
Clustering of individuals with dementia
based on MRI features

MSc Thesis Biomedical Engineering
BM51035 - Medical Physics

by

N.J. Koorn

to obtain the degree of Master of Science
at the Delft University of Technology

to be defended on Thursday May 30, 2024 at 10:00.

Chair and Supervisor:
F.M. Vos, Erasmus MC, TU Delft

Supervisors:
M.F. van Haaften, Erasmus MC

E.E. Bron, Erasmus MC

Independent Committee Member:
J. Neitzel, Erasmus MC

An electronic version of this thesis is available at http://repository.tudelft.nl

http://repository.tudelft.nl/


Clustering of individuals with dementia
based on MRI features

N.J. Koorn1,2, F.M. Vos1,2, E.E. Bron2 and M.F. van Haaften2

1Delft University of Technology
2Erasmus Medical Center, Rotterdam

Abstract

Dementia, characterized by a significant decline in cognitive abilities, encompasses various neurodegenerative disorders.
This includes Alzheimer’s disease (AD), frontotemporal dementia (FTD) and their clinical manifestation named primary
progressive aphasia (PPA), mainly involving language difficulties. In general these diseases exhibit some disease specific
clinical characteristics. However, considerable heterogeneity exists in both atrophy patterns and symptom expression within
each disease. Additionally, the overlap in disease patterns between AD and FTD complicates diagnosis. In this study, an
unsupervised clustering algorithm is used to identify distinct atrophy patterns within AD and FTD, aiming to explore
heterogeneity as well as disease overlap. Through the clustering of grey matter volumes, we identified two primary clusters
potentially reflective of disease stage. These clusters were externally validated. Additionally, the two primary clusters were
subdivided into four distinct clusters, each representing an unique atrophy pattern. These four clusters exhibited differences
in cognitive performance in the five cognitive domains: visuospatial functioning, language, memory/learning, processing
speed, and attention/executive functioning. The identified clusters provide inside in the atrophy patterns in AD and FTD,
as well as their relation to clinical diagnosis and cognitive performance.

Nomenclature

ACE Alzheimer Center Erasmus MC

AD Alzheimer’s Disease

FTD Frontotemporal Dementia

GMP Grey Matter Percentile

NACC National Alzheimer’s Coordinating Center

PPA Primary Progressive Aphasia

1 Introduction

Dementia is a syndrome characterised by a substan-
tial deterioration in cognitive abilities. While atrophy,
cognitive decline and vascular impairment are part
of the normal ageing process, these factors are exac-
erbated in dementia and have a significant impact on
daily activities [1].

The most common diseases causing dementia in-
clude Alzheimer’s disease (AD), Frontotemporal de-
mentia (FTD), vascular dementia (VaD), and demen-
tia with Lewy Bodies (LBD) [2]. In all of them dis-
eases, dementia is attributed to loss of brain neurons,
caused by the accumulation of proteins in the brain,
vascular damage, or both. Firstly, AD is the most
prevalent disease causing dementia, and is character-
ized by amyloid beta and tau accumulation in parts
of the brain. AD is in its typical form associated with
hippocampal atrophy and memory loss [3], while

in atypical forms of AD little to no hippocampal
atrophy is presented. Examples of atypical forms
of AD include posterior cortical atrophy (PCA) and
logopenic progressive aphasia (LPA). PCA is char-
acterized by impairment in visual and visuospatial
skills, i.e. the ability to identify and analyse spaces
[4]. The most prominent feature of LPA is language
difficulties [1]. Secondly, FTD is primarily caused
by the accumulation of tau or TDP-43 proteins, and
presents with executive dysfunction and personality
changes. Furthermore, FTD presents clinically with
subtypes associated with changes in behavior and
issues in language processing [1], of which the lan-
guage variants include semantic dementia (SD) and
progressive nonfluent aphasia (PNFA). Collectively,
all language variants of FTD (SD and PNFA) and AD
(LPA) are classified as primary progressive aphasia
(PPA). In general, AD and FTD manifest with these
disease specific clinical patterns. However, consider-
able heterogeneity is found within each disease, both
in symptom expression and atrophy patterns [1].

MRI images can be used to identify these atrophy
patterns and play an important role in detecting the
cause of dementia in the memory clinic [1]. These
atrophy patterns differ partly between diseases, but
there is also overlap. In general, in AD, the hippocam-
pus is frequently affected, while FTD shows atrophy
in the frontal and/or temporal lobes. The language
variants (PPA) of these diseases are characterised by
temporal lobe atrophy.

Diagnosing and understanding of dementia is com-
plex due to multiple factors. These include the ob-



Figure 1: The cluster analysis pipeline involves several steps. First, the MRI data is processed to derive grey matter percentiles,
corrected for age, sex and intracranial volume (ICV) (A). Secondly, the grey matter percentiles are clustered for the optimal number of
clusters and the resulting clusters are validated (B). Finally, the clusters are compared for demographic, imaging, cognitive and clinical
features (C).

served heterogeneity among patients with the same
disease, the occurrence of mixed pathology, and
the overlap in disease expressions between different
types of dementia. Mixed pathology, which refers to
the coexistence of multiple underlying pathologies,
mainly involves a combination of AD and VaD [5].
This is most often seen in elderly subjects, since the
vascular damage is increased with age [1][2]. The
overlap in disease expression particularly, is causing
high uncertainty in the etiological diagnosis.

To address the challenge of heterogeneity, current
literature [3][6][7][8][9][10][11][12][13] suggests the
application of unsupervised learning techniques. Un-
supervised learning can reveal patterns in data and
aid in understanding the heterogeneity within de-
mentia without the use of a priori information. The
problem with using labels lies in the uncertainty as-
sociated with clinical diagnoses of dementia patients.
Previous research has mainly focused on the identifi-
cation of clusters within specific diseases, especially
AD [14] [15] [7] [16][8], FTD [9] [11] and LBD [13].
Comprehensive analyses that include multiple dis-
eases that cause dementia are limited. The inclusion
of more than one etiological diagnosis of dementia in
a cluster analysis can provide insight into the overlap
of atrophy patterns between these diseases, as well
as insight to the heterogeneity within these diseases.

This study aims to gain more insight into the com-
plexity within and between diseases causing demen-
tia, with a focus on atrophy patterns within AD and

FTD. This goal is pursued by the use of a clustering
algorithm. This algorithm will make clusters in a
dataset based on grey matter volumes. The resulting
clusters will be analysed by exploring their relation
with cognitive performance and clinical diagnoses.

2 Methods

2.1 Datasets

The study used data from the Alzheimer Center Eras-
mus MC (ACE) database. This database comprised
patients who visited the memory clinic due to sus-
pected neurodegenerative disorders. The data analy-
sis encompassed a total of 297 subjects, with 51.9%
of them being female. These subjects were diagnosed
with AD, FTD or PPA. For PPA cases, subtypes were
specified if available: PNFA (N = 15), SD (N = 27),
LPA (N = 13), and PPA not otherwise specified (PPA-
nos) (N = 20). Their mean age was 66.4 ± 9.6 (ranging
from 32 to 95 years), and they had a median score of
5 on the scale of Verhage, which indicates an average
level of completed secondary education [17].

To validate the results found in this study, an exter-
nal dataset was used. This consisted of a large cohort
from the National Alzheimer’s Coordinating Centre
(NACC) in the United States, included from memory
clinics in the United States [18]. This data comprised
1375 subjects with an AD (N=1304), behavior variant
of FTD (bvFTD, N = 38), or PPA (N = 34) diagno-
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sis. The average age of the subjects was 75.1 ± 9.4
years (ranging from 35 to 100 years), and 54.5% of the
subjects were female. The Clinical Dementia Rating
(CDR) score was used to analyse disease progression
in subjects of the NACC dataset. The CDR score is
a measure for disease progression on a scale from
0 to 3: no impairment (CDR = 0), questionable im-
pairment (CDR = 0.5), mild impairment (CDR = 1),
moderate impairment (CDR = 2), and severe impair-
ment (CDR = 3).

