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Abstract

Open source software (OSS) vulnerabilities form a real threat to the security of
software that employs them. Efforts to mitigate these risks exist in the form of de-
pendency check tools, however these often suffer from imprecise warnings due to
the utilization of only metadata. This thesis investigates the use of CVEs in a more
code-centric approach and the effect this has on the detection of vulnerability reach-
ability in OSS dependencies. This paper proposes an automated approach to enrich
CVEs with preciser code-level information by leveraging references such as patches,
repositories, and vulnerability databases. This thesis then heads out to investigate the
impact on accuracy of various (novel) approaches in terms of granularity (packages,
classes, methods) and in terms of source for the patch information (link to a commit,
PR of commits, or binary diff). Our experimental results show that these code-centric
approaches significantly improve vulnerability detection, achieving higher precision
compared to traditional dependency checkers. Additionally, we present the trade-offs
between the different methods, highlighting their strengths and weaknesses. Through
this work, we show how utilizing code information into dependency analysis can sub-
stantially enhance the detection of vulnerable code paths, offering more accurate risk
assessments in software ecosystems.
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Chapter 1

Introduction

With the increased use of the internet and modern technologies, ensuring good security is
currently of paramount importance for software developers. Various rules and tools have
been developed to help with tracking and maintaining a good level of security in soft-
ware. One such initiative is the Common Vulnerabilities and Exposures (CVE) system,
which serves as a comprehensive dataset for tracking and documenting standardized infor-
mation for known vulnerabilities within software and hardware. This dataset, maintained by
MITRE [8], plays a critical role in vulnerability management.. Using vulnerable packages
and thus vulnerable code remains a significant risk. For instance, Using Components with
Known Vulnerabilities was ranked 9th within the OWASP top 10 in 2017 and in 2021 this
was even moved up to 6th. Some notable examples of vulnerabilities within open-source
software (OSS) projects include the HEARTBLEED [10] and the LOG4SHELL [6] vulnera-
bilities. These critical issues impacted millions of users due to vulnerabilities within the
OPENSSL and the LOG4J open source software packages. In response to such risks, consid-
erable efforts have been made to help mitigate these risks, particularly in detecting the use
of vulnerable package. Most of this effort has come in the form of dependency checkers
such as the OWASP DEPENDENCY CHECKER [19], DEPENDABOT from GITHUB [13] as well
as the commercial tools like SNYK [26] and CHECKMARX [5]. However, these tools pri-
marily focus on checking the dependencies’ metadata. There is increasing interest in tools
that provide more granular insights into CVE-related vulnerabilities, including the identifi-
cation of fixes and improved reporting. For example CVEFIXES [2] has been developed to
map code vulnerabilities to their corresponding fixes. Similarly, ECLIPSE STEADY [22] pro-
vides enhanced code-level reporting, while its sub-project, FIXFINDER [16] contained within
PROJECT-KB [21], maps CVE entries to the code patches that address those vulnerabilities
in OSS projects.

The key issue with the current use of CVEs in dependency tracking is that these vulner-
abilities are mainly reported on the coarse-grained package level. Simply including a pack-
age with a known vulnerability within it will trigger a warning, even if the vulnerable code
within the package is not actually used. This results in overly conservative CVE reporting
for dependencies, often leading to false positive warnings, where safe usage of vulnerable
dependencies is still flagged as risky. Consequently, developers may unnecessarily remove
dependencies that are, in practice, safe to use. On the other hand, this imprecision generates
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1. INTRODUCTION

an excessive number of security alerts with low precision, leading to alert fatigue. Over
time, developers may become desensitized to these warnings and begin ignoring them alto-
gether, increasing the risk of overlooking genuine security threats. There is a clear need to
reduce the amount of false positives and improve the precision of the vulnerability detec-
tion tools. Adopting finer-grained vulnerability detection and reporting that analyzes actual
code usage, rather than simply package inclusion, could address this issue. For example,
a dependency might be flagged as vulnerable under coarse-grained detection based solely
on metadata and consequently rejected. However, with a finer-grained report analyzing the
file, class, or even method level, developers could more accurately determine whether the
vulnerability actually affects the current usage of that dependency. With this level of de-
tail it could be justified to continue the use of an dependency, saving developers the time
and effort needed for replacing the dependency. With this level of precision, developers
could justify continuing to use a flagged dependency, saving the time and effort needed to
replace it unnecessarily. By identifying whether a vulnerability is actively used within the
codebase, finer-grained tools provide more precise indications of when mitigation is truly
required. Furthermore, when a vulnerability is confirmed to be present, finer-grained re-
porting can better pinpoint the specific code affected. This not only increases accuracy but
also accelerates the process of fixing vulnerabilities introduced by a dependency.

Mentioned earlier ECLIPSE STEADY has made progress in achieving code-centric vul-
nerability reporting for dependencies. However, a significant challenge lies in the way the
information is actually gathered. ECLIPSE STEADY relies on PROJECT-KB which, as stated
in its documentation and data, is a manually curated dataset. This manual approach is not
very scalable, as it depends on volunteer effort for additional contributions. This limitation
contributed to the discontinuation of PROJECT-KB, and as PROJECT-KB becomes outdated,
ECLIPSE STEADY also loses becomes outdated. Another challenge is the complexity of link-
ing CVEs to their code/commit links. ECLIPSE STEADY employs a machine learning model
(FIXFINDER [16]) to help identify and rank candidate commits. Similar to other solutions
for linking CVE to commits, FIXFINDER scans whole GITHUB projects for relevant commits
and uses some heuristics to filter results. However, these heuristics introduce risks, such as
missing fixes that do not explicitly mention a CVE in their commit messages. Additionally,
scanning entire GITHUB projects increases both the computational workload and the likeli-
hood of retrieving irrelevant commits. With the growing number of CVEs and vulnerable
packages, this approach becomes even less scalable over time. The inefficiency of cloning
and scanning entire repositories underscores the need for a more targeted method of enrich-
ment. There is a clear necessity for targeted automated methods of CVE enrichment, or at
the very least, bridging the gap between the initial reporting of a CVE and the complex or
manual processes required for its enrichment. Such enrichment is crucial for tools aiming
to provide more in-depth and precise vulnerability reporting. One potential solution could
involve automatically (programmatically) enriching CVE data to link it to the actual vul-
nerable code. This would reduce reliance on manual curation and improve scalability while
enabling more accurate and actionable insights.

