rates and lowest downtimes shown by the
University of Nanjing database are related to the way reliability statistics are collected, as in this case, every stop event is reported.

The work by (Artigao et al., 2018) cross- compares 13 reliability statistics, out of which two are offshore (Strathclyde (Offshore)
and NoordzeeWind OWEZ), six are onshore as in (Pinar Pérez et al., 2013) and the remaining 5 are from sources published
between 2011 and 2016. Data refer to WTs ranging from 100 kW to 4 MW located in Europe, China and the United States. To
facilitate the comparison between the datasets, the authors adopt a common taxonomy, breaking down the WT components in
thirteen categories, and uniform the data into normalized percentages, both for failure rates and downtime.

The normalization does not allow the comparison of absolute failure rates or downtimes between different WT configurations, size and
location, but gives an overview of the most critical components for maintenance. In line with previous studies, even if the analysis is now
extended to a larger number of data sources, results show that the assemblies with the highest failure rates are the electrical and control
systems, whereas the hub and blades and the gearbox show the highest downtime. Studies from CREW, NoordzeeWind OWEZ, LWK,
Strathclyde (Offshore), WSDK, WSD and WMEP, for which downtime figures are also available, show that the highest contributor to the
hours lost per WT per year is due to the presence of the gearbox. Overall, mechanical components cause higher amount of downtime when
compared to electrical/control ones, reaching more than 75% of the total downtime. Failures of mechanical components, such as the
gearbox, are hence critical for WT availability and attention should be paid to them, together with the hub and blades, when developing
effective WT monitoring systems. Similarly, (Dao et al., 2019) surveyed averaged reliability statistics, but expanded the analysis by
including additional onshore and offshore sources. In particular, this study takes into account 18 data sources, including all the onshore
databases listed in Table 1, with the exception of Strathclyde (Onshore) which only reports generator and converter failure rates, and all the
four offshore databases. A more robust dataset allows the authors for a reliability comparison between onshore and offshore WT
populations. The ReliaWind taxonomy, with some small modifications, is adopted to collate and harmonize the surveyed reliability data.
Discrepancies between the volume of data collected, the duration, the WT location and the power rating are identified as the main
contributing factors to the significant variations in both failure rates and downtimes from different, individual data sources.

Overall, the criticality of the WTs subassemblies is shown in Figs. 4 and 5 in terms of failure rates and downtime, respectively. In
onshore installations, the electrical and control system, the blades and hub, the pitch and the generator show the highest failure rates.
This is also confirmed for offshore WTs, but with a slightly different order of criticality, where the pitch system is the most critical
subassembly. The higher gearbox, generator and drivetrain failure rates observed in offshore installations might be due to the fact that
fewer datasets are analyzed and they include the Round 1 UK database, which, unlike the other three sources, reports high failure
rates of the gearbox and interrelated components. This is because many WTs experienced severe gearbox failures requiring, in most of
the cases, its replacement. For both the onshore and offshore populations, failures in the gearbox, the generator and the blades and
hub result in the largest downtimes per failure. These results support further the trends already identified in previous studies. The
study also shows that, in offshore installations, the downtime per stop is approximately double the one of onshore installations,
most likely due to the more complex offshore maintenance procedures adopted as opposed to the onshore ones.

Fig. 4 Failure rate distribution among the main WT components for 14 onshore and 4 offshore reliability databases (Dao et al., 2019). From Dao C,
Kazemtabrizi B, and Crabtree C (2019) Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy, 22: 1848–1871.
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Cevasco et al. (2021) is the most recent WT reliability review to-date and provides an interesting all-in-one comparison of the
average reliability figures of 9 databases, which represent the most complete and accessible initiatives so far. The RDS-PP taxonomy
is adopted to allow the coherent comparison of the reliability statistics. Fig. 6 shows the failure frequency against the time lost to
restore the system after failure and allows to compare key reliability aspects of early-stage and modern assets. Although there is a
significant spread across the averaged data, mainly due to inconsistencies in terms of data quality and availability between the data
sources, most of the components are characterized by less than 25 h lost per WT per year.