Additionally, a subset of the data from the Rot-
terdam Study was used for data normalisation. For
this purpose only cognitively normal subjects were
considered (N = 11728) [19]. Their mean age was 64.7
± 9.8 (ranging from 45 to 100 years) and 54.5% was
female.

Characteristics of the datasets used in this study
can be found in Table 1 in Appendix A.

2.2 MRI Data

T1 weighted images were acquired from all sub-
jects included in this study, in the period of 2011
to 2021. Neuropsychological test scores were avail-
able for a subset of the subjects. The MRI scans were
acquired as part of routine medical examinations.
White matter, grey matter, and cerebrospinal fluid
were automatically segmented from the MRI images
with FreeSurfer (version 6.0). Grey matter volumes
(GMVs) from 80 cortical and subcortical regions and
4 ventricle volumes were included.

Subsequently, these volumes were normalized for
intracranial volume (ICV), by calculating the volume
fraction through

VICVadjusted =
Vregion

ICV
. (1)

Thereafter, these volume fractions were corrected
for age and sex. To establish a reference for age and
sex, a quantile regression model was generated using
data from cognitively normal subjects in the Rotter-
dam Study. For each age group, the percentiles of
their volume fractions were calculated and combined
them to form a second order regression curve (Fig.
2). This calculation was performed separately for
males and females. Subsequently, the ICV-adjusted
volumes from study subjects were individually fit-
ted to these quantile regression lines. This process
yielded a percentile value for every brain region of
each subject. Essentially, these percentile values rep-
resented the degree of deviation of the GMVs with
respect to the cognitively normal population at that
age, and will be referred to as grey matter percentile
(GMP).

Figure 2: Quantile regression plot of the frontal lobe in the left
hemisphere in men, including tau-value (percentile) trajectories.
Age is on the x-axis and the ICV-adjusted volume at the y-axis.
Tau = 0.5 is the average of the cognitively normal subjects.

2.3 Neuropsychological Test Scores

Neuropsychological tests were conducted inside
the Erasmus MC as part of the standard clinical
work-up. These tests were categorized into five
cognitive domains: visuospatial functioning, lan-
guage, memory/learning, processing speed and at-
tention/executive functioning. Visuospatial function-
ing is the ability to make a visual representation of
an object, or to identify an object and their location
[4]. Language skills were assessed through tasks re-
quiring subjects to name objects. Memory refers to
the process of remembering and recalling informa-
tion [20], while processing speed indicates the time
it takes to process or respond to the information [21].
Finally, executive functioning is a broad term that
contains multiple cognitive aspects under which con-
centration, planning and organisation, and cognitive
flexibility [22]. These cognitive domains and their
tests are outlined in Table 2.

The raw neuropsychological test scores were first
adjusted for age, sex and level of education (Verhage
scale for education [17]), using a general linear model
based on the study cohort itself. Subsequently, the ad-
justed scores were transformed into z-scores and the
resulting scores were combined (mean) per domain,
according to the grouping in Table 2 in Appendix C.
After the combination the scores, the resulting scores
(no longer z-scores) were again z-transformed.

2.4 Cluster Analysis

The cluster analysis was done in Python using hierar-
chical clustering from Scikit-learn (version 1.4.1)[23].
Hierarchical clustering is a technique that clusters
data points by splitting or merging the points based
on similarity. This similarity was measured by the
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Euclidean distance. The clustering process started
with each datapoint as an individual cluster. At
each step in the clustering, the two clusters with the
smallest distance were merged into a singular cluster.
This process continued until one large cluster was
formed. For the computation of distances involving
multiple points within a cluster, Wards method was
employed. Wards method relies on minimizing the
sum of squared distances to the center point of the
newly formed cluster. Ward is the most advanced
and most used, since it takes into account the vari-
ance within clusters.

The number of clusters (K) was computed through
performance metrics across a range from 2 to 10
clusters. These performance metrics included the
Silhouette index (SI) [24], Davies-Bouldin index (DB)
[25], GAP-statistics [26], and Dunn index (DI) [27].
The optimal number of clusters was determined by
either the minimal or maximal value of each metric.
The SI, DI, and DB are all measures of intra- and
inter-cluster distances. For each metric, these dis-
tances were measured differently, yet for all metrics
the ratio of the measures of intra- and inter-cluster
distances is a measure of fit of the obtained clustering.
Finally, GAP reflects the cluster tendency of the data
compared to random data (uniform distribution). For
all metrics, the most prevalent optimal cluster num-
ber was selected for further analysis. Lastly, internal
validation encompassed the inspection of the silhou-
ette plot. The SI value for each subject was plotted
individually onto the range of -1 to 1. This SI score
for each subject provides a measure of fit to their
cluster. A SI score of 1 indicates a perfect fit in the
cluster, while a SI score below 0 suggests a better fit
in another cluster.

2.5 Main and subanalyses

Our main analysis focused on the clustering of brain
lobe and hippocampus GMPs. Therefore, regional
GMVs were combined into brain lobe volumes for
each hemisphere by summing the GMV of the con-
stituting regions (see Appendix B). The hippocam-
pus volume was also separately considered for both
hemispheres. The GMPs of these brain regions were
used as input for the clustering. This analysis is re-
ferred to as the clustering of global GMPs (GLOB).
The quantile regression plots for all lobes and the
hippocampus can be found in Appendix G.

Secondly, principal component analysis (PCA) was
employed for dimension reduction of the data. PCA
transformed the original feature space into a new,
lower-dimensional space while preserving the direc-
tions of the largest variance in the data. These princi-
pal components (PCs) are mutually orthogonal and
are ordered by the amount of variance. A subset of

the PCs were selected, explaining the majority of the
variance. In the first clustering approach this sub-
set was clustered, referring to ’PCA1’. In a second
clustering, the first and largest PC was left out of the
input, named ’PCA2’. This approach was taken as
we expected that the first PC might merely contain
physiological atrophy.

Lastly, the NACC dataset was used for external
validation. The data from NACC was clustered in
two ways. First, the data from NACC was clustered
according to the same pipeline as in GLOB, result-
ing in ’NACC’ clusters. Secondly, the datapoints
from NACC were assigned to the clusters from ACE
(GLOB). This assignment was done by the k-nearest
neighbor approach, which considered the 10 near-
est neighbours of the GLOB clusters to cluster each
subject from NACC. The degree of alignment was
evaluated using the Jaccard index [28] and the Ad-
justed Rand Index [29]. For both these measures of
alignment, the range was from 0 to 1, with 1 indicat-
ing a perfect alignment.

2.6 Statistical Analysis

Statistical analyses included the t-test or one-way
ANOVA (parametrical), and Mann-Whitney U or
Kruskal-Wallis tests (non-parametrical) for the cog-
nitive domains. Only the Mann-Whitney U and
Kruskal-Wallis test were used for the imaging fea-
tures and age, because the assumptions of normal
distribution and equal variances were not met. Post-
hoc tests for numerical variables were done using
the Turkeys HSD (parametrical) and Dunn’s test
(non-parametrical). The categorical variables (sex,
CDR score and education) were tested with the Chi-
squared test, including the post-hoc tests. All post-
hoc tests included a correction for multiple compar-
isons.

3 Results

3.1 GMPs per clinical diagnosis

The GMP scores of all diagnoses and subdiagnoses
present in the ACE dataset are depicted in Fig. 15 in
Appendix D.

3.2 Clusters based on global GMPs
(GLOB)

Clusters were generated based on the GMPs of the
brain lobes and the hippocampi of both hemispheres.
Two out of the four performance metrics indicated 2
as the optimal number of clusters (see Fig. 11 in Ap-
pendix D). Furthermore, to investigate the specifics
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Figure 3: Grey matter percentiles (GMPs) of the input features for the left hemisphere (lh) and right hemisphere (rh) for the two
clusters of GLOB2. The mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The
axes portray the GMPs measured from cognitively normal participants in the Rotterdam Study, with the black 0.5 line representing the
average. A GMP value below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a
larger than average brain volume.