CVEs contain structured information about the vulnerabilities, however the primary is-
sue (among others) is the inconsistency of the information within CVEs. These discrepan-
cies are partially caused by the diverse ways in which CVEs are reported. Moreover, incon-
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sistencies are often actually inherent within the CVE data itself. Variations exist not only
in the formats used to report CVEs but also in the quality and availability of the informa-
tion. Because of these inconsistencies, automated systems often rely on ad hoc methods for
processing CVEs, and achieving generalization is not without its hurdles. These challenges
complicate the automated extraction of code-level information from CVEs. To address this
issue, we propose a fully automated approach to enrich CVE data, as such enrichment is
essential for obtaining accurate code-level details. This effort required a thorough investi-
gation into the structure of CVEs and the practical ways in which they are reported. How-
ever, an important challenge to consider in an automated approach is that without manual
curation, there is no real verification and guarantee as to the correctness and accuracy of the
resulting CVE enrichments.

Obtaining code information is crucial for addressing the issue of low precision inherent
in the coarse-grained dependency checkers. However, a critical issue that must be resolved
is determining the appropriate level of detail for improved reporting. This includes deter-
mining the right level of code information that should be collected for meaningful vulner-
ability analysis. Previous work often selects commit links as the preferred level of code
information. However, commits may not always provide the most suitable level of details,
and the challenge of unavailable commit link information must be tackled. To address these
challenges alternative approaches for gathering the CVE code information should be inves-
tigated. In addition to determining the appropriate level of detail, it is equally important to
identify the granularity at which automated systems can effectively mitigate the imprecision
of dependency checkers. For example, greater precision might be achieved by assessing the
reachability of vulnerabilities at the method level. Conversely, it could be argued that class-
level granularity strikes a better balance between precision and practical applicability. Thus,
exploring different granularity levels of vulnerability analysis such as method or class/file
level is essential.

In the context of security, minimizing false negatives is paramount, as overlooking a vul-
nerability is far more damaging than addressing false positives. Consequently, while aiming
for improved precision, it is critical to consider multiple levels of information gathering and
mapping strategies for vulnerable code. This involves evaluating diverse approaches, in-
cluding more conservative strategies that prioritize better recall (minimizing false negatives)
over maximizing precision. Such strategies could serve as viable alternatives to expected
high-precision methods which focus exclusively on commit- and method-level details.

The first goal of this research is to achieve fully automated enrichment of CVE infor-
mation. This results in bridging the gap between CVE reporting and the manual processes
currently required for data enrichment. This paper also aims to make CVE vulnerability
reporting more actionable through a finer-grained level of detail, thereby increasing the
precision of vulnerability warnings.

Central to this research is the question: What level of detail is most appropriate for
actionable vulnerability reporting? To address this, our investigation begins with analyz-
ing the CVE data itself and developing an approach for automated CVE enrichment with
vulnerable code information. The effectiveness of this approach will be evaluated based
on its ability to identify relevant code for CVEs and, more importantly, to accurately link
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1. INTRODUCTION

the correct code to the corresponding CVE. Additionally, the implications of these results
for consequently improving vulnerability reporting will be discussed. The vulnerability re-
porting includes exploring methods to determine where and how a vulnerability manifests
within a call graph, with the focus on generating more fine-grained vulnerability reports.
Evaluation of the vulnerability reporting will specifically examine the impact the different
approaches have on reporting back the exposure and the reachability of a vulnerability in
the context of a particular library or dependency usage. This project will focus exclusively
on JAVA vulnerabilities within the CVE dataset.

In this thesis, we investigate whether it is possible to improve the precision of vul-
nerability reporting by obtaining more fine-grained information on CVEs in an automated
manner. Specifically we explore how different mapping strategies, from vulnerabilities to
affected methods or files/classes, impact the results of vulnerability reporting. This project
addresses several research questions related to the key steps involved in producing a fine-
grained vulnerability report. The process starts with publicly available CVE information,
which serves as the foundation for further analysis. From this starting point, it is necessary
to extract data about vulnerability fixes, as these fixes indicate the locations in the code re-
sponsible for the vulnerabilities. However determining the appropriate starting point is not
trivial due to the variability of CVE data. Accordingly, the first research question of this
thesis is:

RQ1 How are CVEs reported in practice, and what useful information do they actually
contain for identifying vulnerable code?

For RQ1, this paper conducts an empirical study on CVEs, analyzes related work, and
identifies the information needed to uncover fine-grained code details for CVEs. Through
the investigation we identified that vulnerable code and corresponding patches can be iden-
tified through references within the CVE data, and with the associated vulnerable packages.
Based on these findings, the approach for gathering this information is developed, enabling
the investigation of the second research question. In this phase, we evaluate the effective-
ness of our automated approach in identifying vulnerable code through the references.

