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A B S T R A C T

In nonparametric statistics, rate-optimal estimators typically balance bias and stochastic error.
The recent work on overparametrization raises the question whether rate-optimal estimators
exist that do not obey this trade-off. In this work we consider pointwise estimation in the
Gaussian white noise model with regression function 𝑓 in a class of 𝛽-Hölder smooth functions.
Let ’worst-case’ refer to the supremum over all functions 𝑓 in the Hölder class. It is shown that
any estimator with worst-case bias ≲ 𝑛−𝛽∕(2𝛽+1) =∶ 𝜓𝑛 must necessarily also have a worst-case
mean absolute deviation that is lower bounded by ≳ 𝜓𝑛. To derive the result, we establish
abstract inequalities relating the change of expectation for two probability measures to the
mean absolute deviation.

1. Motivation

Inspired by recent claims that overparametrization challenges the traditional view on the bias–variance trade-off, see for instance
(Belkin et al., 2019; Neal et al., 2018; Neal, 2019), we aim to quantify the extend to which the trade-off between bias and stochastic
error in nonparametric and highdimensional statistics is universal. The recent work (Derumigny and Schmidt-Hieber, 2023) derives
lower bounds for the bias–variance trade-off covering standard nonparametric and high-dimensional statistical models. In this work,
we take this one step further by deriving a universal lower bound for the trade-off between bias and mean absolute deviation. Such
universal lower bounds immediately translate into universal lower bounds for the bias–variance trade-off and are thus stronger.

Another motivation for our work is that for constructing confidence bands with small diameter in function estimation problems,
one needs to find an upper bound for the bias. The bias is hard to estimate from data, see e.g. Hall and Horowitz (2013). To obtain
a small confidence bands, it is therefore desirable to find rate-optimal estimators with negligible bias. Universal lower bounds on
the trade-off between bias and stochastic error can be a tool to show that this is impossible in the sense that decreasing the bias
necessarily increases the stochastic error.

2. Summary of previous work on universal lower bounds for the bias–variance trade-off

The previous work (Derumigny and Schmidt-Hieber, 2023) derives universal lower bounds for the bias–variance trade-off. For
nonparametric function estimation, evaluating an estimator either via the squared pointwise risk or the mean integrated squared
error, it is shown that there exists a universal bias–variance trade-off that also cannot be overcome by fitting overparametrized
models.

∗ Corresponding author.
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For estimation of a high-dimensional sparse vector in the Gaussian sequence model, the situation is different and the bias–
ariance trade-off does not always hold. Derumigny and Schmidt-Hieber (2023) shows that there are estimation problems driven by
he worst-case bias. While the convergence rate of the worst-case variance cannot be arbitrarily fast, it can be considerably faster
han the minimax estimation rate.

These lower bounds on the bias–variance trade-off rely on a number of abstract inequalities that all relate the variance to the
hanges that occur if expectations are taken with respect to different probability measures. To outline the idea, we recall one of these
hange of expectation inequalities that we modify later on. Let 𝑃 and 𝑄 be two probability distributions on the same measurable
pace. Denote by 𝐸𝑃 and Var𝑃 the expectation and variance with respect to 𝑃 and let 𝐸𝑄 and Var𝑄 be the expectation and variance
ith respect to 𝑄. The squared Hellinger distance is defined by 𝐻(𝑃 ,𝑄)2 ∶= 1

2 ∫ (
√

𝑝(𝜔)−
√

𝑞(𝜔))2 𝑑𝜈(𝜔) with 𝜈 a measure dominating
oth 𝑃 and 𝑄 and 𝑝, 𝑞 the respective 𝜈-densities of 𝑃 and 𝑄. It can be checked that the Hellinger distance does not depend on the

choice of 𝜈.

Lemma 2.1 (Lemma 2.1 in Derumigny and Schmidt-Hieber (2023)). For any random variable 𝑋,
(𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋])2

4 − 2𝐻2(𝑃 ,𝑄)

( 1
𝐻(𝑃 ,𝑄)

−𝐻(𝑃 ,𝑄)
)2

≤ Var𝑃 (𝑋) + Var𝑄(𝑋). (1)

To derive a lower bound on the bias–variance trade-off from such an inequality, consider a statistical model (𝑃𝜃 ∶ 𝜃 ∈ 𝛩) with
𝜃 the distribution of the data for parameter 𝜃 and 𝛩 ⊆ R the parameter space. Choosing two parameters 𝜃, 𝜃′ ∈ 𝛩, inequality (1)
hows that for any estimator 𝜃,