(a) The percentage of the clinical diagnoses within
each cluster.

(b) The percentage of clusters within each
clinical diagnosis.

Figure 4: Distribution of the clinical diagnosis per cluster of GLOB2.

of the dataset more deeply, a four-cluster solution
was explored, emerging as the second-best option
according to the Silhouette Index (SI = 0.24).

Two cluster solution (GLOB2) The radar plots in
Fig. 3 compare the brain regions for the two clusters.
Cluster GLOB2.1 (N = 90) showed GMPs in the range
of 0.48 to 0.57 for the frontal and temporal lobe, and
between 0.69 and 0.75 for the parietal and occipi-
tal lobe. The hippocampal GMPs were lower (0.29
and 0.35 for left and right respectively), indicating
relatively high hippocampal atrophy compared to
other regions. In contrast, cluster GLOB2.2 (N = 207)
showed more global atrophy, with a relatively spared
occipital lobe compared to other regions. The GMPs
of all 10 brain regions are significantly different be-
tween the two clusters (p < 0.01). Regarding clini-
cal diagnoses (Fig. 4a), the percentage of FTD and
FTD-related language variants was higher in cluster
GLOB2.1 (41.1%, n = 37) than in cluster GLOB 2.2
(19.3%, n = 40). The opposite trend was observed for
AD, with 31.1% and 59.9% for GLOB2.1 and GLOB2.2
respectively.

The clusters were statistically compared for differ-
ences in demographics (age, sex, education), GMPs of
the global brain regions, and cognitive performance,

see Table 5 in Appendix D. For the cognitive domains,
cluster GLOB2.2 demonstrated lower scores across all
domains (p < 0.001) except for language (p = 0.392)
(Fig. 12 in Appendix D). Notably, no significant dif-
ferences were observed in age (p = 0.446), sex (p
= 0.119) or education (p = 0.854) between the two
groups.

Four cluster solution (GLOB4) Fig. 5 depicts the
GMP scores from the global brain regions for the four
cluster solution.

Cluster GLOB4.1 (N = 167) exhibited low GMPs
for all brain regions, except for the relatively spared
occipital lobe (0.37 and 0.36 for left and right respec-
tively) compared to the other regions (0.07 - 0.20).
Cluster GLOB4.2 (N = 46) displayed low GMPs in the
temporal lobe (0.25 and 0.09 for left and right respec-
tively) and hippocampus (0.07 and 0.17 for left and
right respectively). The GMPs of cluster GLOB4.3
(N = 44) showed higher values on all brain regions
compared to the average of cognitively normal popu-
lation (GMP > 0.5). Cluster GLOB4.4 (N = 40) had a
GMP under 0.5 for the parietal, temporal and frontal
lobe, while the hippocampus and the left occipital
lobe were above GMP of 0.5.

The GLOB4 clusters were statistically compared
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Figure 5: GMPs of the input features for the left hemisphere (lh) and right hemisphere (rh) for the two clusters of GLOB4. The
mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The axes portray the GMPs
measured from cognitively normal participants in the Rotterdam Study, with the black 0.5 line representing the average. A GMP value
below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a larger than average
brain volume.

for differences in demographics (age, sex, education),
GMPs of the global brain regions, and cognitive per-
formance, see Table 6 in Appendix D. Analysis of
demographics indicated no statistically significant
differences among the clusters in terms of age (p =
0.095), sex (p = 0.390), or education (p = 0.941). Re-
sults of the cognitive domain analysis are depicted in
Fig. 6. Cluster GLOB4.2 had the highest performance
for visuospatial functioning, processing speed and
attention/executive functioning, especially compared
to cluster GLOB4.1 and GLOB4.4. Additionally, clus-
ter GLOB4.3 performed better on language compared
to GLOB4.1 and GLOB4.2. In the memory/learning
domain, cluster GLOB4.2 and GLOB4.3 scored higher
than cluster GLOB4.1.

The missing z-scores for the cognitive domains for
each cluster are reported in Table 3 (GLOB2), and
Table 4 (GLOB4) in Appendix C.

3.3 Clusters based on principal
components (PCA)

The GMPs of the brain regions (cortical, subcorti-
cal and ventricles) from the FreeSurfer segmentation
were reduced to 18 principal components (PCs) us-
ing PCA. The 18 PCs explain 70% of the variance,

capturing most of the variance while minimizing the
dimensionality. This conclusion is based on a visual
inspection of the scree plot (Fig. 16 in Appendix E).
The clustering of these 18 PCs (PCA1) resulted into
two clusters (Fig. 8). The performance metrics (Fig.
17a in Appendix E) were not unanimous. We decided
to apply two clusters to make the analysis compa-
rable to the one in the previous section. This was
supported by visual inspection of the performance
metrics in which we found that 2 clusters was the
best or second best option according to 3 out of 4 per-
formance metrics. Cluster PCA1.1 showed average
GMP values around 0.5 (0.37 - 0.61). Cluster PCA1.2
had lower GMP values for all regions (0.09 - 0.17)
except for the occipital lobe (0.40 for left and right).

In a second analysis (PCA2), the first principal
component was left out (Fig. 9). The GMP values of
cluster PCA2.1 were all between 0.2 and 0.4 which
was similar for PCA2.2, except for the occipital lobe
(0.67 and 0.68 for left and right respectively).

The 10 brain regions with the highest weighting in
the first and second principal component are listed in
Appendix E. Additionally, the diagnosis distribution
for PCA1 and PCA2 are shown in Fig. 18.
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Figure 6: Comparison of Z-scores for each cognitive domain for the four clusters in GLOB4. A higher score indicates a better
performance for all cognitive domains. It is important to note that the z-score indicates performance relative to the dataset and should
not be directly compared to subjects with normal cognitive function. An equal z-score suggests similar performance between the two
groups without specifying the degree of impairment. Significant differences between clusters are denoted by *.

(a) The percentage of the clinical diagnoses within
each cluster.

(b) The percentage of clusters within each
clinical diagnosis.

Figure 7: The distribution of clinical diagnoses over the clusters of GLOB4.

3.4 External validation using NACC data

First, the data from NACC was clustered according
to the same analysis pipeline as done in ACE.

Two cluster solution (NACC2) In the analysis con-
ducted on the NACC data, two distinct clusters
emerged as optimal based on the performance met-
rics (Fig. 19 in Appendix F). Cluster NACC2.1 (Fig.
20 in Appendix F) had GMPs below the average of 0.5
in the hippocampus (0.31 and 0.35 for left and right
respectively), around average in the parietal lobe and
frontal lobe (0.45 - 0.50), and above average for the
temporal and occipital lobe (0.61 - 0.66). In cluster
NACC2.2, all GMPs were below average, although
the occipital lobe seemed less affected (0.27 and 0.28

for left and right respectively) compared to other re-
gions (0.08 - 0.11). Furthermore, cluster NACC2.2
comprised individuals who were younger (mean age:
74.4 ± 9.2 years) compared to cluster NACC2.1 (mean
age: 76.4 ± 9.6 years, p < 0.001), while there was no
significant difference in sex distribution between the
clusters. Notably, cluster NACC2.2 demonstrated
higher CDR scores (Table 10) compared to cluster 1
(p < 0.001), reflecting greater cognitive impairment.

Four clusters solution (NACC4) In the four cluster
solution (Fig. 21 in Appendix F), cluster NACC4.1
exhibited higher GMPs in the temporal and occipital
lobe (0.51 - 0.64), than in the hippocampus (0.18 and
0.22 for left and right respectively) and other lobes
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Figure 8: GMPs of the global brain regions to compare GMP patterns the left (lh) and right hemisphere (rh) of PCA1 to the GLOB
clusters. The mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The axes
portray the GMPs measured from cognitively normal participants in the Rotterdam Study (RS), with the black 0.5 line representing the
average. A GMP value below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a
larger than average brain volume.

