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ABSTRACT: Co-design of alternative fuels and future spark-ignition
(SI) engines allows very high engine efficiencies to be achieved. To
tailor the fuel’s molecular structure to the needs of SI engines with
very high compression ratios, computer-aided molecular design
(CAMD) of renewable fuels has received considerable attention
over the past decade. To date, CAMD for fuels is typically performed
by computationally screening the physicochemical properties of single
molecules against property targets. However, achievable SI engine
efficiency is the result of the combined effect of various fuel
properties, and molecules should not be discarded because of
individual unfavorable properties that can be compensated for.
Therefore, we present an optimization-based fuel design method
directly targeting SI engine efficiency as the objective function. Specifically, we employ an empirical model to assess the achievable
relative engine efficiency increase compared to conventional RON95 gasoline for each candidate fuel as a function of fuel properties.
For this purpose, we integrate the automated prediction of various fuel properties into the fuel design method: Thermodynamic
properties are calculated by COSMO-RS; combustion properties, indicators for environment, health and safety, and synthesizability
are predicted using machine learning models. The method is applied to design pure-component fuels and binary ethanol-containing
fuel blends. The optimal pure-component fuel tert-butyl formate is predicted to yield a relative efficiency increase of approximately
8% and the optimal fuel blend with ethanol and 3,4-dimethyl-3-propan-2-yl-1-pentene of 19%.

1. INTRODUCTION
The molecular structure of a fuel is a crucial degree of freedom
for sustainable mobility.1 This presents an opportunity to co-
optimize internal combustion engines and fuel. Engine
efficiencies can be increased significantly by increasing the
compression ration or turbo charging,2 as shown in laboratory
experiments.3−5 In advanced spark-ignition (SI) engine
concepts, the achievable engine efficiency strongly depends on
the autoignition tendency of the fuel�and thus the fuel’s
molecular structure or composition. Accordingly, alternative
fuels have been found to vastly outperform RON95 gasoline in
single-cylinder research engines.3−8 The molecular structure of
alternative, renewable fuels can be tailored in-silico by
computer-aided molecular design (CAMD) methods, repre-
senting a special case of product design.9,10 CAMD methods
combine molecule databases or molecular structure generation
with predictive models to assess the suitability of a candidate
molecule for a given application based on physicochemical and
thermodynamic properties.11,12 To date, fuels are usually
designed for individual physicochemical property targets as

surrogate measures for engine performance rather than the
expected engine efficiency itself.13

Some studies on fuel design rely on database screenings using
experimental data rather than models for property prediction:
McCormick et al.14 screened a database of approximately 500
potential biomass-based blendstocks and blends to identify
feasible gasoline blends. To assess the candidates, experimental
data were collected from various databases for physicochemical
properties, environment, health and safety indicators, and
corrosivity. Similarly, Fioroni et al.15 screened a database for
potential diesel blendstocks based on thermodynamic properties
and cetane numbers. Using the database created by Fioroni et
al.,15 Huo et al.16 and Huq et al.17 evaluated chemocatalytic
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conversion pathways from potential biobased platform chem-
icals to hydrocarbons targeting physicochemical and combus-
tion properties. Recently, Kuzhagaliyeva et al.18 published a
data-driven framework to design gasoline blends with tailored
properties from a database of fuel molecules.

To expand the molecular design space beyond molecules
contained in databases, generate-and-test approaches have been
developed. The idea of generate-and-test CAMD is to create
candidate structures first and assess their fuel properties
subsequently by predictive models. Hechinger19 employed the
structure generator MOLGEN20 and dedicated Quantitative
Structure−Property Relationship (QSPR) models to predict
physicochemical properties. The combustion performance of
the candidate molecules was not assessed by a model-based
approach but manually a posteriori because of limited training
data.21 Dahmen and Marquardt22 later extended the generate-
and-test approach by a group contribution method for the
derived cetane number23 to include combustion behavior. The
authors tailored the structure generation to model catalytic
refunctionalization of platform chemicals derived from
lignocellulosic biomass. This approach yielded a list of candidate
fuels that meet a range of fuel properties associated with high
engine efficiency and high synthesizability.22 Recently, Rittig et
al.24 employed generative graph machine learning models to
design molecules with maximum research octane number and
octane sensitivity.

Fuel design can also be formulated as a mathematical program
as proposed by Gani,25 which allows the use of deterministic
optimization techniques to tailor the molecular structure of a
fuel. The optimization-based approach was first applied to
determine the composition of biofuel blends of preselected
blend components respecting fuel standards26,27 and was later
extended to arbitrary components using a decomposed
optimization strategy.28 The integrated design of the molecular
structures and their optimal composition in a blend was finally
achieved by formulating and solving the blend design problem as
a mixed integer nonlinear program based on functional groups as
molecular building blocks.29−31

Optimization-based fuel design has attracted particular
attention in combination with the selection of optimal
conversion routes. Marvin et al.32 used a rule-based reaction
network generator to generate possible gasoline fuel compo-

nents and their production pathways. Based on the reaction
network, gasoline blends were optimized with respect to
production process performance constrained by fuel blend
properties. In contrast, Ng et al.33 designed biobased fuel blends
by first optimizing the properties of a blend and then solving a
superstructure optimization problem for an integrated biorefi-
nery. Dahmen and Marquardt34 combined blend design with
mass-based screening of processing pathways using experimen-
tal yields to obtain renewable fuel blends maximizing resource
efficiency. The method was extended by early stage process
design using process network flux analysis, allowing the
minimization of production cost and global warming impact
of the designed fuel blend.35 Subsequent engine testing of
selected blends34,36 has confirmed the superior engine perform-
ance compared to fossil gasoline.4,5

The studies mentioned above identified promising molecules
and blends based on a list of target properties. However, such a
fuel design does not consider the combined effect that the
individual properties exert on engine performance. To date, no
method has been proposed that explicitly designs fuels for
maximum engine efficiency.

To consider engine efficiency as an explicit design objective,
an engine model is required that predicts engine efficiency based
on the fuel’s physicochemical properties. Recently, two models
for spark-ignition (SI) engines were presented in the literature:
The first model is a zero-dimensional engine model,37 developed
to calculate a fuel’s maximum engine efficiency considering
knock limitation. The model has already been coupled with
reaction network analysis to find the optimal upgrading of lignin
pyrolysis oil.38 Moreover, the model has been applied to a
detailed performance evaluation of 50 preselected fuel
candidates.39 The second model is the engine efficiency merit
function,2,40 i.e., a correlation that predicts the relative engine
efficiency increase compared to a base fuel, e.g., RON 95
gasoline, based on fuel properties, such as research octane
number, octane sensitivity, and heat of vaporization. vom Lehn
et al.41 and Li et al.42 have used the merit function to rank
candidate fuels within database screenings. However, the
screening studies are limited to existing database molecules
and do not discover novel molecular structures.