Fig. 5 Downtime distribution among the main WT assembly/components for 14 onshore and 4 offshore reliability databases (Dao et al., 2019). From Dao
C, Kazemtabrizi B, and Crabtree C (2019) Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy 22: 1848–1871.

Fig. 6 Failure rate vs. downtime per component according to Cevasco et al. (2021). From Cevasco D, Koukoura S, and Kolios AJ (2021)
Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications. Renewable and Sustainable
Energy Reviews 136: 110414.
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While the WMEP and Huadian databases are mainly characterized by lost hours per failure of the component ranging between
5 and 10 h/WT/year, the other databases show a wider spread of values. However, some clustering in the data according to the
analyzed population and the way the data have been collected, can be observed. The oldest database, EPRI, which refers to
outdated configurations and small rated WTs, shows high values of failure rates. They can be associated to the early maturity stage
of the industry, where WTs were still in their infant mortality phase. On the other hand, the more recent CIRCE database show
lower failure rates compared to older datasets, which can be attributed to the higher maturity level reached by the industry in
recent years. The University of Nanjing database shows an outlier behavior that can be attributed to the fact that, unlike other
populations, stop rates are recorded, implying higher failure rates and lower downtime mainly due to the contribution of remote
resets. The Strathclyde (Offshore) results also show a peculiar, skewed behavior which can be explained by the fact that this
database reports the mean active repair time (i.e. the expected effective time to repair) as an indicator of downtime. This differs
from the mean downtime definition (i.e. time interval during which an item is unavailable due to a failure, including all the delays
between the component failure and the restoration of its service) adopted by other databases, except EPRI and Huadian.

Overall, failure rates statistics show a significant improvement compared to the first WT generation, while downtime is still
quite long for high criticality components such as the drivetrain and the rotor systems. Overhauls or replacements of such major
components, which are infrequent but typically associated with long downtime, together with frequent failures of other com-
ponents with a shorter downtime, lead to high O&M costs.

2.11.2.4 Toward reliability data standardization

The wind power industry recognizes the broad significance of reliability data collection and analysis for profitability of WF assets
optimization. Currently, there are wide variations among different reliability data collection and analysis efforts and there is a need
for the wind power industry to develop and adopt a standardized approach. The lack of internationally recognized standards is
currently seen as one of the main obstacles for enhancing the industry's progress in addressing the reliability issues. A variety of
guidelines and recommendations for data harmonization and standardization have been suggested by several initiatives and the
most recent are IEA Wind Task 33 (Hahn et al., 2017) and two industrially-led databases, SPARTA in the UK (SPARTA, 2021) and
WInD-Pool in Germany (Fraunhofer and Dresden, 2021). Recommendations for developers, owners and operators are:

(a) Adopt a common taxonomy to map all WT components to one internationally recognized designation system (RDS-PP is
seen as the most promising designation system for equipment data in the wind power industry).

(b) Align operating states to those specified in standards for a WT time- and production-based availability assessment.
(c) Automate data collection to reduce the risk of human error as well as improving data quality.
(d) Collect reliability data from the early development stages throughout the WF asset lifetime.
(e) Share data by engaging in external initiatives (such as SPARTA and WInD-Pool) to align collection methodologies and achieve

statistically significant populations for reliability and performance analyses.

Achieving an harmonized approach for reliability statistics collection will result in the improvement of the data quality and
availability and, consequently, of the valuable information that can be derived from it for all stakeholders involved in the
management of the WF asset. The adoption of data collection and reporting standards across the industry will require time and the
commitment of all stakeholders. The value, as realized in other industries such as oil and gas, lies in safer and more effective and
efficient maintenance policies, strategies and practices. Failure to do this will restrict the pace at which opportunities to improve
O&M costs can be identified and consequently implemented. The adoption of a systematic and internationally recognized
approach in which and how reliability data should be collected will render feasible to optimize the use of operational experience
to improve O&M, as well as to improve design and manage the risk. This process will require time and commitment of all
stakeholders, but is essential in order to optimize the WF profitability, as already shown in other industries such as oil and gas by
the OREDA database, while protecting competitive advantage and intellectual property of owners and operators.