RQ2 Can we find commit links that direct us towards code patches for a vulnerability?

• RQ2.1: Can we recover commit links for CVEs?

• RQ2.2: What is the precision of finding the correct commit links to a fix for a
CVE?

For RQ2 we find that our automated approach is able to meaningfully contribute to-
wards recovering commit links. Our results also demonstrate that our patch-finding process
improves the identification of the correct commit links. However it is also evident that this
approach is not infallible, consequently this paper investigates different methods and levels
of mapping vulnerable code to produce finer-grained vulnerability report. This exploration
is driven by the following research questions:
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RQ3 How do the commit-, pull- and release version patch CVE information mappings
impact the exposure and reachability results of a vulnerability?

RQ4 How do the method and file level granularity mappings impact the exposure and
reachability results of a vulnerability?

For these research questions, the impact of different methodologies on precision is eval-
uated by generating vulnerability reports via call graph reachability and exposure. Our
results demonstrate that, with our approach the precision of vulnerability reporting can be
significantly improved when compared to current dependency checkers. Furthermore, our
findings highlight the trade-off between achieving higher precision and maintaining guaran-
tees on recall, i.e., the ability to identify utilization of vulnerabilities. As expected the finest
grained information leads to the highest precision but risks lower recall when compared to
more conservative methods. More conservative methods, while presenting lower precision,
offer better guarantees on recall. Nevertheless, even these conservative methods still signif-
icantly outperform dependency checkers in terms of precision.

This thesis thus presents the following insights and main contributions:

• An automated approach for enriching CVEs by adding patch information. 1

• Our empirical analysis reveals that references, such as commit links, within CVEs
can be utilized to identify code (changes) related to the vulnerability. Furthermore,
our findings suggest that the annotations accompanying these references should not
play a significant role in the code discovery process. We also introduce the novel idea
of using package version diffs in the process of identifying changed code.

• Our research into the impact of different patch-finding methods on finer-grained vul-
nerability reporting in OSS projects demonstrates that significant improvements in
precision by utilizing finer-grained code information, can be achieved over tradi-
tional dependency checkers. Additionally, we show the trade-offs between precision
and recall for different approaches, highlighting how more conservative patch-finding
methods can provide stronger recall guarantees while balancing precision.

• Our investigation into the impact of different levels of granularity in vulnerable code
reachability detection and subsequent vulnerability reporting indicates that, along-
side method-level code mapping, reporting vulnerabilities at the class/file granularity
offers a suitable and more conservative alternative.

1https://github.com/DanDanBro/fg-cve-aggregator

5



Chapter 2

Related Work

In the paper by CADARIU ET AL. [4] the authors demonstrated that the use of vulnerable
components poses a significant risk within the software development industry. By em-
ploying the OWASP Dependency-Check tool for vulnerability scanning, they revealed that
many projects contain dependencies with CVE vulnerabilities. However, the paper also
highlighted the issue of low precision due to the prevalence of false positives. These in-
accuracies underscore the risks associated with CVEs and the need for improved detection
and reporting mechanisms.

Dependency check tools The first efforts towards vulnerability detection and mitigation
in dependencies primarily came in the form of dependency check tools. Numerous stud-
ies have examined on automated tools to assist in this space, including tools like OWASP
DEPENDENCY-CHECK, SONATYPE NEXUS, and SNYK. However, these tools typically rely on
metadata for detecting vulnerable dependencies, resulting in imprecise warnings and con-
tributing alert fatigue. Additionally, DONG ET AL. [9] raised concerns about inconsistencies
in the vulnerable version reporting of CVEs, which often lead to both overestimation and
underestimation of vulnerabilities’ scope. These challenges have motivated researchers to
explore more precise methods for obtaining and utilizing CVE information.

Vulnerability discovery The foundation of the CVE system lies in the discovery of vul-
nerabilities. For instance KLUBAN ET AL. [18] proposed a vulnerability detection framework
to identify vulnerable functions in real-world JAVASCRIPT projects, enabling the discovery
and reporting of new CVEs. While this work focuses on identifying vulnerabilities within
individual projects, our primary interest lies in detecting vulnerabilities within dependen-
cies, particularly determining whether vulnerabilities are actually used in a specific context.
For this purpose, it is essential to understand the precise code affected by a vulnerability to
assess its reachability and impact.

Vulnerability datasets Various datasets and approaches have been developed to identify
which parts of code are affected by certain vulnerabilities. Some tools collect code solely
utilizing the information directly provided in CVEs. For instance, REIS ET AL. [24] curated a
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ground-truth dataset by collecting code exclusively from commits directly linked to the CVE
data. While useful, this approach does not include additional enrichment to gather more
comprehensive details about the vulnerable code beyond the explicit commit links provided
in the CVE. Similarly Big-Vul [11] and VULINOSS[15] rely on CVEs providing accurate
information. BIG-VUL dataset focuses on extracting commits made before and after a fix.
VULINOSS introduces modifications to the references themselves, to account for issues such
as missspellings, software vendor changes or name variations. Although VulinOSS attempts
to address imprecise references, it remains constrained to the CVE data’s limitations.