(𝐸𝜃[𝜃] − 𝐸𝜃′ [𝜃])2

4 − 2𝑟2(𝜃, 𝜃′)

( 1
𝑟(𝜃, 𝜃′)

− 𝑟(𝜃, 𝜃′)
)2

≤ Var𝜃
(

𝜃
)

+ Var𝜃′
(

𝜃
)

, (2)

with 𝑟(𝜃, 𝜃′) ∶= 𝐻(𝑃𝜃 , 𝑃𝜃′ ), 𝐸𝜃 ∶= 𝐸𝑃𝜃 , and Var𝜃 ∶= Var𝑃𝜃 . Introducing the bias Bias𝜃(𝜃) = 𝜃−𝐸𝜃[𝜃], one can now rewrite the difference
of the expectations as 𝐸𝜃[𝜃] −𝐸𝜃′ [𝜃] = 𝜃 − 𝜃′ −Bias𝜃(𝜃) +Bias𝜃′ (𝜃). If we assume that the bias is smaller than some value, say 𝐵, and
take the parameters 𝜃, 𝜃′ sufficiently far apart, such that |𝜃 − 𝜃′| ≥ 4𝐵, reverse triangle inequality yields |𝐸𝜃[𝜃] − 𝐸𝜃′ [𝜃]| ≥

1
2 |𝜃 − 𝜃

′
|

nd (2) becomes
1
4 (𝜃 − 𝜃

′)2

4 − 2𝑟2(𝜃, 𝜃′)

( 1
𝑟(𝜃, 𝜃′)

− 𝑟(𝜃, 𝜃′)
)2

≤ 2 sup
𝜃∈𝛩

Var𝜃
(

𝜃
)

.

The left hand side of this inequality does not depend on the estimator 𝜃 anymore. Therefore, this inequality provides us with a lower
bound on the worst-case variance of an arbitrary estimator.

While this applies to a one-dimensional parameter, the same procedure can immediately be extended to derive lower bounds
on the worst-case variance for pointwise estimation of a function value 𝑓 (𝑥0) in a nonparametric statistical model with unknown
regression function 𝑓 . As shown in Derumigny and Schmidt-Hieber (2023), one can extend these ideas moreover to derive lower
bounds for the integrated variance and for (high-dimensional) parameter vectors.

Rephrasing the argument leads moreover to lower bounds on the worst-case bias given an upper bound for the worst-case
variance. Taking a suitable asymptotics 𝜃′ → 𝜃 and imposing standard regularity conditions, it can be shown moreover that (2)
converges to the Cramér-Rao lower bound (Theorem A.4 in Derumigny and Schmidt-Hieber (2023)).

3. Lower bounds for bias-MAD trade-off

To measure the stochastic error of an estimator, a competitor of the variance is the mean absolute deviation (MAD). For a random
variable 𝑋, the MAD is defined as 𝐸

[

|𝑋 − 𝑢|
]

, where the centering point 𝑢 is either the mean or the median of 𝑋. If centered at the
mean, the MAD is upper bounded by

√

Var(𝑋), but compared to the variance, less weight is given to large outcomes of 𝑋. For a
statistical model (𝑃𝜃 ∶ 𝜃 ∈ 𝛩), the most natural extension seems therefore to study the trade-off between 𝑚(𝜃)− 𝜃 and 𝐸𝜃[|𝜃 − 𝑚(𝜃)|],

here again 𝑚(𝜃) is either the mean or the median of the estimator 𝜃 under 𝑃𝜃 .
The first result provides an abstract inequality that can be used to relate 𝑚(𝜃) − 𝜃 and 𝐸𝜃[|𝜃 − 𝑚(𝜃)|], for any centering 𝑚(𝜃). It

an be viewed as an analogue of (1).

emma 3.1. Let 𝑃 ,𝑄 be two probability distributions on the same measurable space and write 𝐸𝑃 , 𝐸𝑄 for the expectations with respect
o 𝑃 and 𝑄. Then for any random variable 𝑋 and any real numbers 𝑢, 𝑣, we have

1
5
(

1 −𝐻2(𝑃 ,𝑄)
)2
|𝑢 − 𝑣| ≤ 𝐸𝑃

[

|

|

|

𝑋 − 𝑢||
|

]

∨ 𝐸𝑄
[

|

|

|

𝑋 − 𝑣||
|

]

, (3)

Proof. Applying the triangle inequality and the Cauchy–Schwarz inequality, we have
(