2.11.3 Wind turbine maintenance strategies

O&M plays a key role in the cost-effective development of WF projects, especially the offshore ones. While the cost of wind energy
reduces due to smaller upfront costs and improved performance, O&M activities represent a major contributor to total expen-
diture, with offshore O&M costs estimated to account for up to 35% of the total cost of wind energy (Stehly et al., 2020).

Operations represent a small proportion of O&M expenditure and refer to activities contributing to the high-level management of the
asset, such as the environmental monitoring, the remote monitoring, electricity sales, marketing, administration and other back-office tasks.

Maintenance represents a large portion of O&M effort, cost and risk. The purpose of maintenance is to achieve the desired component
performance by maintaining the component's ability to function correctly. The component failure rates, as well as the maintenance
duration, the vessel availability and the operational weather limits have the greatest effect/impact on O&M costs (Martin et al., 2016).

Maintenance strategies are typically classified as corrective and preventive, as shown in Fig. 7, according to when maintenance is
conducted. The primary difference between these two strategies is that a problem in the system must exist before corrective
maintenance actions are taken, while preventive tasks are intended to prevent occurrence of a problem in the first place.
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Corrective maintenance is the traditional maintenance approach, being undertaken after a failure occurs. For critical component
failures, this should be performed immediately. For offshore wind power installations, this approach requires planning action as
soon as a failure occurs, otherwise long unscheduled downtime and significant production losses can occur. For failures that are of
small consequence to the comprehensive system function, the maintenance actions can be deferred to a better suited time.

Thus, corrective maintenance has the advantage that useful asset life is available without loss of capacity. On the other hand, it
has two disadvantages:

(a) it requires fast response to avoid significant downtime;
(b) it can lead to greater damage and direct costs, for example due to consequential failure of components other than those

initially failed (Koukoura et al., 2021).

Preventive maintenance is performed to avoid major failures and can be further subdivided into time-based and Condition-
Based Maintenance (CBM).

Scheduled time-based WT maintenance is done at fixed intervals between maintenance visits, independent of the WT
operating status. This generally takes 2–3 days per WT and is suitable for age-related failures where a failure probability
distribution is known. It includes, tests of safety systems, gearbox oil sampling and analysis, oil and filter changes, inspections
for oil or water leakage, generator brush and slip-ring checks, brake pad renewal, bolt strength testing/re-tightening and blade
visual inspections. These tests are usually based on manufacturer recommendations but may be modified based on the
operator's experience.

In onshore installations, preventive time-based maintenance is generally performed every 3 months during the first year of
operation and later every 6 months depending on the WT service type and model. However, in offshore installations, due to the
higher transportation and production loss costs, WTs are routinely serviced only once a year during spring or summer (Besnard,
2013). A preventive time-based maintenance strategy has the main advantage that assets deliver more predictable and reliable
electricity, optimizing the financial return. However, compared to CBM, it results in higher costs and the risk of over-maintenance,
since tasks may be completed more frequently than needed before the nominal component life end.

CBM is performed based on the physical machine component conditions, requiring monitoring systems with warning/alarm
limits to alert attention if a condition exceeds specified accepted levels. Advanced and reliable monitoring and analysis techniques
are needed to plan CBM using WT SCADA and Condition Monitoring Systems (CMS) data (Crabtree et al., 2015).