Figure 9: GMPs of the global brain regions to compare GMP patterns the left (lh) and right hemisphere (rh) of PCA2 to the GLOB
clusters. The mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The axes
portray the GMPs measured from cognitively normal participants in the Rotterdam Study (RS), with the black 0.5 line representing the
average. A GMP value below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a
larger than average brain volume.

(0.38 - 0.43). In cluster NACC4.2, the GMP value of
the occipital lobe was average (0.5), but the other re-
gions exhibited low GMP values (0.11 - 0.18). Cluster
NACC4.3, had only GMPs of above 0.64, with the
highest GMPs in the temporal lobe (0.88 and 0.89 for
left and right respectively). Cluster NACC4.4 showed
low GMPs in the range of 0.04 up to 0.14.

Regarding demographics, there were no significant
differences in sex distribution among the clusters.
However, differences were observed in age and CDR
scores. Clusters NACC4.2 and NACC4.4 were sig-
nificantly younger (mean age of 74.2 ± 9.3 and 74.5
± 9.2 respectively) compared to subjects in cluster
NACC4.3 (mean age of 77.2 ± 10.2, p < 0.01). The
subjects in cluster NACC4.2 had a higher average
CDR score compared to cluster NACC4.1 (p < 0.01),
while cluster NACC4.4 had a higher CDR score than
both cluster NACC4.1 and cluster NACC4.3 (p <
0.001 for both comparisons).

NACC subjects in ACE clusters Finally, the subjects
from NACC were assigned to the clusters in ACE
(GLOB2 and GLOB4 clusters). For the two-cluster sce-
nario, most of the NACC subject were classified into
cluster GLOB2.2 (N = 1114), while the rest was classi-
fied into cluster GLOB2.1 (N = 261). The comparison
of the cluster assignment based on ACE and the
NACC clustering yielded an ARI score of 0.44 and a
Jaccard index of 0.80. When considering four clusters,
most NACC subjects were clustered into GLOB4.1
(N = 1079), while the other clusters were less repre-
sented in NACC: GLOB4.2 (N = 57), GLOB4.3 (N =
174), and GLOB4.4 (N = 65). The comparison of this
cluster assignment to the NACC4 clusters, resulted
in an ARI score of 0.20 and a Jaccard index of 0.10.
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4 Discussion

In this study, unsupervised cluster analysis was used
to explore the heterogeneity within dementia. Our
original aim was to study potential hidden patterns
in the data that could provide insights into disease
subtypes and the overlap in atrophy patterns across
different forms of dementia. While previous research
has predominantly focused on identifying clusters
within either AD or FTD, this study took a broader
approach by incorporating both etiological diagnoses.
Our study aimed to examine the relation between the
atrophy patterns of the identified clusters, cognitive
performance, and clinical diagnoses.

Unlike conventional approaches such as z-scores or
general linear models [30][31], this study employed a
quantile regression model based on cognitively nor-
mal individuals to correct the MRI data for age and
sex. This approach resulted in an informative mea-
sure and visualisation of the atrophy patterns within
dementia. Additionally, the clusters were externally
validated using an external dataset, strengthening
the generalisability of the study.

4.1 Atrophy patterns

The atrophy patterns in the two cluster solution ap-
peared to represent two stages of disease progression
rather than specific disease manifestations. Cluster
GLOB2.1 displays minimal atrophy at the given age,
whereas cluster GLOB2.2 exhibits significant atro-
phy across various regions, with the exception of the
occipital lobe.

Cluster GLOB2.1 exhibited greater hippocampal
atrophy compared to the average at that age, which
could signify an early stage of both AD [7] and FTD
[32]. Furthermore, the atrophy pattern in cluster
GLOB2.2 shows occipital lobe sparing, which has
been associated with a further disease progression
of AD [15] and FTD [32]. The association with two
disease stages is confirmed by the cognitive domain
scores (Table 5 in Appendix D). Cluster GLOB2.2,
characterised by more pronounced atrophy, came
with consistently lower scores than cluster GLOB2.1
in all cognitive domains except for language. This
exception could be explained by the higher percent-
age of language variants in cluster GLOB2.1 (n = 37,
41.1%) compared to cluster GLOB2.2 (n = 38, 18.3%).
Despite potentially being in an earlier disease stage,
subjects in cluster GLOB2.1 already exhibit language
difficulties at the time of diagnosis.

Interestingly, AD is more prevalent in cluster
GLOB2.2 (n = 124, 60.0%) than in cluster GLOB2.1
(n = 28, 31.1%), which may be indicative of a more
advanced disease stage in AD. AD generally has a
shorter referral time compared to FTD [33][34]. Our

analysis did not reveal a higher prevalence of FTD
in the second cluster however, as might have been
expected based on referral times. This may be at-
tributed to ACE being a tertiary center, i.e., the ACE
dataset may not necessarily contain subjects with AD
who have short referral times.

Similar to the clusters in ACE, this potential clus-
tering of disease progression stage was also observed
in the cluster analysis of the NACC dataset. This fur-
ther corroborates the findings in GLOB2. The higher
CDR scores (Table 10 in Appendix F) in the atrophy
cluster (NACC2.2) support the observation of atro-
phy patterns that reflect disease progression stages.
Furthermore, the substantial overlap (Jaccard = 0.8)
of NACC data with the GLOB2 clusters reinforces
this observation.

The PCA also supports the hypothesis demonstrat-
ing that the most significant variance in the data
distinguishes between the degree of atrophy. After
omitting of the first principal component, the clusters
no longer exhibited clear distinctions based merely
on the level of atrophy (Fig. 9). Furthermore, the clin-
ical diagnosis were more unequally distributed over
the clusters of PCA2. As such, the other principal
components could be informative of disease manifes-
tations. The features with the highest weighting in
the first principal components indicate that disease
progression differences may be more pronounced in
cortical brain regions, while discriminative features
related to the disease could be located more subcorti-
cally. The regions are shown in Table 8 in Appendix
E.

Exploring a four-cluster solution (GLOB4) pro-
vided additional insight into the atrophy patterns,
potentially offering a more nuanced understanding
beyond disease stage alone. In Fig. 5, it is unlikely
that clusters GLOB4.2 and GLOB4.4 are two stages of
an atrophy pattern, as the atrophy seen in GLOB4.2
in the temporal lobe and the hippocampus is not
expected to progress over time to atrophy in the pari-
etal and frontal lobe of cluster GLOB4.4. At the same
time, though, GLOB4.3 could present an early stage
of the disease with GMPs slightly above the average
of 0.5. Furthermore, GLOB4.1 could reflect a later
stage presenting more pronounced atrophy in the
GMP pattern.

Cluster GLOB4.2 exhibited higher scores in
processing speed, visuospatial function, and at-
tention/executive function compared to Cluster
GLOB4.4 (Fig. 6). This discrepancy may be attributed
to differences in volume across brain regions, with
cluster GLOB4.2 showing lower GMPs in the tempo-
ral lobe and hippocampus, while cluster GLOB4.4
exhibited lower GMPs in the parietal lobe and right
occipital lobe. The performance difference on vi-
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suospatial functioning could be associated with the
difference in occipital GMPs [22].