1 −𝐻2(𝑃 ,𝑄)
)

|

|

|

𝑢 − 𝑣||
|

= ∫
|

|

|

𝑋(𝜔) − 𝑢 −𝑋(𝜔) + 𝑣||
|

√

𝑝(𝜔)𝑞(𝜔) 𝑑𝜈(𝜔)

≤ ∫
|

|

|

𝑋(𝜔) − 𝑢||
|

√

𝑝(𝜔)𝑞(𝜔) 𝑑𝜈(𝜔) + ∫
|

|

|

𝑋(𝜔) − 𝑣||
|

√

𝑝(𝜔)𝑞(𝜔) 𝑑𝜈(𝜔)

≤
√

𝐸
[

|

|𝑋 − 𝑢||
]

𝐸
[

|

|𝑋 − 𝑢||
]

+
√

𝐸
[

|

|𝑋 − 𝑣||
]

𝐸
[

|

|𝑋 − 𝑣||
]

.

(4)
2

𝑃
| |

𝑄
| |

𝑃
| |

𝑄
| |
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Bound 𝐸𝑄[|𝑋 − 𝑢|] ≤ 𝐸𝑄[|𝑋 − 𝑣|] + |𝑢 − 𝑣| and 𝐸𝑃 [|𝑋 − 𝑣|] ≤ 𝐸𝑃 [|𝑋 − 𝑢|] + |𝑢 − 𝑣|. With 𝑎 ∶= 𝐸𝑃 [|𝑋 − 𝑣|] ∨ 𝐸𝑄[|𝑋 − 𝑢|], 𝑏 ∶= |𝑢 − 𝑣|
nd 𝑑 ∶= 1−𝐻2(𝑃 ,𝑄), we then have 𝑑𝑏 ≤ 2

√

𝑎2 + 𝑎𝑏 or equivalently 𝑎2+𝑎𝑏−𝑑2𝑏2∕4 ≥ 0. Since 𝑎 ≥ 0, solving the quadratic equation
𝑎2 + 𝑎𝑏 − 𝑑2𝑏2∕4 = 0 in 𝑎 gives that 𝑎 ≥ 𝑏(

√

1 + 𝑑2 − 1)∕2. Since 0 ≤ 𝑑 ≤ 1, we also have that
√

1 + 𝑑2 − 1 ≥ 2𝑑2∕5, which can be
erified by adding one to both sides and squaring. Combining the last two inequalities gives finally the desired result 𝑎 ≥ 𝑏𝑑2∕5. □

The derived inequality does not directly follow from the triangle inequality |𝑢 − 𝑣| ≤ |𝑥 − 𝑢| + |𝑥 − 𝑣| as the expectations on
he right-hand side of (4) are taken with respect to different measures 𝑃 and 𝑄. Equality up to a constant multiple is attained if
(𝑃 ,𝑄) < 1 and 𝑋 = 𝑣 with probability 1.
An important special case of the previously derived inequality is

1
5
(

1 −𝐻2(𝑃 ,𝑄)
)2
|

|

|

𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]||
|

≤ 𝐸𝑃
[

|

|

|

𝑋 − 𝐸𝑃 [𝑋]||
|

]

∨ 𝐸𝑄
[

|

|

|

𝑋 − 𝐸𝑄[𝑋]||
|

]

. (5)

et us now compare this to the change of expectation inequalities involving the variance in the regime where the measures 𝑃 and
are close. As mentioned above, 𝐸𝑃 [|𝑋 − 𝐸𝑃 [𝑋]|] ≤

√

Var𝑃 (𝑋). Moreover, 𝐸𝑃 [|𝑋 − 𝐸𝑃 [𝑋]|] and
√

Var 𝑃 (𝑋) are typically of the
ame magnitude. The Hellinger lower bound for the variance (1) is

1
√

4 − 2𝐻2(𝑃 ,𝑄)
(1 −𝐻2(𝑃 ,𝑄))

|𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]|
𝐻(𝑃 ,𝑄)

≤
√

Var𝑃 (𝑋) + Var𝑄(𝑋).

ompared to (5), the variance lower bound also includes a term 𝐻(𝑃 ,𝑄)−1 on the left hand side that improves the inequality
f the distributions 𝑃 and 𝑄 are close. The next result shows that improving in this regime the inequality (5) requires that the
ikelihood ratio is uniformly close to one. This is much stronger. For instance if 𝑃𝜃 denotes the distribution of  (𝜃, 1), then,

(𝑃𝜃 , 𝑃𝜃′ ) = 1 − 𝑒−
1
8 (𝜃−𝜃

′)2 , and 𝐻(𝑃𝜃 , 𝑃𝜃′ ) → 0 if 𝜃 − 𝜃′ → 0. However, the likelihood ratio 𝑑𝑃𝜃∕𝑑𝑃𝜃′ is unbounded whenever
≠ 𝜃′.

