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SUMMARY

SUMMARY

Optomechanical systems have become the leading platform for the manipulation
and exploration of mechanical motion, both in the classical and quantum regimes. The
research field where optical or microwave light is parametrically coupled to the displace-
ment of a mechanical oscillator is rapidly evolving and has allowed for major break-
throughs in the last decades. Nevertheless, a large scope of the field still remains ex-
perimentally unexplored due to the difficulty in enhancing the optomechanical single-
photon coupling strength and to freely target the natural frequency and quality factor of
mechanical resonators.

This thesis focuses on two major branches which withstand these limitations. The
first branch targets the experimental exploration of flux-mediated optomechanical cou-
pling and the second, focuses on the implementation of an equivalent interaction be-
tween two superconducting circuits, which we refer to as photon-pressure coupling. Since
both schemes can reach single-photon coupling strengths orders of magnitude larger
than the current state of the art, the development of these two new platforms gives the
field of optomechanics new resources for the investigation of unexplored regimes. More-
over, as the photon-pressure interaction allows for the quantum manipulation of super-
conducting RF circuits, whose quality factor and resonance frequency can be accurately
targeted, the recently developed coupling scheme represents a first step towards radio-
frequency quantum photonics.

Chapter 1 will give a broad introduction to the field of optomechanics and present
the goals and technological applications of realizing a flux-mediated optomechanical
coupling and a photon-pressure coupling.

Chapter 2 will provide the necessary tools for the theoretical understanding of the
systems investigated in this thesis. It starts with a basic description of the main ingredi-
ents of our devices, i.e. the mechanical oscillator, the LC circuit and the Superconducting
Quantum Interference Device (SQUID). After discussing the SQUID cavity Hamiltonian,
the chapter will present a theoretical description of the radiation pressure interaction
and explain the working principle of the platforms mentioned above.

Chapter 3 focuses on the design and fabrication of the devices explored in this thesis.
The section will describe the design considerations of nano-bridge SQUID cavities and
will present the nanofabrication techniques utilized for the realization of SQUID cavi-
ties, of mechanical oscillators and of radio-frequency LC circuits. In addition, it will show
how the explored platforms can be designed in a way which maximizes their respective
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xii SUMMARY

single-photon coupling strength g0 and presents an overview of the experimental chal-
lenges linked to flux-noise.

Chapter 4 will be the first to show experimental results obtained in this thesis, where
a flux-mediated optomechanical system was designed, fabricated and measured. Here,
the reader can find a description of the working principle of a SQUID cavity coupled
to a mechanical beam, a characterization of this optomechanical interaction and the
experimental demonstration of the single-photon coupling strength g0 flux-tunability.

Chapter 5 presents a blue-detuned sideband cooling technique in a flux-mediated
optomechanical system by means of a strongly driven SQUID cavity. The section explores
the behavior of the parametrically driven cavity, models the observed Kerr backaction ef-
fects and utilizes the regime of non-degenerate parametric amplification to implement a
blue-detuned sideband-cooling scheme based on intracavity four-wave-mixing, achiev-
ing a final phonon occupancy of ∼ 1.6.

Chapter 6 demonstrates the implementation of a photon-pressure coupling between
two superconducting circuits and shows the effects of dynamical backaction as well as
photon-pressure induced transparency (PPIT). In addition, the chapter shows how the
system can be brought into the strong coupling regime by flux-tuning the single-photon
coupling strength g0 and demonstrates the detection of amplified RF thermal current
fluctuations by means of a two-mode squeezing interaction.

Finally, chapter 7 presents an optimized photon-pressure system, where the circuit
geometry was modified to dramatically increase the single-photon coupling rate. It demon-
strates how dynamical backaction can be utilized between the two circuits to remove
thermal excitations of the RF mode and cool it to its quantum ground-state. Further-
more, in this experiment we present a normal-mode thermometry analysis, show that
the system reaches the regime of quantum coherent coupling, where the multi-photon
coupling rate g overcomes the cavity decay rate and the thermal decoherence rate of the
RF mode, and achieve a single-photon quantum cooperativity of Cq0 ∼ 1.

Chapter 8 will finalize the discussion presented in this thesis with a short overview
of the performed investigations and of their possible impact on the future of microwave
optomechanics and quantum technologies along with some personal insights on the
future directions of these systems.



SAMENVATTING

SAMENVATTING

Optomechanische systemen zijn het leidende platform geworden voor de manipu-
latie en verkenning van mechanische beweging, zowel in de klassieke als in de kwan-
tumregimes. Het onderzoeksveld waar optisch of microgolflicht parametrisch wordt
gekoppeld aan de verplaatsing van een mechanische oscillator, evolueert snel en heeft
de afgelopen decennia grote doorbraken mogelijk gemaakt. Desalniettemin blijft een
groot deel van het veld nog niet experimenteel bestudeerd vanwege de moeilijkheid
om de optomechanische koppelingssterkte van een enkel foton te verbeteren en om de
natuurlijke frequentie en kwaliteitsfactor van mechanische resonatoren goed te kunnen
controleren.

Dit proefschrift concentreert zich op twee takken die deze beperkingen kunnen weer-
staan. De eerste tak richt zich op de experimentele verkenning van flux-gemedieerde
optomechanische koppeling, en de tweede richt zich op de implementatie van een geli-
jkwaardige interactie tussen twee supergeleidende circuits, die we foton-drukkoppeling
noemen. Aangezien beide schema’s enkel-foton koppelingssterktes kunnen bereiken die
ordes groter zijn dan de huidige beste, geeft de ontwikkeling van deze twee nieuwe plat-
forms het veld van de optomechanica middelen voor het onderzoek van nieuwe regimes.
Bovendien vertegenwoordigt het recentelijk ontwikkelde koppelingsschema een eerste
stap in de richting van radiofrequentie kwantumfotonica waarvan de kwaliteitsfactor en
resonantiefrequentie nauwkeurig kunnen worden bepaald, aangezien de foton-druk in-
teractie de kwantummanipulatie mogelijk maakt van supergeleidende RF-circuits.

Hoofdstuk 1 zal een brede inleiding geven op het gebied van optomechanica en de
doelen en toepassingen presenteren van het realiseren van een flux-gemedieerde op-
tomechanische koppeling en een foton-druk koppeling.

Hoofdstuk 2 zal de nodige hulpmiddelen bieden voor het theoretisch begrip van de
systemen die in dit proefschrift worden onderzocht. Het begint met een basisbeschrijv-
ing van de belangrijkste ingrediënten van onze apparaten, namelijk de mechanische os-
cillator, het LC-circuit en het Superconducting Quantum Interference Device (SQUID).
Na bespreking van de SQUID cavity Hamiltoniaan, zal dit hoofdstuk een theoretische
beschrijving geven van de stralingsdrukinteractie en het werkingsprincipe van de bovenge-
noemde platforms toelichten.

Hoofdstuk 3 richt zich op het ontwerp en de fabricage van de apparaten die in dit
proefschrift worden onderzocht. Deze sectie beschrijft de ontwerpoverwegingen van
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Nano-bridge SQUID-cavities en presenteert de nanofabricagetechnieken die worden ge-
bruikt voor het maken van SQUID-cavities, van mechanische oscillatoren en van ra-
diofrequentie LC-circuits. Bovendien zal het laten zien hoe de onderzochte platforms
kunnen worden ontworpen op een manier die hun respectieve enkel-foton koppelingssterkte
g0 maximaliseert en geeft het een overzicht van de experimentele uitdagingen in ver-
band met fluxruis.

Hoofdstuk 4 is de eerste hoofdstuk die experimentele resultaten laat zien die zijn
verkregen in dit proefschrift, waarbij een flux-gemedieerd optomechanisch systeem werd
ontworpen, gefabriceerd en gemeten. Hier kan de lezer een beschrijving vinden van
het werkingsprincipe van een SQUID-cavity gekoppeld aan een mechanische balk, een
karakterisering van deze optomechanische interactie en de experimentele demonstratie
van de fluxafstembaarheid van de enkel-foton koppelingssterkte g0.

Hoofdstuk 5 presenteert een blauw-afgestemde zijbandkoelingstechniek in een flux-
gemedieerd optomechanisch systeem door middel van een sterk aangedreven SQUID
cavity. De sectie onderzoekt het gedrag van de parametrisch aangedreven holte, mod-
elleert de waargenomen Kerr-terugwerkingseffecten en gebruikt het regime van niet-
ontaarde parametrische versterking om een blauw-afgestemde zijbandkoelingsschema
te implementeren op basis van intracavitaire viergolfmenging, waardoor een fonon bezetting
van ∼ 1.6 wordt bereikt.

Hoofdstuk 6 demonstreert de implementatie van een foton-druk koppeling tussen
twee supergeleidende circuits en toont de effecten van dynamische backaction en foton-
druk geïnduceerde transparantie (PPIT). Daarnaast laat dit hoofdstuk zien hoe het sys-
teem in het sterke koppelingsregime kan worden gebracht door flux-afstemming van de
enkel-foton koppelingssterkte g0 en toont het de detectie van versterkte RF thermische
stroomfluctuaties door middel van een twee-mode knijpinteractie.

Ten slotte presenteert hoofdstuk 7 een geoptimaliseerd foton-druksysteem, waar-
bij de circuitgeometrie werd aangepast om de koppelingssnelheid van een enkel foton
drastisch te verhogen. Het laat zien hoe dynamische backaction kan worden gebruikt
tussen de twee circuits om thermische excitaties van de RF-modus te verwijderen en
deze af te koelen tot zijn kwantumgrondtoestand. Bovendien presenteren we in dit ex-
periment een normale modus thermometrieanalyse en laten we zien dat het systeem
het regime van kwantumcoherente koppeling bereikt waarbij de koppelingssnelheid van
meerdere fotonen g de vervalsnelheid van de holte en de thermische decoherenties-
nelheid van de RF-modus overwint met een enkel-foton kwantumcoöperativiteit van
Cq0 ∼ 1.

Hoofdstuk 8 sluit de discussie af die in dit proefschrift wordt gepresenteerd met een
kort overzicht van de uitgevoerde onderzoeken en hun mogelijke impact op de toekomst
van microgolfoptomechanica en kwantumtechnologieën, samen met enkele persoonli-
jke inzichten over de toekomstige richtingen van deze systemen.
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INTRODUCTION

1
INTRODUCTION

Somewhere, something incredible is waiting to be known...

Jules-Henri Poincare

The chapter starts with a short historical summary of cavity optomechanics and the achieve-
ments accomplished by the field. It subsequently focuses on the technological opportuni-
ties associated with flux-mediated optomechanical systems and photon-pressure devices.
At last, the chapter ends with the outline of this thesis.

1
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2 1. INTRODUCTION

1.1. OPTOMECHANICS: HISTORY AND STATE OF THE ART

The exploration and utilization of the radiation-pressure force has walked a long devel-
oping path since the moment it was first proposed by Kepler in the 17th century [1], who
noted that, when a comet is in transit, its dust tail points away from the sun.

Despite of this early realization, it was only more than two centuries later that these
forces were explored in the context of cavity optomechanics. These advancements arose
from the particular interest of Vladimir Braginsky in ultrasensitive interferometers for
gravitational wave detection. Together with his interest, the emblematic picture of cavity
optomechanics was born (see Fig. 1.1). From a simplified point of view, in these systems,
the light field oscillating in an optical cavity is coupled to the motion of a mechanical os-
cillator and an experimental realization involving trapping light between a fixed and a
movable mirror happened in 1983 [2].
By 1967, Braginsky and his colleagues could experimentally demonstrate the expected
retardation effects of the radiation pressure force with the observation of damping and
anti-damping of mechanical motion using a microwave cavity [3, 4]. These classical ef-
fects, which arise due to a finite cavity decay time, are known in literature as dynami-
cal backaction are the key for radiation-pressure cooling/amplification techniques. Fur-
thermore, some years later Braginsky also explored the fundamental limitations of the
quantum fluctuations of the radiation-pressure force and their impact on the precision
of displacement measurements [5, 6]. His and the theoretical work of Caves [7] on es-
tablishing the Standard Quantum Limit (SQL) became of extreme importance in gravi-
tational wave detectors such as LIGO and VIRGO.
During the following decade, a lot of progressing work was done on the exploration
of the optomechanical interaction. However, the typically achieved quality factors of
the Fabry-Pérot cavities was restricting the prospect applications of optomechanics in
the quantum regime. The development of nanofabrication techniques was therefore
a fundamental tool to overcome these limitations, opening the door to another era of
cavity optomechanics. It allowed, for example, for the engineering of optical micro-
toroid resonators, which, when containing mechanical modes were, earlier on, used to
demonstrate radiation-pressure self-oscillations [8–10] and cavity cooling [11]. It also
allowed for the development of micromirrors which were similarly used for the experi-
mental demonstration of radiation-pressure cooling [12, 13]. After these initial promis-
ing demonstrations, the expansion towards new cavity optomechanical platforms had
an exciting kick-off and systems such as membranes [14] and nanorods [15] coupled to
Fabry-Pérot resonators, whispering gallery microdisks [16, 17] and microspheres [18–
20], photonic crystals [21, 22], and evanescently coupled nanobeams [23] were realized.

A parallel competitor to such systems was the subfield of microwave optomechan-
ics. The technological area where mechanical elements are embedded in superconduct-
ing resonant circuits, had gained independence and started to follow its own developing
branch. Early demonstrations of this coupling approach were the insertion of a nanome-
chanical beam in a superconducting transmission line [24] or the incorporation of a flex-
ible aluminum membrane into a lumped element superconducting resonator [25].
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Figure 1.1: Schematic representation of an optomechanical system. Optical light is confined between
two mirrors to form an oscillating light field with frequency ω0 = πc/Lcav, where c is the speed of light. As
one of the mirrors acts a mechanical resonator, its displacement x̂ will modulate the cavity length Lcav(x̂) and
therefore the resonance frequency of the electromagnetic mode.

Over the past 10 years, our increased understanding of these systems has allowed
for major breakthroughs in the field. On one hand, a reduction of the bare mechanical
decay rate due to a negative radiation-pressure damping allowed for microwave ampli-
fication [26], for the exploration of dynamical multistability [27, 28] and chaotic regimes
[29, 30]. On the other hand, as the key for quantum control of mechanical displacements
involves a significant reduction of their Brownian motion, the utilization of the positive
backaction damping was the first step towards the performance of quantum operations.

The first demonstrations of radiation pressure ground state cooling go back to 2011
with both a microwave [31] and optical cavity [32] and later on brought systems into the
regime of quantum coherent coupling [33, 34]. Furthermore, a comparable scheme was
also used recently to cool a levitated nanosphere to its quantum ground state [35]. Once
close to the quantum regime, i.e. once the mean phonon number is reduced to nearly a
single excitation, experiments such as the generation of non-classical mechanical states
of motion [36–38] were made possible. In addition, the radiation-pressure coupling has
also allowed for the entanglement of mechanical oscillators [39, 40] and for the detec-
tion of mechanical displacement with an imprecision below the standard quantum limit
[41–43]. Furthermore, measuring the randomness associated with back-action forces
when detecting the position of a mechanical element [44], also known as photon shot
noise was another benchmark of the field. Besides the advancements in the control of
mechanical motion, the optomechanical interaction offers the possibility for the entan-
glement of either optical [45] or microwave [46] modes and for the squeezing of light
fields [47–50].

Finally, as the radiation-pressure interaction allows mechanical degrees of freedom
to be simultaneously coupled to both optical and microwave fields, many efforts have
been made to use nano-mechanical resonators as a quantum link between supercon-
ducting microwave quantum processors and optical frequency quantum communica-
tion [51–54]. An extended discussion concerning the progress and central physical con-
cepts of optomechanics can be found in Refs. [55–57].
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1.2. THE MOTIVATION FOR FLUX-MEDIATED OPTOMECHANICS

The ability of optomechanics to measure and control the motion of mechanical res-
onators with masses varying from 10−20g to kilograms makes it an excellent platform to
pursue quantum state preparation, control and characterization of macroscopic objects.
A peculiar feature of this interaction is that the coupling between motion and the cavity
fluctuations can be enhanced by coherently driving the system, which thereby increases
the collective coupling strength g = p

ncg0. Up to now, all the breakthroughs achieved
by optomechanical systems relied on enhancing g by significantly increasing the cav-
ity photon number nc. This has allowed our community not only to reach the strong
coupling regime [25, 58, 59] where g > κ, but also the ultra-strong coupling regime [60],
where g ∼Ω0. However, in spite of these fruitful achievements this approach has several
drawbacks, as for example, heating the mechanical mode far above the mode tempera-
ture in the optical domain [61] or non-equilibrium cavity noise in the microwave oper-
ation range [31, 62]. These sources of noise strongly restrict the achievable cooling limit
and the possibility for mechanical quantum ground state preparation.

b

Bin x LS(x)
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Figure 1.2: Schematic representation of two distinct coupling schemes in microwave optomechani-
cal systems. a shows a schematic representation of a capacitive coupling scheme. Here, the top plate of a
parallel plate capacitor is suspended to form a mechanical resonator. As the gap d between the two plates is
varied due to the motion of the top plate, the circuit capacitance C (x̂) and therefore its resonance frequency
ω0 = 1/

p
LC (x̂) will be modulated. In b, a schematic representation of a flux-mediated optomechanical cou-

pling is shown. Here, the motion of a mechanical resonator will modify the total flux threading a Supercon-
ducting Quantum Interference Device (SQUID) in the presence of an in-plane magnetic field. As the SQUID
is a flux-tunable non-linear element, its inductance is modulated by the oscillating mechanical beam LS(x̂) .
When incorporated in a microwave cavity, the resonance frequency of the LC circuit ω0 = 1/

√
(L+LS(x̂))C is

parametrically modulated.

An approach to counter these limitations would be to boost the single-photon cou-
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pling strength g0, such that an increment of the cavity photon number would no longer
be required. Ultimately, reaching the single-photon strong coupling regime [63], where
g0 is larger than the cavity decay rate κ and the mechanical frequencyΩ0 would provide
major advances in quantum state preparation of mechanical modes. The regime where
a single cavity photon translates into a static mechanical displacement similar or greater
than its zero point motion, would allow for the preparation of non-Gaussian mechanical
states directly by coherently driving the system [63, 64]. Furthermore, this regime has
been the inspiration for proposals such as the preparation of macroscopic mechanical

cat states [65, 66] or the observation of photon blockade [67] as the condition
2g 2

0
Ω0

> κ is
fulfilled.

Within the field of microwave optomechanics, most of the engineered devices so far
focused on a capacitive coupling between mechanical motion and superconducting cav-
ity modes (see Fig. 1.2a). In these systems, in order to maximize the single-photon cou-
pling rate, the gap d between the capacitor plates has to be reduced as much as possi-
ble. Despite of great efforts in this direction, the most optimized devices have gaps of
d ∼ 50nm and xzpf/d ≈ 10−7. This technological barrier imposed by the difficult opti-
mization of superconducting capacitive elements therefore limited the achieved single-
photon coupling strengths to g0 ≈ 300Hz [38], which is far from the single-photon strong
coupling regime when considering that typical cavity linewidths and mechanical fre-
quencies are on the order of hundreds of kHz and a few MHz, respectively.

Several proposals to further optimize the optomechanical single-photon coupling
rate g0 in microwave systems were recently published [68–70] and they involved an al-
ternative perspective regarding the circuit element which is modulated by mechanical
motion. There the coupling relies on an inductance modulation instead of the typical
capacitive approach. As seen in Fig. 1.2b, a possible way to engineer a flux mediated
optomechanical system relies on a flux-tunable non-linear element, also known as Su-
perconducting Quantum Interference Device (SQUID). When part of the SQUID loop is
free to oscillate, forming a mechanical resonator, this motion will modulate the SQUID
inductance and therefore the cavity resonance frequency. In chapters 4 and 5 of this the-
sis, an experimental demonstration of this new coupling concept will be presented.
Proving itself to be an exciting route for the community, similar coupling schemes were
reported shortly after the publication of the results presented in chapter 4. These include
an optomechanical system where a cantilever containing a magnetic tip was utilized to
modulate the resonance frequency of a SQUID cavity [71], or where a SQUID contain-
ing a mechanical beam was incorporated in a CoPlanar Waveguide (CPW) microwave
resonator [72]. Furthermore a slightly different scheme, where a mechanical beam was
coupled to a Transmon qubit was realized by Ref. [73].

In spite of the potential of using flux-mediated optomechanical systems to boost the
single-photon coupling strength g0, SQUID cavities have an intrinsic property which is
typically considered a drawback: their Kerr non-linearity. In chapter 2, a discussion re-
garding the non-linearity of a SQUID cavity and its impact on the upper bound of drive
photons the cavity can sustain before switching to a non-linear behavior will be pre-
sented. In contrast to a linear microwave cavity coupled to a mechanical element, the
maximum drive-enhanced coupling strength in a flux-mediated optomechanical system
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will be limited by the cavity non-linearity. As a large multi-photon coupling strength g
is essential for several schemes such as quantum ground state cooling or quantum state
transfer, engineering a system which boosts g0 without imposing a low threshold on nc

would add great value to the field of optomechanics. Therefore, one of the main ef-
forts of this thesis was to design a flux-mediated optomechanical system with a large
single-photon coupling strength g0 while still minimizing the cavity non-linearity. For
information regarding the optimization of g0 in these systems, see section 3.3.1. Inter-
estingly, even though the anharmonicity of the electromagnetic mode can be considered
an undesired property by the field of optomechanics, when finely tuned it could also rep-
resent an additional resource to the radiation pressure interaction for the manipulation
and control of mechanical motion. This innovative concept is explored in detail in chap-
ter 5.

1.3. BEYOND MECHANICAL RESONATORS AS COUPLING ELEMENTS

CL

CRF

LRF

I

M
LS (Φ)

RF circuit SQUID cavity

Φ

^

^

^

Figure 1.3: Schematic representation of a photon-pressure system. The oscillating current Î flowing in a
radio-frequency LC circuit generates a magnetic field which couples to a Superconducting QUantum Interfer-
ence Device (SQUID) via the mutual inductance M . As the SQUID is part of a second LC circuit, the oscillating
magnetic flux Φ̂ threading its loop will modulate the SQUID inductance LS(Φ̂) and subsequently generate a

parametric modulation of the SQUID cavity resonance frequency ω0 = 1/
√

(L+LS(Φ̂))C .

In spite of the radiation-pressure coupling being mostly explored in the context of
a photon-phonon interaction between harmonic oscillators, it is in fact not exclusive
of optomechanical systems. This interaction has been recently explored, for instance,
in nanomechanical systems to dynamically control the coupling of the different modes
of a mechanical resonator [74–77] and it has also been theoretically and experimentally
explored in the context of superconducting circuits [78–81].

The advantages of the implementation of such coupling scheme between supercon-
ducting circuits are numerous. Since they profit from an extremely high design flexibil-
ity and precision in engineering resonance frequencies and quality factors, this platform
could allow for the experimental investigation of new parameter regimes which are un-
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conventional in standard optomechanical systems. Regimes such as reversed dissipa-
tion [82], reversed resonance frequency [83] or even the optomechanical single-photon
strong coupling regime [63, 67] would be easily at reach.

Thrivingly, its potential applications are not constrained to the classical regime. As
superconducting microwave resonators have demonstrated to be an excellent platform
for quantum information and sensing technologies, photon-pressure systems operating
in the quantum regime could enrich this rapidly developing field with quantum-limited
parametric amplifiers [26, 82, 84–86], non-reciprocal devices [87–90] and photonic reser-
voir engineering [91, 92] as well as bosonic code quantum information processing using
grid states [93]. In addition, photon-pressure coupled circuits could attain inspiration
from the field of optomechanics to pursue RF-mediated generation of squeezed and en-
tangled microwaves [46, 48], the generation of non-classical RF states[36], entanglement
of distinct RF circuits [40] and the detection of current fluctuations below the standard
quantum limit [43]. As shown in Fig. 1.3, this thesis presents a photon-pressure coupling
platform where the resonance frequency of a SQUID cavity is coupled to the current
flowing in a linear LC circuit (see section 2.5.3). This platform is utilized in chapter 6 to
observe dynamical backaction between the two circuits, to parametrically amplify ther-
mal RF current fluctuations and reach the strong coupling regime where g > (κ+Γ)/2,
with Γ being the total decay rate of the RF mode. Furthermore, by developing an opti-
mized design to considerably increase the single-photon coupling rate we cooled a hot
RF circuit to the quantum ground-state while entering the strong coupling regime. The
latter work is presented in chapter 7.

Equivalently to flux-mediated optomechanical systems, having a photon-pressure
system which boosts the single-photon coupling strength g0 without restricting the max-
imum intracavity photon number nc would be a major advantage and remarkably widen
the range of applications of the system. Therefore, equivalent efforts were made along
this thesis to optimize the single-photon coupling strength g0 while reducing the non-
linearity of the SQUID cavities to be incorporated in photon-pressure systems. In addi-
tion to the discussion of the non-linearity of a SQUID cavity given in chapter 2, a short
discussion regarding the design optimization for maximizing g0 in photon-pressure cou-
pled system is given in section 3.4.1.

1.4. THESIS OUTLINE

This thesis is organized as follows. Chapter 2 starts by providing the necessary theo-
retical tools for the understanding of the underlying physical principles of the systems
experimentally explored in this thesis. Chapter 3 brings focus to the design considera-
tions required for the engineering these systems, as well as the different nanofabrication
techniques explored for their realization. In chapter 4 the reader can find a first experi-
mental demonstration of a flux-mediated optomechanical system and in chapter 5 the
demonstration of blue-detuned sideband cooling by means of a parametrically driven
SQUID cavity coupled to a nanobeam. Furthermore, in chapters 6 and 7 show the real-
ization of a photon-pressure coupling using two superconducting LC circuits. In short,
chapter 6 shows photon-pressure strong coupling between the two circuits and chapter
7 demonstrates ground-state sideband cooling of a hot RF circuit.
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Imagination is more important than knowledge.

Albert Einstein

This chapter will provide the necessary theoretical tools for the understanding of the sys-
tems which are experimentally studied in the subsequent chapters. Along with mathe-
matical descriptions, an intuitive idea of their physical interpretation will be provided
as often as possible. The chapter starts with both a classical and a quantum description
of mechanical and LC oscillators, followed by a short introduction to Superconducting
QUantum Interference Devices (SQUIDs) and a quantization method of a circuit contain-
ing a non-linear Josephson element in series with a linear inductance. After presenting the
Hamiltonian of a SQUID cavity and discussing its deviation from a harmonic oscillator,
the system will be modeled as a classical Duffing oscillator. Finally, a theoretical descrip-
tion of an optomechanical system, followed by an explanation of the working principle of
flux-mediated optomechanics and photon-pressure systems will be provided. The chapter
ends with the linearization of an optomechanical Hamiltonian containing a Kerr non-
linearity.

9
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2.1. HARMONIC OSCILLATORS

2.1.1. MECHANICAL RESONATORS

CLASSICAL DESCRIPTION

x

F = -kx
k m

x

U

K

strecthed

compresseda b

Figure 2.1: Spring-mass system representation of a mechanical harmonic oscillator. a The oscillator
of mass m, which is represented by the violet element, is under a restoring force F =−kx arising from
its attachment to a spring with stiffness coefficient k. The position x of the oscillator will oscillate
around a equilibrium position as the spring is stretched or compressed from its relaxed position. The
total energy is given by the kinetic (K) and potential (U) energy contributions which are plotted versus
x in Fig. b.

The classical Hamiltonian of a mechanical oscillator is described in terms of the vari-
ables x and p, which respectively correspond to the position and momentum of an ob-
ject of mass m under the restoring force F =−kx, where k is defined as the spring con-
stant. The classical Hamiltonian, which describes the total energy of the system, is writ-
ten as

H = p2

2m
+ 1

2
mΩ2

mx2, (2.1)

with Ωm = p
k/m being the natural oscillation frequency. In the above expression, the

first term corresponds to the potential energy and the second to the kinetic energy of the
system. Based on the Hamilton equations

ẋ = ∂H

∂p
= p

m
; ṗ =−∂H

∂x
=−mΩ2

mx (2.2)

we can write the equation of motion of the mechanical resonator as

ẍ +Ω2
mx = 0. (2.3)

Furthermore, in order to model the oscillator in the presence of dissipation to a thermal
bath, we introduce a damping force in Eq. (2.3), proportional to the oscillator instanta-
neous velocity F =−Γmẋ. The modified equation of motion

ẍ +Γmẋ +Ω2
mx = 0 (2.4)

describes a damped harmonic oscillator where Γm is the mechanical decay rate. Fur-
thermore, when probing the system, an external driving force Fe = F0

m e−iΩt needs to be
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taken into account. By re-writing the equation of motion in frequency space, we obtain
the steady state solution

x0 = 1

m[Ω2
m −Ω2 − iΩΓm]

F0 (2.5)

from where we define the mechanical susceptibility as

χm(Ω) = 1

m[Ω2
m −Ω2 − iΩΓm]

. (2.6)

QUANTUM DESCRIPTION

In order to quantize the motion of a mechanical oscillator, we switch to a quantum de-
scription of the system described above by following the method of canonical quantiza-
tion first introduced by Dirac [94]. We start by replacing the canonical set of variables
x, p by the quantum operators

x̂ = x ; p̂ = p (2.7)

with the commutation relation [x̂, p̂] = iħ. The quantum Hamiltonian, with similar form
to the one of Eq. (2.1), can now be written as a function of the newly introduced operators

Ĥ = p̂2

2m
+ 1

2
mΩ2

mx̂2. (2.8)

Even though Eq. (2.8) provides a quantum description of a mechanical harmonic oscil-
lator, it is of interest to write a general Hamiltonian which is independent of the chosen
canonical variables. For this purpose, we introduce the annihilation and creation oper-
ators, b̂ and b̂†, which are defined as function of x̂ and p̂ as

b̂ =
√

mΩm

2ħ
(

x̂ + i

mΩm
p̂

)
(2.9)

b̂† =
√

mΩm

2ħ
(

x̂ − i

mΩm
p̂

)
(2.10)

with the commutation relation [b̂, b̂†] = 1. Note that, since the operators are not hermi-
tian, they do not represent any physical variables. However, any operator with observ-
able eigenvalues can abstractly be written as function of b̂ and b̂†.
By re-writing x̂ and p̂ as function of b̂ and b̂†, the Hamiltonian of a mechanical oscillator
takes the general form

Ĥ =ħΩm

(
b̂†b̂ + 1

2

)
. (2.11)

By using the number operator n̂ = b̂†b̂ and the time independent Schrödinger equation
Ĥ |Ψ〉 = E |Ψ〉 we can formulate the energy eigenvalues of this Hamiltonian based on
the number of phonons n in the resonator E = ħΩm

(
n + 1

2

)
. This expresses how the

Hamiltonian eigenstatesΨ, also known as Fock states are arranged in discrete levels and
equally split in energy. Additionally, this quantum picture describes a system which is
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never at rest as it will always possess a finite energy, even when it is left in the absence of
phonons (vacuum state) also known as zero-point energy, given by ħΩm/2.

If the harmonic oscillator (as a bosonic system) is in thermal equilibrium with its
bath, the particle distribution among the available set of discrete energy levels follows
the Bose-Einstein statistics. The average phonon occupancy n̄ of the resonator is then
given by

n̄ = 1

eħΩm/kbT −1
, (2.12)

where kb is the Boltzmann constant and T is the bath temperature. The mechanical res-
onators studied in this thesis were typically thermalized with our dilution fridge tem-
perature, which could be minimized to ≈ 15mK. With resonance frequencies usually
ranging from 5 to 20MHz, the occupancy of our beams would be close to hundreds of
phonons, placing the resonator in a thermal state. Nevertheless, techniques such as op-
tomechanical sideband cooling could, in principle, be utilized to reduce their thermal
phonon occupation, ultimately placing the resonator in the quantum ground state n̄ < 1.

2.1.2. LC RESONATORS

An essential tool in the field of microwave optomechanics is the LC circuit. Since these
circuits can currently be engineered via nanofabrication to have extremely low dissipa-
tion rates, they have become a key element in the design of more advanced and complex
systems. Therefore, understanding the working principle of a LC harmonic oscillator is
of evident importance.

CLASSICAL DESCRIPTION

C
L

Φ

Figure 2.2: Circuit diagram of an LC oscillator where its elements are connected via two circuit nodes
(Represented by •).

Fig. 2.2 shows a circuit diagram of an LC oscillator. In addition to the inductive and
capacitive elements, identified as L and C , respectively, one can also find two circuit
nodes. One of the nodes defined as ground node at the bottom of the circuit and an
active node on the upper side. The nodes are the linking points between the branches
that contain the circuit elements, creating the circuit network. Following the method of
nodes, described in detail in Ref.[95], a unique path connecting the ground and active
node, known as spanning tree, should be chosen.
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When choosing the inductor as the linking element and therefore as the unique path,
one can define the flux of the active node Φ as the integral of the voltage V across its
branch over time

Φ=
∫ t

−∞
V (t )d t . (2.13)

Note that the lower integration value −∞ represents the case where the circuit was com-
pletely at rest and V (t =−∞) = 0. Due to the simplicity of the circuit configuration, one
can easily obtain the system Lagrangian as function of the previously defined node flux,
as

L = C Φ̇2

2
− Φ

2

2L
. (2.14)

Furthermore, by performing a Legendre transformation, that, for a system with a single
degree of freedom, is given by

H = Φ̇ ∂L

∂Φ̇
−L (2.15)

and by introducing the charge variable as function of the branch voltage Q = C Φ̇, we
obtain an expression for the total energy of the circuit

H = Q2

2C
+ Φ

2

2L
. (2.16)

An intuitive interpretation for the previous expression is by thinking of the total circuit
energy as a combination of the electrical energy stored by the capacitor and magnetic
energy stored by inductor.

QUANTUM DESCRIPTION

The quantum version of the classical Hamiltonian of Eq. (2.16) is once again constructed
by replacing the canonical variables Q and Φ by the quantum operators Q̂ and Φ̂, with
the canonical commutation relation [Q̂,Φ̂] = iħ and it takes the form

Ĥ = Q̂2

2C
+ Φ̂

2

2L
. (2.17)

If one compares the expression (2.17) to the Hamiltonian of the mechanical oscillator
given by Eq. (2.8), one can quickly find the analogy between the operators position x̂
and flux Φ̂ and the operators momentum p̂ and charge Q̂. Here it becomes evident that
the circuit behaves equivalently to a mass-spring system in a harmonic potential, but
where the mass m is replaced by the capacitance C and the spring constant k by the
inverse of the inductance 1/L. Another way to represent the LC oscillator Hamiltonian
can be obtained by the introduction of the natural resonance frequencyω0 = 1/

p
LC and

takes the form

Ĥ = ω2
0C

2

(
Q̂2

C 2ω2
0

+ Φ̂2

)
. (2.18)

Here, the energy operator Ĥ of the one-dimensional harmonic LC circuit can be writ-
ten as a function of the annihilation and creation operators with commutation relation
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[â, â†] = 1 as

Ĥ =ħω0

(
â†â + 1

2

)
(2.19)

with

â =
√
ω0C

2ħ
(
Φ̂+ i

Q̂

ω0C

)
and â† =

√
ω0C

2ħ
(
Φ̂− i

Q̂

ω0C

)
. (2.20)

or equivalently

Φ̂=Φzpf

(
â + â†

)
and Q̂ = Qzpf

i

(
â − â†

)
, (2.21)

whereΦzpf =
√

ħ
2ω0C and Qzpf =

√
ħω0C

2 .

2.2. SUPERCONDUCTING QUANTUM INTERFERENCE

(SQUID)

THE JOSEPHSON JUNCTION

Before diving into the working principle of Superconducting QUantum Interference De-
vices (SQUIDs) [96], let us bring up the definition of a Josephson junction. A Joseph-
son junction is a link between two superconductors, weak enough so that the overlap
between the individual wavefunctions of each superconducting electrode can allow for
tunneling of Cooper pairs.

Cooper pair θ1 θ2

Figure 2.3: Schematic representation of a Cooper pair tunneling through a non-superconducting bar-
rier.The Cooper pairs in each superconducting lead 1 and 2 (light blue areas) can be described by a
common wavefunction Ψ1,2 =p

n1,2eiθ1,2 with phases θ1,θ2 and number of particles n1,n2. As described
by the first Josephson relation, the current flowing through the barrier depends on the phase difference
between the superconducting electrodes.

The current flowing across a Josephson junction with a sinusoidal current-phase re-
lation (CPR) is described by the first Josephson relation as

I (ϕ) = Ic0sin(ϕ), (2.22)

where Ic0 is the maximum current that the junction can sustain before switching to the
voltage state and ϕ= θ2 −θ1 is the phase different across the two superconducting leads
(with phases θ2 and θ1). As a side note, a more extensive description about the type of
junctions used in our devices is given in section 3.1.
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Figure 2.4: Generation of a screening current by the SQUID when a magnetic field Bout is applied. A
schematic representation of a current biased SQUID in the absence (a) or presence (b) of a magnetic
field applied out-of-plane with the device. In the absence of magnetic field, the transport current splits
equally through both Josephson junctions (assuming two identical junctions of critical current Ic0).
In the presence of a magnetic field, the SQUID generates a screening current Is in order to satisfy
the fluxoid quantization principle, which leads to an effective reduction of the SQUID critical current
2Ic0(Φ). The practical limitations arising from the generation of a screening current in SQUIDs with a
large loop inductance is discussed in section 3.2.1.

THE SQUID
A SQUID is defined as a superconducting loop containing two Josephson junctions in
parallel. As shown in Fig. 2.4a, the current distribution in a SQUID operating in a zero
voltage state, in the absence of a magnetic field is rather simple. Assuming it is formed
by two Josephson junctions with a sinusoidal current phase relation and equal critical
currents of Ic0, the total supercurrent passing through the SQUID is given by

I = I1 + I2 = Ic0(sinϕ1 + sinϕ2), (2.23)

where I1 and I2 are the supercurrents flowing in each arm.
In addition, as the junctions are placed in a superconducting loop, in order to guar-

antee that the superconducting wavefunction is single-valued, the total phase change
around the SQUID loop must always equal multiples of 2π. Also known as fluxoid quan-
tization, this boundary condition generates a correlation between the phase differences
of the two Josephson junctions as

ϕ2 −ϕ1 = 2π
Φ

Φ0
(2.24)

where Φ is the magnetic flux thread by the SQUID loop. The outcome of this principle
becomes obvious when a magnetic field Bout is applied perpendicularly to the SQUID,
creating a magnetic fluxΦout, as shown in Fig. 2.4b. In this case, the SQUID will generate
a screening current Is = Ic0

2 (sinϕ1 − sinϕ2) which tries to compensate for the threading
flux by adjusting the phase difference ϕ2 −ϕ1 as required by Eq. (2.24). As it circulates
around the loop, it will break the symmetry between the currents of the two arms as it
increases the current of one arm while reducing it in the other but maintaining the rela-
tion of the total transport current given by Eq. (2.23). When dealing with a negligible loop
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inductance, the total flux is given by Φ = Φout and the critical current Ic of the SQUID,
which is given by the maximum value of the transport current can be written as

Ic(Φ) = 2Ic0

∣∣∣∣cos

(
πΦ

Φ0

)∣∣∣∣ . (2.25)

Intuitively one can say that the fulfillment of the fluxoid quantization can be translated
into an effective reduction of the SQUID critical current as the former will oscillate be-
tween a maximum value of 2Ic0 whenΦ/Φ0 = nπ and 0 whenΦ/Φ0 = nπ

2 , n ∈Z. Further-
more, the SQUID inductance can be written as

LS(Φ) = Lj0

2
∣∣∣cos

(
πΦ
Φ0

)∣∣∣ , (2.26)

where Lj0 = Φ0
2πIc0

is the Josephson inductance of a single junction.
In short, a Superconducting QUantum Interference Device is a flux-tunable element,

whose variable inductance arises from the combination of the presence of non-linear
Josephson junctions and the fulfillment of the fluxoid quantization condition in a super-
conducting loop. By incorporating a SQUID in a harmonic LC circuit, one can engineer a
flux dependent resonant circuit with natural frequencyω0 = 1/

p
L(Φ)C as its inductance

now flux-tunable. Additionally, a description of the working principle of a SQUID with
non-negligible loop inductance and its impact on the design of SQUID cavities is given
in section 3.2.1.

2.3. HAMILTONIAN OF A SQUID CAVITY

As mentioned in chapter 1, the type of microwave cavities used in the systems presented
in this thesis are not pure LC harmonic oscillators but they contain a Superconduct-
ing QUantum Interference Device (SQUID) placed in series with a linear inductor L. A
SQUID, as described in section 2.2, is a superconducting loop containing two Josephson
junctions in parallel, each of them having an inductance Lj0. When assuming a negligi-
ble loop inductance we can adopt a simplistic representation of the SQUID and replace
it by a single Josephson junction of effective inductance Lj = LS(Φ), as shown in Fig. 2.5.

As discussed in the beginning of section 2.2, a Josephson junction is physically de-
scribed as a non-linear element, for which the current flowing across its terminals de-
pends on the phase difference between the two superconducting leads. Its energy oper-
ator can be written as function of the gauge invariant phase difference as

Ĥj = Ej
[
1−cosϕ̂

]
, (2.27)

where Ej =Φ2
0/4π2Lj is the Josephson energy, Φ0 = h/2e is the flux quantum. Here ϕ̂ is

the gauge invariant phase difference, which is defined as a function of the fluxΦ of node

2 as ϕ̂ =
(
Φ̂−Φoff
Φ0

)
. For simplicity, the flux offset Φoff will be set to a null value during the

next steps. Furthermore, note that, the introduction of the phase difference operator
can be intuitively understood as the degree of freedom of the junction is given by the
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Figure 2.5: Simplified circuit diagram of a SQUID cavity with negligible loop inductance. In the
presented system the SQUID inductance is Lj = LS(Φ), as given by Eq. 2.26.

number of Cooper pairs flowing through the junction and not the total number of pairs
in the circuit, as the latest is conserved.

In order to obtain the quantum Hamiltonian of the circuit, we continue with a black
box quantization method [97], the same method used by the algorithm of the software
QuCAT, described in detail in Ref.[98]. In this method, the junction is replaced by a par-
allel combination of a linear inductor of inductance Lj, a capacitance Cj and a non-linear
element. The circuit is subsequently re-organized in order to evaluate the voltage Vj(ω)
generated when feeding an AC current Ij(ω) across the junction terminals, as shown in
Fig 2.6a.

C
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Vj

Ij

Ij
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Y23

2
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b

Cj

Y

2

3

c
Φ Φ Φ

Figure 2.6: Modified circuit for the extraction of the admittance Y. a The Josephson junction is
replaced by a linear inductor of Lj, linear capacitor Cj and a non-linear element. The voltage Vj(ω)
is measured across its terminals when applying a current Ij(ω). b Circuit simplification based on a
star-mesh transformation to calculate the admittance Y23 = YLYC/(YL +YC) and remove node 1. c The
linear part of the circuit is circuit is reduced to the total admittance Y = Y23 +YL j .

The key of the approach is to pack all linear contributions of the circuit into a total
admittance Y (ω) = Ij(ω)/Vj(ω) and reduce the initial circuit to the one of Fig. 2.6c. For
this, the circuit is initially simplified by removing the Josephson capacitance Cj, which is
negligible for our circuits, and afterwards perform a star-mesh transformation to extract
the admittance Y23 and remove node 1, as shown in Fig. 2.6b. The total admittance Y is
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obtained as

Y = Y23 +YLj =
1−ω2C (L+Lj)

iωLj(1−ωC L)
, (2.28)

where the admittance of a circuit element is defined by the inverse of its characteristic
impedance Y (ω) = 1/Z (ω). The total admittance Y represented in Fig. 2.6c is, in fact,
analogous to a parallel LmCm circuit which represents the mode of the circuit. The reso-
nance frequency of the mode is extracted by evaluating the case for which Y (ω) = 0 and
it has the form

ωm =
√

1

C (L+Lj)
. (2.29)

Furthermore, the mode capacitance Cm is given by

Cm = Im[Y ′(ωm)]

2
=C

(
L+Lj

Lj

)2

(2.30)

and the mode inductance is obtained from the last two equations, as Lm = 1/(ω2
mCm).

As one would intuitively think, the circuit Hamiltonian is given by a combination
of the harmonic part of the circuit, which is described by the mode of admittance Y
with resonance frequencyωm and a non-linear Josephson contribution expressed by the
second term of the Hamiltonian

Ĥ =ħωm

(
â†â + 1

2

)
+Ej

[
1−cosϕ̂− ϕ̂2

2

]
. (2.31)

Let us emphasize that, since the quadratic contribution of the Josephson potential is
already included in the extraction of the mode resonance frequency, this is subtracted
from the Josephson contribution in expression (2.31).

When remembering the definition of the flux operator Φ̂ based on the creation and
annihilation operators given by Eq. (2.21) and by Taylor expanding the cosine function
up the nth order we can obtain the equivalent Hamiltonian

Ĥ =ħωm

(
â†â + 1

2

)
−Ej

n∑
2

(−1)n

(2n)!

(
Φzpf(â + â†)

Φ0

)2n

. (2.32)

Furthermore, when only considering a second order Taylor expansion (which is valid
for the small non-linear contributions existing in the devices under study in this thesis),
we can take the resulting term depending on (â + â†)4 to be the only perturbation to
the eigen-energies of the linear part of the Hamiltonian. Therefore, when computing
〈n|(â + â†)4|n〉, only the terms which conserve the number of excitations are kept and
the previous expression is simplified to

Ĥ =ħωm

(
â†â + 1

2

)
+ħχ

2

(
(â†â)2 + â†â + 1

2

)
, (2.33)
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where χ = −Ej

ħ
(
Φzpf

Φ0

)4
is defined as the anharmonicity of the system arising from the

non-linearity of the Josephson junction. Equivalently, the latest can also be written as a
function of the original circuit parameters as

χ=− e2

2ħC

(
Lj

L+Lj

)3

. (2.34)

In the next section we will discuss the effect of this nonlinear contribution in the Hamil-
tonian to the energy levels of the oscillator.

2.3.1. IMPACT OF THE JOSEPHSON NON-LINEARITY ON ENERGY LEVELS

For a more intuitive understanding on the impact of the Josephson non-linearity on the
circuit Hamiltonian let us consider the two examples described by Fig. 2.7.
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Figure 2.7: Comparison between the potential and the energy levels of a LC oscillator and a Transmon
qubit. a Shows two circuit schematics, representing a harmonic oscillator and a Transmon qubit
respectively on the left and right side. In b, the potential energy U of both circuits with respect to
the normalized flux ϕ=Φ/Φzpf, together with the first three energy levels is shown. The deviation of
the Transmon energy levels compared to the harmonic levels is given by ∆=χ〈ϕ4〉/12 and therefore the
shift is increased along the Fock state ladder. In addition, the probability distribution of the harmonic
levels is also plotted on top of the respective lines. Figure c shows the anharmonicity as a function of
inductance dilution, i.e., of the ratio between the Josephson inductance and the linear inductance. The
anharmonicity is normalized to the Transmon case.

Fig. 2.7a shows two modifications to the circuit previously described. The first shows
the case where the total inductance of the circuit is represented by the linear inductor
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L and there is a zero contribution of the Josephson junction. In this case, the circuit
is well described as a pure LC oscillator. The second circuit represents the Transmon
qubit (transmission-line shunted plasma oscillation qubit) [99, 100] which differs from
the first case as the inductance of the circuit is completely expressed by Lj. Usually Trans-
mon qubits work in a configuration where the Josephson junction is shunted with a large
capacitance so that EJ/EC Ê 50.

When plotting the potential energy of the harmonic circuit U = 1
2Lm

Φ2 and of the

Transmon circuit U = 1
2Lm

Φ2 + ħχ
12

Φ4

Φ4
zpf

(see Fig. 2.7b), we see a clear modification arising

from the anharmonicity χ. The Transmon potential UTransmon starts to gradually devi-
ate from the harmonic potential UHO for higher values of flux. This deviation from the
harmonic behavior is, in fact, the key of the operation principle of the Transmon as a
superconducting qubit. The energy levels of the Transmon eigenstates, represented by
the horizontal violet lines in Fig. 2.7b are given by

En

ħ =ω0

(
n + 1

2

)
+χ

(
n2

2
+ n

2
+ 1

4

)
. (2.35)

Here the first term corresponds the energy levels of the LC harmonic oscillator, repre-
sented as dark blue lines in Fig. 2.7b. The second term represents the shift in the energy
levels arising from the presence of a non-linear element of anharmonicity χ, which in-
creases for higher excitation numbers. In contrast with the HO, where all energy levels
are equally spaced, the Transmon is analogous to an artificial atom, where the energy
levels are non-equidistant and therefore, each transition can be addressed individually.
Even though systems such as the Transmon qubit are of extreme relevance in quantum
systems and quantum information, when working in optomechanical systems, the in-
trinsic non-linearity of the system is most of the times a parameter to minimize and
keep under the limit |χ|<κ. Only in this regime we can consider a weakly anharmonic
potential as an approximation of a harmonic oscillator.

As explained in chapter 1, the essence of the flux-mediated optomechanical coupling
and the photon-pressure coupling experimentally realized this thesis (see section 2.5.2
and 2.5.3) rely on the presence of a SQUID and therefore some non-linearity will be un-
avoidable. Nevertheless, as shown in Fig. 2.7c, by choosing a hybrid system, where the
total inductance is a combination of linear inductance L and Josephson inductance Lj

one can finely tune the amount of anharmonicity in the circuit by changing the partici-
pation ratio of the Josephson inductance.
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2.4. SQUID CAVITY AS A DUFFING OSCILLATOR

When neglecting the presence of quantum fluctuations, we can model the dynamics of
a SQUID cavity as a classical Duffing oscillator. Its classical Hamiltonian, which is anal-
ogous to the one of Eq. (2.32) when Taylor expanded to second order is given by

H = Q2

2Cm
+ Φ2

2Lm
+ ħχ

12

Φ4

Φ4
zpf

. (2.36)

Furthermore, when applying the same method as for the mechanical oscillator by using
the Hamilton equations on Eq. (2.36) and additionally adding a dissipation force F =
−κΦ̇ to the system, one obtains the equation of motion for a damped Duffing oscillator

Φ̈+κΦ̇+ω2
0Φ+ ħχ

3CmΦ
4
zpf

Φ3 = 0, (2.37)

where κ is the total decay rate of the cavity. Let us make use of the previously defined
annihilation and creation operators â,â† in Eq. (2.20) to write a new set of classical ana-
logue variables α and α∗, which are defined as

α=
√
ω0Cm

2ħ
(
Φ+ i

Φ̇

ω∗
1

)
(2.38)

α∗ =
√
ω0Cm

2ħ
(
Φ− i

Φ̇

ω1

)
(2.39)

whereω1 =
(
ω0 − i κ2

)
is the modified resonance frequency due to the presence of a damp-

ing term under the realistic high Q approximation of Q À 1.
The equation of motion, now written as function of the new variable α and under a

Rotating Wave Approximation (RWA), takes the form

α̇+
(
i (ω0 +β|α|2)+ κ

2

)
α= 0, (2.40)

with the newly defined anharmonic term β = χ being responsible for Kerr shifting the
resonance frequency of the cavity linearly with photon number as |α| =p

nc.
When a drive field1 Sd = S0e(−iωdt+φ) is added to the system with S0 =p

κe Sin as fol-
lows from input-output theory [101] we can re-write the equation of motion in frequency
space as

α
[

i
(
β|α|2 −∆)+ κ

2

]
=p

κeSine iφ, (2.41)

with ∆=ωd−ω0 being the detuning of the drive from the resonance frequency. Further-
more, the real-valued term Sin describes the input field driving the SQUID cavity and
it is normalized such that |Sin|2 is the input photon flux per second. When looking at

1The time dependent phase of the drive field Sd could also be written as +iωdt by following an electrical
engineering convention [102]. This would be fully equivalent as it would only determine the rotation direction
of the field. Note that in some of the following chapters, the latter convention was used.
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the analogy between a LC circuit and a spring-mass system and considering a capacitive
(inductive) coupling of the resonator to a lossy environment by means of a feedline, the
scaling factor

p
κe can be intuitively thought of an additional mass (spring) onto which

the drive tone is applied on, regulating the net driving force amplitude.
When multiplying the previous expression by its complex conjugate and expressing

|α|2 as nc, one obtains the third order polynomial

β2n3
c −2∆βn2

c +
(
∆2 + κ2

4

)
nc −κeS2

in = 0. (2.42)

The real valued solutions of the previous expression, which can be found numerically,
allow us to extract the intracavity photon number. In addition, the phaseφ of expression
(2.41) can be written as

φ= atan2

(
2(∆−βα2)

κ

)
(2.43)

At this point the cavity response function can be written as

S11 = 1−p
κenc

e−iφ

Sin
. (2.44)

Lets bring our attention to the schematic representation of both a linear and a Duffing re-
sponse to external driving forces shown in Fig. 2.8a. When a drive tone is swept through
the oscillator’s resonance with a small enough power, Eq. (2.42) has a single real solution
and the oscillator exhibits a linear response. However, when the power of the drive tone
is increased and sinceβ< 0, the resonance shape starts to bend towards lower frequency
values, shown as Duffing response in Fig. 2.8a.

When the power reaches a certain threshold, Eq. (2.42) has three real solutions cor-
responding to points A, B and C with the middle one being an unstable solution and
placing the resonator in a bistable regime, identified by the dashed line. The transition
point from one to multi real-valued solutions is known as bifurcation point and can be
identified as the critical point where A and C overlap in frequency. Following the work of

Ref.[103] we see that, analytically, this occurs when the drive frequency isωcr =ω0−
p

3κ
2 .

In addition, the critical photon number necessary to bring the resonator into this bifur-
cation point can be obtained as

ncr = κp
3β

(2.45)

Fig. 2.8b shows how the critical photon number (normalized to the smallest plotted
value) depends on the anharmonicity of the cavity when a drive tone is fixed at ωcr.
When the Kerr nonlinearity is increased from 5 kHz to 100 kHz, the critical photon num-
ber is suppressed by a factor of 20, clearly indicating that one should try to minimize
the non-linearity in order to preserve a linear response of the system to near resonant
external drives.

When plotting the cavity response spectrum S11 in the linear and non-linear (Duff-
ing) operation regimes, very distinct behaviors are observed. For the linear case, the
cavity response is a typical absorption dip with a Lorentzian lineshape. However, in the
Duffing regime, the response spectrum depends on the drive sweep direction, i.e. on the
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Figure 2.8: Duffing oscillator response in the presence of a single drive tone. a Schematic representation
of the linear and Duffing response to an external drive tone. b Critical photon number ncr, normalized to the
smallest plotted value, depending on the circuit anharmonicity |β|. c Magnitude of the response spectrum
|S11| vs drive detuning from the bare resonance frequency ∆ = ωd −ω0 in the linear regime, as blue curve,
and in the Duffing regime as gray and violet curves, corresponding respectively to a frequency up-sweep and
down-sweep.

initial conditions of the system. If one would perform a frequency up-sweep, the cav-
ity would stay in a low-amplitude branch solution and the gray curve in Fig. 2.8c would
be detected. However, when performing a frequency down-sweep, the selected branch
would be the high-amplitude and the violet curve would be detected. For points where
there is only a single solution, the response spectrum of the two directions coincides.

In typical optomechanical measurements, one would in fact have a strong detuned
drive which brings the cavity into one of the branches and only use a weak probe tone to
measure its linearized driven response. In this scenario, the input field is composed of
a strong pump tone of frequency ωp and a weak probe tone with a time dependent field
amplitude Spr(t ). The total input field, in the rotating frame of the pump, is therefore
given by Sin = Spe−i (ωpt+φ) + Spr(t )e−iωpt . In addition, the intracavity field is given as
α=α0e−iωpt +γ0(t)e−iωpt .

The equation of motion for the probe field can be obtained from the undriven equa-
tion of motion Eq. 2.40 by, once again, adding the presence of a driving term Se =p

κeSin.
Furthermore, after removing the pump steady-state solution, which is found for when
γ0, Spr = 0, the expression takes the form

γ̇0 +
[
−i (∆−βα2

0)+ κ

2

]
γ0 +βiα2

0(γ0 +γ∗0 ) =p
κeSpr (2.46)
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In frequency space, the previous expression becomes[
−i (∆−2βα2

0 +δ)+ κ

2

]
γ0(δ)+βiα2

0γ
∗
0 (−δ) =p

κeSpr(δ), (2.47)

where δ=ωpr −ωp is the detuning of the probe relative to the pump tone.
The termβiα2

0γ
∗
0 (−δ) in Eq. (2.47), which arises from the anharmonicity of the system, is

in fact, a signature of a coupling between the signal field γ0(δ) and its mirrored conjugate
γ∗0 (−δ), giving rise to an idler field γ0(−δ) of the cavity input field. In the lab frame, these
two modes would appear at the same distance but on opposite sides of the pump. The
total intracavity probe field can be expressed in terms of a Kerr susceptibility defined as

χk =
1

κ
2 − i (∆−2βα2

0 +δ)
(2.48)

and of its conjugate χk =χ∗k (−δ). The expression takes then the form

γ0(δ) = βα2
0χkχk

1−β2α4
0χkχk

p
κeS∗

pr(−δ)+ iχk

1−β2α4
0χkχk

p
κeSpr(δ). (2.49)

From equation (2.49), we can see that an intracavity field γ0(δ) is generated at frequency
δ when a probe tone is sitting either at δ or −δ. However, for most of the experiments
presented in this thesis, we only make use of a probe tone Spr(δ) and measure the cavity
resonance at the same frequency γ0(δ). In that case, the intracavity field can be reduced
to the second term and the cavity susceptibility becomes

χc = χk

1−β2α4
0χkχk

. (2.50)

Furthermore, the reflection parameter, i.e., the interference between the input and out-
put fields, is written as

S11 = 1− κeχk

1−β2α4
0χkχk

. (2.51)

Finally, the cavity resonance frequency can be found by extracting the real part of the
resonant condition χ−1

c = 0 and it is given, in the rotating frame of the pump frequency
by

δ0 =±
√

(∆−βα2
0)(∆−3βα2

0). (2.52)

Note that the two existing solutions correspond to the cavity and idler resonance fre-
quencies. The resonance frequency in the lab frame finally becomes ω0 =ωp +δ0.

From Eq. (2.52) we see that since δ0 depends on βα2
0, the resonance frequency will

be power dependent. Fig. 2.9a shows how the anharmonicity impacts the resonance fre-
quency shift with pump power in a two tone experiment with a far-detuned pump tone
(ωp À κ). Furthermore, in Fig. 2.9b, it is shown how the values of non-linearity translate
into the ratio of linear and Josephson inductance. In optomechanical experiments, this
frequency shift is something to be particularly careful about, as the detuning between
the pump and the cavity resonance is a crucial parameter, that most of the times should
preferably stay constant. For this reason, a shift higher than the cavity linewidth should
be avoided.
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Figure 2.9: Resonance frequency shift of a SQUID cavity in a two tone measurement scheme. a Shows
the resonance frequency shift vs intracavity photon number nc due to the non-linearity |β|, when the cavity
is driven by a far-detuned pump and measured by a weak probe tone. The three different curves correspond
to distinct values of anharmonicity and the gray area represents the regime where the shift is smaller than
the cavity linewidth, here set to κ = 2π · 500kHz. b Shows how the anharmonicity translates into a ratio of
Josephson and total inductance assuming a shunting capacitance of C = 1pF. The three dots represents the β
of each of the curves represented in a.

The gray area in Fig. 2.9a represents the regime where the frequency shift is below a
linewidth of 2π ·500kHz. However, as shown in Fig. 2.9a, the maximum number of pho-
tons that the cavity can sustain before shifting above this threshold strongly depends on
the anharmonicity, and the higher the non-linearity is, the smaller is the critical photon
number.

As a final message, it should be of clear evidence that, in order to perform optome-
chanical sideband driving schemes utilizing SQUID cavities, which is relevant as they
grant the enhancement of the multi-photon coupling rate g (see Section 2.5.5), one
would like to minimize the anharmonicity of the system. This can be done by finding
an optimal balance between the Josephson and linear inductances of the circuit (more
insights on how this requirement translates into the circuit design is given in chapter 3).
Furthermore, when pursing multi-tone driving schemes, as the one presented in chap-
ter 5 one would need a slightly higher non-linearity. Nevertheless, this should also be
carefully tuned as it will define the performance of the cooling scheme. For more details
see chapter 5.

2.5. RADIATION-PRESSURE COUPLING

2.5.1. A GENERAL HAMILTONIAN

The energy operator Ĥ of a system consisting of two uncoupled harmonic oscillators
with frequencies ω0 and Ω0, where their quantum ground-state energies are omitted, is
written as

Ĥ =ħω0â†â +ħΩ0b̂†b̂ (2.53)

When implementing an optomechanical coupling, we are introducing, from a general
point of view, a parametric modulation of the resonance frequency of one oscillator de-
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pending on the quadrature amplitude of a second oscillatory mode (b̂ + b̂†). The most
common implementation of this type of coupling is based on an optical cavity with fre-
quency ω0 which is formed by the light field trapped between a static mirror and freely
moving mirror of mass m. As the latter oscillates with frequency Ω0, its displacement
x̂ = xzpf(b̂ + b̂†) therefore modulates the cavity energy, as this one depends on the dis-

tance between the two mirrors. Here xzpf =
√

ħ
2mΩ0

represents the mechanical zero-

point fluctuation amplitude. The cavity resonance frequency, in the presence of such
interaction is given by

ω0(x) =ω0 +x
∂ω0

∂x
+x2 ∂

2ω0

∂2x
+ ... (2.54)

Let us now assume that all terms rather than the linear term can be neglected. The cor-
rection to the cavity energy then becomes

ħω0(x)â†â =ħ(ω0 −Gx̂)â†â, (2.55)

where G = ∂ω0/∂x is defined as the pull parameter which describes the cavity responsiv-
ity to mechanical displacement. The new system Hamiltonian becomes a combination
of the uncoupled Hamiltonian plus the interaction term as

Ĥ =ħω0(â†â)+ħΩ0(b̂†b̂)−ħg0â†â(b̂ + b̂†), (2.56)

where g0 = Gxzpf is defined as the single-photon coupling strength, the rate at which a
photon from the cavity converts into a phonon in the mechanical mode.
For simplicity, this initial description of the optomechanical Hamiltonian was done us-
ing the example of an optical cavity and an oscillating mirror. However, the systems
explored in this thesis for the implementation of an optomechanical coupling consist
either of a microwave cavity coupled to the displacement of a mechanical resonator (see
chapter 4 and chapter 5) or of a microwave cavity coupled to the current flowing in a
radio-frequency resonator (see chapter 6 and chapter 7). The definition of the single-
photon coupling strength g0 will be discussed for the two cases in the following sections
2.5.2 and 2.5.3. Even though the definition of g0 depends on the system, the interaction
Hamiltonian remains the same, allowing us to use the general form of Eq. (2.56).

2.5.2. FLUX-MEDIATED OPTOMECHANICAL COUPLING

As shortly mentioned in chapter 1, in a flux-mediated optomechanical system, a mi-
crowave cavity is combined with a mechanical resonator in a configuration where a frac-
tion of the circuit inductance is modulated by the motion of a mechanical element. For
the realization of this coupling scheme, one fully relies on a non-linear inductor to me-
diate the interaction between the mechanical and microwave modes. Our approach to
experimentally engineer this system followed the theoretical proposal of Ref.[70], where
a mechanical resonator is embedded in a Superconducting QUantum Interference De-
vice (SQUID) as shown in Fig. 2.10a, i.e., part of the SQUID loop is free to oscillate,
forming a mechanical resonator.
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Figure 2.10: Description of a flux-mediated optomechanical system. a shows a schematic representation
of a SQUID, part of whose loop is free to oscillate, forming a mechanical resonator of length l , which
is displaced from its rest position by ∆x. The system is in the presence of in-plane and out-of-plane
magnetic fields Bin and Bout. b shows a circuit analogue of the system which combines the SQUID
presented in panel a with a linear microwave cavity. As the cavity contains a non-linear inductor, its
resonance frequency will be flux dependent. In c, the normalized resonance frequency depending on
the total applied magnetic flux Φ is shown. As the in-plane flux arises from the oscillating motion of
the mechanical beam (Φin = γBinl∆x), when the SQUID cavity is biased to a non-integer value of Φ0,
a parametric modulation of its resonance frequency arises from the optomechanical coupling to the
mechanical oscillator.

The SQUID, as already mentioned in section 2.2, is a superconducting loop con-
nected by two Josephson junctions in parallel2. In contrast to the non-linearity discus-
sion of section 2.3, where the SQUID could be represented as a single Josephson junc-
tion, here its flux-tunable properties have to be taken into account, as they are the key
of the described coupling scheme. In essence, the SQUID acts as a non-linear induc-
tor whose inductance can be tuned by applying an external magnetic field. As follows
from the discussion of section 2.2, in the ideal case of a negligible loop inductance, its
inductance can be written as

LS =
Lj0

2cos
(
π Φ
Φ0

) , (2.57)

where Lj0 is the Josephson inductance of a single junction andΦ is the total magnetic flux
threading the SQUID. In the configuration of Fig. 2.10a, where both an in-plane and out-
of-plane magnetic field are applied to the SQUID, the total flux will have contributions
from both components

Φ=Φout +Φin = Bout Aout +Bin Ain, (2.58)

with Aout being the out-of-plane area enclosed by the SQUID loop, represented as dark
blue, and Ain being the effective area formed by the out-of-plane mechanical motion,
represented as violet.

When combining this SQUID configuration with a linear microwave cavity, the full
system can be modeled by the circuit shown in Fig. 2.10b, where the SQUID inductance,

2This configuration is known as the DC-SQUID. The realization of a SQUID composed of a single Josephson
junction is defined as the RF-SQUID. Through this thesis, the SQUID will always be referring to the DC-SQUID
configuration.
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depends on both in-plane and out-plane magnetic flux LS = LS(Φout +Φin). Therefore,
when using the out-of-plane magnetic field to bias the SQUID, the cavity can be tuned
into a point where the displacement dependent in-plane flux Φin = γBinl∆x results in a
modulation of the resonance frequency as shown in Fig. 2.10c, giving rise to an optome-
chanical interaction.

As the flux arising from the presence of the in-plane magnetic field entirely depends
on the effective area originated from the displacement of the mechanical resonator, its
zero-point motion can be translated into a fluctuating in-plane magnetic field. This is
defined as the zero-point fluxΦzpf and is expressed as

Φzpf = γBinl xzpf (2.59)

where γ accounts for the mode shape of the mechanical oscillations and is on the order

of 1, l is the length of the beam and the zero-point motion is defined as xzpf =
√

ħ
2mΩ0

.

Furthermore, the single-photon coupling strength of a flux-mediated optomechanical
system is given by

g0 = ∂ω0

∂Φ
Φzpf =

∂ω0

∂Φ
γBinl xzpf. (2.60)

An intuitive way of understanding the radiation-pressure force in flux-mediated optome-
chanics can be based on the SQUID flux quantization. When the SQUID is biased to
non-integer values ofΦ0, there is a generation of a screening current which flows across
the loop, which subsequently induces an asymmetric splitting of the AC current applied
to the SQUID. This asymmetric splitting will result in an oscillating loop current with
frequency 2ω0 around a constant offset. To first order, the fast current oscillations can
be neglected and therefore, in the presence of an in-plane magnetic field, the charge
carriers responsible for the loop current offset will feel an effective Lorentz force which
generates a displacement of the mechanical resonator. An experimental realization of
this coupling scheme can be found in chapter 4 and chapter 5. Furthermore, for addi-
tional information on maximizing g0 in our flux-mediated optomechanical systems is
given in section 3.3.1.