Even though cluster GLOB4.2 displayed more pro-
nounced atrophy in the temporal lobe and hippocam-
pus, the performance across all cognitive domains,
except for language, was notably strong compared to
other clusters. The observed language impairment
aligns with the identified temporal lobe atrophy and
the high prevalence of language variants within this
cluster (Fig. 7). Specifically, SD is prominently pre-
sented. This clustering pattern of SD is consistent
with findings from another clustering study involv-
ing individuals with PPA [35]. A radar plot illustrat-
ing the atrophy pattern of SD is presented in Fig. 15
in Appendix D. In this figure a distinct atrophy pat-
tern of SD is observable compared to other etiological
diagnoses. In particular, the pattern is marked by hip-
pocampal and temporal lobe atrophy. This is in line
with existing literature, suggesting that hippocam-
pal atrophy in SD may surpass that observed in AD
[36][37]. Previous studies [36][38][39] have consis-
tently reported bilateral asymmetrical temporal lobe
atrophy as a characteristic feature of SD. Although
the variation between the right (GMP = 0.26) and
left (GMP = 0.22) temporal lobe is minimal in SD,
it is interesting to note that in cluster GLOB4.2 the
difference between right (GMP = 0.25) and left (GMP
= 0.09) is more pronounced.

Another notable discovery was that cluster
GLOB4.2 exhibited better performance in mem-
ory/learning compared to cluster GLOB4.1, despite
similar levels of hippocampal atrophy. The hip-
pocampus is known for its role in the brain’s memory
network [40]. Part of the rationale behind this obser-
vation could be the cognitive profile associated with
SD. Individuals with SD often show a specific pattern
of memory deficits, wherein recent event memory re-
mains relatively preserved [36]. However, we should
be cautious with drawing conclusions from these ob-
servations since there is a large number of missing
values in the cognitive performance scores, see Table
4.

The clusters identified in this study align with
clusters reported in literature including exclusively
individuals with AD or FTD. Cluster GLOB4.2 ex-
hibits an atrophy pattern resembling typical AD and
limbic predominant clusters, characterized by hip-
pocampal atrophy with progression to the temporal
lobe and atrophy of the entorhinal cortex progressing
in the temporal lobe respectively [7][16]. Simulta-
neously, the atrophy pattern of GLOB4.2 could re-
semble the temporal dominant cluster identified in
bvFTD [11][39][41]. Cluster GLOB4.3 exhibit mini-
mal atrophy, suggesting it may represent an earlier
stage of the disease progression. Another interpre-

tation of minimal atrophy is that cluster GLOB4.3
may partly comprise the subcortical atrophy clus-
ter, observed in AD [11] and FTD [39][41], or the
minimal atrophy cluster, observed in AD [7]. Clus-
ter GLOB4.4 demonstrates a similar atrophy pattern
as the hippocampal sparing AD cluster, presenting
cortical atrophy while the hippocampus is relatively
spared [42]. This pattern of cortical atrophy is akin
to the fronto-tempo-parietal cluster observed in pre-
vious clustering studies of individuals with bvFTD
[41][9]. Most subjects (N = 167) however, were clus-
tered into cluster GLOB4.1, which appears to identify
a later disease stage. This observation suggests that
in advanced disease stages, disease specific atrophy
patterns may become less distinct due to generalized
atrophy.

The considerable variation in standard deviations
of the GMPs (see Fig. 15) confirms the known het-
erogeneity in each etiological diagnosis as well as the
disease overlap. This overlap of disease presentations
is also evident in the silhouette scores, which mea-
sures the clustering fit. As illustrated in Fig. 13 in
Appendix D, some individuals are assigned silhou-
ette scores below zero, suggesting that they might be
better assigned to another cluster. This discrepancy
arises from the fact that the SI value is based on the
distance from each datapoint to the cluster centers,
while hierarchical clustering operates based on the
variance within clusters. Consequently, individuals
with silhouette scores around zero might actually be
located between clusters.

4.2 Limitations

One of the limitations in this study is the difficulty
of accurately identifying the etiological diagnosis or
diagnoses.

Secondly, the presence of vascular pathology in
dementia was not addressed in this study. Pre-
vious research has seen frequent co-occurrence of
pathologies, especially AD and vascular patholo-
gies [5][42][43][44]. This co-existence of pathologies,
could be at the basis of the observed heterogeneity.
The inclusion of vascular pathologies in the identifi-
cation of subgroups, could provide a more accurate
and and more detailed outcome of the clustering.

For this study, multiple test scores were combined
to construct cognitive domains. However, it is im-
portant to acknowledge that some nuances may have
been lost in the averaging of z-scores. The cognitive
domains were derived from the available scores from
the neuropsychological examination. It is worth not-
ing that not all tests were applied in every subject,
leading to missing scores, as indicated in Table 3 and
Table 4 in Appendix C. The memory/learning do-
main were particularly underrepresented, partly due
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to the tendency to omit the Boston Naming Test in
cases of language variants, since language difficulties
can interfere with speaking memory tasks. This could
have influenced the results in particular in relation to
cluster GLOB4.2 and GLOB4.1 on memory/learning.

Finally, a notable limitation stems from the pre-
dominantly AD-diagnosed subjects in the available
NACC data used for validation. Diversifying the
external validation set might give a more accurate
view of the generalisability of the clustering.

4.3 Future research

Future research could focus on alternative feature
selection. Using only small regional volumes could
introduce potential noise into the dataset, while the
global volumes of the brain lobe could result in dis-
carding detailed information. In a subanalysis of this
study, PCA was used to select most informative fea-
tures based on variance. The second analysis, where
the first PC was left out, suggests that there is subcor-
tical involvement in disease-specific atrophy patterns.
PCA or other feature selection methods could iden-
tify the most informative and discriminative features.
The clustering of these features may yield valuable
insights for future studies.

Additionally, certain co-pathologies exist in demen-
tia, as described in previous literature [1][5][42][44].
For future research, it would be valuable to further
explore co-pathologies, especially the overlap of de-
mentia with vascular pathology and its effect on dis-
ease presentation and progression.

5 Conclusion

In this study, we explored atrophy patterns within
AD and FTD by employing cluster analysis, and we
analyzed their relation to cognition and clinical diag-
nosis. The analysis appears to reveal distinct atrophy
patterns corresponding to different stages of disease
progression rather than specific disease manifesta-
tions. Validation of these findings through external
datasets further strengthened the robustness of the
study, confirming the consistency of disease stage
clusters. Additionally, specific disease patterns were
found in SD, showing a high contribution to one
cluster, presenting with mainly hippocampal and
temporal atrophy. The clusters and their atrophy
patterns provide not only an overview of heterogene-
ity within AD and FTD, but also information about
potential disease overlap.
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Appendix A: Dataset specifics

Inclusion criteria

The study included participants diagnosed with AD, FTD, or a language variant of either AD or FTD. These
language variants, collectively named PPA, presents with different subtypes: SD, PNFA, and LPA. Individuals
diagnosed with PPA but for whom a subtype was not specified are referred to as; PPA not otherwise specified
(PPA-nos).

The diagnosis recorded in the datasets represents the last known diagnosis of the subject. The scan closest to
the date of diagnosis was considered. For individuals who transitioned from Mild Cognitive Impairment (MCI)
to dementia, a scan within 90 days of their dementia diagnosis was included. In this way people diagnosed
with MCI at time of scan were not considered. Finally, most scans were conducted at the Erasmus Medical
Center, with a few exceptions outside of the Erasmus.

Dataset statistics

ACE NACC RS

N (m/f) 297 (143/154) 1375 (625/750) 11728 (5332/6396)
Age mean 66.4 ± 9.8 75.1 ± 9.4 64.7 ± 9.8
Age range 32-95 35-100 45-100
Age males 66.4 ± 10.6 75.1 ± 8.8 64.8 ± 9.7
Age females 64.5 ± 8.7 75.1 ± 9.8 64.7 ± 9.9
Scan date 2011 - 2021 2002 - 2019 2005 - 2015

Diagnosis
AD 152 1304
FTD 70
bvFTD 38
PPA-nos 20 14
PNFA 15 8
SD 27 8
LPA 13 4

Table 1: Dataset specifics for ACE, NACC and the Rotterdam Study (RS).
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Appendix B: Brain volumes

The regional brain volumes of the Desikan-Killian atlas, combined according to FreeSurfer.
Parietal Lobe:

• inferiorparietal
• superiorparietal
• supramarginal
• postcentral
• precuneus

Temporal Lobe

• bankssts
• fusiform
• inferiortemporal
• middletemporal
• superiortemporal
• parahippocampal
• transversetemporal
• entorhinal
• temporalpole

Occipital Lobe

• cuneus
• lateraloccipital
• lingual
• pericalcarine

Frontal Lobe

• caudalmiddlefrontal
• frontalpole
• lateralorbitofrontal
• medialorbitofrontal
• paracentral
• parsopercularis
• parsorbitalis
• rostralmiddlefrontal
• superiorfrontal
• parstriangularis
• precentral
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Appendix C: Cognitive domains

The cognitive domains are constructed using a combination of test scores, as outlined in Table 2. The mean
z-scores are calculated, excluding any missing values.