emma 3.2. Define 0∕0 as 0. If 𝑝 and 𝑞 are the respective 𝜈-densities of 𝑃 and 𝑄, then

1 −𝐻2(𝑃 ,𝑄)
‖

𝑝−𝑞
𝑝∧𝑞 ‖𝐿∞

|

|

|

𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]||
|

≤ 𝐸𝑃
[

|

|

|

𝑋 − 𝐸𝑃 [𝑋]||
|

]

∨ 𝐸𝑄
[

|

|

|

𝑋 − 𝐸𝑄[𝑋]||
|

]

. (6)

oreover, if 𝑃 ,𝑄 are defined on a finite probability space, then there exists a random variable 𝑋∗, such that

𝐸𝑃
[

|

|

|

𝑋∗ − 𝐸𝑃 [𝑋∗]||
|

]

∨ 𝐸𝑄
[

|

|

|

𝑋∗ − 𝐸𝑄[𝑋∗]||
|

]

≤ 1
‖

𝑝−𝑞
𝑝∨𝑞 ‖𝐿∞

|

|

|

𝐸𝑃 [𝑋∗] − 𝐸𝑄[𝑋∗]||
|

. (7)

roof. Using that ∫ (𝑋(𝜔) − 𝐸𝑃 [𝑋])𝑝(𝜔) 𝑑𝜈(𝜔) = 0 and ∫ (𝑋(𝜔) − 𝐸𝑄[𝑋])𝑞(𝜔) 𝑑𝜈(𝜔) = 0, we have the identity

∫
√

𝑝(𝜔)𝑞(𝜔) 𝑑𝜈(𝜔)
(

𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]
)

= ∫
(

𝑋(𝜔) − 𝐸𝑃 [𝑋]
)

(

𝑝(𝜔) −
√

𝑝(𝜔)𝑞(𝜔)
)

𝑑𝜈(𝜔)

+ ∫
(

𝑋(𝜔) − 𝐸𝑄[𝑋]
)

(

√

𝑝(𝜔)𝑞(𝜔) − 𝑞(𝜔)
)

𝑑𝜈(𝜔).

Taking the absolute value inside the integrals gives

∫
√

𝑝(𝜔)𝑞(𝜔) 𝑑𝜈(𝜔) ||
|

𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]||
|

≤ ∫
|

|

|

𝑋(𝜔) − 𝐸𝑃 [𝑋]||
|

𝑝(𝜔)𝑑𝜈(𝜔)
‖

‖

‖

‖

1 −

√

𝑞(𝜔)
𝑝(𝜔)

‖

‖

‖

‖𝐿∞

+ ∫
|

|

|

𝑋(𝜔) − 𝐸𝑄[𝑋]||
|

𝑞(𝜔)𝑑𝜈(𝜔)
‖

‖

‖

‖

√

𝑝(𝜔)
𝑞(𝜔)

− 1
‖

‖

‖

‖𝐿∞
.

y definition of the Hellinger distance, ∫
√

𝑝(𝜔)𝑞(𝜔) = 1−𝐻2(𝑃 ,𝑄). Moreover, for 𝑎, 𝑏 ≥ 0, we have |1 −
√

𝑎∕𝑏| = |(𝑏−𝑎)∕((
√

𝑎+
√

𝑏)
𝑏)| ≤ |(𝑏 − 𝑎)∕(𝑏 ∧ 𝑎)|. Combining these arguments gives

(

1 −𝐻2(𝑃 ,𝑄)
)

|

|

|

𝐸𝑃 [𝑋] − 𝐸𝑄[𝑋]||
|

≤
(

𝐸𝑃
[

|

|

|

𝑋 − 𝐸𝑃 [𝑋]||
|

]

∨ 𝐸𝑄
[

|

|

|

𝑋 − 𝐸𝑄[𝑋]||
|

]

)

‖

‖

‖

‖

𝑝 − 𝑞
𝑝 ∧ 𝑞

‖

‖

‖

‖𝐿∞
,

proving the first claim.
For the second claim, recall that the probability space 𝛺 = {𝜔𝑗 , 𝑗 = 1, 2,… ,𝑀} is assumed to be finite and denote by