Some datasets go a step further by performing enrichment of CVE data to identify ad-
ditional commit links. These approaches often rely on manual curation or complex com-
putational models to achieve good results. For instance, VCCFINDER [20] employs a sup-
port vector machine (SVM) machine learning model to identify vulnerability-introducing
commits. Similarly, V-SZZ [1] extends this idea by aiming to obtain more precise CVE
information related to releases, including identifying vulnerability-introducing commits.
However on the contrary most works prioritize identifying vulnerable code by locating vul-
nerability patching commits. Tools like CVEFIXES [2] and VULDATA7 [17] achieve the
collection of fix data by scanning through GITHUB repositories, searching for patch com-
mits. SSPCATCHER [25] introduces a machine learning model specifically designed to mon-
itor repositories for potential vulnerability-fixing commits. The scanning of entire GITHUB

repositories run a high risk of finding irrelevant commits, necessitating robust filtering me-
chanics to ensure meaningful results. One of the most prominent tools in the field of CVE
patch information gathering is FIXFINDER (part of PROJECT-KB) [16]. FixFinder employs a
machine learning model to scan through the commits, narrowing down candidate commits
by filtering out those irrelevant to the vulnerability. It then ranks the remaining candidates
based on their likelihood of being the fix or at least relevant. However, having a ranking
means that they still require manual inspection to confirm the correct commits, which limits
its scalability. Additionally, because the project was reliant on volunteer efforts for manual
curation, it was officially discontinued in 2022.

Our approach Most existing works face significant challenges, either requiring extensive
manual effort or relying on complex, resource-intensive processes for enriching CVE data
with commit links. These limitations hinder scalability and maintainability, making such
approaches less practical for long-term application. This thesis aims to provide a long
term sustainable approach for obtaining finer-grained code information on CVEs. With our
approach we bridge the gap between the initial reporting of CVE data and the sophisticated
but high-overhead methods currently available CVE enrichment.

A comparable method to ours is proposed by XU ET AL. [27], their approach also in-
volves scanning of entire GITHUB projects histories. Thereby inheriting some of the same
limitations and pitfalls associated with repository-wide scanning as seen in other works.
But similar to our work they also leverages the references inside the different advisories
to locate patches. They then try to filter out commits found through the reference search
based on 2 heuristics. In contrast, we argue against filtering out commits found through
references. We retain all candidate commits from the reference web, even at the cost of
overestimation, as these commits should be relevant to a CVE since they are found through
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2. RELATED WORK

references. This strategy not only simplifies the enrichment process but also ensures that
potentially relevant commits are not prematurely excluded.
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Chapter 3

Overview

This chapter provides a comprehensive overview of this thesis. The thesis is structured into
three primary aspects: The empirical study, changed code discovery, and the vulnerability
detection. Figure 3.1 illustrates the project pipeline, highlighting the components associated
with each aspect.

Empirical study The first aspect establishes the foundation for working with CVE data by
investigating how CVEs are reported in practice. First in Chapter 4 we conduct an empirical
study investigating the various sources and formats of CVE information. We investigated

Figure 3.1: High level overview of the project
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3. OVERVIEW

how CVEs are actually reported in practice. With this investigation we address RQ1, and we
determine the basis of the information we use. In this chapter we establish the aggregation
for the starting dataset we use within this thesis. Furthermore we discuss the implications
of these findings for the subsequent aspects of the project.

Changed code discovery The second aspect focuses on identifying the code changes as-
sociated with CVEs, a critical step for achieving finer-grained vulnerability reporting. Based
on the findings from the empirical study we form the process of obtaining finer-grained code
details for CVEs. In Chapter 5 we cover the changed code discovery aspect which starts
with the process of collection and parsing the available CVE data into a unified format.
Then we propose our approach for, automated CVE enrichment with changed code infor-
mation, utilizing references within the CVE information. Via both commit patch finding as
well as release diffs, code changes that should be associated with CVEs within our starting
dataset are extracted. Chapter 5 covers the details and the evaluation of the code change dis-
covery. In particular, the patch commit identification capability of our automated approach
is evaluated in two different evaluations, covering the sub questions of RQ2. Through an-
swering the sub questions via the assessment of the patch finding capability, we answer the
overarching RQ2. The CVE data and the code changes are combined into a resulting dataset
called MappedVulns where the CVEs are associated with their patch code.

Vulnerability detection The third aspect leverages the MappedVulns dataset to investi-
gate finer-grained vulnerability detection in dependencies. The MappedVulns dataset pro-
vides the data used for the vulnerability detection covered in Chapter 6. We introduce
various alternative approaches for the mapping of vulnerable code. In the context of vulner-
ability detection, our focus lies in assessing the impact of these different approaches on the
vulnerability detection capabilities. Additionally, we investigate whether our methods for
detecting vulnerability utilization through dependencies can yield superior results compared
to existing solutions. From the MappedVulns dataset the affected packages are identified and
call graphs are generated for finding the exposure or reachability of vulnerable code. Based
on the exposure or reachability we can generate vulnerability usage reports. Based on the
results of call graph searches and the vulnerability report generation we answer both RQ3
and RQ4.

Lastly, in Chapter 7.1, reflects on the results for each of the three aspects and their
implications. Furthermore we discuss opportunities for future work and address any threats
to validity encountered during the research.
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Chapter 4

How are CVEs reported in practice?

To answer RQ1: ”How are CVEs reported in practice, and what useful information do they
actually contain for identifying vulnerable code?”, this section focuses on understanding
the structure, variability, and practical reporting of CVEs. This understanding is critical
for processing and enriching CVE information effectively, particularly for producing finer-
grained vulnerability reports.