In this work, we present an optimization-based method to
design fuels for advanced highly boosted spark-ignition engines

Figure 1. Fuel design via molecular optimization maximizing engine efficiency. Predictive quantum chemistry-based and machine learning-based
models are used to calculate the properties for engine efficiency evaluation and to verify constraints on technical requirements, chemical
synthesizability, and environment, health and safety hazards.
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with dedicated high compression ratios using the recently
developed engine efficiency merit function2,40 as an objective
function (Figure 1). We evaluate engine efficiency as well as
technical and practical feasibility of each candidate fuel by
combining quantum chemistry-based predictive thermodynam-
ics and machine learning models. For this purpose, we predict
thermodynamic equilibrium and combustion properties as well
as environment, health, and safety indicators and chemical
synthesizability. In particular, we use dedicated models for the
main determinants of SI engine fuel efficiency: research and
motor octane numbers, laminar burning velocity, and enthalpy
of vaporization. The capabilities of the method are demon-
strated in the design of pure-component fuels and components
of binary blends with ethanol.

The paper is structured as follows: In Section 2, the details of
the fuel design method are explained. We outline the prediction
models and methods and describe the fuel design constraints. In
Section 3, the fuel design method is applied to the design of
pure-component fuels (Section 3.1) and components of binary
blends with ethanol (Section 3.2). In Section 4, we summarize
our work and conclude with a brief outlook on future research.

2. FUEL DESIGN METHOD
Our fuel design method uses molecular optimization to maximize the
predicted achievable engine efficiency increase of a fuel combusted in
dedicated SI engines. Various constraints are imposed to design both
efficient and safe fuels. Specifically, we predict thermodynamic and
combustion properties as well as environmental, health, and safety
(EHS) indicators and synthesizability.

For thermodynamic properties, established models from the
literature use group contribution (GC)43 or quantum chemistry-
based methods,44 e.g., COSMO-RS.45 GC methods have also been
applied to predict EHS indicators of chemicals.46 Recently, advanced
machine learning-based methods, e.g., deep neural networks and

Bayesian regression, have progressed rapidly in the field of molecular
property prediction.47 Therefore, our fuel design method is based on a
hybrid approach for property prediction: Thermodynamic properties
are predicted using quantum chemistry-based COSMO-RS, and
combustion and EHS properties as well as synthesizability are predicted
using machine learning-based models.

Based on the predicted properties, each candidate fuel is evaluated
with the engine efficiency merit function. Both the property prediction
and the evaluation of the objective function and constraints are
integrated into a molecular optimization framework that is based on
COSMO-CAMD.48 COSMO-CAMD employs the genetic algorithm
LEA3D,49 which optimizes molecular structures using predefined 3D-
molecular fragments through evolutionary optimization, and COSMO-
RS for property prediction.45

The fuel design method involves five steps for candidate evaluation in
each generation of the genetic optimization (Figure 2):

1. Prediction of combustion properties
2. Prediction of thermodynamic properties
3. Prediction of EHS indicators and chemical synthesizability
4. Objective function evaluation
5. Constraints evaluation

Based on the fitness values (i.e., objective function values) of the
current generation of molecules, a next generation is created through
the genetic operations crossover and mutation. The method proceeds
to systematically explore the molecular design space until a predefined
maximum number of generations is met.

In the following subsections, we briefly explain each step in the fuel
design method. Details on the used soft- and hardware are included in
the Supporting Information. The Supporting Information also contains
the molecular fragments, which are specified as building blocks for the
genetic algorithm. In this work, we include fragments to design
oxygenated and nonoxygenated hydrocarbons.
2.1. Combustion Properties. Combustion properties that

substantially influence SI engine efficiency are the research and the
motor octane numbers (RON and MON), octane sensitivity (OS), as
well as the laminar burning velocity (LBV).2 We predict RON and

Figure 2. Fuel design method for maximum engine efficiency considering constraints on environment, health, and safety hazards, as well as
synthesizability. For molecular optimization of candidate fuels, property prediction and performance assessment are integrated into the genetic
algorithm LEA3D in five steps (1−5): prediction of combustion (1) and thermodynamic properties (2), and environment, health, and safety indicators
including synthesizability (3), evaluation of objective function f (4) and constraints g (5).
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MON with our graph neural network (GNN) by Schweidtmann et al.50

that was trained by simultaneous, so-called multitask learning on
training data of RON, MON, and derived cetane number (DCN) of
oxygenated and nonoxygenated hydrocarbons. By multitask learning, a
higher prediction accuracy is achieved compared to the accuracy of
single-task learning of the individual properties. The GNN directly uses
the molecular graph and thus eliminates the need for manual feature
selection. OS is calculated by subtracting MON from RON.51

The LBV is predicted with our group contribution (GC) based
artificial neural network (ANN) that uses the occurrences of predefined
structural groups in a molecule as input features.52 The structural
groups were originally proposed by Joback and Reid.53 The LBV not
only depends on the molecular structure but also on combustion
parameters, i.e., temperature, pressure, and the fuel-air equivalence
ratio, which are therefore additional inputs to the ANN. As suggested by
Farrell et al.,40 the LBV is evaluated for a stoichiometric mixture at
ambient pressure and 358 K. It should be noted that these conditions
differ from typical engine conditions. However, as Szybist et al.2 point
out, LBV measurements at engine-relevant conditions are associated
with high uncertainties.
2.2. Thermodynamic Properties. Thermodynamic properties are

predicted with COSMO-RS on the TZVP-MF level.45 The TZVP-MF
level offers a good balance between computational cost and accuracy for
CAMD applications.48 First, full geometry optimization by the
quantum chemical density functional theory (DFT) is performed for
each pure component based on its 3D-molecular structure, and the
screening charge density profiles (σ-surfaces) are calculated. The BP86
functional and a TZVP basis set are employed on semiempirically
generated conformers.45 The time-consuming DFT calculations only
need to be performed once for a molecule since the results are stored in
a local database for reuse, e.g., in the next generation. Based on the
interactions between the screening charges and statistical thermody-
namics, COSMO-RS computes many thermodynamic properties of
pure components and mixtures with low computational effort.

We use COSMO-RS to predict boiling/bubble points and enthalpies
of vaporization of pure components and mixtures. Furthermore,
melting points of pure components are available via a random forest-
based QSPR model trained on structural molecular information and the
σ-moment descriptors from COSMO-RS by Loschen and Klamt.54 For
fuel blends, COSMO-RS additionally calculates liquid−liquid-
equilibria to estimate immiscibility and phase segregation.
2.3. Environment, Health, and Safety Indicators and

Chemical Synthesizability. In addition to technical performance
and technical feasibility, the candidate fuel needs to be assessed with
regard to practical constraints as an optimally designed fuel should
allow for safe handling and minimum hazards to environment and
health.5 Therefore, we include the prediction of environment, health,
and safety (EHS) indicators to design nonhazardous fuels.
Furthermore, some computer-designed molecules are chemically
feasible but challenging or even impossible to synthesize in practice.55

To exclude such compounds, we include a preliminary assessment of
chemical synthesizability based on machine learning.
2.3.1. EHS Properties. Alshehri et al.56 recently presented models for

predicting various EHS indicators of pure components using group
contribution (GC) based Gaussian process regression (GPR). A similar
approach was presented by Li et al.57 for the prediction of sooting
tendencies. We follow the approaches by Alshehri et al.56 and Li et al.57

and consider the following EHS indicators through GC-based GPR
prediction as constraints for the fuel design:

• Autoignition temperature (AiT)58

• Bioconcentration factor (BCF)59

• Aqueous toxicity as a lethal concentration for fathead minnow
fish (LC50(FM))60

• Oral toxicity as lethal dose for rats (LD50)61

• Permissible exposure limit using the OSHA time-weighted
average (PELOSHA‑TWA)62

• Chemical tendency to form soot expressed through the unified
yield sooting index (uYSI)63

For integration in the fuel design method, the models by Alshehri et
al.56 for AiT, BCF, LC50(FM), LD50, and PELOSHA‑TWA are retrained
using UNIFAC groups as descriptors and the training and test data from
Alshehri et al.56 The uYSI model is developed using the data from
McEnally et al.64 Note that the uYSI does not predict engine-out soot
emissions but rather the chemical tendency of a fuel to form soot. A
more practical measure for engine-out soot emissions would be the
Particulate Matter Index (PMI),65 where the number of double bond
equivalents as a proxy for the chemical tendency to form soot is divided
by the vapor pressure as a measure for in-cylinder mixture formation
quality. However, the different oxygenate functionalities of alternative
fuels are differently effective in reducing soot formation.66 Accordingly,
comparing different soot indices, Leach et al.67 found that the
correlation between the number of double-bound equivalents and
uYSI is stronger for hydrocarbon fuels than for oxygenated fuels.
Unfortunately, no model is available for predicting nano soot number
density, which is becoming more important in regulations.68

For the setup and accuracy assessment of the models, the training
data for each model is split into a set for training and testing.69 The test
set contains approximately 10% of the training data and is not used
within the training to assess the accuracy of the model on unseen data.
The data are split so that the statistical distribution of the features in the
test and training sets are similar.69 A test set with a statistical
distribution similar to the training set represents the model domain well
and thus reflects model performance across the whole domain rather
than just in a particular region. For this purpose, 10,000 random splits
are performed, and the split with the lowest Kullback−Leibler
divergence70 is chosen, indicating the most similar and uniform
statistical distribution between the training and test sets.

The models are set up by fragmenting the molecules contained in the
training data into UNIFAC groups using the automated fragmentation
tool by Müller.71 The kernels for the GPR of each model are selected by
employing the automated kernel-search algorithm developed by
Duvenaud et al.,72 Duvenaud,73 and Lloyd et al.74

The models achieve an accuracy comparable to the models in the
literature46,56 (see Table 1). The accuracy of the predictions on the test

sets measured by the coefficient of determination (R2) equals on
average R2 = 0.73. The corresponding root-mean-square error
normalized by the range of values (nRMSE) is nRMSE = 8.5%. Parity
plots of predicted and target values of the test sets visualizing prediction
accuracy can be found in the Supporting Information.
2.3.2. Chemical Synthesizability. By assembling molecular frag-

ments, the LEA3D algorithm generates molecules that always satisfy
chemical feasibility, i.e., the octet rule. However, a chemically feasible
molecule is not necessarily similar to known molecules and may

Table 1. Data Set Sizes NTrain and NTest and Prediction
Accuracies on the Test Sets of the EHS Indicators Using
Group Contribution-Based GPR Models for the Categories
Autoignition Temperature (AiT), Bioconcentration Factor
(BCF), Aqueous Toxicity of Fathead Minnow Fish
(LC50(FM)), Oral Rat Toxicity (LD50), Permissible Exposure
Limit (PELOSHA‑TWA), and Unified Yield Sooting Index
(uYSI)a

EHS indicator NTrain NTest Rtest
2 RMSEtest

nRMSEtest
(%)

AiT 487 54 0.78 58 K 6.4
log(BCF) 366 41 0.78 0.69 11
−log(LC50(FM)) 490 54 0.66 0.75 8.6
−log(LD50) 2157 240 0.58 0.40 9.1
−log(PELOSHA‑TWA) 346 38 0.60 1.1 13
uYSI 397 44 0.99 39 2.9
average performance - - 0.73 - 8.5
aThe accuracy is measured by the coefficient of determination (R2),
the root-mean-square error (RMSE), and the root-mean-square error
normalized by the range of values (nRMSE).

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.2c03296
Energy Fuels 2023, 37, 2213−2229

2216

https://pubs.acs.org/doi/suppl/10.1021/acs.energyfuels.2c03296/suppl_file/ef2c03296_si_001.pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c03296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


therefore be technologically challenging to obtain, i.e., hardly
synthesizable or only synthesizable with considerable effort via
numerous synthesis steps.

The chemical synthesizability of candidate molecules can be assessed
through retrosynthesis algorithms,55 which generate synthesis routes
for a given product and thus allow an investigation into whether and
how a chemical can be readily synthesized. Various retrosynthesis
models have been developed in the past.75 For the fuel design method,
we employ a graph exploration algorithm for retrosynthesis developed
by Schwaller et al.76 The algorithm is based on the molecular
transformer, a multihead attention-based neural network model for
forward synthesis prediction with high accuracy.77

In this work, we consider a fuel synthesizable if a maximum of three
subsequent reactions are required from commercially available
reactants to the desired fuel. Otherwise, the synthesis route is deemed
too costly to be viable. Moreover, the confidence of the retrosynthesis
algorithm in the synthesis route has to be greater than 50%.

Our definition of chemical synthesizability discards candidate fuels
for which efficient synthesis routes are likely unknown. However, we
note that our assessment of synthesizability does not ensure that the
molecules considered synthesizable can be produced in large quantities,
at low cost, or from renewable resources, which should also be a design
target for a novel fuel but cannot yet be predicted.
2.4. Engine Efficiency Merit Function as an Objective

Function. Various fuel properties can have a positive impact on
achievable SI engine efficiency, including RON, OS, Δhvap, and LBV.2,40

Alternative fuels can exhibit favorable values in one or more of these
properties. To evaluate the potential of an alternative fuel candidate for
use in advanced highly boosted SI engines, the impact of these fuel
properties on efficiency has been empirically quantified through
experimental sensitivity analyses under stoichiometric boosted
combustion conditions, resulting in the so-called engine ef f iciency
merit function.2,40 The merit function linearly correlates the fuel
properties with the achievable improvement in maximum brake thermal
engine efficiency (η) compared to a reference fuel, e.g., RON95
gasoline.