𝑝𝑗 ∶= 𝑃 ({𝜔𝑗}), 𝑞𝑗 ∶= 𝑄({𝜔𝑗}), 𝑗 = 1, 2,… ,𝑀 the respective probability mass functions of 𝑃 and 𝑄. Define the random variable
𝑋𝑗 (𝜔) ∶= 𝟏(𝜔 = 𝜔𝑗 ). Then, 𝐸𝑃 [𝑋𝑗 ] − 𝐸𝑄[𝑋𝑗 ] = 𝑝𝑗 − 𝑞𝑗 , 𝐸𝑃 [|𝑋𝑗 − 𝐸𝑃 [𝑋𝑗 ]|] = 𝑝𝑗 (1 − 𝑝𝑗 ), and 𝐸𝑄[|𝑋𝑗 − 𝐸𝑄[𝑋𝑗 ]|] = 𝑞𝑗 (1 − 𝑞𝑗 ). For
𝑗∗ ∈ argmax𝓁=1,…,𝑀 |𝑝𝓁 − 𝑞𝓁|∕(𝑝𝓁 ∨ 𝑞𝓁),

𝐸𝑃 [|𝑋𝑗∗ − 𝐸𝑃 [𝑋𝑗∗ ]|] ∨ 𝐸𝑄[|𝑋𝑗∗ − 𝐸𝑄[𝑋𝑗∗ ]|] ≤ 𝑝𝑗∗ ∨ 𝑞𝑗∗ = 1
max𝓁 |

𝑝𝓁−𝑞𝓁
𝑝𝓁∨𝑞𝓁

|

|𝑝𝑗∗ − 𝑞𝑗∗ |
⏟⏞⏞⏞⏟⏞⏞⏞⏟

. □
3

=|𝐸𝑃 [𝑋𝑗∗ ]−𝐸𝑄[𝑋𝑗∗ ]|
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For the application to statistics, the random variable 𝑋 is an estimator. Thus, given 𝑋, a related question is to find a random
ariable 𝑋′ with 𝐸𝑃 [𝑋′] = 𝐸𝑃 [𝑋] and 𝐸𝑄[𝑋′] = 𝐸𝑄[𝑋], but smaller mean absolute deviations 𝐸𝑃 [|𝑋′ − 𝐸𝑃 [𝑋′]|] < 𝐸𝑃 [|𝑋 − 𝐸𝑃 [𝑋]|]
nd 𝐸𝑄[|𝑋′ − 𝐸𝑄[𝑋′]|] < 𝐸𝑄[|𝑋 − 𝐸𝑄[𝑋]|]. In particular, for the trade-off between bias and mean absolute deviation, it does not
eem favorable that 𝑋 attains large values, as this mainly increases the mean absolute deviation. If for a measurable set 𝐴, the
onditional means are the same, that is, 𝐸𝑃 [𝑋|𝑋 ∈ 𝐴] = 𝐸𝑄[𝑋|𝑋 ∈ 𝐴], then, 𝑋′ = 𝑋𝟏(𝑋 ∈ 𝐴𝑐 ) + 𝐸𝑃 [𝑋|𝑋 ∈ 𝐴]𝟏(𝑋 ∈ 𝐴) satisfies
𝑃 [𝑋′] = 𝐸𝑃 [𝑋], 𝐸𝑄[𝑋′] = 𝐸𝑄[𝑋],

𝐸𝑃 [|𝑋′ − 𝐸𝑃 [𝑋′]|]

= 𝐸𝑃 [|𝑋′ − 𝐸𝑃 [𝑋]|]

= 𝐸𝑃
[

|𝑋 − 𝐸𝑃 [𝑋]| ||
|

𝑋 ∈ 𝐴𝑐
]

𝑃 (𝐴𝑐 ) + 𝐸𝑃
[

|𝐸𝑃 [𝑋|𝑋 ∈ 𝐴] − 𝐸𝑃 [𝑋]| ||
|

𝑋 ∈ 𝐴
]

𝑃 (𝐴)

= 𝐸𝑃
[

|𝑋 − 𝐸𝑃 [𝑋]| ||
|

𝑋 ∈ 𝐴𝑐
]

𝑃 (𝐴𝑐 ) + |

|

|

𝐸𝑃 [𝑋|𝑋 ∈ 𝐴] − 𝐸𝑃 [𝑋]||
|

𝑃 (𝐴)

= 𝐸𝑃
[

|𝑋 − 𝐸𝑃 [𝑋]| ||
|

𝑋 ∈ 𝐴𝑐
]

𝑃 (𝐴𝑐 ) + |

|

|

𝐸𝑃
[

𝑋 − 𝐸𝑃 [𝑋] ||
|

𝑋 ∈ 𝐴
]

|

|

|

𝑃 (𝐴)