CVEs (Common Vulnerabilities and Exposures) often contain metadata that includes a
vulnerability description, severity ratings, and information on affected software or versions.
Building from the understanding of what CVE data can offer is, perhaps even more impor-
tantly, the need for understanding how CVEs are actually reported in practice. CVEs are
typically reported through platforms like the MITRE CVE system, the NATIONAL VULNER-
ABILITY DATABASE (NVD), and vendor-specific advisories. The process of CVE reporting
is not standardized across these platforms, leading to inconsistent data formats, varying
degrees of information granularity and quality, and discrepancies in reporting practices.
Some vulnerabilities, for example, may first appear as bug reports on forums or through
bug bounty programs, and these initial reports can follow different disclosure protocols,
further impacting the quality and timing of the information. This variability in reporting
practices makes handling CVE data challenging, as it requires navigating the inconsisten-
cies in how CVEs are disclosed and reported. Additionally, there are often discrepancies
in the level of detail provided, with some CVEs offering more comprehensive information
than others. These challenges complicate the task of analyzing and integrating CVE data
effectively. Thus, it is crucial to have an understanding of CVE and we conduct an em-
pirical study into CVEs in practice. This will aid in analyzing how data from the CVEs
can be processed and what sources can be reliably used for further research. Moreover, for
the goal of obtaining a finer-grained vulnerability reporting, it is crucial to understand what
information from CVEs can actually contribute towards this goal. As noted in the paper
by PONTA ET AL. for PROJECT-KB [21], obtaining more precise vulnerability reporting re-
quires finer-grained details of the vulnerability on a code-centric level. This thus involves
identifying the vulnerable code through for example patches. To achieve this it is necessary
to identify within the available CVE information if and more importantly how vulnerable
code can be found. It is essential to establish what information fields within a CVE can
contribute towards this goal.
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4. HOW ARE CVES REPORTED IN PRACTICE?

To enrich CVE data through an automated process, such as associating specific code
with a vulnerability, an investigation has been conducted into how CVE are reported in
practice and how an automated process could leverage this practical information. The pri-
mary goal of this investigation was to determine what information contained within the
CVEs can be utilized for identifying concrete code that should be linked to a specific CVE
vulnerability. Given the wide range of sources for CVE data, it is important to establish a
dataset we will use as a starting point. Ideally, all CVE information and sources would be
considered and processed. However due the varying quality of information, both in terms of
accuracy and usability, not all sources are equally valuable and some could be left out. The
main consideration here is the trade-off between gaining additional actionable information
and the generalization or effort needed to incorporate certain sources.

This chapter provides insights into how CVEs are reported and the types of information
within them. From the CVE data it is identified what information fields can be utilized to
find finer-grained code details. Furthermore, we present a small empirical study into these
fields that could lead to the code, delving into some of the implications within this data.
Based on the findings from our investigation, the datasets that are collected and used in this
thesis are established.

4.1 CVEs in practice and identifying ’useful’ information fields

There are many different ways how CVEs are first reported, for example as bugs or reports
on websites and forums. These reports are subsequently collected, submitted, put together
and managed in the CVE database from the CVE program [8]. They are also stored and
further enriched by the NVD from NIST where their staff collects data points from ’the
description, references and other data that can be publicly found’ [3]. This then results in a
typical NVD CVE format as seen in 4.1.

• CVE ID: A unique identifier assigned to each vulnerability entry. In the format of
CVE-{YEAR}-{IDENTIFIER}. For example, CVE-2024-123456.

• Description: High level details of the vulnerability, including affected software, po-
tential impact and hints about its causes.

• CVSS Score: severity ratings, Common Vulnerability Scoring System score, which
quantifies the seriousness of the vulnerability based on factors like exploitability and
impact.

• Disclosure: Dates of when the vulnerability was publicly disclosed or discovered
and last updated. Also contained here is a pointer towards the original source of the
disclosure.

• References: Links to external resources or documentation that provide more informa-
tion about the vulnerability.

• Weakness Enumerations: Classifies the nature of the vulnerability e.g., buffer over-
flow, SQL injection. (Represented in NVD by CWEs)

12



4.1. CVEs in practice and identifying ’useful’ information fields

Weakness Enumeration

- CWE ID
- CWE Name
- Source

CVE

- CVE ID
- Description
- CVSS Score
- Disclosure
- References
- Weakness Enumerations
- Affected Configurations 

1..*

1..*

Affected Configuration

- CPE ID
- Version Range

1..*

1..*

Disclosure

- Publish date
- Last modified date
- Source

1

1

CVSS

- Base score
- Severity
- Vector

1

1

Reference

- Url
- Tags

1..*

1..*

Figure 4.1: NVD CVE diagram

• Affected Configurations: Lists software, hardware, or systems affected by the vulner-
ability. Such as specific libraries and their vulnerable versions. (Represented in NVD
by CPEs)

The NVD is the largest central place with verified information on the CVEs follow-
ing the CVEs from MITRE. However, as mentioned previously there are also other web-
sites/advisories/vendors that report CVEs such as GITHUB ADVISORIES [14], SPRING SECU-
RITY ADVISORIES [12] and MICROSOFT SECURITY RESPONSE CENTER (MSRC) [7] among
others. Some of these are actually CVE Numbering Authority (CNA) partners, which are
authorized organization to assign CVE IDs and publish CVE Records 1. As of 2024 there
are over 400 CNA partners contributing to the wide variety of possible CVE data sources.
Additionally, there are (manually curated) datasets that have been published, where either
extra information regarding CVEs has been collected or the data within them has been more
refined and verified. For example the PROJECT-KB dataset is a manually curated dataset,
where specifically the patch links for a CVE have been identified and added as an extra

1https://www.cve.org/ResourcesSupport/AllResources/CNARules
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field. Some vendors/advisories/datasets might provide extra information fields described
below.