Using the merit function, we calculate the expected relative engine
efficiency increase of a candidate fuel based on RON, MON, Δhvap, and
LBV compared to RON95 gasoline:2,40

Each term in the merit function reflects an empirically found
linear influence on maximum engine efficiency:2,40 the influence
of octane number, octane sensitivity, effective octane rating,
charge cooling, and laminar burning velocity. The reference
values for RON, MON, and Δhvap are taken from Leitner et al.1

(Table 2). Lacking a value for LBV from Leitner et al.,1 we use
the LBV of a commercial RON95 measured by Dirrenberger et

al.78 as a reference value (Table 2). The stoichiometric air-to-
fuel ratio of each candidate fuel is denoted by AFR, and the
parameter K is a normalized value describing the engine’s
operating conditions relative to those of the RON and MON
tests, i.e., KRON = 0 and KMON = 1, respectively.51

Since the K value depends on engine operating conditions, selecting
a single, representative value for our screening is difficult. For modern
downsized, turbocharged SI engines, the K parameter is usually
negative.79−81 Kassai et al.80 determined values in a single-cylinder
research engine with a moderate compression ratio of 10.5 between
−0.1 and −1.9, with K being the lowest at high intake pressure and low
engine speed. Since we aim at fuels for engines with higher compression
ratios (e.g., 16.4 in our recent work5), we pragmatically choseK = −1.5.
In the results section, we also analyze how the choice of the K value
affects the predicted efficiency gains.
2.5. Property Constraints. The candidate fuels need to meet

several thermodynamic, environmental, and practical requirements that
are formulated as design constraints (Table 3). The constraints on
thermodynamic properties are taken from a previous design study by
Dahmen and Marquardt.22 The normal boiling and melting points of
the candidate fuels are constrained to ensure that the fuel is liquid at
ambient conditions. Additional constraints on the maximum boiling
point and the maximum enthalpy of vaporization ensure sufficient
volatility and, thus, proper in-cylinder mixture formation under cold
conditions. If the boiling point or the enthalpy of vaporization of a
candidate fuel is too high, the candidate fuel may not completely
evaporate under cold conditions but dissolve in the engine oil
potentially causing engine failure due to oil dilution.82−84 Note that
today’s fossil fuel standards use the Reid vapor pressure and
characteristic points on the distillation curve to address cold start
issues and neglect the enthalpy of vaporization.85,86 However, studies
on pure alcohol fuels such as ethanol, 1-butanol, and 2-butanol have
linked high enthalpies of vaporization to higher pollutant formation87,88

and excessive oil dilution.84 Further research is needed to better define
appropriate upper limits on the boiling point and enthalpy of
vaporization in the case of pure-component alternative fuels.

The candidate fuels’ EHS indicators are constrained to ensure that
the candidate fuels are less hazardous than RON95 gasoline with
respect to AiT, LC50(FM), LD50, and PELOSHA‑TWA. For BCF,
candidate fuels must not be bioaccumulative, i.e., log(BCF) < 3.3
according to Arnot and Gobas.59 The sooting tendency expressed
through the uYSI is not restricted by regulations or policy but should be
as small as possible for clean and efficient combustion.2 A strict upper
bound is difficult to define. In this work, the uYSI value of n-hexane is
considered acceptable and therefore chosen as an upper bound.

Since the EHS indicators are predicted with Gaussian Process
Regression (GPR), predicted values are provided with uncertainty
quantification. This prediction uncertainty is considered in chance
constraints to minimize the number of incorrectly discarded fuel
candidates. Candidate fuels are only discarded if a property’s 95%
confidence interval violates a constraint, i.e., if a constraint’s lower
bound lb > Ωmax = Ω + 1.96·σΩ, or if a constraint’s upper bound ub <
Ωmin = Ω − 1.96·σΩ, where Ω is the considered property and σΩ is the
property’s prediction uncertainty.
2.6. Evaluation of Mixture Properties. For the design of binary

blends with ethanol (cf. Section 3.2), mixture properties have to be
predicted. Mixture bubble points and mixture enthalpies of vapor-
ization are calculated considering nonideal thermodynamic behavior
using COSMO-RS. The prediction of nonideal behavior is a particular
strength of COSMO-RS. Pragmatically, we constrain the bubble point
temperature of the mixture to the same value (120 °C) as the normal
boiling point used in the pure-component design. Note that mixtures of
components with strongly different evaporation characteristics may
exhibit preferential evaporation, with in-cylinder mixture inhomoge-
neity, potentially causing wall wetting and oil dilution.90−92

Consideration of preferential evaporation effects is, however, beyond
the scope of this work. With the given data-driven models, the nonideal
mixture behavior for the combustion properties and EHS indicators

Table 2. Reference Values for RON95 Gasoline Used in the
Engine Efficiency Merit Function

property reference value reference

RONref 96 Leitner et al.1

MONref 85 Leitner et al.1

Δhvap,ref 350 kJ kg−1 Leitner et al.1

AFRref 14 Leitner et al.1

LBVref 48 cm s−1 Dirrenberger et al.78
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cannot be predicted. In the absence of more accurate, nonlinear models,
we use a linear molar mixing rule for these mixture properties:

x
i

n

i iblend
1

=
= (2)

In this equation, Ωi stands for the predicted pure-component
properties, and xi is the mole fraction of component i in the blend.
The mixture property is denoted by Ωblend.

For combustion properties, the linear molar mixing rule approx-
imates nonideal behavior more accurately than, e.g., a linear liquid
volume-based mixing rule, in particular for blends with ethanol.41 For
the EHS indicators, the linear molar mixing rule is in line with previous
blend design studies,28,29 following the concept of dose addition for
toxicity (LC50(FM), LD50)93 and exposure hazards (PELOSHA‑TWA).94

3. DESIGN OF PURE FUELS AND FUEL BLENDS FOR
SPARK-IGNITION ENGINES

We apply the fuel design method to design (1) pure-component
fuels and (2) blend components for binary fuel blends with
ethanol.
3.1. Pure-Component Fuel Design. The fuel design

method is started twice with 50 generations and 40 candidate
molecules per generation to accommodate for the stochastic

nature of the approach. In total, the method investigates 1,033
unique molecules in approximately 3 days and 9 h in parallel on
24 computer cores (see Supporting Information for details on
the hardware). Of these 1,033 unique molecules, 22 are
candidate fuels that fulfill all constraints (Figure 3). Eleven
candidate fuels outperform the benchmark RON95 gasoline in
predicted engine efficiency (Table 4). As the optimal fuel, we
identify tert-butyl formate with a predicted increase in engine
efficiency of approximately 7.9%, followed by ethyl acetate
(3.8%), isopropyl formate (3.7%), and vinyl propionate (3.6%).
The remaining 6 candidate fuels increasing engine efficiency
achieve only minor improvements in predicted engine efficiency
between 1% and 3.3%.

From the 22 identified candidate fuels, 14 candidate fuels have
been considered in the database screening by vom Lehn et al.41

that relied on experimental property data. We use this
experimental data to recalculate the relative engine efficiency
increase and compare the results with the predicted relative
engine efficiency increase. The mean absolute error (MAE) of
the predicted engine efficiency increase is only 2.2%, indicating
an accurate assessment by the fuel design method (cf. Figure 3).
However, 12 of these 14 candidate fuels were also included in
the training data set of the GNN that contributes RON and

Table 3. Property Constraints for the Fuel Design Used in This Worka

property constraint reason reference

Tmelt Tmelt ≤ −20 °C liquid fuel Dahmen and Marquardt22

Tboil/bubble Tboil/bubble≥ 60 °C liquid fuel Dahmen and Marquardt22

Tboil/bubble≤ 120 °C in-cylinder mixture formation Dahmen and Marquardt22

Δhvap Δhvap ≤ 60kJ kgair
−1 in-cylinder mixture formation Dahmen and Marquardt22

AiT AiT ≥553.15 °C RON95 gasoline value BP Europa89

BCF log(BCF) ≤ 3.3 REACH administrative Arnot and Gobas59

LC50(FM) −log(LC50(FM)) ≤ 4 RON95 gasoline value BP Europa89

LD50 −log(LD50) ≤ 1.3 RON95 gasoline value BP Europa89

PELOSHA‑TWA −log(PELOSHA‑TWA) ≤ 1.96 RON95 gasoline value BP Europa89

uYSI uYSI ≤ 30 n-hexane value Das et al.63

aTmelt: melting point temperature; Tboil/bubble: boiling/bubble point temperature; Δhvap: enthalpy of vaporization; AiT: autoignition temperature;
BCF: bioconcentration factor; LC50(FM): aqueous toxicity of fathead minnow fish; LD50: oral rat toxicity; PELOSHA‑TWA: permissible exposure
limit; uYSI: unified yield sooting index.