≤ 𝐸𝑃
[

|𝑋 − 𝐸𝑃 [𝑋]| ||
|

𝑋 ∈ 𝐴𝑐
]

𝑃 (𝐴𝑐 ) + 𝐸𝑃
[

|

|

|

𝑋 − 𝐸𝑃 [𝑋]||
|

|

|

|

𝑋 ∈ 𝐴
]

𝑃 (𝐴)

= 𝐸𝑃 [|𝑋 − 𝐸𝑃 [𝑋]|],

nd similarly 𝐸𝑄[|𝑋′ − 𝐸𝑄[𝑋′]|] ≤ 𝐸𝑄[|𝑋 − 𝐸𝑄[𝑋]|]. The argument can be viewed as a variation of the convex loss version of the
ao-Blackwell theorem.

. Application to pointwise estimation in the Gaussian white noise model

In the Gaussian white noise model, we observe a random function 𝑌 = (𝑌𝑥)𝑥∈[0,1], with

𝑑𝑌𝑥 = 𝑓 (𝑥) 𝑑𝑥 + 1
√

𝑛
𝑑𝑊𝑥, (8)

where 𝑊 is an unobserved standard Brownian motion. The aim is to recover the unobserved, real-valued regression function
𝑓 ∈ 𝐿2([0, 1]) from the data 𝑌 . Below, we study the bias-MAD trade-off for estimation of 𝑓 (𝑥0) with fixed 𝑥0 ∈ [0, 1].

Concerning upper bounds for the MAD risk in this setting, optimal convergence rates are obtained in Tsybakov (1986) and the
first order asymptotics of the mean absolute deviation risk for Lipschitz functions is derived in Fan and Hall (1994).

To obtain lower bounds for the bias-MAD trade-off, denote by 𝑃𝑓 the data distribution of the Gaussian white noise model with
regression function 𝑓 . It is known that the Hellinger distance is

𝐻2(𝑃𝑓 , 𝑃𝑔) = 1 − exp
(

− 𝑛
8
‖𝑓 − 𝑔‖22

)

, (9)

henever 𝑓, 𝑔 ∈ 𝐿2([0, 1]), see Derumigny and Schmidt-Hieber (2023) for a reference and a derivation. This means that the inequality
3) becomes

1
5
exp

(

− 𝑛
4
‖𝑓 − 𝑔‖22

)

|𝑢 − 𝑣| ≤ 𝐸𝑓
[

|

|

|

𝑋 − 𝑢||
|

]

∨ 𝐸𝑔
[

|

|

|

𝑋 − 𝑣||
|

]

. (10)

As commonly done in nonparametric statistics, we impose an Hölder smoothness condition on the regression function 𝑓 . Let 𝑅 > 0,
𝛽 > 0 and denote by ⌊𝛽⌋ the largest integer that is strictly smaller than 𝛽. On a domain 𝐷 ⊆ R, we define the 𝛽-Hölder norm
by ‖𝑓‖𝒞 𝛽 (𝐷) =

∑

𝓁≤⌊𝛽⌋ ‖𝑓
(𝓁)

‖𝐿∞(𝐷) + sup𝑥,𝑦∈𝐷,𝑥≠𝑦 |𝑓 (⌊𝛽⌋)(𝑥) − 𝑓 (⌊𝛽⌋)(𝑦)|∕|𝑥 − 𝑦|𝛽−⌊𝛽⌋, with 𝐿∞(𝐷) the supremum norm on 𝐷 and 𝑓 (𝓁)

enoting the 𝓁-th (strong) derivative of 𝑓 for 𝓁 ≤ ⌊𝛽⌋. For 𝐷 = [0, 1], let 𝒞 𝛽 (𝑅) ∶= {𝑓 ∶ [0, 1] → R ∶ ‖𝑓‖𝒞 𝛽 ([0,1]) ≤ 𝑅} be the ball of
-Hölder smooth functions 𝑓 ∶ [0, 1] → R with radius 𝑅. We also write 𝒞 𝛽 (R) ∶= {𝐾 ∶ R → R ∶ ‖𝐾‖𝒞 𝛽 (R) <∞}.

heorem 4.1. Consider the Gaussian white noise model (8) with parameter space 𝒞 𝛽 (𝑅). Let 𝐶 > 0 be a positive constant. If 𝑓 (𝑥0) is an
stimator for 𝑓 (𝑥0) satisfying

sup
𝑓∈𝒞 𝛽 (𝑅)

|

|

|

Bias𝑓 (𝑓 (𝑥0))
|

|

|

<
(𝐶
𝑛

)𝛽∕(2𝛽+1)
,

then, there exist positive constants 𝑐 = 𝑐(𝐶,𝑅) and 𝑁 = 𝑁(𝐶,𝑅), such that

sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓
[

|

|

|

𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]
|

|

|

]

≥ 𝑐𝑛−𝛽∕(2𝛽+1), for all 𝑛 ≥ 𝑁.