Cognitive domain Neuropsychological tests
Memory/learning Dutch Rey Auditory Verbal Learning Test (RAVLT) [45]

Visual Association Test (VAT) [46]
Attention/ Executive function Trail making Test (TMT) [47]

Letter fluency [48]
WAIS-III Digit Span [49]
Stroop Color-Word Test [50]

Language The Boston Naming Test (BNT) [51]
Processing speed TMT

Stroop Color-Word Test
Visuospatial function Clock drawing [52]

Table 2: Included test scores per cognitive domain.

TMT and Stroop tests

In the Trail Making Test (TMT), an ’888’ value may signify either a failed test or a time exceeding the limit.
Specifically, if TMT A returns ’888’, both TMT A and TMT B are excluded from the cognitive domain scores.
For TMT B, any ’888’ values are substituted with the maximum allowable time for the test, set at 300 seconds.
If the time taken exceeds this limit, it is truncated to 300 seconds.

Similarly, in the Stroop test, an ’888’ value indicates an error and is replaced by the highest Stroop test score
observed across participants:

• Stroop test 1 max score: 174.0.
• Stroop test 2 max score: 274.0.
• Stroop test 3 max score: 656.0.

It is important to note that in both the TMT and Stroop tests, lower scores reflect better performance in
contrast to the other neuropsychological test scores. To compare and combine all tests, the TMT test and
Stroop test scores are inverted, such that all scores are aligned in the same direction.

18



Missing z-scores per cognitive domain

Cluster Etiological
diagnosis

Total (N) Visuospatial
Functioning

Language Memory /
Learning

Processing
Speed

Attention /
Executive

Functioning
GLOB2.1 AD 28 7 (25.0%) 6 (21.4%) 17 (60.7%) 9 (32.1%) 6 (21.4%)

FTD 25 9 (36.0%) 7 (28.0%) 19 (76.0%) 9 (36.0%) 7 (28.0%)
LPA 1 1 (100.0%) 0 (0.0%) 1 (100.0%) 1 (100.0%) 0 (0.0%)
PPA 11 1 (9.1%) 0 (0.0%) 6 (54.5%) 0 (0.0%) 0 (0.0%)
PNFA 7 0 (0.0%) 0 (0.0%) 3 (42.9%) 0 (0.0%) 0 (0.0%)
SD 18 5 (27.8%) 7 (38.9%) 9 (50.0%) 4 (22.2%) 3 (16.7%)

GLOB2.2 AD 124 39 (31.5%) 38 (30.6%) 77 (62.1%) 45 (36.3%) 30 (24.2%)
FTD 45 25 (55.6%) 20 (44.4%) 34 (75.6%) 20 (44.4%) 18 (40.0%)
LPA 12 4 (33.3%) 1 (8.3%) 8 (66.7%) 4 (33.3%) 3 (25.0%)
PPA 9 1 (11.1%) 0 (0.0%) 5 (55.6%) 1 (11.1%) 0 (0.0%)
PNFA 8 2 (25.0%) 2 (25.0%) 5 (62.5%) 2 (25.0%) 1 (12.5%)
SD 9 5 (55.6%) 7 (77.8%) 7 (77.8%) 6 (66.7%) 5 (55.6%)

Total 297 99 (33.3%) 88 (29.6%) 191 (64.3%) 101 (34.0%) 73 (24.6%)

Table 3: The missing values (n, percentage) in the z-scores for every cognitive domain and clinical diagnosis in the GLOB2 clusters.

Cluster Etiological
diagnosis

Total
(N)

Visuospatial
Functioning

Language Memory /
Learning

Processing
Speed

Attention /
Executive

Functioning
n n n n n

GLOB4.1 AD 107 35 32.7% 35 32.7% 66 61.7% 40 37.4% 28 26.2%
FTD 31 15 48.4% 13 41.9% 21 67.7% 13 41.9% 11 35.5%
LPA 9 4 44.4% 1 11.1% 5 55.6% 4 44.4% 3 33.3%
PPA 6 1 16.7% 0 0.0% 4 66.7% 1 16.7% 0 0.0%
PNFA 6 2 33.3% 2 33.3% 4 66.7% 2 33.3% 1 16.7%
SD 8 5 62.5% 7 87.5% 6 75.0% 6 75.0% 5 62.5%

GLOB4.2 AD 10 1 10.0% 1 10.0% 4 40.0% 2 20.0% 1 10.0%
FTD 12 3 25.0% 2 16.7% 9 75.0% 3 25.0% 2 16.7%
LPA 1 1 100.0% 0 0.0% 1 100.0% 1 100.0% 0 0.0%
PPA 4 0 0.0% 0 0.0% 1 25.0% 0 0.0% 0 0.0%
PNFA 1 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
SD 18 5 27.8% 7 38.9% 9 50.0% 4 22.2% 3 16.7%

GLOB4.3 AD 18 6 33.3% 5 27.8% 13 72.2% 7 38.9% 5 27.8%
FTD 13 6 46.2% 5 38.5% 10 76.9% 6 46.2% 5 38.5%
PPA 7 1 14.3% 0 0.0% 5 71.4% 0 0.0% 0 0.0%
PNFA 6 0 0.0% 0 0.0% 3 50.0% 0 0.0% 0 0.0%

GLOB4.4 AD 17 4 23.5% 3 17.6% 11 64.7% 5 29.4% 2 11.8%
FTD 14 10 71.4% 7 50.0% 13 92.9% 7 50.0% 7 50.0%
LPA 3 0 0.0% 0 0.0% 3 100.0% 0 0.0% 0 0.0%
PPA 3 0 0.0% 0 0.0% 1 33.3% 0 0.0% 0 0.0%
PNFA 2 0 0.0% 0 0.0% 1 50.0% 0 0.0% 0 0.0%
SD 1 0 0.0% 0 0.0% 1 100.0% 0 0.0% 0 0.0%

Total 297 99 33.3% 88 29.6% 191 64.3% 101 34.0% 73 24.6%

Table 4: The missing values (n, percentage) in the z-scores for every cognitive domain and clinical diagnosis in the GLOB4 clusters.
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Appendix D: ACE data results - GLOB

Figure 10: Dendrogram of the hierarchical clustering. Between brackets is the number of subjects in that leaf. In case there is only one
subject, only the index number is depicted.