2.5.3. PHOTON-PRESSURE COUPLING

Photon-pressure interaction, a term used in analogy to an optomechanical system whose
coupling arises from a radiation-pressure force, describes a system where the resonance
frequency of a microwave cavity is parametrically modulated by the amplitude of the
current flowing in a second circuit.
As for flux-mediated optomechanics, the implementation of a photon-pressure coupling
relies on a SQUID to mediate the interaction between the two circuits. Based on the
schematic diagram presented in Fig. 2.11a let us discuss the working principle of a
photon-pressure system. Given a wire in which a current is flowing, as described by Bio-
Savart law, a magnetic field will be generated and decay with the distance from the wire.
If now a SQUID is placed in close proximity, a magnetic flux will arise as the current-
generated magnetic field threads the area formed by the loop.
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Figure 2.11: Working principle of a photon-pressure system. In a, a physical representation of the
coupling scheme is shown. The wire, in which a current is flowing, generates a magnetic field that
threads into the nearby SQUID loop, where ∆Φ is the flux arising from the current flowing in the
wire. The photon-pressure system can be modeled by the circuit shown in b, where a radio-frequency
(RF) cavity, formed by the wire of inductance LRF and a capacitor CRF, is coupled to a high frequency
(HF) circuit via a mutual inductance M . The flux-tunable resonance frequency of the SQUID cavity,
normalized to the sweet-spot (Φ = 0), is show in c. The oscillating flux ∆Φ, arising from the RF
current, results in a parametric modulation of the resonance frequency when the SQUID is biased into
a non-integer value of Φ0.

In a photon-pressure system, the wire of inductance LRF is placed in parallel with
a capacitor CRF to form a radio-frequency cavity of resonance frequency Ω0 and a zero

point current Izpf =
√

ħΩ0
2LRF

. In addition, the SQUID of inductance LS, is also part of a

high frequency cavity with ω0 operating at GHz frequencies. In this configuration, the
zero point current Izpf will give rise to a fluctuating zero point flux

Φzpf = M Izpf, (2.61)

where M is the mutual inductance between the two circuits and depends on their geo-
metric arrangement. The full system can be modeled by the circuit schematic of Fig. 2.11b,
where the SQUID inductance LS(Φout+∆Φ) depends on the flux modulations∆Φ arising
from the RF circuit and an externally applied out-of-plane fluxΦout.

Finally, by tuning the external magnetic fluxΦout, the SQUID can be flux-biased into
a point where the AC current of the RF circuit induces linear parametric modulations of
the resonance frequency of the HF cavity. The optomechanical coupling which arises
from this modulation has a single-photon coupling strength given by

g0 = ∂ω0

∂Φ
Φzpf. (2.62)

Coming back to the analogy between photon-pressure and optomechanical systems, the
equivalent to the radiation pressure force in this coupling scheme can be seen as electro-
motive force acting on the RF inductor wire, which arises from the oscillating flux in the
SQUID loop. As final remark, an experimental realization of a photon-pressure coupling
scheme can be found in chapter 6 and chapter 7.
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2.5.4. OPTOMECHANICAL KERR HAMILTONIAN

As discussed in section 2.3, the Hamiltonian of a SQUID cavity cannot always be ap-
proximated to the one of a harmonic oscillator. When incorporating a Josephson non-
linearity in a LC circuit, the arising anharmonicity χ and the induced deviation from the
harmonic potential must be taken into account.

As both flux-mediated optomechanical coupling and photon-pressure coupling rely
on the utilization of a microwave SQUID cavity, one should consider the following Hamil-
tonian

Ĥ =ħω0â†â +ħΩ0b̂†b̂ +ħχ
2

(â†â)2 −ħg0â†â(b̂ + b̂†), (2.63)

where the third term ħχ
2 (â†â)2 arises from the cavity Kerr non-linearity. Note that for the

cases where the frequency shift due to the anharmonicity χ is small, we can assume the
optomechanical coupling to be of the form shown in Eq. (2.56), as the SQUID cavity can
be approximated to be a harmonic LC oscillator.

2.5.5. LINEARIZED HAMILTONIAN

Let us now assume that the system in discussion consists of a driven microwave SQUID
cavity coupled to a second oscillatory mode. For obtaining the linearized Hamiltonian,
which is a valid approximation when the system is in the presence of a strong microwave
drive tone, we follow the approach of Ref.[104]. Note that a simplified version of the lin-
earization for the standard optomechanical Hamiltonian of Eq. (2.56) is given in Ref.[56].

The Heisenberg-Langevin equations that describe the equations of motion of the an-
nihilation operators â and b̂ of the un-driven system in the presence of dissipation and
noise fluctuations are given by

dâ

dt
=−i

[
â,

Ĥ

ħ
]
− κ

2
â −p

κeâe
in −

p
κiâ

i
in (2.64)

db̂

dt
=−i

[
b̂,

Ĥ

ħ
]
− Γ

2
b̂ −∑

j

√
Γ j b̂ j

in. (2.65)

Hereκ andΓ are the total cavity and mechanical loss rates, respectively. The second term
on the right hand side represents the leak of either photons (κâ/2) or phonons (Γb̂/2) to
a thermal bath. Furthermore, the terms

p
κeâe

in and
p
κiâi

in represent the driving of the
SQUID cavity by the noise coming from the external or internal bath, respectively. More-
over, here we considered the possibility of the second oscillatory mode to be coupled to
several baths. The environment noise coupling from each bath j is taken into account

by the term
∑

j
√
Γ j b̂ j

in, where Γ j is the decay rate of each channel.

Let us now take into consideration the presence of a microwave tone αd =α0e−iωdt ,
which drives the cavity. An analogous way to include the drive term in the Hamiltonian3

Ĥdrive =−iħ(α∗
d â −αdâ†) is to assume that the input field âe

in has an averaged value set
by the drive α0.

3Note that, under our previous definition of â and â†, the presented form would represent a voltage source.
Analogously, one could also represent the drive as a current source with Ĥdrive =ħ(α∗

d â +αd â†)
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Under the presence of this tone, it is convenient to switch to a frame rotating with

the drive. For this, we make use of the unitary operator Û = e iωd â† ât and perform the

Hamilton transformation Ĥ
′ = Û ĤÛ † + i ∂Û

∂t Û †. The modified Hamiltonian becomes

Ĥ
′ =−ħ∆â†â +ħχ

2
(â†â)2 +ħΩ0b̂†b̂ −ħg0â†â(b̂ + b̂†), (2.66)

with ∆ = ωd −ω0 being the detuning between the drive and the cavity resonance. Fur-
thermore the Heisenberg-Langevin equations are also modified and take the form

dâ

dt
=−i

[
â,

Ĥ ′

ħ

]
− κ

2
â −p

κeα0 −p
κeâe

in −
p
κiâ

i
in (2.67)

db̂

dt
=−i

[
b̂,

Ĥ ′

ħ

]
− Γ

2
b̂ −∑

j

√
Γ j b̂ j

in (2.68)

The explicit use of the term
p
κeα0 in Eq. (2.67) comes from the fact that the previously

defined external input field operator, in the presence of a drive tone, is composed of an
average amplitudeα0 and noise fluctuations âe

in, as they both interact with the cavity via
its loss channel to the external bath.

A clear consequence of the application of the drive is the displacement of the cavity
field to a new average value. Furthermore, a response to this modification, is the emer-
gence of a static radiation pressure force which will also induce a classical displacement
of the mechanical resonator. Once the system reaches a new equilibrium, its dynamics
can be described based on the fluctuations around these new static values. It is therefore
convenient to express the operators â and b̂ as

â =α+δâ (2.69)

b̂ =β+δb̂ (2.70)

where α and β are the classical displacements induced by the drive tone and δâ and δb̂
are the fluctuation operators which encode the quantum effects of the system. By solving
the Heisenberg-Langevin equations Eq. (2.67) and Eq. (2.68) (in the absence of the noise
terms), when only accounting for the classical part of the newly defined operators, we
find the following solution for the cavity field

α=
p
κe

κ
2 + i (χ|α|2 −∆)

α0, (2.71)

where α0 = α0e iφ and φ = atan2
(

2(∆̄−χ|α|2)
κ

)
. In Eq. (2.71), the parameter ∆ = ∆+ g0(β+

β∗) can be intuitively thought as a modification to the detuning between the drive and
the cavity resonance introduced by the drive induced mechanical displacement, which
shifts the cavity resonance frequency. In addition, the Kerr non-linearity also generates
an additional frequency shift given by the term χ|α|2. Under the assumption that the
intracavity field is real-valued, the steady-state solution for the cavity field amplitude α
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can be found by multiplying the previous relation (2.71) by its complex conjugate and
numerically solving the third order polynomial

χ2n3
c −2∆̄χn2

c +
(
κ2

4
+ ∆̄2

)
nc −κeα

2
0 = 0, (2.72)

where |α|2 = nc. Additionally the steady-state solution for the annihilation operator b̂ is
given by

β= g0|α|2
Ω0 + i Γ2

(2.73)

Here, it is helpful to calculate the corresponding mechanical displacement x = xzpf(β+
β∗). When assuming a high-Q approximation we obtain

x = xzpf
2g0|α|2
Ω0

. (2.74)

As seen in the previous expression, the total mechanical displacement, generated by a
radiation pressure force F /ħ = G|α|2 is proportional to the cavity photon number as
|α|2 = nc and strongly depends on the ratio between the single-photon coupling strength
and the mechanical frequency. Note that, for the case where g0 >Ω0, a single intracavity
photon will displace the mechanical oscillator by more than its zero point motion. More-
over, the mechanical displacement is also affected by the Kerr non-linearity through the
steady state solution α, which generates an effective reduction/enlargement of the total
displacement x for the case of a blue/red detuned drive tone.

By writing the Heisenberg Langevin equations as function of the operators â (Eq. (2.69))
and b̂ (Eq. (2.70)), and removing the purely classical terms, the resulting equations of
motion would be equivalent to the ones obtained with the starting Hamiltonian

Ĥ =−ħ∆δâ†δâ + χ

2
|α|2(δâ +δâ†)2 +ħΩ0δb̂†δb̂ −ħg0(αδâ† +αδâ +δâ†δâ)(δb̂ +δb̂†)

(2.75)

where ∆=∆+ 2g 2
0

Ω0
|α|2 −χ|α|2 now also contains the contribution of the Kerr shift. Here,

the term g0δâ†δâ(δb̂ +δb̂†) acts as a non-linear shift of the cavity frequency due to the
optomechanical interaction, however, as long as g0 ¿Ω0,κ it is assumed to be negligi-
ble. For convenience, let us rename δb̂ as b̂ and ∆ as ∆. With this we get the linearized
optomechanical Hamiltonian

Ĥlin =−ħ∆(δâ†δâ)+ χ

2
nc(δâ +δâ†)2 +ħΩ0(b̂†b̂)−ħg (δâ† +δâ)(b̂ + b̂†), (2.76)

where g = p
ncg0 is the enhanced multi-photon coupling strength and the last term

on the right hand side is known as the interaction Hamiltonian Ĥint. The quantum
Heisenberg-Langevin equations of motion of the linearized system are given as

d

dt
δâ = δâ

(
i∆− κ

2

)
+ i g (b̂ + b̂†)− iχncδâ† −p

κeâe
in −

p
κiâ

i
in (2.77)

d

dt
b̂ =

(
−iΩ0 − Γ

2

)
δb̂ + i g (δâ +δâ†)−∑

j

√
Γjb̂

j
in (2.78)
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In the particular case where the detuning between the drive tone and the cavity res-
onance is ∆ = −Ω0, also known as the red sideband, a rotating wave approximation
(RWA)4 can be done by removing all the off-resonant terms. The following interaction
Hamiltonian is obtained

Ĥint =−ħg (δâ†b̂ +δâb̂†). (2.79)

Eq. (2.79), also known as the beam-splitter Hamiltonian, describes the system dynamics
where the creation of a photon annihilates a phonon and vice-versa. This type of inter-
action was experimentally used in this thesis, for example, for optomechanical cooling
of a mechanical resonator (chapter 5) and of a radio-frequency circuit (chapter 7). Fur-
ther applications such as quantum state transfer could also be applied when one fulfills
g > κ+Γ

2 , known as strong coupling regime. Additionally, if g > κ,nthΓ the system is said to
operate in the regime of quantum coherent coupling, where the rate at which excitations
are exchanged between the two modes is faster than the mechanical thermal decoher-
ence rate.

The omitted terms in the previous RWA are the only ones which stay present when
applying a microwave drive on the blue sideband of the Kerr shifted cavity, i.e. ∆=+Ω0.
Also known as a two-mode squeezing interaction, the interaction Hamiltonian takes the
form

Ĥint =−ħg (δâb̂ +δâ†b̂†). (2.80)

Contrary to the beam-splitter Hamiltonian, Eq. (2.80) describes the case where pairs of
a single photon and a single phonon are either created or destroyed. These two-mode
squeezed states are therefore correlated and one can describe them as quantum entan-
gled pairs. This interaction is also similar to the one of a non-degenerate parametric
amplifier, and therefore, ultimately lead to parametric amplification. This interaction is
realized in chapter 6, for the detection of parametrically amplified thermal current fluc-
tuations of a RF circuit.

4Note that the RWA performed for achieving the beam-splitter and two-mode squeezing Hamiltonian is not
valid in the case of a system in the ultra-strong coupling regime where g ∼Ω0 as the counter-rotating terms
can no longer be ignored.
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DEVICE DESIGN AND FABRICATION

Everything is theoretically impossible until it is done.

Robert A. Heinlein

The chapter starts by providing some insights regarding the physical working principle of
nano-bridge Josephson junctions and it continues by taking a close look to the particu-
lar case of a SQUID with a non-negligible high screening parameter βL and its impact on
the resonance frequency flux modulations of a microwave SQUID cavity. Posterior to the
discussion regarding the design considerations of SQUID cavities, follows a chronological
narrative of the all the attempted approaches for the fabrication of 2D and 3D SQUID cav-
ities and the reasoning behind their failure or success. The chapter continues with a short
description of the fabrication techniques utilized for the releasing of mechanical beams
and the engineering of RF microwave cavities and a short overview on the design require-
ments necessary for the optimization of their respective single-photon coupling strengths.
Finally, an overview of the experimental challenges associated with flux noise will be pre-
sented.
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3.1. NANO-BRIDGE JOSEPHSON JUNCTIONS

As concluded from the discussion of section 2.4, when designing a SQUID cavity to be
incorporated in an optomechanical or photon-pressure system, the non-linearity of the
circuit should often be minimized. For this purpose, one can reduce the contribution
of the Josephson junction by adding it in series with a linear inductor or by reducing its
intrinsic inductance Lj. However, note that for high values of Lj, the necessary value of
linear inductance required for maintaining a low anharmonicity while keeping the cav-
ity resonance frequency in the typical 5− 8 GHz range would make the circuit design
extremely challenging. For example, a SQUID cavity made of junctions with Lj ∼ 30nH
would require a linear inductor of L ∼ 3µH and a circuit impedance of Z ∼ 140MΩ to
keep an anharmonicity of 100kHz, which would be an extremely demanding technolog-
ical task [107].

The inductance of a Josephson junction is related to its critical current, i.e. to the
amount of current the junction can sustain before switching to a resistive state, as

Ic = Φ0

2πLj
, (3.1)

whereΦ0 is the flux quantum. As for now, a key requirement when designing the SQUID
cavities utilized in this thesis, is to engineer high critical current Josephson junctions.
From the wide variety of available options when selecting a type of Josephson junction
[108] (SIS, SNS, SFS, etc)1, the nano-bridge Josephson junction, also referred to as weak
link junction in literature, is especially attractive as it is free of a lossy oxide, easy to
fabricate and has intrinsically higher critical currents compared to the standard choice of
SIS junctions. Moreover, as its cross section is considerably smaller, it has a much higher
magnetic field resilience compared to other high critical current junctions [105, 106],
which makes it a great option for flux-mediated optomechanical systems.

As shown in Fig. 3.1, a weak link junction can be designed as a 2D constriction where
the banks are much wider than the path between them (also referred to as Dayem bridge),
or a 3D constriction, where in addition, the path is much thinner than the electrodes. In
essence, the non-linear behavior of a weak link junction arises from the geometric con-
striction between two superconducting banks (see Fig. 3.1). In contrast to tunnel junc-
tions, where the non-superconducting area between the electrodes is characterized by
a reduction in the Cooper pair density np, in a nano-bridge junction, the reduction of
the total amount of Cooper pairs flowing between the two banks arises from a reduction
of cross-sectional area in the link. In essence, in a tunnel junction, the current density
Jp = 2enpvp stays constant as the decrement in Cooper pair density is balanced by an in-
crement in Cooper pair velocity vp. In the case of a nano-bridge junction, the enhance-
ment of the cooper pair velocity vp arising from the reduced cross sectional area results
in an increment of the current density Jp. Nevertheless, this is balanced by the decre-
ment in the total amount of carriers in the link, maintaining constant the total current
flowing in the system.

1The acronyms stand for Superconductor/Insulator/Superconductor, Superconductor/Normal conduc-
tor/Superconductor and Superconductor/Ferromagnet/Superconductor, respectively.
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Figure 3.1: Illustration of 2D and 3D weak link Josephson junctions. A 2D junction, which is represented
on the left, is formed by a narrow constriction of length lJJ between two wide electrodes (wJJ ¿ wbank).
Here the electrodes and the junction have the same thickness. The 3D junction, which is shown on the
right side, is formed by narrow and thin constriction of length lJJ, whose thickness is much smaller than
the connecting banks (tJJ ¿ tbank).

Since the total phase difference across a nano-bridge Josephson, which is translated
to the enhancement of Cooper pair velocity vp in the junction, relies on the phase gradi-
ent between the banks and the link, the modeling of the current-phase relation (CPR) can
be a complex problem. It strongly depends on the aspect ratio between the banks and
the constriction and on material properties as the coherence length ξ 2 and mean free
path l 3. For instance, very short junctions, where the length lJJ is much smaller than the
coherence length lJJ ¿ ξ(T ), exhibit the characteristic sinusoidal CPR predicted by the
first Josephson relation [109, 110] I (ϕ) = Ic0sin(ϕ). Note that, as the coherence length
considerably increases with temperature, this regime is appreciably easier to achieve
when the junctions are operated close to the critical temperature T ≈ Tc. This effect
is predicted by the Aslamazov-Larkin model [111, 112] and relies on a microscopic de-
scription of the Josephson effect.

In addition, when a junction falls into the dirty limit, where lJJ ¿
√
ξl , it is well de-

scribed by the Kulik-Omelyanchuk model (KO-1) [113]. The current-phase relation is
then given by

I (ϕ) = π∆

eRN
cos

ϕ

2
tan−1

(
sin

ϕ

2

)
, (3.2)

where ∆ is the superconducting gap and RN the junction normal state resistance.
A good approximation to this model can be obtained by considering the weak-link

as a combination of a junction with a sinusoidal CPR in series with a linear inductor, as
shown in Fig. 3.2. In this method, the current-phase-relation is not given in terms of the
phase difference across the junction but in terms of total phase drop across the linear
inductor ϕL and the junction ϕLj0 as

ϕ=ϕL +ϕL j = 2πLI

Φ0
+arcsin

(
I

Ic0

)
(3.3)

2Characteristic Cooper pair size, i.e. characteristic correlation length in the superconducting wave-function.
3Average distance traveled by a particle between successive collisions
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Figure 3.2: Current phase relation of a single Josephson juntion and of a junction in series with a
linear inductor. a presents the circuit diagram of a single Josephson junction with phase drop of ϕLj on
the left side and a second circuit diagram, on the right, containing the junction in series with a linear
inductor. Here, the total phase drop is given by ϕ = ϕL +ϕLj. In b the CPR of the single junction is
represented as the gray curve, the CPR of the combination of the junction with a linear inductor of
inductance L = 0.4Lj is shown as violet curve and the CPR predicted by the KO-1 model is represented
as the dark blue curve.

As shown in Fig. 3.2b, there is a clear deviation of the KO-1 model from a sinusoidal CPR.
However, by considering a phase drop of the form of Eq. (3.3), for an inductor L = 0.4Lj0,
we obtain a very good approximation to the KO-1 model. At this point we can assume
that this provides a good description of a weak-link junction, as the amount of linear
inductance required to match the KO-1 model could be thought as the linear inductance
of the connecting electrodes.

For simplicity, it is assumed along this thesis that the junctions utilized in the fabri-
cated devices fall into the KO-1 regime and their behavior can be modeled by the linear
inductance approximation. However, the extensive experimental study of the intrinsic
properties of Aluminum weak link junctions by Refs. [114–116] reports some deviations
from the KO-1 model, especially for 2D geometries.

3.2. 2D AND 3D SQUID CAVITIES

3.2.1. DESIGN CONSIDERATIONS FOR SQUIDS WITH NON-NEGLIGIBLE LOOP

INDUCTANCE

As the essence of flux-mediated and photon-pressure systems relies on using an external
oscillatory mode to modulate the magnetic flux coupled to the loop of a SQUID cavity,
the coupling strength of these systems can be enhanced by increasing the area of the
SQUID loop, subsequently increasing the SQUID loop inductance. As it will be discussed
in this section, this plays a major role on the performance of our SQUID cavities.

In the discussion of section 2.2, the loop inductance contribution was neglected and
the total flux seen by the SQUID was assumed to be of an exclusively external nature.
However, for the case of a non-negligible loop inductance Lloop, the magnetic flux gen-
erated by the screening current Φs = LloopIs also needs to be taken into account. The
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total magnetic flux threading the loop is therefore given by

Φ=Φout +LloopIs . (3.4)

The impact of the flux generated by the screening current to the total flux threading the
SQUID will strongly depend on the magnitude of the loop inductance. This contribution
can be discussed in terms of the screening parameter

βL = 2LloopIc0

Φ0
. (3.5)

As shown in section 2.2, for the cases where the loop inductance is negligible, i.e. βL ¿ 1,
the total flux is only given by Φ=Φout and the critical current Ic of the SQUID, which is
found by maximizing the transport current, takes the form

Ic = 2Ic0

∣∣∣∣cos

(
πΦ

Φ0

)∣∣∣∣ . (3.6)

I

Is

Bout

Bs

Lloop

Lj

Figure 3.3: Representation of a SQUID with non-negligible loop inductance in the presence of an
external magnetic field Bout. When a symmetric SQUID is in the presence of an external magnetic field
Bout, it generates a screening current Is which flows around its loop. As the SQUID has a non-negligible loop
inductance Lloop, the screening current will generate an additional magnetic field, which at the inner part of
the loop opposes the external field. This second contribution is represented by Bs. The total magnetic flux in
the SQUID is given byΦ=Φout +Φs.

However, for higher βL values, i.e. when ratio of loop to Josephson inductance in-
creases, the presence of a screening current will have a considerable impact on the net
flux seen by the SQUID as ΦS tends to counter the applied magnetic field (see Fig. 3.3).
Based on Eq. (2.23) and Eq. (3.4), the total flux Φ and the transport current I flowing in
the SQUID can be re-written as [96]

Φ=Φout − Φ0βL

2
sin

(
π
Φ

Φ0

)
cos

(
ϕ1 + πΦ

Φ0

)
(3.7)

I = 2Ic0cos

(
π
Φ

Φ0

)
sin

(
ϕ1 + πΦ

Φ0

)
(3.8)



3

40 3. DEVICE DESIGN AND FABRICATION

The SQUID critical current can be found numerically [117] by maximizing the transport
current I with respect to the phase difference of a single junction ϕ1, which is indepen-
dently determined from Eq. (3.7). Since βL only plays a role for non-zero values ofΦ, the
critical current of an un-flux biased SQUID with high loop inductance will remain 2Ic0.
However, at half flux quantum it can be approximated as

Ic

(
Φ0

2

)
= 2Ic0

βL

1+βL
. (3.9)

The previous relation Eq. (3.9) provides an excellent description of the problem attached
to SQUIDs with a large loop inductance, as it shows how the parameter βL has a cru-
cial impact on the maximum amplitude modulation of the SQUID critical current (see
Fig. 3.4a). An helpful reference point is to consider the case where βL = 1. In this case,
the loop inductance is larger by approximately a factor of 3 (Lloop/Lj0 = π) and the criti-
cal current modulation is reduced by 50% compared to the ideal situation of a negligible
loop inductance.
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Figure 3.4: Impact of βL in critical current and resonance frequency modulations. a shows how the
maximum critical current modulation ∆I max = 2Ic0 − Ic(Φ0/2) is reduced compared to the ideal case
of negligible loop inductance (∆I max = 2Ic0), depending on the screening parameter βL . The plotted
values are normalized to 2Ic0. The vertical lines, which correspond to a βL of 0.05,0.5 and 1, show
a critical current modulation of 95%, 66% and 50% compared to the ideal case, respectively. When
combining the SQUID with a linear LC circuit, the flux dependent critical current modulations will lead
to a modulation of the resonance frequency, which also depend on the screening parameter βL . In b,
the resonance frequency normalized to the sweet spot frequency ω0/ωs

0 is plotted versus external flux
Φout for three different values of βL = 0.05,0.5 and 1.

Furthermore, as we deal with SQUID cavities, it is of interest to understand how this
reduction in critical current modulations due to a high screening parameter βL trans-
lates into a resonance frequency ω0 modulation. In the typical circuit configuration of
our devices where a bias current is not applied, Eq. (3.7) can be reduced to

Φ

Φ0
= Φout

Φ0
− βL

2
sin

(
π
Φ

Φ0

)
. (3.10)
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Additionally, based on the SQUID inductance

Ls(Φ) = Ls0

cos
(
π Φ
Φ0

) , (3.11)

where Ls0 is the SQUID inductance at zero field, the resonance frequency of a LC circuit
containing SQUID in series with a linear inductor L takes the form

ω0(Φ) = 1p
C (L+Ls(Φ))

. (3.12)

By equivalently expressing Eq. (3.12) in terms of the sweet-spot frequencyωs
0 = 1p

C (L+Ls0)
,

the flux dependent resonance frequency (flux-arch) is given by

ω0(Φ) = ωs
0√

Λ+ 1−Λ
cos

(
π Φ
Φ0

) , (3.13)

where Λ= L/(L +Ls0). Note that, in contrast to the case of a negligible loop inductance
discussed in section 2.2, Φ now represents the total flux in the SQUID given by the rela-
tion 3.10 and not the external fluxΦout.

In essence, the effects of a non-negligible screening parameter βL will appear as a
widening of the flux arch and result in a hysteretic flux-dependence. Although the flux-
arch sweet spot will still occur for multiple values ofΦ0, the total amount of external flux
Φout required for a full modulation, which in the ideal case was Φ0, will be increased.
As consequence, for external flux values Φout beyond ±Φ0

2 , the critical current will be
multi-valued, generating what we later call flux jumps. Several examples of these jumps,
where the SQUID cavity resonance frequency switches from a low point in the flux arch
to another above it, can be seen in the experimental work reported in chapters 4,5 and
6, and in the work of Refs.[120–122].

The flux dependent resonance of a SQUID cavity, normalized to the sweet-spot fre-
quency, is plotted in Figure 3.4b for three different values of βL (where the multi stable
regime was omitted for clarity). As shown by the different plotted curves, an increment
in screening parameter leads to a strong suppression in resonance frequency modula-
tions.

In short, the biggest drawback of having a large loop inductance, and therefore a
non-negligible screening parameter βL is the suppression of resonance frequency mod-
ulations. As previously mentioned in sections 2.5.2 and 2.5.3, the optomechanical single-
photon coupling strength strongly depends on the resonance frequency external flux re-
sponsivity ∂ω0

∂Φ , therefore minimizing βL in our devices, becomes essential for achieving
high coupling rates.

3.2.2. THE KINETIC INDUCTANCE CONTRIBUTION

Besides the self-inductance associated with the geometry of our circuit elements Lgeo,
which arises from the energy stored in the magnetic field, our devices typically have a
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large kinetic inductance contribution due to the thin films utilized for their fabrication.
As this inductance arises from the kinetic energy stored in the motion of the charge car-
riers, it can be calculated by equating the kinetic energy of the Cooper pairs to an equiv-
alent inductive energy. The kinetic inductance of a superconducting wire with thickness
t , length l and width w can then be written as [118]

Lk =µ0λ
2
L

l

w t
, (3.14)

where µ0 is the vacuum permeability and λL is the London penetration depth of the ma-
terial. Note that the estimation of the kinetic inductance contribution used in the sec-
tions 3.3.1 and 3.4.1 was based on the reference value of Lk ≈ 2.75Lgeo for an aluminum
film of 20nm. This was obtained by comparing the resonance frequency of an experi-
mentally measured SQUID cavity with the simulations of the device using the software
package SONNET.

As shown by Eq. (3.14), the kinetic inductance scales inversely with the thickness of
the film. This is mostly reflected on the screening parameter βL of SQUIDs composed
of 2D nano-bridge Josephson junctions, which is considerably enhanced due to the ki-
netic inductance of the loop. Hence, switching to a 3D geometry where the thickness of
the SQUID loop is increased, was essential for minimizing the screening parameter and
optimizing the performance of nano-bridge SQUID cavities.

3.2.3. NANOFABRICATION TECHNIQUES

The process optimization for the fabrication of nano-bridge SQUIDs was not a straight
forward process and before achieving a final working recipe, several approaches were
followed. In this subsection, a description of each of the attempted fabrication methods
in a chronological way and the reason behind their failure will be provided.

ATTEMPT 1: 3D SQUIDs via method B using evaporated aluminum films.

The very first pursed fabrication technique is shown in a schematic diagram in Fig. 3.5B
and can be found in the summarizing Table 3.1 as attempt 1. The idea was to split the
fabrication in two steps. The first, where 20nm thick nano-bridge junctions would be
patterned (see step 1 of Fig. 3.5B) in a evaporation process4 followed by a lift-off 5technique,
and the second step where a 100nm thick SQUID loop would be deposited on top of the
junctions (step 2), also in an evaporation plus lift-off patterning procedure. A SEM im-
age of one of these devices can be seen in Fig. 3.6c. Even though visually the SQUID
fabrication appeared to be successful, once the devices were tested in a DC measure-
ment scheme, extremely high resistances across the SQUIDs were measured and no su-
percurrent was found. The most probable reason for the failure of this attempt was the
presence of a native aluminum oxide layer between the two patterned films, which could
have been disrupting the electrical contact between the loop and the weak links.

4The evaporation processes in this thesis were done in a Temescal FC-2000 system. In this deposition method,
a hot aluminum source evaporates into a vacuum chamber, subsequently traveling to the target object. The
fact that the particles travel in vacuum makes it a highly directional process.

5The lift-off process used on evaporated films along this section was done via a warm N-Methyl-2-pyrrolidone
(NMP) bath at ∼ 60◦C with a steering magnet.
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A B C

Step 1

Step 2

Step 1

Step 2

Figure 3.5: Attempted methods for the nanofabrication of 2D and 3D SQUIDs. A describes the
fabrication process of 2D SQUIDs where the device patterning consists on a single step. In B it is
shown the fabrication workflow for 3D SQUIDs, where the patterning of the nano-bridge junctions is
done in step 1 and the patterning of the SQUID loop in step 2. Process C also shows a fabrication
method for 3D SQUIDs with a modified step 1 in comparison with process B. Here the junctions are
patterned simultaneously with large contact area pads which, later on, will be the galvanic connection
point with the SQUID loop.

ATTEMPT 2: Fabrication of 3D SQUIDs using method B with evaporated aluminum
films and including argon milling in between steps.

As a solution for the problem of attempt 1, we tried performing an argon milling6

step in situ, prior to the second evaporation layer, in order to remove the aluminum
oxide (see attempt 2 in Table 3.1). Surprisingly, the outcome of this new step resulted
in the presence of black features around the latest patterned layer (see Fig. 3.6d and e).
These features have been reported in literature [119, 123] as black veil of death, however
a concrete explanation for their appearance or a quantitative study of their impact on the
losses of the film, to our knowledge, has not been found. Furthermore, this was not the
only problem attached to the new fabrication step. In addition, the high temperatures
associated with the argon milling procedure were causing a deformation of the resist
layer, which very often led to a galvanic contact between the two arms of the SQUID loop
and, in addition, would cause the loop itself not to be released during lift-off (see Fig. 3.6a
and b). Further efforts involving the re-design of the SQUID loop in order facilitate the
lift-off, e.g. increasing the gap between the arms or modifying the shape of the arms
from squared to rounded corners were done, however the devices showed similar results
as the ones of attempt 1.

ATTEMPT 3: 2D SQUIDs using method A and evaporated aluminum films.

Due to the difficulty in combining the two layers, we switched to a 2D design, which
is shown in Fig. 3.5A and is labeled in Table 3.1 as attempt 3. In this case, both the SQUID

6Here, argon ions are accelerated from a high energy ion gun into the surface of a substrate, in order to remove
an overlying amorphous material layer.
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Figure 3.6: Collected SEM and optical images of failed fabrication attempts. a and b show examples
where the SQUID loop and junction gap was not (fully) lifted-off. Panel c shows the case where the
liftoff process was successful, however the device contained an aluminum oxide layer between the two
patterns, which is not visible in the image. The presence of the so called black veil of death is visible in
figs. d and e. In addition, an example of the weak adhesion of the thin aluminum on the substrate is
shown in the optical image presented in e, where holes in the aluminum layer are visible at the edges of
the patterned pads. Finally f shows an example of a failed 3D nano-bridge junction made with sputtered
Aluminum films, where the contact area was etched away. The number of the attempted fabrication
approach for which each sub-figure corresponds too is given in the label and a summary of the different
utilized methods and corresponding success outcome can be found in Table 3.1

loop and the junctions were patterned simultaneously in a single evaporation plus lift-
off step, where the whole film would have a thickness of ≈ 20nm. The most critical issue
with this approach was the low adhesion between the aluminum film and the substrate,
which resulted on the deposited layer "peeling off" during lift-off. The lift-off process,
which was done via a warm N-Methyl-2-pyrrolidone (NMP) bath at ∼ 60◦C with a steer-
ing magnet, was modified several times to different temperatures and steering strengths,
but all the attempts ended up being unsuccessful trials. A common way to solve adhe-
sion issues is by surface preparation [124]. To counter this problem we tried to perform
an argon milling step on the substrate prior to the deposition of the single aluminum
layer. This, on the other hand, brought back the black veil of death structures and seemed
to not have solved the adhesion issue (see Fig. 3.6e). Therefore, the approach was no
longer pursed.

ATTEMPT 4: 2D SQUIDs via method A using evaporated aluminum films on a thin
layer of Titanium.

Attempt 4 consisted on following the fabrication procedure of attempt 3 but also in-
cluding the evaporation of a thin layer of Titanium (∼ 2nm) in situ, prior to the alu-
minum deposition (attempt 4 in Table 3.1). This turned out to be a somewhat successful
approach, as the adhesion problems were solved and the no further fabrication issues
appeared. The devices were subsequently tested in DC and showed critical currents in
the order of 20−30µA as well as flux modulations. However, when the fabrication was
repeated for SQUID cavities, extremely low Q factors were found (∼ 90) and the method
turned out to be not appropriate for the fabrication of high Q microwave SQUID cavities.



3.2. 2D AND 3D SQUID CAVITIES

3

45

Attempt Fabrication method Outcome Figure Main issue Research chapters

1 B with evaporated aluminum × Fig. 3.6c
Presence of aluminum oxide

between the two layers
N.A.

2
B with evaporated aluminum

and an intermediate
argon milling step

× Fig. 3.6a and b
Resist layer deformation

causing a problematic lift-off
N.A.

3 A with evaporated aluminum × Fig. 3.6d and e Low surface adhesion N.A.

4
A with evaporated aluminum

and Ti adhesion layer
× N.A.

Cavities with low
Q factors (∼ 90)

N.A.

5 A with sputtered aluminum X Fig. 3.7a and c N.A. 4 and 6

6
B with sputtered aluminum

and an intermediate
argon milling step

× Fig. 3.6f
Junctions etched away by

argon milling process
N.A.

7
C with sputtered aluminum

and an intermediate
argon milling step

X Fig. 3.7b and d N.A. 5 and 7

Table 3.1: Summary the different attempted fabrication methods and their success outcome. The
first column has a short description of the utilized method. The letters A,B and C correspond to
different fabrication approaches. A schematic representation of these different methods is shown in
Fig. 3.5. The third column presents the fabrication outcome of the utilized approach. The symbol X
represents a successful fabrication method and the symbol × corresponds to a failed attempt. Column
4 describes the problem behind the fabrication recipe and the in the last column, the research chapter
which explores a sample fabricated with the corresponding successful method is indicated. The methods
are listed in chronological order. A detailed description of each of these methods, the reason for their
failure and possible solutions for each problem are given in the text.

ATTEMPT 5: 2D SQUIDs via method A and using sputtered aluminum films.

Since the fabrication of the nano-bridge SQUIDs using evaporated films was con-
siderably challenging, we wondered about the possibility to switch to sputtered films,
since in a sputtering process7, the deposition occurs as the atoms in a plasma medium
slowly condense as a thin film on the substrate, therefore generating a good adhesion to
the chip. Even though we worked with the peculiar combination of sputtering and lift-
off, this turned out to be a successful approach (attempt 5 in Table 3.1) and the SQUID
cavities made using this fabrication technique had Q factors on the order of ∼ 10000.
The primary reason why sputtered films are not usually combined with a lift-off tech-
nique is due to the fact that the deposition is less directional compared to an evapora-
tion method. This causes the aluminum atoms to deposit not only on the surface but
also on the resist sidewalls, therefore complicating the lift-off process as the resist is no

7The sputtering of aluminum films along this thesis was done via a DC sputtering deposition in a Alliance-
concept AC450 machine.
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longer exposed to the solvent. Our solution for this drawback was to place the sample
on the bottom of the beaker in a strong ultrasonic bath for a few minutes. This would
crack the thin aluminum layer covering the resist walls, making the lift-off process pos-
sible. Despite the appearance of dog-ears8, the remaining film would be undamaged
by the technique. A detailed description of the whole fabrication recipe of 2D SQUIDs
can be found in the supplementary material of chapters 4 and 6, as it was used to fab-
ricate the SQUID cavities utilized in the experimental work reported in those chapters.
In addition, a SEM image of a 2D SQUID can be seen in Fig. 3.7a and a zoom-in a 2D
nano-bridge Josephson junction in Fig. 3.7c.

a

 1 µm

 1 µm

d

b

 2 µm

cNanobridge 
junction

Contact
pad

 2 µmAttempt 5 Attempt 7

Attempt 5

Attempt 7

Figure 3.7: SEM images of working 2D and 3D SQUIDs. a shows a working 2D SQUID made by
following the fabrication technique A with sputtered aluminum. A zoom-in of a nano-bridge Josephson
junction is shown in c. A successfully working device fabricated with method C is shown in b. In
addition, a zoom-in of a 3D Josephson junction fabricated with method C is presented in d. The
number of the attempted fabrication approach is labeled in each of sub-figures and a summary of all
the different utilized methods and corresponding success outcome is presented in Table 3.1.

ATTEMPT 6: 3D SQUIDs using method B and sputtered aluminum films.

Despite of the success of the 2D fabrication procedure, the SQUID cavities made with
this technique had an extremely high kinetic inductance contribution of approximately
70% of the total circuit inductance (see section 3.2.2). Furthermore, the kinetic induc-
tance, which scales with the inverse of the material thickness, was also contributing to
an elevated value of loop inductance. This resulted in SQUID cavities with considerably
high screening parameters βL (see section 3.2.1) with some devices reaching βL ≈ 6.

In order to make a second generation of devices with enhanced single-photon cou-
pling strengths, the screening parameter βL and therefore the loop inductance had to
be reduced. Therefore, we opted for retrying the former 3D design (see Fig. 3.5B) but
this time using sputtered films instead of evaporated (attempt 6 in Table 3.1). An im-
age of a 3D Josephson junction fabricated using this approach can be seen in Fig. 3.6f.
When the microwave SQUID cavities fabricated with this approach were tested, no reso-
nances were found, indicating that the fabrication had not succeeded. With the existing
knowledge that the film had a good adhesion to the substrate and that previous cavities

8Also known as fences, these are pieces of the coated sidewalls which are not completely removed during lift-off
and stay attached to the edges of the patterned layer.
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had shown high quality factors, the only remaining option was a problematic contact
between the two layers.9

The true origin of the problem lied on the ion milling process performed to remove
the aluminum oxide on top of the first layer. This turned out to be less directional than
we originally assumed and the etching of the nano-bridge junctions was occurring not
only from the top, but also from the sides, which caused the bridges to be completely
etched away.

ATTEMPT 7: 3D SQUIDs using method C and sputtered aluminum films.

A solution for the problem of attempt 6 was to pattern large area contact pads to-
gether with the nano-bridge junctions acting as the contact point between the constric-
tions and the SQUID loop. The fabrication approach was thus modified to the one of
Fig. 3.5C and it is shown in Table 3.1 as attempt 7.

This also turned out to be a successful fabrication method, allowing us to fabricate
devices with βL ≈ 0.7. Furthermore, a simple way to further improve this value would
be by exposing the SQUID to an additional ion-milling step at the end of the fabrication.
However, this had to be extremely short (≈ 10sec) to avoid etching away the junctions
and should only be performed on the SQUID in order to not decrease the cavity Q factor.
The idea behind this final step was not to decrease the loop inductance but to slightly
decrease the critical current of the junctions by reducing their thickness and width. A
SEM image of one of these devices is shown in Fig. 3.7b and a zoom-in of the junction
in Fig. 3.7d. Furthermore, a detailed description of the fabrication steps can be found in
the supplementary material of chapters 5 and 7, as the SQUID cavities utilized in those
chapters were fabricated using this technique.

3.3. MECHANICAL BEAMS

3.3.1. MAXIMIZING g0 IN FLUX-MEDIATED OPTOMECHANICAL SYSTEMS

The single-photon coupling strength of a flux-mediated optomechanical system where
a mechanical beam is embedded in a SQUID loop (see section 2.5.2) is given by

g0 = ∂ω0

∂Φ
Binl xzpf. (3.15)

Here ∂ω0
∂Φ is the cavity external flux responsivity, Bin is the applied in-plane magnetic

field, l is length of the beam and xzpf its zero-point fluctuations. The constant factor γ
which accounts for the mode shape was omitted from Eq. (3.15) as its value is ≈ 1. From
Eq. (3.15), one would naively think that in order to boost the single-photon coupling
strength g0, all the terms should be individually increased. However, these parameters
are not independent of each other and therefore, the design of mechanical beams should
also take into account the impact of its geometry on other cavity parameters. The zero-

9Ironically enough, we were back on dealing with the same problem that we had encountered when we initially
tried to fabricate 3D SQUIDs with evaporated films.
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Figure 3.8: Impact of engineering the beam dimensions on the screening parameter βL . a shows
a schematic diagram of a mechanical beam of length l , width w and thickness t . The zero-point
fluctuations of the beam are shown vs its width and thickness in b. The violet and blue stars correspond
to the operating properties of the devices of chapters 4 and 5, respectively. In c, the effect of increasing
the zero-point motion and the beam length on the screening parameter βL is shown. For simplicity, here
the width of both the beam and the loop wire was fixed to 1µm (indicated by the white dashed line in a).
In addition the junction critical current Ic0 was kept constant and equal to 10µA. When one increases
the length l , or reduces the thickness of the beam, the loop inductance Lloop will increase, raising the
screening parameter βL . In c, the SQUID loop dimensions are given by 3×l µm2. The stars representing
the devices of chapter 4 and 5, were not plotted in c since parameters such as width of the loop or
junction critical current might differ. In addition, the loop inductance Lloop, which was calculated from
the dimensions of the SQUID, was based on a geometric inductance per length of Lgeo = 1pH/µm [118]
and a kinetic inductance contribution which was adjusted accordingly to the thickness of the beam.

point motion xzpf of a mechanical aluminum beam of length l , width w and thickness t
as represented in Fig. 3.8a is given by [56]

xzpf =
√

ħ
2mΩ0

, (3.16)

where m = ρ · t ·w · l is the mass of the beam, ρ = 2700kg/m3 is the material density and
Ω0 is its resonance frequency. The resonance frequency of the out-of-plane mode, where
the motion of the beam is perpendicular to the SQUID loop, can be obtained from the
beam geometry. In the high-stress limit it is given by [125]

Ω0 =πα
l

. (3.17)
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Here, the constant factorα=
√

σ
ρ represents the phonon phase velocity in the beam and

it has shown to be ≈ 300m/s for many of our devices. This however, has a considerable
dependence on the utilized sputtering process parameters asσ is the tensile stress of the
film [24]. For simplicity, this value was considered constant during the following discus-
sion. By using the last two expressions which relate the geometry of the beam and its
mass and resonance frequency, the zero-point motion can be re-written independently
of the beam length as

xzpf =
√

ħ
4πραt w

. (3.18)

Fig. 3.8b shows a color plot of the zero-point motion for different values of beam thick-
ness and width. The beam fluctuations xzpf can be maximized by decreasing the width
and thickness of the beam, regardless of its length. However, by doing so and/or by in-
creasing its length, the SQUID loop inductance and therefore the screening parameter

βL = 2Ic0Lloop

Φ0
are also enhanced. This is represented in Fig. 3.8c, for the case where the

width of the beam and of the loop wire were set to 1µm. While a thickness reduction
translates into a higher kinetic inductance contribution (see section 3.2.2), an increment
of the length of the resonator will rise the geometric and kinetic inductance of the loop.
Note that a diminution in the width of the beam would have a similar effect to a reduc-
tion of its thickness.
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Figure 3.9: Impact of engineering the dimensions of the beam on the flux responsivity and g0. In a, a
color map of the cavity external flux responsivity ∂ω0

∂Φ
at Φ= 0.5Φ0 vs the zero-point fluctuations xzpf

and the length of beam is shown. Here, the cavity sweet-spot frequency was considered to be 7.25GHz
and the total circuit inductance L = 730pH. In b the calculated single-photon coupling strength g0 of
an optomechanical system exposed to an in-plane magnetic field Bin = 50mT is shown vs xzpf and l .
Here, the width of the SQUID loop remained constant and equal to 3µm, the width of the loop wire
was set to 1µm and the junction critical current Ic0 to 10µA. Furthermore the x-axis of a and b were
calculated based on a constant beam width equal to 1µm and a variable thickness t as represented by
the dashed white line in a.

As discussed in section 3.2.1, for higher values of the screening parameter βL , the
amount of external flux needed for a full modulation will go beyond 0.5Φ0 appearing as
a widening of the SQUID cavity flux arch. This leads to an overlap of different flux archs,
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which beyond the threshold value of Φout = ±0.5Φ0 leads to an unstable regime where
the cavity resonance frequency is multi-valued. The corresponding threshold value for
the resonance frequency increases with βL , as the amplitude of the cavity frequency
modulations are reduced. In fact, not only the operation frequency is modified, but also
the flux-responsivity at that point is impacted.

In Fig. 3.9a, the flux responsivity of a 3× l µm2 SQUID cavity of thickness t is esti-
mated for the threshold flux operation pointΦout = 0.5Φ0

10. This was found numerically
by extracting the derivative of the resonance frequency versus external flux (Eq. 3.13). As
shown in Fig. 3.9a, as the length l of the beam increases and/or the thickness t is re-
duced, thus enhancing the zero-point motion of the resonator, the external flux respon-
sivity is considerably suppressed. Moreover, this effect translates into a strong limitation
of the single-photon coupling strength g0. Therefore, as seen in Fig. 3.9c, one cannot
infinitely increase the zero-point fluctuations xzpf or the beam length l to boost single-
photon coupling strength, as it would appear from a first look to Eq. (3.15). Eventually
the SQUID loop inductance and the screening parameter βL will come into play and re-
strict g0 by reducing the cavity flux responsivity.
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Figure 3.10: SQUID cavity anharmonicity operating at Φout = 0.5Φ0 vs βL . A sweet-spot frequency of
7.25GHz, a total circuit inductance of L = 730pH and a sweet spot Josephson inductance Lj0 = 16.5pH
were considered.

Furthermore, in the regime where g0 is highest, a different effect has to be consid-
ered. As the screening parameter βL starts to decrease, the ratio between the cavity an-
harmonicity at an operation pointΦout and the sweet spot anharmonicity χ(Φout)/χsweet

starts rising, therefore limiting the amount of drive photons the cavity can sustain before
switching to a Duffing behavior (see section 2.4). Fig. 3.10 shows how the anharmonicity
atΦout = 0.5Φ0 is modified by βL .

In short, there is a trade-off between the cavity flux responsivity ∂ω0
∂Φ and maximum

applicable drive powers. If one wants to engineer a device that tries to maximize the
coupling strength g0 and explore optomechanical single-photon effects, the design of
the system should focus on exclusively maximizing g0 and therefore minimizing the di-

10Note that the points within the unstable regime are still accessible experimentally. However, as the cavity is
prone to flux-jumping, a proper magnetic shielding is vital for operating the device.
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mensions of the beam. On the other hand, if one intends to explore optomechanical
effects which rely on a highly enhanced multi-photon coupling strength g =p

ncg0, de-
signing a system with a slightly higher βL would allow for an extended range where the
intracavity photon numbers scale linearly with drive power. For this last approach, the
key would be to minimize the the kinetic inductance contribution to the SQUID loop.

3.3.2. NANOFABRICATION TECHNIQUES

a

50 µm

5 µm

5 µm 5 µm

b

c

d

Figure 3.11: Collection of SEM images showing different fabricated mechanical beams false colored
in orange. a shows a 150 µm long mechanical beam fabricated during a release test and b, the
corresponding zoom-in of the edge of the beam. The presented device was not measured. Figure c
shows a 2D SQUID cavity where part of the loop was released to act as high Q mechanical beam.
The presented device is the one of study in chapter 4. Finally d presents the 3D optomechanical
SQUID cavity investigated in chapter 5. The thickness of the beam is ∼ 80nm in d and ∼ 20nm in the
remaining figures. Here, bright parts are aluminum, dark parts are silicon and the suspended beams are
false-colored with orange.

The fabrication of high-Q mechanical beams to be embedded in a SQUID, as de-
scribed in section 2.5.2, is based on suspending part of the loop by removing the under-
lying silicon substrate in an isotropic reactive ion etching11 process [126]. As the etch
is a combination of a chemical and physical etch, the directionality of the process can
be tuned by randomizing the ions motion before they hit the sample surface, i.e., by in-
creasing the gas pressure and decreasing RF power used to generate the plasma. In this
way, the exposed silicon is etched in an isotropic way, making it possible to etch under-
neath the patterned beam. Moreover, the resonator is not damaged by the procedure as
aluminum is not chemically selected by the plasma. A SEM image of a beam fabricated

11In a RIE process, a plasma is generated by applying a RF electromagnetic field, which ionizes the gas
molecules. The ions are subsequently accelerated by a DC voltage that was generated by the deposition
of free electrons on a isolated plate and eventually collide with the sample, chemically reacting with the
exposed materials.
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during a test release can be seem in Fig. 3.11a and b. Due to the optimal tensile stress
of the sputtered films, the fabrication of these beams turned out to be very a simple and
robust process, working for a wide range of beam dimensions and reaching quality fac-
tors on order of Q ∼ 106. In order to engineer optomechanical devices, this release step
was later on combined with the previously described fabrication of 2D and 3D SQUID
cavities. Two of the resulting 2D and 3D devices are shown in Fig. 3.11c and Fig. 3.11d
and they were the focus of the research presented in chapters 4 and 5, respectively.

3.4. RF MICROWAVE CAVITIES

3.4.1. MAXIMIZING g0 IN PHOTON-PRESSURE SYSTEMS

As discussed in section 2.5.3, in our photon-pressure systems, we explore an analogue of
the radiation-pressure interaction by coupling the current flowing in a Radio-Frequency
(RF) circuit to the resonance frequency of a high frequency SQUID cavity. The single-
photon coupling strength of the system, as discussed in section 2.5.3 is given by

g0 = ∂ω0

∂Φ
Φzpf, (3.19)

where ∂ω0
∂Φ is the cavity external flux responsivity andΦzpf is the zero-point flux.

COUPLING VIA MUTUAL INDUCTANCE

A schematic diagram of a possible coupling scheme between the RF resonator and the
SQUID is shown in Fig. 3.12a. In this configuration the zero-point flux is given by Φzpf =
M Izpf, where M is the mutual inductance between the RF inductor wire and the SQUID
loop and Izpf is the RF current fluctuations .

The vacuum current fluctuations Izpf of the RF circuit, which is composed of a ca-
pacitor CRF and inductor LRF, can be written in terms of its resonance frequency Ω0 =

1p
LRFCRF

as

Izpf =
√

ħΩ0

2LRF
. (3.20)

As shown in Fig. 3.12c, the RF current fluctuations can be increased by decreasing
the inductance of the circuit and fully optimized by also reducing its capacitance, which
results in a higher resonance frequency (see Fig. 3.12b). From a design perspective, the
inductance of the wire can be modified by changing its geometry. Moreover, a decrement
in inductance can be achieved by reducing the length of the wire or by increasing its
width and/or thickness, as kinetic inductance effects are reduced. In addition, since we
work with parallel plate capacitors (PPCs), the capacitance of the circuit is given by

CRF = ε0εr A

dPPC
, (3.21)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the dielectric mate-
rial, which for our devices is amorphous silicon (εr ∼ 11.9), A is the area of the capacitor
and dPPC the distance between the plates.
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In principle, the range of CRF and LRF presented in Fig. 3.12b and c could be extended
towards higher and lower values. By doing so, one could design a circuit to operate in the
GHz or kHz regime. In the latter case, in order to decrease the circuit resonant frequency
and still maximize its current fluctuations, the capacitance would have to be the target
term to increase. However, it is important to emphasize that, in this case, the method
used in this thesis for the fabrication of the capacitive element would have to be ad-
justed. The fabrication limitation with our technique arises from shorts between the ca-
pacitor plates when the dielectric thickness is too small or the capacitor area is too large.
More details regarding the fabrication of the circuit can be found in the next section.
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Figure 3.12: Engineering the zero-point current fluctuations of a radio-frequency circuit. a shows a
schematic diagram of a RF circuit coupled to a SQUID, which in a photon-pressure system is part of a
high frequency cavity. The RF circuit is composed of a capacitor CRF and an inductor wire of inductance
LRF, placed at a distance d from a square SQUID with side length D. The resonance frequency and
zero-point current of the RF circuit are plotted versus CRF and LRF in b and c. The white and gray
stars correspond to the operating properties of the devices of chapter 6 and 7, respectively.

The coupling strength of the system not only depends on the current fluctuations of
the RF circuit but on how much of the flux generated by these fluctuations is coupled to
the SQUID. This is given by mutual inductance M between the RF inductor wire and the
SQUID loop and is strongly dependent on the geometry of the coupling elements. In the
case where the distance between their boundary lines is greater than zero, as shown in
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Fig. 3.12a, the mutual inductance of the system can be approximated as [176]

M = 3
µ0

2π
D ln

(
d +D

d

)
. (3.22)

Here µ0 is the vacuum permeability, D is the side length of a square SQUID12 and d the
distance between center lines of the RF inductor wire and the SQUID loop.
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Figure 3.13: Effect of changing the SQUID geometry on the mutual inductance and flux responsivity
In a, a color plot of the mutual inductance M vs the dimensions D and d is shown. The yellow star
represents the operation point of the device of chapter 6 and the dashed line marks the chosen d value
for the calculation of Φzpf and g0. The mutual inductance can be boosted by increasing the coupling
perimeter. However, by doing so, the screening parameter βL is also increased. b shows how βL is altered
by increasing the length D. The dimensions of the SQUID were translated into a loop inductance based
on the geometric inductance per unit length Lgeo = 1pH/µm and the kinetic inductance contribution was
kept equal to Lk = 0.78Lgeo. For the calculation of βL , the Josephson junction critical current Ic0 was
assumed constant and equal to 10µA. As shown in c, when the length D is increased, the SQUID cavity
flux responsivity at Φout = 0.5Φ0 is strongly suppressed. Here, the sweet spot frequency was chosen to
be ωsweet = 7.25GHz and the total HF circuit inductance L = 730pH.

Fig. 3.13a displays a color plot of the mutual inductance M between the two circuits
for different values of D and d . Here and through the rest this subsection, we assume
that both the RF wire and the SQUID loop have a constant width of 1µm. As shown in
Fig. 3.13a, the mutual inductance M can be mostly increased by extending the coupling
perimeter, i.e. the path where the RF inductor wire is in close proximity to the SQUID
loop, which is set by the side length D of the SQUID. However, when increasing the size
of the SQUID loop, one is also enhancing the loop inductance and therefore the screen-
ing parameter βL . In Fig. 3.13b, a plot of βL vs the length D is shown. Furthermore, this
increment in screening parameter can also be mapped into a reduced flux responsivity
at the lowest frequency point before entering the unstable operating regime (see sec-
tion 3.2.1) and it is shown in Fig. 3.13c. Note that, in order to describe the typical thin
films used in our devices, a constant film thickness of t = 70nm was considered. This is
equivalent to a kinetic contribution equal to 78% of the geometric inductance of the film

12As a side note, if one has experimental challenges concerning flux-noise, the SQUID geometry could be
modified to a rectangular shape in order to maintain coupling perimeter, while reducing its area.
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(Lk = 0.78Lgeo). However, if one was to considerably reduce this thickness, the kinetic
inductance would increase and shift βL towards higher values, reducing the cavity flux
responsivity even further. A good example of this is the device of chapter 6, where the
kinetic inductance was Lk = 2.75Lgeo, altering βL from 0.36 (for the case of a negligible
kinetic inductance) to 1.2.

Even though the zero-point flux can be maximized by individually tuning the zero-
point current and the mutual inductance, as shown in Fig. 3.14a, the impact of the SQUID
geometry on the flux responsivity changes the growing trend of g0 quite considerably.
As shown Fig. 3.14b, the first thought that g0 (Eq. 3.19) could be boosted by maximizing
the mutual inductance M is counteracted by the reduction of ∂ω0

∂Φ arising from the en-
largement of the SQUID. In fact, the kinetic inductance contribution of the film is one
of the primary reasons for the limitations in single-photon coupling strength, as it has a
significant contribution to the loop inductance and βL , even for SQUIDs with reduced
loop size.

In short, in order to maximize g0, high screening parameters βL should be avoided.
Besides reducing the SQUID dimensions, this can be achieved by reducing the critical
current of the junctions and/or increasing the thickness of the film. Nevertheless, one
should keep in mind the trade-off between βL and anharmonicity χ as discussed in the
end of section 3.3.1 and its influence on the cavity non-linear behavior.
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Figure 3.14: Optimization of the zero-point flux Φzpf and single-photon coupling strength g0. a shows
how the zero-point flux changes depending on the length D and the RF current fluctuations Izpf. A
secondary x-axis containing the corresponding values of the mutual inductance M is plotted on top.
The yellow star corresponds to the operating point of the device of chapter 6. In b a plot of the single-
photon coupling strength g0 vs Izpf and D is shown. Here, the operation point of the device of chapter
6 is not displayed as the both kinetic inductance contribution and junction critical current differed from
those of the calculations. In both plots, the mutual inductance was calculated maintaining a constant
distance between the wire and the SQUID loop of d = 1.5µm, which is indicated as dashed line in 3.13a.
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GALVANIC COUPLING

A another strategy to engineer a photon-pressure system is to galvanically connect the
SQUID and the RF inductor wire, as shown in Fig. 3.15a. In this configuration, the cur-
rent I oscillating in the radio-frequency circuit will split asymmetrically between the two
arms of the SQUID. The current I1 will flow through the SQUID loop and I2 through the
Josephson junctions. Here, the Josephson junctions are represented by a combination
of a linear (LjL) and a non-linear (Lj0) inductor. During the calculations presented in
this subsection LjL is considered to be 0.4Lj0, as follows from the approximation to the
current phase relation (CPR) of a nano-bridge junction presented in section 3.1.
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Figure 3.15: Photon-pressure coupling via a galvanic connection scheme. a shows a representation of a
galvanic coupling scheme. More details regarding its working principle are given in the text. In b a color
plot of the zero-point flux Φzpf vs the height H of the SQUID loop and Izpf is shown. The dimensions
of the 3×H µm2 loop were converted into a geometric inductance based on the reference value per unit
length of Lgeo = 1pH/µm. Furthermore the kinetic inductance contribution was set to Lk = 0.78Lgeo and
the Josephson critical current at zero field to Ic0 = 10µA. Panel c shows how g0 depends on Izpf and
H . Here, the sweet spot frequency and total circuit inductance were kept at 7.25GHz and L = 730pH,
respectively. All values were estimated for the operation point Φout = 0.5Φ0 and both plots display the
corresponding values of βL on a secondary x-axis. Furthermore the values of ∂ω0/∂Φ utilized for the
calculation of g0 were obtained numerically by performing a derivative of Eq. (3.13).

According to the circuit layout of Fig. 3.15a, the total flux in the SQUID is given by
a combination of the external flux Φout and of the countering fluxes Φ1 = LarmI1 and
Φ2 = L1+2LjL generated in the upper and lower arm, respectively. The expression for the
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total fluxΦ can be reduced to [127]

Φ=Φout −Lloop(1−α)
Izpf

2
−LloopIcsin

(
π
Φ

Φ0

)
, (3.23)

with Lloop = 2LjL +L1 +Larm and where the parameter α= 2LjL+L1−Larm

Lloop
describes the in-

ductance asymmetry of the SQUID from the perspective of the RF currents.
The zero-point fluxΦzpf, which can be seen as an equivalent to a fluctuating external

flux arising from the zero-point fluctuation current, is given by

Φzpf = Lloop(1−α)
Izpf

2
(3.24)

= LarmIzpf. (3.25)

The color plot displayed in Fig. 3.15b shows the zero-point fluxΦzpf of a galvanically con-
nected photon-pressure system, where the SQUID is a 3×H µm2 loop of variable height.
By fixing the sweet-spot critical current of a single junction Ic0 to 10µA, the screening pa-
rameter βL = Lloop/πLj0 is estimated based on the loop dimensions and on the reference
conversion factor per unit length of Lgeo = 1pH/µm [118]. Here the thickness of the film
used for the calculation of the kinetic inductance contribution was set t = 70nm in order
to represent the typical thin films used in our devices and the width of the SQUID loop
wire was set to 1µm. As seen in Fig. 3.15b, when one exclusively increases the height
of the SQUID loop, both the screening parameter and the zero-point flux start to rise,
as the arm inductance Larm is enhanced. However, as the flux coupled into the loop is
maximized by the galvanic connection, with this approach we attain higher values of
Φzpf while still maintaining a considerably low screening parameter. For instance, at
Izpf = 35nA, while with the initial approach we achieved approximately Φzpf = 0.7mΦ0

for βL ∼ 2.5, we now reach the same value for βL ∼ 0.8.
This improvement is strongly translated into a boost in the single-photon coupling

rate g0 as shown in Fig. 3.15c, estimated for the threshold operation point Φout = 0.5Φ0.
With this new coupling scheme, which relies on maximizing the zero-point fluctuation
flux, we can reach single-photon coupling rates of g0 = 2π·120kHz for aβL ∼ 1. This is 2.4
times higher than the rates obtained for a coupling configuration based on the mutual
inductance between the RF circuit and a SQUID of similar screening parameter.

This was the coupling approach explored in the device of chapter 7, and there the
single-photon coupling strength g0 achieved at half of flux quantum was close to 2π ·
150kHz. Note that there, the value for the inductance LjL considerably differed from the
value of LjL = 0.4Lj0 used in the calculations presented above.

3.4.2. NANOFABRICATION TECHNIQUES

For the realization our photon-pressure systems (see section 2.5.3), the fabrication of
linear LC oscillators resonating in the MHz range was necessary. The approach we fol-
lowed for the engineering of these circuits was based on a Parallel Plate Capacitor (PPC)
in a parallel combination with a short inductor wire.

The fabrication consisted of three steps. The first, where the bottom plate of the ca-
pacitor was patterned. For simplicity, the material of this plate was chosen to match the
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Figure 3.16: Optical images posterior to each step of the RF microwave cavity fabrication workflow
described in the text. Figure a shows a device after the first fabrication step, which consists of an
Aluminum layer forming the bottom plate of the Parallel Plate Capacitor (PPC) and inductor wire. In
addition, the figure also shows a SQUID cavity, whose fabrication was discussed in section 3.2.3. In b,
the device, now containing a αSi dielectric layer patterned on top of the bottom plate except for the
galvanic connection area, is shown. c displays a zoom-in of the plates galvanic connection and of the
inductor wire, which is in close proximity with a SQUID loop (not part of the RF microwave cavity). At
last, d shows the final device where a top layer of aluminum is patterned to act as the PPC top plate
and which is also galvanically connected to the GND plane. The presented optical images were false
colored for better visibility and do not correspond to the same device. Note that the device presented
in this figure explored the photon-pressure coupling via mutual inductance as described in section 3.4.1.

one of the SQUID cavity, so their patterning could be done simultaneously. Note that, for
the case of a 2D SQUID geometry this would correspond to a 20nm thick sputtered alu-
minum layer and in a 3D geometry to a ∼ 80nm sputtered aluminum film, followed by a
lift-off process. An optical image at the end of this fabrication step is shown in Fig. 3.16a.
In the second step, the dielectric material, consisting of a ≈ 130nm thickαSi layer, would
be deposited via a low temperature (≈ 90◦) Plasma Enhanced Chemical Vapour Deposi-
tion13. After the dielectric deposition, an e-beam patterning followed by a RIE SF6 etch
would be performed to etch away the dielectric material from all areas, aside from the
capacitor plate. A O2 plasma ashing step would be subsequently performed to remove
the remaining resist layer, resulting in a device like the one of Fig. 3.16b. Lastly, the fi-
nal step involved the patterning of the top capacitor plate, which consisted of a thick
∼ 250nm aluminum layer. For the patterning of this last layer, we used a combination of
a sputtering deposition step and a lift-off technique, where the chip would be placed at
the bottom of a beaker containing Anisole and undergo an ultrasonic bath for a few min-
utes. In addition, an important part of the fabrication was to include an argon milling
step on the galvanic contact area prior to the last aluminum deposition, as this was cru-

13In a PECVD process, reactant gases are inserted between a grounded electrode and a RF driven electrode.
The resulting plasma subsequently undergoes a chemical reaction and the final product is deposited on the
substrate.
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cial to guarantee a good electrical contact between the two plates. The final device can
be seen in Fig. 3.16c.

One of the most critical parts of the fabrication would be the existence of shorts be-
tween the two capacitor plates, either as an outcome of dirt particles lying on the bot-
tom plate, or due to the previously mentioned dog-ears. This could be countered by an
extensive surface cleaning and a prolonged lift-off process of the first layer, in order to
eliminate most of the thin aluminum covering the resist sidewalls.

3.5. THE MEASUREMENT CHALLENGE OF SQUID CAVITIES:
FLUX NOISE

One of the biggest experimental challenges when working with SQUID cavities is the
presence of flux noise. This type of noise can either arise from an external source, which
generates fluctuations of the magnetic flux threading the SQUID loop or it can be intrin-
sically generated in the SQUID. Despite of its origin, the larger the cavity flux respon-
sivity ∂ω0/∂Φ, the higher will be the fluctuations in the SQUID cavity resonance fre-
quency. Therefore, to guarantee the experimental exploration of photon-pressure and
flux-mediated optomechanical systems with large single-photon coupling rates, the flux
noise in these systems has to be minimized.