Information about machine component condition must be accurate if effective CBM strategies are to be implemented. The
objective is to detect the presence and type of incipient faults at an early stage and monitor their evolution, allowing estimates to
be made for the residual life, then taking remedial action by planning the most viable economic maintenance intervention using a
dynamic schedule (Bengtsson, 2004). In this way, any planned maintenance activity should not be production-critical and could
be carried out during low wind periods, when access is easier and electricity demand low.

A comparison of maintenance strategies, showing the advantages and disadvantages of each category, is given in Hameed et al. (2010).
Wind power industry maintenance strategies are evolving rapidly, particularly for offshore applications. The increasing impact

of O&M costs, especially in offshore installations, is encouraging WF operators to shift from scheduled corrective to preventive
CBM approaches (Mérigaud and Ringwood, 2016; Rinaldi et al., 2021). This should reduce significant financial loss by avoiding
long failure downtimes. Corrective maintenance costs have been estimated to be approximately four times higher than those of
preventive activities (Scheu, 2012). The economic benefits of implementing preventive CBM strategies are substantial, in terms of
maintenance costs minimization, operational performance and safety improvement, preventive part replacement reduction when
effective life has not been reached, as well as the reduction of the number and severity of in-service failures (McMillan and Ault,
2008; Byon and Ding, 2010; Zhigang et al., 2011).

Maintenance

Corrective 

Immediate

Deferred

Preventive

Time-based

Condition-based
(CBM)

Fig. 7 Classification of maintenance strategies.
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A comprehensive understanding of WT reliability, identifying the most critical components and their failure modes, is essential
for implementing appropriate CMSs to achieve the full economic benefits of CBM.

2.11.3.1 Overview of wind turbine condition monitoring

With the development of advanced condition monitoring, diagnostics and prognostics, CBM has attracted much attention in
the offshore wind power industry in recent years. Modern WTs are equipped with SCADA systems and CMSs for the active
remote monitoring and control of their components (Tavner, 2021). SCADA systems provide a range of low frequency
(typically 10-min averaged values) measurements, such as for the active power, the wind speed and the pitch conditions and
temperatures. The data recorded includes alarms, fault logs, environmental and operating conditions leading up to fault
occurrences. These systems were designed for operating purposes but have given valuable insights into impending WT
malfunctions, attracting extensive research attention as in Feng et al. (2010), Qiu et al. (2011), Schlechtingen et al. (2013),
Feng et al. (2013), Schlechtingen and Santos (2014), Tautz-Weinert and Watson (2016), Maldonado-Correa et al. (2020) and
Zhang et al. (2020). Potentially, SCADA records could help WT operators to understand key WT components health.
However, this requires considerable analysis for interpretation of the large volume of data generated. Furthermore, the low
resolution of the data does not usually permit an in-depth analysis, generally agreed as necessary for accurate diagnosis and
prognosis (Crabtree et al., 2015).

CMSs provide high-resolution monitoring of WT high-risk subassemblies. The majority of CMSs currently available are based
on drivetrain high-frequency vibration monitoring, with special focus on main bearing, gearbox and generator bearings. In some
cases, these measurements can be used in combination with oil particle counters and fiber-optic strain gauges to enhance their
monitoring capabilities. No commercial CMS is offered for electrical and power electronic components or for the yaw and pitch
systems, beyond that monitored by the SCADA system (Tavner, 2021). This is a gap that needs to be addressed because, as shown
in Section 2.11.2, the reliability of electrical components is being increasingly recognized as a growing concern, especially in
offshore installations, where electrical component deterioration could be accelerated by enhanced corrosion and erosion rates due
to the harsh environment. A number of non-destructive monitoring techniques applicable to WT CMS are reviewed in Garcia
Marquez et al. (2012), Yang et al. (2014), and Hossain et al. (2018). According to the survey carried out by Crabtree et al. (2014)
there is a wide variety of commercially available CMSs for industries other than wind, mainly relying on established rotating
machine industry techniques, where they have become an integral part of asset management. However, the adaptation of these
techniques to wind power plants has proved challenging, due to their peculiar variable operating conditions (Yang et al., 2009).