• Vendor Fix: Information about patches, updates, or mitigations provided by the ven-
dor to address the vulnerability. (This is not a seperate field in NVD as it gets put
inside the references, however some advisories such as Github Advisories and Spring
Securities specifically offer this field)

• Acknowledgments: Credits individuals or organizations that reported or discovered
the vulnerability.

From the different fields of information that are contained within a CVE it is identified,
that through the references and in the case of some of the other datasets: the patch link
field, patch information regarding the vulnerabilities can be found. Additionally, leveraging
the vulnerable project versions (affected configurations) code changes can be discovered
by comparing version releases. This leads to finding finer-grained information regarding
vulnerable code. Mainly through the references and patch links field, source code level
information can be found. As with these links code changes in the form of commit-, pull
request- and issue links can be found. Next to this the pointers for specific (affected) pack-
ages and their versions, by NVD represented by Common Platform Enumeration (CPE) ids
and in general by the affected package URL (PURL), can guide towards version release
code locations.

CPEs are created by the NIST and provide a standardized format to identify software,
hardware and operating systems. This allows the NIST to identify technology products
across databases and reports. The format of a CPE is as follows:
cpe:2.3:<part>:<vendor>:<product>:<version>:<update>:<edition>:<language>:

<sw edition>:<target sw>:<target hw>:<other>

a typical example of this is cpe:2.3:a:apache:log4j:2.14.1:*:*:*:*:*:*:*. Important
for CPEs to note is that via the <part> the type of technology is indicated with ”a” for appli-
cations, ”o” for operating systems and ”h” for hardware. Furthermore within the CPE data
it is seen that the components after the <version> component with rare exception are repre-
sented by the * wildcard value. Mainly through the use of the <vendor>:<product>:<version>
components, CPEs can be linked towards PURLs and thus in an indirect way, point to-
wards the locations of for example the binary releases. A PURL follows the format of
scheme:type/namespace/name@version?qualifiers#subpath 2 for example the PURL for
the springframework is pkg:maven/org.springframework/spring-framework/6.1.14. The
key difference of a PURL is the <type> part which indicates the ”type” or ”protocol” such
as Maven, PyPi and NPM. CPEs/PURLs often have a range of the impacted versions asso-
ciated. The use of these ranges implicitly enables the identification of the non vulnerable
versions and their code locations.

Lastly the weakness enumeration, specifically the Common Weakness Enumeration
(CWE) could hint towards vulnerable code patterns. CWE is a standardized list of software

2For precise details visit https://github.com/package-url/purl-spec
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weaknesses maintained by MITRE. Each CWE represents a specific type of security flaw or
software vulnerability pattern, allowing developers, researchers, and security professionals
to identify, classify, and mitigate weaknesses in code. For example CWE-89 indicates a vul-
nerability regarding SQL Injection. It would be possible to search for code corresponding
with the vulnerability types and patterns within vulnerable packages. However the detection
of these patterns falls mainly in the field of vulnerability discovery. In this project the focus
is on identifying vulnerable code through change discovery, therefore the use of CWEs falls
outside the scope of this project.

4.2 An investigation into the reporting of NVD CVE references

NVD is often used as a backbone for research into CVEs due to both the quality and quantity
of the available data on CVEs. However the data format within NVD CVE data deviates
from what is more commonly seen. For example the use of CPEs and CWEs is typical
for NVD CVEs, another difference is that NVD adds annotation for references through
tags. The NVD enriches references with various tags including but not limited to: ”Patch”,
”Exploit”, ”Vendor Advisory”, ”Mitigation”, ”Broken Link” tags. Given the variety of
resources the references can point to, the use of these tags is an attempt from NVD to provide
a clearer overview of the types of links within CVEs. However the paper by DONG ET AL. [9]
also warns that CVE data and their annotation can be inconsistent. Therefore we conduct a
small investigation into these tags, assessing if they could potentially be leveraged within the
process of code change discovery. Another issue is that computers are limited in processing
information as humans do. Given the wide and unknown variety of information that could
potentially be presented through the links, our investigation also aims to determine the types
of references that should be processed by our methods.

Methodology For the research in this paper the ”Patch” tag was of most interest, as ref-
erences with this tag should point towards code patches. For the empirical study into the
NVD CVE references some statistics on both the type of links and the ”Patch” tag have
been collected. Within a collection of 257.468 CVE entries obtained from the NVD api
it was identified that there are 33.576 CVEs which only contained CPEs pointing towards
Hardware or where their Affected Configuration could not be found/processed. These CVE
fall outside the scope of this project, and were thus left out in the further investigation. For
the references in the remaining CVE the base URL was extracted. Here the base URL is
represented by the domain of the URL and added is the type of URL if within the full URL
one of the following keywords is found: ”commit”/”revision”, ”pull”, ”issue”, ”release” and
”GHSA” (Specific to distinguish GITHUB ADVISORIES links). The base URL for a GITHUB

commit link is represented as github.com/commit.