For SQUIDs working at GHz frequencies, the dominant intrinsic source of flux noise
is associated to the Johnson-Nyquist noise arising from the flow of dissipative quasi-
particle currents in the Josephson junctions. The spectral density of this white noise
contribution is given in units ofΦ2

0/Hz by [106]

SΦ = 4(1+βL)
kbT Lloop

Φ0Ic0Rn
, (3.26)

where kb is the Boltzmann constant and Rn = π∆
2eIc0

is the SQUID normal state resistance,
with ∆= 0.2meV denoting the superconducting gap of Aluminum at 0 temperature. For
a SQUID with a screening parameter ofβL = 1 and a critical current per junction of 10µA,
the rms (root mean square) flux noise is

p
SΦ ∼ 26nΦ0/

p
Hz. For a SQUID cavity with a

flux responsivity of 500MHz/Φ0 this would give rise to rms resonance frequency fluc-
tuations of ∼ 13

p
κ/2π. Since this value will always be considerably below the cavity

linewidth κ, it will be considered a negligible source of flux noise in our systems.
When considering external sources of low frequency flux noise (below the cavity

linewidth) we can differ between noise sources with frequencies above the measurement
bandwidth, which are responsible for a broadening effect appearing as a reduction of the
cavity quality factor (also known as a source of dephasing by the superconducting qubit
community [128, 130, 130]), or noise sources with wave period below the measurement
time, resulting in resonance frequency shifts. This section focuses on presenting several
examples of measurements affected by the presence of external flux noise of the latter
type, which might arise from different mechanisms, and on providing a solution for re-
ducing their contribution.

In Fig. 3.17b the response spectrum of a SQUID cavity coupled to a RF circuit via a
photon-pressure interaction in the presence of a strong pump tone which sweeps through
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Figure 3.17: Effects of external flux noise on the response spectrum of a photon-pressure system in
the strong-coupling regime. a shows the measurement setup of the experimental dataset plotted in b.
Here the device was mounted in a holder, which was loaded through the bottom of the dilution fridge
and attached to the mK plate. The out-of-plane magnetic field B⊥ was applied by means of a coil
wound around the thermal shield (which is mounted on the 4K plate) and an external current source
operating at room temperature (RT). In b, the response spectrum of a photon-pressure system in the
strong coupling regime |S11|(dB) while a pump tone ωp =ω0 −Ω0 ±δ is swept through the red sideband
is shown. c displays a schematic representation of the measurement configuration for which the dataset
in d was taken. Here the sample and a magnet were placed inside a cryoperm shield and mounted at
the mK plate of the dilution fridge. A second magnetic shield was assembled below the OVC radiation
shield. The measured cavity response spectrum vs red sideband pump detuning in the setup displayed
in c is shown in d.

the cavity red sideband ωp = ω0 −Ω0 ±δ is shown. Here ω0 is the cavity resonance fre-
quency andΩ0 the natural frequency of the RF mode. The presence of the red sideband
pump induces a strong beam-splitter interaction, resulting in the observation of a nor-
mal mode splitting, where the two modes are hybridized. Despite of the presence of this
photon-pressure feature, there is a clear observation of several drifts in the SQUID cavity
resonance frequency during the time of the measurement. The measurement setup used
for the acquisition of this dataset can be seen in Fig. 3.17a. Here the out-of-plane mag-
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netic field B⊥ used for flux-biasing the SQUID cavity was applied via a magnet wound
around the inner shield of the dilution fridge, which was connected to an external cur-
rent source. Furthermore, the sample was mounted inside a holder and subsequently
connected to the mK plate, by means of a loading procedure from the bottom of the
fridge. Due to the absence of a magnetic shield in the setup, fluctuations in the exter-
nal magnetic field would strongly couple to the SQUID, inducing the frequency drifts
observed in Fig. 3.17b.

This problem could be reduced by mounting the device in the setup of Fig. 3.17c. In
this configuration both the sample and a magnet were placed inside a small cryoperm
shield and a second mu-metal shield was fixed below the Outer Vacuum Chamber (OVC)
radiation shield. In this way we could greatly reduce the amount of flux noise coupling
from the exterior into the SQUID loop and therefore avoid the frequency drifts previously
observed. A similar dataset to the one of Fig. 3.17b but in the modified setup can be seen
in Fig. 3.17d. Note that other ways to reduce the flux noise in the system would be, for
example, by decreasing the area of the SQUID, as the flux generated from any external
magnetic field B⊥ perpendicular to a SQUID loop of area A is given by Φ = B⊥A or by
adopting other SQUID geometries, as a SQUID gradiometer [131]. Since the latter op-
tion would add several difficulties when designing optomechanical or photon pressure
systems, in our devices we mostly focused on the inclusion of magnetic shields and on
reducing the SQUID loop size14.
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Figure 3.18: Effects of pulse tube vibrations on the response spectrum of a flux-mediated optome-
chanical system. a shows the experimental setup of the measurement. The device was mounted in a
sample holder which was thermally anchored to the mK plate of the dilution fridge. An in-plane mag-
netic field B∥ was applied to the device by means of a magnet wound around an inner thermal shield
and an external current source operating at room temperature (RT). b and c show a linescan of the
cavity response spectrum |S21| (dB) while the pulse tube cooler was switched on and off, respectively.
The device shown here is the system under study in chapter 4.

Fig. 3.18 shows another example of a system affected by external flux noise. In this

14This was in fact a win-win solution, since a smaller loop is not only be beneficial to reduce flux noise, but
also to decrease the loop inductance and the screening parameter βL .
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case, a flux-mediated optomechanical system was measured in the setup of Fig. 3.18a,
where the sample was placed in a holder which was thermally anchored to the mK plate
of the dilution fridge. Here the in-plane magnetic field, used for enhancing the single-
photon coupling strength g0 was applied by means of a coil wound around the inner
radiation shield of the fridge. In this configuration, the mechanical vibrations arising
from the pulse tube cooling of the dilution fridge were a big source of external flux noise.
As the pulse tube was shaking the measurement apparatus, the shield containing the
magnet could be displaced with respect to the sample holder, causing the in-plane mag-
netic field to generate a fluctuating out-of-plane component. Fig. 3.18b and c show the
response spectrum |S21| of the SQUID cavity acquired while the pulse tube was turned
on and off, respectively. Both datasets were taken while the in-plane field B∥ was set to
10mT.

By comparing the two datasets we observe a pronounced modification of the cavity
lineshape when the pulse tube is switched on, suggesting that the mechanical vibrations
arising from the operation of pulse tube are inducing oscillations in the flux seen by the
SQUID. These modifications in the magnetic flux threading the SQUID loop will induce
small resonance frequency shifts. Therefore, when a probe tone is scanning the cavity it
will detect strong oscillations in its response spectrum.

A quick but not ideal solution for this problem was to switch the pulse tube off dur-
ing the data acquisition time. Nonetheless, since the fridge cooling power was reduced
during the time of the measurement, a recovery time of ∼ 10−15min, where the pulse
tube was turned on, posterior to the measurement was crucial to maintain the fridge
operating at base temperature.

Another solution for this problem was to switch to the setup presented in Fig. 3.19a,
where the sample and the magnet were simultaneously placed inside a cryoperm mag-
netic shield and mounted at the mK plate of the dilution fridge. In this configuration a
second magnetic mu-metal shield was also assembled below the OVC radiation shield.

This new setup was extremely advantageous for two reasons. First, it helped reducing
the amount of external flux noise arising from the exterior, as the system was now pro-
tected by the two shielding layers, and second because the pulse tube vibrations would
no longer be translated into a displacement of the sample relatively to the magnet, re-
ducing the oscillations of the out-of-plane magnetic field component. In fact, for this
purpose we designed a vector magnet containing a slot for the mounting of the sam-
ple, allowing us to fully eliminate the pulse tube induced noise and at the same time
counter for any misalignment of the device. The latter was relevant to counter for the
out-of-plane component arising from the in-plane magnetic field due to the sample tilt.
For simplicity, the out-of-plane coil was not presented in the schematic representation of
Fig. 3.19a as it was not in use during the time of the measurement presented in Fig. 3.19b.

Nevertheless, as shown in Fig. 3.19b, the device still suffered from other sources of
external flux noise. Here, the measurement routine consisted on iteratively measuring
the cavity response spectrum after setting the in-plane magnetic field B∥ to 10mT. Right
after the application of the in-plane field, which had been done by means of an external
current source at room temperature, the cavity resonance underwent several shifts and
eventually drifted towards higher frequency values. When operating at higher frequen-
cies, i.e. closer to its sweet-spot, the cavity flux responsivity is decreased and therefore
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Figure 3.19: Resonance frequency drifts arising from external flux noise. a shows the measurement
setup of the experimental dataset plotted in b. In this measurement configuration, the device was
mounted simultaneously with a vector magnet inside a cryoperm shield at the mK plate of a dilution
fridge, and a second magnetic mu-metal shield was placed below the thermal OVC radiation shield.
The in-plane magnetic field was applied by means of a room temperature (RT) external current source.
Both the out-of-plane coil and respective current source were omitted for clarity, as they were switched
off during the measurement shown in b. In b the derivative of the cavity response spectrum S21 with
respect to the frequency was plotted versus frequency and time, after setting the in-plane magnetic
field to B∥ = 10mT. The cavity can be identified by the dark regions in the colormap. Furthermore, the
device shown here is the system under study in chapter 5.

its sensitivity to external flux fluctuations is also reduced, resulting in a period where the
cavity seemed to have stabilized. There are several possibilities for the flux noise mech-
anisms behind these drifts.

One option is current noise generated by the external source. Since the application
of high in-plane magnetic fields (∼ 10− 100mT) in this setup required currents in the
order of ∼ 0.1−1A, the current noise associated with the source was no longer negligi-
ble, as the typical peak-to-peak noise value of standard DC current sources operating in
that range is within hundreds of µA15. When operating our device with a flux respon-
sivity of 500MHz/Φ0 this current noise would be translated into frequency oscillations
on the order of a few MHz. A solution which minimized this problem was to acquire a
low noise current source from High Finesse [132]. Here, the current noise density was
around 1µA/

p
Hz and it could suppress the current noise by 10−5 of the maximum out-

put current. Even though we did not perform a systematic study of this problem, we
experimentally observed that the use of the low noise current source decreased the flux
noise in the setup and prevented the cavity from flux jumping at higher in-plane fields.

A second mechanism which could explain the frequency drifts observed in Fig. 3.19b
is moving Abrikosov vortices [133]. When the applied magnetic field on a thin aluminum
film is sufficiently strong, the superconductor will allow for magnetic flux to enter in

15Some examples of such a source is the unit B2901A from Keysight operating in the range ±1.5A, or one of the
models from the Keithley series 2400.
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quantized packages of a single flux quantum. These vortices, also known as fluxons will
be pinned by the superconducting film and distribute over its area to form a lattice whose
density increases with the magnitude of the field. With each of these localized vortices,
there is supercurrent which flows around the non-superconducting core and decays with
the distance of the London penetration depth. This has been reported as a source of flux
noise and decoherence in superconducting circuits [130, 134, 135]. Experimentally, if a
sample is misaligned with the direction of the in-plane field and its magnitude is suffi-
ciently increased, the generated out-of-plane component will induce the appearance of
these Abrikosov vortices.

Once in the superconductor, the vortices can hop between pinning sites and be trans-
ported by the currents flowing in the film [136, 137]. Therefore, if any of them would oc-
casionally pass nearby a SQUID, the supercurrent generated by the fluxon would modify
the flux threading the SQUID loop and induce a frequency shift of the cavity [138]. Note
that this probability is higher as we apply higher fields and raise the vortex population. A
way around this issue passes by compensating for the misalignment and apply a coun-
tering out-of-plane magnetic field, reducing the amount of vortices in the superconduc-
tor. Another option could be to include the patterning of defects in the film [139, 140],
allowing for a stronger pinning and reducing the amount of flying vortices. In our cur-
rent setup, if the introduction of these vortices had occurred, a quick solution for their
removal was to shortly heat the device above its critical temperature.
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The field of optomechanics has emerged as leading platform for achieving quantum con-
trol of macroscopic mechanical objects. Implementations of microwave optomechanics
to date have coupled microwave photons to mechanical resonators using a moving ca-
pacitance. While simple and effective, the capacitive scheme suffers from limitations on
the maximum achievable coupling strength. Here, we experimentally implement a fun-
damentally different approach: flux-mediated optomechanical coupling. In this scheme,
mechanical displacements modulate the flux in a superconducting quantum interference
device (SQUID) that forms the inductor of a microwave resonant circuit. We demon-
strate that this flux-mediated coupling can be tuned in situ by the magnetic flux in the
SQUID, enabling nanosecond flux tuning of the optomechanical coupling. Furthermore,
we observe linear scaling of the single-photon coupling rate with the in-plane magnetic
transduction field, a trend with the potential to overcome the limits of capacitive optome-
chanics, opening the door for a new generation of groundbreaking optomechanical exper-
iments.

This chapter has been published as Coupling microwave photons to a mechanical resonator using quantum
interference. I. C. Rodrigues*, D. Bothner*, & G. A. Steele, Nature Communications 10, 5359 (2019)
*these authors contributed equally
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4.1. INTRODUCTION
Parametrically coupling mechanical motion to light fields confined inside a cavity has
allowed for major scientific and technological breakthroughs within the recent decade
[56]. Such optomechanical systems have been used for sideband-cooling of mechanical
motion into the quantum ground state [31, 32], for the detection of mechanical displace-
ment with an imprecision below the standard quantum limit [41, 42], for the generation
of non-classical mechanical states of motion [36–38] and for the entanglement of me-
chanical oscillators [39, 40]. As the mechanical elements can be coupled to both, light
fields in the optical and in the microwave domain, current efforts using optomechanical
systems target towards the implementation of a quantum link between superconduct-
ing microwave quantum processors and optical frequency quantum communication
[51, 52]. Another exciting perspective of optomechanical systems is testing quantum
collapse and quantum gravity models by preparing Fock and Schroedinger cat states of
massive mechanical oscillators [141, 142].

The state transfer fidelity between photons and phonons in optomechanical sys-
tems is determined by the coupling rate between the subsystems, and most optome-
chanical systems so far have single-photon coupling rates much smaller than the decay
rates of the cavity. The strong-coupling regime, necessary for efficient coherent state
transfer, is achieved by enhancing the total coupling rate g = p

nc g0 through large in-
tracavity photon numbers nc [25, 33, 59]. In the optical domain, large photon num-
bers result in absorption that heats the mechanical mode far above the mode temper-
ature [61]. In the microwave domain, large photon numbers result in non-equilibrium
cavity noise [31, 62] that is not completely understood. Both of these sources of noise
limit ground state cooling and the fidelity of mechanical quantum ground state prepara-
tion. An approach to reduce these parasitic side-effects is to increase the single-photon
coupling rate g0 significantly. Doing so, optomechanics could even reach the single-
photon strong-coupling regime, where the optomechanical system acquires sufficient
non-linearity from the parametric coupling such that non-Gaussian mechanical states
can be directly prepared by coherently driving the system [63, 67].

In the microwave domain, the most common approach to build an optomechanical
system is to combine a superconducting microwave LC circuit with a metallized sus-
pended membrane or nanobeam as mechanical oscillator. The devices are constructed
in a way that the displacement of the mechanical oscillator changes the capacitance of
the circuit C (x) and hence its resonance frequency ω0(x) = 1/

p
LC (x). In this configu-

ration, however, the single-photon coupling rate is limited to g0 ≤ ω0
2

xzpf

d with the zero-
point fluctuation amplitude xzpf and the capacitor gap d . Current devices are highly
optimized, but still achieve typically only xzpf/d ≈ 10−7 for a parallel plate capacitor gap
of d = 50nm and it is extremely challenging to increase g0 beyond 300Hz with this ap-
proach. Here, we realize a fundamentally different approach for a microwave optome-
chanical device by incorporating a suspended mechanical beam into the loop of a su-
perconducting quantum interference device (SQUID). The SQUID itself is part of a su-
perconducting LC circuit and essentially acts as an inductor, whose inductance depends
on the magnetic flux threading through the loop. In contrast to the capacitive approach,
this magnetic flux-mediated inductive coupling scheme provides quickly tunable single-
photon coupling rates [68, 69], which in addition scale linearly with a magnetic field
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applied in the plane of the SQUID loop [70]. In contrast to capacitive microwave op-
tomechanics, the coupling rates are not limited by geometric and technological restric-
tions and there is a realistic prospective for achieving the optomechanical single-photon
strong coupling regime.

4.2. CONCEPT AND DEVICE

The concept of coupling mechanical resonators to SQUIDs has been developed in many
works [143–146], including earlier experimental work with DC SQUIDs [147, 148]. Re-
cently, this concept was extended theoretically to optomechanics [70], describing a way
using SQUIDs to achieve strong and tunable optomechanical coupling between a vi-
brating beam and a superconducting cavity. The circuit used here for its realisation is
schematically shown in Fig. 4.1a. The idea is based on transducing mechanical displace-

Figure 4.1: A superconducting microwave circuit with magnetic-flux mediated optomechanical cou-
pling to a mechanical oscillator. a Circuit schematic of the device. The LC circuit is capacitively
coupled to a microwave transmission line with characteristic impedance Z0 by means of a coupling
capacitor Cc . In addition to the linear capacitors C and inductors L, a superconducting quantum inter-
ference device (SQUID) is built into the circuit, consisting of two Josephson junctions with inductance
L J in a closed superconducting loop, of which a part is suspended and free to move perpendicular to the
circuit plane. To bias the SQUID with magnetic flux Φb , a magnetic field can be applied perpendicular
to the circuit plane. Motion of the mechanical element is transduced into modulations of the bias flux
by a magnetic in-plane field B||. An optical micrograph of the circuit is shown in b, light gray parts
correspond to a 20nm thick layer of aluminum, dark parts to silicon substrate. The black scale bar
corresponds to 50µm. The red dashed box shows the region, which is depicted in a tilted scanning
electron micrograph in c, showing the SQUID loop with the released aluminum beam. The bias flux
through the SQUID loop Φb can be changed by a bias current Ib sent through the on-chip flux bias
line. The black scale bar corresponds to 3µm. The inset shows a zoom into one of the constriction type
Josephson junctions (JJs). In d the cavity resonance is shown, measured by sending a microwave tone
to the microwave feedline and detecting the transmitted signal S21. A fit to the data points (circles),
shown as line, reveals a resonance frequency of ω0 = 2π ·5.221GHz and a linewidth κ= 2π ·9MHz. Panel
e shows color-coded the tuning of the cavity resonance absorption dip with magnetic bias flux in units
of flux quanta Φb /Φ0, measured at B|| = 1mT. Due to a large loop inductance of the SQUID, the arch
exceeds a single flux quantum, for details see section 4.5.3.
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ment to magnetic flux, which in turn modulates the effective inductance of a SQUID and
therefore the resonance frequency of the LC circuit hosting it. To achieve this transduc-
tion from displacement to flux, a part of the SQUID loop is suspended and the device
is exposed to an external magnetic field B|| applied parallel to the device plane. The
suspended loop part acts as a mechanical beam resonator and its vibrational motion,
perpedicular to the device plane, will create an effective SQUID area perpendicular to
the applied field B||, i.e., couple a net magnetic flux into the loop.

The inductance L(Φb) of an LC circuit containing a SQUID depends on the magnetic
flux threading the SQUID loop, and translates to a flux-dependent resonance frequency

ω0(Φb) = 1√
L(Φb)C

. (4.1)

When the displacement of a mechanical oscillator is transduced to additional flux, an
optomechanical interaction between mechanical mode and cavity resonance frequency
emerges and the single-photon coupling rate is given by [70]

g0 = ∂ω0

∂Φ
Φzpf =

∂ω0

∂Φ
γB||l xzpf. (4.2)

The first term ∂ω0/∂Φ corresponds to the responsivity of the SQUID cavity resonance
frequency to small changes of flux through the loop and allows for very fast tuning of g0.
The second term Φzpf = γB||l xzpf is the magnetic flux fluctuation induced in the SQUID
by the mechanical zero-point fluctuations xzpf of the beam with length l and scales lin-
early with an in-plane magnetic field B||, cf. Fig. 4.1. The scaling factor γ accounts for
the mode shape of the mechanical oscillations and is on the order of 1.

The microwave SQUID cavity in our experiment is made of a single 20nm thick layer
of sputtered aluminum on a silicon substrate and it contains a SQUID consisting of two
constriction-type Josephson junctions placed in parallel in a 21×5µm2 closed loop. An
optical image of the device is shown in Fig. 4.1b and an electron microscope image of the
SQUID loop in c, the fabrication is detailed in section 4.5.1. The capacitance of the LC
circuit is formed by two interdigitated capacitors C to ground and a coupling capacitor
Cc to the center conductor of a coplanar waveguide feedline. Additionally to the SQUID
inductance LS = L J /2, there are two linear inductances L built into the circuit in order to
dilute the non-linearity of the cavity, arising from the non-linear Josephson inductance.
By this measure we achieve an anharmonicity of approximately 15Hz per photon and
enable the multi-photon coupling rate enhancement g = p

nc g0 of linearized optome-
chanics.

The cavity is side-coupled to a coplanar waveguide microwave feedline, which is
used to drive and read-out the cavity response by means of the transmission parame-
ter S21. The device is mounted into a radiation tight metal housing and attached to the
mK plate of a dilution refrigerator with a base temperature of approximately Tb = 15mK,
cf. section 4.5.2. Without any flux biasing, the cavity has a resonance frequency ω0 =
2π · 5.221GHz and a linewidth κ = 2π · 9MHz, which at the same time corresponds to
the external linewidth κ≈ κe due to being deep in the over-coupled regime, cf. the cav-
ity resonance curve shown in Fig. 4.1d. When magnetic flux is applied to the SQUID
loop by sending a current to the chip via the on-chip flux bias line, the cavity resonance
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frequency is shifted towards lower values due to an increase of the Josephson induc-
tances inside the SQUID. The flux-dependent transmission |S21|(Φ) is shown in Fig. 4.1e
and a total tuning of about 30MHz can be achieved, mainly limited by a non-negligible
SQUID loop-inductance of the SQUID and the dilution of the Josephson inductance by
L J /(L+L J ) ≈ 0.01, see also section 4.5.3. The largest flux responsivities we could achieve
here were approximately ∂ω0/∂Φ= 70MHz/Φ0.

We note, that the cavity linewidth κ depends on the flux bias and both, the linewidth
and the shape of the resonance frequency flux tuning depend slightly on the magnetic
in-plane field. Also, the observation that the SQUID cavity tuning curve shown in Fig. 4.1e
extends beyond ±Φ0/2 might be surprising at first, but is explained by a non-negligible
SQUID loop inductance relative to the Josephson inductance. A detailed discussion with
additional data on both these effects is given in the section 4.5.3.

The mechanical oscillator is a 20×1µm2 large aluminum beam and is suspended as
result of releasing part of the superconducting loop forming the SQUID by removing the
underlying silicon substrate in an isotropic reactive ion etching process [126]. The beam
has a total mass m = 1pg and its fundamental out-of-plane mode oscillates at a fre-
quencyΩm = 2π ·7.129MHz with an intrinsic mechanical damping rate of Γm ≈ 2π ·8Hz
or quality factor Qm = Ωm/Γm ≈ 9 · 105, which is exceptionally high for a mechanical
oscillator made from a sputter-deposited metal film. From the mass and resonance fre-

quency, the zero-point motion of the oscillator is estimated to be xzpf =
√

ħ
2mΩm

= 33fm.

4.3. INTERFEROMETRIC CHARACTERIZATION OF THE

MECHANICAL OSCILLATOR

The mechanical beam can be coherently driven by Lorentz-force actuation using the on-
chip flux bias line. When a current is sent through the bias line, magnetic flux is coupled
into the SQUID loop and a circulating loop current is flowing through the mechanical os-
cillator. We apply a current IΩ(t ) = Idc+I0 cosΩt withΩ≈Ωm , where the DC component
Idc is simultaneously biasing the SQUID and – in presence of an in-plane magnetic field
B|| – exerting a constant Lorentz force to the beam. The oscillating part I0 cosΩt mod-
ulates the total Lorentz-force FL(t ) = Fdc +F0 cosΩt around the equilibrium value Fdc

and effectively drives the mechanical oscillator. The concept is illustrated in Fig. 4.2a,
for more details cf. section 4.5.4.

The resulting mechanical motion modulates the cavity resonance frequency and gen-
erates sidebands at ωd ±Ω to a microwave signal sent into the cavity at ωd =ω0, cf. the
schematic in Fig. 4.2b. By sweeping Ω through Ωm and down-converting the sidebands
generated atω=ω0−Ω andω=ω0+Ω, we measure the mechanical resonance as shown
in Fig. 4.2c. This interferometric detection scheme of displacement can also be used to
detect the thermal motion of the mechanical oscillator. At the dilution refrigerator base
temperature Tb = 15mK, we expect a thermal mode occupation of the beam of approx-
imately nth = kBTb/ħΩm ≈ 46 phonons with kB being the Boltzmann constant. In the
inset of Fig. 4.2c we show the down-converted sideband power spectral density S of the
cavity output field, normalized to the background noise, without any external drive ap-
plied to the mechanical oscillator. On top of the imprecision noise background Simp of
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Figure 4.2: Detection of mechanical motion using a superconducting SQUID cavity interferometer
and observation of magnetostatic spring stiffening. a Schematic of coherently driving the mechanical
oscillator by means of the Lorentz force. The current sent through the bias line has a DC component to
bias the SQUID with a flux Φb . This generates a circulating current J in the SQUID loop. In addition, an
oscillating current is sent through the line with a frequency close to the mechanical oscillator resonance
frequency Ω ≈ Ωm . Thus, the loop current through the mechanical beam oscillates correspondingly,
leading to an oscillating Lorentz force FL(t ) due to the presence of the magnetic in-plane field B||. The
mechanical motion modulates the total magnetic flux through the SQUID loop and hence the cavity
resonance frequency. When a resonant coherent microwave tone is sent into the cavity, the mechanical
oscillations generate sidebands at ω=ω0 ±Ω, cf. panel b, which are observed to detect the mechanical
motion. In c the down-converted sideband signal is shown during a sweep of the excitation frequency
Ω. Circles are data, the line is a Lorentzian fit and both are normalized to the maximum of the fit
curve. The inset depicts the down-converted sideband thermal noise spectral density in absence of a
coherent driving force, normalized to the background noise floor. Orange line are data, black line is
a Lorentzian fit. The contribution from the background noise is shaded in white and the contribution
from the mechanical displacement noise in orange. The experimental settings for these measurements
were B|| = 9mT and ∂ω0/∂Φ ∼ 20MHz/Φ0. When increasing the magnetic in-plane field, we observe a
shift of the mechanical oscillator resonance frequency, shown in panel d. This frequency shift is induced
by a position-dependent contribution to the Lorentz-force and corresponds to a magnetostatic stiffening
of the mechanical spring constant. The circles are data and the line corresponds to a theoretical curve
with δΩm ∝ B2

|| .

the measurement chain, a Lorentzian peak with a linewidth of∼ 8Hz is visible, generated
by the residual thermal motion of the beam.

When we sweep the magnetic in-plane field B||, we observe an increase of the me-
chanical resonance frequency as shown in Fig. 4.2d induced by Lorentz-force backaction
[148]. Complementary to the electrostatic spring softening in mechanical capacitors
with a bias voltage, this effect can be understood as a magnetostatic spring stiffening.
When the mechanical oscillator is displaced from its equilibrium position, an additional
magnetic flux is coupled into the SQUID loop, which leads to an adjustment of the circu-
lating current J to fulfill fluxoid quantization inside the loop. Hence, the Lorentz-force
FL ∝ B|| J will change accordingly and therefore has a contribution dependent on the
mechanical position. For small mechanical amplitudes and circulating currents not too
close to the critical current of the Josephson junctions, this position dependence will be
linear, causing a frequency shift δΩm ∝ B 2

|| , cf. the discussion in section 4.5.4.
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4.4. TUNING THE OPTOMECHANICAL SINGLE-PHOTON

COUPLING RATE

When a magnetic bias flux is applied to the SQUID, not only the cavity resonance fre-
quency changes, but also the flux responsivity ∂ω0/∂Φ. As the optomechanical single-
photon coupling rate is directly proportional to the responsivity, it can in principle be
switched on and off on extremely short timescales or can be dynamically controlled by
flux modulating the SQUID. We demonstrate this tuning of the single-photon coupling
rate with bias flux by determining g0 for different values ofΦb/Φ0.

One possibility to determine the multi-photon coupling rate g in an optomechani-
cal system is to perform the experimental scheme of optomechanically induced trans-
parency [149, 150]. For this scheme, a strong coherent microwave tone is driving the cav-
ity on the red sideband ωd =ω0 −Ωm and a weak probe tone is sent to the cavity around
ωp ≈ω0. The two tones interfere inside the cavity, resulting in an amplitude beating with
the frequency differenceΩ=ωp −ωd . If the beating frequency is resonant with the me-
chanical mode, the radiation pressure force resonantly drives mechanical motion which,
in turn, modulates the cavity resonance and the red sideband drive tone. The modula-
tion generates a sideband to the drive at ω = ωd +Ω, which interferes with the original
probe field in the cavity. This interference effect opens up a narrow transparency window
within the cavity response, which has the shape of the mechanical resonance, modified
by the dynamical backaction of the red sideband tone. For ωd =ω0 −Ωm the magnitude
of the transparency window |Sm | with respect to the depth of the cavity resonance dip
|Sc | is directly related to the coupling rate via

|Sm |
|Sc |

= 4g 2

κΓeff
(4.3)

where Γeff = Γm +Γo is the width of the transparency window, given by the intrinsic me-
chanical damping Γm and the optomechanically induced damping Γo . In combination
with a careful calibration of the intracavity photon numbers nc , we use this approach
to get an estimate for the single-photon coupling rate g0 = g /

p
nc . More details on the

photon number calibration and the extraction of g from the OMIT data are given in sec-
tion 4.5.5.

When performing this experiment for several different flux bias points, we find a
clear increase of g0 with the cavity flux responsivity. The experimental scheme and the
obtained single-photon coupling rates for a constant in-plane field of B|| = 10mT are
shown in Fig. 4.3. In Fig. 4.3e we also plot as line the theoretical curve, where the only
free parameter is the scaling factor γ = 0.86, taking into account the mode shape of the
mechanical oscillations. All other contributions to the calculations were obtained from
independent measurements, such as the bias flux dependence of the cavity frequency,
the mechanical resonance frequency and estimations for the beam length and its mass.
The largest single-photon coupling rate we achieve here g0 ≈ 2π ·230Hz is comparable
with the best values obtained for highly optimized capacitively coupled devices. As it is
possible to achieve responsivities of several GHz/Φ0 with SQUID cavities [120, 152], we
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Figure 4.3: Tuning the optomechanical single-photon coupling rate by changing the flux operating
point of the SQUID a Schematic of the applied magnetic field components to the SQUID loop. The in-
plane magnetic field B|| is set by means of a cylindrical coil wrapped around the whole sample mounting.
During this experiment, it was kept constant at B|| = 10mT. Additionally, an out-of-plane magnetic field was
varied by changing the current sent through the on-chip flux bias line, generating a magnetic bias flux Φb . b
As consequence of changing the amount of flux threading the SQUID loop, both the resonance frequency as
well as the flux responsivity ∂ω0/∂Φ of the cavity are changed. The plot shows |S21| (B|| = 1mT), the color
code is given in Fig.4.1e. The white arrows represent the points, for which we performed the measurement
scheme of optomechanically induced transparency (OMIT) as shown schematically in c. A coherent drive
tone is set to the red sideband of the SQUID cavity (ωd = ω0 −Ωm ), while a small probe tone is scanning
the cavity resonance ωp ≈ ω0. As result of an interference effect, a transparency window in the transmitted
signal S21 is visible around ωd +Ωm , as shown in d, where the circles represent the data and the line the
corresponding fit curve. By setting the cavity to different flux bias points (white arrows in b), we change the
cavity flux responsivity and therefore the single-photon optomechanical coupling rate g0 ∝ ∂ω0/∂Φ. From
the magnitude of the transparency window, g0 can be extracted for each flux bias point. The result is plotted
in e as circles. The line is the theoretical curve as described in the main text.

expect that with an optimized cavity it is possible to boost the single-photon coupling
rates to several kHz per mT of in-plane field. This optimization with respect to ∂ω0/∂Φ
can be achieved by reducing either the SQUID loop inductance or the Josephson junc-
tion critical current or by a combination of both. From the Kerr-nonlinearity of our de-
vice χ/2π∼ 120Hz for the largest measured responsivity, we estimate intracavity photon
numbers up to ∼ 105 to be compatible with the cavity, which corresponds to maximally
achievable multi-photon coupling rates of g = 2π ·70kHz and cooperativities of C ∼ 300.
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Due to the large loop-inductance of the used SQUID, however, the cavity is operated in
a metastable flux branch (see section 4.5.3) and we were limited to work with nc ∼ 150
intracavity photons at the largest flux responsivities before switching to the stable flux
branch, which limited g and C to g ∼ 2π ·3kHz and C = 0.5 in current experiments.

As an ultimate experimental signature that our device transduces mechanical dis-
placement to magnetic flux, we investigate the scaling of the optomechanical coupling
rate with magnetic in-plane field B||. Therefore, we performed the scheme of optome-
chanically induced transparency for constant values of flux responsivity ∂ω0/∂Φ but for
varying in-plane magnetic field. First, we chose a fixed responsivity of about ∂ω0/∂Φ ≈

Figure 4.4: Scaling up the optomechanical single-photon coupling rate with the applied in-plane
magnetic field. a Representation of the applied magnetic field components to the SQUID loop. During
the experiment, the cavity flux responsivity was fixed at two different values by adjusting the flux bias
point Φb . In addition to this constant parameter, the in-plane magnetic field B|| was swept from 1 to
10mT in steps of 1mT. The transmission |S21| depending on the normalized bias flux is shown in b
for B|| = 1mT (black: 0dB, white: −30dB). The two different set-points represented as orange dashed
and red dotted lines, respectively, correspond to a flux responsivity of ∼ 17MHz/Φ0 and ∼ 60MHz/Φ0.
Posterior to tuning the cavity to the desired working point, an OMIT experiment was performed and the
single-photon coupling rate of the system was extracted. The experimental procedure was repeated in
increasing steps of 1mT of in-plane field. The resulting single-photon coupling rates g0 are shown in c
as squares. The dashed and dotted lines show theoretical lines and the gray areas consider uncertainties
in the flux responsivity of 10% and a possible in-plane field offset of ±0.5mT.

17MHz/Φ0 and then adjusted B|| in steps of 1mT. For each B|| we perform several OMIT
experiments and extract the single-photon coupling rates as described above. This whole
scheme was repeated for ∂ω0/∂Φ≈ 60MHz/Φ0.

The resulting single-photon coupling rates are shown in Fig. 4.4 and follow approx-
imately a linear increase with in-plane magnetic field. The theoretical lines correspond
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to independent calculations based on the flux-dependence of the cavity, and the param-
eters of the mechanical oscillator. The data clearly demonstrate that we observe a flux-
mediated optomechanical coupling, a system in which the coupling rates can be further
increased with higher magnetic in-plane fields. In the current setup, we were limited to
the field range up to 10mT. Due to an imperfect alignment between the chip and the in-
plane field, a considerable out-of-plane component was present and, most probably by
introducing vortices, strongly influenced the properties of the cavities above B|| = 10mT.
Using a vector magnet to compensate for possible misalignments will allow to go up
to about 100mT with thin film Aluminum devices [105, 151] resulting in coupling rates
of several hundreds of kHz. When extending the used material to other superconduc-
tors such as Niobium or Niobium alloys such as NbTiN, where similar constriction type
SQUIDs have recently been used for tunable resonators [122], the possible field range for
the in-plane field increases up to the Tesla regime [153]. We believe that the maximum
applicable in-plane field is the most relevant practical limitation for the scaling of the
optomechanical coupling rate but it is unknown at this point how large it can be made
while preserving high quality factor SQUID cavities and mechanical beams using other
superconductors.

With the realisation of flux-mediated optomechanical coupling reported in this ar-
ticle, the door is opened for a new generation of microwave optomechanical systems.
The single-photon coupling rates achieved with this first device are already competing
with the best electromechanical systems and can be boosted towards the MHz regime by
optimizing flux responsivity and applying higher magnetic in-plane fields. In addition,
reducing the cavity linewidth to values of ≤ 100kHz will lead us into the single-photon
strong-coupling regime, where a new type of devices and experiments can be realized,
amongst others the realization of a new class of microwave qubits, where the nonlin-
earity arises from the coupling to a mechanical element, the generation of mechani-
cal quantum states or optomechanically induced photon blockade [67]. The coupling
mechanism between a mechanical oscillator and a microwave circuit, which we realised
here, has also been intensely discussed in the context of superconducting flux and trans-
mon qubits instead of linear cavities [143, 146, 154] and could now be implemented us-
ing circuits with a large Josephson non-linearity leading to a new regime of quantum
control of macroscopic mechanical objects. Utilizing quantum states of mechanical res-
onators as resource for quantum information and quantum sensing technologies is a
promising approach due to the typically very long lifetimes of mechanical excitations
and the possibility to couple mechanical systems simultaneously to microwave cavities
and optical fields [52, 155, 156] and at the same time can be used to test quantum col-
lapse models and decoherence mechanisms in the presence of large masses, i.e., test
quantum mechanics itself with massive quantum states [141, 142, 157].
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4.5. SUPPLEMENTARY INFORMATION

4.5.1. DEVICE FABRICATION

Figure 4.5: Schematic device fabrication. a 1.-5. show the deposition and patterning of the supercon-
ducting microwave structures and 6.-9. show the etching window patterning and nanobeam release.
10. Zoom-in of a SQUID loop with a released beam. Dimensions are not to scale. A description of the
individual steps is given in the text.
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The fabrication of the device starts by patterning alignment markers (made of a 100nm
layer of sputter-deposited Molybdenum-Rhenium alloy) on top of a 2 inch silicon wafer.
CSAR62.13 was used as patterning mask for the subsequent EBL (Electron Beam Lithog-
raphy) step and warm Anisole at ∼ 80◦C as solution for the lift-off process. Afterwards
the wafer was diced in 14×14mm2 chips which were then individually used for the fol-
lowing fabrication steps.

The superconducting structures were patterned in a single EBL step where CSAR62.09
was used as resist. Posterior to the exposure, the sample was developed in Pentylacetate
for 60seconds followed by a solution of MIBK:IPA (1:1) for another 60seconds and finally
rinsed in IPA.

Once the mask was developed, the chip was loaded into a sputtering machine where
a thin 20nm layer of Aluminum (1% Silicon) was deposited after a short in-situ cleaning
step by means of Argon ion milling. After the deposition, the sample was placed in the
bottom of a beaker containing a small amount of room-temperature Anisole and left in
a ultrasonic bath for a few minutes. During this time, the patterning resist is dissolved
and the Aluminum layer sitting on top is lifted off.

At this point in the fabrication all the superconducting structures were patterned,
leaving the most sensitive step, the mechanical release, for the end. Before the final
release, however, the sample is once again diced to a smaller 10×10mm2 size in order to
fit into the sample mountings and PCBs (Printed Circuit Boards).

For the final EBL step, a CSAR62.09 resist was once again used as mask and the de-
velopment of the pattern was done in a similar way as for the first layer. Once the etch
mask (consisting of two small windows enclosing one arm of the SQUID loop) was pat-
terned, the sample underwent an isotropic SF6 etch (at approx. (∼−10◦C) for two min-
utes. During this time the substrate under the beam is etched without attacking the thin
aluminum layer forming the cavity and the mechanical beam. Once the beams are re-
leased, we proceeded with a O2 plasma ashing step in order to remove the remaining
resist from the sample.

In the end of the fabrication, the sample is glued to a PCB and wire-bonded both to
ground and to the 50Ω connector lines. A schematic representation of this fabrication
process can be seen in Supplementary Fig. 4.5, omitting the patterning of the electron
beam markers.

4.5.2. MEASUREMENT SETUP

All the experiments reported in this paper were performed in a dilution refrigerator oper-
ating at a base temperature Tb ≈ 15mK. A schematic of the experimental setup and of the
external configurations used in the different experiments can be seen in Supplementary
Fig. 4.6.

The PCB (Printed Circuit Board) onto which the fabricated sample was mounted, was
placed in a radiation tight copper housing and connected to three high frequency coaxial
lines. For a rudimentary shielding of magnetic out-of-plane noise without impacting
significantly the in-plane magnetic field, a thin superconducting Aluminum cover was
placed in parallel ∼ 1mm above the chip (not shown in the schematic).

Two of the coaxial lines were used as standard input and output microwave lines,
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used to measure the SQUID cavities in a side-coupled transmission configuration. Fur-
thermore, in order to generate an out-of-plane magnetic field component, required for
the tuning of the SQUID, and for the Lorentz-force actuation of the mechanical res-
onator, DC currents and low-frequency (LF) signals were sent via a third input line. To
combine the DC and the LF signals, the center conductor of the coaxial cable was con-
nected to a DC wire by means of a bias-tee.

All coaxial input lines were heavily attenuated in order to balance the thermal radia-
tion from the line to the base temperature of the refrigerator. Outside of the refrigerator,
we used different configurations of microwave signal sources and high-frequency elec-
tronics for the three experiments. A representation of the setups can be seen in Supple-
mentary Figs. 4.6b, c and d, where the setup for the thermomechanical noise detection
is shown in b, the setup for the up-conversion of mechanical motion in c, and the setup
for optomechanically induced transparency is shown in d. A detailed schematic of the
connections inside the cooper housing box is shown in e, and the symbol legend is given
in e.

For all experiments, the microwave sources and vector network analyzers (VNA) as
well as the spectrum analyzer used a single reference clock of one of the devices.

ESTIMATION OF THE ATTENUATION CHAIN

To estimate the microwave power on the on-chip microwave feedline, we follow two dis-
tinct approaches. First, we add all specified loss elements like attenuators or directional
couplers. Then, we estimate the total additional losses induced by non-specified com-
ponents like cables and connectors based on a transmission measurement and attribute
those additional losses to input and to output cabling, giving significantly more weight
to the input lines due to the longer input cables with more potentially lossy connectors.
For the probe signal line 1, we measure an average transmission of −5dB, when hav-
ing 45dB room-temperature attenuation, 48dB cryogenic attenuation, 44dB cryogenic
gain at the HEMT amplifier and 70dB gain by room-temperature amplifiers. This leaves
about 26dB of unaccounted losses, of which we attribute about 17dB to the input and
9dB to the output line, respectively. In total, this corresponds to an input attenuation of
−110dB.

Assuming a similar procedure for the pump input line (line number 2), we get a total
attenuation of ∼−68dB there.

As second approach, we consider the thermal noise of the HEMT amplifier as cali-
bration standard. The HEMT noise power can be determined by

PHEMT = 10log

(
kBTHEMT∆ f

1mW

)
(4.4)

where kB is the Boltzmann constant, THEMT is the HEMT noise temperature and accord-
ing to the data sheet is THEMT ≈ 2K. The measurement IF bandwidth of our calibration
measurement is ∆ f = 1kHz. In total, we get with these numbers PHEMT = −165.6dBm
or the corresponding noise RMS voltage ∆V = 1.66nV. From the signal-to-noise ratio of
SNR= 34.2dB for a VNA output power of −20dBm, we then get the signal power arriv-
ing at the HEMT input as −131.4dBm. Assuming an attenuation between the sample
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and the HEMT of 2dB leaves us with a total input attenuation between VNA output and
sample of −109.4dB.

When performing this procedure with the pump line, we get about −66dB of attenu-
ation.

For the calibration of the photon numbers in this paper we therefore work with the
attenuations Gsignal =−110dB and Gpump =−67dBm in good agreement with both meth-
ods and estimate the accuracy of the achieved calibration on the order of 3dB. Note
that in addition to the uncertainty mentioned here, the power arriving on the chip is
also frequency dependent, as we usually observe background transmission oscillations
of about 2 dB peak-to-peak amplitude due to cable resonances. Therefore, the experi-
mental single-photon coupling-rate g0, calculated by using an estimate of the on-chip
power based on the attenuation chain, has an estimated uncertainty ≈±0.2g0.

4.5.3. CAVITY CHARACTERIZATION

CAVITY MODELING

1. INTERDIGITATED CAPACITORS

The two interdigitated capacitors C of our device consist of N = 120 fingers each, with
finger and gap widths of 1µm and a finger length l f = 100µm. With the relative per-
mittivity εr = 11.8 of the Silicon substrate and using the equations given in Ref. [158] we
calculate the capacitance of one of the main interdigitated capacitors to be C = 680fF
and the interdigitated part of the coupling capacitor as C ′

c = 27fF.
For the total coupling capacitance, we also have to take into account the capacitance

between the center conductor of the feedline and the fingers of both cavity capacitors
C . We do this by calculating the feedline capacitance per unit length C ′ = 144pF/m and
with a total length of 204µm we get 29fF. The capacitance between the center conductor
and the cavity center electrode, however, is only approximately a factor of 0.25 of that,
such that Cc = 34fF.

The resonance frequency of the circuit isω0 = 2π·5.221GHz and related to the circuit
parameters by

ω0 = 1p
Ltot(2C +Cc )

(4.5)

where the total inductance Ltot = (L+L J )/2. The linear inductance L is a combination of
the SQUID loop inductance Ll and other linear inductance contributions in the circuit.
All those have a geometric and a kinetic contribution and from the SONNET simula-
tions discussed below, we estimate the kinetic contribution of the linear inductance to
be Lk = 0.73L. The total inductance is approximately Ltot = 666pH. This value is in good
agreement with numbers we got using numerical inductance calculation of the whole
device and assuming a London penetration depth λL = 160nm, which corresponds to
Lk ≈ 2.75Lg .

2. SONNET SIMULATIONS AND THE KINETIC INDUCTANCE

We simulated the cavity with the software package SONNET to determine the kinetic
inductance per square L�. For a vanishing surface impedance we find a resonance fre-
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quency ω00 = 2π ·10.05GHz and achieve high agreement with the experimental value of
ω0 = 2π ·5.221GHz when L� = 2.3pH/sq.

3. ANALYTICAL CAVITY MODEL

The cavity used in this experiment is a lumped element SQUID cavity capacitively cou-
pled to a transmission line through a coupling capacitor Cc . Supplementary Fig. 4.7
shows a circuit equivalent of the cavity including the coupling capacitor and the feedline
with characteristic impedance Z0. In a, a circuit equivalent is shown, which resembles
the geometric cavity elements. To get a simplified circuit, we first transform the induc-
tances Lm ,L0 forming an inductance-bridge via the∆−Y-approach to the new equivalent
inductors

Lb = L0Lm

2L0 +Lm
(4.6)

L2 = L2
0

2L0 +Lm
(4.7)

and then combine series and parallel elements to arrive with the simple circuit equiva-
lent shown in Supplementary Fig. 4.7 e. The additional relations between the inductors
given in a and e are given by

L = L A +2L3 (4.8)

L A = La +Lb (4.9)

L3 = L1 +L2. (4.10)

As values for our device we estimate L0 = 1nH, L1 = 140pH, Lm = 60pH and La =
45pH. We estimate the critical currents of our Josephson junctions Ic = 25µA, which
corresponds to a Josephson inductance of L J = 13pH.

a b c d e
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Figure 4.7: Schematic of the device circuit and its simplification. a The device equivalent circuit with
individual circuit elements for each geometric element. b Re-arrangement of the circuit elements with
a single ground connection. c Transformation of the inductors L0,Lm to L2,Lb using the ∆−Y-approach
for impedance-bridges. d Combining series inductors into single inductors L3 and LA. e Combining
parallel elements to get the reduced circuit equivalent.

Thus, the total inductance of the circuit is given by Ltot = (L + L J )/2 and the total
capacitance by Ctot = 2C +Cc .
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4. CHARACTERISTIC FEEDLINE IMPEDANCE AND EXTERNAL LINEWIDTH

The external linewidth κe of the circuit shown in Supplementary Fig. 4.7e is given by

κe =
ω2

0C 2
c Z0

2Ctot
(4.11)

which for our device and a feedline impedance of Z0 = 50Ω predicts κe = 2π ·3.5MHz.
This is in slight disagreement with the experimentally determined linewidth of about
9MHz around the flux sweetspot, which can be explained by a combination of two ef-
fects. First, the on-chip feedline was designed to have a geometric characteristic impedance
Z0g = 50Ω, which is considerably increased due to the high kinetic inductance of the
thin Aluminum film. And secondly, we have strong cable resonances in the setup on
the order of 2dB peak-to-peak amplitude. Both effects considerably modify the effective
impedance attached to the circuit.

When the cavity resonance frequency is tuned and moves through the cable reso-
nances, we also find that the (external) linewidth considerably reduces to about κ =
2π ·5MHz, cf. Supplementary Fig. 4.11.

5. INTRACAVITY PHOTON NUMBER

The photon number in the cavity is estimated using

nc = 2Pin

ħωd

κe

κ2 +4∆2 , (4.12)

where Pin is the input power (in Watt) on the feedline, ωd is the frequency of the drive
tone and ∆ =ωd −ω0 the detuning from the cavity resonance. Note, that we use κe = κ

for this estimation as the device is highly overcoupled.

RESPONSE FUNCTION AND FITTING ROUTINE

1. THE IDEAL CAVITY RESPONSE FUNCTION

The Sideal
21 response function of a parallel LC circuit capacitively side-coupled to a trans-

mission line is given by

Sideal
21 = 1− κe

κi +κe +2i∆
(4.13)

with internal and external decay rates

κi = 1

RCtot
, κe =

ω2
0C 2

c Z0

2Ctot
(4.14)

and detuning from the resonance frequency

∆=ω−ω0, ω0 = 1p
LtotCtot

(4.15)
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2. THE REAL CAVITY RESPONSE FUNCTION

The presence of attenuation, cable resonances and parasitic transmission channels is
usually captured by additional terms added and multiplied to the ideal cavity response
function

S21 = A
(
Sideal

21 +Be iβ
)

e iα (4.16)

where A,B ,α,β are possibly frequency-dependent factors changing the overall transmis-
sion function. This can also be written as

S21 = P

(
1− K e iθ

κ+2i∆

)
e iφ (4.17)

where K and θ are functions of κe ,B and β and P and φ are functions of A,B ,α and β.
Equation (4.17) is used throughout this work for fitting the cavity response function and
to extract the total linewidth and resonance frequency. Note that a reliable extraction of
external and internal linewidths is not possible anymore in the presence of cable reso-
nances and parasitic transmission channels.

3. FULL CAVITY FITTING ROUTINE

During the experiments, the transmitted signals suffer from interferences and losses due
to the presence of microwave elements such as attenuators, circulators and amplifiers in
the lines, cf. Supplementary Fig. 4.6 as well as additional losses from microwave cables.
For fitting and calibrating the transmitted fields, we follow a step-by-step fitting routine,
which is described as follows. First, we consider the presence of a frequency dependent
background signal expressed as

Sback = P (ω)e iφ(ω). (4.18)

For the experimental extraction of the background curve, the cavity is initially set to
two distant flux bias points with frequenciesω1 = 2π·5.15GHz andω2 = 2π·5.22GHz and
afterwards the spectrum is reconstructed by combining the individual parts where the
cavity is non-resonant. The amplitude and phase data obtained by this procedure are
shown in Supplementary Fig. 4.8a and b as circles. Then, we fit the whole background
with a complex function whose magnitude and phase are written as a function of fre-
quency as

P (ω) = apω
5 +bpω

4 + cpω
3 +dpω

2 +epω+ fp +a1c cos(b1cω+ c1c )+a2c cos(b2cω+ c2c )
(4.19)

φ(ω) = aφω+bφ, (4.20)

i.e., we perform a linear fit to the phase and both a polynomial and cosine fit to the
magnitude of the stitched background data. The corresponding fits are shown as lines in
Supplementary Fig. 4.8a and b.

A measured transmission spectrum with the cavity resonance included is shown in
Supplementary Fig. 4.8c and d. Prior to all cavity fits and fits of optomechanically in-
duced transparency, we remove the reconstructed background signal from the measured
signal by complex division.
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Figure 4.8: The background transmission and how we correct for it. a Background transmission signal
amplitude in the relevant frequency range obtained by tuning the cavity to the maximum and minimum
frequency and stitching together the unperturbed parts of the background signal. The corresponding
phase is shown in b. Circles show measurement data, lines are fits as described in the text. c and
d show the response signal of the cavity in raw data. The amplitude is shown in c and the complex
response in d. By means of complex division, we divide off the background fit curves obtained from
a and b. The resulting curve is fitted by Eq. (4.21). After this fit, we rotate and rescale the cavity
resonance and obtain the signal shown in e and f as circles. The lines show the accordingly rescaled
and rotated fits.

Considering the possibility that the measured signal might still be influenced by a
small frequency-dependent background modulation, we fit the resulting cavity line with

S21 = (ap2 +bp2ω)

(
1− K e iθ

κ+2i∆

)
e i (aφ2ω+bφ2 ) (4.21)

where we consider once more a background using the complex scaling factor

Sback2 = (ap2 +bp2ω)e i (aφ2ω+bφ2 ). (4.22)
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Supplementary Figs. 4.8e and f show a resonance curve of the SQUID cavity after
background division and rotation by the obtained value of θ including the cavity re-
sponse fit using Eq. (4.21).

THE JOSEPHSON JUNCTIONS AND THE SQUID
1. THE JUNCTIONS

The constriction type Josephson junctions in our SQUID are designed to be 50nm wide
and 200nm long nanobridges in between two superconducting pads, similar to what has
been investigated previously by other authors [120]. The pads and the junctions have a
constant film thickness of about 20nm and thus we have what is referred to as 2D SQUID
geometry in literature [114]. We estimate the critical current to be approximately Ic0 ≈
25µA. Although our junctions might show deviations from an ideal sinusoidal current-
phase relation [114], we can estimate the zero-bias junction inductance from the critical
current to be

L J = Φ0

2πIc
≈ 13pH. (4.23)

2. THE SQUID LOOP INDUCTANCE

Due to the 2D SQUID geometry as well as the large kinetic inductance of our films, we
have to consider a significant loop inductance when treating the SQUID. From our esti-
mations above, the loop inductance is approximately given by Ll = 2La +Lm ≈ 150pH,
which gives for the so-called screening parameter

βL = 2Ic0Ll

Φ0
≈ 3.7. (4.24)

Such a large screening parameter is related to a hysteretic flux state of the SQUID and
allows the SQUID to screen more than half a flux quantum before the critical current of
the junctions is exceeded by the screening current [122].

3. BIAS FLUX DEPENDENCE OF THE RESONANCE FREQUENCY

Both, non-sinusoidal current-phase relationship in the form of skewed sine functions
as well as large screening parameters lead to widening of the magnetic flux arch and to
hysteretic switching of the SQUID flux state. Both descriptions have been used to model
the hysteretic resonance frequency flux archs of superconducting resonators including
SQUIDS with constriction type Josephson junctions [120, 122].

We phenomenologically include both effects in the description of the single-arch
flux-dependence of our SQUID cavities by including a factor γL into the effective sin-
gle junction inductance

L J (Φ) = L J0

cos
(
πγL

Φ
Φ0

) . (4.25)

The factor γL takes a widening of the flux arch and a tuning of the resonance frequency
far beyond ±Φ0/2 into account, cf. Supplementary Fig. 4.9, where an ideal SQUID with a
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Figure 4.9: Cavity frequency tuning and flux responsivity with magnetic bias flux. a Cavity resonance
frequency vs magnetic bias flux for B|| = 3mT. Circles are data points extracted from fits and the line is
a fit using Eq. (4.28) with fixed Λ= 0.99 and γL being the only free parameter. In b the flux responsivity
|∂ω0/∂Φ| is plotted. Both, the experimental and the theoretical curves are obtained by calculating the
derivative of the data in a.

sinusoidal current-phase relationship and negligible loop inductance would have γL = 1.
The resonance frequency of the SQUID cavity can therefore be expressed as

ω0(Φ) = 1√
Ctot(L+L J (Φ))/2

. (4.26)

Defining the sweet spot resonance frequency by

ωs
0 =

1√
Ctot(L+L J0)/2

(4.27)

we can write the flux-dependent frequency as

ω0(Φ) = ωs
0√

Λ+ 1−Λ
cos

(
πγL

Φ
Φ0

) . (4.28)

withΛ= L/(L+L J0). For our device parameters, we getΛ≈ 0.99.
Supplementary Fig. 4.9a shows the resonance frequency of the SQUID cavity when

biased with the on-chip bias line and the resulting flux arch was fitted with Eq. (4.28).
The only free parameter for the fit was γL = 0.23, indicating a large screening parameter
and/or a non-sinusoidal current-phase relation. We note here, however, that the theoret-
ical βL = 3.7 derived above is too small to explain the widening of the arch as we observe
it. One possible explanation is a non-sinusoidal current-phase relation. A second pos-
sibility, which is at the same time in agreement with the deviation between theory and
experiment of the mechanical resonance frequency shift with in-plane field, is that we
underestimate the loop inductance significantly. A discussion of this possibility with a
possible explanation is given in section 4.5.4.

In Supplementary Fig. 4.9b, we plot the derivative of both, the data points and the
fit curve, to obtain the flux responsivity ∂ω0/∂Φ, which is directly proportional to the
optomechanical single-photon coupling rate g0.
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Both parameters, Λ and γL seem to depend slightly on the magnetic in-plane field,
which is taken into account in our analysis. The values given here are extracted for B|| =
1mT. The origin of this dependence, however, is not fully clear. It might be due to a
change of the bias current flow for large in-plane fields or to a change of kinetic loop
inductance, while the rest of the kinetic cavity inductance stays nearly unchanged.

4. CALIBRATION OF THE FLUX AXIS

We use the measured Φ0-periodicity of jumps in the hysteretic resonance frequency to
calibrate the flux axis for the bias flux dependence.
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Figure 4.10: Cavity frequency tuning with magnetic bias flux beyond a single flux arch. When we sweep
the bias flux to larger values than about 1.6Φ0, we find periodic jumps in the resonance frequency and
partial archs. This is an indication for a non-negligble screening parameter and/or a non-sinusoidal
current-phase relation. The periodicity can be used to calibrate the flux axis to the flux quantum Φ0.
The dashed lines correspond to copies the flux arch dependence used in Supplementary Fig. 4.9a each
shifted in flux and sweetspot frequency only to match the observed resonance frequencies. The data
shown here are for B|| = 1mT

Supplementary Fig. 4.10 shows an example for the hysteretic jumps of the cavity
frequency with flux, indicating a significant loop inductance and/or a non-sinusoidal
current-phase relation [120, 122]. We herewith calibrate the flux axis for all in-plane
fields. Note, that in contrast to the description given in Ref.[122], the periodicity of the
jumps corresponds to 1Φ0 instead of 2Φ0.

Also, we note here that according to this flux calibration based on the periodicity of
the resonance frequency, the experimentally obtained current-to-flux conversion 40µA=̂1Φ0

is not in agreement with what we would expect from calculating the flux in the SQUID
loop generated by a flux bias line current Ib = 40µA. We suspect that the bias current
is flowing to ground through the SQUID and the mechanical oscillator itself, which is
possible as all corresponding wires, the linear inductors of the cavity as well as the bias
current, are galvanically connected through the superconducting ground planes to each
other.

5. IN-PLANE FIELD DEPENDENCE OF THE CAVITY PARAMETERS

The cavity parameters of the SQUID cavity such as the linewidth κ and the shape of the
flux dependence depend on the magnetic in-plane field. In Supplementary Fig. 4.11 we
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Figure 4.11: Bias flux dependence of the cavity parameters and their development with in-plane field.
a SQUID cavity resonance frequency vs magnetic bias flux for 5 different magnetic in-plane fields. b
Cavity linewidth vs magnetic bias flux for 5 different magnetic in-plane fields. c Cavity linewidth plotted
vs the simultaneously fitted resonance frequency for 5 different magnetic in-plane fields. The black line
shows the background transmission amplitude in the corresponding frequency range, showing a very
similar trend as the cavity linewidth. The color legend for the data points in all three plots is given in
a. Data in a and b have been shifted in flux such that the sweetspot is positioned at Φb = 0.

show exemplary results for the cavity resonance frequency in a and the cavity linewidth
in b vs the bias flux and for several magnetic in-plane fields. Due to the fact, that the
parameters depend only slightly on the magnetic in-plane field for B|| ≤ 7mT, we only
plot a subset of curves from this regime here and add the two curves for B|| = 9mT and
10mT, where we observe systematic deviations.

Besides different frequencies at the flux sweet spot, the bias flux dependences for
B|| = 1,4,7mT are very similar. For 9 and 10mT, however, a slight widening of the arch
is visible. For now, it is unclear to us what exactly causes this widening. Some effects
such as a global increase of kinetic inductance or a global Abrikosov vortex pollution
can probably be disregarded, as we expect that they would significantly impact the total
cavity resonance frequency and/or linewidth.

In b we plot the extracted total cavity linewidth, which is dominated by the external
linewidth for all shown values. We observe a strong linewidth decrease by about a factor
of 2 with bias flux and only small variations due to the in-plane field. We attribute this
linewidth decrease with bias flux not to the bias flux directly, but think it is related to
the frequency position of the cavity within a standing wave pattern of cable and feed-
line resonances in the setup. In panel c we plot the same linewidth data for all in-plane
fields vs the cavity resonance frequency and find that besides a very slight dependence
on in-plane field all points fall onto the same curve. We plot in panel c as black curve
the background transmission signal discussed in Supplementary Fig. 4.8, indicating that
linewidth and background transmission are correlated. We notice in particular that the
linewidth increases again for the smallest frequency points around the value where the
background transmission increases again as well.

Simulations with the package QUCS confirm the possibility of a significant linewidth
dependence on the resonance frequency in presence of feedline resonances. An intu-
itive picture would be that by shifting the cavity resonance frequency with bias flux, it is
moved from an antinode to a node of a standing wave formed on the feedline.

As concluding remarks for this part we would like to state, that we compensate for
a flux arch widening at the highest fields by adjusting the flux bias point to the desired
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∂ω0/∂Φ. Also, the sweetspot resonance frequency and linewidth tend to be influenced
by the magnetic history and by microwave triggered flux avalanches. They can vary by
several MHz for a given in-plane field, indicating that we trap flux in form of Abrikosov
vortices inside the sample originating from the out-of-plane component of the trans-
duction field. Thermal cycling before each measurement could partially overcome this
issue, but is too time consuming to be a practical solution.

6. CAVITY ANHARMONICITY

Assuming a sinusoidal current-phase relation, we calculate the shift per photon to first
order by

χ=− e2

2ħCtot
(1−Λ)3 ≈ 2π ·14Hz. (4.29)

Therefore, the cavity can be considered in good approximation as linear, as long as
the photon number does not exceed a few 10000.

4.5.4. MECHANICAL CHARACTERIZATION

THEORY OF LORENTZ-FORCE ACTUATION

The equation of motion of the mechanical resonator is given by

ẍ + Ω0

Qm
ẋ +Ω2

0x = F (t )

m
(4.30)

where m is the effective mass, Qm is the mechanical quality factor and Ω0 is the reso-
nance frequency. External forces onto the mechanical oscillator are contained in F (t ).

The current through the mechanical beam in presence of flux biasing and a magnetic
in-plane field is given by the flux quantization and conservation in the SQUID loop. In
the absence of a bias current and for identical junctions, the general relation between
the phase difference across one junction δ and the total flux through the loopΦ is given
by

δ

π
= Φ

Φ0
. (4.31)

The circulating current at the same time is related to the phase difference by

J = Ic0 sinδ (4.32)

The total flux through the loop Φ is a sum of the bias flux Φb , the flux generated by a
loop current via the loop inductanceΦJ = Ll J , and a contribution from the in-plane field
when the mechanical oscillator is displaced from its equilibrium position Φx = γB||l x,
thus

Φ = Φb +ΦJ +Φx (4.33)

= Φb +Ll J +γB||l x. (4.34)

For a constant flux biasΦb0 there is a circulating current J0 and the mechanical beam
is in the equilibrium position x0. We assume now that all quantities only slightly differ
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from their equilibrium values Φb(t ) =Φb0 −∆Φb , x(t ) = x0 +∆x and J (t ) = J0 +∆J . Re-
defining x =∆x and L J = L J (Φb0), we can approximate to first order

∆J = ∆Φb

Ll +2L J
− γB||l x

Ll +2L J
. (4.35)

The dynamical part of the Lorentz-force is given by FL(t ) = γB||l∆J and thus the
equation of motion becomes

ẍ + Ω0

Qm
ẋ +

(
Ω2

0 +
γ2B 2

|| l
2

m(Ll +2L J )

)
x = γB||l

m(Ll +2L J )
∆Φb(t ). (4.36)

Thus, a time-varying magnetic flux is translated into a time-varying Lorentz-force
and can be used to directly drive the mechanical motion. In addition, a position-dependent
force emerges from the mechanical oscillator placed in a SQUID loop, which shifts the
mechanical resonance frequency.

IN-PLANE MAGNETIC FIELD DEPENDENCE

The position dependent part of the Lorentz-force is equivalent to a mechanical spring
stiffening, in analogy to the electrostatic softening in electromechanical capacitors. The
shifted resonance frequency is given by

Ω2
m =Ω2

0 +
γ2B 2

|| l
2

m(Ll +2L J )
(4.37)

what can be approximated as

Ωm ≈Ω0 +
γ2B 2

|| l
2

2mΩ0(Ll +2L J )
. (4.38)

We indeed observe a shift of the mechanical resonance frequency with in-plane field
as shown in Supplementary Fig. 4.12 for two different flux responsivities, i.e., for two
different Josephson inductances. The absolute numbers, however, are smaller by about
a factor of ∼ 2 than the result of independent calculations based on the device param-
eters and the in-plane field. Possible reasons for this mismatch is the overestimation
of the mode scaling factor γ = 0.86, which we determined through matching the exper-
imental g0 with the theoretical calculations, an underestimated loop inductance or a
field-dependent loop or Josephson inductance.

In combination with the observation of flux arch widening, we consider the most
probable explanation that the loop inductance is significantly higher than expected. For
the mechanical resonance frequency shift, we find a good agreement between theory
and experiment for a loop inductance of ∼ 350pH. This would correspond to βL = 8.6.
A possible origin for this deviation is possibly related to the suspension of the mechan-
ical part of the loop and the release process, which ends with oxygen plasma ashing of
the resist and might induce an enhanced oxidation of the bottom side of the beam. The
mechanical beam oxidizes from the top and the bottom, while the rest of the circuit only
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oxidizes from the top. For very thin films as used here, the oxide layer of a few nm thick-
ness might change the thickness of the superconducting layer significantly, which will
increase the kinetic inductance of that region. As the inductance of our circuit is dom-
inated by kinetic inductance anyways, such a two-sided oxidization might indeed be
responsible for a significantly increased inductance of the suspended parts. This would
explain, why the results related to the loop inductance are deviating from theoretical
calculations, while all results where the loop inductance is not relevant, are in excellent
agreement.
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Figure 4.12: Magnetostatic spring stiffening by Lorentz-force backaction. The measured frequency
shift is plotted as points for two different values of bias flux. Circles corrrespond to Φb /Φ0 = 0.75 and
squares to Φb /Φ0 = 1.45. The gray dashed and dotted lines are the theoretical calculations without free
parameters and overestimate the measured effect by a factor of ∼ 2. The red dashed and orange dotted
lines correspond to the theoretical lines with a scaling factor of ∼ 0.52 and agree well with the observed
frequency shift.