Figure 11: Performance metric scores in clustering the ACE dataset. The red dotted line indicates the optimal number of clusters
according to each performance metric. Silhouette and Dunn indicate 2 as the optimum, while Davies-Bouildin and GAP indicate 10
and 9 clusters respectively as the optimal number.
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GLOB2.1 GLOB2.2 Statistic (p-value)
N 90 207
Age 66.8 ± 9.8 66.3 ± 9.6 9834.0 (p=0.446)
Sex (m/f) 50/40 93/114 2.428 (p=0.119)
Education (median) 5 5 3.316 (p=0.854)

Parietal lobe (rh) 0.75 ± 0.24 0.18 ± 0.21 17462.0 (p<0.001)
Parietal lobe (lh) 0.72 ± 0.24 0.14 ± 0.18 17762.0 (p<0.001)
Temporal lobe (rh) 0.55 ± 0.40 0.24 ± 0.27 13320.5 (p<0.001)
Temporal lobe (lh) 0.48 ± 0.43 0.17 ± 0.24 12717.5 (p<0.001)
Occipital (rh) 0.71 ± 0.26 0.39 ± 0.32 14482.5 (p<0.001)
Occipital (lh) 0.69 ± 0.29 0.42 ± 0.33 13697.0 (p<0.001)
Frontal (rh) 0.57 ± 0.34 0.22 ± 0.26 14868.5 (p<0.001)
Frontal (lh) 0.54 ± 0.36 0.20 ± 0.25 14586.5 (p<0.001)
Hippocampus (rh) 0.35 ± 0.35 0.21 ± 0.29 11622.5 (p<0.001)
Hippocampus (lh) 0.29 ± 0.35 0.18 ± 0.27 11026.5 (p<0.01)

Memory/learning 0.5 ± 0.9 -0.3 ± 0.9 1801.0 (p<0.001)
Attention/Executive function 0.4 ± 0.9 -0.2 ± 1.0 3.421 (p<0.001)
Language 0.1 ± 1.1 0.0 ± 1.0 5218.5 (p=0.392)
Processing speed 0.3 ± 0.6 -0.2 ± 1.1 5615.0 (p<0.001)
Visuospatial function 0.4 ± 0.9 -0.2 ± 1.0 5962.0 (p<0.001)

Table 5: Demographic, GMPs, and cognition characteristics of the two cluster in GLOB2. Statistical tests are done with the
Mann-Whitney U test (age and GMPs), the t-test (attention/executive functioning), and the Chi-squared test (sex, education and other
cognitive domains).
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Figure 12: Comparison of Z-scores for each cognitive domain for the two clusters in GLOB2. A higher score indicates a better
performance for all cognitive domains. It is important to note that the z-score indicates performance relative to the dataset and should
not be directly compared to subjects with normal cognitive function. An equal z-score suggests similar performance between the two
groups without specifying the degree of impairment. Significant differences between clusters are denoted by *.

Figure 13: Silhouette value for each subject for the two clusters in GLOB2. The average over all subjects is illustrated with the red line.
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C1
(GLOB4.1)

C2
(GLOB4.2)

C3
(GLOB4.3)

C4
(GLOB4.4)

Statistic (p-value) post-hoc
(p-value)

N 167 46 44 40
Age 66.6 ± 9.5 64.9 ± 9.0 68.8 ± 10.4 64.9 ± 10.0 6.357 (p=0.095)
Sex (m/f) 76/91 25/21 25/19 17/23 3.010 (p=0.390)
Education
(median)

5 5 5 5 11.949 (p=0.941)

Parietal
lobe (rh)

0.15 ± 0.18 0.75 ± 0.23 0.75 ± 0.26 0.29 ± 0.28 151.310 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Parietal
lobe (lh)

0.12 ± 0.17 0.73 ± 0.23 0.72 ± 0.25 0.20 ± 0.22 159.791 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Temporal
lobe (rh)

0.20 ± 0.23 0.25 ± 0.29 0.87 ± 0.19 0.43 ± 0.34 103.997 (p<0.001) C1<C3 (p<0.001)
C1<C4 (p<0.01)
C2<C3 (p<0.001)
C2<C4 (p<0.001)
C3>C4 (p<0.05)

Temporal
lobe (lh)

0.13 ± 0.21 0.09 ± 0.14 0.90 ± 0.11 0.34 ± 0.32 129.095 (p<0.001) C1<C3 (p<0.001)
C1<C4 (p<0.01)
C2<C3 (p<0.001)
C2<C4 (p<0.001)
C3>C4 (p<0.001)

Occipital
(rh)

0.36 ± 0.30 0.73 ± 0.21 0.70 ± 0.31 0.50 ± 0.37 63.896 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C2>C4 (p<0.05)
C3>C4 (p<0.05)

Occipital
(lh)

0.37 ± 0.32 0.68 ± 0.26 0.70 ± 0.31 0.60 ± 0.31 56.737 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C1<C4 (p<0.001)

Frontal
(rh)

0.20 ± 0.25 0.49 ± 0.37 0.66 ± 0.29 0.29 ± 0.26 75.904 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C3>C4 (p<0.001)

Frontal
(lh)

0.19 ± 0.26 0.44 ± 0.37 0.64 ± 0.31 0.24 ± 0.24 74.208 (p<0.001) C1<C2 (p<0.001)
C1<C3 (p<0.001)
C3>C4 (p<0.001)

Hippocampus
(rh)

0.10 ± 0.14 0.17 ± 0.23 0.54 ± 0.35 0.68 ± 0.30 113.793 (p<0.001) C1<C3 (p<0.001)
C1<C4 (p<0.001)
C2<C3 (p<0.001)
C2<C4 (p<0.001)

Hippocampus
(lh)

0.07 0.10 0.07 ± 0.12 0.53 ± 0.35 0.62 ± 0.29 133.478 (p<0.001) C1<C3 (p<0.001)
C1<C4 (p<0.001)
C2<C3 (p<0.001)
C2<C4 (p<0.001)

Table 6: Demographics, and GMPs of the four cluster of GLOB4. Significant differences in sex and education are tested using the
Chi-squared test, while differences in age and GMPs are statistically tested by the Kruskal-Wallis test and the Dunn’s test (post-hoc).
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C1
(GLOB4.1)

C2
(GLOB4.2)

C3
(GLOB4.3)

C4
(GLOB4.4)

Statistic (p-value) post-hoc
(p-value)

N 167 46 44 40
Memory/
learning

-0.34 ± 0.94 0.43 ± 0.83 0.68 ± 1.07 0.25 ± 0.88 17.259 (p<0.001) C1<C2 (p<0.01)
C2<C3 (p<0.01)

Attention/
Executive
function

-0.17 ± 0.97 0.52 ± 0.73 0.21 ± 1.09 -0.24 ± 1.07 2.737 (p<0.001) n.s.

Language -0.03 ± 0.96 -0.46 ± 1.08 0.61 ± 0.70 -0.02 ± 1.06 20.323 (p<0.001) C1<C3 (p<0.01)
C2<C3 (p<0.001)

Processing
speed

-0.17 ± 1.11 0.54 ± 0.43 0.11 ± 0.76 -0.20 ± 1.14 18.849 (p<0.001) C1<C2 (p<0.001)
C2>C3 (p<0.05)
C2>C4 (p<0.01)

Visuospatial
function

-0.21 ± 1.00 0.47 ± 0.89 0.35 ± 0.83 -0.23 ± 1.06 17.459 (p<0.001) C1<C2 (p<0.01)
C2>C4 (p<0.05)

Table 7: Cognitive characteristics of the four clusters of GLOB4. Differences between clusters in attention/executive functioning was
statistically tested by the one-way ANOVA and Turkeys HSD (post-hoc), while the differences in other cognitive domains were tested
by the Kruskal-Wallis and the Dunn’s test (post-hoc).

Figure 14: Silhouette value for each subject for the two clusters in GLOB2. The average over all subjects is illustrated with the red line.
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Figure 15: Atrophy patterns for each etiological diagnosis in the ACE dataset.
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Appendix E: ACE data results - PCA

Figure 16: Scree plot of PCA

PC1 PC2
Lateralorbitofrontal (rh) Entorhinal (lh)
Lateralorbitofrontal (lh) Temporalpole (lh)
Superiorfrontal (lh) Entorhinal (rh)
Insula (rh) Temporalpole (rh)
Insula (lh) Cuneus (rh)
Superiortemporal (rh) Parahippocampal (lh)
Middletemporal (rh) Superiorparietal (lh)
Fusiform (rh) Superiorparietal (rh)
Parsorbitalis (rh) Cuneus (lh)
Superiortemporal (lh) Amygdala (lh)

Table 8: The 10 most contributing features, i.e. having the highest weighting, of PC1 and PC2.
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(a) PCA1. Silhouette indicates 2, while Davies-Bouildin and
Dunn indicate 3 and 4 as the optimal number of clusters
respectively. GAP indicates 10 as the optimum.