Results All the remaining 223.892 CVEs contained a total of 848.590 references out of
which 98.948 (11.66%) were patch-tagged references and 749.642 (88.34%) non patch-
tagged references. This results in a total of 67.123 (29.98%) CVEs that have at least one
”Patch” tagged reference. In Table 4.1, we present the distribution of the baseURL + "/" +
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Table 4.1: patch-tagged links

Repository Count Percentage

github.com/commit 12647 12,78
securityfocus.com 6313 6,38
portal.msrc.microsoft.com 4682 4,73
secunia.com 4173 4,22
oracle.com 6453 6,52
github.com/pull 3025 3,06
helpx.adobe.com 2446 2,47
github.com/issue 2297 2,32
bugzilla.redhat.com 2105 2,13
ibm.com 1767 1,79
openwall.com 1752 1,77
source.android.com 1596 1,61
plugins.trac.wordpress.org 1445 1,46
git.kernel.org 1390 1,40
msrc.microsoft.com 1244 1,26
github.com/GHSA 1129 1,14
huntr.dev 1124 1,14

Table 4.2: Non-patch-tagged links

Repository Count

github.com/issue 8272
github.com/GHSA 4542
github.com/release 2951
chromereleases.googleblog.com/release 1982
lists.apache.org/issue 1468
lists.apache.org/commit 1364
code.google.com/issue 1328
googlechromereleases.blogspot.com/release 1313
github.com/commit 1267
git.kernel.org/commit 972
gitlab.com/issue 935
github.com/pull 835
code.google.com/issue 623
issues.rpath.com/issue 612
about.gitlab.com/release 533

type of the URLs in these 2 sets. In Table 4.2, we further investigate the existence of links
towards version control platforms within the non patch-tagged links set.

Table 4.1, shows that GITHUB commits are the largest section within the ”Patch” tagged
references. However, it also reveals that a significant portion of the ”Patch” tagged ref-
erences do not point towards a version control platform. For instance the second most
prevalent ”Patch” tagged baseURL is for securityfocus.com/, however this website does
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not exist anymore. Furthermore, the references to these non version-control resources like
MSRC and ORACLE mainly lead towards vulnerability reports only suitable for human
reading. This highlights that even within the ”Patch” tagged references a wide variety of
links are present. Emphasizing that there is no one-size-fits-all method to process all CVE
data, indicating that specialized methods are often required. For this reason the main focus
of the change discovery is on version control platform references. As for these types of ref-
erences only slight specialization is needed within an overarching, generalizable approach
to process the data.

In Table 4.2 presents that even within the 749642 non patch-tagged references, URLs
to version control platforms can be found. We show that 9.11% of all GITHUB commit links
are not ”Patch” tagged. For GITHUB pull request links even 21.63% is not ”Patch” tagged.
These references might be related to the exploit or introduction of a vulnerability. However
some of these references are missing the ”Patch” tag due to inaccurate annotation. In any
case, these reference are found through the CVE data which implies that any code changes
that can be discovered through these references should still be linked to the CVE.

Conclusion Via our empirical study we find similar to the findings of the empirical study
in the paper by XU ET AL. [27] that GITHUB links form the largest section for the patch link
references. Interestingly we observe that within the version control platform references a
significant part of the references are of higher level code change aggregation types such as
pull request and release URLs. It is shown that even within references that are grouped by
a tag there is a high variability of types, furthermore between references of the same type
there is variability in how they are annotated. Already within the NVD data inconsistencies
are present, which illustrates one of the main challenges within the whole field of CVE
data. CVE data is very diverse and may contain inconsistencies, which is made even more
challenging by the wide variety of sources and different formats that have to be considered.
The findings support the message of the DONG ET AL. paper [9] that CVE information can be
inconsistent and even may be inaccurate, which should be kept in mind for further research.
The tags used by the NVD for references provide a decent indication, however even in the
absence of an explicit tag a reference may still fall within that category. It is concluded
that no filtering based on tags should be applied, and that tagged and non tagged references
should still be considered within the process of enrichment. Although GITHUB is the most
prevalent version control platform in the references the decision was made to also include
some of the other major version control platforms such as GITLAB and BITBUCKET, but also
more generally the URLs with git. or svn within them. Lastly we also determined that
the discovery of changed code should not be limited to only the commit/revision link types,
pull request and issue references are also considered

This chapter has provided a brief insight into how CVEs are reported in practice. Ad-
ditionally, it establishes that the useful information fields within CVEs for identifying vul-
nerable code are primarily the references and affected configurations, as these fields lend
themselves well to discovering code changes.
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Table 4.3: Sources used for CVE data

Data source License Update frequency

NVD Public domain 2 hours
Github Advisory Public domain Daily
MSR 2019 Public Domain n/a
MSR 2020 Public Domain n/a
cvedb (by fabric8-analytics) n/a n/a
victims-cve-db CC BY-SA 4.0 n/a
SAP project-kb Public Domain n/a

4.3 Data points used for the starting dataset

In this project, as a starting point for obtaining finer-grained vulnerability details an aggre-
gation of CVE datasets has to be collected. This aggregation determines which CVEs are
processed, enriched and evaluated to obtain finer-grained vulnerability reporting. With the
different sources of CVE data it is essential to establish a set of sources from where the
CVE data should be retrieved from. Given that many different sources provide CVE data
such as the over 400 CNA partners, and the existence of many other datasets on CVEs, it is
infeasible to collect everything. Therefore, a selection must be made, where various aspects
have to be considered during the selection. These aspects include the usability of the data,
the quality and also the added value that a source could provide. As a result, some CVE
data sources are left out due to a shortcoming in any of those aspects.

CVE data source selection Table 4.3 provides an overview of all the data sources.
For this dataset, it was decided to use the NVD as the basis. NVD contains the most

CVE entries as it is directly derived from the MITRE CVE dataset. Furthermore, NVD is
already somewhat enriched by workers at NIST where the time difference between a CVE
entering into MITRE and getting the CVE into NVD, is usually within a few weeks. GITHUB

ADVISORIES is also chosen for similar reasons. Additionally since the data is already hosted
on GITHUB these entries often contain precise/extra links pointing inside the actual GITHUB

projects. Additionally there have been various datasets collected by other people that have
enriched CVEs with more precise data such as vulnerability patch links, which are also
collected for the starting dataset. Since these dataset are manually procured the amount of
data they bring contribute might be limited, however they guarantee high quality data with
precise, verified information about the CVEs.