UPCONVERSION OF COHERENTLY DRIVEN MECHANICAL MOTION

We excite the mechanical resonator by Lorentz-force actuation and measure the cavity
sidebands generated by the corresponding cavity field phase modulation when sending
a tone resonant with the cavity ωd =ω0. The excitation current is generated by the out-
put port of a vector network analyzer and sent through the on-chip bias line, cf. Supple-
mentary Fig. 4.6c. At the same time, we drive the cavity with a resonant microwave tone
generated by a signal generator. The cavity output field, including the motional side-
bands, is amplified and sent through a high-pass filter into a mixer, where it is down-
converted by being mixed with the original carrier tone. The mixer output is low-pass
filtered and sent into the input port of the network analyzer. As we are driving the cavity
on resonance, we must adjust the phase of the carrier signal in order to get constructive
interference of the sidebands at +Ω and −Ω. We adjust the phase-shifter manually until
the detected sideband signal is maximized.

In this setup, however, we do not only detect the additional flux induced into the
SQUID by the mechanical motion, but also the phase modulations directly generated by
the bias flux modulation itself. Other possible parasitic tones come from mixing due to
the cavity nonlinearity or in the nonlinear elements of the detection chain. The detected
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sideband amplitude |S21| is thus proportional to

|S21(Ω)|∝
∣∣∣∣∣ γB||l

2mΩm

FL(Ω)

Ωm −Ω− i Γm
2

+Se iσ

∣∣∣∣∣ (4.39)

with an additional signal Se iσ interfering with the motional sideband. Therefore, the
measured, upconverted mechanical resonance will have a slight Fano lineshape as shown
in Supplementary Fig. 4.13a. We correct for this slight asymmetry by substracting a con-
stant complex number from the detected signal. The result is shown in Supplementary
Fig. 4.13b and in Fig. 4.2.
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Figure 4.13: Processing the motional sideband generated by mechanical displacement. a Raw data
for the sideband amplitude detected by means of sending a resonant tone into the cavity while exciting
the mechanical mode by Lorentz-force. The Lorentz-force drive current frequency is swept through
the mechanical resonance. Due to additional contributions to the SQUID cavity sideband such as
direct flux modulation of the SQUID by the Lorentz-force current, the sideband does not only contain
information about the mechanical displacement. b shows the amplitude data of a, where a constant
complex number has been substracted from the complex S21 data.

INTERFEROMETRIC DETECTION OF THERMAL MECHANICAL MOTION

The measurement routine is very similar to the one for the detection of coherently driven
motion. Instead of using a network analyzer, however, we do not apply any driving cur-
rent, but just detect the down-converted sideband-voltage quadratures I and Q with a
vector signal analyzer. From the Fourier-transform of the quadratures, we calculate the
corresponding power spectral density.

ESTIMATE OF THE THERMAL PHONON OCCUPATION

We assume the SQUID cavity to have negligible thermal occupation at the fridge base
temperature Tb = 15mK and the thermal occupation of the mechanical mode to be
nth À 1. Then, for a resonant cavity drive, the power spectral density of the system out-
put is approximately given by

S(ω)

ħω = 1

2
+n′

add +2Cκe
κ

κ2 +4Ω2
m

Γ2
m

Γ2
m +4∆2

m
nth (4.40)
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where n′
add is the effective number of added noise photons and in our case is mainly

determined by the HEMT noise temperature THEMT ≈ 2K and the attenuation of 2dB
between the sample output and the HEMT amplifier. From these numbers, we estimate
n′

add ∼ 14.
With the cooperativity C ≈ 0.2 and κe ≈ κ ≈Ωm , we calculate from this nth ≈ 160 for

the measurement shown in Fig. 4.2. This occupation corresponds to a mode tempera-
ture of nth ≈ 50mK and suggests that the mechanical oscillator is not fully thermalized
to the fridge base temperature. We also note, however, that the estimation of this num-
ber has several significant uncertainties related to the phase of the local oscillator in our
homodyne detection scheme (manually adjusted), to the possibility that the cavity field
emission is not symmetric into both sides of the transmission line and to small uncer-
tainties related to the parameters C and κ.

4.5.5. OPTOMECHANICAL DEVICE CHARACTERIZATION

OPTOMECHANICAL EQUATIONS OF MOTION

The system is modelled with the classical equations of motion for the mechanical dis-
placement x and normalized intracavity field amplitude α

ẍ =−Γm ẋ −Ω2
m x + 1

m
(Fr +Fe ) (4.41)

α̇=
[

i (∆+Gx)− κ

2

]
α+

√
κe

2
Sin, (4.42)

where∆=ωd −ω0 is the detuning from the cavity resonance frequency, κ= κi +κe is the
total cavity linewidth and Sin is the normalized input field. The external forces onto the
mechanical oscillator are expressed by Fe and the radiation pressure force contribution
is taken into account in Fr and expressed as a function of the intracavity field by

Fr =ħG |α|2 , (4.43)

with pull parameter G

G =−∂ω0

∂x
. (4.44)

Assuming that the intracavity field is high enough to only consider small deviations
from the steady state solutions with x = x̄ +δx and α = ᾱ+δα and no external driving
force Fe , the equations of motion can be linearized as

δẍ =−Γmδẋ −Ω2
mδx + ħGᾱ

m
(δα+δα∗) (4.45)

δα̇=
[

i ∆̄− κ

2

]
δα+ iGᾱδx +

√
κe

2
Sp (4.46)
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In the above expressions, the detuning ∆̄=ωd −ωc +Gx̄ takes into account the shift

from the equilibrium position x̄ due to the radiation pressure force and
√

κe
2 Sp with

Sp = S0e−iΩt ,Ω=ω−ωd accounts for field fluctuations. As in our experiments ∆̄≈∆, we
will just use ∆ instead of ∆̄ throughout this paper.

The response of the optomechanical cavity is then given by

S21 = 1−
√
κe

2

a−
S0

(4.47)

with

a− =χc

[
1+ i 2mΩm g 2χcχ

eff
m

]√
κe

2
S0. (4.48)

Here

χc = 1
κ
2 − i (∆+Ω)

(4.49)

is the cavity susceptibility and

χeff
m = 1

2mΩm

1

Ωm −Ω− i Γm
2 +Σ(Ωm)

(4.50)

with

Σ(Ωm) = −i g 2 [
χc (Ωm)−χ∗c (−Ωm)

]
(4.51)

is the effective mechanical susceptibility in the high-Qm approximation.

OPTICAL SPRING AND OPTICAL DAMPING

By re-writing Eq. (4.51) as Σ= δΩm − iΓ0/2 and analyzing the real and imaginary part we
can write the change in mechanical frequency δΩm (optical spring) and the additional
mechanical damping term Γo (optical damping) as

δΩm = g 2

[
∆+Ωm

κ2

4 + (∆+Ωm)2
+ ∆−Ωm

κ2

4 + (∆−Ωm)2

]
(4.52)

Γo = g 2κ

[
1

κ2

4 + (∆+Ωm)2
− 1

κ2

4 + (∆−Ωm)2

]
(4.53)

For all our experimental parameters, the optical frequency shift is negligibly small
δΩm < 1Hz, i.e., δΩm ¿ Γm , and therefore is not accounted for in any of the measure-
ments or analyses.

OPTOMECHANICALLY INDUCED TRANSPARENCY IN THE UNRESOLVED SIDE-
BAND REGIME

For our device, we have κ∼Ωm and thus we cannot use the approximate equations and
results for the resolved sideband regime. We used two related methods to analyze our
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experiments on optomechanically induced transparency and to determine the single-
photon coupling rate g0 from these measurements. For a drive on the red sideband and
Γm ¿ κ, both resonances, the cavity response as well as the response window of the me-
chanical oscillator inside the cavity describe a circle in the complex response. The ratio
of the diameters of these circles can be used to determine the optomechanical multi-
photon coupling rate g as described below. In the second way, we fit both resonances
with a complex resonance function as Eq. (4.21) and determine the cooperativity from
the ratio of the amplitudes on resonance.

1. CAVITY CIRCLE DIAMETER dc

To demonstrate that the circle diameter ratio is not influenced by the presence of par-
asitic resonances and transmission channels of the setup, we start with the modified
optomechanical response function similar to what we described above for the bare cav-
ity

S21 = A

(
1− κe

κ+2i (∆+Ω)

[
1+ i 2mΩm g 2χcχ

eff
m

]
+Be iβ

)
e iα (4.54)

which can be rewritten as

S21 = P

(
1− K e iθ

κ+2i (∆+Ω)

[
1+ i 2mΩm g 2χcχ

eff
m

])
e iφ. (4.55)

From the bare cavity fit, we determined the background Sback = Pe iφ and we divide
this background off to get

S21 = 1− K e iθ

κ+2i (∆+Ω)

[
1+ i 2mΩm g 2χcχ

eff
m

]
(4.56)

For |Ωm −Ω| À Γm , the mechanical susceptibility essentially vanishes in the weak
coupling limit and we get back the bare cavity response function

S21 = 1− K e iθ

κ+2i (∆+Ω)
. (4.57)

By calculating the cavity response at the points Ω = −∆−κ/2 and Ω = −∆+κ/2 we
get

S21− = 1− K e iθ

κ+ iκ
, S21+ = 1− K e iθ

κ− iκ
(4.58)

The distance between these two points gives us the bare cavity circle diameter

dc = |S21−−S21+| = K

κ
. (4.59)



4.5. SUPPLEMENTARY INFORMATION

4

95

2. OMIT CIRCLE DIAMETER dm

For the estimation of the diameter of the circle related to the mechanical signal as op-
tomechanically induced transparency (OMIT), we first consider that the anchor point
of the mechanical circle does not necessarily correspond exactly to the cavity resonance
frequency in order to account for cases where there is still a small detuning present in
the experiment. This offset δm =ω0−ωd −Ωm will modify the diameter of the circle with
respect to the resonant case. Considering Γeff = Γm +Γo ¿ κ we can expect that, for a
fixed pump frequency close to the the cavity red sideband ∆≈−Ωm −δm , the cavity has
a constant reponse during the OMIT circle, given by

χc = 2

κ−2iδm
(4.60)

By evaluating the total response function at the pointsΩ=Ωm −Γeff/2 andΩ=Ωm +
Γeff/2 we calculate the OMIT circle diameter

dm = |S21−−S21+| =
∣∣∣∣−4i K mΩm g 2 1

(κ−2iδ)2

[
χeff−

m −χeff+
m

]
e iθ

∣∣∣∣ (4.61)

= 4K
g 2

Γeff

1

κ2 +4δ2
m

. (4.62)

3. EFFECTIVE COOPERATIVITY Ceff AND THE EXTRACTION OF g0

We define the effective cooperativity as

Ceff =
4g 2

κΓeff
(4.63)

and with this the ratio of the cavity and mechanical resonance circle diameters is
given by

dm

dc
= Ceff

κ2

κ2 +4δ2
m

(4.64)

Thus, as a measurement of the cavity and the transparency window of OMIT pro-
vide us with the circle diameters, the cavity linewidth κ and the detuning δm , we can
extract the effective cooperativity, which in combination with the width of the trans-
parency window Γeff allows for the extraction of the multi-photon coupling rate g . Using
the estimated intracavity photon number nc finally leads to the single-photon coupling
rate

g0 = gp
nc

. (4.65)
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FULL EXPERIMENTAL AND FITTING PROCEDURE FOR OPTOMECHANICALLY

INDUCED TRANSPARENCY

1. ADJUSTING THE CAVITY PARAMETERS AND MEASUREMENT ROUTINE

I. As first step in all measurements, we fix the in-plane field to a desired value B||.
II. As second step, we sweep the bias flux in small steps and for each value take a

transmission spectrum of the cavity with a network analyzer. The cavity resonance is fit-
ted within the measurement script using Eq. (4.21) and quality factor and resonance fre-
quency are extracted. To approximately bias the cavity with a desired value for ∂ω0/∂Φ,
we run this biasing and fitting procedure until the resonance frequency shift between
two subsequent bias points matches the set value.

III. Then, we switch on the drive tone at a frequency ωd slightly below the red side-
band frequency ω0 −Ωm with ω0 being the last resonance frequency measured in the
bias flux sweep, and move the drive tone frequency in small steps towards the cavity res-
onance frequency. For each pump frequency, we take a resonance curve and extract ω0

by a fit again, until ω0 −ωd −Ωm < κ/100, i.e., until the drive tone is approximately on
the red sideband.

IV. When this criterion is fulfilled, the iteration stops, we switch off the pulse-tube
cooler of the dilution refrigerator and measure one full cavity transmission spectrum as
well as a narrow-band zoom-in transmission to the frequency range where the trans-
parency occursΩ≈Ωm . If we do not switch off the pulse tube cooler, we observe strong
frequency fluctuations of the SQUID cavity and often cavity switching out of the metastable
into the stable flux branch, which both can be significantly suppressed when the pulse
tube cooler is switched off.

This relatively complicated iterative procedure is needed for several reasons. First,
due to the non-negligible loop inductance and the possibly non-sinusoidal current-phase
relation, we operate the cavity for most measurements in a metastable and hysteretic bi-
asing regime. Second, the cavity resonance frequency depends slightly on the intracav-
ity photon number despite the small anharmonicity. Many parameters such as the flux
sweetspot biasing value or the sweetspot frequency depend furthermore slightly on the
in-plane field value, what we attribute mainly to an imperfect alignment between sam-
ple and magnetic in-plane field, leading to a non-negligible out-of-plane component.
Taking all these factors together, a simple fixed biasing procedure to achieve similar pa-
rameters for each measurement would not be sufficient.

2. FITTING ROUTINE

I. For the extraction of the single-photon coupling rate g0 we initially perform a
wide range scan as described in section 4.5.3 and get the background fit function Sback =
P (ω)e iφ(ω). For all other measurements, we then calculate the complex background sig-
nal for the corresponding frequency range and divide it off the data.

II. To fit the resonance curve for each measurement, the pump tone signal, which
lies within the cavity line due to κ∼Ωm , is cut away and the result is fitted as described
in section 4.5.3 in order to obtain resonance frequencyω0 and linewdith κ. One example
is shown in Supplementary Fig. 4.14a and b.
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Figure 4.14: Fitting the optomechanical response and extracting the multi-photon coupling rate g =p
nc g0. a Fit of the cavity response amplitude in presence of a red-sideband drive tone. The frequency

window of the drive tone is removed for a reliable fitting procedure. b Data and fit as in a, shown in the
complex plane. c The large circle corresponds to the cavity response, the small circle to the signal of
the optomechanically induced transparency, which is measured separately due to the narrow mechanical
linewidth. The diameter of the cavity circle is dc . The dashed box shows the zoom window plotted in d,
where the diameter of the OMIT circle is denoted as dm . In addition to a simple circle fit as represented
by the line in d, we perform a fit of the complex resonance function to extract the effective mechanical
linewidth. The result for the amplitude is shown in e and in the complex plane in f. Note that the data
in e and f have been shifted and rescaled in the complex plane with respect to c and d. The scaling
has been performed to anchor the cavity circle at S21 = 1 with dc = 1. With this scaling the amplitude
of the OMIT response is given by 4g 2

κΓeff
κ2

κ2+4δ2
m

as indicated in f. The experimental parameters for this
dataset was B|| = 6mT, ∂ω0/∂Φ∼ 2π ·17MHz/Φ0 and nc ∼ 800 intracavity photons.

III. For the analysis of the transparency window, once again the backgrounds are di-
vided off in a similar way as previously done for the cavity. During the cavity fit, the
parameters K and θ are determined and the cavity resonance was corrected for them,
anchoring the resonance circle at S21 = 1. In addition, we apply all corrections to the
mechanical response as well. An example for the real and imaginary part of both modi-
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fied cavity and OMIT response functions are shown in Supplementary Fig. 4.14c and d.
Performing a circle fit as shown in Supplementary Fig. 4.14d, we get the circle diameter
dm .

IV. From a response fit to the mechanical resonance, we finally extract the last miss-
ing parameters Γeff and Ωm . At this stage, we can also determine the detuning between
the cavity resonance frequency and the OMIT resonance δm , which can be seen in Sup-
plementary Fig. 4.14 as slight rotation of the OMIT response along the cavity circle and
a Fano-like resonance in Supplementary Fig. 4.14e. For the resonance shown in Fig. 4.3,
we manually corrected for this rotation.

V. Now we calculate the effective cooperativity and the multi-photon coupling rate
g . The single-photon coupling rate g0 is determined in the last step from g using the
independently calculated intracavity photon number nc .
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The field of cavity optomechanics has achieved groundbreaking photonic control and de-
tection of mechanical oscillators, based on their coupling to linear electromagnetic modes.
Lately, however, there is an uprising interest in exploring cavity nonlinearities as a pow-
erful new resource in radiation-pressure interacting systems. Here, we present a flux-
mediated optomechanical device combining a nonlinear Josephson-based superconduct-
ing quantum interference cavity with a mechanical nanobeam. We demonstrate how the
intrinsic Kerr nonlinearity of the microwave circuit can be used for a counter-intuitive
blue-detuned sideband-cooling scheme based on multi-tone cavity driving and intracav-
ity four-wave-mixing. Based on the large single-photon coupling rate of the system of
up to g0 = 2π · 3.6kHz and a high mechanical quality factor Qm ≈ 4 · 105, we achieve
an effective four-wave cooperativity of Cfw > 100 and demonstrate four-wave cooling of
the mechanical oscillator close to its quantum groundstate, achieving a final occupancy
of nm ∼ 1.6. Our results significantly advance the recently developed platform of flux-
mediated optomechanics and demonstrate how cavity Kerr nonlinearities can be utilized
for novel control schemes in cavity optomechanics.

This chapter is available as an arXiv preprint (2104.02511) Four-wave-cooling to the single phonon level in Kerr
optomechanics. D. Bothner*, I. C. Rodrigues* & G. A. Steele.
*these authors contributed equally
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5.1. INTRODUCTION

Cavity optomechanical systems are the leading platform for the detection and manipula-
tion of mechanical oscillators with electromagnetic fields from the nano- to the macro-
scale [56]. Displacement detection with an imprecision below the standard quantum
limit [41, 43], sideband-cooling to the motional quantum groundstate [25, 32], the prepa-
ration of nonclassical states of motion [36, 38, 189, 190], quantum entanglement of dis-
tinct mechanical oscillators [39, 40], topological energy transfer using exceptional points
[159] and microwave-to-optical frequency transducers [52, 54] are just some of the high-
lights that have been reported during the last decade. Essentially all of these impressing
results have been achieved with linear cavities and linear mechanical oscillators, but the
exploration of intrinsic cavity nonlinearities, often considered undesired and parasitic
in optomechanics as they impose limitations on the maximally achievable multi-photon
coupling rate [60], has attracted increasing interest lately [145, 191–196].

An exciting new scheme to couple a mechanical oscillator to microwave photons in
a superconducting LC circuit has very recently been realized: Flux-mediated optome-
chanical coupling [71–73, 162]. In this approach, the displacement of a mechanical os-
cillator is transduced to magnetic flux threading a superconducting quantum interfer-
ence device (SQUID) embedded in a microwave LC circuit as flux-dependent inductance
[70, 143, 145]. Due to the scaling of the optomechanical single-photon coupling rate g0

with the external magnetic transduction field in flux-mediated optomechanics [70, 162],
record single-photon coupling rates for the microwave domain have been reported [71–
73]. In future devices, the optomechanical single-photon regime [63, 67] or even the
ultrastrong coupling to superconducting qubits [66] seem feasible. In addition to be-
ing a flux-tunable inductor, a SQUID simultaneously constitutes a flexible and highly
controllable Kerr nonlinearity, which is widely utilized in superconducting qubits [197],
Josephson parametric amplifiers [198] and four-wave-mixing based bosonic code quan-
tum information processing [199]. Therefore, flux-mediated optomechanics is also an
ideal platform for realizing and studying Kerr optomechanics and for the development
of new detection and control schemes of mechanical motion. Here, we implement a
flux-mediated optomechanical device with a large single-photon couling rate of up to
g0 ≈ 2π ·3.6kHz and demonstrate sideband cooling of the mechanical oscillator close to
its quantum groundstate by intracavity four-wave mixing (FWM). By using a strong para-
metric cavity drive, we activate the emergence of two Kerr quasi-modes in the SQUID cir-
cuit and realize an optomechanical coupling of these quasi-modes to the mechanical os-
cillator by an additional optomechanical sideband pump field. The drive-activated Kerr-
modes show enhanced properties such as a reduced effective linewidth compared to the
undriven circuit and we achieve effective single-photon cooperativities C0 & 10. Strik-
ingly, we find that blue-detuned optomechanical sideband-pumping on one of the Kerr-
modes leads to dynamical backaction with the characteristics of red-sideband pump-
ing in a standard optomechanical system, in particular to positive optical damping. We
use this FWM based blue-detuned optical damping to cool the mechanical oscillator ex-
tremely close to its quantum groundstate with a residual occupation of nm ∼ 1.6. Our
results demonstrate how cavity Kerr nonlinearities can be used in optomechanics to
achieve both, enhanced device performance and new control schemes for mechanical
oscillators. At the same time they reveal the potential of flux-mediated optomechan-
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ics regarding low-power groundstate-cooling of mechanical oscillators and the future
preparation of quantum states of motion.

5.2. THE DEVICE

Figure 5.1: A superconducting quantum interference cavity parametrically coupled to a mechanical
nanobeam. a Optical micrograph of the circuit. Bright parts are Aluminum, dark parts are Silicon sub-
strate. The LC circuit combines two interdigitated capacitors C with two linear inductors L, connected
through a superconducting quantum interference device (SQUID) with total Josephson inductance
LS = LJ/2. The circuit is capacitively coupled to a Z0 = 50Ω coplanar waveguide feedline (top of image)
with a coupling capacitor Cc and surrounded by ground-plane. Scale bar corresponds to 50µm. b
Scanning electron micrograph of the constriction-type SQUID, showing the two Josephson junctions
and the mechanical oscillator as part of the loop released from the substrate. Inset shows a zoom-in to
one of the nano-bridge Josephson junctions. c Circuit equivalent of the device. For the experiments,
two magnetic fields can be applied. The field B⊥ is oriented perpendicular to the chip plane and is
used to set the flux bias working point of the SQUID Φ⊥. The parallel field B∥ transduces mechanical
displacement of the out-of-plane mode to additional flux ∆Φ∥ = B∥l∆x threading the SQUID loop. d
shows the sample integrated into a printed circuit board with two microwave connectors and mounted
into a 2D vector magnet. The large split coil is used to generate B∥, a small single coil behind the chip
generates B⊥. e Transmission response |S21| of the cavity at B∥ = 25mT and B⊥ = 0. From a fit to the
data, we extract the resonance frequency ω0 = 2π·5.2673GHz, the total linewidth κ= 2π·380kHz, and the
external linewidth κe = 2π ·110kHz. Data are shown as circles, fit as black line. e Resonance frequency
ω0 vs magnetic flux Φ⊥, normalized to one flux quantum Φ0 at B∥ = 25mT. Circles are data, line is a
fit. The two operation points for this paper are marked with stars and denoted "I" for ω0 ≈ 2π ·5.22GHz
and "II" for ω0 ≈ 2π ·5.17GHz. Details on measurements and fits can be found in section 5.7.4.

Our device combines a superconducting quantum interference LC circuit with a me-
chanical nanobeam oscillator embedded into the loop of the SQUID, cf. Fig. 5.1. Details
on device fabrication are given in section 5.7.1. At the core of the circuit, the SQUID
acts as a magnetic-flux-dependent inductance LS(Φ), where Φ is the total magnetic flux
threading the 21×3µm2 large loop. For the tunable optomechanical coupling between
the displacement of the mechanical nanobeam and the microwave circuit, two distinct
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external magnetic fields are required. First, a magnetic field perpendicular to the chip
surface B⊥ is used to change the magnetic flux biasΦ⊥ through the SQUID loop, allowing
to tune the circuit resonance frequencyω0 and flux responsivityF = ∂ω0/∂Φ. Secondly, a
magnetic in-plane field B∥ is used to transduce the out-of-plane displacement ∆x of the
mechanical oscillator to additional flux ∆Φ∥ = B∥lm∆x, where lm = 18µm is the length
of the mechanical beam. To apply these two fields, the chip is mounted into a home-
made 2D vector magnet, consisting of a large split coil for B∥ and an additional small coil
mounted below the chip for the generation of B⊥, cf. Fig. 5.1d. The whole configuration
is placed in a cryoperm magnetic shielding and attached to the mK plate of a dilution re-
frigerator with a base temperature Tb ≈ 15mK. More details on the measurement setup
are given in section 5.7.2.

We perform the experiments presented here at in-plane fields of B∥ = 21mT and
B∥ = 25mT. Figure 5.1e shows the transmission response of the cavity for B∥ = 25mT
and at the bias-flux sweetspot. It has a resonance frequency ω0 = 2π ·5.2673GHz, a total
linewidth κ= 2π ·380kHz and an external linewidth κe = 2π ·110kHz. Figure 5.1f shows
how the cavity resonance frequency can be tuned by ∼ 150MHz by changing the applied
flux bias Φ⊥ threading the SQUID loop. The curves and cavity parameters at B∥ = 21mT
only deviate slightly from the ones given here, the corresponding additional data can be
found in section 5.7.4. Due to an improved SQUID design and fabrication, the cavity flux
responsivity F is increased by one order of magnitude compared to our previous results
[162], which leads to a significantly enhanced single-photon coupling rate

g0 =FB∥lmxzpf (5.1)

where xzpf is the mechanical zero-point fluctuation amplitude.
The mechanical nanobeam, visible in Fig. 5.1b and released from the substrate in

an isotropic reactive ion etching process using SF6 plasma [126], is 500nm wide and
70nm thick. From its total mass of m ≈ 1.9pg and the resonance frequency of the out-

of-plane modeΩm ≈ 2π·5.32MHz, we get xzpf =
√

ħ
2mΩm

≈ 30fm. For an in-plane field of

B∥ = 25mT, and the two flux-bias pointsΦI andΦII, cf. Fig. 5.1f, we obtain single-photon
coupling rates g0,I = 2π · 2.2kHz and g0,II = 2π · 3.6kHz with FI = 2π · 300MHz/Φ0 and
FII = 2π · 520MHz/Φ0. For the smaller in-plane field of B∥ = 21mT, the g0-values are
scaled accordingly, cf. section 5.7.5.

The final important parameter of the device is its Kerr nonlinearity, which at the flux
sweetspot is K/2π = −30kHz. For the two flux bias operation points I and II we obtain
KI/2π=−40kHz and KII/2π=−55kHz, respectively. More details on the determination
of the circuit parameters and their flux dependence can be found in section 5.7.4.

5.3. DRIVEN KERR-MODES AND DYNAMICAL KERR BACKACTION

Owing to the Kerr anharmonicity K, the application of a strong microwave drive tone
close to the cavity resonance frequency ω0 significantly modifies the cavity response to
an additional probe field. In Fig. 5.2, we discuss this modified response in the presence of
a parametric drive tone with a fixed frequency ωd, when the cavity is tuned to cross this
drive tone by means of the bias field B⊥. For large detunings between cavity and drive,
the circuit response S21 exhibits a standard single-mode resonance lineshape. However,
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Figure 5.2: Activating the driven Kerr quasi-mode state and single-tone dynamical Kerr backaction.
a displays color-coded the magnitude of the SQUID cavity response S21 for varying SQUID flux bias
Φ⊥/Φ0 in the presence of a strong drive placed at ωd. The flux bias range corresponds to a small
variation of Φ⊥ around operation point I and the in-plane field is B∥ = 21mT. When the flux-tunable
resonance frequency ω0, indicated as dashed line and labelled "Drive off", is far detuned from the drive
tone, the cavity response exhibits a single broad absorption resonance. As the detuning between cavity
and drive ∆d =ωd−ω0 is reduced, the cavity response is significantly modified and the original resonance
is developing into a double-mode structure. The appearance of these driven Kerr quasi-modes indicates
the onset of parametric amplification and degenerate FWM in the SQUID circuit. We denote the two
modes as signal and idler resonance with the resonance frequencies ωs and ωi, respectively. Arrow
on the left indicates the position of the linescan shown in panel b. In addition to the linescan from
a (red circles) and the result of the analytical response calculation (solid black line), we show the
equivalent linescan without parametric drive (blue circles) and its corresponding theoretical response
(dashed black line). The curves without parametric drive are offset by +5dB for clarity. Panels c and
d show the extracted resonance frequency ωs and effective linewidth κ′ of the signal resonance vs flux
bias. Lines show the result of modelling the effective quantities with the driven Kerr cavity equations
and taking into account flux-noise broadening and two-level systems. The regime of operation for the
experiments reported below is indicated by dashed lines and shaded areas. In this regime, the linewidth
is nearly constant with κ′/2π≈ 340kHz. The width of the operation range corresponds to the flux noise
standard deviation, which we estimate to be σΦ ∼ 5mΦ0. Panel e illustrates the contributions to the
dynamical Kerr backaction of the intracavity drive fields to the nanobeam. Optomechanical (OM) up-
and downscattering induces cooling and heating/amplification to the mechanical mode, respectively,
where gα is the multiphoton coupling rate and χg is the probe susceptibility of the driven Kerr oscillator.
In addition, interference between up- and downscattered fields due to degenerate FWM has to be taken
into account. f and g show the calculated optical spring and optical damping due to dynamical Kerr
backaction. The two blue/red lines and shaded area correspond to g0/2π= (1.78±0.1)kHz. The detuning
range ∆d is slightly increased compared to a-d. In the additional range, the backaction is plotted in
gray. The device operation range is indicated by the shaded area in between the vertical dashed lines.

as the detuning ∆d =ωd −ω0 is reduced, the driven cavity susceptibility

χg(Ω) = χ̃p(Ω)

1−K2n2
dχ̃p(Ω)χ̃∗p(−Ω)

(5.2)
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deviates considerably from a single linear cavity, leading to the regime of parametric
amplification and degenerate four-wave mixing, which is experimentally identified by
the appearance of a second mode. Here, Ω = ω−ωd denotes the detuning between the
probe field at ω and the parametric drive and

χ̃p(Ω) = 1
κ
2 + i (∆d −2Knd +Ω)

. (5.3)

The two Kerr quasi-modes, which we denote as signal and idler resonance, appear
symmetrically around the drive with complex resonance frequencies

ωi /s =ωd + i
κ

2
±

√
(∆d −Knd) (∆d −3Knd) (5.4)

where nd is the parametric drive intracavity photon number. These Kerr-modes have
been observed and discussed also in the context of optical cavities and mechanical os-
cillators [200–202]. The signal mode can be identified by the shifted and significantly
deepened cavity absorption dip and the idler mode by the resonance peak, indicating
net transmission gain by Josephson parametric amplification.

With the activation of the quasi-mode state, we also obtain a highly stabilized effec-
tive resonance frequency and linewidth, while the bare cavity suffers from considerable
frequency fluctuations due to flux noise. Due to the reduction of frequency fluctuations
in combination with a saturation of two-level system losses by the parametric drive (cf.
section 5.7.6), the effective cavity linewidth is reduced from the flux-noise broadened
κ′off ∼ 2π ·1.5MHz to the driven κ′on ≈ 2π ·340kHz. An analysis of the signal mode res-
onance frequency and linewidth in the presence of the parametric drive is provided in
Figs. 5.2c and d. Within a small region of flux bias values, the drive-tone induced Kerr
shift compensates for the flux-noise induced frequency shifts by means of an internal
feedback loop. Strikingly, this mechanism yields a stabilization of the driven resonance,
which thereby becomes the natural choice of operation regime during the following ex-
periments.

In an optomechanical system, any intracavity field also acts back on the mechanical
oscillator by altering its resonance frequency and decay rate, an effect known as dynam-
ical backaction [11, 41]. Therefore, the effect of the parametric drive to the mechanical
oscillator also requires some careful consideration. From the linearized equations of
motion for the mechanical amplitude field b̂ and the intracavity fluctuation field â in a
single-tone driven Kerr cavity

˙̂b =
(
iΩm − Γm

2

)
b̂ − i gα

(
â + â†

)
+

√
Γmζ̂ (5.5)

˙̂a =
[
−i (∆d −2Knd)− κ

2

]
â + iKndâ† − i gα

(
b̂ + b̂†

)
+p

κiξ̂i +p
κeξ̂e (5.6)

with multi-photon coupling rate gα = p
ndg0 and input fields ζ̂, ξ̂i and ξ̂e, the effective

mechanical susceptibility can be derived as

χeff
0 (Ω) = 1

Γm
2 + i (Ω−Ωm)+Σk(Ωm)

(5.7)
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for the weak-coupling and high-Qm limit, which is safely fulfilled for our mechanical
oscillator with a linewidth of Γm ≈ 2π ·13Hz. The single-tone dynamical Kerr backaction

Σk(Ωm) = g 2
α

[
χg

(
1−A

)
−χg (1−A)

]
(5.8)

with χg = χg(Ωm) and χg = χ∗g (−Ωm) has almost the same form as in linear optome-
chanics, but with a modified cavity susceptibility χg. A striking difference, however, is

found in the terms A=−iKndχ̃p(Ωm) and A= iKndχ̃
∗
p(−Ωm). These terms correspond

to an interference of the red and blue mechanical sideband fields, which occurs due
to intracavity four-wave mixing in a driven Kerr cavity. By this FWM, the two standard
mechanical sidebands become idler fields of each other. A schematic of the dynamical
backaction and the sideband interference is shown in Fig. 5.2e.

The optical spring δΩm = −Im[Σk(Ωm)] and optical damping Γopt = 2Re[Σk(Ωm)]
caused by the dynamical Kerr backaction are displayed in Figs 5.2f and g. When the
drive is located around one mechanical frequency detuned from the cavity |∆d| ≈Ωm =
2π ·5.32MHz, the backaction looks very similar to that of a linear cavity. However, when
the drive and the cavity are near-resonant, the backaction is strongly dominated by the
intracavity photon number and a Duffing-like behaviour can be observed with a sudden
transition from high- to low-amplitude state at∆d ≈−2π·3MHz. In the operation regime
for the experiments described here, the drive-induced backaction for operation point I is
small with Γopt/2π ∼ −1Hz and δΩm/2π ∼ −5Hz. Using the bare mechanical linewidth
Γm ∼ 2π ·13Hz, the corresponding phonon occupation is therefore increased by about
10%, a detailed calculation and discussion of the resulting mechanical mode occupation
is given in section 5.7.7.

Due to the considerable cavity flux noise outside of the driven quasi-mode regime,
we unfortunateley cannot experimentally access the dynamical Kerr backaction for the
detuning range shown in Fig. 5.2. Nevertheless, with a larger single-photon coupling
rate g0 at operation point II and a stronger drive tone, we observe regimes of mechanical
instability induced by the dynamical Kerr backaction, which are in excellent agreement
with the prediction from the theory. The corresponding data and analysis are explained
in detail in section 5.7.7. The presented formalism for the dynamical Kerr backaction can
also directly be applied to the sideband-unresolved regime and explain the experimental
findings of a recent experiment with a similar SQUID cavity optomechanical device [71],
cf. also section 5.7.7.
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5.4. MULTI-TONE DYNAMICAL FOUR-WAVE BACKACTION

Figure 5.3: Four-wave-OMIT and four-wave-backaction for optomechanical blue-sideband pumping of
the idler quasi-mode. a shows the experimental protocol. The SQUID cavity is prepared in the quasi-
mode state by a strong parametric drive (PD). In addition, we apply an optomechanical (OM) pump
tone on the blue sideband of the idler resonance (IR) ωp =ωi +Ωm +δp. Finally, we use a weak probe
tone around the signal resonance (SR) to detect optomechanically induced transparency. We repeat this
scheme for varying detunings δp. b explains how this protocol to first order leads to coherent driving of
the mechanical oscillator. By PD-induced intracavity 4WM, the OM pump (probe tone) gets an idler
field on the opposite side of the drive, which has the right detuning to the probe tone (pump) ∼Ωm to
coherently drive the mechanical oscillator. c shows the signal resonance transmission S21 measured with
the weak probe field (OM pump off). Circles are data, line is a fit. Vertical bars labelled with A, B, and
C indicate zoom regions for the corresponding panels shown in c and ∆s =ω−ωs denotes the detuning
between probe field and SR. d probe tone response (OM pump on) in three narrow frequency windows
around ω≈ 2ωd −ωp +Ωm for three different pump detunings δp, cf. panel a. Note that the frequency
difference between OM pump and probe field is Ω ≈ Ωm − 2Ωdp, which implies that when the pump
field frequency is reduced, the probe field frequency is increasing. Each probe tone response displays
a narrow-band resonance, indicating optomechanically induced transparency (OMIT) via excitation of
the mechanical oscillator. For each δp, we fit the OMIT response (lines in c) and extract the effective
mechanical resonance frequency Ωeff =Ωm+δΩm and the effective mechanical linewidth Γeff = Γm+Γopt.
The contributions δΩm and Γopt, induced by dynamical backaction of all intracavity fields, are plotted
in panels e and f as circles vs δp. The result of analytical calculations is shown as two solid lines with
shaded area, where the range described by the lines captures uncertainties in the device parameters,
cf. section 5.7.11. The dashed line shows the result of equivalent calculations without cross-mixing
(non-degenerate 4WM) terms. f illustrates schematically one four-wave cross-mixing term that leads
to the observed dynamical backaction. Hereby, two mechanical sidebands with frequency difference
Ωdp =ωd −ωp and both, the PD and the OM pump, contribute to the interaction.
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An interesting question arising now is how the Kerr quasi-modes couple to the me-
chanical nanobeam, when an additional optomechanical pump tone is applied to one of
the Kerr-mode sidebands. One might expect that the coupling to the mechanical oscil-
lator is suppressed in this state, similar to the reduced impact of flux noise, as the Kerr-
mode frequencies ωs and ωi display only a very weak dependence on flux through the
SQUID. Fluctuations of the bare resonance frequency, however, lead to modulations of
αd and parametric gain, and therefore will impact the mechanical oscillator by inducing
changes in the radiation-pressure force. A straightforward way to investigate this setting
experimentally is to apply an additional optomechanical pump tone on the red sideband
of the signal resonance, i.e., with a pump frequency ωp ≈ωs −Ωm. Once in this configu-
ration, a weak probe signal aroundω≈ωp+Ωm can be used to detect optomechanically
induced transparency (OMIT) [150] and thereby characterize the optomechanical inter-
action. A detailed theoretical description as well as a discussion of the experimental
findings for this red-sideband pumping setup is given in sections 5.7.12 to 5.7.15.

A conceptually less straightforward and more exciting possibility is to pump the idler
resonance on its blue sideband ωp ≈ ωi +Ωm, cf. Fig. 5.3a. A blue-detuned pump is
commonly associated with amplification/heating due to the favoured Stokes-scattering
to lower energy photons. The Kerr-mode susceptibility χg close to the idler resonance,
however, resembles that of an "inverted" mode. Any small intracavity field in the driven
Kerr cavity experiences in addition a mirroring effect due to degenerate four-wave mix-
ing with the parametric drive tone. The presence of the blue-sideband pump field en-
riches this situation even further. Then the Kerr cavity is effectively oscillating with
Ωdp = ωd −ωp due to the presence of two strong fields, and effects arising from non-
degenerate four-wave mixing can impact probe fields and mechanical sideband fields
and finally also the OMIT response and the backaction to the mechanical oscillator.

A clear signature of the parametric state and four-wave mixing is the appearance of
optomechanically induced transparency in the probe response of the signal resonance,
when the idler Kerr-mode is pumped on its blue sideband. Corresponding data are
shown in Fig. 5.3b and c. Here and in stark contrast to the usual OMIT protocol, the
frequency detuning between the idler blue-sideband pump and the probe tone is not
even close to the mechanical resonance frequency but given byΩ=ω−ωp ≈ 2Ωdp−Ωm.
To first order, the observation of this transparency can be understood by considering the
intracavity generated tones in addition to the ones that are sent externally. The paramet-
ric drive generates an intracavity field with amplitude αd at ωd, and the optomechani-
cal pump at ωp generates an intracavity field with amplitude γ−. Just by this doubly-
driven configuration, a third intracavity "pump" field is generated by degenerate FWM
atω+ =ωp+2Ωdp and we denote its amplitude as γ+. Therefore, whenωp =ωi+Ωm, the
γ+-field is located at the red sideband of the signal resonanceω+ =ωs−Ωm. The beating
between a probe field atω≈ωs and the γ+-field is then near-resonant with the mechani-
cal oscillator and will drive it into coherent motion. A second beating component, which
is driving the mechanical oscillator, originates from the beating of the γ−-field and the
idler field of the weak probe itself, cf. Fig. 5.3a. These two are also near-resonant with
the mechanical oscillator. Once in coherent motion, the mechanical oscillator generates
sidebands to all intracavity field Fourier components, some of which interfere with the
original probe tone causing the observed appearance of four-wave OMIT.
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To characterize the dynamical backaction imprinted by the intracavity fields on the
mechanical oscillator in the presence of the αd,γ− and γ+ fields, we measure the op-
tomechanical transparency response for varying detuning δp between the γ−-field and
the idler-mode blue sideband, cf. Fig. 5.3. For each detuning, we determine the effec-
tive mechanical resonance frequency Ωeff and effective mechanical linewidth Γeff from
a fit to the transparency signal and subtract the intrinsic valuesΩm and Γm. The remain-
ing contributions to the resonance frequency and linewidth δΩm and Γopt, respectively,
correspond to the optical spring and optical damping by the microwave fields.

The result, shown in Fig. 5.3d and e, is quite surprising. Even though the optome-
chanical pump field is blue-detuned to all cavity resonances ω0,ωs and ωi, we observe
dynamical backaction with characteristics resembling red-sideband pumping in linear
optomechanical systems. Most strikingly, we find a positive optical damping, which is
usually a clear signature for red-sideband physics and the basis for sideband-cooling of
the mechanical mode[25]. We use a linearized, optomechanical multi-tone Kerr cav-
ity model, and implement the hierarchy from the experiment αd À γ∓ À 〈â〉 to reveal
which interactions are resposible for the observed behaviour, cf. sections 5.7.8 to 5.7.10.
The resulting effective mechanical susceptibility

χeff
0 (Ω) = 1

Γm
2 + i (Ω−Ωm)+Σfw(Ωm)

(5.9)

has still the same form as for a standard optomechanical system, and all the FWM con-
tributions can be captured in J -factors in the dynamical four-wave backaction

Σfw(Ωm) = ∑
j=−,α,+

|g j |2
[
χg, jJ j −χg, jJ j

]
(5.10)

with g− = γ−g0, g+ = γ+g0, χg,− =χg(Ωm), χg,α =χg(Ωm+Ωdp) andχg,+ =χg(Ωm+2Ωdp).
Closed-form expressions for theJ are given in section 5.7.9. We identify non-degenerate
four-wave mixing terms in the J -factors as the dominant origin of the observed back-
action. These terms have contributions from the drive field αd, from one of the γ± fields
and couple any two distinct mechanical sidebands which have the frequency difference
±Ωdp, cf. Fig. 5.3f for a schematic of one of these terms. Hence, these terms correspond
to intracavity cross-mixing based on αd and γ± fields. Using independently determined
system parameters, we find excellent agreement between the experimental data and the
analytical model when we take these cross-mixing terms into account, cf. solid lines in
Fig. 5.3d and e. If we take only the degenerate FWM terms into account, which are in-
duced by the presence of αd, we find a small and nearly constant backaction for all δp,
cf. dashed lines.

5.5. BLUE-DETUNED FOUR-WAVE COOLING CLOSE TO THE

QUANTUM GROUND-STATE

Positive optical damping is commonly related to cooling of the mechanical mode. There-
fore, the blue-detuned pumping scheme described in Fig. 5.3 seems feasible to be uti-
lized as a counter-intuitive, yet innovative, method to eliminate the residual thermal ex-
citations in the mechanical resonator.



5.5. BLUE-DETUNED FOUR-WAVE COOLING CLOSE TO THE QUANTUM GROUND-STATE

5

109

Figure 5.4: Blue-detuned four-wave-cooling of a mechanical oscillator close to its quantum ground-
state. a Schematic representation of the experiment. A parametric drive is used to activate the
quasi-mode state and an OM pump is sent to the blue sideband of the idler resonance ωp ≈ωi +Ωm.
The signal resonance output power spectral density is measured using a spectrum analyzer around
ω = ωp + 2Ωdp +Ωm ≈ ωs. b Power spectral densities normalized to the optomechanical pump input
power Pp for various pump powers. Frequency axis is given with respect to ω=ωp +2Ωdp +Ωm. With
increasing pump power, the linewidth of the upconverted mechanical noise spectrum is increasing, in-
dicating four-wave dynamical backaction damping. Simultaneously, the area of the normalized signal
decreases, indicating cooling of the mode. From fits (lines and shaded areas) to the data (points), we
determine the resulting phonon occupation nm. In c we show the cooled phonon number vs Γeff/Γm
in a collection of several different datasets. Intracavity drive photon numbers vary between different
points in the range 40 < nd < 100. Circles correspond to data from measurements at operation point I
and squares to data from operation point II. Stars show the points that correspond to the data shown in
b, taken at operation point I. All measurements have been taken at B∥ = 25mT. Inset shows the result
of a thermal calibration measurement, indicating that the mechanical oscillator mode equilibrates with
the fridge base temperature and the residual thermal occupation at Tb = 15mK is nth

m ≈ 70−90. Dashed
lines and shaded area display the theoretically calculated range of four-wave-cooled phonon occupation,
taking into account a possible range of 60 ≤ nth

m ≤ 100 and 45 ≤ nd ≤ 90. Parametric amplification of
cavity quantum noise limits the minimally achievable phonon occupation in our parameter regime to
nlim

m ∼ 0.6. For the highest powers, we exceed this theoretical limit by only a factor ∼ 3. d shows the
effective effective mechanical linewidth vs intracavity sideband photon number nγ = |γ−|2 + |γ+|2 for
points from c, which have nearly constant nd ≈ 60±10, demonstrating that we achieve significant cool-
ing with a small number of photons. Line corresponds to theory with Γm = 2π ·15Hz e shows an OMIT
scan at the point of largest cooling with an effective linewidth Γeff ≈ 2π ·1.5kHz, which corresponds to
an effective four-wave cooperativity of Cfw & 100. f shows the corresponding power spectral density in
units of quanta with noise squashing due to a small, but finite effective temperature of the cavity by
amplified quantum noise. Error bars in c consider uncertainties in the fitting procedure and in the bare
mechanical linewidth, for details see section 5.7.14.
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To characterize the mechanical mode temperature, we detect the upconverted ther-
mal displacement fluctuations in the signal resonance output field with a spectrum an-
alyzer. For this measurement, the SQUID cavity in the quasi-mode state is pumped with
an optomechanical tone on the blue sideband of the idler mode. Using a probe tone, we
then measure the signal mode response S21 in a wide frequency range and the OMIT re-
sponse in a narrow range. Finally, we detect the output spectrum in the same frequency
window where the OMIT is observed. A collection of spectra for varying optomechan-
ical pump power Pp is presented in Fig. 5.4b. From a careful analysis of the combined
data sets, cf. sections 5.7.8 to 5.7.13, the equilibrium phonon occupation of the mechan-
ical oscillator as well as the phonon occupation resulting from four-wave-cooling can be
inferred.

The mechanical oscillator is well thermalized to the mixing chamber base tempera-
ture and its residual phonon occupation at the lowest operation temperature Tb = 15mK
is about nth

m ≈ 70− 90 phonons. With increasing optical damping caused by the blue-
detuned pump tone, we observe a corresponding reduction of the initial thermal occu-
pation and the cooling factor is determined by Γopt, very similar to usual optomechani-
cal sideband-cooling. The observed four-wave cooling is also very robust with respect to
pump and drive strengths and we achieve at both flux bias operation points a final four-
wave-cooled occupation extremely close to the quantum groundstate nm ∼ 1.6. Due to
the high single-photon coupling rates, it requires only a small amount of effective side-
band photons nγ = |γ−|2 +|γ+|2 . 10 to achieve these low occupations.

The fact that we use strongly driven Kerr quasi-modes as cold bath, however, modi-
fies the minimally achievable occupation. Due to Josephson parametric amplification of
quantum noise in the quasi-mode state, the cavity will acquire an effective temperature,
even if the bare cavity is in the quantum groundstate. This drive-induced cavity heating
defines the cooling limit for the mechanical resonator. In the state we are operating here,
the Josephson gain is small and the effective thermal occupation of the cavity is still con-
siderably below 1. We estimate the current cooling limit due to amplified quantum noise
to be ∼ 0.6, where the exact value depends on the drive strength nd and on the bias-flux
operation point. With higher bias flux stability the cavity could be stabilized at a point
where the Josephson gain is small enough to enable nlim

m < 0.3.

Achieving the lowest occupation in the current device requires a careful balancing of
drive and pump strength and for the highest pump powers, we observe the onset of ad-
ditional cavity shifts and line broadening, possibly related to drive depletion or higher-
order nonlinear effects. With slightly optimized device parameters regarding K and g0,
we should therefore be able to cool to nm < 1. We emphasize though, that the blue-
detuned cooling scheme allowed to achieve a significantly lower phonon occupation
than signal-mode red-sideband pumping. With a pump on the red signal-mode side-
band, a second cavity bifurcation instability occurs at moderately high pump powers,
as the red sideband pump is attracting the cavity, while the blue-detuned pump is re-
pelling it. The related jump to a high-amplitude state with a different signal resonance
frequency, prevents us from cooling below nred

m ∼ 4. The corresponding red-sideband
cooling data and analysis can be found in section 5.7.16.
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5.6. DISCUSSION

The results we presented here demonstrate clearly that the young field of flux-mediated
optomechanics is quickly advancing towards an exciting and competitive optomechan-
ical platform, which intrinsically allows for novel ways of manipulating mechanical mo-
tion. Our device provides a large single-photon coupling rate of up to g0 = 2π ·3.6kHz
and achieves large cooperativities of up to Cfw > 100 for small numbers of intracavity
photons. By using strong parametric driving, we show how the intrinsic Josephson-
based Kerr nonlinearity can be utilized as a resource for improved sideband-resolution
and frequency-stability and for the implementation of a novel four-wave-mixing-based
phonon control scheme. In combination, these properties enabled us to use four-wave-
cooling in a Kerr cavity to prepare a MHz mechanical nanobeam resonator close to its
quantum groundstate.

Future device improvements can be achieved by reducing the SQUID loop induc-
tance further in order to increase the flux responsivity and the single-photon coupling
rate. One order of magnitude is a feasible goal in this direction, as related platforms
have already demonstrated such high responsivities [71, 72]. This improvement alone
would bring the device to a cooperativity of 104 and to the onset of the strong-coupling
regime with g ∼ 2π ·150kHz ∼ κ/2. With increased in-plane fields, up to ∼ 1T with e.g.
Niobium or granular Aluminum, those numbers could be improved by another order of
magnitude.

In the current device, however, the main limiting factor to achieve higher coupling
rates and cooling the mechanical oscillator into the groundstate was external flux noise
coupling into the SQUID in large in-plane fields. We suspect that the origin of this flux
noise is in the vector magnet leads and the used current sources, respectively, or in
parasitic out-of-plane components that lead to flux instabilities, vortex avalanches and
microwave-triggered vortex motion in proximity to the SQUID. Flux noise in the leads
and current sources could potentially be reduced by using a superconducting magnet
in persistent current mode. And although our current setup can locally cancel parasitic
out-of-plane fields, it cannot do so over the complete chip simultaneously due to the
geometry of the small coil. A global compensation might be necessary, however, to com-
pletely avoid any flux instabilities arising from the out-of-plane fields, which can cause
flux fluctuations also in large distances from their occurrence.

Using intrinsic Kerr nonlinearities as a resource in optomechanical systems has just
begun. Further interesting directions in Kerr optomechanics might involve intracavity
squeezing, intracavity Josephson parametric amplification, intracavity cat-state gener-
ation, groundstate cooling in the sideband unresolved regime or enhanced quantum
transduction. Significantly larger Kerr nonlinearites than the ones presented here, im-
plemented in superconducting transmon qubits, have also been discussed recently for
mechanical quantum state preparation [66, 203, 204]. Similar schemes investigating and
exploiting the Kerr nonlinearity of SQUID circuits could furthermore be implemented
naturally in the platform of photon-pressure coupled circuits [81, 85, 127].
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5.7. SUPPLEMENTARY INFORMATION

5.7.1. DEVICE FABRICATION

Here we present a step-by-step description of the device fabrication. The individual
steps are schematically shown in Supplementary Fig. 7.5, where we omitted step 0, the
patterning of the electron beam lithography (EBL) alignment markers, as well as the
wafer dicing steps and the final device mounting.

a. EBL  

      

c. EBL and argon milling 

b. Al sputtering and lift-o� 

d. Al sputtering and lift-o� 

f. EBL 

g. RIE etching 
and O2 plasma ashing

Si EBEAM resist CSAR Al 15 nm Al 70 nm

e. EBL and argon milling 

Figure 5.5: Schematic device fabrication. a, b show the deposition and patterning of the nanobridge
junctions and contact pads (Step 1). c, d show the patterning and deposition of the remaining super-
conducting structures (Step 2). e shows the nanobridge thinning by Argon ion milling on the SQUID
(Step 3). f, g show the window patterning and nanobeam release (Step 5). Dimensions are not to
scale. A detailed description of the individual steps is given in the text.
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Step 0: Marker patterning. The fabrication of the device starts by the patterning
of alignment markers on top of a 2 inch silicon wafer using electron beam lithography
(EBL). The marker structures are patterned using a CSAR62.13 resist mask and a sput-
ter deposition of 50nm Molybdenum-Rhenium alloy. After undergoing a lift-off pro-
cess, the only remaining structures on the wafer are the markers. The complete 2 inch
wafer is then diced into individual 14×14mm2 chips, which are used individually for the
subsequent fabrication steps. On each of these fabrication chips, we structure 2 device
chips with dimensions of 5× 10mm2, each of which contain one coplanar waveguide
microwave feedline and seven quantum interference LC circuits.

Step 1: Junctions patterning. As first real step of the device fabrication we pattern
two nanobridges (the later Josephson junctions) for each LC circuit using CSAR62.09,
cf. Supplementary Fig. 5.5a. The two bridges of each pair of nanobridges forming one
superconducting quantum interference device (SQUID) are hereby always identical. All
bridges have a length of ∼ 100nm but vary in width between 30 and 60nm for different
SQUIDs in order to compensate for small variations and uncertainties in final structure
size and select the most suitable device during the experiment. The nanobridges also
have two 700× 1150nm2 large pads for achieving good galvanic contact to the rest of
the circuit, which is patterned in fabrication step 2. After the EBL exposure, the sam-
ple is developed in Pentylacetate for 60seconds followed by a 1:1 solution of MIBK:IPA
(Methyl IsoButyl Ketone:IsoPropyl Alcohol) for another 60seconds and finally rinsed in
IPA. Once the resist is developed, the chip is loaded into a sputtering machine where a
15nm think layer of Aluminum (1% Silicon) is deposited. After the deposition, the sam-
ple is placed horizontally at the bottom of a glass beaker containing a small amount of
room-temperature Anisole and left in an ultrasonic bath for a few minutes. During this
time, the remaining resist is dissolved and the Aluminum layer sitting on top is lifted off,
the result is schematically shown in Supplementary Fig. 5.5b.

Step 2: Microwave cavity patterning. After the junctions are patterned, we once
again spin-coat the sample with CSAR62.13 and pattern the SQUID arms together with
all the remaining superconducting structures. After the EBL exposure, the sample is
developed as for the previous fabrication step and afterwards loaded into a sputtering
machine. Hereby, the nanobridges themselves are covered and protected by resist, cf.
Supplementary Fig. 5.5c. At this point and prior to the deposition of the second Alu-
minum layer, an Argon milling process is perfomed in-situ in order eliminate any oxide
present on top of the contact pads. This measure is necessary to generate good electrical
contact between the two layers. After the sputtering process of the second, 70nm thick
Aluminum (1% Silicon) layer, the sample undergoes an ultrasonic lift-off process similar
to the one in Step 1, the result is shown schematically in Supplementary Fig. 5.5d.

Step 3: Nanobridge thinning by Ar ion milling. In order to reduce the cross-section
and the critical current of the nanobridges even further, we apply a short ion milling step
to the SQUID at this point. To do so, we pattern and develop another layer of CSAR62.13
on top of the device as described in Steps 1 and 2, which protects the whole chip except
for rectangular windows around the SQUIDs themselves, cf. Supplementary Fig. 5.5e.
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From test measurements, we observe that if we do not protect the rest of the circuit from
the milling in this step, we obtain a significant reduction of the circuit quality factor,
which we think might be due to ion implanation into the substrate. Note that with the
milling parameters we use for this step, we do not get a directional milling, but mainly
a narrowing of the nanobridges from the sides. This is also the reason why we need the
contact pads in the first place. If we work with bare nanobridges in Step 1, they are milled
away completely during the essential in-situ native oxide removal in Step 2.

Step 4: Dicing. Right before the final release of the mechanical oscillator, the sample
is once again diced to two smaller 5×10mm2 sized chips in order to fit into the sample
mountings and the microwave PCB (Printed Circuit Board). The remaining 2mm at each
edge of the original 14×14mm2 large chip is only a margin for the fabrication and is dis-
posed of.

Step 5: Mechanical beam release. For the final EBL step, a CSAR62.13 resist was once
again used as mask and the development of the pattern was done in a similar way as for
the first two layers. Once the etch mask, consisting of a small window close to the outer
side of the SQUID loop (cf. Supplementary Fig. 5.5f), is patterned, the sample undergoes
an isotropic, reactive ion etching process in SF6 at a sample temperature of ∼ −10◦C
for two minutes [126]. During this time the Silicon substrate under the SQUID arm/the
mechanical beam is etched without attacking the aluminum layer forming the cavity
and the mechanical beam. Once the beam is released, we proceeded with an O2 plasma
ashing step in order to remove the remaining resist from the sample. At this point the
fabrication is completed, the result is shown schematically in Supplementary Fig. 5.5g.

Step 6: Device mounting. After the fabrication, the sample is glued into a microwave
printed circuit board (PCB) using GE varnish and wirebonded both to ground and to 50Ω
connector lines. An optical image of the chip and the PCB, both mounted into a magnet,
is shown in Fig. 5.1.

5.7.2. MEASUREMENT SETUP

SETUP CONFIGURATION

The experiments reported in this paper were performed in a dilution refrigerator with a
base temperature Tb ≈ 15mK. Within the outer vacuum can of the system, a mu-metal
shield is installed to provide basic magnetic shielding for the whole sample space from
the 3K plate to the mK plate. A schematic diagram of the experimental setup and of the
external measurement configuration used in the reported experiments can be seen in
Supplementary Fig. 5.6.

The PCB, onto which the fabricated sample was glued and wirebonded, is mounted
into a 2D vector magnet casing and connected to two coaxial lines. The complete config-
uration including the vector magnet is placed in a magnetic cryoperm shield. The vector
magnet combines two distinct superconducting magnets, a small one for the generation
of an out-of-plane field and a larger split coil for the in-plane field. The coils are used
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to independently generate a magnetic field in the two different directions by providing a
DC current to the corresponding coil. A more detailed information about the design and
setup of the vector magnet is provided in the following subsection.
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Figure 5.6: Schematic of the measurement setup. Detailed information is provided in text.

Since the optomechanical circuit that we present in this paper was designed in a
side-coupled geometry, the input and output signals were sent/received through sepa-
rate coaxial lines in order to measure the transmission spectrum of the feedline to which
the system is coupled. The input line is heavily attenuated in order to balance the ther-
mal radiation from the line to the base temperature of the fridge and the output line
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contains a cryogenic HEMT (High-Electron-Mobility Transistor) amplifier working in a
range from 4 to 8 GHz and two isolators to block the thermal radiation from the HEMT
to reach the sample.

Outside of the refrigerator, we used a single measurement scheme for all the different
experiments. The VNA was used to measure the response spectrum S21 of the electrome-
chanical system, one microwave generator sends a coherent signal at ωd as parametric
drive for the SQUID cavity and the second microwave generator sends a tone at ωp as
optomechanical pump for the parametrically driven cavity. Finally, a spectrum analyzer
was used to record the output power spectrum around the cavity resonance.

For all experiments, the microwave sources and vector network analyzers (VNA) as
well as the spectrum analyzer used a single reference clock of one of the devices.

VECTOR MAGNET DESIGN

Figure 5.1 shows photographs of the sample mounted on the PCB and fixed in the vector
magnet bobbin. The two large parallel coils on each side of the sample are wound from a
single wire (niobium-titanium in copper-nickel matrix) and in the same orientation and
therefore form a Helmholtz-like split coil (the distance between the coils is slightly larger
than their effective radius), which creates a nearly homogeneous in-plane magnetic field
at the location of the device. At room temperature the coil has a resistance of R∥ ≈ 6kΩ,
which approximately corresponds to 2000 windings of superconducting wire on each
side. From the coil geometry and the number of windings, we estimate the current-to-
field conversion factor to be 70mT/A.

On the backside of the sample/PCB platform within the magnet bobbin is a second
small coil mounted for providing the out-of-plane magnetic field used to tune the SQUID
flux bias point, cf. Fig. 5.1. This out-of-plane coil can also be used to compensate for
a parasitic out-of-plane component of the in-plane field due to misalignments of the
sample/PCB with respect to the in-plane field axis (estimated to be around 2◦−3◦ from
the SQUID flux response). For in-plane fields B∥ . 25mT, however, the compensation is
not yet critical. For larger in-plane fields, vortices start to penetrate the film and there
is a dramatic reduction in the cavity quality factor observable. The room-temperature
resistance of the out-of-plane coil is R⊥ ≈ 120Ω which corresponds to approximately
400 turns of superconducting wire and to a conversion factor of 1mT/A.

The superconducting wires leading to each of the coils from the 3K plate are twisted
in pairs, in order to reduced the amount of captured flux noise. Furthermore, since the
critical temperature of the wire is about ∼ 12K, the wires can go unbroken until the 3K
stage. Above this plate, the wires are no longer superconducting and therefore a transi-
tion to normal conducting wires is required. For this, we connected each of the super-
conducting in-plane coil wires to 9 wires of a 24-line copper loom provided by Bluefors
and each of the out-of-plane coil wires to 3 wires of the loom. From the 3K stage until
room temperature the current flows in parallel through the respective loom wires, de-
creasing the additional heat load on the plate. With this approach we are able to send
I∥ ∼ 0.5A through the in-plane coil without any considerable heat added to any of the
plates and maintaining the fridge base temperature. At room temperature we are left
with 4 cables, two for each coil, which are used with individual directed current (DC)
sources to independently generate the magnetic fields.
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5.7.3. POWER CALIBRATION

In order to estimate the input power on the on-chip feedline of the device, we use the
thermal noise of the HEMT (High-Electron-Mobility Transistor) amplifier as calibration
method. The cryogenic HEMT amplifier thermal noise power is given by

PHEMT = 10 log

(
kBTHEMT∆ f

1mW

)
(5.11)

where kB is the Boltzmann constant, THEMT is the noise temperature of the amplifier,
which, according to the specification datasheet, is approximately 2K, and ∆ f = 2000Hz
is the measurement IF bandwidth. The calculated noise power is PHEMT =−162.6dBm,
or as noise RMS voltage ∆V = 1.66nV.
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Figure 5.7: Estimation of the frequency-dependent input line attenuation for the pump tone. The
shown data are obtained by measuring 501 traces in the shown frequency range using the vector network
analyzer shown in Supplementary Fig. 5.6. For each frequency point, we determine from the 501 traces
the signal-to-noise ratio and with the assumption of a frequency-independent HEMT noise temperature
and 2dB losses between the sample and the HEMT, we get the input line attenuation as plotted. The
gray area shows where the cavity was during the calibration. Due to its presence, the attenuation in
this range can not be considered a reliable value. Our experiments, however, mainly take place around
5.22GHz and 5.17GHz (labeled with I and II, respectively) and therefore the presence of the cavity
at around 5.26GHz does not lead to any calibration problems. We also note, that we observe almost
identical amplitude oscillations in the transmitted signal, indicating that we are indeed dealing with
strong cable resonances.

Taking into account the room temperature attenuators of 60dB as well as additional
3dB of room-temperature cable losses between the VNA output and the directional cou-
plers for the pump tones and assuming an attenuation between the sample and the
HEMT of 2dB we extract a frequency-dependent input attenuation for the pump tones
as shown in Supplementary Fig. 5.7. In addition and for confirmation, we perform a
fixed-frequency measurement of the signal-to-noise ratio using the pump signal gener-
ator itself and a spectrum analyzer for selected frequency points around 5.22 and 5.17
GHz. We observe agreement between the two methods better than 0.5dB.
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5.7.4. THE SQUID CAVITY

CIRCUIT MODEL

a b

Cc Cc

CC

2C L/2

LJ /2

L0 L0L1

Lm

La La

LJLJ

Z0 Z0 Z0 Z0

R

Figure 5.8: The circuit model. a Circuit equivalent of the SQUID cavity shown in Fig. 5.1. Each C
corresponds to one interdigitated capacitor (IDC) and Cc to the coupling capacitance to the feedline
with characteristic impedance Z0. The SQUID loop inductance Lloop = 2La + Lm has contributions
from the non-released arms La and from the loop part that acts as mechanical oscillator Lm. The
remaining linear inductances L1 and L0 correspond to the inductances of the circuit wires and IDCs and
each nanobridge Josephson junction is described by a Josephson inductance LJ. b shows a simplified
circuit model, where all linear contributions to the inductance are expressed through L/2, the nonlinear
Josephson inductance is in good approximation given by LJ/2 and the two IDCs are contained in the
single capacitance 2C . All internal losses of the circuit are captured by the resistor R. Another possible
version for the circuit equivalent is shown in Fig. 5.1 where all linear contributions to the inductance
are split symmetrically between the two inductors L.

A simplified circuit equivalent of the SQUID cavity used in this experiment is shown
in Supplementary Fig. 5.8a. We model it as a simple parallel RLC circuit capacitively cou-
pled by a coupling capacitance Cc to a microwave feedline with characteristic impedance
Z0 as shown in b, cf. also Ref. [162]. The resistance in this model captures all intracavity
losses. The resonance frequency, external and internal linewidth of the circuit shown in
b are given by

ω0 = 1√
(2C +Cc)

(
L
2 + LJ

2

) , κi = 1

R(2C +Cc)
, κe =

ω2
0C 2

c Z0

2(2C +Cc)
(5.12)

respectively.
Each of the two physical capacitors in the main circuit, cf. Fig. 5.1, is an interdig-

itated capacitor (IDC) with N = 148 fingers, each 100µm long and 1µm wide. With
the gap between two fingers of also 1µm and the relative permittivity of the Silicon
substrate εr = 11.7, we obtain for each of the IDCs C ≈ 824fF using the analytical ex-
pressions provided in Ref. [158]. The total capacitance is then approximately given by
Ctot = 2C +Cc ≈ 1.65pF, where we included also the (mostly negligible) coupling ca-
pacitance Cc ≈ 6.5fF. The value for Cc was obtained via the external cavity linewidth of
κe ≈ 2π ·110kHz, the feedline characteristic impedance Z0 = 50Ω and the resonance fre-
quency ω0 = 2π · 5.267GHz. Using the resonance frequency, we can also estimate the
total inductance as Ltot = 1

ω2
0Ctot

≈ 552pH.
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RESPONSE FUNCTION AND FITTING ROUTINE

Figure 5.9: Cavity response fitting and background-correction. Raw data for the cavity response S21
in the complex plane and in linear magnitude are shown in a and b as circles. Black line is a full fit
including a phase rotation factor and a complex, frequency-dependent background. In c and d the
corresponding data after a background correction and a corresponding phase factor rotation are shown
as circles, the corresponding background-corrected fit curves are shown as lines. Data correspond to
an in-plane field B∥ = 25mT and SQUID bias flux Φb = 0. Dashed lines in a and c show the real and
imaginary axes, respectively.