The application of WT state identification to fault detection, diagnosis and prognosis uses both physics-based and data-
driven approaches (Qiao and Lu, 2015; Luo, 2017; Stetco et al., 2019). SCADA systems and CMS collect large, complex volumes
of data, requiring a high degree of expert manual analysis. Leveraging the full potential of this data and extracting actionable
and timely insights to optimize O&M strategies require systems that automatically analyze and interpret large volumes of
monitoring data (DNV, 2019). The development of reliable and cost-effective analysis methods, with automatic damage
detection, diagnosis and problem prognosis on the most critical WT components, could play a crucial role in establishing
technically and economically viable CBM strategies for offshore wind power installations. In the last decade of the wind power
industry, data-driven decision-making for effective CBM has evolved rapidly, from applying conventional signal processing and
physics-based methods in 2010 to the application of artificial intelligence (AI) and especially deep learning in 2020. While AI
techniques have been game-changers in other fields, such as healthcare and finance, they are still at an embryonic stage in
industrial wind power engineering.

This is probably due to the lack of a clear perspective and the limited trust in these methods. Despite their enormous potential,
there are key challenges for the offshore wind power industry in adopting data-driven decision-making techniques that need to be
addressed, as they have been identified by (Chatterjee and Dethlefs, 2021):

(a) Lack of quality data access;
(b) Problems in deploying AI models for real-time decision support;
(c) Lack of black-box approach transparency.

These are critical areas where researchers should focus soon to develop advanced solutions for reducing offshore wind power
O&M costs. The main objective will be to develop a platform for the analysis and management of offshore WTs’ data and use the
data collected in the design of cost- efficient CBM strategies.

2.11.3.2 Toward an offshore wind integrated maintenance strategy

Historic design and reliability information together with on-line monitoring data must play a key role for the optimization of
O&M planning and the management of WF assets, especially in offshore installations. Effective asset management of a WF is
crucial for the optimization of the future cost of wind energy. That must be based upon data to close the gap between prior
knowledge and current operational experience, with the data coming from:

(a) A logical classification of maintenance methods, Fig. 7;
(b) WT and WF Design, e.g. prior FMEA, Fig. 8;

Wind Turbine Reliability - Maintenance Strategies 365

Author's personal copy



Offshore
wind turbine

design

Product(A)

(B)

Pre-production
prototype

manufactured

Production
prototype

manufactured

Production
OWT

Testing

Prototype
tests

Pre-
production

tests

Production
tests

Internal &
suppliers data

Data

Prototype
test data

Pre-
production
test data

Field
experience

Reliability
database

FMECA v1

Checking

FMECA v2

FMECA v3

FMECA v4

PHASE 1

PHASE 3

PHASE 2

PHASE 4

Develop an
integrated

SCADA/CMS
system

Installation &
commissioning

Routine
maintenance

Prototype
SCADA/

CMS system

Routine
maintenance

tests

Commissioning
tests

Product Testing Data Checking

PHASE 1

PHASE 3

PHASE 2RCM Plan v2

RCM v3

Reliability-centred
maintenance
plan v1 based
on FMEA v4

Internal &
suppliers data

Commissioning
test data including

SCADA/CMS

Reliability
database

Routine
maintenance

test data including
SCADA/CMS

Historical
field experience

Offshore
wind turbine

as built

Fig. 8 Proposals to use of FMEA and Reliability-Centered Maintenance (RCM) as Review Tools during Offshore WT Design and Manufacture for improved
WF O&M outcomes (Tavner, 2021). (A) FMEA as a Design Review Tool; (B) FMEA and RCM together as an O&M Review Tool. From Tavner PJ (2021)
Offshore Wind Power - Reliability Availability and Maintenance, 2nd edn. London, UK: The Institution of Engineering and Technology.
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(c) Historic operation, i.e. prior failure rate and downtime surveys, summarized in Table 1 and Figs. 2–6;
(d) Current operational experience on this and similar WFs, operator/manufacturer information;
(e) On-line WF operational data, integrated from both SCADA and CMS.