Figure 3. Predicted relative engine efficiency increase for the pure-component design. The blue circles represent the model predictions for the 22
candidate fuels. The orange squares and asterisks are calculated using experimental values for RON, MON, and Δhvap. The experimental values of the
molecules marked with asterisks were not used for training of the GNN.
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MON values to the engine efficiency assessment,50 leading to a
high prediction accuracy of these candidates. Nevertheless, the
MAE for 3-methyl-2-butanone and isopropyl acetate, which
were not included in the training data set, is comparable with
MAE = 2.8% to the MAE of the training data (MAEtrain = 2.1%),
indicating generalizability beyond the training data of the GNN.

Using the experimental data, 1-butanol (rank 7, meritexp =
6.8%), 3-methyl-2-butanone (rank 8, meritexp = 5.1%), and
isopropyl acetate (rank 11,meritexp = 4.6%) are highly promising
candidate fuels achieving higher engine efficiency according to

the engine efficiency merit function than predicted during the
design. Thus, the fuel design method suggests promising
candidate fuels. Still, the final ranking requires subsequent
experimental verification.

In contrast to the present study, vom Lehn et al.41 identified
methanol, methyl formate, and ethanol as the highest-ranking
candidate fuels. However, under the constraints of the present
study, methanol and ethanol exceed the maximum permissible
heat of vaporization with predicted values of 214 kJ kgair

−1

(experimental95 183 kJ kgair
−1) and 106 kJ kgair

−1 (experimental95

Table 4. Details on the Pure-Component Fuel Design for the 11 Candidate Fuels Predicted to Exceed the Engine Efficiency of
RON95 Gasoline
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93 kJ kgair
−1), respectively. Methyl formate violates the lower

bound on the boiling point with a predicted boiling temperature
of 38 °C (experimental95 32 °C). Formates with longer alkyl
chains and higher boiling points have been identified as
promising pure-component fuels in the present study as well
as other esters. In particular, ethyl acetate and isopropyl acetate
are suggested as pure-component fuels by the present study,
vom Lehn et al.,41 and Dahmen and Marquardt.22 Moreover, 3-
methyl-2-pentanone and 2-pentanone have been proposed by
Dahmen and Marquardt22 as blend candidates with moderate
knock resistance, which is confirmed by the predicted moderate
pure-component relative engine efficiency increase found in the
present study (3.2% and 2.0%, respectively). 1-Butanol and its
isomers have also been studied in the literature as 1-butanol has
similar knock resistance to RON95 and is known to fulfill the
property constraints for an SI fuel.22 The fuel design in this work
is thus confirmed by findings from the literature but also yields
additional candidate fuels that have not yet been investigated.
3.1.1. Influence of Property Constraints on Optimal Fuel

Candidates. In the design of pure-component fuels for SI
engines, the tight property constraints drastically limits the
number of candidate molecules, as also discovered by Dahmen
and Marquardt.22 In the present study, 1011 of 1033 candidates
are already discarded before the engine efficiency evaluation due
to constraint violation (Figure 4). The most selective constraint
is the constraint on the boiling point, which is also enforced first:
960 of 1011 excluded candidate fuels violate the constraint, with
929 of 960 candidates exceeding the maximum boiling point.
The subsequently applied constraints on melting point, enthalpy
of vaporization, EHS indicators, and synthesizability discard
additional 6, 7, 36, and 2 molecules, respectively. The majority of
candidate molecules not only violate the boiling point constraint
but also the melting point temperature, EHS, or synthesizability
constraints (gray numbers in Figure 4).

We relax the constraints on boiling point and enthalpy of
vaporization to investigate whether technical advances in engine
design could substantially increase the number of feasible
candidate fuels. A relaxation of the constraints on Tboil and Δhvap
by 10 K and 10 kJ kgair

−1 compared to the original values (cf. Table
3) yields three additional fuel candidates: propen-2-ol (relative
engine efficiency increase 12%, Δhvap = 69 kJ kgair

−1), 2-propanol
(relative engine efficiency increase 10%, Δhvap = 69 kJ kgair

−1), and
2-hydroxy-2-methylpropanal (relative engine efficiency increase
8.5%, Tboil = 120.2 °C). Further relaxation of the constraints by
10 K and 10 kJ kgair

−1 to 140 °C and 80 kJ kgair
−1, respectively,

additionally yields 1-propanol (relative engine efficiency
increase 12%, %, Δhvap = 72 kJ kgair

−1).

Moreover, various highly branched alkenes and alkanes are
designed under the relaxed property constraints, e.g., 3,3,4-
trimethyl-1-pentene, 4,4,5-trimethyl-1-hexene, or 2,3,3,4-tetra-
methylpentane. The designed highly branched alkenes and
alkanes are predicted to exhibit high RONs (104−110) and high
octane sensitivities (12−16), leading to predicted relative engine
efficiency increases between 8.5% and 11%. However, high uYSI
values (74−84) are predicted for these molecules, which are
only considered fuel candidates by the algorithm as their 95%
confidence intervals reach below the threshold value of uYSI =
30. Since highly branched alkenes and alkanes are known to
cause soot formation, the actual values of the corresponding
molecules are likely in the area of uYSI = 70−80, as also
suggested by the online uYSI estimator by St. John et al.96

In conclusion, pure-component fuel design for high-efficiency
SI engines is extremely challenging as it yields only a limited
number of candidates. Moreover, relaxations in property
constraints only result in a few additional candidate fuels.
3.2. Design of Binary Blends with Ethanol. Unfavorable

properties of individual molecules can often be balanced by
blending.34−36 Therefore, in fuel design, blending constitutes an
additional degree of freedom that can be used to broaden the
number of candidate fuels. In this section, we apply the fuel
design method to binary blends with ethanol.

Ethanol is an established blend component for commercial
fuels.1 It is known for its excellent knock resistance (high RON)
and its high enthalpy of vaporization that provides a charge
cooling effect. Both properties increase engine efficiency,97

leading to a predicted relative engine efficiency increase by the
merit function of 25%. However, as a pure-component fuel,
ethanol is troublesome as its high enthalpy of vaporization (cf.
Section 3.1) can lead to oil dilution under cold conditions.82−84

Therefore, ethanol is a suitable base component for a blend due
to its favorable combustion properties but must be balanced
with a tailor-made secondary component.