In the linear regime, a capacitively side-coupled LC circuit is described by the S21

response function

Sideal
21 = 1− κe

κi +κe +2i∆
(5.13)

with detuning of the probe tone from the resonance frequency

∆=ω−ω0 (5.14)

and the internal and external linewidths κi and κe, respectively. Implicitly, we assume
symmetric coupling to the left and right feedline part in this relation. Due to consider-
able cable resonances in our setup, however, this assumption might be not strictly valid.
We also observe, that for a consistent modelling of all our datasets, small adjustments
to κe in different experimental situations are leading to higher agreement between data
and theory.
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The different microwave components in the setup (cables, attenuators, directional
couplers, isolators etc) affect the ideal cavity transmission spectrum by amplitude and
phase modulations, and we consider a modification in the response function by intro-
ducing a frequency-dependent complex-valued microwave background. The modified
cavity response is written as

S21 = (α0 +α1ω)

(
1− κe e iθ

κi +κe +2i∆

)
e i (β1ω+β0) (5.15)

where we consider a frequency-dependent complex background

Sbg
21 = (α0 +α1ω)e i (β1ω+β0) (5.16)

and an additional, possible interference rotation of the resonance circle around its an-
chor point with the phase factor e iθ.

In our fitting routine the background is extracted by first excluding the cavity reso-
nance from the response and fitting the remaining data with Eq. (5.16). After complex
division of the data with the background model, the remaining cavity response is fit-
ted independently. As final step the original data are fitted with the full function for S21

including the background again using the obtained fit values from the first two indepen-
dent fits as starting values for the full fit. From the final fit, we remove the background
of the full dataset by complex division for the resonance data shown this paper. Also, we
correct for the additional rotation factor e iθ.

In Supplementary Fig. 5.9, we show an exemplary fit of the cavity response around
resonance as raw data and as background-corrected data in both, the complex plane
and in the magnitude of S21. From the fit to the data, taken at B∥ = 25mT and B⊥ = 0 (the
sweetspot), we obtain ω0 = 2π ·5.2672GHz, κi = 2π ·269kHz and κe ≈ 2π ·111kHz.

THE SQUID JOSEPHSON INDUCTANCE

The total flux Φ in a superconducting quantum interference device (SQUID) with non-
negligible loop inductance Lloop is given by

Φ

Φ0
= Φb

Φ0
+Lloop J (5.17)

whereΦb is the bias flux by external magnetic fields, J is the screening current circulating
in the SQUID loop and Φ0 = h

2e = 2.07 · 10−15 Tm2 is the flux quantum. Note that Lloop

contains both, the geometric and the kinetic inductance contribution to the inductance
of the SQUID loop.

In the absence of a bias current and for identical Josephson junctions with a sinu-
soidal current-phase relation, the circulating current is given by

J =−Ic sin

(
π
Φ

Φ0

)
(5.18)

with the zero-flux-bias of a single junction Ic. Using the screening parameterβL = 2Lloop Ic

Φ0
,

the relation for the total flux can be written as

Φ

Φ0
= Φb

Φ0
− βL

2
sin

(
π
Φ

Φ0

)
. (5.19)
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We use this equation to numerically calculate the total flux in the SQUID for a given
external flux.

With the total flux in the SQUID known, the Josephson inductance of a single junc-
tion

LJ(Φ) = Φ0

2πIc cos
(
π Φ
Φ0

) (5.20)

and the total Josephson inductance of the SQUID

LS(Φ) = LJ(Φ)

2
(5.21)

can be determined.

CAVITY FIELD DEPENDENCE

Using the flux-dependence of the SQUID Josephson inductance and our simplified cir-
cuit model, the resonance frequency of the cavity as function of the perpendicular bias
fluxΦ⊥ can be written as

ω0(Φ⊥) = ω0(0)√
Λ+ 1−Λ

cos
(
π Φ̃
Φ0

) (5.22)

with the linear inductance participation ratio

Λ= L

L+LJ0
(5.23)

and the total flux in the SQUID
Φ̃=Φ∣∣

Φb=Φ⊥ . (5.24)

The zero-bias junction inductance is hereby given as LJ0 = LJ(Φ= 0).
The first experimental step to fit the flux-dependence of the cavity resonance fre-

quency and to determine Josephson inductance LJ and screening parameter βL is a cal-
ibration of the bias flux axis and to find the current-to-flux conversion for the small coil
generating Φ⊥, respectively. Supplementary Fig. 5.10a shows as circles the experimen-
tally obtained resonance frequencies at B∥ = 0 for a sweep of the bias fluxΦ⊥. The dataset
combines the data points obtained during a bias flux upsweep and a downsweep. This
is necessary as the SQUID has a non-negligible loop inductance, which leads to a hys-
teretic flux response [120, 121, 162]. The distance between two neighboring flux archs
corresponds to one flux quantum Φ0 and via this procedure the current-to-flux conver-
sion is obtained. Subsequently, the flux-dependence ofω0 can be fitted using Eqs. (5.22)
and (5.19). From the fits, we obtain the zero-bias junction critical current Ic and the
screening parameter βL , the corresponding fit curves are shown as lines in Supplemen-
tary Fig. 5.10a.

From the fit at zero in-plane field we get Ic ≈ 2.6µA and a screening parameter βL ≈
0.7. Using LJ0 = Φ0

2πIc
, we get for the inductance of a single Josephson junction LJ0 ≈

127pH, which corresponds to a linear inductance participation ratioΛ≈ 0.89 and a total
SQUID loop inductance Lloop ≈ 278pH.
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Figure 5.10: Bias flux axis calibration and bias flux arch fitting. In a, the SQUID cavity resonance
frequancy vs flux bias Φ⊥ is shown for B∥ = 0. Red circles correspond to the resonance frequencies
obtained during a flux upsweep, blue larger circles are data obtained during a flux downsweep. The
hysteretic flux jumps around Φ⊥/Φ0 ∼ 0.5 indicate a non-negligible loop inductance of the SQUID
[120, 121]. The distance between the two shown archs corresponds to one flux quantum Φ0 and allows
for a calibration of the flux axis. Lines correspond to fits using Eq. (5.22) in combination with Eq. (5.19).
b, a single arch for three different in-plane magnetic fields as labelled in the legend. With increasing B∥,
the sweetspot resonance frequency ω0(Φ⊥ = 0) slightly decreases and the width of the arch increases,
indicating an increase in SQUID screening parameter βL . Circles are data, lines are fits. Fit parameters
are given and discussed in the text.

Enabling the optomechanical coupling between the nanobeam and the SQUID cav-
ity requires an additional in-plane magnetic transduction field, and therefore we also
record the resonance frequency flux-dependence at the in-plane fields of B∥ = 21mT and
B∥ = 25mT, where we operate the device for the optomechanical experiments. The result
is shown in Supplementary Fig. 5.10b as circles. From the data, we observe a small de-
crease of the sweetspot resonance frequency with increasing B∥. In addition, we observe
a slight widening of the flux arch with increasing B∥, indicating a nonlinear increase of
the kinetic contribution to the SQUID loop inductance and a consequently increasedβL .
From the fits, we get for both in-plane fields a slightly reduced critical junction current
Ic∥ ≈ 2.2µA and slightly increased screening parameters βL,21 ≈ 0.79 and βL,25 ≈ 0.82.
These value correspond to Λ∥ ≈ 0.865, Lloop,21 ≈ 371pH and Lloop,25 ≈ 385pH. We ob-
serve that the loop inductance seems to increase by more than both, the Josephson in-
ductance and the linear circuit inductance due to the in-plane field. Our suspicion is
that this effect is caused by a modification of the nanobridge current-phase relation in
the in-plane field, but for a final conclusion more experiments would have to be con-
ducted.

For the optomechanical multi-photon interaction two more quantities of the SQUID
cavity and their flux dependence are highly important. The first is the flux responsivity
F = ∂ω0/∂Φb, i.e., the change of resonance frequency with change of bias flux through
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the SQUID loop. It is directly proportional to the optomechanical single-photon cou-
pling rate g0, cf. section 5.7.5. The responsivity is identical to the slope of the flux tun-
ing curve shown in Supplementary Fig. 5.10b and the numerically obtained results for
both, experimental data and the fit curve, are shown in Supplementary Fig. 5.11a. The
bias-flux operation points relevant for this paper are marked with a dotted and dashed
line, respectively, and labeled as "I" and "II". The corresponding flux responsivities are
FI ≈ 2π · 300MHz/Φ0 and FII ≈ 2π · 520MHz/Φ0, respectively, and nearly identical to
each other for the two chosen in-plane fields. The second important quantity is the Kerr
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Figure 5.11: Flux responsivity and Kerr anharmonicity at the device operation points. In a, we plot
the numerically obtained magnitude of the flux responsivity F = ∂ω0/∂Φ⊥ vs bias flux Φ⊥ for non-
vanishing magnetic in-plane fields. b shows the Kerr anharmonicity vs bias flux for B∥ = 0, B∥ = 21mT
and B∥ = 25mT. The two operation points relevant for this paper are marked by vertical dotted and
dashed lines and labeled with I and II, respectively.

anharmonicity related to the nonlinear Josephson inductance of the SQUID. It is given
by

K(Φ⊥) =− e2

2ħCtot

(
LS(Φ⊥)

Ltot(Φ⊥)

)3

(5.25)

and depends in addition on the in-plane field via the in-plane dependence of the nanobridge
critical current or Josephson inductance, respectively. The result of this calculation,
based on the flux arch fits of Supplementary Fig. 5.10b is shown in Supplementary Fig. 5.11b.
The dependence of the anharmonicity on flux bias Φ⊥ shows a very similar trend for all
in-plane fields with different starting values at the sweetspot Φ⊥ = 0. The completely
unbiased cavity has K ≈ −2π · 17.5kHz. For an in-plane field of B∥ = 21mT, we obtain
KI,21 ≈−2π ·39kHz and KII,21 ≈−2π ·54kHz at the operation points "I" and "II", respec-
tively, and for B∥ = 25mT, we find KI,25 ≈ −2π ·41kHz and KII,25 ≈ −2π ·56kHz. As the
difference between the two in-plane field is small and subject to uncertainties due to
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uncertainties in the circuit parameters, we will work with the same approximate anhar-
monicities for both in-plane fields of KI ≈−2π ·40kHz and KII ≈−2π ·55kHz.

5.7.5. THE OPTOMECHANICAL SINGLE-PHOTON COUPLING RATE

The optomechanical single-photon coupling rate in flux-mediated optomechanics is
given by [70, 162]

g0 = γFB∥lmxzpf (5.26)

where F is the cavity frequency flux responsivity, B∥ is the in-plane magnetic field, lm

is the length of the mechanical nanobeam and γ is a scaling factor on the order of unity
taking into account the mode shape of the beam. The zero-point fluctuation amplitude
of the mechanical displacement is given by

xzpf =
√

ħ
2mΩm

(5.27)

where m is the effective mass of the beam andΩm its resonance frequency.
For our nanobeam, cf. Fig. 5.1b, we get from a scanning electron micrograph the

length as approximately lm = 18µm. Using the beam film thickness of ∼ 70nm, its width
of ∼ 500nm and the density of Aluminum ρAl = 2700kg m−3, we get a total mass of m =
1.7·10−15 kg. In the experiment, we observe a mechanical resonance frequencyΩm ≈ 2π·
5.32MHz and therefore, we find a zero-point fluctuation amplitude of xzpf ≈ 30 ·10−15 m
= 30fm.

With the flux responsivities shown in Supplementary Fig. 5.11a and assuming γ≈ 1,
we calculate the corresponding single-photon coupling rates g0, the result is shown in
Supplementary Fig. 5.12. For the different operation points, we obtain single-photon
coupling rates g0 between g min

0 ≈ 2π ·1.78kHz (point I) and g max
0 ≈ 2π ·3.57kHz (point

II). For all presented results, we will add the corresponding coupling rates either in the
figure legend or in the caption.
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Figure 5.12: The optomechanical single-photon coupling rate. Using the flux responsivity F from the
flux arch fits and the estimated mechanical zero-point-amplitude xzpf, we calculate the single-photon
coupling rate g0 for both in-plane fields as labelled in the legend. The two operation points "I" and
"II" are marked with dotted and dashed lines, respectively.
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5.7.6. THE DRIVEN KERR CAVITY

EQUATION OF MOTION

We model the side-coupled SQUID cavity including the Kerr nonlinearity with the equa-
tion of motion

α̇=
[

i
(
ω0 +K|α|2)− κ

2

]
α+ i

√
κe

2
Sin (5.28)

where the intracavity field α is normalized such that |α|2 = nc is the intracavity photon
number and |Sin|2 corresponds to the input field photon flux.

SINGLE-TONE SOLUTION

If the cavity is driven with a single tone at frequency ωd, the input field is given by

Sin = Sde i(ωdt+φd) (5.29)

and for the intracavity field we make the Ansatz

α=αde iωdt (5.30)

with real-valued Sin and αd. Any phase difference between the drive and the intracavity
field is captured in the drive phase φd. Inserting drive and intracavity field Ansatz into
the equation of motion gives

αd

[κ
2
+ i

(
∆d −Kα2

d

)]= i

√
κe

2
Sde iφd (5.31)

where ∆d = ωd −ω0 is the detuning between drive and undriven cavity resonance fre-
quency. Multiplication of this equation with its complex conjugate leads to the determi-
nation polynomial for the drive intracavity photon number nd =α2

d

K2n3
d −2K∆dn2

d +
(
∆2

d +
κ2

4

)
nd −

κe

2
S2

d = 0. (5.32)

In general, this polynomial has three roots for nd. The real-valued solutions correspond
to physical states and for certain parameters all three solutions are real-valued. This
regime corresponds to the bifurcation regime, where two of the three oscillator states
are stable, one low- and one high-amplitude solution. The middle solution is unstable
and irrelevant for the experiments described here. The phase difference between drive
and intracavity oscillations can be found via

φd = atan2
(
−κ

2
,∆d −Knd

)
. (5.33)

NONLINEAR CAVITY RESPONSE MODELING

We measure the power dependence of the SQUID cavity response S21 by means of a vec-
tor network analyzer at the bias flux sweetspot and at B∥ = 25mT. The result is shown and
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Figure 5.13: Nonlinear cavity single-tone response. a shows the magnitude and b the phase of the
SQUID cavity response S21 at the flux sweetspot B⊥ = 0 and at B∥ = 25mT for increasing probe power.
Lowest probe power is shown in red at the top, highest power at the bottom in blue. Subsequent curves
are offset by −3dB in a and −0.4 in b with the unshifted curves at the top. Circles are data, lines
correspond to the model, for details see text. To model the experimentally obtained data accurately,
we have to consider a power-dependent linewidth. The linewidths we obtain by fitting the nonlinear
response curves with κ as fit parameter are shown in c as circles vs intracavity photons on resonance.
The line in c shows a fit based on the two-level-system model for nonlinear dissipation in superconducting
circuits. Colored circles in c correspond to the equally colored data in a,b.

discussed in Supplementary Fig. 5.13, where in a the magnitude and in b the phase of the
complex S21 is plotted. The data shown have been background-corrected as described
above using the background fit of the first line. To model the response, we employ the
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single-tone model described in the previous section and calculate the response via

S21 = 1+ i

√
κe

2

αd

Sd

= 1+ i

√
κe

2

√
ħωdnd

Pd
e−iφd (5.34)

where Pd is the drive power on the on-chip microwave feedline. For the model, we
use the Kerr anharmonicity obtained from the independent cavity modeling K = −2π ·
30kHz, the resonance frequency ω0 = 2π · 5.2672GHz and the corresponding external
linewidth κe = 2π ·106.5kHz as obtained from the lowest-power response of the current
dataset.

As apparent from the increase in resonance absorption dip depth and the reduction
of total linewidth with increasing drive power, we also have to consider nonlinear dis-
sipation, that decreases with increasing power. As first step in the nonlinear resonance
analysis, we fit each of the nonlinear response curves using the Kerr polynomial and us-
ing a single decay rate for each power as fit parameter. The result of this procedure for
κ is shown in Supplementary Fig. 5.13c, where we plot the fit linewidth vs the photon
number nd on resonance. We model this decrease of linewidth with the functional de-
pendence for two-level systems

κi(nd) = κ0 + κ1√
1+ nd

ncrit

(5.35)

where ncrit describes the characteristic photon number for two-level saturation. From a
fit to the linewidth data we obtain κ0 = 2π · 209kHz, κ1 = 2π · 145kHz, and ncrit ≈ 0.26,
cf. line in Supplementary Fig. 5.13c. As next and final step, we implement this analytical
function into the Kerr polynomial and solve for the final photon number at each drive
power and detuning. To find convergence in the solution for the photon number nd due
to the power dependent κ we have to iterate the polynomial solution multiple times in
this approach for each frequency point, feeding back in each iteration the κ(nd) from
the previous iteration. The result is added as lines in Supplementary Fig. 5.13a and b
and shows good agreement between experimental data and theoretical modeling.

The only free parameter used in the end is the in-fridge attenuation between the VNA
output and the sample, and we find best agreement for choosing GSTK = −89.2dB. This
value is very close to the independently estimated probe attenuation of GSNR =−89.5dB
at the corresponding frequency, cf. Supplementary Fig. 5.7 with consideration that the
probe attenuation is 3dB larger than the shown pump attenuation.

LINEARIZED TWO-TONE SOLUTION

If the Kerr cavity is driven by a strong drive tone Sd and a weaker second tone Sp with
frequency ωp, the total input field is given by

Sin = Sde i(ωdt+φd) +Spe iωpt (5.36)
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where we again choose Sd to be real-valued. As Ansatz for the intracavity field, we then
use

α=αde iωdt +γ−e iωpt +γ+e i(2ωd−ωp)t (5.37)

where γ− and γ+ are complex-valued and γ+ corresponds to the idler field of γ−, gen-
erated by degenerate four-wave-mixing due to the Kerr nonlinearity. Note that with this
choice of Ansatz, we omit all higher order Fourier components to the total intracavity
field, as in the operation regime of our device, they can be neglected to first order. In-
serting drive and intracavity field Ansatz into the equation of motion yields

iωdαde iΩdpt + iωpγ−+ i
(
2ωd −ωp

)
γ+e i 2Ωdpt =

[
iω0 − κ

2

]
αde iΩdpt +

[
iω0 − κ

2

]
γ−

+
[

iω0 − κ

2

]
γ+e i 2Ωdpt + iK

[
nd +|γ−|2 +|γ+|2

](
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
+ iKαde iΩdpt

[
γ∗−+γ∗+e−i 2Ωdpt

](
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
+ iKαde−iΩdpt

[
γ−+γ+e i 2Ωdpt

](
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
+ iK

[
γ−γ∗+e−i 2Ωdpt +γ∗−γ+e i 2Ωdpt

](
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
+ i

√
κe

2
Sde iΩdpt e iφd + i

√
κe

2
Sp. (5.38)

With nd+|γ−|2+|γ+|2 ≈ nd and after omitting all terms not linear in the small quantities
γ−,γ+, we obtain[κ
2
+ i (∆d −Knd)

]
αde iΩdpt +

[κ
2
+ i

(
∆p −Knd

)]
γ−+

[κ
2
+ i

(
∆p −Knd +2Ωdp

)]
γ+e i 2Ωdpt

= iKnd

[
γ∗−e i 2Ωdpt +γ∗+

]
+ iKnd

[
γ−+γ+e i 2Ωdpt

]
+ i

√
κe

2
Sde iΩdpt e iφd + i

√
κe

2
Sp, (5.39)

where ∆d = ωd −ω0 and ∆p = ωp −ω0 describe the detunings of the two input field fre-
quencies from the undriven cavity resonance. Sorting for frequency contributions leaves
us with three equations [κ

2
+ i (∆d −Knd)

]
αd = i

√
κe

2
Sde iφd (5.40)[κ

2
+ i

(
∆p −2Knd

)]
γ−− iKndγ

∗
+ = i

√
κe

2
Sp (5.41)[κ

2
+ i

(
∆p −2Knd +2Ωdp

)]
γ+− iKndγ

∗
− = 0. (5.42)

The first of these three equations is the steady-state equation for the single-tone case
and can be solved for nd using the approach presented above. To solve the other two
coupled equations, we use ∆p =∆d −Ωdp and define the susceptibilities

χp = 1
κ
2 + i

(
∆d −2Knd −Ωdp

) , χ′p = 1
κ
2 + i

(
∆d −2Knd +Ωdp

) (5.43)
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and

χg =
χp

1−K2n2
dχpχ

′∗
p

(5.44)

and get

γ− = iχg

√
κe

2
Sp (5.45)

γ+ = Kndχ
′
pχ

∗
g

√
κe

2
Sp (5.46)

= iKndχ
′
pγ

∗
− (5.47)

THE DRIVEN KERR-MODES AND THEIR RESPONSE

To find the resonance frequency of the quasi-mode with susceptibility χg, we solve for
the complex frequency ω̃=ωp, for which χ−1

g = 0. Therefore, the condition is

1−K2n2
dχpχ

′
p = 0 (5.48)

which is solved by

ω̃1/2 =ωd + i
κ

2
±

√
(∆d −Knd) (∆d −3Knd). (5.49)

where the real part corresponds to the resonance frequency and the imaginary part cor-
responds to half the mode linewidth. So, as a consequence of the presence of the strong
drive, the system has two resonances, which are split symmetrically with respect to the
drive frequency ωd. The two Kerr-modes correspond to the cases when the cavity field
γ− is resonant or when its idler field γ+ is resonant and they have been discussed also in
the context of nonlinear optical cavities [200, 201] and mechanical oscillators [202]. For
the experiments described here, the argument of the square root will always be positive
and hence, we get as resonance frequency of signal and idler mode

ωs/i =ωd ±
√

(∆d −Knd) (∆d −3Knd) (5.50)

and both modes are having a constant linewidth of κ. The most relevant regime for our
experiment is given by ∆d < 0 and ∆d <Knd. Then, the signal resonance is given by

ωs =ωd −
√

(∆d −Knd) (∆d −3Knd) (5.51)

and the idler resonance by

ωi =ωd +
√

(∆d −Knd) (∆d −3Knd). (5.52)

Hence, if Sp is a probe tone scanning the driven SQUID cavity, we expect the response
to be given by

S21 = 1+ i

√
κe

2

γ−
Sp

(5.53)

and to observe two resonances symmetrically positioned around the drive, that corre-
spond to the two Kerr-modes of the driven Kerr cavity.
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KERR CAVITY TWO-TONE RESPONSE MODELING

To observe and model the two-tone response of the driven Kerr cavity, we set a drive tone
with fixed power Pd and fixed frequencyωd to a point of non-zero flux bias and sweep the
bare resonance frequency of the cavity ω0 through the drive frequency by sweeping the
bias flux Φ⊥. For each flux bias value during the sweep, we record a response trace S21

of the SQUID cavity using the VNA. In Supplementary Fig. 5.14 we show in comparison
the result of such a measurement with and without parametric drive. Whenω0 ∼ωd, the
flux-dependence of the cavity is modified considerably with respect to the case without
a drive. The resonance frequency of the observed mode becomes nearly constant with
flux and on the opposite side of the drive, a second resonance line appears. This second
mode on the right side of the drive tone with net transmission gain indicates that we are
entering the quasi-mode regime and have Josephson parametric amplification in both
Kerr-modes.

Fig. 5.2 shows and discusses a similar dataset in more detail including linescans and
also analyzing the linewidths and the Kerr-mode resonance frequency and comparing
the experimentally obtained values with theoretical calculations. The overall behaviour
of cavity and Kerr-modes is in excellent agreement with the two-tone model of a Kerr
oscillator as demonstrated by the high-level agreement between theory lines and exper-
imental data for the resonance frequencies. The only subtlety we have to consider addi-
tionally is an effective linewidth broadening due to low-frequency flux noise out of the
two-mode regime. From the data, it is obvious that the lineshape is not just broadened
but distorted also on timescales comparable to the measurement time. Although due to
this noise modulation the cavity response is not anymore described by its ideal response
with an increased linewidth [205], we fit it using Eq. (5.15). The apparent κ′ we obtain
from this procedure is however still a good measure for the effective linewidth. These
flux-noise broadened linewidths are considerably larger than the intrinsic energy decay
rate of the cavity and to take the noise-broadening and the two-level systems simultane-
ously into account we model the noise-free linewidth using

κi = κ0 +κ1

1− nd/ncrit√
1+nd/ncrit

1+√
1+nd/ncrit

(∆d/Γ2)2 +
(
1+√

1+nd/ncrit

)2

 (5.54)

where the first term κ0 is the bare power and flux-independent decay rate, and the sec-
ond term describes the generalized two-level system impact for detuning between drive
and cavity/probe with the two-level system dephasing rate Γ2 [206]. Finally, we phe-
nomenologically take into account a broadening of the linewidth using

κ′i = κi

√
1+|F |2σ2

Φ
(5.55)

where F is the flux responsivity and σΦ is the rms value of the flux fluctuations through
the SQUID. This relation seems to resemble closely what has been found numerically for
tunable and frequency-fluctuating cavities [205]. The line in Fig. 5.2 is a modeling of the
experimentally obtained linewidths with Eqs. (5.54) and (5.55). The fit parameters are
κ0 = 2π ·200kHz, κ1 = 2π ·145kHz, ncrit = 0.26, Γ2 = 2π ·300kHz and σΦ = 5.1 ·10−3Φ0.
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Figure 5.14: Probe tone response of the SQUID cavity with and without parametric drive. a shows
the color-coded cavity response to a weak probe tone S21 in a small flux and frequency window around
operation point I. The cavity absorption is visible as bright and fluctuating feature. In b the same
measurement in the same flux and frequency range is shown, but in presence of a fixed frequency drive
tone at ωd = 2π ·5.2213GHz. The dashed line shows the theoretical resonance frequency without drive.
When ωd ≈ω0, the response of the cavity deviates significantly from the undriven response. Two modes
are visible, one on the left side of the drive with increased absorption and reduced linewidth compared
to the undriven case, and a second on the right side of the drive as a peak. The increased depth and
reduced linewidth of the signal mode absorption dip reflects both, reduced impact of flux noise on the
cavity line and Josephson parametric amplification. The Josephson amplification is also apparent in
the idler mode on the right side of the drive, which shows net gain of the input signal. Due to the
underlying four-wave mixing process, the resonance frequencies of the two Kerr-modes with respect to
the parametric drive are equal in magnitude and opposite in sign.

Note that the values used and obtained here are also in good agreement with the num-
bers we extracted from the modeling of the nonlinear single-tone response.

For the flux operation point II, we can use almost exactly the same parameters, ex-
cept for a slightly increased κ0 = 2π ·210kHz.
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5.7.7. LINEARIZED KERR OPTOMECHANICS

CLASSICAL EQUATIONS OF MOTION

To model the optomechanical system with a Kerr nonlinearity, we use the classical equa-
tions of motion (EOM)

ẍ = −Ω2
mx −Γmẋ + ħG

m
|α|2 (5.56)

α̇ =
[

i
(
ω0 −Gx +K|α|2)− κ

2

]
α+ i

√
κe

2
Sin (5.57)

with the mechanical displacement x, the mechanical resonance frequencyΩm, the me-
chanical damping rate Γm, and the cavity pull parameter

G =−∂ω0

∂x
=−FB∥lm (5.58)

These equations are identical to the EOMs of linear classical optomechanics [56], except
for the additional Kerr term K|α|2 in the equation for the intracavity field.

SINGLE-DRIVE SOLUTION

For a single cavity drive field

Sin = Sde i(ωdt+φd) (5.59)

we make the Ansatz

x = x0 (5.60)

α = αde iωdt (5.61)

and look for the steady-state solution ẍ = ẋ = 0. For the equilibrium offset displacement
x0, we obtain

x0 = ħG

Ω2
mm

nd = nd
2g0

Ωm
xzpf (5.62)

where we used

g0 =Gxzpf, xzpf =
√

ħ
2mΩm

. (5.63)

For the intracavity field amplitude αd, we find[κ
2
+ i

(
∆d −Kα2

d

)]
αd = i

√
κe

2
Sde iφd . (5.64)

with the modified Kerr anharmonicity

K=K− 2g 2
0

Ωm
. (5.65)

As for our device K > 2π ·104 Hz and
2g 2

0
Ωm

< 2π ·10Hz, we can assume in good approxi-

mation K ≈K. From here it is straightforward to calculate the intracavity drive photon
number nd and the phaseφd using the third order polynomial as for the bare Kerr cavity.
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SINGLE-DRIVE KERR BACKACTION

If we allow also for fluctuations of the displacement and the intracavity field, we get the
Ansatz

x = x0 +δx(t ) (5.66)

α = αde iωdt +δα(t )e iωdt (5.67)

and the equation of motion for the mechanical oscillator becomes

δẍ =−Ω2
mx0 −Ω2

mδx −Γmδẋ + ħG

m

(
nd +|δα|2)+ ħG

m
αd

(
δα+δα∗)

. (5.68)

For the intracavity field, we find

iωdαd + iωdδα+δα̇ =
[

iω0 − κ

2

]
αd +

[
iω0 − κ

2

]
δα

− iGαdx0 − iGαdδx − iGx0δα− iGδαδx

+ iK
(
nd +|δα|2) (αd +δα)

+ iKαd
(
δα+δα∗)

(αd +δα)

+ i

√
κe

2
Sde iφd . (5.69)

For the linearization, we omit now all terms not linear in the small quantities δα and δx,
we apply K≈K and remove the steady state solution. The remaining equations are

δẍ = −Ω2
mδx −Γmδẋ + ħGαd

m

(
δα+δα∗)

(5.70)

δα̇ =
[
−i (∆d −2Knd)− κ

2

]
δα+ iKndδα

∗− iGαdδx (5.71)

which can be Fourier-transformed to

δx(Ω)
[
Ω2

m −Ω2 + iΩΓm
] = ħGαd

m

[
δα(Ω)+δα∗(−Ω)

]
(5.72)

δα(Ω)
[κ

2
+ i (∆d −2Knd +Ω)

]
= iKndδα

∗(−Ω)− iGαdδx(Ω). (5.73)

Using the convention δα= δα∗(−Ω), the observation that δx(Ω) = δx∗(−Ω) and the def-
initions

χm = 1

Ω2
m −Ω2 + iΩΓm

, χp = 1
κ
2 + i (∆d −2Knd +Ω)

(5.74)

we write these equations as

δx

χm
= ħGαd

m

(
δα+δα

)
(5.75)

δα = iKndχpδα− iGχpαdδx (5.76)

δα = −iKndχpδα+ iGχpαdδx (5.77)

(5.78)
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and solve for

δα = −iχgαdG
(
1− iKndχp

)
δx (5.79)

δα = iχgαdG
(
1+ iKndχp

)
δx. (5.80)

Note that here we used the earlier definition of the two-tone Kerr susceptibility

χg =
χp

1−K2n2
dχpχp

. (5.81)
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Figure 5.15: Linearized dynamical Kerr backaction in the sideband-unresolved regime. We calculate the
cavity response and the dynamical Kerr backaction for a sideband-unresolved optomechanical system
with parameters close to the device discussed in Ref. [71]. In a, we plot the magnitude of the transmission
matrix element S21 at a side-coupled cavity with a resonance frequency ω0 = 2π · 8.167GHz, a total
linewidth κ= 2π ·2.8MHz, an external linewidth κe = 2π ·1.4MHz and an anharmonicity K=−2π ·2.5kHz
for varying drive powers. We chose the drive powers such that the characteristic Duffing-like tilting of
the resonance line to the left is clearly visible and keep the highest drive power below bifurcation. Using
the obtained intracavity photon numbers nd, a mechanical resonance frequency Ωm = 2π · 274.4kHz,
an optomechanical single-photon coupling rate g0 = 2π ·57Hz and our model presented in the text, we
subsequently calculate the optical damping Γopt and the optical spring δΩm induced by the drive in a Kerr
cavity. The result is plotted in panels b and c, respectively, and seems to agree well with the experimental
results reported in [71]. It is furthermore interesting to compare the obtained dynamical Kerr backaction
with the dynamical backaction for a completely identical system but without anharmonicity. The
corresponding calculations for the linear system K = 0 are shown as insets. The most striking and
exciting difference is the eightfold enhancement of the optical damping on the "red" side of the Kerr
cavity. This enhancement can also be understood by the increased slope of the intracavity field [145],
cf. a, and the subsequently enhanced asymmetry for cavity photon up-scattering and down-scattering
compared to the linear case. Different lines in each panel correspond to different drive powers and the
detuning ∆ labelling the x-axes corresponds to the detuning from the zero-power resonance frequency
ω0.

Inserting everything into the equation of motion for the mechanical oscillator, we
obtain for a (real-valued) external driving force Fex(Ω)

δx =χeff
m

Fex

m
(5.82)
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with the effective mechanical Kerr susceptibility

1

χeff
m

=Ω2
m −Ω2 + iΩΓm + i 2ΩmΣk (5.83)

where
Σk = g 2

α

[
χg

(
1− iKndχp

)
−χg

(
1+ iKndχp

)]
(5.84)

describes the dynamical backaction of a single-tone driven Kerr cavity to the mechani-
cal oscillator with the multi-photon coupling rate gα =αdg0 =p

ndg0. We note, that the
expression for Σk is formally equivalent to the dynamical backaction in a linear cavity.
The first term in square brackets describes the quasi-mode susceptibility χg for the blue
motional sideband field (cooling), while the second term – its conjugate at the opposite
side of the drive tone χg – is responsible for the red motional sideband field (amplifi-

cation). The additional factors in parentheses
(
1− iKndχp

)
and

(
1+ iKndχp

)
take into

account that the blue and red motional sidebands are interfering with each other due
to the Kerr-drive induced four-wave mixing. The blue motional sideband coincides with
the idler field of the red sideband and vice versa and their interference will contribute
and modify the simple picture of dynamical backaction in a linear cavity.

For a high quality factor mechanical resonator and in the weak-coupling regime, we
can approximateΩ≈Ωm and get

1

χeff
0

= Γm

2
+ i (Ω−Ωm)+Σk(Ωm) (5.85)

with

Σk(Ωm) = g 2
α

[
χg(Ωm)

(
1− iKndχ

∗
p(−Ωm)

)
−χ∗g (−Ωm)

(
1+ iKndχp(Ωm)

)]
. (5.86)

Note that χeff
m and χeff

0 do not have the same dimension and 2iΩmχ
eff
m ≈ χeff

0 for Ω≈Ωm.
Nevertheless we will call both a susceptibility for simplicity.

The optical spring δΩm and optical damping Γopt are then given by

δΩm = −Im[Σk(Ωm)] (5.87)

Γopt = 2Re[Σk(Ωm)] . (5.88)

Very recently, there has been an experimental report on dynamical backaction with a
SQUID Kerr cavity in the sideband-unresolved regime [71] and we demonstrate in Sup-
plementary Fig. 5.15 that our expressions lead to very similar results to the ones reported
in Ref. [71] using parameters comparable with the reported ones.

Using our expressions for the Kerr backaction, we can also model with high accuracy
the regimes for mechanical self-oscillation induced by the strong parametric cavity drive
in the device presented here. To do this, we perform a similar experiment to the one dis-
cussed in Fig. 5.2, but at bias flux operation point II. At this operation point, we have a
larger g0 ∼ 2π · 3.56kHz as well as a larger Kerr nonlinearity K ≈ −2π · 55kHz. In addi-
tion, we use a slightly higher drive power. The result of the probe tone transmission S21

for a bias flux sweep of the cavity resonance through the parametric drive tone is shown
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Figure 5.16: Observing and modeling Kerr-backaction induced mechanical self-oscillations. a Magni-
tude of the cavity response S21 vs SQUID flux bias around operation point II in presence of a strong
drive with ωd = 2π ·5.1721GHz. The red dashed line shows the expected resonance frequency in absence
of a drive. In the response, five regimes can be discriminated, which are described in detail in the
text. Black horizontal dashed lines show the boundaries of the different regimes, which are closely
related to the dynamical Kerr backaction onto the mechanical resonator. b shows the calculated optical
damping for the flux range shown in a. The two solid red lines are the result for g0 = 2π ·3.4kHz and
g0 = 2π ·3.7kHz, the red-shaded area captures the range in between these values. For two particular
flux ranges (which correspond to two different ranges of detunings between the bare cavity and the
parametric drive and therefore to different intracavity drive photon numbers) the total damping rate
of the mechanical oscillator with a intrinsic damping rate of Γm ≈ 2π ·10Hz becomes negative. These
ranges are indicated by gray areas and the threshold Γtot < 0 is indicated by a vertical black line. Here,
the mechanical oscillator will become unstable and undergoes self-oscillations. These self-oscillations
induce oscillations of the SQUID cavity resonance frequency due to the optomechanical interaction,
which will in turn lead to the observation of multiple replicas of the cavity and idler modes in regime
2 and regime 4. c-f show individual linecuts of the cavity response shown in a, one for each regime
from 1 to 4, where regime 1 corresponds to the highest bias flux values. In the regimes 2 and 4, shown
in panels d and f, respectively, these Kerr-mode replicas are visible and labeled with sX and iX with
X = 1,2,3. The original signal and idler Kerr modes are labeled with s and i.
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and discussed in Supplementary Fig. 5.16. The red dashed line shows how the bare cav-
ity resonance frequency would be moving with bias flux Φ⊥ in absence of a drive with
frequency ωd. We can discriminate between five different regimes in the displayed data
set.

• Regime 1: For the highest bias flux values, the cavity follows the undriven be-
haviour and its resonance frequency increases with reduced flux. The cavity linewidth
and shape is significantly distorted by low-frequency flux noise. Panel c shows a
linecut in this regime with a very broad and noisy single cavity absorption dip.

• Regime 2: At approximately Φ⊥/Φ0 ∼ 0.476, the drive is positioned close to the
blue sideband of the cavity ωd ≈ ω0 +Ωm and multiple resonance lines appear
in S21, four absorption modes and four gain modes are visible. The frequency dis-
tance between two neighboring absorption modes or two neighboring gain modes
is always the mechanical frequency ∆ω ≈ Ωm. The appearance of a multiple-
modes response is characteristic for a cavity with a strongly oscillating resonance
frequency. In our device, the behaviour in this regime is generated and explained
by the optomechanical instability and mechanical self-oscillations induced by the
parametric drive being at the same time a very strong optomechanical blue-sideband
pump tone. In panel b, we plot the calculated optical Kerr damping based on
our equations for the dynamical backaction and on the independently determined
device parameters. It is clearly visible that regime 2 corresponds to negative op-
tomechanical damping, which exceeds the intrinsic mechanical linewidth Γm ≈
2π · 10Hz and therefore the mechanical oscillator is in the instability regime of
self-oscillations. In panel d, a linecut of regime 2 is shown. The original cavity
is labeled with "s" and its oscillation-induced replicas with "s1", "s2", and "s3". In
addition, we observe 4 versions of the idler Kerr-mode as small peaks, where the
original mode is labelled with "i" and its replicas with "i1", "i2", and "i3".

• Regime 3: For 0.462 .Φ⊥/Φ0 . 0.468 the observed resonances return to a single
absorption dip on the left side of the drive and a single small gain mode on the right
side of the pump, indicating that the cavity frequency is not strongly oscillating
anymore. A linecut in this regime is shown in panel e.

• Regime 4: For 0.453 . Φ⊥/Φ0 . 0.462 the negative optical damping once again
exceeds the intrinsic mechanical linewidth and a second regime of instability is
entered. A linecut in this regime is shown in panel f, where three signal-modes
and three idler-modes are visible and labeled as in regime 2. As the frequency dif-
ference between signal and idler Kerr-mode in this regime is close to the mechan-
ical frequency, each mode almost overlaps with one replica of the corresponding
mirror-mode and they form dip-peak pairs.

• Regime 5: For Φ⊥/Φ0 . 0.453 the cavity jumps to the low-amplitude oscillation
branch and the impact of both, the parametric drive and the dynamical backac-
tion on the cavity lineshape become negligible. The cavity continues to shift with
flux just as the undriven cavity would do. A linecut in this regime is not explicitly
shown.
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We note again that for the calculation of the Kerr backaction and the instability regimes
as shown in panel b, the only free parameter was the line attenuation for the drive tone,
which was adjusted to −81.5dB for a good agreement between theory and experiment, a
value very close to what was obtained from the line calibration in section 5.7.3 for opera-
tion point II. The other parameters used here are ω0,K,F ,Ωm,Γm,κe,κ0,κ1,ncrit, Γ2,σΦ
and they were all obtained from independent measurements or taken from theoretical
estimates in the case of g0.

PHONON POPULATION WITH KERR BACKACTION

To calculate the equilibrium phonon population in the mechanical oscillator with Kerr
backaction, we will use the linearized equations of motion for the quantum fields â, â†

and b̂, b̂† representing the classical intracavity fluctuations δα,δα∗ and β,β∗ with δx =
xzpf

(
β+β∗)

, respectively. For the input noise, we use ζ̂m for the mechanical oscillator

and ξ̂i, ξ̂e for the internal and external cavity baths, respectively. We denote the input
noise operators of the cavity at different frequencies with subscripts "+" and "−". The
equations of motion become

˙̂b = iΩmb̂ − Γm

2
b̂ − i gα

(
â + â†

)
+

√
Γmζ̂ (5.89)

˙̂a =
[
−i (∆d −2Knd)− κ

2

]
â + iKndâ† − i gα

(
b̂ + b̂†

)
+p

κeξ̂e +p
κiξ̂i (5.90)

or in Fourier space and with the equations for the creation operators too

b̂

χ0
= −i gα

(
â + â†

)
+

√
Γmζ̂ (5.91)

b̂†

χ0
= i gα

(
â + â†

)
+

√
Γmζ̂

† (5.92)

â

χp
= iKndâ† − i gα

(
b̂ + b̂†

)
+p

κeξ̂e++p
κiξ̂i+ (5.93)

â†

χp
= −iKndâ + i gα

(
b̂ + b̂†

)
+p

κeξ̂
†
e−+p

κiξ̂
†
i−. (5.94)

Note that for the external bath of the cavity, we assumed a single port, although strictly
speaking the temperature on the left side of the transmission line could be different from
the right side.

As first step, we shorten the expressions by using

N̂± =p
κeξ̂e±+p

κiξ̂i±, A=−iKndχp (5.95)

and decouple the equations for â and â†. We get

â = −i gαχg

(
1−A

)(
b̂ + b̂†

)
+χg

(
N̂++AN̂ †

−
)

(5.96)

â† = i gαχg (1−A)
(
b̂ + b̂†

)
+χg

(
N̂ †

−+AN̂+
)

. (5.97)
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We can go even more compact

â = −i gαχk

(
b̂ + b̂†

)
+χgM̂+ (5.98)

â† = i gαχk

(
b̂ + b̂†

)
+χgM̂†

−. (5.99)

with
χk =χg

(
1−A

)
, M̂+ = N̂++AN̂ †

−, M̂†
− = N̂ †

−+AN̂+. (5.100)

As next step, we substitute

b̂ + b̂† = −i gα
(
χ0 −χ0

)(
â + â†

)
+

√
Γm

(
χ0ζ̂+χ0ζ̂

†
)

(5.101)

= −i gα
(
χ0 −χ0

)(
â + â†

)
+ Ŝ (5.102)

and obtain

â = −g 2
αχk

(
χ0 −χ0

)(
â + â†

)
− i gαχkŜ+χgM̂+ (5.103)

â† = g 2
αχk

(
χ0 −χ0

)(
â + â†

)
+ i gαχkŜ† +χgM̂†

− (5.104)

or

â + â† =
−i gα

(
χkŜ−χkŜ†

)+χgM̂++χgM̂†−
1+ g 2

α

(
χ0 −χ0

)(
χk −χk

) (5.105)

with which we can finally express b̂ only as a function of the input noise operators

b̂ = −i gαχ
eff
0 χgM̂+− i gαχ

eff
0 χgM̂†

−− g 2
αχ

eff
0

(
χkŜ−χkŜ†

)
+χ0

√
Γmζ̂ (5.106)

= −i gαχ
eff
0 χk

(p
κeξ̂e++p

κiξ̂i+
)− i gαχ

eff
0 χk

(p
κeξ̂

†
e−+p

κiξ̂
†
i−

)
(5.107)

+
√
Γmχ0

[
1− g 2

αχ
eff
0

(
χk −χk

)]
ζ̂−

√
Γmχ

eff
0 g 2

αχ0

(
χk −χk

)
ζ̂†

where the effective mechanical susceptibiliy is given by

χeff
0 = χ0

1+ g 2
α

(
χ0 −χ0

)(
χk −χk

) ≈ χ0

1+ g 2
αχ0

(
χk −χk

) . (5.108)

The last approximation is valid for a high-Qm mechanical oscillator.
Using the common relations for the expectation values of the noise correlators, we

can calculate the phonon power spectral density in the mechanical resonator under dy-
namical Kerr backaction as

〈b̂†b̂〉 = g 2
α

∣∣∣χeff
0

∣∣∣2 |χk|2κnc + g 2
α

∣∣∣χeff
0

∣∣∣2 |χk|2κ (nc +1) (5.109)

+
∣∣∣χeff

0

∣∣∣2 ∣∣1− g 2
αχ0(χk −χk)

∣∣2
Γmnth

m (5.110)

+ g 4
α

∣∣∣χeff
0

∣∣∣2 |χ0|2
∣∣χk −χk

∣∣2
Γm(nth

m +1)
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and the total phonon number via

nKDB
m =

∫ ∞

−∞
〈b̂†b̂〉dΩ

2π
. (5.111)

This integration is performed numerically. We also note that we assumed a constant
effective cavity bath occupation

nc = κene +κini

κ
(5.112)

in the relevant frequency range. In Supplementary Fig. 5.17 we discuss the phonon oc-
cupation that results from a parametrically driven Kerr cavity for the relevant operation
points I and II. Related discussions on optomechanical cooling using a Kerr cavity can
be found in Refs. [145, 193, 194].
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Figure 5.17: Phonon occupation in the mechanical oscillator due to the parametric drive. Due to
the dynamical backaction induced by the parametric drive, the phonon occupation of the mechanical
oscillator will deviate from the steady-state equilibrium value. In Fig. 5.2, we show the dynamical
backaction of the drive vs flux bias in the SQUID. In a, we show the corresponding effect on the phonon
occupation, normalized to the (maximum) case without parametric drive nth

m = 80. For Φ⊥/Φ0 ∼ 0.36,
the drive is located on the blue sideband of the cavity and amplification/heating is observed. For
Φ⊥/Φ0 ∼ 0.327, the drive is located on the red sideband and cooling of the mechanical mode is visible.
In the regime of interest, where our experiments take place (gray area), the effective occupation is
increased by about 10%. The dashed and solid blue lines correspond to g0 = 2π·1.8kHz and g0 = 2π·2kHz,
respectively. All other parameters are taken from independent measurements. In b, we show the
equivalent occupation at operation point II with g0 = 2π ·3.4kHz and g0 = 2π ·3.7kHz for the dashed and
solid red lines, respectively. The striped areas correspond to the instability regime Γm +Γopt < 0 in the
case g0 = 2π·3.7kHz. All parameters are identical to the ones used for the backaction calculation shown
in Fig. 5.16b, except for the drive power which is 1dB reduced as this is the regime for our cooling
experiments. In the experimentally relevant flux regime, marked by solid gray shading, the phonon
occupation is increased by about a factor of ∼ 2.5 due to dynamical backaction.

5.7.8. EQUATIONS OF MOTION FOR LINEARIZED MULTI-TONE KERR OPTOME-
CHANICS
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THREE-TONE LINEARIZATION

Finally, we discuss the linearized equations of motion with three input fields, i.e.,

Sin = Sde i(ωdt+φd) +Spe iωpt +S0(t )e iωpt (5.113)

where S0(t ) is a third, weak probe field. We choose as Ansatz

x = x0 +δx (5.114)

α = αde iωdt +γ−e iωpt +γ+e i(2ωd−ωp)t +δα(t )e iωpt (5.115)

with real-valued and time-independentαd, complex-valued and time-independentγ−,γ+
and complex-valued and time-dependent δα.

For the mechanical oscillator, we get with this

δẍ = −Ω2
mx0 −Ω2

mδx −Γmδẋ + ħG

m

[
α2

d +|γ−|2 +|γ+|2 +|δα|2]
+ ħGαd

m

[
γ∗−+γ∗+e−i 2Ωdpt +δα∗

]
e iΩdpt + ħGαd

m

[
γ−+γ+e i 2Ωdpt +δα

]
e−iΩdpt

+ ħG

m

[
γ−γ∗+e−i 2Ωdpt +γ∗−γ+e i 2Ωdpt

]
+ ħG

m

[
γ−δα∗+γ∗−δα

]
+ ħG

m

[
γ+δα∗e i 2Ωdpt +γ∗+δαe−i 2Ωdpt

]
. (5.116)

In our experiments presented in the section 5.3 we choose both Ωdp and 2Ωdp to be
very far-detuned from the mechanical resonance frequency Ωm and therefore we can
neglect the pure driving force terms with ±Ωdp and ±2Ωdp. After omitting the steady-
state solution we get

δẍ =−Ω2
mδx −Γmδẋ + ħGαd

m

[
δα∗e iΩdpt +δαe−iΩdpt

]
+ ħG

m

[
γ−δα∗+γ∗−δα

]
+ħG

m

[
γ+δα∗e i 2Ωdpt +γ∗+δαe−i 2Ωdpt

]
. (5.117)

For the intracavity field we get

iωdαde iΩdpt + iωpγ−+ i (2ωd −ωp)γ+e i 2Ωdpt + iωpδα+δα̇
=

[
iω0 − κ

2

]
αde iΩdpt +

[
iω0 − κ

2

]
γ−+

[
iω0 − κ

2

]
γ+e i 2Ωdpt +

[
iω0 − κ

2

]
δα

− iGx0

(
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
− iGδx

(
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ iK

[
α2

d +|γ−|2 +|γ+|2 +|δα|2](
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ iKαd

[
γ∗−+γ∗+e−i 2Ωdpt +δα∗

]
e iΩdpt

(
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
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+ iKαd

[
γ−+γ+e i 2Ωdpt +δα

]
e−iΩdpt

(
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ iK

[
γ−γ∗+e−i 2Ωdpt +γ∗−γ+e i 2Ωdpt

](
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ iK

[
γ−δα∗+γ∗−δα

](
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ iK

[
γ+δα∗e i 2Ωdpt +γ∗+δαe−i 2Ωdpt

](
αde iΩdpt +γ−+γ+e i 2Ωdpt +δα

)
+ i

√
κe

2

(
Sde i

(
Ωdpt+φd

)
+Sp +S0

)
. (5.118)

Now we perform the linearization. First with respect to the Kerr drive, i.e., we omit all
terms that describe amplification induced by γ−,γ+ and include all steady-state shifts
as above in Knd. This corresponds to assuming αd À |γ−|, |γ+| À |δα|, |Gx0|. In addi-
tion, we omit terms proportional to δαδx, i.e., do the optomechanical linearization. The
result is

iωdαde iΩdpt + iωpγ−+ i (2ωd −ωp)γ+e i 2Ωdpt + iωpδα+δα̇
=

[
i (ω0 +Knd)− κ

2

]
αde iΩdpt +

[
i (ω0 +2Knd)− κ

2

]
γ−+

[
i (ω0 +2Knd)− κ

2

]
γ+e i 2Ωdpt

+
[

i (ω0 +2Knd)− κ

2

]
δα− iGδx

(
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
+iKnd

(
γ∗−e i 2Ωdpt +γ∗++δα∗e i 2Ωdpt

)
+ i 2Kαd

[
γ∗−+γ+

]
δαe iΩdpt

+i 2Kαd
[
γ∗++γ−

]
δαe−iΩdpt + i 2Kαde iΩdptγ−δα∗+ i 2Kαde i 3Ωdptγ+δα∗

+ i

√
κe

2

(
Sde i

(
Ωdpt+φd

)
+Sp +S0

)
. (5.119)

where the blue terms correspond to non-degenerate four-wave mixing contributions.
We split this equation into four equations

[κ
2
+ i (∆d −Knd)

]
αd = i

√
κe

2
Sde iφd

[κ
2
+ i

(
∆d −2Knd −Ωdp

)]
γ−− iKndγ

∗
+ = i

√
κe

2
Sp[κ

2
+ i

(
∆d −2Knd +Ωdp

)]
γ+− iKndγ

∗
− = 0

δα̇+
[κ

2
+ i

(
∆d −2Knd −Ωdp

)]
δα− iKndδα

∗e i 2Ωdpt + iGδx
(
αde iΩdpt +γ−+γ+e i 2Ωdpt

)
− i 2Kαd

([
γ∗−+γ+

]
δαe iΩdpt + [

γ−+γ∗+
]
δαe−iΩdpt +γ−δα∗e iΩdpt +γ+δα∗e i 3Ωdpt

)
= i

√
κe

2
S0.

The first three of these equations are the Kerr equations for a linearized two-tone driving.
Therefore, the first step of the solution is to find nd using the third order polynomial
as described above. Afterwards, we solve the equations for γ− and γ+. With all these
numbers at hand, we proceed to solve for the optomechanical field components.

The Fourier transforms of the remaining two optomechanical equations of motion
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are

δx(Ω)

χm(Ω)
= ħG

m

[
γ∗−δα(Ω)+γ−δα∗(−Ω)

]+ ħGαd

m

[
δα(Ω+Ωdp)+δα∗(−Ω+Ωdp)

]
+ ħG

m

[
γ∗+δα(Ω+2Ωdp)+γ+δα∗(−Ω+2Ωdp)

]
(5.120)

δα(Ω)

χp(Ω)
= iKndδα

∗(−Ω+2Ωdp)− iGγ−δx(Ω)− iGαdδx(Ω−Ωdp)− iGγ+δx(Ω−2Ωdp)

+ i 2Kαd
[
γ∗−+γ+

]
δα(Ω−Ωdp)+ i 2Kαd

[
γ−+γ∗+

]
δα(Ω+Ωdp)

+ i 2Kαdγ−δα∗(−Ω+Ωdp)+ i 2Kαdγ+δα∗(−Ω+3Ωdp)+ i

√
κe

2
S0(Ω). (5.121)

We introduce now the short-version

f (Ω+ jΩdp) = f j (5.122)

f ∗(−Ω+ jΩdp) = f j (5.123)

for any function f with j being an integer, with which the equations of motion become

δx0

χm,0
= ħG

m

[
γ∗−δα0 +γ−δα0

]
+ ħGαd

m

[
δα1 +δα1

]
+ ħG

m

[
γ∗+δα2 +γ+δα2

]
(5.124)

δα0

χp,0
= i 2Kαdγ+δα3 + iKndδα2 + i 2Kαdγ−δα1 + i 2Kαd

[
γ∗−+γ+

]
δα−1

+i 2Kαd
[
γ−+γ∗+

]
δα1 − iGγ−δx0 − iGαdδx−1

−iGγ+δx−2 + i

√
κe

2
S0,0. (5.125)

Using now

δα2

χp,2
= − i 2Kαdγ

∗
+δα1 − iKndδα0 − i 2Kαdγ

∗
−δα−1 − i 2Kαd

[
γ−+γ∗+

]
δα1

−i 2Kαd
[
γ∗−+γ+

]
δα3 + iGγ∗−δx−2 + iGαdδx−1 + iGγ∗+δx0 − i

√
κe

2
S0,2 (5.126)

we can eliminate the parametric field-contribution and obtain

δα0

χg,0
= i 2Kαd

[
γ+−A2

(
γ∗−+γ+

)]
δα3 + i 2Kαd

[
γ−−A2

(
γ−+γ∗+

)]
δα1

+ i 2Kαd

[
γ∗−+γ+−A2γ

∗
−
]
δα−1 + i 2Kαd

[
γ−+γ∗+−A2γ

∗
+
]
δα1

− iG
[
γ−−A2γ

∗
+
]
δx0 − iGαd

[
1−A2

]
δx−1 − iG

[
γ+−A2γ

∗
−
]
δx−2

+ i

√
κe

2
S0,0 − iA2

√
κe

2
S0,2 (5.127)

where we used
A j =−iKndχp, j . (5.128)



5

144 5. FOUR-WAVE-COOLING TO THE SINGLE PHONON LEVEL IN KERR OPTOMECHANICS

Instead of for j = 0, this equation and its parametric counterpart can easily be written
down for general j

δα j

χg, j
= i 2Kαd

[
γ+−A2− j

(
γ∗−+γ+

)]
δα3− j + i 2Kαd

[
γ−−A2− j

(
γ−+γ∗+

)]
δα1− j

+ i 2Kαd

[
γ∗−+γ+−A2− jγ

∗
−
]
δα j−1 + i 2Kαd

[
γ−+γ∗+−A2− jγ

∗
+
]
δα j+1

− iG
[
γ−−A2− jγ

∗
+
]
δx j − iGαd

[
1−A2− j

]
δx j−1 − iG

[
γ+−A2− jγ

∗
−
]
δx j−2

+ i

√
κe

2
S0, j − iA2− j

√
κe

2
S0,2− j (5.129)

and

δα j

χg, j
= − i 2Kαd

[
γ∗+−A2− j

(
γ−+γ∗+

)]
δα3− j − i 2Kαd

[
γ∗−−A2− j

(
γ∗−+γ+

)]
δα1− j

− i 2Kαd
[
γ−+γ∗+−A2− jγ−

]
δα j−1 − i 2Kαd

[
γ∗−+γ+−A2− jγ+

]
δα j+1

+ iG
[
γ∗−−A2− jγ+

]
δx− j + iGαd

[
1−A2− j

]
δx1− j + iG

[
γ∗+−A2− jγ−

]
δx2− j

− i

√
κe

2
S0, j + iA2− j

√
κe

2
S0,2− j (5.130)

Note the particular indices in the mechanical contributions, which are due to δxn− j =
δx j−n .

5.7.9. THREE-TONE DYNAMICAL KERR BACKACTION

To calculate the dynamical backaction induced by the doubly-driven Kerr cavity, we omit
any probe drives S0, j for now. Also, we only keep terms linear in γ−,γ+. Finally, we omit
δx j for j 6= 0,1,2, as these will not contribute to first order to the dynamical backac-
tion. Under these conditions, we can write down the remaining terms in the four next-
iteration field components contained in Eq. (5.129).

δα−1

χg,−1
= − iG

[
γ−B−1 −γ∗+D−1

]
δx−1 − iGαd

[
1−A3

]
δx−2 (5.131)

δα1

χg,1
= − iGαd

[
1−A1

]
δx0 − iG

[
γ+B1 −γ∗−D1

]
δx−1 (5.132)

δα3

χg,3
= iG

[
γ∗+B3 −γ−D3

]
δx−1 + iGαd [1−A−1]δx−2 (5.133)

δα1

χg,1
= iGαd [1−A1]δx0 + iG

[
γ∗−B1 −γ+D1

]
δx−1. (5.134)
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With the unique replacements

B−1 = 1− i 2Knd

[
(1−A3)(1−A0)χg,2 − (1−A2)χg,0

]
(5.135)

D−1 = A3 − i 2Knd

[
(1−A3)(1−A2)χg,0 +A3(1−A0)χg,2

]
(5.136)

B1 = 1− i 2Knd

[
(1−A1)(1−A0)χg,2 − (1−A2)χg,0

]
(5.137)

D1 = A1 − i 2Knd

[
(1−A1)(1−A2)χg,0 +A1(1−A0)χg,2

]
(5.138)

B3 = 1+ i 2Knd

[
(1−A−1)(1−A2)χg,0 − (1−A0)χg,2

]
(5.139)

D3 = A−1 + i 2Knd

[
(1−A−1)(1−A0)χg,2 +A−1(1−A2)χg,0

]
(5.140)

B1 = 1+ i 2Knd

[
(1−A1)(1−A2)χg,0 − (1−A0)χg,2

]
(5.141)

D1 = A1 + i 2Knd

[
(1−A1)(1−A0)χg,2 +A1(1−A2)χg,0

]
(5.142)

Note that the indices on the B and D terms are not describing a frequency shift like
in the δα j χg, j and A j terms, neither the labeling with the overline refers to negative
frequencies or complex conjugation. Instead, these rather indicate the terms unique
definition given in Eqs. (5.135) to (5.142).

Next, we inject the field relations back into the original equation for δα0 (without the
probe input) and obtain

δα0

χg,0
= −2GKαdχg,3

[
γ+

(
1−A2

)
−γ∗−A2

][
γ∗+B3 −γ−D3

]
δx−1

−2GKndχg,3

[
γ+

(
1−A2

)
−γ∗−A2

]
[1−A−1]δx−2

−2GKαdχg,1

[
γ−

(
1−A2

)
−γ∗+A2

][
γ∗−B1 −γ+D1

]
δx−1

−2GKndχg,1

[
γ−

(
1−A2

)
−γ∗+A2

]
[1−A1]δx0

+2GKαdχg,−1

[
γ++γ∗−

(
1−A2

)][
γ−B−1 −γ∗+D−1

]
δx−1

+2GKndχg,−1

[
γ++γ∗−

(
1−A2

)][
1−A3

]
δx−2

+2GKαdχg,1

[
γ−+γ∗+

(
1−A2

)][
γ+B1 −γ∗−D1

]
δx−1

+2GKndχg,1

[
γ−+γ∗+

(
1−A2

)][
1−A1

]
δx0

−iG
[
γ−−γ∗+A2

]
δx0 − iGαd

[
1−A2

]
δx−1 − iG

[
γ+−γ∗−A2

]
δx−2. (5.143)



5

146 5. FOUR-WAVE-COOLING TO THE SINGLE PHONON LEVEL IN KERR OPTOMECHANICS

We perform a final variable substitution now

J−(Ω) = 1− γ∗+
γ−

A2 + i 2Kndχg,1

[
1+ γ∗+

γ−

(
1−A2

)][
1−A1

]
−i 2Kndχg,1

[
1−A2 −

γ∗+
γ−

A2

]
[1−A1]

(5.144)

J+(Ω) = 1− γ∗−
γ+

A2 + i 2Kndχg,−1

[
1+ γ∗−

γ+

(
1−A2

)][
1−A3

]
−i 2Kndχg,3

[
1−A2 −

γ∗−
γ+

A2

]
[1−A−1]

(5.145)

Jα(Ω) = 1−A2 + i 2Kχg,1

[
γ−+γ∗+

(
1−A2

)][
γ+B1 −γ∗−D1

]
−i 2Kχg,1

[
γ−

(
1−A2

)
−γ∗+A2

][
γ∗−B1 −γ+D1

]
+ i 2Kχg,−1

[
γ++γ∗−

(
1−A2

)][
γ−B−1 −γ∗+D−1

]
−i 2Kχg,3

[
γ+

(
1−A2

)
−γ∗−A2

][
γ∗+B3 −γ−D3

]
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where the nondegenerate four-wave mixing terms are still coded in blue and we obtain

δα(Ω)

χg(Ω)
=−iGγ−J−(Ω)δx(Ω)− iGαdJα(Ω)δx(Ω−Ωdp)− iGγ+J+(Ω)δx(Ω−2Ωdp). (5.147)

Inserting this result into the equation of motion for the mechanical oscillator and omit-
ting higher order displacement terms leads to the mechanical susceptibility in the weak-
coupling and high-Qm regime

χeff
0 (Ω) = 1

Γm
2 + i (Ω−Ωm)+Σfw(Ωm)

(5.148)

with the four-wave backaction

Σfw(Ωm) = |g−|2
[
χg(Ωm)J−(Ωm)−χ∗g (−Ωm)J ∗

− (−Ωm)
]

+|g+|2
[
χg(Ωm +2Ωdp)J+(Ωm +2Ωdp)−χ∗g (−Ωm +2Ωdp)J ∗

+ (−Ωm +2Ωdp)
]

+g 2
α

[
χg(Ωm +Ωdp)Jα(Ωm +Ωdp)−χ∗g (−Ωm +Ωdp)J ∗

α (−Ωm +Ωdp)
]

(5.149)

This multi-tone dynamical Kerr backaction has a very similar shape as a standard linear
multi-tone backaction expression for several pump tones whose frequency difference
is far detuned from the mechanical frequency. The main difference, besides the modi-
fied susceptibility χg, is the J -factors. These J -factors take into account that the intra-
cavity field one mechanical resonance frequency detuned from each of the pump tones
αd,γ−,γ+ also has contributions from the other fields due to four-wave-mixing. Without
any Kerr nonlinearity, all As would be zero and all J s would be 1. With exclusively de-
generate FWM, only the black terms in Eqs. (5.144)-(5.146) would survive. These terms
describe the interference between the red and blue sidebands of αd, which are the idler
fields of each other, but they also describe the interference between the red (blue) side-
band of the γ− field with the blue (red) sideband of the γ+ field. Also these form two
pairs of signal and idler fields.

In addition to these terms, there are the (in the equations blue-colored) non-degenerate
FWM contributions. These modify the total backaction significantly, as can be seen in
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the Fig. 5.3 or in Supplementary Fig. 5.18. Their origin and impact can be understood
in two different ways. The first way is to consider that the cavity resonance frequency is
permanently oscillating with the frequency Ωdp due to the beating of the αd-field with
the γ±-fields and by taking into account the dependence of the cavity susceptibility on
the total intracavity field intensity via the Kerr nonlinearity. In this scenario, when a
sideband of one of the tones is generated by mechanical motion at ±Ωm, higher-order
sidebands of the scattered field will be generated by the oscillating susceptibility of the
modulated cavity. These higher-order sidebands are detuned by the cavity oscillation
frequency Ωdp from the original field and they will fall on top of other first order me-
chanical sidebands at ±Ωm±Ωdp. The second way to understand this effect is that there
are four-photon processes occurring, which involve one photon at the γ−-frequency ωp

or at the γ+-frequency 2ωd−ωp, one photon atωd and two sideband photons at different
mechanical sideband frequencies.

The result is that by these processes the intracavity fluctuation field at Ω also gets
contributions from five other fluctuation frequencies, as can be clearly seen in the Eq. (114).
Note that in the general picture, an infinite number of fields will contribute to the field
at Ω, but in our experimental situation, we can restrict the Fourier components to the
most dominant ones.