(b) PCA2. Silhouette and GAP indicate 2 as the optimum,
while Davies-Bouildin and Dunn indicate 10 clusters as the
optimal number of clusters.

Figure 17: Performance metric scores in clustering the ACE dataset based on the selected PCs. The red dotted line indicates the
optimal number of clusters according to each performance metric.
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(a) PCA1

(b) PCA2

Figure 18: Diagnosis distribution per cluster of PCA1 and PCA2.
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Appendix F: NACC data results

Performance metrics

Figure 19: Performance metric scores in clustering the NACC dataset. The red dotted line indicates the optimal number of clusters
according to each performance metric. Silhouette, Dunn and GAP indicate 2 as the optimum, while Davies-Bouildin indicates 10 as
the optimal number of clusters.
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NACC2

Figure 20: GMPs of the input features for the left hemisphere (lh) and right hemisphere (rh) for the two clusters of NACC2. The
mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The axes portray the GMPs
measured from cognitively normal participants in the Rotterdam Study, with the black 0.5 line representing the average. A GMP value
below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a larger than average
brain volume.

NACC2.1 NACC2.2 Statistic (p-value)
N 476 899
Age 76.4 ± 9.6 74.4 ± 9.2 242047.5 (p<0.001)
Sex (m/f) 208/268 417/482 0.801 (p = 0.371)
CDR (median) 0.5 1 33.79 (p < 0.001)

Parietal lobe (rh) 0.49 ± 0.31 0.08 ± 0.14 385454.0 (p<0.001)
Parietal lobe (lh) 0.50 ± 0.31 0.08 ± 0.13 386451.0 (p<0.001)
Temporal lobe (rh) 0.62 ± 0.31 0.11 ± 0.15 388526.0 (p<0.001)
Temporal lobe (lh) 0.61 ± 0.31 0.08 ± 0.11 396589.0 (p<0.001)
Occipital (rh) 0.64 ± 0.29 0.28 ± 0.27 349774.0 (p<0.001)
Occipital (lh) 0.66 ± 0.29 0.27 ± 0.27 354565.0 (p<0.001)
Frontal (rh) 0.45 ± 0.32 0.10 ± 0.16 365580.5 (p<0.001)
Frontal (lh) 0.46 ± 0.33 0.10 ± 0.16 360552.0 (p<0.001)
Hippocampus (rh) 0.35 ± 0.33 0.10 ± 0.17 330895.5 (p<0.001)
Hippocampus (lh) 0.31 ± 0.31 0.08 ± 0.17 335882.0 (p<0.001)

Table 9: Demographic, GMPs, and cognition characteristics of the two cluster of NACC2. Differences in age and GMPs are
statistically tested by Mann-Whitney U test, while differences in sex and CDR are tested by the Chi-squared test.

Cluster CDR score count (n) percentage of cluster (%)

NACC2.1 (N = 476) 0 1 0.2
0.5 237 49.8
1 188 39.5
2 38 8.0
3 12 2.5

NACC2.2 (N = 899) 0 1 0.1
0.5 320 35.6
1 400 44.5
2 139 15.5
3 39 4.3

Table 10: CDR scores of cluster NACC2.1 and NACC2.2. The CDR score ranges from 0 to 3: no impairment (CDR = 0), questionable
impairment (CDR = 0.5), mild impairment (CDR = 1), moderate impairment (CDR = 2), and severe impairment (CDR = 3).
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NACC4

Figure 21: GMPs of the input features for the left hemisphere (lh) and right hemisphere (rh) for the two clusters of NACC4. The
mean GMP is for each region depicted by the colored line, with a concomitant shaded standard deviation. The axes portray the GMPs
measured from cognitively normal participants in the Rotterdam Study, with the black 0.5 line representing the average. A GMP value
below 0.5 indicates a smaller than average brain volume in a certain region, while a value above 0.5 indicates a larger than average
brain volume.
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C1
(NACC4.1)

C2
(NACC4.2)

C3
(NACC4.3)

C4
(NACC4.4)

Statistic (p-value) post-hoc
(p-value)

N 346 362 130 537
Age 76.1 ± 9.3 74.2 ± 9.3 77.2 ± 10.2 74.5 ± 9.2 19.081 (p < 0.001) C2<C3 (p<0.01)

C3<C4 (p<0.01)
Sex (m/f) 157/189 172/190 51/79 245/292 2.657 (p = 0.448)

CDR
(median)

0.5 1 0.5 1 42.957 (p < 0.001) C1<C2 (p<0.05)
C4<C3 (p<0.001)
C4<C1 (p<0.001)

Parietal
lobe (rh)

0.43 ± 0.30 0.14 ± 0.18 0.66 ± 0.29 0.05 ± 0.08 709.407 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Parietal
lobe (lh)

0.43 ± 0.30 0.14 ± 0.16 0.67 ± 0.27 0.04 ± 0.07 740.674 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Temporal
lobe (rh)

0.51 ± 0.30 0.14 ± 0.15 0.89 ± 0.14 0.09 ± 0.14 702.777 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Temporal
lobe (lh)

0.51 ± 0.29 0.11 ± 0.14 0.88 ± 0.15 0.06 ± 0.09 758.697 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Occipital
(rh)

0.62 ± 0.29 0.49 ± 0.27 0.70 ± 0.26 0.14 ± 0.14 661.901 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Occipital
(lh)

0.64 ± 0.30 0.50 ± 0.26 0.69 ± 0.26 0.12 ± 0.12 733.272 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Frontal
(rh)

0.38 ± 0.30 0.17 ± 0.22 0.64 ± 0.29 0.05 ± 0.07 606.996 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)
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C1
(NACC4.1)

C2
(NACC4.2)

C3
(NACC4.3)

C4
(NACC4.4)

Statistic (p-value) post-hoc
(p-value)

Frontal
(lh)

0.38 ± 0.31 0.18 ± 0.21 0.68 ± 0.29 0.05 ± 0.07 585.528 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Hippocampus
(rh)

0.22 ± 0.24 0.13 ± 0.20 0.72 ± 0.24 0.07 ± 0.13 436.884 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Hippocampus
(lh)

0.18 ± 0.22 0.13 ± 0.23 0.66 ± 0.25 0.05 ± 0.09 461.238 (p<0.001) C1>C2 (p<0.001)
C1<C3 (p<0.001)
C1>C4 (p<0.001)
C2<C3 (p<0.001)
C2>C4 (p<0.001)
C3>C4 (p<0.001)

Table 11: Demographic, GMPs, and cognitive characteristics of the four cluster of NACC4. Differences in age and GMPs are
statistically tested by the Kruskal-Wallis test and the Dunn’s test (post-hoc), while differences in sex and CDR are tested by the
Chi-squared test.

Cluster CDR score count (n) percentage of cluster (%)

NACC4.1 (N = 346) 0 1 0.3
0.5 170 49.1
1 140 40.5
2 29 8.4
3 6 1.7

NACC4.2 (N = 362) 0 1 0.3
0.5 138 38.1
1 163 45.0
2 47 13.0
3 13 3.6

NACC4.3 (N = 130) 0.5 67 51.5
1 48 36.9
2 9 6.9
3 6 4.6

NACC4.4 (N = 537) 0.5 182 33.9
1 237 44.1
2 92 17.1
3 26 4.8

Table 12: CDR scores of the four clusters of NACC4. The CDR score ranges from 0 to 3: no impairment (CDR = 0), questionable
impairment (CDR = 0.5), mild impairment (CDR = 1), moderate impairment (CDR = 2), and severe impairment (CDR = 3).
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Appendix G: Quantile regression
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