For the purpose of blend design, we optimize both the
molecular structure and the molar fraction of the candidate
blend component in a binary blend with ethanol. We run the fuel
design method twice for 50 generations with 40 candidate
molecules per generation. In total, the method investigates 1,310
unique blends in 9 days and 20 h in parallel on 24 computer
cores (see Supporting Information for details on the hardware).
From these unique blends, 226 fulfill the property constraints
and are thus candidate fuel blends (see Supporting Information
for details). 184 candidate fuel blends lead to a positive merit
function value indicating a relative engine efficiency increase
compared to RON95 gasoline (Figure 5). Compared to the

Figure 4. Influence of property constraints on the number of candidate fuels in the pure-component fuel design. The gray numbers in brackets are the
total number of candidate fuels violating the corresponding constraint if not already discarded by previously applied constraints.
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optimal pure-component fuel tert-butyl formate, 136 fuel blends
yield a higher engine efficiency. Therefore, as Figures 4 and 5
demonstrate, the design space for fuel blends is much larger than
the design space for pure-component fuels and offers many more
possibilities for increasing engine efficiency.

The optimal fuel blend with ethanol is obtained with 3,4-
dimethyl-3-propan-2-yl-1-pentene, a highly branched alkene.
The relative engine efficiency increase of this optimal blend is
predicted to be 19.5% (Table 5). The majority of the blend is
composed of ethanol (83 mol %) and only 17 mol % of 3,4-
dimethyl-3-propan-2-yl-1-pentene. The blends with the second
and third highest engine efficiency increases are formed with 22
mol % 3,3,4-trimethyl-1-pentene, and with 16 mol % 4,5-
dimethyl-4-propan-2-yl-1-hexene, again highly branched al-
kenes predicted to relatively increase engine efficiency by
approximately 19.3%.

The top candidates combine a high RON (104−107) and a
high octane sensitivity (15−16), as this combination is known to
enable high engine efficiency in modern highly boosted
engines.80 We observe that alkenes are generally high-ranking
blend components: 18 of the top 50 candidate blends are formed
with an alkene and 1 with an alkadiene. The positive effect of the
vinyl groups on engine efficiency is known from the literature.41

The top 3 blend components are not suitable as pure-
component fuels, e.g., due to constraint violations on boiling
point, toxicity, or soot formation. Since the top 3 candidates are
large alkenes (C8−C11), they have high boiling points of 129
°C, 91 °C, and 145 °C, and high sooting tendencies as evident by
predicted uYSI values of between 75 and 107. Moreover, the
components are highly toxic to aqueous organisms as indicated
by a predicted −log(LC50(FM)) = 4.0−4.8 and potentially have
a low exposure limit (predicted −log(PELOSHA‑TWA) = 3.3−3.5).

Figure 5. Predicted relative engine efficiency increase for the 184 binary
blends with ethanol. The blue circles represent the predictions from the
predictive models. The orange diamonds are the predicted blend
RONs.

Table 5. Blend Design Results: The Three Highest-Ranking Candidate Blend Components, the Highest-Ranking Commercially
Available Blend Components, and the Optimal Pure-Component Fuel tert-Butyl Formatea

aThe predicted pure-component relative engine efficiency increase is calculated to show the effect of blend design. Note that except for tert-butyl
formate, the components do not satisfy all property constraints as pure components.
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In a blend with ethanol, ethanol is predicted to compensate for
these properties, while the low enthalpies of vaporization of the
top blend components (18−21 kJ kgair

−1) help to mitigate
ethanol’s high enthalpy of vaporization.

The top 3 blend components are synthesizable as indicated by
retrosynthesis through 1 or 2 reactions from commercially
available components. However, they are currently not
commercially available themselves as determined by database
searches. The highest-ranking commercially available compo-
nent is 3,3-dimethyl-1-pentene on rank 8. An optimized blend of
26 mol % 3,3-dimethyl-1-pentene and 74 mol % ethanol
increases engine efficiency by approximately 18.6% compared to
RON95. Similar to the top 3 blend components, 3,3-dimethyl-1-
pentene has a high RON of 105 and an octane sensitivity of 15.
The predicted EHS indicators suggest similar toxicity (−log-
(LC50(FM)) = 3.8, − log(LD50)= 1.6) and permissible exposure
limit (−log(PELOSHA‑TWA) = 3.8), but lower soot formation
(uYSI = 57).

A commercially available alternative to 3,3-dimethyl-1-
pentene is 2,2,3-trimethylbutanal on rank 12. A blend of 28
mol % 2,2,3-trimethylbutanal and 72 mol % ethanol is predicted
to increase engine efficiency by 18%. Compared to 3,3-dimethyl-
1-pentene, 2,2,3-trimethylbutanal has the advantage of not
containing a vinyl group but instead contains an aldehyde group.
However, molecules with vinyl or aldehyde groups can both age
the fuel blend and reduce its stability due to polymerization98

and high reactivity.99 The highest-ranking commercially
available candidate blend component without a vinyl or
aldehyde group is 2,3,4-trimethylpentane on rank 25. A blend
of 21 mol % 2,3,4-trimethylpentane and 79 mol % ethanol is
predicted to increase engine efficiency by 17%. In comparison to
the top 3 and the high-ranking commercially available blend
components, the predicted EHS indicators of 2,3,4-trimethyl-
pentane suggest safer handling and use with a higher permissible
exposure limit (−log(PELOSHA‑TWA) = 1.9) and lower toxicity
(−log(LC50(FM)) = 3.6, − log(LD50) = 1.4). Therefore, 2,3,4-
trimethylpentane could be the most promising commercially
available blend component in this design, highlighting the
additional requirements for the practical selection of a promising
fuel besides engine efficiency.
3.2.1. Comparison between Ranking by RON and by

Engine Efficiency Increase. We challenge the blend design
maximizing the merit function of engine efficiency increase
(blue circles, Figure 5) with a blend design maximizing an
individual blend property, here, the RON of the blend (orange
diamonds, Figure 5). In general, the correlation between the
predicted engine efficiency increase of the blend and the RON of
the blend is strong, as evident by a Pearson’s correlation
coefficient of ρ = 0.96. The strong correlation is not surprising
since the RON is a key property determining engine efficiency
with the largest impact on the engine efficiency increase.
Consequently, a blend design maximizing RON would be
sufficient to identify many high-ranking candidate blends and
could discard low-ranking candidate blends.

However, the correlation becomes weak among the high-
ranking candidates in engine efficiency increase; e.g., for the
highest-ranking 50 candidate blends, the correlation coefficient
equals only ρ = 0.49. Only 2 of the top 10 blend components in
the RON maximization are among the top 10 blend components
in the engine efficiency maximization. Three of the top 10 blend
components in the RON maximization are not even among the
top 50 blend components in the engine efficiency maximization.

The blend component maximizing RON is the best pure-
component fuel tert-butyl formate. The pure-component RON
of tert-butyl formate (RON = 116) is higher than the RON of
ethanol (RON = 109). Since tert-butyl formate already meets
the property constraints as a pure component, ethanol neither
increases the blending RON nor contributes to fulfilling
constraints. Therefore, the “blend” maximizing RON does not
contain any ethanol and is equal to pure tert-butyl formate. Apart
from tert-butyl formate, 8 more “blends” would not contain
ethanol or reduce the ethanol fraction if optimized for RON.