5.7.10. FOUR-WAVE OMIT

If we take into account input probe fields at the frequencies of the relevant field compo-
nents, the relations become

δα−1

χg,−1
= − iG

[
γ−B−1 −γ∗+D−1

]
δx−1 − iGαd

[
1−A3

]
δx−2 + i

√
κe

2
S0,−1 − iA3

√
κe

2
S0,3
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δα1

χg,1
= − iGαd

[
1−A1

]
δx0 − iG

[
γ+B1 −γ∗−D1

]
δx−1 + i

√
κe

2
S0,1 − iA1

√
κe

2
S0,1

(5.151)

δα3

χg,3
= iG

[
γ∗+B3 −γ−D3

]
δx−1 + iGαd [1−A−1]δx−2 − i

√
κe

2
S0,3 + iA−1

√
κe

2
S0,−1

(5.152)

δα1

χg,1
= iGαd [1−A1]δx0 + iG

[
γ∗−B1 −γ+D1

]
δx−1 − i

√
κe

2
S0,1 + iA1

√
κe

2
S0,1.

(5.153)

Keeping all these terms, we get for the intracavity field

δα(Ω)

χg(Ω)
= −iGγ−J−(Ω)δx(Ω)− iGαdJα(Ω)δx(Ω−Ωdp)− iGγ+J+(Ω)δx(Ω−2Ωdp)

+2Kαd

[
γ+

(
1−A2

)
−γ∗−A2

]
χg,3

√
κe

2
S0,3 −2KαdA−1

[
γ+

(
1−A2

)
−γ∗−A2

]
χg,3

√
κe

2
S0,−1
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+2Kαd

[
γ−

(
1−A2

)
−γ∗+A2

]
χg,1

√
κe

2
S0,1 −2KαdA1

[
γ−

(
1−A2

)
−γ∗+A2

]
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√
κe

2
S0,1

−2Kαd

[
γ++γ∗−

(
1−A2

)]
χg,−1

√
κe

2
S0,−1 +2KαdA3

[
γ++γ∗−

(
1−A2

)]
χg,−1

√
κe

2
S0,3

−2Kαd

[
γ−+γ∗+

(
1−A2

)]
χg,1

√
κe

2
S0,1 +2KαdA1

[
γ−+γ∗+

(
1−A2

)]
χg,1

√
κe

2
S0,1

+i

√
κe

2

[
S0,0 −A2S0,2

]
(5.154)

To calculate the cavity response around the probe frequency, we will only have to keep a
single term of these probe fields later, the one proportional to S0,0. To express the total
driving force to the mechanical oscillator though, we have to keep them all for now. The
four-wave mixing will generate fields also at frequencies that beat with the αd and the
γ+ field and therefore drive the mechanical oscillator. Nevertheless, the equations can
be simplified according to the experimental situation

SIGNAL RESONANCE RED-SIDEBAND PUMPING

If the optomechanical pump field γ− is around the red sideband of the signal resonance
and we probe around one mechanical frequency detuned from this pump, we haveΩ≈
Ωm. Due to the high quality factor of the mechanical oscillator, mechanical motion with
Ω−Ωdp or Ω−2Ωdp will be suppressed and we can neglect these terms in the equation
for the field. As equation of motion for the mechanical oscillator under these conditions,
we obtain

δx0

χeff
0,0

= −i
ħG

2mΩm

[
iγ∗−χg,0 + iγ+χg ,2A0

]√
κe

2
S0,0

−i
ħGαd

2mΩm

[
−2KαdA0

[
γ+

(
1−A1

)
−γ∗−A1

]
χg,1χg,2

]√
κe

2
S0,0

−i
ħGαd

2mΩm

[
−2Kαd

[
γ++γ∗−

(
1−A1

)]
χg,1χg,0

]√
κe

2
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ħGαd

2mΩm

[
2KαdA0

[
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]
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]√
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[
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]√
κe

2
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which can also be written as

δx0

χeff
0,0

= ħG

2mΩm
γ∗−χg,0

[
1+ i 2Kndχg,1

(
1−A1 + γ+

γ∗−

)
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(
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)]√
κe

2
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2mΩm
γ+χg ,2A0

[
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(
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(
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)]√
κe

2
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= ħG

2mΩm
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]√
κe

2
S0,0 (5.156)
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Injecting this back into the equation for the intracavity field, we get

δα(Ω)

χg(Ω)
= i

(
1− g−

[
g∗
−χg(Ω)P−(Ω)+ g+χ∗g (−Ω+2Ωdp)A(Ω)P+(Ω)

]
J−(Ω)χeff

0 (Ω)
)√

κe

2
S0(Ω) (5.157)

IDLER RESONANCE BLUE-SIDEBAND PUMPING

If on the other hand the pump field γ− is located on the blue sideband of the idler res-
onance and we probe around one mechanical frequency away from the corresponding
γ+ field, we have Ω−2Ωdp ≈Ωm. In this case, mechanical motion with Ω and Ω−Ωdp

will be irrelevant. Then,

δx−2

χeff
0,−2

= −i
ħG

2mΩm
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]√
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]√
κe

2
S0,0

−i
ħGαd

2mΩm

[
2KαdA0

[
γ∗++γ− (1−A−1)

]
χg,3χg,2

]√
κe

2
S0,0

−i
ħGαd

2mΩm

[
2Kαd

[
γ∗+ (1−A−1)−γ−A−1

]
χg,3χg,0

]√
κe

2
S0,0 (5.158)

δx−2
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Injecting this back into the equation for the intracavity field, we get

δα(Ω)

χg(Ω)
= i

(
1− g+

[
g∗
+χg(Ω)Q+(Ω)+ g−χ∗g (−Ω+2Ωdp)A(Ω)Q−(Ω)

]
J+(Ω)χeff

0 (Ω−2Ωdp)
)√

κe

2
S0(Ω)

(5.160)

OPTOMECHANICAL CAVITY RESPONSE

The response in both cases is given by

S21(Ω) = 1+ i

√
κe

2

δα(Ω)

S0(Ω)
(5.161)
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5.7.11. MEASUREMENT AND DATA ANALYSIS PROTOCOL FOR FOUR-WAVE

OMIT AND FOUR-WAVE DYNAMICAL BACKACTION

PREPARATION

• We start the experimental cycle with choosing the bias-flux operation point, either
point I, and an in-plane magnetic field B∥. We ramp the in-plane current to its
corresponding value.

• A parametric drive tone is sent to the cavity with fixed frequency ωd and power Pd

to match the chosen operation point.

• The cavity bias flux is adjusted manually to prepare the SQUID cavity in the driven
Kerr-mode state.

• The frequency of the optomechanical pump is chosen to be either on the red side-
band of the signal resonance or on the blue sideband of the idler resonance. The
pump is activated with fixed frequency ωp and power Pp.

THE MEASUREMENT

• For the actual measurement, we start a python-based control and data acquisition
script, which is programmed to wait for a terminal starting command before each
data point.

• Prior to running the measurement, we input some fixed parameters to the script
such as all values of the attenuators.

• We then manually adjust the probe VNA to a parameter set regarding frequency
window, probe power and bandwidth in order to measure a clean OMIT response
curve.

• Upon a terminal command, the script begins the acquisition and first catches all
relevant information such as powers, frequencies, frequency spans, bandwidths
as well as magnet DC currents from all relevant measurement equipment.

• The parameters obtained from the manually adjusted OMIT settings on the VNA
are then re-used for all subsequent measurements. Based on the mechanical fre-
quency and cavity frequency, an array of optomechanical pump frequencies is
generated, which corresponds to an array of δp. At the same time a corresponding
set of VNA frequency ranges is generated to track the OMIT response for all the
different pump frequencies.

• The script performs a narrow-band VNA scan to measure the OMIT response and
stores the data in file 1, where all subsequent narrow-band scans for varying pump
frequencies are attached as well.

• The script performs a wide-band VNA scan to measure the cavity response and
stores the data in file 2, where all subsequent wide-band scans for varying pump
frequencies are attached as well.
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• At this point the script will expect an input via the terminal, which tells whether
we want to take the exact same measurement again for identical parameters or if
we are going to proceed to the next pump detuning.

• After receiving our choice, the script sets the VNA to the cavity center frequency
with a fixed span of 1kHz and waits upon a terminal command for measuring the
two VNA scans of the next point. During this waiting window, we have the pos-
sibility to counter possible bias flux drifts by manually adjusting the out-of-plane
current, while permanently monitoring the cavity response at the response mini-
mum.

• Both measures described in the latter two bullet points are critical to obtain a con-
sistent set of data, as sometimes the bias flux and cavity starts to drift considerably
on a slow timescale (∼seconds). This drift can significantly distort the captured
OMIT response, which cannot be measured too fast due to the small mechanical
linewidth. Another risk is that the cavity leaves the driven Kerr-state without the
manual feedback control loop in between measurement points.

• After the cavity is stabilized and the measurement can proceed, the script repeats
the cycle from gathering all relevant parameters from all machines to taking the
two VNA traces and the waiting and stabilization time.

DATA ANALYSIS

• Data analysis starts with a fit of the wide-band signal resonance response S21 using
Eq. (5.15). From this fit, we obtain effective parameters for κ′, κe and ωs and a fit
of the complex background.

• Using the background fit parameters, we calculate the complex background in the
narrow-band frequency window of the corresponding OMIT response scan and
divide it off the measured signal.

• We convert the frequency axis of the OMIT response to frequencies relative toγ− in
the red-sideband case and relative toγ+ in the blue-sideband case and fit the back-
ground corrected and frequency-shifted OMIT response using Eq. (5.15) as well.
As we are only interested in the resonance frequency and the effective linewidth
of the OMIT resonance at this point, this procedure is as reliable but significantly
simpler than using the full four-wave OMIT expression. As fit parameters we ob-
tainΩeff

m and Γeff.

• We substract the corresponding bare values Ωm and Γm to obtain the dynami-
cal backaction contributions δΩm and Γopt. We note that to make them match
with theory for the red-sideband case and the blue-sideband case simultaneously
with a single set of otherwise identical parameters, the bare values slightly dif-
fer between the red and blue case. For the mechanical resonance frequency, this
blue-red-difference is about 8Hz and for the linewidth it is about 1Hz. As the bare
mechanical frequency and linewidth depend strongly on temperature (cf. section
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5.7.14), a small temperature difference of the mechanical oscillator during the two
measurements might be the origin of these differences.

• For the range of theoretical values (shaded area between the two solid lines in
Fig. 5.3 and Supplementary Fig. 5.18), we consider uncertainties in the parame-
ters going into the theoretical calculations. These include variations of the op-
tomechanical single-photon coupling rate g0 = 1.85±0.05kHz, of the driven cav-
ity linewidth κ′ = 349± 20kHz and of the bare cavity resonance frequency ω0 =
5.2236±0.1MHz.

5.7.12. DATA FOR OMIT AND DYNAMICAL BACKACTION ON THE RED SIDE-
BAND OF THE SIGNAL RESONANCE

In this section, we present data on four-wave-OMIT and dynamical four-wave backac-
tion for an optomechanical pump field γ− on the red sideband of the signal resonance
with ωp = ωs −Ωm +δp, where δp is the detuning between the pump tone and the red
sideband. The experimental setting is schematically shown in Supplementary Fig. 5.18a

In this configuration, we follow the usual OMIT protocol in the experiment, i.e., we
pump at a frequency ωp around the signal resonance red sideband and probe the cav-
ity response S21 in a narrow frequency window around ω ≈ ωp +Ωm. In addition, we
measure the transmission in a wider range to capture the complete cavity absorption.
We repeat this scheme for different detunings δp, where the range of δp is chosen to
cover more than 2 signal resonance linewidths around the red sideband. One exemplary
wide-band cavity transmission is displayed in Supplementary Fig. 5.18b, in c three corre-
sponding narrow-band measurements are shown for three different δp, clearly showing
the characteristic OMIT window, representing the mechanical oscillator.

From a fit to the OMIT response, shown as lines, we extract the mechanical oscilla-
tor resonance frequency and the effective mechanical linewidth. After subtracting the
bare values, we obtain the dynamical backaction contributions δΩm and Γopt, which are
plotted in d and e as circles.

5.7.13. MULTI-TONE KERR OPTOMECHANICS WITH NOISE INPUT

Working with quantum formalism for the equations of motion with noise input we ob-
tain for the mechanical oscillator

b̂0

χ0,0
= −i

(
g∗
−â0 + g−â†

0

)
− i gα

(
â1 + â†

1

)
− i

(
g∗
+â2 + g+â†

2

)
+

√
Γmζ̂0

b̂†
0

χ0,0
= i

(
g∗
−â0 + g−â†

0

)
+ i gα

(
â1 + â†

1

)
+ i

(
g∗
+â2 + g+â†

2

)
+

√
Γmζ̂

†
0 (5.162)
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Figure 5.18: Four-wave-OMIT and four-wave-backaction for optomechanical red-sideband pumping of
the signal resonance. Panel a shows schematically the experimental protocol. The SQUID cavity is
prepared in the Kerr-mode state by a strong parametric drive. In addition, we apply an optomechanical
pump tone one mechanical frequency red-detuned from the signal resonance ωp =ωs−Ωm+δp. Finally,
we use a weak probe tone around the signal resonance to detect optomechanically induced transparency.
We repeat this scheme for varying detunings δp. b shows the Kerr-mode signal resonance transmission
S21 measured with the weak probe field in presence of the drive and pump tones. Circles are data, line
is a fit. Gray vertical bars labeled with A, B, and C indicate zoom regions for the corresponding panels
shown in c and ∆s = ω−ωs denotes the detuning between probe field and signal resonance. In c, the
probe tone response in three narrow frequency windows around ω≈ωp+Ωm is plotted for three different
pump detunings δp, cf. panel a and b. Each probe tone response displays a narrow-band resonance,
indicating the phenomenon of optomechanically induced transparency (OMIT) via excitation of the
mechanical oscillator and corresponding interference between the probe field and mechanical sidebands
of intracavity drive and pump fields. For each δp, we fit the OMIT response, corresponding curves are
shown as lines in c, and extract the effective mechanical resonance frequency Ωeff =Ωm +δΩm and the
effective mechanical linewidth Γeff = Γm +Γopt. The contributions δΩm and Γopt, induced by dynamical
backaction of the total intracavity fields, are plotted in panels d and e as circles vs detuning of the
pump tone from the red sideband of the signal resonance. The result of analytical calculations is shown
as two solid lines with shaded area, where the range described by the lines captures uncertainties in the
device parameters, cf. text. The dashed line shows the result of equivalent calculations without taking
into account cross-mixing terms.

and for the intracavity fluctuation fields
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â†
2

χp,2
= −iKndâ0 + i g∗
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The latter two equations can be combined into
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Just as for the classical equations, we need now the next iteration field components
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2

)
+N̂−1++A3N̂ †

3−(5.167)

â1

χg,1
= −i gα

(
1−A1

)(
b̂0 + b̂†

0

)
− i

[
g+B1 − g∗

−D1
](

b̂−1 + b̂†
1

)
+N̂1++A1N̂ †

1− (5.168)

â†
1

χg,1
= i gα (1−A1)

(
b̂0 + b̂†

0

)
+ i

[
g∗
−B1 − g+D1

](
b̂−1 + b̂†

1

)
+N̂ †

1−+A1N̂1+ (5.169)

â†
3

χg,3
= i

[
g∗
+B3 − g−D3

](
b̂−1 + b̂†

1

)
+ i gα (1−A−1)

(
b̂−2 + b̂†

2

)
+N̂ †

3−+A−1N̂−1+ (5.170)

which lead to an expression for â0 given by

â0

χg,0
= −i g−J−

(
b̂0 + b̂†

0

)
− i gαJα

(
b̂−1 + b̂†

1

)
− i g+J+

(
b̂−2 + b̂†

2

)
+i 2Kαd

([
γ−

(
1−A2

)
−γ∗+A2

]
A1χg,1 +

[
γ−+γ∗+

(
1−A2

)]
χg,1

)
N̂1+

+i 2Kαd

([
γ−

(
1−A2

)
−γ∗+A2

]
χg,1 +

[
γ−+γ∗+

(
1−A2

)]
A1χg,1

)
N̂ †

1−

+i 2Kαd

([
γ+

(
1−A2

)
−γ∗−A2

]
χg,3 +

[
γ++γ∗−

(
1−A2

)]
A3χg,−1

)
N̂ †

3−

+i 2Kαd

([
γ+

(
1−A2

)
−γ∗−A2

]
A−1χg,3 +

[
γ++γ∗−

(
1−A2

)]
χg,−1

)
N̂−1+

+N̂0++A2N̂ †
2−

= −i g−J−
(
b̂0 + b̂†

0

)
− i gαJα

(
b̂−1 + b̂†

1

)
− i g+J+

(
b̂−2 + b̂†

2

)
+Y1+N̂1++Y1−N̂ †

1−+Y3−N̂ †
3−+Y−1+N̂−1++N̂0++A2N̂ †

2− (5.171)

or, in its shortest version

â0

χg,0
= −i g−J−(Ω)

(
b̂0 + b̂†

0

)
− i gαJα(Ω)

(
b̂−1 + b̂†

1

)
− i g+J+(Ω)

(
b̂−2 + b̂†

2

)
+M̂0+ (5.172)

and the corresponding equation for â†

â†
0

χg,0
= i g∗

−J ∗
− (−Ω)

(
b̂0 + b̂†

0

)
+ i gαJ ∗

α (−Ω)
(
b̂1 + b̂†

−1

)
+ i g+J ∗

+ (−Ω)
(
b̂2 + b̂†

−2

)
+M̂†

0−. (5.173)
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SIGNAL RESONANCE RED SIDEBAND PUMPING

Next we use

b̂0 + b̂†
0 =−i

(
χ0,0 −χ0,0

)(
g∗
−â0 + g−â†

0

)
− i gα

(
χ0,0 −χ0,0

)(
â1 + â†

1

)
− i

(
χ0,0 −χ0,0

)(
g∗
+â2 + g+â†

2

)
+ Ŝ

(5.174)

and keep only first order terms to obtain

b̂0 + b̂†
0 = −|g−|2

(
χ0,0 −χ0,0

)[
J−(Ω)χg,0 −J ∗

− (−Ω)χg,0

](
b̂0 + b̂†

0

)
−g 2

α

(
χ0,0 −χ0,0

)[
Jα(Ω+Ωdp)χg,1 −J ∗

α (−Ω+Ωdp)χg,1

](
b̂0 + b̂†

0

)
−|g+|2

(
χ0,0 −χ0,0

)[
J+(Ω+2Ωdp)χg,2 −J ∗

+ (−Ω+2Ωdp)χg,2

](
b̂0 + b̂†

0

)
−i

(
χ0,0 −χ0,0

)[
g∗
−χg,0M̂0++ g−χg,0M̂

†
0−+ gαχg,1M̂1++ gαχg,1M̂

†
1−+ g∗

+χg,2M̂2++ g+χg,2M̂
†
2−

]
+ Ŝ

(5.175)

We can find our earlier obtained four-wave dynamical backaction in this relation and
write

b̂0 + b̂†
0 = −i

χ0,0 −χ0,0

1+ (
χ0,0 −χ0,0

)
Σfw(Ωm)

[
g∗
−χg,0M̂0++ g−χg,0M̂

†
0−+ gαχg,1M̂1+

+ gαχg,1M̂
†
1−+ g∗

+χg,2M̂2++ g+χg,2M̂
†
2−

]
+ Ŝ

1+ (
χ0,0 −χ0,0

)
Σfw(Ωm)

(5.176)

For a pump on the red sideband of the signal resonance, a high mechanical quality factor
and the detection frequency to be Ω ≈Ωm, we can simplify the relations, i.e., keep only
dominant terms and obtain

â0 = −i g−J−(Ω)χg,0b̂0 +χg,0M̂0+ (5.177)

â†
0 = i g∗

−J ∗
− (−Ω)χg,0b̂0 +χg,0M̂

†
0− (5.178)

â1 = −i gαJα(Ω+Ωdp)χg,1b̂0 +χg,1M̂1+ (5.179)

â†
1 = i gαJ ∗

α (−Ω+Ωdp)χg,1b̂0 +χg,1M̂
†
1− (5.180)

â2 = −i g+J+(Ω+2Ωdp)χg,2b̂0 +χg,2M̂2+ (5.181)

â†
2 = i g∗

+J ∗
+ (−Ω+2Ωdp)χg,2b̂0 +χg,2M̂

†
2−. (5.182)

For the detection frequency range, we therefore get

â0 = −g−J−(Ω)χg,0χ
eff
0,0

[
g∗
−χg,0M̂0++ g−χg,0M̂

†
0−+ gαχg,1M̂1++ gαχg,1M̂

†
1−

+g∗
+χg,2M̂2++ g+χg,2M̂

†
2−

]
− i g−J−(Ω)χg,0χ

eff
0,0

√
Γmζ̂+χg,0M̂0+ (5.183)

where we applied χ0,0 ≈ 0 for Ω ≈ Ωm. Note that the cavity noise is well described for
all frequencies in this approximation, but the upconverted mechanical noise is limited
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to one of the many sidebands. We can resolve and sort now for input noise frequency
components, where we only keep cavity input noise terms around the signal and the
idler resonances. The result is

â0 = −g−J−(Ω)χg,0χ
eff
0,0

[
g∗
−χg,0M̂0++ g−χg,0M̂

†
0−+ gαχg,1M̂1++ gαχg,1M̂

†
1−

+g+χg,2M̂2++ g∗
+χg,2M̂

†
2−

]
− i g−J−(Ω)χg,0χ

eff
0,0

√
Γmζ̂+χg,0M̂0+

≈ −i g−J−(Ω)χg,0χ
eff
0,0

[√
Γmζ̂− i

(
g∗
−χg,0P−+ g+A0P+χg,2

)
N̂0+

−i
(
g∗
−A2P−χg,0 + g+P+χg,2

)
N̂ †

2−
]
+χg,0N̂0++χg,0A2N̂ †

2− (5.184)

with

P− =
[

1+ i 2Kndχg,1

(
1−A1 + g+

g∗−

)
− i 2Kndχg,1

(
1−A1 − g+

g∗−
A1

)]
(5.185)

P+ =
[

1− i 2Kndχg,1

(
1−A1 +

g∗−
g+

)
+ i 2Kndχg,1

(
1−A1 −

g∗−
g+

A1

)]
(5.186)

For the cavity output field on one side of the feedline, we get

âout = ξ̂left
e0+−

√
κe

2
â0

= −i g−J−(Ω)χg,0χ
eff
0,0

√
κe

2

√
Γmζ̂

+χg,0

√
κe

2

[
1− g−J−(Ω)χeff

0,0

(
g∗
−χg,0P−+ g+A0P+χg,2

)]p
κiξ̂i0+

+χg,0

√
κe

2

[
1− g−J−(Ω)χeff

0,0

(
g∗
−χg,0P−+ g+A0P+χg,2

)]√
κe

2
ξ̂

right
e0+

+χg,0

√
κe

2

[
A2 − g−J−(Ω)χeff

0,0

(
g∗
−χg,0A2P−+ g+P+χg,2

)]p
κiξ̂

†
i2−

+χg,0

√
κe

2

[
A2 − g−J−(Ω)χeff

0,0

(
g∗
−χg,0A2P−+ g+P+χg,2

)]p
κeξ̂

†
e2−

+
(
1−χg,0

√
κe

2

[
1− g−J−(Ω)χeff

0,0

(
g∗
−χg,0P−+ g+A0P+χg,2

)]√
κe

2

)
ξ̂left

e0+ (5.187)

where we split the relevant external input noise into the contributions from the left and
the right side of the feedline. This can be used directly to calculate the symmetrized
output field power spectral density in units of phonons as

S(ω)

ħω = nadd +
1

2
〈â†

outâout + âoutâ†
out〉. (5.188)

The total number of noise photons added by our detection chain is found to be nadd ≈ 13
from a thermal calibration of the residual occupation of the mechanical oscillator, cf.
sections 5.7.14 and 5.7.15.
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To calculate the corresponding phonon occupation, we use the relations (5.177) -
(5.182) and keep only cavity noise input terms for N̂0+ and N̂ †

2−

b̂0

χeff
0,0

= −i g∗
−P−χg,0

[
N̂0++A2N̂ †

2−
]
− i g+P+χg,2

[
N̂ †

2−+A0N̂0+
]
+

√
Γmζ̂ (5.189)

which gives the mechanical power spectral density

〈b̂†
0b̂0〉 = |χeff

0,0|2|g∗
−P−χg,0 + g+P+A0χg,2|2κnth

c +|χeff
0,0|2|g∗

−P−A2χg,0

+g+P+χg,2|2κ
(
nth

c +1
)
+|χeff

0,0|2Γmnth
m . (5.190)

The integration of this relation over all frequencies then results in the effective phonon
occupation in presence of the optomechanical coupling.

IDLER RESONANCE BLUE SIDEBAND PUMPING

In this case, we use

b̂−2 + b̂†
2 = −i

(
χ0,−2 −χ0,2

)(
g∗
−â−2 + g−â†

2

)
− i gα

(
χ0,−2 −χ0,−2

)(
â−1 + â†

3

)
−i

(
χ0,−2 −χ0,2

)(
g∗
+â0 + g+â†

4

)
+ Ŝ (5.191)

and keep only first order terms to obtain

b̂−2 + b̂†
2 = −|g−|2

(
χ0,−2 −χ0,2

)[
J−(Ω−2Ωdp)χg,−2 −J ∗

− (−Ω+2Ωdp)χg,2

](
b̂−2 + b̂†

2

)
−g 2

α

(
χ0,−2 −χ0,2

)[
Jα(Ω−Ωdp)χg,−1 −J ∗

α (−Ω+3Ωdp)χg,3

](
b̂−2 + b̂†

2

)
−|g+|2

(
χ0,−2 −χ0,2

)[
J+(Ω)χg,0 −J ∗

+ (−Ω+4Ωdp)χg,4

](
b̂−2 + b̂†

2

)
−i

(
χ0,−2 −χ0,2

)[
g∗
−χg,−2M̂−2++ g−χg,2M̂

†
2−+ gαχg,−1M̂−1+

+gαχg,3M̂
†
3−+ g∗

+χg,0M̂0++ g+χg,4M̂
†
4−

]
+ Ŝ (5.192)

We can find our earlier obtained four-wave dynamical backaction in this relation and
write

b̂−2 + b̂†
2 = −i

χ0,−2 −χ0,2

1+ (
χ0,−2 −χ0,2

)
Σfw(Ωm)

[
g∗
−χg,−2M̂−2++ g−χg,2M̂

†
2−+ gαχg,−1M̂−1+

+gαχg,3M̂
†
3−+ g∗

+χg,0M̂0++ g+χg,4M̂
†
4−

]
+ Ŝ

1+ (
χ0,−2 −χ0,2

)
Σfw(Ωm)

(5.193)

For a pump on the blue sideband of the idler resonance, a high mechanical quality fac-
tor and the detection frequency to be Ω ≈ Ωm − 2Ωdp, we can simplify the cavity field
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operator relations, i.e., keep only dominant terms and obtain

â−2 = −i g−J−(Ω−2Ωdp)χg,−2b̂−2 +χg,−2M̂−2+ (5.194)

â†
2 = i g∗

−J ∗
− (−Ω+2Ωdp)χg,2b̂−2 +χg,2M̂

†
2− (5.195)

â−1 = −i gαJα(Ω−Ωdp)χg,−1b̂−2 +χg,−1M̂−1+ (5.196)

â†
3 = i gαJ ∗

α (−Ω+3Ωdp)χg,3b̂−2 +χg,3M̂
†
3− (5.197)

â0 = −i g+J+(Ω)χg,0b̂−2 +χg,0M̂0+ (5.198)

â†
4 = i g∗

+J ∗
+ (−Ω+4Ωdp)χg,4b̂−2 +χg,4M̂

†
4−. (5.199)

For the detection frequency range, we therefore get

â0 = −g+J+(Ω)χg,0χ
eff
0,−2

[
g∗
−χg,−2M̂−2++ g−χg,2M̂

†
2−+ gαχg,−1M̂−1++ gαχg,3M̂

†
3−

+g∗
+χg,0M̂0++ g+χg,4M̂

†
4−

]
− i g+J+(Ω)χg,0χ

eff
0,−2

√
Γmζ̂+χg,0M̂0+ (5.200)

where we appliedχ0,2 ≈ 0 forΩ≈Ωm−2Ωdp. We can resolve and sort now for input noise
frequency components again, where we only keep cavity input noise terms around the
signal and the idler resonances. The result is

â0 ≈ −i g+J+(Ω)χg,0χ
eff
0,−2

[√
Γmζ̂− i

(
g∗
+Q+χg,0 + g−A0Q−χg,2

)
N̂0+

−i
(
g∗
+A2Q+χg,0 + g−Q−χg,2

)
N̂ †

2−
]
+χg,0N̂0++χg,0A2N̂ †

2− (5.201)

with

Q− =
[

1+ i 2Kndχg,−1

(
1−A3 −

g∗+
g−

A3

)
− i 2Kndχg,3

(
1−A−1 −

g∗+
g−

)]
(5.202)

Q+ =
[

1− i 2Kndχg,3

(
1−A−1 − g−

g∗+
A−1

)
+ i 2Kndχg,−1

(
1−A3 − g−

g∗+
A3

)]
(5.203)

For the cavity output field on one side of the feedline, we get

âout = ξ̂left
e0+−

√
κe

2
â0

= i g+J+(Ω)χg,0χ
eff
0,−2

√
κe

2

√
Γmζ̂

−χg,0

√
κe

2

[
1− g+J+(Ω)χeff

0,−2

(
g∗
+Q+χg,0 + g−A0Q−χg,2

)]p
κiξ̂i0+

−χg,0

√
κe

2

[
1− g+J+(Ω)χeff

0,−2

(
g∗
+Q+χg,0 + g−A0Q−χg,2

)]√
κe

2
ξ̂

right
e0+

−χg,0

√
κe

2

[
A2 − g+J+(Ω)χeff

0,−2

(
g∗
+A2Q+χg,0 + g−Q−χg,2

)]p
κiξ̂

†
i2−

−χg,0

√
κe

2

[
A2 − g+J+(Ω)χeff

0,−2

(
g∗
+A2Q+χg,0 + g−Q−χg,2

)]p
κeξ̂

†
e2−

+
(
1−χg,0

√
κe

2

[
1− g+J+(Ω)χeff

0,−2

(
g∗
+Q+χg,0 + g−A0Q−χg,2

)]√
κe

2

)
ξ̂left

e0+ (5.204)
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This can be used just as in the red sideband case to calculate the output field power
spectral density in units of phonons.

To calculate the corresponding phonon occupation, we use relations (5.194) - (5.199)
and keep only cavity noise input terms for N̂0+ and N̂ †

2−

b̂−2

χeff
0,−2

= −i g∗
+Q+χg,0

[
N̂0++A2N̂ †

2−
]
− i g−Q−χg,2

[
N̂ †

2−+A0N̂0+
]
+

√
Γmζ̂ (5.205)

which gives the mechanical power spectral density

〈b̂†
−2b̂−2〉 = |χeff

0,−2|2|g∗
+Q+χg,0 + g−Q−A0χg,2|2κnth

c +
|χeff

0,−2|2|g∗
+Q+A2χg,0 + g−Q−χg,2|2κ

(
nth

c +1
)
+|χeff

0,−2|2Γmnth
m . (5.206)

The integration of this relation over all frequencies then results in the effective phonon
occupation in presence of the optomechanical coupling.

5.7.14. MEASUREMENT AND ANALYSIS PROTOCOLS FOR THERMAL NOISE

DETECTION AND FOUR-WAVE COOLING

PREPARATION

• We start the experimental cycle with choosing a bias flux operation point, either
point I or point II, and an in-plane magnetic field B∥. We ramp the in-plane magnet
current to its corresponding value.

• A parametric drive tone is sent to the cavity with fixed frequency ωd and power Pd

to match the chosen operation point.

• The cavity flux bias is adjusted manually to prepare the SQUID cavity in the driven
Kerr mode state.

• The frequency of the optomechanical pump is chosen to be either on the red side-
band of the signal resonance or on the blue sideband of the idler resonance. The
pump is activated with frequency ωp and power Pp.

THERMAL CALIBRATION MEASUREMENT
• The optomechanical pump is positioned on the red sideband of the signal reso-

nance and the fridge is sitting at base temperature.

• For the actual measurement, we start a python-based control and data acquisition
script.

• Prior to running the measurement, we input some fixed parameters to the script
such as the values of all external attenuators in the input lines and the number of
room-temperature amplifiers on the output line.

• We manually adjust the probe VNA to the parameter set regarding frequency win-
dow, probe power and bandwidth in order to measure a clean OMIT response. We
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hereby choose a red-sideband pump power, that is large enough to yield a clear
OMIT response, but low enough to keep the effective cooperativity in the regime
∼ 1.

• Upon a terminal input command, the script begins data acquisition and first catches
all relevant parameters such as powers, frequencies, frequency spans, bandwidths
as well as magnet DC currents from all participating electronic devices.

• Afterwards, the script takes three datasets.

• First, it performs a scan of the narrow-band OMIT window using the VNA and the
manually adjusted settings.

• Secondly, the center frequency and frequency span are sent to the spectrum an-
alyzer to measure a power spectrum in the OMIT frequency range. During this
spectrum analyzer measurement, the VNA frequency is set to a frequency 4kHz
detuned from the detection window of the spectrum analyzer to avoid any inter-
ference and the cavity response at a single frequency point is monitored perma-
nently during the spectrum acquisition. This measure enables to control the cavity
response by out-of-plane current feedback for the case the cavity is drifting during
the spectrum measurement.

• Lastly, a wide-band VNA scan of the complete cavity response is taken.

• Each of the three data traces is stored in a separate file.

• For most temperatures, we repeat the measurement once.

• We adjust the fridge temperature to its new set value and after a temperature set-
tling time of ∼10 minutes, we begin the cycle from the beginning at the new base
temperature.

• Parametric drive and optomechanical pump powers Pd and Pp, respectively, were
adjusted during the temperature sweep to keep driven cavity state and effective
cooperativity nearly constant.

FOUR-WAVE-COOLING MEASUREMENT
• For the four-wave-cooling measurement we start a python-based control and data

acquisition script, which is programmed to wait for an input terminal starting
command before each data point.

• Prior to running the measurement, we input some fixed parameters to the script
such as the values of all external attenuators in the input lines and the number of
room-temperature amplifiers on the output lines.

• We set the parametric drive power and the optomechanical pump powers to the
desired values Pd and Pp, respectively, and manually adjust the probe VNA to the
parameter set regarding frequency window, probe power and bandwidth in order
to measure a clean OMIT response.
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• Upon a terminal input command, the script begins data acquisition and first catches
all relevant parameters such as powers, frequencies, frequency spans, bandwidths
as well as magnet DC currents from all participating electronic devices.

• At this point, the script waits for the final command to measure three traces. Once
we observe a stable response in the OMIT window on the VNA screen, the script is
continued.

• The first data trace acquired by the script is a narrow-band VNA scan of the OMIT
response using the manually adjusted settings.

• Secondly, the center frequency and frequency span of the VNA trace are sent to the
spectrum analyzer and an output power spectrum in the OMIT frequency range is
acquired. During this spectrum measurement, the probe VNA frequency is set to
a value several spectrum analyzer frequency spans detuned from the detection
window of the spectrum analyzer window to avoid any interference between the
VNA signal and the power spectrum. The VNA is continuously scanning a single
frequency point of the cavity response to enable monitoring and feedback control
of the bias flux for the case the cavity response is drifting due to flux drifts.

• Lastly, a wide-band VNA trace of the complete signal resonance S21 is acquired.

• The three data traces are stored in individual files, where also the subsequent
equivalent traces for the next settings are appended.

• The VNA settings are reset to the OMIT window and manual VNA control is en-
abled by the measurement script.

• At this point, we can choose by a terminal input between a repetition of the same
measurement or a continuation to the next settings.

• In case of continuation to the next settings, the optomechanical pump power Pp is
manually set to its new value and the VNA probe settings are adjusted for a the next
measurement iteration. The most important parameter is the frequency range for
the OMIT and the spectrum analyzer window, which has to be increased with in-
creasing dynamical backaction due to the considerable increase of the mechanical
linewidth from the bare value of∼ 10Hz to the largest effective linewidth of∼ 2kHz
for the highest achieved effective cooperativity.

• Depending on the optomechanical pump power, we also adjust the parametric
drive power Pd in some cases to keep the driven cavity response nearly constant.
We suspect this measure is necessary as for large optomechanical pump powers,
the experiment is at the edge of the linearized regime with respect to γ−,γ+ and
parametric drive depletion is occurring.

• Once the new parameters are adjusted, the data acquisition cycle starts from the
beginning.
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THERMAL CALIBRATION DATA ANALYSIS

• The data analysis of the thermal calibration begins with fitting the cavity response
S21 for each temperature using Eq. (5.15). This fit provides us with a value for the
linewidth κ′ and a fit function for the complex background.

• We divide off the complex background from both, the cavity response and the
OMIT response in their corresponding frequency ranges. In addition we correct
for a small phase rotation which is intrinsic to the Kerr cavity susceptibility and
therefore not captured by the complex background.

• Next, we use the full Kerr-mode model function Eq. (5.53) to fit the background-
corrected cavity response once again. As fixed parameter for this second fit, we
use κ′ from the first fit, the parametric drive power Pd and the in-line attenuation.
We also use the independently obtained κe = 2π ·120±20kHz of the undriven cav-
ity and allow for small variations, necessary to match the observed resonances. As
fit parameters in this second fit, we get the detuning between drive and undriven
cavity ∆d and by using the Kerr polynomial (5.32) we get the corresponding intra-
cavity drive photon number nd.

• Next, we fit the background-corrected and rotated OMIT VNA response with Eq. (5.15)
and obtain Γeff andΩm as fit parameter.

• We fit the OMIT VNA response with the full four-wave OMIT model Eqs. (5.157)
and (5.161). We input as fixed parameters K and g0 from the flux arch, the para-
metric drive power Pd, the optomechanical pump power Pp and the in-line atten-
uation. Also, we use the fitted κe from the previous full model cavity fit. As starting
values for the remaining model parameters, we use ∆d, nd and κ′ from the previ-
ous fits of the cavity. In the routine, we allow for a change of the bare cavity reso-
nance frequency, i.e., of ∆d due to possible flux fluctuations. Based on the charac-
teristic polynomial Eq. (5.32), we then dynamically adjust nd to the modified ∆d.
Additionally, we allow for changes in κ′ of up to ±100kHz, with a lower limit of
κ′min = 2π · 320kHz. As in the experiment between the VNA cavity scan and the
VNA OMIT scan several minutes pass, during which the thermal noise spectrum
is recorded, these allowed changes in fit parameters reflect possible drifts of the
bare cavity resonance due to flux fluctuations in this time span. We calculate the
intracavity γ− and γ+ fields based on Eqs. (5.45) and (5.47). Ultimately, we obtain
from this OMIT fit with the full model a value for the bare mechanical linewidth
Γm and the mechanical resonance frequency Ωm. As last fit parameter, we allow
for a small correction of the OMIT resonance circle, which is necessary due to the
uncertainty of the background extraction during the initial cavity fitting routine at
the cavity resonance frequency. This is taken into account by allowing for a mul-
tiplication of the OMIT response by a small complex scaling factor (1+x)e iβ with
x,β¿ 1.

• Finally, we fit the measured thermal noise spectrum using the full model Eqs. (5.187)
and (5.188). We input as fixed parameters here all relevant quantities as obtained
from the previous full model OMIT fit. The only remaining fit parameters at this
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point are the total detection output gain, converting the PSD in numbers of quanta
to an absolute power and the uncalibrated equilibrium occupation of the mechan-
ical oscillator n′

m. The last used parameter nadd is adjusted to match the temper-
ature dependence of the uncalibrated n′

m in the linear regime to the Bose distri-
bution, which corresponds to a calibration of n′

m to nth
m . As a result we obtain a

number for the added photons nadd ≈ 14 and the residual thermal phonon occu-
pation shown in Fig. 5.4. In section 5.7.15, we present some additional data on the
temperature dependence ofΩm and Γm as obtained from this procedure.

• Note: Due to slow SQUID cavity resonance frequency fluctuations and drifts, the
measurement time of the spectrum acquisition was limited and we took these
data with a reasonable compromise between number of data points, frequency
span and bandwidth. For the lowest cooperativities however, when the mechan-
ical linewdith is close to the intrinsic linewidth, the resolution bandwidth of the
spectrum analyzer and the mechanical linewidth are comparable in size. In this
case the effect of the resolution bandwidth is to smoothen and broaden the real
mechanical power spectral density Lorentzian. To consider this effect in the fit
curve for the power spectral density, we apply a moving-average-filter with the
corresponding width in frequency space to the theory curve within the fitting rou-
tine itself. In the thermal calibration experiment, the resolution bandwidth of the
spectrum analyzer was set to 5Hz and therefore considerably smaller than the ef-
fective mechanical linewidths, cf. Supplementary Fig. 5.19.

• Error bars in thermal occupation: During the fitting procedure we simultaneously
calculate the corresponding error bars for each point. These translate the impact
of deviations of the cavity from its operation point. From this we estimate the
difference in thermal occupation by fitting the thermal noise spectrum with the
cavity parameters κ′, ∆d and nd. This difference is plotted as the error in y-axis of
the inset of in Fig. 5.4c.

FOUR-WAVE COOLING DATA ANALYSIS

• The data analysis of the four-wave cooling experiment begins with fitting the cav-
ity response S21 for each power setting of Pd and Pp using Eq. (5.15). This fit pro-
vides us with a value for the linewidth κ′ and a fit function for the complex back-
ground.

• We divide off the complex background from both, the cavity response and the
OMIT response in their corresponding frequency ranges. In addition, we correct
for a small phase rotation which is intrinsic to the driven Kerr cavity susceptibility,
and therefore not captured by the complex background.

• Next, we use the full Kerr-mode model function Eq. (5.53) to fit the cavity response
once again. As fixed parameter for this second fit, we use κ′ from the first fit, the
parametric drive power Pd and the in-line attenuation. We also allow for small
variations of the bare external decay rate of each operation point κI,II

e and allow for
κe = 2π · (κI,II

e ±10)kHz, which is necessary to match the observed resonances for
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all powers. As fit parameters in this second fit, we get the detuning between para-
metric drive and undriven cavity ∆d. Additionally, by using the Kerr polynomial
Eq. (5.32) within the fit routine we get the corresponding intracavity drive photon
number nd.

• We fit the background-corrected and rotated OMIT VNA response with Eq. (5.15)
and obtain Γeff andΩm as fit parameters.

• We fit the OMIT VNA response with the full four-wave OMIT model Eqs. (5.157)
and (5.161) for red-signal-sideband pumping or Eqs. (5.161) and (5.161) for the
blue-idler-sideband case, respectively. We input as fixed parameters K and g0 as
determined from their flux dependence, the parametric drive power Pd, the op-
tomechanical pump power Pp and the input line attenuation. Also, we use the
κe as determined from the full model cavity fit. As starting values for the remain-
ing model parameters, we use ∆d, nd and κ′ from the previous fits of the cavity.
In the routine, we allow for adjustments of the bare cavity resonance frequency,
i.e., of ∆d up to ±2MHz due to possible flux fluctuations, cf. operation range in
Fig. 5.2. Based on the characteristic polynomial Eq. (5.32), the intracavity drive
photon number nd is adjusted correspondingly within the fit routine. Addition-
ally, we allow for adjustments of the total linewidth κ′ of up to ±100kHz, but with
a lower limit κ′min,I = 2π · 320kHz at operation point I and κ′min,II = 2π · 350kHz
at point II. Several minutes pass in the experiment between the VNA scan of the
OMIT response and the VNA scan of the signal resonance, during which the ther-
mal noise spectrum is recorded. We allow for adjustments of some of fit param-
eters between the two scans, which reflects possible drifts of the bare cavity res-
onance due to flux drifts in this time span. We note that in principle also K and
g0 might experience small drifts due to the effective change in bias flux. As the
flux-drift related variations of these two parameters are small within the operation
range however, cf. Fig. 5.2 and section 5.7.4, we work with constant average values
for the analysis here. Based on Eqs. (5.45) and (5.47), we calculate also the intra-
cavity fields γ− and γ+. As last fit parameter, we allow for a small correction of
the OMIT resonance circle, which is necessary due to the uncertainty of the back-
ground extraction during the initial cavity fitting routine at the cavity resonance
frequency. This is taken into account by allowing for a multiplication of the OMIT
response by a small complex scaling factor (1+x)e iβ with x,β¿ 1.

• Finally, we fit the measured thermal noise spectrum using the full model Eqs. (5.187)
and (5.188) for the red-signal-sideband case and Eqs. (5.204) and (5.188) for the
blue-idler-sideband case, respectively. Once again, in this fitting procedure we al-
low for fluctuations of the cavity decay rate δκ′ = ±2π · 60kHz and δ∆d = ±2π ·
0.8MHz which are limited to small deviations around the average values obtained
from the cavity and OMIT fitting routines. Note that the OMIT measurement and
the cavity scan were taken prior and posterior (respectively) to the thermal noise
detection and therefore we account for possible deviations of the cavity state due
to the fluctuations in the system. Finally, the only remaining fit parameters are
the total detection output gain and the equilibrium occupation of the mechanical
oscillator nth

m . Note that this last fit parameter was allowed to vary between 70-90
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phonons for blue sideband driving and 60-90 phonons for red-sideband driving.
Without these restriction, the fit often fails and the corresponding thermal phonon
numbers are oscillating unsystematically between 50 and 130 phonons. The cor-
responding values without restrictions are considered in the error bars though, see
below. The number of added photons nadd ≈ 14 was determined via the thermal
calibration procedure.

• Note: Due to slow SQUID cavity resonance frequency fluctuations and drifts, the
measurement time of the spectrum acquisition was limited and we took these data
with a reasonable compromise between number of data points, frequency span
and bandwidth. For the lowest cooperativities however, when the mechanical
linewdith is close to the intrinsic linewidth, the resolution bandwidth of the spec-
trum analyzer and the mechanical linewidth are comparable in size. In this case
the effect of the resolution bandwidth is to smoothen and broaden the mechani-
cal power spectral density Lorentzian. To consider this effect in the fit curve for the
power spectral density, we apply a moving-average-filter with the corresponding
width in frequency space to the theory curve within the fitting routine itself. An
additional broadening effect of the spectrum might arise due to slow mechanical
frequency fluctuations induced by a variation of the optical spring during bias flux
drifts, cf. Fig. 5.2.

• Based on the full ensemble of system parameters obtained by this multi-step anal-
ysis and fit procedure, we finally infer the resulting cooled phonon number nm

of the mechanical oscillator by integrating Eq. (5.190) for the red-signal-sideband
case and Eq. (5.206) for the blue-idler-sideband case, respectively. The results are
plotted in Fig. 5.4 and in Supplementary Fig. 5.20.

• Error bars for cooled number of phonons: During the fitting procedure we simul-
taneously calculate the corresponding error bars of each point. These translate
the impact of deviations of the cavity from its operation point and of a different
thermal occupation in the extraction of cooled photon number. For this we esti-
mate the difference in the cooled phonons by fitting the thermal noise spectrum
with the cavity parameters, which were extracted from the OMIT fit, in this case
without any restriction to the thermal phonon number. This difference is plotted
as the error in the y-axis of Fig. 4 and in Supplementary Fig. 5.20. Furthermore,
we calculate the error in the extraction of the effective mechanical linewidth by
computing the difference of Γeff obtained from the full model noise fit and the one
obtained from the fit of the OMIT VNA response with Eq. (5.15). In addition, we
consider an uncertainty in Γm of ±1Hz The sum of these errors is plotted as the
error bar in the Γeff/Γm direction.
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5.7.15. THERMAL CALIBRATION OF THE RESIDUAL MECHANICAL PHONON

OCCUPATION

Figure 5.19: Temperature dependence of the mechanical oscillator. a shows the power spectra of the
signal resonance output field during optomechanical red-sideband pumping at two different refrigerator
base temperatures T min

b = 15mK and T max
b = 100mK. The measurement scheme is detailed in section

5.7.14. Points show data, lines and shaded areas show fits to the full four-wave model, where all system
parameters have been obtained from a VNA measurement of the cavity and the OMIT response, except
for the thermal phonon occupation nth

m (Tb) and the total output gain conversion, defining the absolute
power scale of the spectra. Frequency-axis is given with respect to the red sideband optomechanical
pump frequency ωp. b shows the resonance frequency shift ∆Ωm =Ωm(T )−Ωm(15mK) of the mechanical
oscillator with dilution refrigerator base temperature. Panels c and d show the effective and intrinsic
mechanical linewidth Γeff(T ) and Γm(T ) vs base temperature Tb. The effective linewidth is broadened
by dynamical backaction and obtained from a fit to the OMIT response, the intrinsic linewidth is
obtained from a fit to the OMIT response using the full four-wave model. The parameters obtained
from this temperature dependence are used to calculate the residual thermal phonon occupation vs
fridge temperature, the result is shown in Fig. 5.4, where the values for each temperature have been
averaged. Thermal calibration measurements were done at operation point I with an in-plane field of
B∥ = 21mT. Square points in b-d indicate the results for the two datasets shown in a.

We perform the thermal calibration measurement and data analysis as described in
section 5.7.14. In Supplementary Fig. 5.19 we present some of the results obtained from
this experiment. In particular, we show the detected thermal noise spectrum in units
of quanta for the lowest and highest temperatures T min

b = 15mK and T max
b = 100mK,

including the fit from the full model, and we show the obtained temperature dependence
of the mechanical parameters Ωm, Γeff and Γm. From the data it is clear, that both, the
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mechanical frequency and the intrinsic mechanical linewidth increase significantly with
temperature and have a strong dependence on temperature at the lowest temperatures.
Either intrinsic or pump-power-induced small variations of the chip temperature might
therefore be a source for the observation that for good agreement of our datasets with
the theory, we have to consider variations between the datasets of some 10Hz in the
mechanical resonance frequency and of a few Hz for the mechanical linewidth in the
range 10Hz< Γm

2π < 15Hz.

5.7.16. FOUR-WAVE-COOLING WITH A PUMP ON THE RED SIDEBAND OF THE

SIGNAL RESONANCE

We perform a four-wave cooling experiment with an optomechanical pump positioned
on the red sideband of the signal resonance, cf. Supplementary Fig. 5.20. Data acquisi-
tion and data analysis are described in section 5.7.14.

Figure 5.20: Red-sideband four-wave cooling of the mechanical oscillator. a Schematic representation of
the experiment. A parametric drive is used to activate the Kerr quasi-mode state and an optomechanical
pump is sent to the red sideband of the signal resonance ωp ≈ ωs −Ωm. From S21 measurements
of signal resonance and OMIT, as well as a signal mode output power spectrum, we determine the
cooled mechanical phonon occupation. The result for increasing sideband pump power Pp and effective
mechanical linewidth, respectively, is shown in panel b. Inset shows that Γeff ∝ Pp. Circles and stars are
data, the lowest achieved occupation is nm ∼ 4, limited by cavity bifurcation instability. Dashed lines
and shaded areas display the theoretical value range of nm, taking into account 60 < nth

m < 90. Data were
taken at operation point I and at B∥ = 21mT. In addition, the error bars represent possible deviations
in the extraction of the plotted values based on their difference from the ones calculated based on the
parameters extracted from the corresponding OMIT fit. For more details, see section 5.7.14. Panel c
shows selected power spectra data for the points in b, which are plotted as stars.
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The radiation-pressure coupling between two harmonic oscillators has been used in op-
tomechanics for breakthrough experiments in the control and detection of mechanical dis-
placements. Used primarily in optomechanics, there have been few reports of exploiting
such a type of interaction in other platforms. Here, we engineer two superconducting LC
circuits coupled by a strong photon-pressure interaction, a term we use in analogy to the
radiation-pressure interaction between light and mechanical objects. The coupling arises
from a change in the resonant frequency of one circuit in response to the current flowing in
the second. We observe dynamical backaction between the two circuits, photon-pressure-
induced transparency and absorption, and enter the strong-coupling regime. Further-
more, we observe parametrically amplified thermal current fluctuations in a radio-frequency
circuit close to its quantum ground-state. Due to the high design-flexibility of supercon-
ducting circuits, our approach will enable new experiments with radio-frequency photons
and parameter regimes of photon-pressure coupling not accessible in other platforms.

This chapter has been published as an Photon-pressure strong-coupling between two superconducting circuits.
D. Bothner*, I. C. Rodrigues*, & G. A. Steele, in Nature Physics 17, 85-91 (2020)
*these authors contributed equally
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6. PHOTON-PRESSURE STRONG-COUPLING BETWEEN TWO

SUPERCONDUCTING CIRCUITS

6.1. INTRODUCTION

The nonlinear, parametric coupling between two harmonic oscillators has been used
in cavity optomechanical systems for groundbreaking developments regarding the de-
tection and control of macroscopic mechanical systems [56]. The most impressive re-
sults include the demonstration of quantum ground-state cooling of mechanical oscil-
lators with light fields [31, 32], displacement detection below the standard quantum limit
[41, 42], the quantum-entanglement between distinct mechanical systems [39, 40] or the
generation of non-classical states of motion [36–38]. Besides offering remarkable con-
trol over mechanical objects, optomechanical systems have also shown great potential
for signal processing by means of slow light [183, 184], parametric microwave amplifi-
cation [26, 82, 84–86] and light-field frequency conversion [51, 52, 54, 84]. Very recently,
exciting new developments using optomechanical devices such as the realization of non-
reciprocity [87–90], the implementation of synthetic magnetism and reservoir engineer-
ing [91, 92] as well as topological operations at exceptional points [159] have been re-
ported.

The radiation-pressure type of nonlinear coupling between two harmonic oscilla-
tors, which forms the basis of all breakthrough experiments and developments in cavity
optomechanics, however, is not limited to mechanical systems coupled to light fields.
It can, in principle, be implemented for any system in which the amplitude of one os-
cillator couples linearly to the resonance frequency of a second. In nanomechanics,
such coupling has been applied for dynamically controlling the coupling of different
modes of a nanomechanical resonator [74–77]. Ideas for implementing this type of in-
teraction with superconducting circuits have also been proposed [78–80, 93] and re-
cently realized in a first experiment [81]. This coupling between two circuits, which
has been referred to as photon-pressure coupling [93] in analogy with the optomechan-
ical radiation-pressure coupling, offers a wide range of possible applications and exper-
iments with superconducting circuits in both the classical and quantum regimes [26, 31,
32, 36, 37, 56, 82, 84–92, 159, 183, 184] and has been proposed for quantum computation
with bosonic codes [93]. Due to the large design flexibility and precision in engineering
resonance frequency and quality factor of superconducting circuits, experiments in un-
conventional photon-pressure parameter regimes such as the reversed dissipation [82]
and the reversed resonance frequency regimes [83] or even the optomechanical single-
photon strong-coupling regime [63, 67] could be possible. The circuit implementation
of many breakthrough developments in radiaton-pressure coupled systems, however,
require either large cooperativities CÀ 1 or the strong-coupling regime [25, 58, 59]. Nei-
ther regime has been achieved to date in photon-pressure coupled superconducting cir-
cuits.

Here, we present a device consisting of two superconducting microwave resonators,
which are coupled to each other by a photon-presssure interaction with a considerable
single-photon coupling strength on the order of 10 percent of the largest system decay
rate. Our technology is based on a nanobridge junction platform that enables lower
anhamonicitiy and higher drive powers than typical tunnel junction devices. One res-
onator is a radio-frequency circuit with a resonance frequency in the MHz regime and
the second is a microwave quantum interference cavity in the GHz regime. We demon-
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Figure 6.1: Two superconducting LC circuits coupled by a photon-pressure interaction. a Circuit
equivalent of the device. The current of a radio-frequency LC circuit is coupled via mutual inductance
to a superconducting quantum interference device (SQUID) embedded into a microwave cavity. Both
circuits are capacitively coupled to individual feedlines for driving and readout. b Optical image of
the device showing both circuits and their corresponding feedlines. The red dashed box indicates the
zoom region for panel c. Panel c shows the high-frequency SQUID cavity with feedline and coupling
capacitor C ′

c at the bottom, interdigitated capacitors C0 to ground in the center, and linear inductance
wires with L0 grounding the SQUID symmetrically on both sides. At the top, a small part of the LF
parallel plate capacitor (PPC) with the LF inductor wire connecting the two plates is visible. The
black box indicates the zoom region for panel d, which shows in detail the SQUID loop and the
LF inductance LLF surrounding the loop with a gap of 500nm. In b-d, brighter parts correspond to
Aluminum, darker and transparent parts to Silicon. e shows the resonance curve of the LF resonator vs
excitation frequency, measured by coherently exciting the LF resonator and using the driven HF SQUID
cavity as interferometer. f shows the amplitude of the reflection coefficient |S11| at the SQUID cavity
vs excitation frequency. In e and f, colored points are data, and the black lines correspond to fits. In
g we show the reflection response of the SQUID cavity dependent on the external magnetic bias flux.
For increasing flux, the resonance frequency of the cavity absorption (dark line) is shifted towards lower
values. The magnetic field was applied by a small coil below the device, mounted inside the cryoperm
magnetic shields surrounding the sample.

strate dynamical backaction between the two LC circuits and observe the transition from
the photon-pressure-induced transparency (PPIT) [149, 150] to the parametric strong-
coupling regime [25, 58, 59], manifested by the observation of a pronounced normal-
mode splitting. The largest cooperativities we achieve in this regime are C ∼ 100 À 1, an
improvement of two orders of magnitude compared to existing realizations [81]. Finally,
we interferometrically observe the photon-pressure-amplified thermal current fluctua-
tions in a radio-frequency LC oscillator by a blue-detuned sideband pump tone.
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SUPERCONDUCTING CIRCUITS

6.2. CONCEPT AND DEVICE

Our device combines two superconducting LC circuits with about an order of magnitude
difference in resonance frequencies. The full circuit schematic and optical images of the
device are shown in Fig. 6.1a-d. The low-frequency (LF) resonator consists of a large
parallel plate capacitor, whose plates are connected via a short inductor wire, and it is
capacitively coupled to a coplanar waveguide feedline for driving and readout. It has a
resonance frequencyΩ0 = 2π ·391MHz and a linewidth Γ0 = 2π ·22kHz, cf. Fig 6.1e. The
inductor wire of the LF resonator surrounds a superconducting quantum interference
device (SQUID) in close proximity, which is embedded into the inductance of a high-
frequency (HF) cavity with resonance frequency ω0 = 2π ·5.844GHz and linewidth κ =
2π·250kHz, see Fig. 6.1f. The HF SQUID cavity is formed by two interdigitated capacitors
and two linear inductors, which are connected to the SQUID loop in the center of the
cavity, and it is capacitively coupled to a coplanar waveguide feedline for driving and
readout. Both, inductance and resonance frequency of the HF SQUID cavity depend on
the magnetic flux threading the SQUID loopω0(Φ) = 1/

p
LHF(Φ)CHF as shown in Fig. 6.1g

and can be tuned by applying a magnetic field perpendicular to the chip surface, in our
case generated by an external coil below the chip. The device is mounted to the mixing
chamber of a dilution refrigerator with a base temperature Tb = 15mK, details on the
setup can be found in section 6.7.2. All details regarding the device fabrication, device
parameters and modelling are described in sections 6.7.1 and 6.7.3-6.7.5.

A radio-frequency current flowing through the inductor wire of the LF resonator will
couple oscillating magnetic flux into the SQUID of the HF cavity and thereby modu-
late its resonance frequency, giving rise to a parametric photon-pressure interaction be-
tween the two circuits. With the creation and annihilation operators â†, â and b̂†, b̂ for
the SQUID cavity and LF resonator, respectively, the Hamiltonian of the system is given
by

Ĥ =ħω0â†â +ħΩ0b̂†b̂ +ħg0â†â
(
b̂ + b̂†

)
. (6.1)

The single-photon coupling rate in the interaction part of the Hamiltonian is given by

g0 = ∂ω0

∂Φ
Φzpf (6.2)

with the SQUID cavity flux responsivity ∂ω0/∂Φ and the zero-point flux fluctuations
Φzpf = M Izpf of the LF resonator. The zero-point fluctuations of the current are given

by Izpf =
√

ħΩ0
2LLF

≈ 21nA, which with the mutual inductance M = 14pH translates to zero-

point flux fluctuations threading the SQUID loop ofΦzpf = 145µΦ0. The flux responsivity
∂ω0/∂Φ is determined by the flux biasing point, cf. Fig. 6.1g, and can be tuned in-situ by
changing the external SQUID flux bias.

We model the SQUID cavity here as a harmonic oscillator without Kerr-nonlinearity,
which is justified by its small anharmonicity. Due to the small Josephson inductance of
the used constriction type Josephson junctions LJ =Φ0/2πIc ∼ 30pH and the inductance
dilution of LJ/LHF ∼ 0.04, the measured frequency shift per photon at the sweetspot
χ∼ 2π·1kHz (cf. section 6.7.4) is much smaller than the cavity linewidth and χ/κ∼ 10−2.
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In the driven multi-photon regime, the system is well described by the linearized inter-
action Hamiltonian

Ĥint =ħg (δâ +δâ†)(b̂ + b̂†) (6.3)

with the multi-photon coupling rate g =p
ncg0, the field fluctuation creation and anni-

hilation operators δâ and δâ† and the equilibrium intracavity photon number nc of the
SQUID cavity.

We note here that the SQUID cavity resonance frequencyω0 and linewidth κ depend
on both, the flux bias point as well as the intracavity photon number, while the flux bias
point also impacts the anharmonicity χ. Additional data and a detailed discussion can
be found in section 6.7.4.

6.3. DYNAMICAL BACKACTION BETWEEN TWO CIRCUITS

A famous consequence of the parametric photon-pressure interaction is the possibility
to manipulate the quality factor and the resonance frequency of the low-frequency res-
onator by applying a strong coherent pump tone to the high frequency cavity around one
of its sidebands ω=ω0 ±Ω0. This effect, which corresponds to a modification of the LF
resonator susceptibility, is known in optomechanical systems as dynamical backaction
[11, 160]. It arises from a retarded adjustment of the HF intracavity fields and therefore
of the photon-pressure coupling to changes of the SQUID cavity resonance frequency
induced by the LF flux threading the SQUID loop.

For the observation of dynamical backaction between the two circuits, we iteratively
sweep a pump tone with ωp = ω0 +∆ through the red sideband of the high frequency
cavity, i.e., ∆ = −Ω0 +δr, for details on the experimental setup, cf. section 6.7.2. The
cavity is flux biased here at Φb = 0.16Φ0. For each value of δr, we measure the reflection
response of the LF resonator S11 by probing it directly with a weak radio-frequency probe
tone Ω ∼ Ω0, cf. the schematic in Fig. 6.2a and the response shown in b and c. In the
regime |δr|. κ/2, the low-frequency resonance absorption dip experiences a significant
modification in shape, shifting both in resonance frequency and linewidth.

For each pump detuning, we extract resonance frequency Ω′
0 and linewidth Γ′0 of

the LF resonator from a fit to its measured response (cf. section 6.7.3) and determine
the photon-pressure induced contributions by substracting the intrinsic values Ω0 and
Γ0. The resulting frequency shift δΩ0 = Ω′

0 −Ω0 and photon-pressure damping δΓ0 =
Γ′0 −Γ0, known in optomechanical systems as optical spring and optical damping, re-
spectively, are plotted in Figs. 6.2d and e. The increase of linewidth for δr = 0 is about
δΓ0 = 2π ·22kHz ∼ Γ0, i.e., of the same magnitude as the intrinsic damping rate, indicat-

ing a cooperativity C = 4g 2

κΓ0
∼ 1 for the chosen parameters. The lines in Fig. 6.2d and e are

simultaneously adjusted theoretical curves using the expressions for photon-pressure
induced dynamical backaction in the resolved sideband regime,Ω0 À κ,

δΩ0 = 4g 2 δr

κ̃2 +4δ2
r

(6.4)

δΓ0 = 4g 2 κ̃

κ̃2 +4δ2
r

(6.5)
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Figure 6.2: Observation of photon-pressure dynamical backaction between two superconducting cir-
cuits. a Schematic of the measurement scheme. After flux biasing the cavity to Φb = 0.16Φ0, a pump
tone with ωp = ω0 −Ω0 +δr is swept stepwise through the red sideband of the high frequency SQUID
cavity. For each pump detuning δr, the reflection at the low-frequency resonator was scanned with a
weak radio-frequency probe tone Ω∼Ω0 and the corresponding reflection parameter S11 was measured.
The result is shown color-coded in b, where a strong modification of the resonance is visible around
|δr| . κ/2. In c, a linescan for a far detuned pump δr = 2π · 260 kHz and another for a pump tone
exactly on the red sideband δr = 0 are shown as orange and light blue curves, respectively. Two pairs
of arrows in b visualize the linescan positions. From the corresponding fit curves, shown as black lines
in c, the pump-detuning dependent LF resonance frequency Ω′

0 and linewidth Γ′0 were extracted. This
fitting procedure was repeated for each δr. The extracted addition to the low-frequency linewidth,
the photon-pressure damping δΓ0 = Γ′0 −Γ0, and the photon-pressure induced shift of the LF resonance
frequency δΩ0 =Ω′

0 −Ω0 are plotted in d and e as circles, respectively. The lines are theoretical curves,
for details see main text.

and give an excellent agreement with the experimental data for κ̃ = 2π · 110kHz, indi-
cating that we indeed observe dynamical backaction between two superconducting cir-
cuits. The reduced cavity linewidth κ̃ compared to the directly probed resonance shown
in Fig. 6.1 originates from two effects. First, the SQUID cavity linewidth is power depen-
dent, cf. section 6.7.4. And secondly is the effective SQUID cavity linewidth reduced by
the onset of mode hybridization close to the strong-coupling regime.
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More data on dynamical backaction for different pump powers as well as for a blue-
detuned pump frequency with ∆≈+Ω0 can be found in the section 6.7.6.

6.4. FROM PHOTON-PRESSURE INDUCED TRANSPARENCY TO

THE PARAMETRIC STRONG-COUPLING REGIME
When we choose a similar experimental setting as before, but probe the high-frequency
SQUID cavity instead of the radio-frequency circuit with a second weak microwave tone,
cf. Fig. 6.3a and section 6.7.2, a new effect occurs, which we call photon-pressure in-
duced transparency (PPIT), similar to electromagnetically induced transparency in atoms
[161] and optomechanically induced transparency in optomechanical systems [149, 150].
A pump tone on the red cavity sideband with ωp =ω0 −Ω0 and a weak probe signal with
ωpr ≈ω0 will interfere inside the SQUID cavity and generate an amplitude beating with
the difference frequency Ω=ωp −ωpr. When Ω≈±Ω0, the LF resonator is driven to co-
herent oscillations by the parametric interaction between the oscillators. This, in turn,
modulates the SQUID cavity resonance frequency and hereby generates a sideband to
the pump tone at ω=ωp +Ω, which interferes with the original probe tone.

The interference effect of PPIT is experimentally identified by a narrow transparency
window in the SQUID cavity response. In the bottom data of Fig. 6.3d, the transparency
window is visible as a small peak in the center of the cavity absorption dip and its shape
is given by the LF resonator response including dynamical backaction from the red-
detuned pump field. When the multi-photon coupling strength g =p

nc g0 is increased,
this transparency window grows in magnitude and width, and in typical optomechani-
cal setups such an enhancement of the multi-photon coupling strength is achieved by
increasing the number of intracavity photons by an increased strength of the sideband
pump tone [25]. In our device, however, we can control the single-photon coupling rate
g0 by changing the flux bias value of the SQUID, similar to flux-mediated microwave op-
tomechanics [70, 162]. We are therefore able to enhance the multi-photon coupling rate
while keeping the number of intracavity photons constant, cf. Fig. 6.3b and c.

With increasing flux bias and correspondingly increasing single-photon coupling rate
g0, the transparency window in the SQUID cavity response grows larger in amplitude and
width as can be seen in Fig. 6.3d from bottom to top, until for the largest flux bias values
two distinct, new eigenmodes define the response. These new modes of the pumped
system correspond to hybridized modes between the LF resonance and intracavity field
modulations and both modes are approaching a hybridized linewidth of (κ+Γ0)/2 and
a frequency splitting of 2g . This hybridization is apparent as an avoided crossing of the
two modes, when the pump frequency is iteratively swept through the red sideband as
shown for different flux bias points in e.