The challenge is to integrate this information so that it can be exploited by WF operators and maintenance teams to operate and
maintain the assets in the most cost-effective manner.

Fig. 9 proposes a framework for the implementation of an optimal offshore WF maintenance strategy by managing and integrating the
available knowledge. It collates live SCADA and CMS monitoring data, as well as met-ocean data and forecasts with available reliability
data, then correlates them with maintenance logs to provide an integrated system upon which optimal plannedmaintenance strategies can
be implemented. Fig. 9 represents a simplified version of an earlier framework proposed by (Tavner, 2021). Its implementation would
require the adaptation of original equipment manufacturers (OEM) and operators’ data structures to the conditions of individual WFs.
There are various closely interlinked stakeholders involved in offshore WF O&M and they can be grouped into six specific departments
shown in Fig. 9 with their live data inputs, stored information, functions, maintenance actions, report outputs and key interactions.

(a) Health Monitoring (HM): Responsible for the continuous WT health monitoring, via automated SCADA alarm and signal
data, the CMS alarm and signal data processing and the examination of historical reports to alert other groups via generated
HM reports, which include fault development, severity, expected time to failure and advice on preventive measures.

(b) Asset Management (AM): Concerned with ensuring that assets are operated in the most cost- efficient and valuable manner to
secure the longest life cycle of profitable operation. RCM activities are driven by a clear understanding of subassembly history
and performance provided by the exchange of information with the other departments.

(c) Operations Management (OM): Concerned with achieving the required WF operation, given the available operational and
met-ocean information, meeting AM, maintenance schedule and grid requirements.

(d) Maintenance Management (MM): Related with the implementation of the AM requirements, via OM outputs, responding to
concerns raised by HM and producing cost-effective maintenance schedules, including preventive CBM, reactive and RCM
responses, based on met-ocean forecasts, resources, equipment and personal availability.

Fig. 9 Offshore WF Knowledge Management System. Modified from the original version produced by Christopher J. Crabtree with contributions
from Peter J. Tavner, Bindi Chen, Yanhui Feng, Yingning Qiu and Donatella Zappalá in Tavner PJ (2021) Offshore Wind Power - Reliability
Availability and Maintenance, 2nd edn. London, UK: The Institution of Engineering and Technology.
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(e) Field Maintenance (FM): Responsible for the implementation of maintenance schedules, for reporting and resolving any
faults (or potential faults) discovered during maintenance, for the confirmation of repair success against advice in HM reports
and for updating reliability figures and fault details from MM report and integrating them in the FM reports.

(f) Information Management (IM): responsible for handling the WF data and information, including live data, department
reports, staff information and department requests, providing on demand data and information based on department
requests and realizing effective communication between departments and integrating them in a collaboration report.

2.11.4 Summary

2.11.4.1 Main points

This Chapter shows that both historic and current field data provide invaluable information for WF operators, assisting in the
planning of repairs and maintenance, reducing operational expenditure (OPEX).

The larger sizes of future onshore and offshore WFs, both fixed and floating, renders future OPEX reduction important.
WFs collect a large amount of operational data to manage their O&M. These data can provide effective, cost-saving information

but require careful handling.
The results of this Chapter's analysis suggest that while data management methodologies are essential to the OPEX costs’

reduction, predictive analysis will also be essential to hold down those costs over a large WF life, whether an onshore or offshore
one, a fixed or a floating installation.

The following is a summary of Lessons and Opportunities from this Chapter aimed at improving the OPEX cost control.

2.11.4.2 Lessons

(a) The Chapter has revealed an extensive list of international reliability surveys, assembled between 1986 and 2021 from more
than 11 countries, reporting failure rates, downtime and repair strategies from more than 21,000 WTs, onshore and offshore
ones, rated between 30 kW and 6 MW.