Explicit expressions for 𝑐 and 𝑁 can be derived from the proof. If Med𝑓 [𝑓 (𝑥0)]|] denotes the median of 𝑓 (𝑥0), then the same holds if
Bias𝑓 (𝑓 (𝑥0)) and 𝐸𝑓 [|𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]|] are replaced by Med𝑓 [𝑓 (𝑥0)] − 𝑓 (𝑥0) and 𝐸𝑓 [|𝑓 (𝑥0) − Med𝑓 [𝑓 (𝑥0)]|], respectively.

The result is considerably weaker than the earlier derived lower bounds for the bias–variance trade-off for pointwise estimation.
This is due to the fact that (3) is less sharp. Nevertheless, the conclusion provides still more information than the minimax lower
bound for the absolute value loss. To see this, observe that by the triangle inequality,
4
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𝐸

𝐿
t

sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓 [|𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]|] ≥ sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓 [|𝑓 (𝑥0) − 𝑓 (𝑥0)|] − |Bias𝑓 (𝑓 (𝑥0))|

≥ sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓 [|𝑓 (𝑥0) − 𝑓 (𝑥0)|] − sup
𝑓∈𝒞 𝛽 (𝑅)

|Bias𝑓 (𝑓 (𝑥0))|.

Thus, the conclusion of Theorem 4.1 can be deduced from the minimax lower bound sup𝑓∈𝒞 𝛽 (𝑅)
𝐸𝑓 [|𝑓 (𝑥0) − 𝑓 (𝑥0)] ≥ (𝐾∕𝑛)𝛽∕(2𝛽+1), as long as 𝐶 < 𝐾. Arguing via the minimax rate, nothing, however, can be said if 𝐶 > 𝐾,
that is, the bias is of the optimal order with a potentially large constant. Indeed, if we would change the role of the worst-case bias
and the worst-case risk in the previous display, we get the lower bound

sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓 [|𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]|] ≥ sup
𝑓∈𝒞 𝛽 (𝑅)

|Bias𝑓 (𝑓 (𝑥0))| − sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓 [|𝑓 (𝑥0) − 𝑓 (𝑥0)|].

Since 𝑓 (𝑥0) is an arbitrary estimator, we cannot exclude the possibility that

sup
𝑓∈𝒞 𝛽 (𝑅)

|

|

|

Bias𝑓 (𝑓 (𝑥0))
|

|

|

≈ sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓
[

|𝑓 (𝑥0) − 𝑓 (𝑥0)|
]

.

However, Theorem 4.1 shows that even in the case 𝐶 > 𝐾, the worst-case variance cannot converge faster than 𝑛−𝛽∕(2𝛽+1).

Proof of Theorem 4.1. For any function 𝐾 ∈ 𝒞 𝛽 (R) satisfying 𝐾(0) = 1 and ‖𝐾‖2 < +∞, define 𝑉 ∶= 𝑅∕‖𝐾‖𝒞 𝛽 (R), 𝑟𝑛 ∶=
(2∕𝑉 )1∕𝛽 (𝐶∕𝑛)1∕(2𝛽+1), and

ℱ ∶=
{

𝑓𝜃(𝑥) = 𝜃𝑉 𝑟𝛽𝑛𝐾
(𝑥 − 𝑥0

𝑟𝑛

)

∶ |𝜃| ≤ 1
}

.

y Lemma B.1 in Derumigny and Schmidt-Hieber (2023), we have for 0 < ℎ ≤ 1, ‖ℎ𝛽𝐾((⋅−𝑥0)∕ℎ)‖𝒞 𝛽 (R) ≤ ‖𝐾‖𝒞 𝛽 (R). Since 𝑟𝑛 ≤ 1 for
all sufficiently large 𝑛, taking ℎ = 𝑟𝑛, we find ‖𝑓𝜃‖𝒞 𝛽 ([0,1]) ≤ |𝜃|𝑉 ‖𝐾‖𝒞 𝛽 (R) ≤ 𝑅 for all 𝜃 ∈ [−1, 1]. Thus, ℱ ⊆ 𝒞 𝛽 (𝑅) whenever 𝑟𝑛 ≤ 1.
We can now apply (10) to the random variable 𝑓 (𝑥0) choosing 𝑃 = 𝑃𝑓±1 , 𝑄 = 𝑃0 and centering 𝑢 = 𝐸𝑓±1 [𝑓 (𝑥0)], 𝑣 = 𝐸0[𝑓 (𝑥0)],