From theoretical modelling of the reflection response, shown as black lines in Fig. 6.3d,

we extract the cooperativity C = 4g 2

κΓ0
and the multi-photon coupling rate g . The largest

value we show here corresponds to a cooperativity C ≈ 53 and to a coupling rate g /π =
0.5MHz. Additional data on the intracavity photon number dependence for a fixed flux
bias point with maximum cooperativity C ≈ 130 and g /π≈ 1MHz can be found in section
6.7.6. With a calibration of the setup attenuation, we can determine the intracavity pho-
ton number nc ≈ 70 for the data presented in Fig. 6.3 and from there the single-photon
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Figure 6.3: From photon-pressure induced transparency to the parametric strong-coupling regime by
tuning the SQUID flux bias. a Schematic of a photon-pressure-induced transparency (PPIT) experi-
ment. A pump tone is set to the red sideband of the SQUID cavity ωp =ω0 −Ω0, while a weak probe
tone is scanning the SQUID cavity response around resonance with ωpr ∼ω0. b shows the SQUID cavity
resonance frequency vs magnetic flux as a line, together with the seven flux bias points used for the
PPIT experiment here, indicated as circles. By increasing the bias flux through the SQUID, the cavity
flux responsivity ∂ω0/∂Φ and therefore the single-photon coupling strength g0 are increased accordingly.
This can be seen in panel c, where the expected single-photon coupling rate g0 vs flux bias is shown
as line. The measurement configuration described in a was performed for the seven different flux-bias
points shown in b, and for each of these biasing points the SQUID cavity reflection |S11| is shown in
d. From bottom to top, the flux bias value is increased, and subsequent data are shifted by +4dB
for better visibility. For the lowest flux bias value, we find a small peak in the center of the SQUID
cavity absorption dip, indicating the PPIT regime. For larger flux bias values, the PPIT window grows
in both, amplitude and width, ultimately leading to two distinct absorption resonances for the largest
flux value (top curve). In this regime, where the frequency splitting between the two modes is given by
g /π≈ 500kHz, the system has entered the parametric, photon-pressure induced strong-coupling regime.
The values for g0 extracted from the theoretical black lines added to the data in d, are plotted as circles
in c. In e, we show the SQUID cavity reflection |S11| (color scale given in dB) for four distinct flux bias
points, denoted in b with A, B, C, and D, and for non-zero pump detunings |δr| ≤ 2π·0.9MHz. For small
flux bias (A), a small transparency signature is slicing through the cavity response. With increasing flux
bias, this transparency window gets stronger and wider, developing into a pronounced normal-mode
splitting for the largest flux bias value (D). The intracavity photon number for all data shown here was
nc ≈ 70 and the cooperativities C for the biasing points A-D are given within the sub-panels of e.

coupling rate g0. The results are plotted in panel c as circles and follow closely the theo-
retically expected line with maximum values corresponding to g0/κ ∼ 0.1. We attribute
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deviations to a frequency dependent system attenuation and a frequency-dependent
conversion from pump power to intracavity photon numbers due to cable resonances
in our setup. As our system provides access to the LF resonator response, we can also
detect the normal-mode-splitting directly in the LF reflection, cf. section 6.7.6.

6.5. OBSERVATION OF PHOTON-PRESSURE-AMPLIFIED

THERMAL RADIO-FREQUENCY PHOTONS

Photon-pressure induced dynamical backaction in parametrically coupled systems does
not only influence the resonance frequency and the linewidth of the LF resonator, but at
the same time impacts its internal state by cooling or parametric amplification. This ef-
fect has been used to cool mechanical oscillators into the quantum ground-state [31, 32]
with a red-detuned pump tone or to realise parametric, mechanical-oscillator-mediated
microwave amplification using a blue-detuned pump [26]. At the base temperature of
our dilution refrigerator Tb = 15mK, the LF resonator is expected to have a thermal

photon occupation of nLF = (
eħΩ0/kBTb −1

)−1 ≈ 0.44, hence to be close to the quantum
ground-state.

A pump tone on the blue SQUID cavity sideband ωp = ω0 +Ω0 will have two effects
to the LF resonator. It will reduce its effective linewidth by negative photon-pressure
damping and at the same time it will amplify the intrinsic state of the resonator. For the
observation of the negative damping, we first perform a measurement scheme similar to
PPIT in the previous section, but now with a blue-detuned pump tone at ωp = ω0 +Ω0.
The reflection of the SQUID cavity probed with a weak second tone around ωpr ≈ω0 in
presence of a blue-detuned pump is shown in Fig. 6.4a. Instead of an interference peak
as observed for the red-detuned pump field, we now observe a very narrow absorption
dip with Γ′0 ≈ 2π ·10kHz, indicating the regime of photon-pressure induced absorption
(PPIA) and negative photon-pressure damping with δΓ0 ≈ −2π · 12kHz. From this re-
sponse curve, we can extract all system parameters such as the linewidths κ,κe,Γ′0 and
cooperativity C, as indicated in Fig. 6.4a.

To detect the state of the LF resonator, we switch off the probe tone and measure
the SQUID cavity output field around its resonance with a signal analyzer in presence
of a blue-detuned pump. The thermal and quantum fluctuations in the LF resonator
generate a sideband to the pump, also described as Stokes process in the scattering pic-
ture of optomechanics [56], and this noise-induced sideband is detected using a signal
analyzer. For a negligible SQUID cavity occupancy, the detected power spectral density
S(ω), in units of photon numbers, is related to the current fluctuation spectral density in
the LF resonator S I (Ω) by

S(ω)

ħω = 1

2
+n′

add +
κe

κ

C
2

Γ0

I 2
zpf

S I (−Ω) (6.6)

with

S I (−Ω) = 8Γ0

Γ′20 +4∆2
0

I 2
zpf(nLF +1) (6.7)
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Figure 6.4: Observation of photon-pressure-amplified thermal noise of a radio-frequency supercon-
ducting circuit. a When a pump tone is set to the blue cavity sideband ωp = ω0 +Ω0 and a weak
probe tone is swept through the cavity resonance (schematic as inset), a narrow absorption window
appears in the center of the cavity resonance. From the response, we extract κ,κe, the effective LF
resonator linewidth Γ′0 and C. The flux bias value is Φb/Φ0 ∼ 0.5 and the fridge temperature Tb = 15mK.
b Without the probe signal, the residual thermal and quantum fluctuations in the LF resonator are
amplified by the blue-detuned tone and generate a sideband to the pump tone at the SQUID cavity
center frequency, cf. inset schematic. This noise sideband around the cavity center is detected with a
signal analyzer and converted to RF current spectral density. Shown are two exemplary data sets (black
lines are fits) for different photon-pressure amplification gain, the numbers indicate the respective Γ′0s.
The photon-pressure damping is modified here by slightly detuning the pump from the blue sideband,
and a corresponding photon-pressure frequency shift is visible. The LF resonator current noise spectral
density for varying fridge temperature is shown as colored lines from 15mK to 220mK together with
Lorentzian fits as black lines in c. Subsequent data are manually shifted by 1nA2/Hz for better visi-
bility. From the amplitude of the current noise, the equilibrium thermal photon number is calculated
and plotted in panel d vs the fridge temperature. Error bars indicate a 20% uncertainty and the gray
line follows the Bose-factor. For large fridge temperatures, the RF resonator is thermalised with the
fridge, for low fridge temperatures a residual thermal occupation of ∼ 5 RF photons remains, indicating
a mode temperature of ∼ 100mK.
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where nLF is the thermal RF resonator population and n′
add ≈ 15 is the effective number

of noise photons added by the detection chain.

With these equations, we transform the detected power spectral density into a cur-
rent fluctuation spectral density, cf. also section 6.7.7, and the result is plotted for two
different values of photon-pressure amplification in Fig. 6.4b. We can calibrate the resid-
ual thermal occupation of RF photons in the low-frequency resonator by varying the
fridge temperature and detect the thermal current spectral density as shown in Fig. 6.4c
for six different fridge temperatures. With increasing temperature, the noise amplitude
grows, indicating the increased thermal population of the LF resonator. For each curve,
we determine the thermal RF photon population nLF from its amplitude on resonance.
The result is plotted in Fig. 6.4c as circles and shows a trend for higher temperatures, that
follows closely the nearly linear behaviour expected from the Bose-factor shown as gray
line. For lower temperatures, the LF mode saturates around nLF ≈ 5 thermal photons,
which corresponds to a mode temperature of ∼ 100mK. We attribute the difference be-
tween the base temperature and the mode temperature to imperfect thermalization of
the LF input line, cf. the setup in section 6.7.2, and to imperfect thermalization of the
chip itself.

In principle, our device also enables sideband-cooling by up to a factor of ∼ 10 [58],
which corresponds to cooling the radio-frequency resonator into its quantum ground-
state with nLF < 1. Due to the intrinsic sideband asymmetry of the detection scheme
[163], the highly undercoupled SQUID cavity κe/κ∼ 0.1 and the large number of added
photons n′

add ≈ 15, however, we are not able to detect the signal within our current setup.

6.6. DISCUSSION

We presented a device consisting of two superconducting circuits, which are coupled
via a parametric photon-pressure interaction. Performing a series of experiments, we
demonstrated dynamical backaction between two superconducting circuits, observed
photon-pressure-induced transparency and normal-mode splitting, indicating the para-
metric strong-coupling regime. Finally, we observed photon-pressure-amplified radio-
frequency photons by blue-sideband SQUID cavity pumping. In summary our device
constitutes a novel platform for the control and readout of superconducting quantum
circuits of a broad range of frequencies and enables new ways to manipulate and detect
radio-frequency photons. We also note that multimode Josephson parametric converter
(JPC) devices [164–166] can exhibit similar physics to the linearized multi-photon cou-
pling that can arise from the photon-pressure interaction, and in particular, a pump-
tunable normal-mode splitting can be induced with the appropriate driving [165, 166].
Photon-pressure couplings (3-wave mixing between two modes) in JPCs, however, are
undesired [164] and are typically eliminated by design. Another important distinction is
that our photon-pressure device contains no Josephson junctions in the low-frequency
circuit, resulting in a much higher degree of linearity than in a JPC. Furthermore, the
coupling is asymmetric: current in the low-frequency mode modulates the HF mode
resonance frequency, but not vice versa. In the single-photon strong-coupling regime,
this allows for example for modular quadrature measurements [93] or the implementa-
tion of coupling-induced photon-blockade [67].
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As the system dynamics of our platform is completely equivalent to cavity optome-
chanics, many technological developments of the last decade such as parametric am-
plifiers, non-reciprocal devices or bath engineered systems, which are based on photon-
pressure coupling, can be realised now with a purely circuit-based approach. Our results
also open the door for the investigation of parametrically coupled harmonic oscillators
in novel parameter regimes, as superconducting circuits have an extremely high design
flexibility and precision regarding resonance frequencies and linewidths compared to
opto- or electromechanical systems. With further advances, this platform also provides
the potential for the realization of recently discussed possibilities for quantum compu-
tation, using bosonic codes based on Gottesmann-Kitaev-Preskill states [93, 167], and
for the quantum control of radio-frequency circuits and photons [98] relevant for fields
ranging from radio-astronomy to nuclear magnetic resonance imaging.

6.7. SUPPLEMENTARY INFORMATION

6.7.1. DEVICE FABRICATION

The device fabrication starts with the patterning of alignment markers on a full 4inch
Silicon wafer, required for the EBL (Electron Beam Lithography) alignment of the follow-
ing fabrication steps. The structures were patterned using a CSAR62.13 resist mask and
a sputter deposition of 50nm Molybdenum-Rhenium alloy. After undergoing a lift-off
process, the only remaining structures on the wafer were the 20×20µm2 square mark-
ers. The complete wafer was diced into individual 14×14mm2 chips, which were used
individually for the subsequent fabrication steps. As second step in the fabrication (Sup-
plementary Fig. 6.5 steps 2. & 3.), we pattern the bottom plate of the parallel plate ca-
pacitor, the inductor wire of the low-frequency cavity, the SQUID cavity and the center
conductor of the SQUID cavity feedline by means of EBL using CSAR62.09 as resist. After
the exposure, the sample was developed in Pentylacetate for 60seconds, followed by a
solution of MIBK:IPA (1:1) for 60seconds, and finally rinsed in IPA.

The sample was subsequently loaded into a sputtering machine where a 20nm layer
of Aluminum was deposited. Finally, the chip was placed in the bottom of a beaker con-
taining a small amount of anisole and inserted in a ultrasonic bath for a few minutes.
This lift-off process turned out to be very efficient compared to warm anisole bath with-
out ultrasound, where sometimes some of the unwritten structures would not lift-off.

The deposition of the dielectric layer of the parallel plate capacitors was done us-
ing a plasma-enhanced chemical vapor deposition (PECVD). To guarantee low dielectric
losses in the material, the chamber underwent an RF cleaning process overnight and
only afterwards the deposition of ∼ 130nm of amorphous silicon was performed. At this
point the whole sample is covered with dielectric, cf. Supplementary Fig. 6.5 step 4. Af-
terwards, a double layer of resist (PMMA 950K A4 and ARN-7700-18) was spin-coated
and exposed with EBL. Prior to the development of the pattern, a post-bake of 2 minutes
at ∼ 115◦C was required. Directly after, the sample was dipped in MF321 for 2 minutes
and 30 seconds, followed by H2O for 30 seconds and lastly rinsed in IPA, cf. Supplemen-
tary Fig. 6.5 step 5. To finish the third step of the fabrication, the developed sample un-
derwent a SF6/He reactive ion etching (RIE) to remove the amorphous Silicon, followed
by an in-situ O2 plasma ashing to remove resist residues, cf. Supplementary Fig. 6.5
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Figure 6.5: Schematic device fabrication. Steps 1.-3. show the deposition and patterning of the SQUID
cavity and both bottom plate and inductor wire of the low frequency cavity. Steps 4.-6. sketch the
deposition and patterning of the amorphous Silicon (aSi) dielectric layer for the parallel plate capacitor.
Steps 7. and 8. show the patterning and deposition of the top plate of the low-frequency circuit
capacitor. Step 9. shows the final device. A detailed description of the individual steps is given in the
text.

steps 6.& 7.
As final step, the sample was again coated in CSAR62.13 and the top plate of the

capacitor as well as all ground plane and the low-frequency feedline was patterned with
EBL. The development of the resist was done in a similar way to the one mentioned in
the second step. Afterwards, the sample was loaded into a sputtering machine where an
argon milling process was performed in-situ for 2 minutes. This etching step prior to



6

182
6. PHOTON-PRESSURE STRONG-COUPLING BETWEEN TWO

SUPERCONDUCTING CIRCUITS

the deposition was done to remove the native aluminum oxide present on top of the first
layer and allow for good electrical contact between the top and bottom plates of the low-
frequency capacitor. Posterior to the milling, a 200nm layer of Aluminum was deposited
and finally a lift-off procedure, similar to the one of the second step, was performed, cf.
Supplementary Fig. 6.5 step 9.

At the end of the fabrication, the sample was diced to a 10×10mm2 size and mounted
into a PCB (Printed Circuit Board). A schematic representation of this fabrication process
can be seen in Supplementary Fig. 6.5, omitting the initial patterning of the electron
beam markers.

6.7.2. MEASUREMENT SETUP

SETUP CONFIGURATION

All the experiments reported in this paper were performed in a dilution refrigerator op-
erating at a base temperature close to Tb = 15mK. A schematic of the experimental setup
and of the external configurations used in the different performed experiments can be
seen in Supplementary Fig. 6.6.

The PCB, onto which the fabricated sample was glued and wirebonded, was placed in
a radiation tight copper housing and connected to two coaxial lines. One of the lines was
used as input/output port for the high-frequency (HF) SQUID cavity and the second line
was set in a similar way for the low-frequency (LF) cavity. Both of the cavities were mea-
sured in a reflection geometry, and therefore the input and output signals were split via
a directional coupler on the 15mK stage (HF) and 100mK stage (LF), respectively. Both
output signals went into a cryogenic HEMT (High Electron Mobility Transistor) amplifier
for their particular frequency range.

Furthermore, in order to generate an out-of-plane magnetic field, required to flux
bias the SQUID cavity, an external magnet (not shown in the figure) was put in very close
proximity below the device and the two were placed inside a cryoperm magnetic shield.
The magnet was connected with DC wires, allowing for the field to be tuned by means of
a DC current (not shown).

Both high-frequency input lines were heavily attenuated in order to balance the ther-
mal radiation from the line to the base temperature of the fridge. Due to a lack of low-
frequency isolators/circulators, the LF input lines were attenuated less than usually nec-
essary for fully equilibrating the input noise to the fridge base temperature. Outside of
the refrigerator, we used different configurations of microwave signal sources and high-
frequency electronics for the different experiments.

In Supplementary Fig. 6.6b we show the configuration for the measurement of dy-
namical backaction. A microwave generator sends a continuous wave signal to the SQUID
cavity around one of its sidebands, while the LF resonator is probed in reflection with a
vector network analyzer (VNA). We also used this setup to measure the normal-mode
splitting on the LF side as shown in Supplementary Fig. 6.16.

Supplementary Fig. 6.6c shows the setup for photon-pressure induced transparency
and the strong-coupling regime detected at the SQUID cavity. During the experiment a
continuous wave tone from a microwave generator is combined with a weak probe signal
via a directional coupler and sent to the SQUID cavity. The output signal of the SQUID
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Figure 6.6: Schematic of the measurement setup. Detailed information is provided in text.

cavity, coming from the dilution refrigerator, is afterwards carrier-cancelled with part
of the original pump tone in order to avoid reaching the saturation regime of our room
temperature (RT) amplifiers, and analyzed by means of a VNA. For the data shown in
sections 6.2-6.5, a directional coupler was used at the output of the microwave generator
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and before the RT high-frequency amplifier. In order to drive the SQUID cavity with
higher powers for the data shown in Supplementary Fig. 6.15, the directional couplers,
which have an insertion loss of 10dB, were replaced by splitters. The two configurations
are denoted (a) for the directional coupler case and (b) for the splitter/combiner case.

In Supplementary Fig. 6.6d we show the setup for photon-pressure induced absorp-
tion and thermal noise amplification and detection (Figs. 6.4a, c and d), where a con-
tinuous tone is send to the blue sideband of the SQUID cavity. In addition, in order
to observe the cavity response and adjust the pump tone frequency with respect to the
power-dependent cavity resonance, a weak VNA signal is combined with the pump tone
via a directional coupler. The output signal is then carrier-cancelled with the original
pump tone, amplified and split in two signals that are analyzed individually by a spec-
trum analyzer and a VNA. During the detection of thermal noise with the signal analyzer,
the VNA scan was stopped and the VNA output power was completely switched off.

In Supplementary Fig. 6.6e the setup for LF resonance up-conversion is shown (Fig. 6.1e).
During the experiment, a resonant pump tone is sent to the SQUID cavity using a signal
generator. Simultaneously a weak scanning probe signal coming from the VNA is sent
to the LF resonator. The SQUID cavity output field is carrier-cancelled with the original
pump tone, amplified, down-converted and once again amplified with a LF amplifier
before reaching the VNA input port.

For the data shown in Fig. 6.4b, we used a combination of setups d and e. Everything
is identical to d, but instead of directly detecting the high-frequency sideband signal af-
ter the final directional coupler, we added a mixer with the pump tone as local oscillator
for down-conversion. Also, we added another LF amplifier before the signal was enter-
ing the signal analyzer. This way, we detected the LF thermal noise directly at its original
oscillation frequency.

For all experiments, the microwave sources and vector network analyzers (VNA) as
well as the spectrum analyzer used a single reference clock of one of the devices.

ESTIMATION OF THE ATTENUATION CHAIN AND ADDED NOISE

1. ADDED NOISE

We can estimate the added noise in our setup in two ways. First and simplest, we can
calculate the added noise photons by the HEMT (High Electron Mobility Transistor) am-
plifier by using its noise temperature which, according to the specification datasheet, is
approximately 5.5K at an ambient temperature of 12K. This noise temperature corre-
sponds to approximately nadd ∼ 19 photons. Due to some finite attenuation between the
sample and the amplifier however, the effective number of added noise photons is in-
creased and with an estimated 1dB loss between device and amplifier, we get n′

add ≈ 24
photons by this method.

The second method is to use the base temperature dependence of the thermal oc-
cupation of the LF resonator as presented in Fig. 6.4. From matching the slope of the
temperature dependent RF photon number in the nearly linear regime with the Bose
factor, we find approximately n′

add ∼ 15 photons, which would correspond to a noise
temperature of ∼ 3.4K.

Possible sources and reasons for this mismatch are frequency-dependence, voltage-
biasing dependence and ambient-temperature dependence of the HEMT noise temper-
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ature. At least for the ambient/operation temperature of the amplifier, we deviate by
about a factor of 4 of the data sheet with Top ∼ 3K. The precise value of the attenua-
tion between sample and amplifier might additionally modify the extracted added noise
photon number.

For the data presented in Fig. 6.4, we worked with n′
add ∼ 15.

2. ESTIMATION OF THE ATTENUATION CHAIN

The determination of the single-photon coupling rate g0 and the cavity anharmonicity χ
from our data requires an estimate of the intracavity photon number. All other extracted
quantities such as the cooperativity C, the multi-photon coupling rate g or the photon-
pressure induced dynamical backaction effects, however, do not require an estimate of
the intracavity photon number.

One way to estimate the input power on the on-chip feedline of the device is to use
the thermal noise of the HEMT amplifier as calibration method. For a VNA output power
of −30dBm, room-temperature attenuation of ∼ 30dB, and a measurement bandwidth
of 200Hz, we extract a signal-to-noise ratio SNR ≈ 46dB from a VNA measurement in the
red-sideband frequency range. From this and the HEMT noise temperature, we estimate
a total power arriving at the HEMT of −123±1dBm where the error takes into account
the range of possible noise temperatures of the HEMT as discussed above. Furthermore,
assuming an attenuation between the sample and the HEMT of 1dB, we estimate a total
input attenuation in the line of −62dB. This calibration method was repeated for differ-
ent frequency ranges, showing a frequency-dependent variation of approximately ±2dB.

The experiment of power-dependent coupling presented in Supplementary Fig. 6.15
was performed in the same cooldown as aforementioned power-calibration and using
the theoretical value of g0 ∼ 2π ·30kHz in the corresponding data analysis yields a line
attenuation of −61dB, which is close to the estimated value. With this attenuation, we
get a Kerr nonlinearity of χ≈ 2π ·11kHz for the chosen flux bias pointΦb/Φ0 = 0.51. The
data presented in Fig. 6.3 and Fig. 6.11 were taken during an earlier cooldown and to
achieve consistency between the datasets from the two cooldowns regarding g0 and χ,
we have to assume an attenuation of ∼ 59dB for the earlier cooldown. Unfortunately,
we have not taken systematic data for an estimate of the input attenuation during the
earlier cooldown via a signal-to-noise ratio determination around the red sideband. As
the flux-dependence of the HF cavity is unaltered between the cooldowns, however, we
assume that the difference originates not from a change in the SQUID cavity itself, but
from an unaccounted RT attenuation difference between the two experiments in differ-
ent cooldowns.

If we were to strictly take the input attenuation of 62dB as estimated above for all
data, we would get g0-values about a factor of 1.5 larger and χ-values about 2 larger than
the ones given. The main results of our experiments, however, are not impacted by the
precise value of attenuation, g0 or χ.
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6.7.3. THE LF RESONATOR

ANALYTICAL CIRCUIT MODEL

The LF resonator used in this experiment is a simple LC circuit coupled to a feedline with
characteristic impedance Z0. The resonator consists of a parallel plate capacitor with an
area of ALF = 7.68 ·10−7 m2, filled with t ≈ 130nm thick amorphous silicon as dielectric.
With

CLF = ε0εr
ALF

t
(6.8)

the capacitance is calculated to be CLF ≈ 620pF, where ε0 = 8.854 ·10−12 Fm−1 is the vac-
uum permittivity and εr = 11.8 is the relative permittivity of silicon. In addition, the res-
onator is capacitively coupled to a coplanar waveguide feedline by means of a parallel
plate coupling capacitor with Cc = 434fF.

From the resonance frequency ofΩ0 = 2π ·391MHz and using

Ω0 = 1p
LLF(CLF +Cc)

(6.9)

we calculate the total inductance of the circuit as LLF = 267pH. This effective inductance
includes the contribution from the mutual inductive coupling of the two circuits.

A significant contribution to the total inductance is coming from kinetic inductance
due to the thin film used for the bottom layer and the inductor wire. From corresponding
simulation with the software package SONNET, we estimate the kinetic inductance Lk ∼
2.2pH per square to contribute about 0.59 to the total inductance or Lk = 1.44Lg with the
kinetic inductance Lk and the geometric inductance Lg.

For the capacitively coupled parallel LC circuit, the external linewidth is given by

Γe =
Z0C 2

c

LLF(CLF +Cc)2 (6.10)

which gives with Z0 = 50Ω a value of Γe = 2π ·14.5kHz.

CURRENT ZERO-POINT FLUCTUATIONS

The current zero-point fluctuations through the LF inductor are calculated via

Izpf =
√

ħΩ0

2LLF
(6.11)

and with the parameters of the circuit we get Izpf ≈ 21nA.

CAVITY PARAMETER EXTRACTION FROM A REFLECTION MEASUREMENT

Supplementary Fig. 6.7 shows a background-corrected LF resonator reflection measure-
ment in amplitude data |S11| in a as well as in the complex plane in b, together with the
corresponding fit curves. From fitting the data with the response function

S11 = 1− 2Γe

Γi +Γe +2i∆0
(6.12)



6.7. SUPPLEMENTARY INFORMATION

6

187

Figure 6.7: The LF resonator response. a The magnitude of the reflection response |S11| of the low-
frequency resonator. Circles are data, line is a fit. b The complex scattering data S11 around the LF
resonance frequency. Circles are data, line is a fit. The data and fits shown here have been background-
corrected before plotting as described in section 6.7.5. From the fit, we extract Γe,Γi, and Ω0 as given
in the text.

with ∆0 = Ω−Ω0 and the internal and external decay rates Γi and Γe, we extract the
resonator parameters

Ω0 = 2π ·391.18MHz, Γi = 2π ·7.4kHz, Γe = 2π ·13.8kHz (6.13)

where the extracted Γe is very close to the theoretical value of 14.5kHz.

6.7.4. THE HF SQUID CAVITY

ANALYTICAL CIRCUIT MODEL

1. CAPACITANCE, INDUCTANCE, AND FEEDLINE COUPLING

The capacitance of an interdigitated capacitor (IDC) can be approximately calculated as
given in Ref. [158], where

CIDC = (N −3)
C1

2
+2

C1C2

C1 +C2
(6.14)

with

Ci = 2ε0εeffl
K (ki )

K (k ′
i )

, i = 1,2. (6.15)

Here, K (ki ) are elliptic integrals of the first kind, l is the finger length, εeff = (εr +1)/2 is
the effective permittivity with the Silicon substrate permittivity εr = 11.8, N is the total
number of fingers and

k1 = sin
(π

2

a

a +b

)
(6.16)

k2 = 2

p
a(a +b)

2a +b
(6.17)

k ′
i =

√
1−k2

i (6.18)
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with a the finger width and b the gap width in between two fingers.
For a single capacitor CIDC of our circuit with N = 90, l = 100µm, a = b = 1µm, we

get CIDC = 507fF. Since we have two of these capacitors in parallel, the total circuit ca-
pacitance is CHF = 2CIDC = 1.01pF.

The ground side of each of the two IDCs is not galvanically connected to the ground
plane but via a large parallel plate capacitor with Cpp ∼ 70pF, in order to avoid the gen-
eration of a closed superconducting loop around the SQUID, which would act as flux
transformer and induce flux-induced frequency noise to the cavity.

Furthermore, the coupling capacitor to the feedline is provided by a 1µm gap be-
tween the feedline and the cavity and it is estimated to be C ′

c ∼ 2fF. The resonance fre-
quency of the circuit is ω0 = 2π ·5.844GHz and related to the circuit parameters by

ω0 = 1√
LHF(CHF +C ′

c)
(6.19)

which gives a total inductance of LHF = 742pH at the cavity sweet spot. This effective
inductance is composed of the linear inductors L0, the loop inductance Ll , the junction
inductances LJ (cf. Fig. 6.1a) and includes the contribution from the mutual inductive
coupling of the two circuits.

The external linewidth is given by

κe =
Z0C ′2

c

LHF(CHF +C ′
c)2 (6.20)

and with C ′
c = 2fF results in κe = 2π ·43kHz.

2. SONNET SIMULATIONS AND KINETIC INDUCTANCE

The total inductance of both cavities has a significant contribution from the kinetic in-
ductance of the 20nm thick Aluminum film. The kinetic inductance contribution is esti-
mated from simulations using the software package SONNET, where we match the bare
cavity resonance frequency with the experimental value by tuning the kinetic induc-
tance per square L�. For a vanishing surface impedance we find a resonance frequency
ω0 = 2π ·10.3GHz in the simulations and achieve high agreement with the experimental
value of ω0 = 2π ·5.844GHz when L� = 2.2pH per square. Using this kinetic inductance
for the bottom plate and the inductor wire of the LF resonator, the LF resonance fre-
quency is simultaneously shifted from Ω′

0 = 2π ·610MHz for zero kinetic inductance to
Ω0 ≈ 2π ·390MHz.

CAVITY PARAMETER EXTRACTION FROM A REFLECTION MEASUREMENT

Supplementary Fig. 6.8 shows a SQUID cavity reflection measurement in amplitude data
|S11| in a as well as in the complex plane in b and the corresponding fit curves as lines.
From fitting the data with the response function

S11 = 1− 2κe

κi +κe +2i∆
(6.21)
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Figure 6.8: The SQUID cavity response. a The magnitude of the reflection response |S11| of the high-
frequency SQUID cavity. Circles are data, line is a fit. b The complex scattering data S11 around
the HF resonance frequency. Circles are data, line is a fit. The data and fits shown here have been
background-corrected before plotting as described in section 6.7.5. From the fit, we extract κe,κi, and
ω0 as given in the text.

where ∆=ω−ω0 and the internal and external decay rates are κi and κe, we extract the
parameters

ω0 = 2π ·5.844GHz, κi = 2π ·163kHz, κe = 2π ·28kHz (6.22)

The extracted κe slightly deviates from the theoretical value of 43kHz, probably due to
a coupling capacitance of C ′

c ≈ 1.5fF, which is lower than expected. The deviation of
κi +κe from the value given in section 6.2 is explained by a different power used in both
experiments. We observe that the internal linewidth is flux- and power-dependent as
detailed in section 6.7.4.

THE CONSTRICTION TYPE JOSEPHSON JUNCTIONS, THE SQUID AND βL

The constriction type Josephson junctions in our cavity are designed to be 150nm long
and 50nm wide and we estimate their critical current to be Ic ∼ 10µA, which relates to a
Josephson inductance of a single junction of LJ = Φ0

2πIc
= 32pH.

The SQUID loop is a 10×10µm2 large loop made from a 1µm wide wire. From the
total inductance per square L� ≈ 3pH per square, we estimate the loop inductance to
be Ll = 120pH.

From these numbers, we find the screening parameter of the SQUID as approxi-
mately βL = 2LlIc/Φ0 = 1.2.

SQUID CAVITY FLUX DEPENDENCE

1. RESONANCE FREQUENCY

To take into account the non-negligible SQUID loop inductance and a possible non-
sinusoidal current-phase relation, both leading to flux multistability and a widening of
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the flux arch [114, 122], we phenomenologically describe the SQUID critical current de-
pendence on magnetic flux as

Ic(Φb) = 2Ic cos

(
πγL

Φb

Φ0

)
(6.23)

where γL is a parameter taking into account the widening of the flux arch.
This relates to the Josephson inductance of the SQUID as

LJJ = LJ

2cos
(
πγL

Φb
Φ0

) . (6.24)

The factor of 2 in the denominator originates from the two junctions in parallel in the
SQUID.

With this, the resonance frequency of the SQUID cavity is approximately given by

ω0(Φb) = ω0(0)√
Λ+ 1−Λ

cos
(
πγL

Φb
Φ0

) (6.25)

whereΛ= (LHF − 1
2 LJ)/LHF.

Supplementary Fig. 6.9a shows the experimentally determined flux dependence of
the resonance frequency together with a fit line using Eq. (6.25). From this fit, we ex-
tract the parameters Λ = 0.982 and γL = 0.59, which corresponds to a single junction
Josephson inductance of approximately LJ = 27pH, i.e., to a critical current of a single
junction of Ic = 12µA. The SQUID Josephson inductance dependent on magnetic flux as
extracted from the cavity fit is plotted in panel b.

Figure 6.9: Tuning the SQUID cavity with magnetic flux. a SQUID cavity resonance frequency vs
magnetic flux. Circles are data, the black line is a fit. b From the fit of the resonance frequency
and with the total inductance LHF = 742pH, the Josephson inductance of the SQUID can be extracted.
Circles are extracted from data, the line is a calculation based on the fit parameters from a. The change
of resonance frequency with magnetic flux ∂ω0/∂Φ is shown in c. Both, data (circles) and fit (line) are
obtained by differentiating the corresponding curves plotted in a.

In panel c, we plot the flux responsivity of the cavity |∂ω0/∂Φ|, obtained as derivative
from a, which is directly related to the coupling rate g0 between the circuits as discussed
below. The maximum responsivity we obtain here, is |∂ω0/∂Φ| ≈ 2π ·300MHz/Φ0.
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2. FLUX AXIS CALIBRATION

The flux axis is calibrated by measuring the SQUID cavity resonance frequency over a
larger flux range and using a periodicity of one flux quantum. Supplementary Fig. 6.10
shows the SQUID cavity resonance frequency for a larger flux range with three different
archs. The dashed line are copies of the fit function from Supplementary Fig. 6.9a, two
of them have been shifted by −Φ0 and +Φ0, respectively.
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Figure 6.10: Tuning the SQUID cavity with magnetic flux over multiple flux quanta. Circles show
the SQUID cavity resonance frequencies extracted from fits to the measurement data. Some points
for very low frequencies ω0 < 2π · 5.8GHz are not included, because the fit failed due to extremely
shallow resonance dips at high bias flux values. The dashed lines are copies of the fit curve shown in
Supplementary Fig. 6.9a, one is shifted by +Φ0, one by −Φ0 on the flux axis.

POWER DEPENDENCE AND ANHARMONICITY OF THE SQUID CAVITY

1. POWER DEPENDENCE OF CAVITY PARAMETERS

We observe that the cavity resonance frequency, due to the Kerr nonlinearity, as well
as the internal cavity linewidth, due to nonlinear dissipation, depend on the intracav-
ity photon number nc. Both, as well as very slightly the external linewidth, depend, in
addition, on the flux bias.

To measure the photon number dependence of ω0 and κ, we bias the cavity at a de-
sired flux value and send a microwave pump tone to the cavity aroundωp(Φb) =ω0(Φb)−
∆p with∆p ≈ 2π·130MHz, chosen at a detuning which avoids interaction with the LF res-
onator. Then, we measure the cavity response with a weak probe tone and fit the curves
to extract ω0, κi and κe. Supplementary Fig. 6.11a shows the pump-induced frequency
shift δω0 for different flux bias values vs the calculated intracavity photon number. The
photon number is calculated using

nc = 4Pin

ħωp

κe

κ2 +4∆2
1

(6.26)

where Pin is the on-chip pump tone power and ∆1 = (ω0 −δω0/2)−ωp is the effective
detuning between pump tone and power-shifted cavity. Lines in a show linear fits, from
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Figure 6.11: Characterizing the SQUID cavity Kerr nonlinearity. a Resonance frequency shift δω0 =ω0(nc)−
ω0(0) depending on intracavity photon number nc, for different flux bias points. Circles are data, lines are
linear fits. From the linear fits, we extract the frequency shift per photon for each bias flux value, as plotted as
circles in b.

which we determine the shift per photon, i.e., the Kerr nonlinearity χ. Note that surpris-
ingly the Kerr nonlinearity is given by half the slope of the linear fit in these far-detuned
two-tone experiments and not by the slope itself, i.e., the resonance frequency shift is
given by δω0 = 2χnc.

In b, the nonlinearity is plotted vs flux bias value with a sweetspot nonlinearity of
χ∼ 2π·1.3kHz. We note, that depending on the pump frequency, we get quite significant
variations in the extracted sweetspot nonlinearity with a range roughly between 0.7kHz
and 1.3kHz, which we attribute to imprecise estimates of the intracavity photon number
due to frequency dependent pump power arriving at the resonator input. This can be
explained by cable resonances and a frequency dependent transmission in the setup.
The values shown here are the largest we obtained.

The intrinsic linewidth itself is also photon-number dependent as discussed in the
next paragraph. This, however, does not impact significantly the calculation of nc by
Eq. (6.26) in our two-tone configuration, as ∆1/κ∼ 102 −103.

In Supplementary Fig. 6.12a, we show the total SQUID cavity linewidth vs intracavity
photon number, once again for different values of SQUID flux bias. For better visibil-
ity, we restricted the shown data to three different flux bias values. The scattering of the
data points is cause by the measurement details of this measurement series (low probe
power, high bandwidth, large frequency span), which leads to large fit uncertainties in
the linewidth. For all flux values, however, the linewidth follows a similar, decreasing
trend with increasing photon number, which we interpret as indication for two-level sys-
tem losses [169, 170]. The power dependence for two-level system (TLS) losses is given

by κTLS(nc) = κTLS/
√

1+ nc
ncrit

with the critical photon number ncrit being a measure for
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Figure 6.12: Characterizing the SQUID cavity linewidth power dependence. a Total SQUID cavity linewidth
depending on intracavity photon number, shown for three different flux bias points. Circles are data, lines are
fits using Eq. (6.27). In b, we show the values obtained for the external linewidth vs bias flux.

the TLS saturation photon number. The total linewidth therefore is given by

κ= κe +κ1 + κTLS√
1+ nc

ncrit

(6.27)

where κ1 represents the internal losses not related to the power-dependent TLS losses
and κ1 +κTLS(nc) = κi(nc). We fit the data with this Eq. (6.27) shown in Supplementary
Fig. 6.12a and find good agreement with the experimental observations. For a cleaner
dataset with less linewidth scattering, cf. Supplementary Fig. 6.15b. The total linewidth
slightly increases with flux, which could be either caused by an increased quasiparticle
density or by a flux-noise induced linewidth broadening. In Supplementary Fig. 6.12b,
we plot the external linewidth κe vs bias flux, and observe that is nearly independent of
flux.

6.7.5. RESPONSE FUNCTIONS AND FITTING ROUTINE

IDEAL HF CAVITY AND LF RESONATOR RESPONSE FUNCTION

Both, our HF SQUID cavity and the LF resonator, can be modeled as a parallel LC circuit
capacitively coupled to a transmission line in a reflection geometry. The S11 response
function of such a circuit is given by

S11 = 1− 2κe

κi +κe +2i∆
(6.28)

with detuning from the resonance frequency

∆=ω−ω0. (6.29)
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For the LF resonator, we get fully equivalently

S11 = 1− 2Γe

Γi +Γe +2i∆0
(6.30)

with ∆0 =Ω−Ω0.

REAL RESPONSE FUNCTION AND FITTING ROUTINE

When analyzing the measured cavity response, we consider a frequency dependent complex-
valued microwave background with amplitude and phase modulations originating from
a variety of microwave components in our input and output lines and possible interfer-
ing signal paths. Under this assumption, we model the modified cavity response with

S11 = (α0 +α1ω)

(
1− 2κee iθ

κi +κe +2i∆

)
e i (β1ω+β0) (6.31)

where we consider a frequency dependent complex background

S11 = (α0 +α1ω)e i (β1ω+β0) (6.32)

and an additional rotation of the resonance circle due to the phase factor e iθ. The first
step in the fitting routine removes the cavity resonance part from the data curve and fits
the remaining background with Eq. (6.32). After removing the background contribution
from the full dataset by complex division, the resonator response is fitted using the ideal
response function. In the final step, the full function is re-fitted to the bare data using as
starting parameters the individually obtained fit numbers from the first two steps. From
this final fit, we extract the final background fit parameters and remove the background
of the full dataset by complex division. Also, we correct for the additional rotation factor
e iθ . As result we obtain clean resonance curves as shown in Supplementary Figs. 6.7 and
6.8.

6.7.6. PARAMETRICALLY COUPLED LC OSCILLATORS

CLASSICAL EQUATIONS OF MOTION

We model the system for most experimental parts classically with the equations of mo-
tion for an oscillating magnetic flux ΦLF threading the SQUID loop, an analogue for the
mechanical displacement in a typical optomechanical system, and for the SQUID cavity
intracavity field amplitude α

Φ̈LF = −Γ0Φ̇LF −Ω2
0ΦLF + ħγG|α|2

CLF
(6.33)

α̇ =
[
−i (∆−γGΦLF)− κ

2

]
α+ i

p
κeSin. (6.34)

Here CLF is the capacitance of the low frequency resonator, ∆ =ωp −ω0 is the detuning
of a pump tone from the cavity resonance frequency, κ and Γ0 are the total resonator
linewidths and κe and Γe are the external linewidth of high and low-frequency circuit,
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respectively. The quantities Sin and SLF are the normalized input fields on the high-
frequency and low-frequency input line, respectively.

The photon-pressure (in optomechanical systems radiation-pressure force) from the
high frequency cavity to the LF resonator is taken into account with the termħγG|α|2/CLF

with pull parameter

G = ∂ω0

∂Φ
. (6.35)

The dimensionless parameter γ= M/LLF describes the amount of the LF resonator flux
coupling into the SQUID loop with the mutual inductance M between the LF inductor
LLF and the SQUID loop inductance Ll.

Assuming that the intracavity field is high enough to only consider small deviations
from the steady state solutions with ΦLF = Φ̄LF +δΦLF and α = ᾱ+δα, the equations of
motion can be linearized as

δΦ̈LF = −Γ0δΦ̇LF −Ω2
0δΦLF + ħγGᾱ

CLF
(δα+δα∗) (6.36)

δα̇ =
[
−i ∆̄− κ

2

]
δα− iγGᾱδΦLF + i

p
κeSp (6.37)

In the above expressions, the detuning takes into account the shift from the equilib-
rium flux value Φ̄LF due to the photon-pressure ∆̄ = ωp −ω0 −GΦ̄LF and

p
κeSp with

Sp = S0e i (ωpr−ωp)t accounts for field fluctuations with the frequency ωpr. On a first look,
it might seem surprising that the interaction is related to a DC equilibrium flux in the
LF resonator. It corresponds to an additional, effective DC flux in the SQUID loop, gen-
erated by the HF currents in presence of an external SQUID flux bias. As by the mutual
inductance, the flux in the SQUID loop is part of the LF flux, the origin and interpretation
of this DC flux becomes clear.

By solving the equations of motion we get the modified low-frequency resonator sus-
ceptibility

χeff
0 = 1

Ω2
0 −Ω2 + iΩΓ0 +2iΩ0g 2

[
χc(Ω)−χ∗c (−Ω)

] (6.38)

with the multi-photon-coupling rate

g = ᾱGΦzpf =
p

ncGΦzpf (6.39)

and the SQUID cavity susceptibility

χc = 1
κ
2 + i (∆̄+Ω)

. (6.40)

From here on, we just use ∆ = ∆̄ and always refer to the detuning as the detuning from
the pump-shifted cavity resonance frequency.

For the SQUID cavity response, we get

S11 = 1−κeχc

[
1−2iΩ0g 2χcχ

eff
0

]
. (6.41)
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ZERO-POINT FLUX FLUCTUATIONS AND SINGLE-PHOTON COUPLING RATE

The zero-point current of the low frequency resonator is given by Izpf = 21nA. The zero-
point flux fluctuations generated in the SQUID loop can therefore be calculated by es-
timating the flux Φzpf = M Izpf induced by Izpf in the loop, where M denotes the mutual
inductance between the LF wire and the SQUID loop. Supplementary Fig. 6.13 shows
an optical image of the SQUID loop and the LF wire passing by three sides of the loop
with a 500nm wide gap between the 1µm wide wires. With the geometrical parameters
of the configuration, D = 10µm being the length of one loop side, d1 = 1µm being the
distance between the LF wire and the nearest SQUID loop wire, and d2 = 11µm being
the distance between the LF wire and the distant SQUID loop wire, the flux induced by
Izpf is calculated via

Φzpf = 3
µ0

2π
IzpfD ln

(
d2

d1

)
≈ 145µΦ0. (6.42)

For all geometrical distances D , d1, and d2, we considered the center of the correspond-
ing wires. This also gives directly an estimate for the mutual inductance M = 14pH.

Figure 6.13: Calculation of the single-photon coupling rate g0. a Optical image showing the SQUID loop
and the low frequency inductor wire. Arrows represent the geometrical distances d1, d2 and D , used for the
calculation of the LF resonator induced zero-point SQUID flux Φzpf. The crosses indicate the positions of the
Josephson junctions. b shows the calculated single-photon coupling rate vs SQUID bias flux. The points are
calculated from the measured SQUID resonance frequency, the line from the fit to the flux arch.

The single-photon coupling rate is given by

g0 = ∂ω0

∂Φ
Φzpf (6.43)

where Φzpf = 145µΦ0 is the zero-point flux and the flux responsivity is extracted from
the SQUID cavity flux dependence, cf. Supplementary Fig. 6.9c.

Supplementary Fig. 6.13 shows the calculated single-photon coupling rates of the
device depending on the flux-bias point. According to this calculation, the single-photon
coupling rate can be tuned from g0 = 0Hz, when the cavity is operated at the sweetspot,
to g0 ≈ 2π ·40kHz for the largest flux bias values.
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DYNAMICAL PHOTON-PRESSURE BACKACTION

The term Σ = 2iΩ0g 2[χc(Ω)−χ∗c (−Ω)] in the modified LF resonator susceptibility χeff
0

can be understood as a SQUID cavity field induced term modifying the damping and the
resonance frequency of the LF resonator. This becomes apparent, when we assume the
high-Q0 limit, where the susceptibility for a red-sideband pump tone with ∆≈−Ω0 and
Ω≈+Ω0 can be approximated as

χeff
0 = 1

2Ω0

1

(Ω0 −Ω)+ i Γ0
2 + i g 2[χc(Ω)−χ∗c (−Ω)]

(6.44)

By rewriting Σ′ = i g 2[χc(Ω)−χ∗c (−Ω)] as Σ′ = δΩ0 + i δΓ0
2 and independently analyze the

real and imaginary part, we can write the change in frequency δΩ0 (photon-pressure fre-
quency shift) and the additional damping term δΓ0 (photon-pressure damping), arising
from the modified susceptibility as

δΩ0 = g 2

[
∆+Ω0

κ2

4 + (∆+Ω0)2
+ ∆−Ω0

κ2

4 + (∆−Ω0)2

]
(6.45)

δΓ0 = g 2κ

[
1

κ2

4 + (∆+Ω0)2
− 1

κ2

4 + (∆−Ω0)2

]
. (6.46)

For a blue-detuned pump field we find essentially the same expressions with a sign
change for the photon-pressure damping δΓblue

0 =−δΓred
0 .

In order to observe the dynamical photon-pressure backaction between the two cir-
cuits, we flux-bias the SQUID cavity with Φb ≈ 0.16Φ0 and stepwise sweep a pump tone
through both, the red sideband ∆=−Ω0 +δr, and the blue sideband ∆=+Ω0 +δb, while
the low-frequency resonator is scanned with a weak probe toneΩpr =Ω0 +∆0. The vari-
ables δr, δb and∆0 denote small detunings from the red sideband, the blue sideband and
the LF resonance frequency, respectively. As the device is deep in the resolved sideband
regime with Ω0/κ ∼ 1000, we can approximate the expressions for the optical damping
and the optical spring as

δΩ0 = 4g 2 δi

κ2 +4δ2
i

(6.47)

δΓ0 = ±4g 2 κ

κ2 +4δ2
i

(6.48)

with i = b,r and + for the red sideband and − for the blue sideband. From fits to the LF
resonator response, we extract δΩ0 and δΓ0 as shown and dicussed in the Fig. 6.2. The
two expressions Eqs. (6.47, 6.48) are only strictly valid for constant κ far away from the
strong coupling regime g ¿ (κ−Γ0)/4 ∼ 2π ·50kHz. When the strong-coupling regime
is approached, the LF resonator linewidth is not a linear function of power anymore
and the SQUID cavity linewidth starts to decrease [60]. The weak-coupling condition
is not strictly fulfilled anymore in our experiment for cooperativites C ∼ 1 and hence
we expect deviations. When we use a power-dependent effective cavity linewidth κ̃ for
these equations instead of the bare linewidth, however, we can describe the data with
high accuracy using these expressions.
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1. DYNAMICAL BACKACTION - ADDITIONAL DATA

In Supplementary Fig. 6.14, we show additional data for dynamical photon-pressure
backaction, taken for two lower pump powers than the one used in section 6.4. The
pump powers on the blue and on the red sideband were adjusted to give similar cooper-
ativities.

Figure 6.14: Dynamical backaction for red- and blue-detuned pump tone, respectively, in the low coopera-
tivity regime. a and b show the extracted photon-pressure damping and photon-pressure frequency shift for
a pump on the red sideband (left) and for a pump on the blue sideband (right). a is for approximately 10 intra-
cavity photons and b for 20. The flux bias point wasΦb/Φ0 ≈ 0.16. Circles are data, lines are theoretical curves
with Eqs. (6.47, 6.48) and the parameters given in the panels. On the red sideband, the effective cavity linewidth
κ̃ needed to describe the data with the expressions (6.47, 6.48) decreases with pump strength/cooperativity, on
the blue sideband it decreases. This indicates that it is not an effect of nonlinear cavity losses, but deviations
from the used approximations due to the similarity of κ, g and Γ0 here, i.e., due to approaching the strong-
coupling regime already for C ∼ 1 [60].
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THE SQUID CAVITY RESPONSE FUNCTION FOR A RED-SIDEBAND PUMP

With the modified low-frequency resonator susceptibility χeff
0 we can write the SQUID

cavity response as

S11 = 1−κeχc

[
1−2iΩ0g 2χcχ

eff
0

]
. (6.49)

1. EXTRACTING CAVITY AND COUPLING PARAMETERS FROM DATA

To model the data of the response in presence of a red-sideband pump, we use Eq. (6.49)
and adjust the parameters ω0, κ,Ω0 and g for fixed Γ0 = 2π ·22kHz and κe = 2π ·28kHz.
Corresponding lines are shown in the Fig. 6.3d and Supplementary Fig. 6.15c. With the
extracted numbers, we calculate the cooperativity

C = 4g 2

κΓ0
(6.50)

and estimate the SQUID cavity photon number via

nc = 4Pin

ħωp

κe

κ2 +4∆2 (6.51)

where Pin is the on-chip power calculated from the generator output power and the es-
timated input attenuation of 59dB for the first cooldown (Fig. 6.3) and 61dB for the sec-
ond cooldown (Supplementary Fig. 6.15). From those numbers, we calculate the single-
photon coupling rate g0 = gp

nc
.

THE STRONG-COUPLING REGIME

When increasing the multi-photon optomechanical coupling rate g =p
ncg0 to a point

where g > (κ−Γ0)/4, the system enters the strong-coupling regime [60], where the driven
high-frequency mode and the low-frequency mode hybridize, forming two new modes
split by 2g , an effect also known as normal-mode splitting. When the high-frequency
cavity is pumped exactly on the red-sideband ∆ = ωp −ω0 = −Ω0, the two new formed
hybrid excitation modes of the system have (complex) eigenfrequencies given by [56]

ω± =Ω0 + i
κ+Γ0

4
±

√
g 2 −

(
κ−Γ0

4

)2

, (6.52)

with ω+−ω− = 2g for g 2 À (κ−Γ0)2/16. The real part of ω± describes the resonance
frequencies of the two hybridized modes and the imaginary part is half the linewidth. In
the strong-coupling regime g 2 À (κ−Γ0)2/16, we get

ω± =Ω0 ± g + i
κ+Γ0

4
(6.53)

showing that each of the new modes has a linewidth Γ± = (κ+Γ0)/2. We also note here,
that the formal definition of the strong-coupling regime here with g > (κ−Γ0)/4, cor-
responding to a sudden transition from split damping rates to split eigenfrequencies in
Eq. (6.52), is different from the standard definition, where the mode splitting 2g must ex-
ceed the hybridized mode linewidths (κ+Γ0)/2. This would correspond to g > (κ+Γ0)/4.
Our device, however, reaches the strong-coupling regime unambiguously for either of
the definitions.
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TRANSITION TO THE STRONG-COUPLING REGIME BY INCREASING nc

In Fig. 6.3, we show the transition to the strong-coupling regime by increasing the
single-photon coupling strength g0 through the flux responsivity ∂ω0/∂Φ, while keeping
the red-sideband pump strength constant. A similar transition to the strong-coupling
regime can also be accomplished by the common approach of enhancing the coupling
strength of the system by increasing the number of photons in the cavity [31]. The exper-
imental setup corresponds to what is described in Fig. 6.3a, where a pump tone was set
to the red sideband of the high-frequency cavityωp =ω0−Ω0, and a probe tone was scan-
ning through the cavity resonanceωpr ≈ω0. The presented measurements in this section
were performed atΦb ≈ 0.5Φ0 and the external measurement configuration is presented
in detail in Supplementary Fig. 6.6c. The measurement was repeated for increasing val-
ues of drive power. Due to the residual SQUID cavity Kerr-nonlinearity, we have to adjust
the pump frequency for each power to set the pump onto the actual red sideband. The
cavity resonance frequency and linewidth vs photon number is shown in Supplemen-
tary Fig. 6.15b and c. Note, that this experiment was done during a later cooldown com-
pared to most other experiments and the device parameters (linewidths and resonance
frequencies) seem to have somewhat shifted in between the two cooldowns.

In Supplementary Fig. 6.15c, we plot the SQUID cavity response vs probe frequency
for different pump powers, with increasing power from bottom to top. For the lowest
power, the cavity resonance is almost unperturbed besides a very little interference peak
in its center. With increasing pump power and therefore increasing intracavity pho-
ton number nc, the PPIT interference effect of the low-frequency resonator in the high-
frequency cavity response gets enhanced until for the highest powers a clear normal-
mode splitting with up to g /π= 950kHz occurs. We model the data with Eq. (6.41). For
each of the theoretical curves, the parameters κe, Γ0 and g0 were fixed at 2π · 28kHz,
2π ·25kHz and 2π ·30kHz, respectively. To get agreement with the experimental data, we
varied multi-photon coupling strength g , cavity frequency shift δω0, LF resonator reso-
nance frequencyΩ0 and internal linewidth κi of the SQUID cavity. The values for δω0, κi

and g as extracted are plotted in Supplementary Fig. 6.15a, b and d, respectively. From
the combination, we also determined the cooperativity C as plotted in e.

The observed behaviour of the internal linewidth with intracavity photon number
follows the prediction for two-level system (TLS) losses as given by Eq. (6.27). Further-
more, the extracted cooperativities in Supplementary Fig. 6.15e do not show a stricly
linear behaviour, cf. the linear fit (black line). Including the decrease of the internal
linewidth with photon number due to TLS losses, as shown as orange line, gives excel-
lent agreement with the data points.

DETECTING NORMAL-MODE SPLITTING IN THE LF RESONATOR RESPONSE

The normal-mode splitting in the strong-coupling regime can not only be detected in
the SQUID cavity response, but also in the LF resonator response. When probing the LF
resonator under the experimental conditions of Fig. 6.3e, case D, we observe the LF re-
sponse as shown in Supplementary Fig. 6.16 with a pronounced normal-mode splitting.
The dashed red line shows the SQUID cavity resonance frequency with respect to the
moving red-sideband pump.
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Figure 6.15: Transition to the strong-coupling regime by increasing the intracavity photon number
nc. a Resonance frequency shift from the bare cavity resonance δω0 =ω′

0 −ω0 with nc, where ω0 is the
resonance frequency at the lowest power. The points are data and the black line is a linear fit. b Internal
linewidth κi of the HF cavity depending on nc. The points are the extracted values from adjusting
the theoretical curves to the data presented in c. The black line is a fit curve based on Eq. 6.27. c
Observation of the transition from photon pressure-induced transparency to the strong-coupling regime
by increasing the power of a pump tone on the red sideband of the SQUID cavity ωp =ω0 −Ω0. The
colored points are the measured data and the black lines are theoretical curves. Each of the curves was
upshifted by 2.5 dB for better visibility with the lowest curve being unshifted. d Linear increase of the
coupling rate g with p

nc, where the points are the extracted values from the data and the line is a
fit. e Cooperativity of the system vs intracavity photon number, plotted on a logarithmic scale. The
black line is a linear fit (valid for constant κ) and the orange line is the cooperativity calculated with
the internal linewidth of the cavity based on the fit curve presented in b.
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Figure 6.16: Normal-mode splitting of the LF resonator response. When measuring the response of the
LF resonator with the parameters as in Fig. 6.3e, case D, i.e., with a red-detuned SQUID cavity drive,
nc ∼ 70 intracavity photons and Φb/Φ0 ∼ 0.5, we observe normal-mode splitting in the direct response
of the LF resonator. The red dashed line indicates the resonance frequency of the SQUID cavity mode
with respect to the pump tone.

6.7.7. DETECTION AND AMPLIFICATION OF THERMAL NOISE

POWER SPECTRAL DENSITY FOR A BLUE-SIDEBAND DRIVE

Following the routine given in the Supplementary Material of Ref. [31], we derive the
cavity field amplitude for a blue sideband drive to be given by

δâ = −i gχcχ̄0
p
Γ0Ŝ†

LF +χc
p
κŜHF

1− g 2χcχ̄0
(6.54)

with the susceptibilities

χc = 1
κ
2 + i (∆+Ω)

(6.55)

χ̄0 = 1
Γ0
2 + i (Ω0 +Ω)

. (6.56)

As usual, ∆ = ωp −ω0 ∼ +Ω0 describes the detuning between cavity resonance and the
blue sideband pump here, and Ω ∼ −Ω0 is the frequency where we measure and calcu-
late the output field. The operators ŜLF and ŜHF denote the low-frequency resonator and
high-frequency SQUID cavity noise input fields, respectively, and follow 〈Ŝ j Ŝ†

j 〉 = n j +1

and 〈Ŝ†
j Ŝ j 〉 = n j , where j = LF,HF.

1. ADDED NOISE

According to Ref. [31], the effective number of added noise photons is given by

n′
add = nadd

η
+

(
1−η
η

)
1

2
(6.57)
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where nadd is the actual number of photons added by the HEMT amplifier in our
case, nadd ∼ 12, and η∼ 0.8 accounts for losses of the cavity output field on its way to the
HEMT. Thus, we estimate the effective total number of added photons to be n′

add ≈ 15.
This effective number was estimated from the thermal calibration of the LF resonator
population with varying fridge base temperature. From matching the slope of the tem-
perature dependence in the regime of nearly linear increase with Tb with the linear
regime of the Bose factor.

2. THE TOTAL POWER SPECTRAL DENSITY

For the power spectral density at frequency ω=ωp +Ω of the SQUID cavity with a drive
around the blue sideband, we get with this

S(ω)

ħω = 1

2
+n′

add +
κeg 2|χ̄0|2|χc|2Γ0 (nLF +1)+κe|χc|2κnHF

|1− g 2χcχ̄0|2
(6.58)

The thermal mode occupations follow a Bose distribution, i.e.,

nHF = 1

e
ħω0

kBTHF −1

(6.59)

nLF = 1

e
ħΩ0

kBTLF −1

. (6.60)

We note that we decided to choose possibly different temperatures for the low-frequency
and the high-frequency thermal distribution, as the two resonators are isolated differ-
ently from the noise of their environment, e.g. the input/output cabling.

Assuming a negligible SQUID cavity occupancy nHF ∼ 0, we can rewrite the power
spectral density as

S(ω)

ħω = 1

2
+n′

add +
16κeg 2Γ0

(Γ′20 +4∆′2)(κ2 +4δ2
b)

(nLF +1) (6.61)

where Γ′0 = Γ0 −δΓ0 includes the effect of photon-pressure damping, the detuning ∆′ =
−Ω− (Ω0 +δΩ0) includes the photon-pressure frequency shift, and δb = ωp − (ω0 +Ω0)
takes into account possible detunings of the pump tone from the blue cavity sideband.

3. PSD WITH PUMP EXACTLY ON THE BLUE SIDEBAND

When the blue sideband pump is exactly atωp =ω0+Ω0, i.e., δb = 0, the photon-pressure
frequency shift vanishes ∆′ =∆ and we get

S(ω)

ħω = 1

2
+n′

add +4
κe

κ
C

Γ2
0

Γ′20 +4∆2
(nLF +1) (6.62)

which describes a Lorentzian sitting on top of a background with 1/2+n′
add photons.

With the power spectral density of the thermal current fluctuations in the LF res-
onator

S I (−Ω) = 8Γ0

Γ′20 +4∆2
I 2

zpf(nLF +1) (6.63)
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we can write
S(ω)

ħω = 1

2
+n′

add +
C
2

κe

κ

Γ0

I 2
zpf

S I (−Ω). (6.64)

EXTRACTION OF THERMAL PHOTON NUMBERS FROM DATA

For the extraction of the thermal photon numbers, we first determine C, Γ′0, κ and κe

from a measurement of photon-pressure induced absorption, cf. Fig. 6.4a. In addition,
we use the calculated zero-point fluctuations Izpf = 21nA and the added noise photons
n′

add = 15. With the background noise amplitude Sb = Gmħω( 1
2 +n′

add

)
with Gm being

the total gain of the amplifier detection line, determined from a Lorentzian fit of the PSD
data SV , we calculate

S I (−Ω) =
[

SV

Sb
−1

][
1

2
+n′

add

]
2κ

CκeΓ0
I 2

zpf. (6.65)

To extract the thermal number of photons in the LF resonator, we use the herewith
calculated S I (−Ω) and consider the amplitude at resonance

S I 0 = 8
Γ0

Γ′20
I 2

zpf(nLF +1) (6.66)

which allows to calculate the thermal photon number according to

nLF = S I 0
Γ′20

8Γ0I 2
zpf

−1. (6.67)
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Quantum control over a physical system requires thermal fluctuations and thermal de-
coherence to be negligible, which becomes more challenging with decreasing natural fre-
quencies of the target system. For microwave circuits, the quantum regime can be reached
simply by cooling them to mK temperatures [171]. Radio-frequency (RF) systems in the
MHz regime, however, require further cooling or have to be coupled to an auxiliary quan-
tum system with a coupling rate exceeding their thermal decoherence rate [33]. A power-
ful tool to cool below the thermodynamic bath temperature is sideband-cooling, a tech-
nique that originated from the field of trapped ions and cold atoms [172–175] and that
has been applied in cavity optomechanics for groundstate cooling of mechanical mo-
tion [31, 32]. Here, we engineer a system of two superconducting LC circuits coupled by
a current-mediated photon-pressure interaction and demonstrate sideband-cooling of a
hot RF circuit using a microwave cavity and the regime of quantum-coherent coupling
between the circuits. Due to a dramatically increased coupling strength [81, 176], we ob-
tain a large single-photon quantum cooperativity Cq0 ∼ 1 and reduce the residual thermal
RF occupancy by 75% through sideband-cooling with less than a single pump photon. For
larger pump powers, the photon-pressure coupling rate exceeds the RF thermal decoher-
ence rate by a factor of three and the RF circuit is cooled into the quantum groundstate.
Our results demonstrate photon-pressure coupling with a hot radio-frequency circuit in
the quantum regime and lay the foundation for radio-frequency quantum photonics.

This chapter is available as arXiv preprint (2010.07975) and entitled Photon-pressure coupling with a hot radio-
frequency circuit in the quantum regime by I. C. Rodrigues*, D. Bothner* & G. A. Steele
*these authors contributed equally
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7.1. INTRODUCTION

In the recent decade, the parametric photon-pressure coupling between two harmonic
oscillators has been demonstrated to allow for groundbreaking experiments in the con-
trol and detection of harmonic oscillators from the kHz to the GHz frequency regime
[36, 38–41, 56, 90, 159]. The archetype of a photon-pressure coupled system is an op-
tomechanical cavity [56], where the radiation-pressure interaction between a mechani-
cal oscillator and the light fields trapped inside a cavity is used for displacement sensing
and motion control of macroscopic objects with unprecedented precision. An outstand-
ing feature of the optomechanical radiation-pressure interaction is the possibility to cool
a low-frequency mechanical oscillator orders of magnitude below its thermodynamic
bath temperature using cavity red-sideband driving [11–13, 177–180]. The application of
this technique for trapped ions or mechanical oscillators to place them in the phononic
groundstate [31, 32, 173, 181, 182] has been the prerequisite for the preparation and in-
vestigation of quantum states of motion [36, 38, 185].

The implementation of photon-pressure coupling between two superconducting LC
circuits has recently gained significant attention [78, 80, 81, 93, 176], as these provide an
extremely high degree of design flexibility and at the same time constitute a key technol-
ogy for quantum information processing and quantum sensing. Photon-pressure cou-
pled circuits as toolbox for the manipulation and detection of radio-frequency and mi-
crowave photons offer rich possibilities for quantum signal processing, such as quantum-
limited parametric amplification [26, 82, 84–86], nonreciprocal photon transport [87–
90], slow light [183, 184] and photonic reservoir engineering [91, 92]. Photon-pressure
coupled circuits are also discussed as promising platform for the realization of fault-
tolerant quantum computing using bosonic codes [93]. To date, however, photon-pressure
coupled superconducting circuits have only been realized in the classical regime and in
presence of significant residual thermal fluctuations [81, 176].

7.2. CONCEPT AND DEVICE

Here, we report photon-pressure coupling between a hot RF circuit and a high-frequency
(HF) superconducting quantum interference cavity in the quantum regime. By engineer-
ing galvanically connected circuits, we increase the single-photon coupling strength and
single-photon cooperativity by about one order of magnitude compared to the best re-
sults reported to date [81, 176]. This allows for sideband-cooling of the residual thermal
occupation in the hot radio-frequency mode by a factor of ∼ 4 with less than one pump
photon and a single-photon quantum cooperativity Cq0 ∼ 1. By the dramatically in-
creased single-photon coupling rate in our device, we reach the strong-coupling regime
with only 0.7 pump photons, where we observe the residual thermal fluctuations of the
hybridized normal-modes and demonstrate groundstate cooling of the RF mode. Simul-
taneuosly, the multi-photon coupling rate significantly exceeds the thermal decoher-
ence rate of the RF mode and the decay rate of the HF cavity, which corresponds to the
quantum-coherent strong-coupling regime, the basis for coherent quantum-state trans-
fer between the two circuits [33]. Our results pave the way towards quantum control of
RF circuits and quantum-limited detection of photons in the radio-frequency regime.
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Figure 7.1: A two-mode superconducting LC circuit with a tunable photon-pressure interaction. a
Circuit schematic. The full circuit has two modes, a low- and a high-frequency mode. The low, radio-
frequency mode is formed by the capacitors and inductors CRF, L0 and the parallel combination of Ll
and 2LJ. The high-frequency microwave mode is formed by the combination of L, C and L0 and LJ. The
inductances Ll and LJ form a superconducting quantum interference device (SQUID). By changing the
magnetic flux through the SQUID loop Φb, the nonlinear inductances of the Josephson junctions LJ can
be varied. The whole device is operated in a dilution refrigerator with a base temperature of Tb ∼ 15mK.
Both modes are capacitively coupled to individual feedlines for driving and readout. b Optical image of
the device showing the circuit (full image is shown in Supplementary Fig. 7.6). The dashed box shows
the zoom region for panel c, which displays in detail the region with the SQUID loop and the different
linear inductors. In b-c, brighter parts correspond to Aluminum, darker and transparent parts to Silicon.
d shows the resonance curves of both modes vs excitation frequency in the reflection coefficient |S11|,
colored points are data and the black lines correspond to fits. The extracted mode parameters are
given in the main text. The inset circuit schematics display the reduced circuit equivalents for the two
modes. e shows the resonance frequency of the high frequency mode vs magnetic flux bias through
the SQUID loop, generated by an external magnetic coil. The dataset was obtained by combining data
from a flux up-sweep with the data from a flux down-sweep. Due to non-negligible loop inductance Ll,
the flux-dependence is hysteretic and multi-valued for flux values around ±0.5Φ0±0.3Φ0 [120, 122, 162].
The flux operation point Φb/Φ0 ∼ 0.54 for the data shown in panel d and for the rest of this work is
marked by a star.