(b) It reports a clear and consistent distribution of failure rates and downtimes among WT components, confirmed from a
number of different sources. These figures can be extrapolated or developed to the larger WTs now being installed onshore
and/or offshore, both fixed and floating.

(c) It shows how the collection of failure rate and downtime information has been improved. The latest data, Fig. 6, show a
combined presentation of failure rates and downtime allowing WF operators to predict future likely operational performance
for larger, more complex wind power developments.

(d) Machine reliability experience has shown that such data will be an invaluable information source for future large WF main-
tenance and OPEX reduction, regardless of the size and complexity of future installations compared to the ones of these surveys.

(e) Both CMS and SCADA data analyses have been demonstrated as valuable for detecting faults early and initiating the
appropriate repair. The limitations of CMS and SCADA are their large data volume, the widely differing time intervals and the
difficulties of translating their information into suitable engineering action.

(f) This Chapter gives clear guidance on the varying methodologies available for predicting future WT and WF performance,
ranging from monitoring data-based field information to employing design-based FMEAs and other techniques to plan
onshore and offshore WF maintenance for future installations.

(g) The application of CBM, using CMS and SCADA and data- and design-based methodologies will, in time, improve the
reliability performance of future larger, fixed and floating offshore wind power installations, where currently there is a lack of
operational data, but where capability and profitability are encouraging development.

(h) Based on the current world net-zero carbon plans, it is likely that other renewable energy industries must learn the reliability
lessons from the onshore and offshore wind power. For example, the failure rate, the downtime and the repair strategies developed
and successfully deployed by the wind power industry could be employed in the future development of wave and tidal power.

2.11.4.3 Opportunities

(a) The reliability surveys reported in this Chapter deal with WTs of lower rating than those currently being installed in new WFs,
somewhat limiting the applicability of that data.

(b) Current publicly available data sources lack a common and harmonized practice for reliability statistics collection. This makes
cross-comparison between them difficult. To enable comparability, facilitate the exchange of information between parties and
make better use of operational experience, standard approaches to WT taxonomy and reliability data collection should be adopted.

(c) The data from WTs reported in this Chapter do not include the most modern drivetrains currently being deployed in offshore
installations. There is a lack of data on the reliability of direct or indirect-drive large Medium Voltage (MV) permanent magnet
generators, fully rated converters or the use of MV converters, now being advocated for the largest WTs.
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(d) The industry continues to struggle to integrate data from CMS and SCADA to become fully effective tools for failure and repair
management. This is because of the differences in the data rate and the scope of these different systems. The integration of
these systems into the overall management systems of large WFs is an important future goal, particularly in offshore
installations, where site access is more difficult.

(e) There is limited operational data available from fixed offshore WTs and no operational data yet published from floating
offshore WTs, their mooring and collection cables, substations/converters and export cable systems. Such data will be of
future importance to ensure the reliability and profitability of this important and growing technologies. The current lack of
information limits the industry's ability to accurately predict and control operational reliability for future large floating
offshore assets. However, experience demonstrates that the judicious use of data from existing sources, either onshore and/or
offshore, can give reasonable approximations for future trends.

(f) Most surveys reported in this Chapter originate from National or Regional Government data schemes aimed at encouraging
renewable energy dissemination, for example in Germany, Denmark, the Netherlands, the UK and Sweden. It appears that
only the SPARTA survey in the UK involved National, Regional and Commercial collaboration.

(g) The wind power industry is still very cautious about making data available for reasons of commercial confidentiality. This
differs from other more developed industries, for example the healthcare, the railways, the aviation, the motoring and the oil
and gas, where reliability data have been made readily available in the public domain. These industries have found ways to
collaborate in sharing information of mutual benefit to safety and profitability, without sacrificing Intellectual Property. That
must be possible for the wind power industry too.
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