Thus, focusing the optimization on a single characteristic
property, e.g., the blending RON, is insufficient for a ranking
which accurately reflects engine efficiency. The most promising
candidate blend components yield not only a high RON of the
blend but also balance octane sensitivity, heat of vaporization,
and laminar burning velocity. Therefore, CAMD and fuel design
should use an application-based objective function that
combines the effects of the individual properties.
3.2.2. Comparison between Pure-Component and Blend

Results. Of the 226 candidate blend components, 26 fulfill the
pure-component constraints. Ten of these candidates yield
positive engine efficiency increases as pure-component fuels and
thus are predicted to increase engine efficiency compared to
RON95 gasoline. Six of these candidates were not discovered in
the pure-component design. Particularly high-ranking are 2,2-
dimethylbutyraldehyde, isobutyraldehyde, and isovaleraldehyde
with predicted engine efficiency increases of 6.3%, 3.9%, and
3.6%, respectively. The additionally identified pure-component
candidates indicate that our pure-component molecular design
study is not exhaustive. For a more extensive list of candidates,
the method needs to be rerun, e.g., for more generations, or the
general solution strategy needs to be improved.

To compare the predicted relative engine efficiency increase
of the blends to that of the pure components, we calculate the
pure-component relative engine efficiency increase for all blend
components ignoring property constraint violations (Figure 6).
As evident by a correlation coefficient of ρ = 0.69, the pure-

Figure 6. Parity plot comparing pure-component and blend merit
function value of the candidate fuels. Each circle stands for one blend
component. The orange circles represent blend components that fulfill
the property constraints of the pure-component design as well. The
black line indicates equal efficiency increase as a pure substance and as a
blend component. The dashed gray lines represent the benchmark
engine efficiency of RON95.
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component engine efficiency increase is a good indicator of the
engine efficiency of the blend. High-ranking pure-component
fuels usually lead to high-ranking blends; e.g., 18 of the 25
components with the highest pure efficiency increases are
among the top 50 blend components. However, not all high-
ranking blend components necessarily have a high pure-
component efficiency increase: 19 of the top 50 blend
components are not among the top 50 pure components.
Thus, the effects of blending go beyond simple weighting of the
objective function.

Generally, all candidate fuel blends are predicted to achieve a
higher engine efficiency than the pure blend components if
optimization targets maximum engine efficiency increase. In
particular, even the optimal pure-component fuel tert-butyl
formate benefits from blending with ethanol, raising the
achievable relative engine efficiency increase to 16% for a
blend with 55 mol % ethanol. The optimal balance of molecular
properties also enables high-ranking blends for molecules with
low pure-component efficiency increases. For example, 4-ethyl-
4,5-dimethyl-1-hexene ranks 77th in the pure-component
ranking and improves to rank 17 in a blend with 82 mol %
ethanol through an increase in predicted engine efficiency from
−0.9% as a pure component to 18% in the fuel blend.

The increased engine efficiency of the blends compared to the
pure-component fuels is primarily attributed to the favorable
combustion properties of ethanol. Ethanol has the highest
predicted relative engine efficiency increase of the pure
components (25%). Therefore, only 18 of the 184 blend
components with a positive efficiency increase are blended with
ethanol at more than 50 mol %. The majority of blend
components act as enablers for ethanol since pure ethanol
violates the constraint on the heat of vaporization. For 179 of the
184 blends, the blend’s heat of vaporization matches the
constraint limit of 60 kJ kgair,λ = 1

−1 . Conversely, 144 of the 184
candidate blend components violate the maximum boiling
temperature as pure components but are feasible in the blend
through a reduction of the bubble point by ethanol. Thus,
blending allows us to meet the strict property constraints and
significantly enlarges the molecular design space. To fulfill fuel
property constraints for SI engines, blend design is therefore key.
3.2.3. Contribution of Fuel Properties to Expected Engine

Efficiency Increase. We examine the contributions of the fuel
properties to the predicted relative engine efficiency increase

(Figure 7). In the pure-component design, all top 10 candidates
show positive contributions from RON and Δhvap, while OS
always has a negative contribution (Figure 7, left). For most
candidates, the RON is the strongest contributor. The first five
candidates are esters, where both low OS and low LBV show
negative impacts on efficiency. For the seventh candidate, 1-
butanol, Δhvap has the biggest impact on efficiency.

For the binary ethanol blends, the picture looks markedly
different (cf. Figure 7, right): Here, all four properties (RON,
OS, Δhvap, and LBV) positively impact engine efficiency.
Ethanol having a large share in all designed blends is well-
known for its high RON, OS, Δhvap, and LBV.

As the relevance of OS for engine efficiency strongly depends
on theK value, we also plot the results for an alternative choice of
K = −0.5. Due to the linear contribution of the K value, the
predicted efficiency increase due to OS is simply divided by
three, lowering the total relative efficiency increase of the top
blend from 19.5% (K = −1.5) to 14.9% (K = −0.5). Note that
the choice for the K value also changes the ranking. Considering
the uncertainty of the K factor, the ranking should thus not be
considered as absolute. Instead, it seems appropriate to utilize
expert knowledge, e.g., on the potential for large-scale
production, to further prioritize among the vast number of
promising blend candidates.
3.2.4. Comparison between Engine Efficiency Increase and

Direct CO2 Emissions Caused As an Alternative Objective. An
optimal renewable fuel should not only lead to high engine
efficiency but ultimately must enable sustainable mobility with
low environmental impact, e.g., with low CO2 emissions.
Therefore, for each candidate blend, we calculate the direct
CO2 emissions generated by driving 100 km, based on the
maximum engine efficiency. We compare the CO2 emissions of
the blends to the CO2 emissions of RON95 gasoline, assuming a
fuel consumption of RON95 of 7 L/100 km. For the calculation,
we assume constant engine operation at the optimal operating
point achieving maximum engine efficiency. Although this
assumption limits the significance for practical implementation
because no full driving cycle is considered, we can investigate
whether the maximization of engine efficiency also minimizes
direct CO2 emissions, which are additionally influenced by the
heating value and the amount of carbon of each fuel.

To calculate the CO2 emissions of the blends (ṁCOd2
), we

assume that the thermal engine efficiency increase of a fuel

Figure 7. Bar plots showing the contributions of fuel properties to expected relative engine efficiency increase for the top 10 pure-component fuels
(left) and top 10 binary blends with ethanol (right). In the right plot, the contributions are plotted for twoK values, −1.5 (left bar) and −0.5 (right bar),
highlighting the influence of the K value on the predicted engine efficiency increase.
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reduces the energy demand for the same engine power Pengine as
with RON95:

m
M
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N m
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M
N

m LHV

1
1
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blend
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CO
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2

2

2

= · ·

= · ·
·

+
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(3)

In this equation, the mass-based fuel consumption of the
candidate blend and RON95 are denoted by ṁ. The molar mass
of the candidate blend and CO2 are denoted by M, and NC,blend
stands for the average number of carbon atoms per molecule in
the blend. The lower heating value of a fuel blend (LHVblend) is
calculated from linear mixing of the pure-component heating
values (eq 2). The pure components’ lower heating values are
calculated from the stoichiometric combustion reaction using
standard enthalpies of formation. The gas-phase standard
enthalpy of formation for each candidate fuel is predicted
from a GC-based GPR similar to the EHS hazards (see Section
2.3,NTrain = 697,NTest = 78, Accuracy:Rtest

2 = 1.00, RMSEtest = 16
kJ mol−1, nRMSEtest = 1.5%). More details and property data
used for RON95 can be found in the Supporting Information.