Our device combines two integrated superconducting LC circuits, which are galvan-
ically connected to each other at the heart of the circuit in a superconducting quantum
interference device (SQUID). A circuit schematic of the device and optical micrographs
are shown in Fig. 7.1a-c and the multi-layer device fabrication is presented in detail in
section 7.7.1.

The radio-frequency (RF) mode circuit consists of a large parallel plate capacitor us-
ing amorphous silicon as dielectric, and of a short inductor wire, which at the same time
forms the loop of the SQUID. The SQUID is completed by two constriction type Joseph-
son junctions connecting the RF inductor wire to the high-frequency (HF) part of the
circuit. The remaining part of the HF mode consists of an additional linear inductor
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L and two interdigitated capacitors C , cf. Fig. 7.1. Both circuit modes are capacitively
coupled to individual coplanar waveguide feedlines for driving and readout. The chip is
mounted into a printed circuit board, connected to microwave input/output cabling and
packaged into a radiation tight copper (Cu) housing. A small superconducting magnet
is attached to the Cu housing below the chip, allowing for the application of an external
out-of-plane magnetic field. The experiments are carried out with the whole configura-
tion placed inside a cryoperm magnetic shielding and attached to the mixing chamber of
a dilution refrigerator with a base temperature of Tb ∼ 15mK. More details on the device
and the setup are given in sections 7.7.2 and 7.7.3.

In Fig. 7.1d, the reflection response |S11|of the two modes is shown, measured through
their individual feedlines. The radio-frequency mode has a resonance frequency ofΩ0 =
2π ·452.5MHz and a linewidth Γ0 = 2π ·26kHz. For the high-frequency mode, the res-
onance frequency is ω0 = 2π · 7.207GHz and the total linewidth κ = 2π · 380kHz. The
total linewidth of the HF mode is the sum of the internal loss rate κi = 2π ·300kHz and
the external loss rate due to the coupling to the feedline of κe = 2π ·80kHz. For the low-
frequency circuit, the internal losses contribute Γi = 2π ·10kHz and the external losses
Γe = 2π·16kHz to the total linewidth. Details on the fitting function and routine are given
in section 7.7.4.

When a magnetic flux Φb is applied through the SQUID by the external coil, the re-
sulting circulating current changes the inductance of the Josephson junctions and the
HF resonance frequency is shifted accordingly. In Fig. 1e, we show ω0(Φb) depending
on the external bias fluxΦb through the SQUID loop, a theoretical description and mod-
eling of the circuit and the flux dependence is detailed in section 7.7.3. Any oscillating
current flowing through the RF inductor induces additional flux through the SQUID loop
and therefore modulates the resonance frequency of the HF mode. As a result, the two
modes interact via an effective photon-pressure coupling and the Hamiltonian of the
device is given by [78, 81, 176]

Ĥ/ħ=ω0â†â +Ω0b̂†b̂ + g0â†â
(
b̂ + b̂†

)
, (7.1)

where the creation (annihilation) operators for the HF and RF modes are given by â† (â)
and b̂† (b̂), respectively. The coupling constant is given by

g0 = ∂ω0

∂Φb
Φzpf (7.2)

with the tunable flux responsivity of the HF cavity ∂ω0/∂Φb and the effective root-mean-
square value of the RF vacuum flux fluctuations Φzpf ≈ 635µΦ0. Due to the low-power
operation regime used for the experiments presented here, both circuits act in good ap-
proximation as harmonic oscillators and the Kerr nonlinearities arising from the Joseph-
son junctions can be neglected. With the small Josephson inductance LJ0 = 40pH of the
constriction type junctions and due to the significant dilution by linear inductors, both
Kerr nonlinearities χHF = 2π ·2.4kHz ¿ κ and χRF = 2π ·1.3Hz ¿ Γ0 [98] are sufficiently
low to justify this approximation.

From the resonance frequency fit curves shown in Fig. 7.1e, the flux responsivity at
the operation point is found to be ∂ω0/∂Φ≈ 2π ·250MHz/Φ0, and we get a coupling rate
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of g0 = 2π · 160kHz at the operation point. At larger flux bias values Φb/Φ0 ∼ 0.75 the
single-photon coupling rate reaches values g0 ∼ 2π·1MHz≈ κ, cf. section 7.7.5, a regime
typically very difficult to reach in other photon-pressure coupled systems. In the current
setup, however, this operation point is related to considerable flux noise.

Considering the parameter regime of our device with g0/Ω0 ∼ 3 · 10−4, the photon-
pressure nonlinearity [63, 67] induced in the HF cavity given by 2g 2

0 /Ω0 ∼ 2π ·110Hz is
negligibly small. Therefore, the interaction between the two modes with a coherently
driven HF cavity can be linearized [56] and the interaction part of the Hamiltonian with
red-sideband driving is captured by a pump-tunable beam-splitter interaction

Ĥint/ħ= g
(
δâb̂† +δâ†b̂

)
. (7.3)

Here, g =p
ncg0 is the multi-photon coupling strength and δâ†, δâ describe the creation

and annihilation of intracavity field fluctuations, respectively. In this situation, photons
from the pump will scatter mainly to the HF resonance frequency ω0, each event re-
moving one photon from the RF circuit. This process constitutes a cooling mechanism,
which is exhibited by an additional damping term of the RF mode.

7.3. CHARACTERIZATION OF THE PHOTON-PRESSURE

INTERACTION

We characterize the total damping rate of the RF resonator by probing its response SRF
11

in reflection with a small probe tone while pumping the HF mode with a variable power
microwave tone exactly on the red sideband ωp =ω0 −Ω0. The experimental scheme is
shown in Fig. 7.2a and the result of the response measurement is plotted in b for varying
HF sideband pump powers. With increasing HF intracavity photon number nc, the total
linewidth Γeff of the RF mode increases from about 2π · 30kHz at low pump powers to
∼ 2π ·180kHz for pump powers that correspond to nc ∼ 0.4 intracavity microwave pho-
tons. From fits to the response data, the effective damping rate for each pump power
is extracted, the result is shown in Fig. 7.2c. The experimental data are fitted with the
theoretical expression for the total damping

Γeff =
κ+Γ0

2
−

√
(κ−Γ0)2

4
−4g 2 (7.4)

and as fit parameter we get the multi-photon coupling strength g and subsequently the

multi-photon cooperativity C = 4g 2

κΓ0
. The result is shown in Fig. 7.2d and demonstrates

that we reach large values C > 1 for 0.1 pump photon and a single-photon cooperativity

C0 = 4g 2
0

κΓ0
≈ 10. With the knowledge of g , Γ0 and κ for a given pump strength, the photon-

pressure interaction is fully characterized.
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Figure 7.2: Photon-pressure damping of the RF mode and large single-photon cooperativity. a shows
a schematic of the experiment. The high-frequency mode is driven by a pump tone on its red sideband
ωp = ω0 −Ω0 and the response of the radio-frequency mode is simultaneously measured with a weak
probe tone around Ω ∼ Ω0. With increasing strength of the pump tone or intracavity pump photon
number nc, respectively, the linewidth of the RF resonance broadens significantly as shown in panel b,
indicating the regime of photon-pressure damping induced by the red-sideband pump field. Circles are
data, lines are fits. Subsequent curves are shifted vertically by 1 for clarity. From the fits, we extract the
effective RF mode linewidth Γeff depending on the number of intracavity pump photons. The extracted
values are plotted in panel c. By fitting the data (circles) with Eq. (7.4), fit curve is shown as line,
we extract and quantify the multi-photon coupling strength g and the cooperativity C = 4g 2

κΓ0
depending

on the number of pump photons. The cooperativity extracted from the experimental data is shown
as circles in d, the theoretical curve based on the fit in c is shown as line. The gray shaded area for
nc > 0.1 indicates the regime of cooperativity C > 1. Error bars in d correspond to a 1kHz uncertainty
in the bare RF linewidth Γ0. Here, the best agreement with the data was found with Γ0 = 2π ·27.5kHz.

7.4. PHOTON-PRESSURE SIDEBAND COOLING

Without the radio-frequency probe tone applied in the previous experiment, the cur-
rents in the RF mode are given by residual thermal and quantum fluctuations. These
current fluctuations lead to resonance frequency fluctuations of the HF mode, medi-
ated by the SQUID. Therefore, when the HF mode is driven with a continuous frequency
pump tone on the red sideband, the resonance frequency fluctuations induced by the
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LF mode lead to the generation of a sideband at ωp +Ω0. This sideband corresponds to
upconverted thermal photons from the RF mode and its detection and analysis allows to
determine the residual RF mode occupation. The power spectral density at the detector
(HF HEMT amplifier) input in units of quanta for a pump around the red sideband is in
good approximation given by

S(ω)

ħω = 1

2
+n′

add +
κe g 2|χ0|2|χc |2Γ0

|1+ g 2χcχ0|2
nRF

th (7.5)

with the RF mode occupation as weighted sum of internal and external bath occupations
nRF

th = Γe
Γ0

nRF
e + Γi

Γ0
nRF

i and the HF and RF mode susceptibilities

χ−1
c = κ

2
+ i (ω−ω0) (7.6)

χ−1
0 = Γ0

2
+ i (ω−ωp −Ω0), (7.7)

respectively. For Eq. (7.5), we assumed that internal and external bath of the HF cavity
are equilibrated to the fridge temperature nHF

i = nHF
e = nHF

th and nHF
th ¿ nRF

th ,n′
add,1/2.

From a thermal calibration of the RF mode occupation with varying fridge tempera-
ture, shown in Fig. 7.8b, we determine the residual occupation at base temperature to
be ∼ 7± 1 RF photons and the effective number of noise photons added by the detec-
tion chain n′

add ≈ 11± 2, details are given in sections 7.7.7 and 7.7.8. We note that we
observe a dependence of the bare linewidth Γ0 on temperature, but also on the resid-
ual RF occupation at T = Tb, which we attribute to two-level-system saturation in the
amorphous silicon dielectric filling of the RF parallel plate capacitor. For the fridge base
temperature data in Fig. 7.3b, we find Γ0 ≈ 2π ·40kHz, an increased value compared to
the values obtained from the reflection measurement. This Γ0 and nRF

th ∼ 7 correspond

to a single-photon quantum cooperativity Cq0 = C0/nRF
th ≈ 1.

With the fridge temperature set back to its minimal value Tb = 15mK, we measure
the HF mode output spectra for varying red-sideband pump power, cf. Fig. 7.3c. For
the smallest pump power shown, the upcoverted thermal noise spectrum displays a
Lorentzian lineshape with an effective linewidth Γeff ≈ 2π·65kHz, broadened by dynam-
ical backaction. With increasing sideband pump power the thermal noise peak broadens
further, until for the largest powers the lineshape deviates from a Lorentzian due to the
onset of normal-mode splitting. Additional spectra for a larger residual RF occupation
nRF

th ∼ 20 are given in section 7.7.8.
By fitting the spectra with Eq. (7.5), shown as lines and shaded areas in Fig. 7.3c, the

equilibrium RF photon numbers are determined and converted to the sideband-cooled
photon occupation

nRF
cool = nRF

th

Γ0

κ+Γ0

4g 2 +κ(κ+Γ0)

4g 2 +κΓ0
+nHF

th

κ

κ+Γ0

4g 2

4g 2 +κΓ0
. (7.8)

Note that this relation differs from the result usually quoted in optomechanics [31, 56,
58], which is only valid forκÀ Γ0 and significantly underestimates the cooling rate in the
unusual regime Γ0 . κ. The full equation taking into account also finite pump detunings
δ can be found at the end of section 7.7.6.
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Figure 7.3: Sideband-cooling of a hot radio-frequency resonator with less than a single pump photon.
a For the observation of upconverted thermal noise and cooling of the RF resonator, a pump tone is
set to the red sideband of the high-frequency mode ωp = ω0 −Ω0 and the cavity output field around
ω=ω0 is detected with a signal analyzer. b, thermal RF photon number vs fridge temperature. Symbols
are data, line is the Bose factor. From this thermal calibration, we determine the thermal occupation
of the RF mode at fridge base temperature to be nRF

th ∼ 7±1. c shows the measured high-frequency
output power spectral density for increasing red-sideband pump power, normalized to the on-chip pump
power P0. Frequency axis is given as detuning from the low-power noise center frequency. Circles are
data, lines with shaded areas are fits. With increasing pump strength the RF resonance gets broadened
by photon-pressure damping, and its total thermal noise power gets reduced, which corresponds to
sideband-cooling of the RF mode. The slight asymmetry in the power spectral density for the largest
pump powers originates from a small detuning δ≈ 2π ·30kHz of the pump from the red sideband, which
is taken into account in our analysis. In d, the thermal mode occupation photon number is shown as
symbols vs HF pump photon number. The initial thermal occupation is cooled by about a factor of
∼ 4, theoretical expectation is shown as line. Error bars in b and d correspond to uncertainties of ±2
HF photons of added noise in the detection chain and ±2kHz in bare RF linewidth Γ0.

The resulting sideband-cooled RF mode occupation is shown in Fig. 7.3d. Therefore,
with less than a single pump photon, the RF mode is cooled by about a factor of ∼ 4 to an
occupation of only 1.7 RF quanta, demonstrating the applicability of sideband-cooling
for photon-pressure coupled circuits and an extraordinarily large single-photon cooling
rate. At higher pump powers than the ones discussed so far, the two circuits hybridize in
the parametric normal-mode splitting regime [31, 58, 176].
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7.5. NORMAL-MODE THERMOMETRY AND GROUND-STATE

COOLING

Figure 7.4: Normal-mode thermometry and ground-state cooling in the quantum coherent strong-
coupling regime. a Experimental scheme. A strong pump tone is applied with detuning δ from the
red sideband of the HF mode. For each pump detuning δ, the output spectrum around the bare HF
mode resonance frequency ω0 +∆ is measured. The resulting power spectra are plotted color-coded
in b. We observe two noise peaks and an avoided crossing of the modes for δ = 0. The bare mode
at ∆ = 0 corresponds to the HF cavity, while the bare mode at ωp +Ω0 is moving with the pump and
corresponds to the RF mode. Due to the large pump, the two modes fully hybridize around δ= 0 and
the total thermal occupation of the system in terms of thermal photons gets minimized. c shows the
result of calculations based on the theoretical model. In d, we plot the corresponding linecuts from b
and c on top of each other, displaying a high level of agreement between experiment and theory. In
the regime δ= 0, the splitting between the modes is given by g /π with g = 2π ·1MHz. We treat the two
parametrically coupled normal-modes as individual HF modes with resonance frequencies ω− and ω+
and extract the corresponding, effective thermal photon numbers n− and n+ from the power spectral
density shown in d. The values are plotted in e. The dashed, horizontal line shows a thermal occupancy
of 1. At the point of symmetric normal-modes δ = 0, both reach an occupancy of ∼ 0.8±0.2. From
the effective normal-mode occupations n±, we determine the occupation of the bare HF and RF modes
shown in f. Around zero detuning of the pump from the red sideband, both bare modes are in the
quantum groundstate with residual occupations nHF

cool ≈ nRF
cool ∼ 0.8±0.2. For the theoretical calculations,

shown as lines, we assume nHF
th = 0.01 and find as equilibrium thermal occupations nRF

th = 8.0. Error bars
in e and f correspond to uncertainties of ±2 HF photons of added noise in the detection chain and
estimated ±2kHz in bare RF linewidth Γ0.

In the strong-coupling regime, i.e, when the frequency-splitting of the normal modes
exceeds the hybridized linewidths, the residual thermal occupation of the RF mode is
distributed between the hybridized normal-modes. Equation (7.8), however, remains
valid and the onset of mode hybridization does not prevent the RF mode from being
cooled further. The theoretical limit for cooling in the regime g À κ,Γ0 is given by
nRF

lim = nRF
th Γ0/(κ+Γ0) ≈ 0.67 photons, assuming a ground-state HF cavity. The remaining
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thermal excitations of the system are then equally distributed between the RF and the
HF modes, cf. also section 7.7.9.

To characterize the residual number of thermal RF photons in the strong-coupling
regime, we detect the output noise of the normal-modes in the HF domain for varying
detuning of the pump tone from the red sideband δ . In Fig.7.4, the measured output
spectra around ∆=ω−ω0 are shown color-coded in panel b and as individual linescans
in panel d. We find an excellent agreement between the data and theoretical calcula-
tions, shown color-coded in c and as lines in d. For large detunings |δ| > 2π·2MHz, a hot
mode with a large noise amplitude is observed, whose frequency follows closely ωp +Ω0

and corresponds to the normal-mode dominated by the RF circuit in this regime. At
the same time, no output noise field is detected around the HF-cavity-like normal mode
close to∆= 0, indicating that this mode is cold and in thermal equilibrium with its bath.
For small detunings δ ∼ 0, we observe a pronounced avoided crossing of the RF mode
with the driven HF cavity, centered at ∆ = 0. The splitting between the two hybridized
modes is given by g /π≈ 2MHz, indicating that we reach the so-called quantum-coherent
coupling regime where g > κ,Γ0nRF

th [33] and a quantum cooperativity Cq = C/nRF
th ≈ 35.

For a quantification of the effective normal-mode thermal occupation, we treat the
modes as two independent HF modes, a detailed description is given in sections 7.7.9
and 7.7.10. The lower frequency mode has the resonance frequency ω−, linewidth κ−
and external linewidth κe−, the higher frequency mode ω+, κ+ and κe+, respectively.
The complex resonances of the normal modes are given by [58]

ω̃± =ω0 + δ

2
+ i

κ+Γ0

4
±

√
g 2 −

(
κ−Γ0 +2iδ

4

)2

(7.9)

and the resonance frequencies and linewidths are ω± = Re[ω̃±] and κ± = 2Im[ω̃±], re-
spectively.

The power spectral density of the HF output field in terms of these normal-mode
parameters can be written as

Snms

ħω = 1

2
+n′

add +4
κe−κ−
κ2−+4∆2−

n−+4
κe+κ+
κ2++4∆2+

n+. (7.10)

where n± are the effective photon occupations of the two normal modes, ∆± = ω−ω±
and the external linewidths κe± = κe

2

(
1± δp

δ2+4g 2

)
, cf. sections 7.7.9 and 7.7.10. The ef-

fective normal-mode occupation n− and n+ depending on the pump detuning is shown
in Fig. 7.4e. While for large detunings the RF-like normal mode is still hot and the HF-like
mode is in the quantum ground-state, both normal modes appear to be in the quantum
ground-state when they are close to the full mode hybridizaton at δ∼ 0. The minimum
occupation that we observe at the symmetry point is n− = n+ = 0.8.

From comparison between the two versions of the HF power spectral densities Eq. (7.10)
and Eq. (7.5) and the condition Snms = S, we obtain the HF mode occupation in the cool-
ing regime nHF

cool by

κenHF
cool = κe−n−+κe+n+, (7.11)

For zero pump detuning, this simplifies to nHF
cool = n− = n+ = 0.8. Using the equation

for the total thermal occupation ntot
cool of the system in the strong-coupling regime (cf.
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section 7.7.9), we calculate the residual occupation of the RF mode nRF
cool = ntot

cool −nHF
cool.

The resulting occupation of both bare modes is shown in Fig. 7.4f, showing that nRF
cool ≈

nHF
cool = 0.8±0.2, i.e., that both are in the quantum ground-state for δ∼ 0.

7.6. DISCUSSION

With the results presented in this work, we demonstrated photon-pressure coupling
of a hot radio-frequency circuit to a superconducting microwave cavity in the quan-
tum regime. By a galvanically connected circuit design, we dramatically increased the
single-photon coupling strength and achieved a single-photon quantum cooperativity
of unity. Based on the large single-photon coupling rate, we were able to demonstrate
both, sideband-cooling of the RF mode by a factor of 4 and the strong-coupling regime,
with less than a single pump photon. For stronger pump powers, we enter the quantum-
coherent coupling regime and demonstrate photon-pressure groundstate cooling of the
originally hot RF mode. Compared to other recently developed radiative cooling tech-
niques of circuits and other systems [186, 187], sideband-cooling can reduce the effective
mode temperature far below the physical temperature of any bath [62]. Furthermore, in
contrast to previous reports of sideband-cooling techniques with circuits using highly
nonlinear systems such as superconducting qubits [168, 188], our approach allows for
both participating circuits to have a very high degree of linearity which is highly desir-
ably for many signal processing applications. This work lays the foundation for radio-
frequency quantum photonics, for quantum-limited RF sensing and has potential appli-
cations in quantum-limited microwave signal and bosonic code quantum information
processing based on photon-pressure coupled circuits.

7.7. SUPPLEMENTARY INFORMATION

7.7.1. DEVICE FABRICATION

• Step 0: Marker patterning. Prior to the device fabrication, we perform the pat-
terning of alignment markers on a full 4inch Silicon wafer, required for the electron-
beam lithography (EBL) alignment of the following fabrication steps. The struc-
tures were patterned using a CSAR62.13 resist mask and sputter deposition of 50nm
Molybdenum-Rhenium alloy. After undergoing a lift-off process, the only remain-
ing structures on the wafer were the markers. The complete wafer was diced into
14× 14mm2 chips, which were used individually for the subsequent fabrication
steps. The step was finalized by a series of several acetone and IPA rinses.

• Step 1: Junctions patterning. As first step in the fabrication, we pattern weak
links which afterwards result in constriction type Josephson junctions between
the arms of the SQUID. The weak link nanowires were patterned together with
larger pads, cf. Supplementary Fig. 7.5a, which were used to achieve good electri-
cal contact with the rest of the circuit, cf. Step 3. The nanowires are designed to be
∼ 50nm wide and ∼ 100nm long at this point of the fabrication, and each pad is
500×500nm2 large. For this fabrication step, a CSAR62.09 was used as EBL resist
and the development was done by dipping the exposed sample into Pentylacetate



7

216
7. PHOTON-PRESSURE COUPLING WITH A HOT RADIO-FREQUENCY CIRCUIT IN THE

QUANTUM REGIME

for 60seconds, followed by a solution of MIBK:IPA (1:1) for 60seconds, and finally
rinsed in IPA, where MIBK is short for methyl isobutyl ketone and IPA for isopropyl
alcohol. The sample was subsequently loaded into a sputtering machine where a
15nm layer of Aluminum was deposited. Finally, the chip was placed at the bottom
of a beaker containing a small amount of Anisole and inserted into an ultrasonic
bath for a few minutes where the sample underwent a lift-off process. The step
was finalized by a series of several acetone and IPA rinses.

• Step 2: Bottom RF capacitor plate and HF resonator patterning. As second step
in the fabrication, we pattern the bottom plate of the parallel plate capacitor, the
inductor wire of the radio-frequency cavity, which also forms part of the SQUID
loop, the remaining part of the SQUID cavity (cf. Supplementary Fig. 7.5b.) and the
center conductor of the SQUID cavity feedline by means of EBL using CSAR62.13
as resist. After the exposure, the sample was developed in the same way as in the
first fabrication step and loaded into a sputtering machine. In the sputter system,
we performed an argon milling step for two minutes and afterwards deposited
70nm of Aluminum. The milling step, performed in-situ and prior to the deposi-
tion, very efficiently removes the oxide layer which was formed on top of the pre-
viously sputtered weak link pads, and therefore allows for good electrical contact
between the two layers. After the deposition, the unpatterned area was lifted-off
by means of an ultrasonic bath in room-temperature Anisole for a few minutes.
The step was finalized by a series of several acetone and IPA rinses.

• Step 3: Amorphous silicon deposition. The deposition of the dielectric layer of
the parallel plate capacitor was done using a plasma-enhanced chemical vapor
deposition (PECVD) process. To guarantee low dielectric losses in the material,
the chamber underwent an RF cleaning process overnight and only afterwards
the deposition of ∼ 130nm of amorphous silicon was performed. At this point
of the fabrication, the whole sample is covered with dielectric, cf. Supplementary
Fig. 7.5c.

• Step 4: Reactive ion etch patterning of αSi. We spin-coat a double layer of resist
(PMMA 950K A4 and ARN-7700-18) on top of the αSi-covered sample, and expose
the next pattern with EBL. Prior to the development of the pattern, a post-bake
of 2 minutes at ∼ 115◦C was required. Directly after, the sample was dipped into
MF-321 developer for 2 minutes and 30 seconds, followed by H2O for 30 seconds
and lastly rinsed in IPA. To finish the third step of the fabrication, the developed
sample underwent a SF6/He reactive ion etching (RIE) to remove the amorphous
Silicon. To conclude the etching step, we performed a O2 plasma ashing in-situ
with the RIE process to remove resist residues, the result is shown schematically in
Supplementary Fig. 7.5d.

• Step 5: Top capacitor plate and ground-plane patterning. As final step, the sam-
ple was again coated in CSAR62.13 and the top plate of the RF capacitor as well as
all ground plane and the low-frequency feedline was patterned with EBL. The re-
sist development was done identical to the ones in the second and third steps. Af-
terwards, the sample was loaded into a sputtering machine where an argon milling
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B

Figure 7.5: Schematic device fabrication. a shows the weak-link Josephson junctions with contact
pads, patterned in the first fabrication step. b shows the patterned second Aluminum layer, forming
the bottom of the RF parallel plate capacitor, the SQUID loop and the HF cavity. Inset A showing
the in-situ argon milled Josephson junctions prior to the deposition (the existing resist is not shown
for better visibility of the milled structures). Inset B shows a zoom-in of the 3D SQUID. c shows the
sample after the deposition of αSi. d shows the device after the subsequent SF6/He reactive ion etching
step, finished by an in-situ O2 plasma ashing. e shows the final device after the deposition of the last
Aluminum layer.

process was performed in-situ for 2 minutes, in order to have good electrical con-
tact between the top and bottom plates of the low-frequency capacitor, similar to
what was done between the second and third fabrication steps. After the milling,
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a 250nm layer of Aluminum was deposited and finally an ultrasonic lift-off pro-
cedure was performed. The step was finalized by a series of several acetone and
IPA rinses. With this, the sample fabrication process was essentially completed, cf.
Supplementary Fig. 7.5e.

• Step 6: Dicing and mounting. At the end of the fabrication, the sample was diced
to a 10×10mm2 size and mounted to a printed circuit board (PCB), wire-bonded
to microwave feedlines and ground and packaged into a radiation tight copper
housing.

A schematic representation of this fabrication process can be seen in Supplementary
Fig. 7.5, omitting the initial patterning of the electron beam markers and the sample
mounting. In addition, an optical image of the full device is shown in Supplementary
Fig. 7.6.

Figure 7.6: Optical image of the full device. Visible are both, the radio-frequency (top) and microwave
(bottom) resonators including their corresponding RF and HF feedlines. The coupling capacitors are
labelled with CcR for the RF mode and CcH for the HF mode, respectively. Also labelled are the RF
parallel plate capacitor (PPC), the HF interdigitated capacitors (IDC), and the SQUID for orientation.
Zoom-ins to the HF mode circuit including labels for the inductors are shown in Fig. 7.1. The galvanic
contact area of the PPC top and bottom plates is marked with a dashed rectangle.

7.7.2. MEASUREMENT SETUP
All the experiments reported in this paper were performed in a dilution refrigerator op-
erating at a base temperature close to Tb = 15mK. A schematic of the experimental setup
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Figure 7.7: Schematic of the measurement setup. Detailed information is provided in text.

and of the external configurations used in the different performed experiments can be
seen in Supplementary Fig. 7.7.

The printed circuit board (PCB), onto which the fabricated sample was glued and
wire-bonded, was placed in a radiation tight copper housing and connected to two coax-
ial lines. One of the lines was used as input/output port for the high-frequency (HF)
SQUID cavity and the second line was set in a similar way for the radio-frequency res-
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onator. Both of the cavities were measured in a reflection geometry, and therefore the
input and output signals were split via a directional coupler. For the HF line, the direc-
tional coupler was positioned on the 15mK stage, while for the RF line it was mounted in
between the 15mK plate and the 100mK plate. Both output signals went into a cryogenic
amplifier for their particular frequency range.

Furthermore, in order to generate an out-of-plane magnetic field, required to flux
bias the SQUID cavity, an external magnet (not shown in the figure) was put in very close
proximity below the device and the two were placed inside a cryoperm magnetic shield.
The magnet was connected with DC wires, allowing for the field to be tuned by means of
a DC current (not shown).

Both input lines were heavily attenuated in order to balance the thermal radiation
from the line to the base temperature of the fridge. The low-frequency line, however, is
not fully equilibrated to the fridge base temperature due to the lack of cryogenic circu-
lators/isolators for the particular frequency range. Outside of the refrigerator, we used
different configurations of microwave signal sources and high-frequency electronics for
the different experiments.

In b we show the configuration used to measure the photon-pressure damping of
the radio-frequency mode (Fig. 7.2). A microwave generator sends a continuous wave
signal to the SQUID cavity around its red sideband, while the RF resonator is probed in
reflection with a vector network analyzer (VNA).

In c we show the setup for photon-pressure sideband-cooling experiment and the
normal-mode thermometry (Figs. 7.3 and 7.4), where a continuous wave tone is send
to the red sideband of the SQUID cavity. In addition, in order to observe the cavity re-
sponse and adjust the pump tone frequency with respect to the power-dependent cavity
resonance, a weak VNA signal is combined with the pump tone via a directional coupler.
The output signal is analyzed individually by a spectrum analyzer and a VNA after being
amplified. During the detection of thermal noise with the signal analyzer, the VNA scan
was stopped and the VNA output power was completely switched off.

For the normal-mode thermometry experiment, we replaced the 20dB attenuator
on the 3K plate of HF input line 2 by a 10dB one. This allowed for stronger red-sideband
pumping and therefore for reaching deeper into the strong-coupling regime.

For all experiments, the microwave sources and vector network analyzers (VNA) as
well as the spectrum analyzer used a single reference clock of one of the devices.

7.7.3. THE CIRCUIT MODEL AND FLUX DEPENDENCE

THE CIRCUIT MODEL

The diagram shown in Supplementary Fig. 7.8 represents the full circuit model of the de-
vice. Similar to the simplified version shown in Fig. 7.1a, it contains the high-frequency
(drawn in purple) and a radio-frequency (drawn in orange) mode, which share the cen-
ter part of the circuit (drawn in gray). The shared part contains a non-linear, flux-tunable
SQUID inductance. The Josephson junctions which form part of the tunable SQUID are
constriction type Josephson junctions, which are known to have a current-phase relation
(CPR) that can differ significantly from the typical sinusoidal CPR [114, 115]. To include
this effect in the flux dependence of the modes, we model each weak-link inductance
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to be a series combination of a non-linear element Lj with a sinusoidal current-phase
relation and a linear inductor La.

CcH

C

C

CRF

CcR

HF

RF

LLj

Lj

L0

L0

Φb

La

La

Ll

Figure 7.8: Full circuit diagram of the device. The orange part of the circuit represents the components
belonging only to the radio-frequency mode. The circuit parts drawn in purple correspond to the
high-frequency mode. Both modes share the part of the circuit drawn in gray.

FLUX DEPENDENCE OF THE HF MODE

The resonance frequency of a SQUID cavity with a symmetric SQUID can be described
by

ω0(Φb) = ω0(0)√
Λ+ 1−Λ

cos
(
π Φ
Φ0

) (7.12)

where Φ corresponds to the total flux threading the SQUID loop and ω0(0) is the reso-
nance frequency without external flux bias (sweetspot frequency). The parameter Λ =
(LHF − 1

2 Lj0)/LHF with the total high-frequency inductance LHF and the single junction
Josephson inductance Lj0 is a measure for the contribution of the Josephson inductance
to the total inductance. For zero bias current and the (magnetic plus kinetic) loop induc-
tance Lloop = Ll +2La the total flux threading the SQUID is given by

Φ

Φ0
= Φb

Φ0
+Lloop J (7.13)

with the circulating current J . In the absence of a bias current and symmetric junctions,
the circulating current is given by

J =−Ic sin

(
π
Φ

Φ0

)
(7.14)
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with the zero bias critical current of a single junction Ic = Φ0
2πLj0

. Using the screening

parameter βL = 2Lloop Ic

Φ0
= Lloop

πLj0
the relation for the total flux can be written as

Φ

Φ0
= Φb

Φ0
− βL

2
sin

(
π
Φ

Φ0

)
. (7.15)

Figure 7.1e shows the experimentally determined SQUID cavity resonance frequency
modulating with external magnetic flux Φb and a fit curve using Eq. 7.12, where the re-
lation between the applied external fluxΦb and the total flux in the SQUIDΦ is given by
Eq. (7.15). As fit parameters we obtain βL = 1.07 and Λ = 0.946, i.e., the SQUID Joseph-
son inductance contributes about 5.4% to the total HF inductance. Furthermore, we
estimate the capacitance of the SQUID cavity CHF = 2C +CcH with the expressions given
in Ref. [158] to be ∼ 1.3pF. Based on the sweetspot frequency of the SQUID cavity

ω0 = 1p
LHF(2C +CcH)

, (7.16)

we extract the total inductance of the high frequency mode to be LHF = 370pH and with
Λwe get the inductance of a single junction Lj0 = 40pH. This inductance corresponds to

a critical junction current Ic = Φ0
2πLjc

≈ 8.3µA.

From the screening parameter βL = 1.07 and the single-junction inductance Lj0 =
40pH, we get a loop inductance Lloop = 2La +Ll =πβLLj0 ≈ 134pH.

FLUX DEPENDENCE OF THE RF MODE

Based on the circuit diagram shown in Supplementary Fig. 7.8, we find the total induc-
tance of the radio-frequency mode LRF as

LRF = 2L0 +
2(Lj +La)Ll

2(Lj +La)+Ll
, (7.17)

with the Josephson inductance of a single junction Lj = Lj0

cos
(
π Φ
Φ0

) and the SQUID loop

inductance Lloop = 2La +Ll ≈ 134pH as boundary condition for Ll and La. In addition,
we independently estimate the parallel plate capacitance CRF = 659.7pF and the parallel
plate coupling capacitance CcR = 0.3pF. From the total capacitance Ctot =CRF +CcR and
the resonance frequency Ω0, we determine the total inductance of the RF resonator as
LRF ∼ 188pH.

As the total inductance of the radio-frequency mode is partly composed by the field-
dependent Josephson inductance Lj, the resonator resonance frequency will as well mod-
ulate with applied magnetic fluxΦb as

Ω0 = 1√√√√Ctot

(
2L0 +Ll

(
1+ Ll

2

cos
(
π Φ
Φ0

)
Lj0+La cos

(
π Φ
Φ0

)
)−1) . (7.18)

where the relation betweenΦ andΦb is again given by Eq. (7.15). Supplementary Fig. 7.9
shows the RF resonance frequency depending on the applied magnetic flux together
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Figure 7.9: RF mode resonance frequency depending on external magnetic flux. Points are data and
line is a fit curve using Eq. (7.18). The operation point in this work Φb/Φ0 = 0.54 is marked by a star.

with a fit curve using Eq. (7.18), where the parameter βL = 1.07 was kept constant as
determined from the HF mode flux dependence. From the fit, we extract the parameters
La = 43.5pH and Ll = 47pH. Based on the returned fit parameters and on Eq. (7.18), we
obtain L0 = 75pH.

We note here, that without the linear junction inductances La, it is not possible to fit
both flux dependences with a single set of reasonable parameters.

FLUX DEPENDENCE OF THE DECAY RATES κ AND Γ0

As the external magnetic field is kept at a non-zero value during the experiment, it is
of interest to analyze how the applied magnetic flux Φb affects the losses in the circuit.
For that, we extract the decay rates of both modes κ and Γ0 while changing the flux bias
point. The result is shown in Supplementary Fig. 7.10 for the positive tuning range. Both
linewidths clearly show a strong dependence for values larger than ∼ 0.7Φ0 to ∼ 0.8Φ0.
For the operating point used here of Φb/Φ0 = 0.54, however, they are nearly unmodified
compared to the sweetspot values.

7.7.4. RESPONSE FUNCTIONS AND FITTING ROUTINE

IDEAL HF AND RF RESONATORS RESPONSE FUNCTIONS

Both, our HF SQUID cavity and the RF resonator, can be modeled as a parallel LC circuit
capacitively coupled to a transmission line in a reflection geometry. The S11 response
function of such a circuit (here for the HF mode) is given by

SHF
11 = 1− 2κe

κi +κe +2i∆
(7.19)
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Figure 7.10: Linewidths for varying SQUID bias flux. Decay rate of the microwave mode κ (a) and
of the radio-frequency mode Γ0 (b) depending on magnetic bias flux in units of flux quanta Φ0. The
operation point Φb/Φ0 ≈ 0.54 for the experiments reported here is marked by vertical lines.

with detuning from the resonance frequency

∆=ω−ω0. (7.20)

For the RF resonator, we get fully equivalently

SRF
11 = 1− 2Γe

Γi +Γe +2i∆0
(7.21)

with ∆0 =Ω−Ω0.

REAL RESPONSE FUNCTION AND FITTING ROUTINE

When analyzing the measured cavity response, we consider a frequency-dependent complex-
valued reflection background with amplitude and phase modulations originating from a
variety of microwave components in our input and output lines and possible interfering
signal paths. Under this assumption, we model the modified cavity response with

S11 = (α0 +α1ω)

(
1− 2κee iθ

κi +κe +2i∆

)
e i (β1ω+β0) (7.22)

where we consider a frequency dependent complex background

S11 = (α0 +α1ω)e i (β1ω+β0) (7.23)

and an additional rotation of the resonance circle with the phase factor e iθ.
The first step in the fitting routine removes the cavity resonance part from the data

curve and fits the remaining background with Eq. (7.23). After removing the background
contribution from the full dataset by complex division, the resonator response is fitted
using the ideal response function. In the final step, the full function is re-fitted to the
bare data using as starting parameters the individually obtained fit numbers from the
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first two steps. From this final fit, we extract the final background fit parameters and
remove the background of the full dataset by complex division. Also, we correct for the
additional rotation factor e iθ. As result we obtain clean resonance curves as shown in
Fig. 7.1d.

COMPLEX FITS AND MODE PARAMETERS AT THE OPERATION POINT

Figure 7.11: RF and HF complex resonance fits. In a the resonance of the radio-frequency mode is
shown, in b the resonance of the high-frequency mode. Circles are data, line is a fit. Extracted fit
parameters are given in the text.

In Supplementary Fig. 7.11 we show the complex reflection signal obtained from the
measurements for the RF mode in a and the HF mode in b. The background has been re-
moved by complex division and the corresponding fit curves are added as lines. From the
fits, we extract for the radio-frequency mode data shown in a the resonance frequency
Ω0 = 2π·452.5MHz, and the linewidthsΓi = 2π·10kHz andΓe = 2π·16kHz. The fit param-
eters of the high-frequency mode data shown in b areω0 = 2π·7.207GHz,κi = 2π·310kHz
and κe = 2π ·80kHz. The absolute values of these two resonance are shown in Fig. 7.1d.

7.7.5. ZERO-POINT FLUCTUATIONS Φzpf AND COUPLING RATE g0

The zero-point current fluctuations of the radio-frequency mode at the operation point
are given by

Izpf =
√

ħΩ0

2LRF
≈ 28nA, (7.24)

whereΩ0 = 2π ·452.5MHz and LRF = 188pH.

In presence of this zero-point current, which flows asymmetrically through the loop
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wire arm and the junction arm of the SQUID, the total flux in the SQUID is given by

Φ=Φb +Lloop J −αLloop
Izpf

2
(7.25)

where α= 2La−Ll
Lloop

≈ 0.3 describes the inductance asymmetry of the SQUID from the per-

spective of the RF currents. With the current-phase relation of the JJ, this can also be
written as

Φ=Φb +Lloop(1−α)
Izpf

2
−LloopIc sin

(
π
Φ

Φ0

)
. (7.26)

Therefore, the zero-point fluctuation current is formally equivalent to a fluctuating ex-
ternal flux with

Φzpf = Lloop(1−α)
Izpf

2
(7.27)

= LlIzpf (7.28)

≈ 635µΦ0. (7.29)

Using the derivative ∂ω0
∂Φb

of the flux-dependence fit curve ω0(Φb), we can therefore cal-
culate the single-photon coupling strength

g0 = ∂ω0

∂Φb
Φzpf, (7.30)

the result is shown in Supplementary Fig. 7.12
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Figure 7.12: Single photon-coupling rate g0 and decay rates vs SQUID bias flux. a shows g0 vs SQUID
bias flux. The points are calculated from the experimentally determined flux arch, the line is based
on the arch fit, cf. Fig. 7.1. For both, we calculate the derivative and multiply with the theoretical
value for Φzpf = 635µΦ0. b shows the theoretically estimated g0, the extracted cavity decay rate κ and
(κ+Γ0)/4 versus SQUID bias flux. The last quantity describes the g0 limit for where a single sideband
photon will induce parametric normal mode splitting. The operation point for the experiments reported
here Φb/Φ0 = 0.54 is marked by a star in a and as vertical gray line in b.

At the bias point used in the reported experiments, we get g0 ≈ 2π ·160kHz. Around
Φb/Φ0 ∼ 0.7 though we get g0 ∼ κ, cf. also Supplementary Fig. 7.10. Also, for the regime
Φb/Φ0 > 0.5, we get g0 &

κ+Γ0
4 , i.e, the regime where a single red-sideband photon will

induce well-resolved, parametric normal-mode splitting [25, 176].
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7.7.6. PHOTON-PRESSURE SIDEBAND COOLING

EQUATIONS OF MOTION

We model the (approximately red-sideband) driven system with the linearized equations
of motion for photon-pressure interacting harmonic oscillators [25, 56]

δ ˙̂a =
(
−i∆− κ

2

)
δâ + i g (b̂ + b̂†)+p

κiŜ
HF
i + i

p
κeŜHF

e (7.31)

˙̂b =
(
iΩ0 − Γ0

2

)
b̂ + i g (δâ +δâ†)+

√
ΓiŜ

RF
i + i

√
ΓeŜRF

e . (7.32)

Here, δâ and δâ† describe the annihilation and creation operator for HF cavity field fluc-
tuations, respectively, ∆=ωp −ω0, g =p

ncg0, and ŜHF
i and ŜHF

e corresponds to internal
and external HF noise input fields. The RF mode annihilation and creation operators
are given by b̂ and b̂† and the internal and external RF noise input fields are taken into
account by ŜRF

i and ŜRF
e . The input noise operators Ŝ follow

〈
Ŝ†Ŝ

〉= n and
〈

ŜŜ†
〉= n +1.

These equations can be solved by Fourier transform and the solutions read in fre-
quency space

δâ(Ω) = i gχc

[
b̂(Ω)+ b̂†(−Ω)

]
+χc

[p
κiŜ

HF
i (Ω)+ i

p
κeŜHF

i (Ω)
]

(7.33)

b̂(Ω) = i gχ0

[
δâ(Ω)+δâ†(−Ω)

]
+χ0

[√
ΓiŜ

RF
i (Ω)+ i

√
ΓeŜRF

e (Ω)
]

(7.34)

with the susceptibilities

χc = 1
κ
2 + i (∆+Ω)

(7.35)

χ0 = 1
Γ0
2 + i∆0

, (7.36)

Ω being the frequency relative to the pump tone and ∆0 =Ω−Ω0.

SIMPLIFIED EQUATIONS OF MOTION IN THE SIDEBAND-RESOLVED REGIME

WITH RED-SIDEBAND PUMPING

Under red-sideband pumping ∆≈−Ω0 and in the sideband-resolved regimeΩ0 À κ the
equations of motion can be simplified as

δâ(Ω) = i gχcb̂(Ω)+χc
[p
κiŜ

HF
i (Ω)+ i

p
κeŜHF

i (Ω)
]

(7.37)

b̂(Ω) = i gχ0δâ(Ω)+χ0

[√
ΓiŜ

RF
i (Ω)+ i

√
ΓeŜRF

e (Ω)
]

(7.38)

SOLUTION FOR THE RF MODE RESPONSE FUNCTION

To calculate the response to a radio-frequency probe tone, we replace the noise input by
a probe tone input Ŝ0 and get

δâ(Ω) = i gχcb̂(Ω) (7.39)

b̂(Ω) = i gχ0δâ(Ω)+ iχ0

√
ΓeŜ0(Ω) (7.40)
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For the response function and the input-output relations [56] we find from this the result

SRF
11 = 1−Γe

χ0

1+ g 2χcχ0
. (7.41)

The resonance condition
(
χeff

0

)−1 = 0 for effective RF susceptibility

χeff
0 = χ0

1+ g 2χcχ0
(7.42)

delivers the complex solutions

Ω̃± =Ω0 − δ

2
+ i

κ+Γ0

4
±

√
g 2 −

(
κ−Γ0 +2iδ

4

)2

(7.43)

where δ is the pump detuning from the red sideband defined by ∆=−Ω0 +δ.

SOLUTION FOR THE HF MODE RESPONSE FUNCTION

In full analogy to the RF mode, we get as probe tone response function for the HF mode

SHF
11 = 1−κe

χc

1+ g 2χcχ0
. (7.44)

with the complex solutions

ω̃± =ω0 + δ

2
+ i

κ+Γ0

4
±

√
g 2 −

(
κ−Γ0 +2iδ

4

)2

(7.45)

SOLUTION FOR THE HF MODE THERMAL NOISE POWER SPECTRAL DENSITY

We solve Eqs. (7.37), (7.38) with noise input now and get

δâ = i gχcχ0
[p
ΓiŜRF

i + i
p
ΓeŜRF

e

]+χc
[p
κiŜHF

i + i
p
κeŜHF

e

]
1+ g 2χcχ0

. (7.46)

which leads to the symmetrized output field power spectral density in units of photons
[163]

S(ω)

ħω = 1

2
+nHF

e +κeκi
|χc(ω)|2

|1+ g 2χ0(Ω)χc(ω)|2
(
nHF

i −nHF
e

)+κeΓ0
g 2|χc(ω)|2|χ0(Ω)|2
|1+ g 2χ0(Ω)χc(ω)|2

(
nRF

th −nHF
e

)
(7.47)

where the effective thermal photon occupation of the RF mode is given by the weighted
sum

nRF
th = Γi

Γ0
nRF

i + Γe

Γ0
nRF

e . (7.48)

For the high-frequency mode, we assume equilibration of the feedline and the circuit to
the fridge temperature Tf, such that

nHF
th = nHF

e = nHF
i = 1

e
ħω0
kBTf −1

. (7.49)
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which simplifies the PSD to

S(ω)

ħω = 1

2
+nHF

th +κeΓ0
g 2|χc(ω)|2|χ0(Ω)|2
|1+ g 2χ0(Ω)χc(ω)|2

(
nRF

th −nHF
th

)
(7.50)

For the RF mode, we will have to consider different effective temperatures of feedline
bath and the internal bath.

ADDED NOISE

The effective number of added noise photons by the amplifier chain is given by [25]

n′
add = nadd

η
+

(
1−η
η

)
1

2
(7.51)

where nadd is the actual number of photons added by the HEMT amplifier noise in our
case, and η ∼ 0.5 accounts for losses of the cavity output field on its way to the HEMT.
We will estimate the number of added noise photons based on a temperature sweep
calibration presented below. As a rough first estimate, we can use the datasheet noise
temperature of the amplifier of ∼ 2K to find nadd ≈ 5.3 and n′

add ≈ 11.1.

THE TOTAL POWER SPECTRAL DENSITY

For the power spectral density in units of photons at frequency ω=ωp +Ω of the SQUID
cavity with a drive around the red sideband, we get for n′

add,nRF
th À nHF

th

S(ω)

ħω = 1

2
+n′

add +κeΓ0
g 2|χc(ω)|2|χ0(Ω)|2
|1+ g 2χ0(Ω)χc(ω)|2 nRF

th (7.52)

This can be also written as

S(ω)

ħω = 1

2
+n′

add +
16κeg 2Γ0nRF

th∣∣4g 2 + [κ+2i (δ+∆0)] [Γ0 +2i∆0]
∣∣2 (7.53)

where∆0 =Ω−Ω0 takes into account the detuning from the RF resonance frequency and
δ=ω0 −Ω0 −ωp takes into account the detuning of the pump from the red sideband of
the cavity. By fitting the measured power spectral density with Eq. (7.53), as shown as fit
curves in Fig. 7.3c, we obtain for each curve the thermal photon number occupancy of
the RF mode as detailed below.

COOLED RF PHOTONS

For the RF mode we get from the equations of motion

b̂ = i gχcχ0
[p
κiŜHF

i + i
p
κeŜHF

e

]+χ0
[p
ΓiŜRF

i + i
p
ΓeŜRF

e

]
1+ g 2χcχ0

. (7.54)

We can use this to calculate the RF photon population with a sideband drive exactly on
the red sideband and get

nRF
cool =

Γ0

κ+Γ0

4g 2 +κ(κ+Γ0)

4g 2 +κΓ0
nRF

th + κ

κ+Γ0

4g 2

4g 2 +κΓ0
nHF

th . (7.55)
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Compared to the usually quoted result [25, 56, 58], we find some corrections in the
cooled RF occupation, in particular the appearance of the factor κ+ Γ0 instead of κ.
These corrections are negligble for κ À Γ0, which in our case, however is not strictly
true anymore.

For non-vanishing detuning we get

nRF
cool =

Γ0

κ+Γ0

4g 2 +κ(κ+Γ0)
[

1+ 4δ2

(κ+Γ0)2

]
4g 2 +κΓ0

[
1+ 4δ2

(κ+Γ0)2

] nRF
th + κ

κ+Γ0

4g 2

4g 2 +κΓ0

[
1+ 4δ2

(κ+Γ0)2

]nHF
th .

(7.56)

7.7.7. TEMPERATURE CALIBRATION

To perform a calibration of the RF resonator thermal occupation, we vary the fridge tem-
perature Tf in steps of 20mK and take a series of measurements for each Tf. During this
procedure, we keep the flux bias constant at Φb/Φ0 = 0.54. First, we take bare response
measurements of the two modes SRF

11 and SHF
11 . From the response curves, we extract the

resonance frequencies ω0 andΩ0 as well as the linewidths κ, κe and Γi , Γe by fitting the
responses using Eq. (7.19). The linewidths are shown in Supplementary Fig. 7.13.
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Figure 7.13: Linewidths vs temperature. Decay rates of the microwave mode κ, κe in panel a and of
the radio-frequency mode Γi and Γe in panel b depending on fridge temperature Tf.

Afterwards, we set a pump tone of constant power to the red sideband of the HF
cavity and detect both, the photon-pressure induced transparency (PPIT) in a reflection
measurement of the HF cavity and the upconverted RF thermal noise power spectrum.
We adjust the pump power for each temperature to keep the cooperativity C ≤ 1 in or-
der to avoid being too close to the normal-mode splitting regime but still obtain a good
signal. From the PPIT data, we determine the actual cooperativity. Using the resonance
frequencies and the linewidths, we determine the thermal photon occupation number
in the RF mode relative to the added noise photons from the detected thermal noise
curve for each temperature as described in section 7.7.6.

We repeat the output noise detection for two distinct experimental conditions which
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correspond to two different RF mode temperatures. The feedline of the RF circuit is con-
nected to a cryogenic radio-frequency amplifier and as we do not have a radio-frequency
isolator or circulator, the noise emitted by this amplifier will reach the RF input with only
small attenuation. Hence, we can increase or decrease the RF input noise by switching
this amplifier on or off, respectively, cf. Supplementary Fig 7.14b. From matching the
slope of the "cold" RF mode temperature-dependent occupation in its linear regime to
the Bose factor, we obtain an estimate for the number of added photons in the HF output
line of n′

add ≈ 11±2. This is in very good agreement with an estimate of the added pho-
tons assuming an HF HEMT noise temperature of ∼ 2K (datasheet) and 3dB attenuation
between sample and amplifier.

The result we obtain with this procedure for the RF mode occupation in both RF am-
plifier configurations is shown in Fig. 7.14c. For the RF amplifier switched off, we obtain
a residual occupation of ∼ 6.5±1.5 photons at the fridge base temperature, which stays
nearly constant until the fridge reaches about 150mK. Then, the occupation starts to in-
crease and approaches the Bose occupation shown as black line. For the configuration
with the amplifier switched on the residual occupation is about a factor of three larger
due to the noise coming along the input/output line from the amplifier and coupling into
the circuit. Still, an increase of the total occupation with increasing fridge temperature is
visible, which can be attributed to an increase of the internal RF mode bath temperature.

To model the thermal occupation, we use

nRF
th = Γi

Γ0
nRF

i + Γe

Γ0
nRF

e (7.57)

where the internal and external occupations are given by

nRF
i/e =

(
e

ħω0
kBTi/e −1

)−1

. (7.58)

For the effective internal and external temperatures Ti and Te, respectively, we take into
account possible devations from the fridge temperature by a residual temperature Tr,i/e,
which e.g. considers the RF amplifier noise arriving at the sample RF input. To phe-
nomenologiclly model a gradual adjustment of the effective internal bath temperature

to the fridge temperature, we use Ti =
√

T 2
f +T 2

r,i. In addition, we fit the temperature de-

pendence of Γi and take it into account in the calculation of nRF
th . For the case of RF am-

plifier off, we observe an incresed RF mode linewidth Γ0 ≈ 2π·40kHz, which we attribute
to two-level systems being saturated with the amplifier on. With all these factors consid-
ered, we obtain the lines shown in Fig. 7.14c from the modelling, giving good qualitative
agreement with the data. The parameter set for both curves is identical, except for the
residual temperature of the external bath Tr,e, which is modified by the amplifier power
state, and for Γ0, which differs between the amplifier ON and OFF states. The parame-
ters are Tr,i = 80mK, Γe = 2π ·16kHz, Γon

i = 2π ·10kHz, Γoff
i = 2π ·24kHz and the residual

external temperatures T on
r,e = 850mK and T off

r,e = 130mK.
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7.7.8. COOLING THE RF MODE WITH INCREASED THERMAL OCCUPANCY

We repeat the cooling experiment discussed in Fig. 7.3 also for the RF amplifier switched
on, leaving the RF mode occupied with about 20.5 thermal photons at fridge base tem-
perature. The resulting spectra of the sideband-cooling in this state are shown in Sup-
plementary Fig. 7.14 and besides a larger amplitude due to the increased occupancy look
nearly identical to the spectra shown in Fig. 7.3. The corresponding cooled RF photons
are plotted in e together with the data for the amplifier switched off.

Figure 7.14: Photon-pressure sideband-cooling of a hot and a hotter RF resonator. a For the obser-
vation of upconverted thermal noise of the RF resonator, a pump tone is set to the red sideband of
the high-frequency mode ωp = ω0 −Ω0 and the cavity output field around ω = ω0 is detected with a
signal analyzer. The RF input/output side of the device is connected to a cryogenic radio-frequency
amplifier, which is used for the reflection characterization of the RF mode, cf. panel b. The state of
this RF amplifier can be used to control the thermal occupation of the RF mode. When it is switched
ON, its output noise increases the thermal occupation of the RF mode as shown in panel c, where the
thermal photon number vs fridge temperature is plotted for both cases, RF amplifier switched ON and
RF amplifier switched OFF. Symbols are data, black line is the Bose factor, orange lines are models
for the thermal occupation and discussed in the text. From the thermal calibration, we determine the
thermal occupation of the RF mode at fridge base temperature to be non

RF ∼ 20.5 and noff
RF ∼ 7. d shows

the measured high-frequency output power spectral density for increasing red-sideband pump power,
normalized to the on-chip pump power P0 for RF amplifier ON. Frequency axis is given with respect
to the constant pump frequency. Circles are data, lines and shaded areas are fits. With increasing
pump strength, i.e., increasing intracavity photon number nc, the RF resonance gets broadened by
photon-pressure damping, and its total thermal noise power gets reduced, which corresponds to cooling
of the mode. In e, the thermal RF mode occupation is shown as symbols vs pump photon number nc
for both cases, RF amplifier ON (squares) and RF amplifier OFF (circles). Error bars for the amplifier
ON (OFF) data correspond to uncertainties of ±2 HF photons of added noise in the detection chain
and ±1kHz (±2kHz) in bare RF linewidth Γon

0 = 26kHz (Γoff
0 = 40kHz).



7.7. SUPPLEMENTARY INFORMATION

7

233

7.7.9. THEORY OF NORMAL-MODE THERMOMETRY

THE HIGH-FREQUENCY RESPONSE FUNCTION WITH NORMAL MODE

SUSCEPTIBILITIES

From the equations of motion, we obtained the response of the system around the HF
mode as

SHF
11 = 1−κe

χc

1+ g 2χcχ0
(7.59)

under the assumption of pumping around the red sideband and the sideband-resolved

regime. The resonance condition
(
χeff

c

)−1 = 0 for the effective HF cavity susceptibility

χeff
c = χc

1+ g 2χcχ0
(7.60)

provided us with the complex solutions of the effective susceptibility

ω̃± =ω0 + δ

2
+ i

κ+Γ0

4
±

√
g 2 −

(
κ−Γ0 +2iδ

4

)2

(7.61)

where δ is the pump detuning from the red HF cavity sideband.

Now, we define the normal mode susceptibilities

χ+ = 1
κ+
2 + i∆+

, χ− = 1
κ−
2 + i∆−

(7.62)

where ∆± =ω−ω± and

ω± = Re[ω̃±], κ± = Im[ω̃±] (7.63)

are the real and imaginary parts, respectively, of the complex solutions.

With these, we can rewrite the HF response function as

SHF
11 = 1−κe,+χ+−κe,−χ− (7.64)

which is exact with the (complex and frequency-dependent) external linewidths

κe,± =∓ iκe

2χ0

√
g 2 −

(
κ−Γ0+2iδ

4

)2
. (7.65)

For the regime of considerable coupling g À κ/2,Γ0/2 and possibly large detunings
∆. g , we approximate this by

κe,± ≈ κe

2

(
1± δ√

δ2 +4g 2

)
. (7.66)
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NORMAL-MODE THERMOMETRY

Using the approximated normal-mode representation of the HF cavity in the strong-
coupling regime, we get for the output field power spectral density in units of quanta

Snms

ħω = 1

2
+n′

add +4
κe,+κi,+
κ2++4∆2+

(
ni,+−ne,+

)+4
κe,−κi,−
κ2−+4∆2−

(
ni,−−ne,−

)
(7.67)

where κi,± = κ±−κe,± and ne,+,ne,− and ni,+,ni,− are the effective external and internal
bath occupations of the normal modes, respectively. If the external baths are given again
by the fridge temperature, we get ne,± ¿ ni,± ≈ κ±

κi,±n±. From the condition Snms = S, we
can then follow

κe,+n++κe,−n− = κenHF
cool (7.68)

where nHF
cool is the thermal occupation (imbalance) of the HF mode while cooling the RF

mode with a red sideband tone. As nHF
cool À nHF

e , the imbalance occupation corresponds
in good approximation to the total occupation.

So this way we can calculate the effective HF cavity occupation which is given by

nHF
cool =

κ

κ+Γ0

4g 2 +Γ0(κ+Γ0)
[

1+ 4δ2

(κ+Γ0)2

]
4g 2 +κΓ0

[
1+ 4δ2

(κ+Γ0)2

] nHF
th + Γ0

κ+Γ0

4g 2

4g 2 +κΓ0

[
1+ 4δ2

(κ+Γ0)2

]nRF
th .

(7.69)
when red-sideband driving.

The total number of noise photons in the hybridized mode regime is then given by

ntot = nHF
cool +nRF

cool. (7.70)

7.7.10. SYSTEM PARAMETERS FOR NORMAL-MODE THERMOMETRY

For the analysis of the normal-mode thermal spectra, it is essential to know the indi-
vidual mode parameters, which we obtain from a characterization of the HF reflection
response in the strong-coupling regime. Supplementary Fig. 7.15a shows SHF

11 for ap-
proximately nc = 100 pump intracavity photons. This data was measured simultane-
ously with the power spectral densities (PSD) shown in Fig. 7.4, but during the mea-
surement of the PSDs the network analyzer was switched off. Both datasets were ac-
quired while iteratively sweeping a pump tone through the red sideband with ωp =ω0 −
Ω0 +δ. As the pump tone approaches exactly the red sideband frequency, we observe
photon-pressure induced hybridization between the modes with a resonant splitting of
g /π ∼ 2.1MHz, about one order of magnitude larger than the normal-mode linewidths
(κ+Γ0)/2 = 2π·200kHz and a factor of three larger than the RF thermal decoherence rate
Γ0nRF

th ≈ 2π ·300kHz.
For an analysis of the normal modes, we denote the lower-frequency mode with the

superscript − and the higher-frequency mode with +, i.e., the resonance frequencies are
identified as ω− and ω+ and the total and external linewidths as κ−, κ+ and κe,−, κe,+,
respectively. The theoretical description of these parameters was given in section 7.7.9.
To determine these parameters from the experimental data, each linescan of Supple-
mentary Fig. 7.15a was split into two parts, each of them containing one of the two res-
onances. This splitting is shown in b by using two different colors, orange for the range
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of ω− and purple for the range of ω+. Both sub-responses were fitted individually using
Eq. (7.19).

The returned fit parametersω±, κ± and κe± are plotted in Supplementary Figs. 7.15c,
d, and e, respectively. The theoretical dependences as derived in section 7.7.9 are plot-
ted as lines and show excellent agreement with the data. When the two modes are com-
pletely hybridized (δ= 0), we find for both a total decay rateκ+ = κ− = 2π·200kHz, which
is what we expect from the theoretical expression for this case κ± = (κ+Γ0)/2. Also the
external decay rates, usually defined by the coupling capacitance to the feedline, are half
the value of the bare HF mode κe,+ = κe,− = 2π ·40kHz.

Figure 7.15: HF response in the strong-coupling regime and normal-mode fit parameters. a Color-
coded HF reflection response in the strong-coupling regime. The pump tone is swept through the HF
mode red sideband with ωp =ω0−Ω0+δ. The response frequency is given relative to the bare HF cavity
mode ∆=ω−ω0. b Linecuts of a, showing the individually fitted parts of the response as orange and
purple. The top curve is plotted as measured (unshifted), subsequent curves are manually downshifted
by −5dB each for clarity. Shown is every second linescan of a. Fit curves are plotted as black lines.
From the fit curves shown in b, we get the three relevant normal-mode parameters resonance frequency
ω±, total decay rate κ± and external decay rate κe,±, plotted in c, d, and e, respectively.
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The work presented in this thesis consisted on developing and exploring two major
platforms, flux-mediated optomechanical systems and photon-pressure coupled systems.
In short, some of the main results of the work presented here are: the first experimen-
tal realization of flux-mediated microwave optomechanics (chapter 4), the implemen-
tation of a blue-detuned four-wave cooling technique in flux-mediated optomechanical
systems (chapter 5), bringing a photon-pressure system into the strong-coupling regime
(chapter 6) and ground-state cooling of a hot RF circuit via a photon-pressure interac-
tion (chapter 7).

The accomplishment of these results required numerous iterations of design, fab-
rication and testing of different devices. The fact that both of these systems relied on
a Superconducting Quantum Interference Cavity to act as a confinement of microwave
light fields made the task of simultaneously developing these two distinct platforms con-
siderably simpler. Nevertheless, the base of all the work presented in this thesis, which
relied on the successful development of nano-bridge SQUID cavities, was also the most
risky and the one which took the longest to complete.

As described in Chapter 3, the process of successfully fabricating nano-bridge Joseph-
son junctions was extensive and required many iterations until a working nanofabrica-
tion process was found. Nonetheless, the high reproducibility and robustness of these
junctions allowed us to easily include them in the subsequent device recipes and in-
corporate them in both platforms. Furthermore, once the fabrication steps were deter-
mined we could fabricate 2D SQUID cavities within a few hours and 3D SQUID cavities
in one working day. This gave us the possibility to do fast iterations and optimization of
optomechanical and photon-pressure systems until the desired system parameters were
reached, leading to the results presented in chapters 4, 5, 6 and 7.

Even though flux-mediated optomechanical systems and photon-pressure coupled sys-
tems have numerous resemblances when it comes to their operation principle, they pos-
sess incredibly distinct applications and both have great potential for advancing differ-
ent branches of the fields of microwave optomechanics and superconducting quantum
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technologies. Therefore. let us now focus on each platform individually and discuss their
applicability in more detail.

• Flux-mediated Optomechanical Systems: As theoretically discussed by the first
proposals for this coupling approach, the current state of art has proven that these
systems can indeed achieve single-photon coupling strengths orders of magni-
tude higher than capacitive optomechanical systems [71, 72, 162]. This platform is
therefore extremely promising for reaching the so pursued single-photon strong
coupling regime [63]. Achieving this milestone would unlock the door for the
generation of non-classical states in mechanical oscillators [63–66] and possibly
for the realization of a new type of superconducting qubits [67], where the non-
linearity would arise from the coupling to the mechanical element. Since mechan-
ical oscillators have considerably longer lifetimes compared to any superconduct-
ing qubit, the use of mechanical quantum states would be of extreme interest for
the scientific community and would represent major advances in quantum infor-
mation and sensing technologies. Furthermore, the generation of non-classical
states would ultimately allow for testing quantum collapse and quantum gravity
models by preparing Fock and Schröedinger cat states of massive mechanical os-
cillators [141, 142].

In addition to the utilization of SQUID cavities as linear systems, the results pre-
sented in chapter 5 show the exciting possibilities of incorporating non-linear SQUID
cavities in microwave optomechanical systems. Chapter 5 has shown that the
regime where a parametrically driven weakly-anharmonic cavity is coupled to me-
chanical resonator allows for new cooling schemes and new ways of controlling
mechanical motion.

From a technological point-of-view, the fact that the rate at which a single-photon
converts to a single-phonon can be tuned in-situ by increasing the in-plane mag-
netic field1 opens up an opportunity to maximize the optomechanical coupling
while minimizing the flux-noise coupled to the system. However, while Aluminum
SQUID cavities have been a very fruitful resource for exploring these systems, the
maximum coupling strengths one can achieve by increasing the in-plane field will
always be limited by the critical field of the material. Since for aluminum films this
is typically around 100mT [105], switching to Niobium films would push these lim-
its as their critical field is in the Tesla regime [153]. Furthermore, if one is purely
interested on building a system which maximizes the single-photon coupling rate,
reducing the screening parameter βL and therefore boosting the flux responsivity
of the cavity would be a crucial optimization point.

• Photon-pressure Systems: Adding an analogous of the radiation-pressure inter-
action to the field of superconducting circuits opens up endless possibilities for
both the field of optomechanics and for the field of circuit quantum electrodynam-
ics (cQED). On one hand, since photon-pressure coupled systems exhibit a large
flexibility in engineering resonance frequencies and quality factors, they have the

1The field applied parallel to the SQUID loop, in a configuration where the cavity is coupled to the out-of-plane
motion of the beam.
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potential for the exploration of many unusual parameter regimes and quantum
operations which are usually not accessible in optomechanical systems. On the
other hand, having this coupling at reach when engineering superconducting de-
vices would offer rich possibilities for quantum-limited sensing and quantum sig-
nal processing, such as quantum-limited parametric amplification [26, 82, 84–86],
nonreciprocal photon transport [87–90], slow light [183, 184] and photonic reser-
voir engineering [91, 92]. As shown in Chapter 7, by using a sideband cooling tech-
nique, this photon-pressure coupling was brought to the quantum regime for the
first time, making a first step towards radio-frequency quantum photonics. In ad-
dition, photon-pressure coupled circuits are also discussed as a promising plat-
form for the realization of fault-tolerant quantum computing using bosonic codes
[93].

Photon-pressure systems are an incredibly flexible platform which still remains
highly unexplored. This definitely stimulates one’s creativity for planing new ex-
periments without imposing additional technological barriers. For this reason, the
field of quantum technologies and microwave optomechanics will surely benefit
from such platform.
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