1
5
exp

(

− 𝑛
4
‖𝑓±1‖

2
2

)

|

|

|

𝐸𝑓±1 [𝑓 (𝑥0)] − 𝐸0[𝑓 (𝑥0)]
|

|

|

≤ 𝐸𝑓±1
[

|

|

|

𝑓 (𝑥0) − 𝐸𝑓±1 [𝑓 (𝑥0)]
|

|

|

]

∨ 𝐸0
[

|

|

|

𝑓 (𝑥0) − 𝐸0[𝑓 (𝑥0)]
|

|

|

]

.

Using substitution and the definition 𝑟𝑛 = (2∕𝑉 )1∕𝛽 (𝐶∕𝑛)1∕(2𝛽+1), we find

‖𝑓±1‖
2
2 ≤ 𝑉 2𝑟2𝛽𝑛 ∫R

𝐾2
(𝑥 − 𝑥0

𝑟𝑛

)

𝑑𝑥 = 𝑉 2𝑟2𝛽+1𝑛 ‖𝐾‖

2
2 =

1
𝑛
22+1∕𝛽𝑉 −1∕𝛽𝐶‖𝐾‖

2
2

and so,

1
5
exp

(

−
( 2
𝑉

)1∕𝛽
𝐶‖𝐾‖

2
2

)

|

|

|

𝐸𝑓±1 [𝑓 (𝑥0)] − 𝐸0[𝑓 (𝑥0)]
|

|

|

≤ sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓
|

|

|

𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]
|

|

|

.

Due to 𝐾(0) = 1 and the definition of 𝑟𝑛, we have 𝑓±1(𝑥0) = ±𝑉 𝑟𝛽𝑛 = ±2(𝐶∕𝑛)𝛽∕(2𝛽+1) and because of the bound on the bias,
𝑓1 [𝑓 (𝑥0)] ≥ (𝐶∕𝑛)𝛽∕(2𝛽+1) and 𝐸𝑓−1 [𝑓 (𝑥0)] ≤ −(𝐶∕𝑛)𝛽∕(2𝛽+1). Choosing for the lower bound 𝑓1 if 𝐸𝑓0 [𝑓 (𝑥0)] is negative and 𝑓−1

if 𝐸𝑓0 [𝑓 (𝑥0)] is positive, we find

1
5
exp

(

−
( 2
𝑉

)1∕𝛽
𝐶‖𝐾‖

2
2

)

(𝐶
𝑛

)
𝛽

2𝛽+1 ≤ sup
𝑓∈𝒞 𝛽 (𝑅)

𝐸𝑓
|

|

|

𝑓 (𝑥0) − 𝐸𝑓 [𝑓 (𝑥0)]
|

|

|

,

proving the claim. The proof for the median centering follows exactly the same steps. □

5. Further extensions of the bias–variance trade-off

A natural follow-up question is to wonder about other concepts to measure systematic and stochastic error of an estimator. This
section is intended as an overview of related concepts.

A large chunk of literature on variations of the bias–variance trade-off is concerned with extensions to classification under 0 -
1 loss, see Kohavi and Wolpert (1996), Breiman (1996), Tibshirani (1996), James and Hastie (1997). These approaches have been
compared in Rozmus (2007). Le Borgne (2005) proposes an extension to the multi-class setting. In a Bayesian framework, Wolpert
(1997) argues that the bias–variance trade-off becomes a bias-covariance–covariance trade-off, where a covariance correction is
added. For relational domains, Neville and Jensen (2007) propose to separate the bias and the variance due to the learning process
from the bias and the variance due to the inference process. Bias–variance decompositions for the Kullback–Leibler divergence and
for the log-likelihood are studied in Heskes (1998). Somehow related, Wu and Vos (2012) introduces the Kullback–Leibler bias
and the Kullback–Leibler variance, and shows, using information theory, that a similar decomposition is valid. Domingos (2000)
propose generalized definitions of bias and variance for a general loss, but without showing a bias–variance decomposition. For
several exponential families (Hansen and Heskes, 2000) shows that there exist a loss 𝐿 such that a bias–variance decomposition of

is possible. James (2003) studied a bias–variance decomposition for arbitrary loss functions, comparing different ways of defining
he bias and the variance in such cases.
5
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