In total, 177 candidate blends with an increased engine
efficiency compared to RON95 (Figure 8) reduce the direct

CO2 emissions compared to RON95. The blend with the lowest
CO2 emissions (red upward-pointing triangle in Figure 8)
contains 19 mol % 2,3,3,4-tetramethyl-pentane and 81 mol %
ethanol and reduces the exhaust gas CO2 emissions compared to
RON95 by 19% to 12.9 kg CO2/100 km. 2,3,3,4-tetramethyl-
pentane also achieves one of the highest relative efficiency
increases with 19%, ranking fourth in engine efficiency increase.
The blend with the highest efficiency increase (orange
downward-pointing triangle in Figure 8) also reduces direct
CO2 emissions by approximately 19% to 13.0 kg CO2/100 km

and ranks third in CO2 emissions reduction. Generally, high
engine efficiency is closely aligned with lower direct CO2
emissions (ρ = −0.88). However, the energy and carbon
content of the fuel also significantly affect CO2 emissions. Thus,
a fuel design maximizing engine efficiency is not sufficient to
guarantee minimum direct CO2 emissions.

Besides the direct exhaust emissions of a vehicle, emissions
during the production of the blend are highly relevant for
environmental assessment.100 Therefore, a meaningful fuel
design with an environmental objective must include a ”well-
to-wheel” assessment.

4. CONCLUSION
We present a method for the molecular design of fuels and fuel
blends for future, dedicated spark-ignition engines with very
high compression ratios that uses an empirical model of engine
efficiency as the objective function. The molecular optimization
integrates the prediction of various properties to evaluate the
feasibility and expected engine efficiency of each candidate fuel.
Thermodynamic properties are calculated using COSMO-RS.
Combustion properties are predicted by a graph neural network
and a group contribution-based artificial neural network from
the literature. Constraints on environmental, health, and safety
indicators are assessed using Gaussian process regression.

The method is applied to design candidate fuels with high
spark-ignition engine efficiency in two case studies: (1) the
design of pure-component fuels and (2) the design of binary
blends with ethanol. The application highlights the challenge of
finding suitable pure-component fuels that meet all property
constraints. In our design, only 11 of the 1033 investigated
molecules fulfill the property constraints and increase predicted
engine efficiency compared to RON95 gasoline. As an optimal
pure-component fuel, we identify tert-butyl formate with a
predicted relative engine efficiency increase of 7.9%.

We extend the molecular design space by designing a two-
component fuel blend with ethanol. We identify 184 blend
components that exceed the engine efficiency of RON95. 136 of
the 184 candidate blends also exceed the predicted engine
efficiency of the best pure-component fuel tert-butyl formate,
highlighting the significant potential of blend design. As optimal
blend components, we identify highly branched alkenes
increasing engine efficiency by up to 19%. In most cases, the
designed blend component represents the minor constituent of
the blend but satisfies the property constraints to enable the
inclusion of a substantial amount of ethanol.

The fuel design method has successfully designed candidate
fuels that are known to increase engine efficiency from
experiments in the literature. However, for the less well-
known candidate fuels proposed by the method, the predicted
properties need to be confirmed. Furthermore, experimental
engine tests are required to confirm the predicted efficiency
increases.

In future work, the accuracy of the fuel design method should
be improved, since the uncertainties in the predictions are still
large for some properties. To increase the reliability and the
significance of the predictions, the prediction uncertainties have
already been considered for constraint evaluation and could be
extended to design under uncertainty. Moreover, accuracy can
be improved by integrating additional models accounting for
nonideal mixture behavior. The mixture property models except
for COSMO-RS are currently linear molar mixing rules, e.g., for
toxicity and RON. However, toxicity and RON are known to
frequently exhibit nonideal mixing behavior.41,101 Moreover, for

Figure 8. Direct CO2 emissions from fuel combustion compared to
predicted relative engine efficiency increase for each candidate blend.
The red upward-pointing triangle is the candidate blend with the lowest
direct CO2 emissions. The orange downward-pointing triangle is the
candidate blend with the highest predicted relative engine efficiency
increase. The dashed gray lines represent the benchmark engine
efficiency and emissions of RON95.
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the design of renewable fuels, e.g., produced from biomass and
carbon dioxide, the assessment of synthesizability should be
adapted to constrain the molecular design space to appropriate
processing pathways. To lower the market-entry barriers of
alternative fuels, blending with fossil gasoline to comply with
existing fuel standards could be considered already in the design
phase.

The integration of more accurate prediction of nonideal
mixture behavior needs to consider the overall computational
complexity of the method. In the presented fuel design method,
the computationally expensive DFT calculations required by
COSMO-RS limit the number of molecule evaluations and thus
the exploration of the molecular design space. To investigate
more molecules, a future method could employ a hierarchical
approach balancing exploration and accuracy, or employ
computationally efficient machine learning models also for
thermodynamics.102−104

Future work could also extend our design method to a higher
number of blend components or even optimize the number of
blend components as a design degree of freedom, since this work
showed the opportunities of blend design for spark-ignition
engine fuels.

Finally, to improve the engine efficiency assessment, a more
detailed engine model is desirable that considers a typical driving
cycle instead of a correlation of potential engine efficiency. A
detailed engine model would also eliminate the difficult task of
choosing a single, representative K factor. Ultimately, the model
for fuel assessment should consider not only the combustion of
the fuel but the emissions of the entire life cycle of the fuel
aiming at “well-to-wheel” optimization.
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■ NOMENCLATURE

Abbreviations
AFR = stoichiometric mass air-to-fuel ratio
AiT = autoignition temperature
ANN = artificial neural network
BCF = bioconcentration factor
CAMD = computer-aided molecular design
DCN = derived cetane number
DFT = density functional theory
EHS = environment, health, and safety
GC = group contribution
GNN = graph neural network
GPR = Gaussian process regression
LBV = laminar burning velocity
LC50 = aqueous toxicity as lethal concentration for fish
LD50 = oral toxicity as lethal dose for rats
LHV = lower heating value
MAE = mean absolute error
MON = motor octane number
(n)RMSE = (normalized) root-mean-square error
OS = octane sensitivity
PEL = permissible exposure limit
QSPR = quantitative structure−property relationship
RON = research octane number
SI = spark ignition
Tox = toxicity
uYSI = unified yield sooting index

Greek Symbols
Δhvap = enthalpy of vaporization
η = maximum brake thermal engine efficiency
Ω = general variable for properties

Latin Symbols
K = parameter describing an engine’s operating conditions
ṁ = mass flow
NTrain/Test = number of data points in training/test set
R2 = coefficient of determination
Tboil/bubble = boiling/bubble point temperature
xi = mole fraction
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