It was decided not to use SPRING ADVISORIES as a data source. In general the infor-
mation field ”Mitigation” inside the Spring advisories would be the main focus for finding
additional information regarding patches. However in practice it was observed that this
field is mainly intended for human consumption. Moreover, the actual mitigations that are
suggested are mostly recommendations for upgrading to non-vulnerable package versions.
We also chose not to use the DEBIAN TRACKER as this primarily contains information con-
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cerning vulnerabilities which impact projects that utilize programming languages other than
Java.
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Chapter 5

Automated Patch-Commit Recovery

With the goal of obtaining finer granularity reporting, it is essential to find more detailed
information about a CVE and its vulnerability. Existing package level metadata granularity
reporting tools often produce false positives, as they raise warnings as soon as there is an
inclusion of a vulnerable package as a dependency. For a more precise approach to vulner-
ability reporting, details beyond package vulnerability alone must be identified. Drawing
inspiration from the ideas described by ECLIPSE STEADY [22], our approach aims to find in-
formation on the vulnerability of a CVE at the code level. In an ideal world the specific lines
of code that are vulnerable would be identified. However, locating this code is not trivial,
and furthermore obtaining information about vulnerable code on the most precise granular-
ity is not always feasible. Thus a methodology for identifying vulnerable code needs to be
formulated and evaluated. This goal leads us to explore RQ2: Can we find commit links that
direct us towards code patches for a vulnerability? More specifically we break this down
into 2 aspects, patch link recovery and patch link accuracy. We thus answer RQ2.1: Can we
recover commit links for CVEs? and RQ2.2: What is the precision of finding the correct
commit links to a fix for a CVE?

Having identified the ability to locate actual code, that should be associated with a vul-
nerability through the use of patch links, one can proceed with collecting the CVE data
and work towards identifying these relevant patch links. Given the variety of data sources
and different formats, an approach to collect these different kind of data points and unify
them into a workable format is necessary to be established. Each source requires a tailored
approach for data retrieval and parsing of the data to ensure further utilization. Importantly
within the aggregation process of the data there should retain the available information,
minimizing data loss. Drawing inspiration from the FASTEN PROJECT VULNERABILITY PRO-
DUCER [23] the methodology for the aggregation of the data and the unified format has
been developed. This unified format, referred to in this paper as a Vulnerability Object,
is designed to accommodate the storage of almost all the types of data fields seen within
the different sources. The Vulnerability Object contains next to the CVE data collected,
additional fields to accommodate the data enrichments which are added in the later stages
of the pipeline within the patch finding and extraction steps. The used format retains all
the fields from the NVD CVE format (see figure 4.1) with some slight naming differences.
The most notable difference however, is the inclusions of two additional fields: the set of
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PatchLinks field and the set of Patches field. The PatchLinks field comprises a set of iden-
tified commit or revision links pointing towards the patch code. The Patches field is for
storing the actual code extracted from the PatchLinks links.

Once the data has been collected and parsed it into a workable format the so called patch
finding (actually code change discovery) can begin. Patch finding is a crucial step in the
process of mapping CVEs to their associated vulnerable code. Ideally, the CVE data would
directly include the fine grained details on the actual precise vulnerable code/method(s)
already associated with a CVE, however in practice it is seen that obtaining this informa-
tion requires some additional intermediate steps to be taken. Most sources provide CVE
data which does not contain the actual changed code, but instead have references that point
towards commits/revisions in version control platforms/systems such as GITHUB and GIT

where the changed code can be found. This changed code can then be used to identify
the vulnerable code, as logically, when a code change introduces or patches a vulnerabil-
ity it would follow that the changed code contains or at least reveals the vulnerable code
causing the vulnerability. Patch links are in the context of this paper thus actually refer-
ring to commit links that point towards changed code that should be associated with a CVE
vulnerability. Therefore for finding the actual code it is essential to identify these commit
links.

This chapter provides a high level overview of the first part of the full project pipeline
covering the collection, parsing and patch finding processes for CVEs. Subsequently, the
first part of the pipeline and mainly the patch finding can be evaluated and RQ2 is addressed.
The evaluation proceeds in two stages, first evaluating the ability of finding back commit
links and secondly if the correct commit links are found.

5.1 Limitations of current work

In Chapter 4 we identified that through both the references/patch links as well as the PURLs,
code of packages associated with a CVE can be found. These information fields offer a ba-
sis for locating the actual vulnerable code of these packages. Prior research has made some
strides towards identifying code or commit links for CVEs. Most of this work focuses pri-
marily on identifying the code that patches a vulnerability, the search processes involve for
example scanning repositories for commits that reference the related CVE. However, scan-
ning repositories for commits, results in the need for manual verification of the outcomes.
Manual verification is required because the results of these works may miss commits and
critically may capture commits that are entirely unrelated.

For example ECLIPSE STEADY uses a prospector that scans whole GITHUB projects, with
the help of a machine learning algorithm, trying to find candidate commit links. ECLIPSE

STEADY requires manual work then to pick out the relevant commits out of these candidate
links. Furthermore, some solutions employ the use of various heuristic while scanning
commits to find the candidate commit links, for example scanning if commit messages
contain keywords such as ”patch”, ”secur”, ”vuln” or the specific CVE ID. However, relying
on these heuristics introduces risks, as their effectiveness depends on the quality of commit
messages. Although, fix commits for vulnerabilities often do mention CVEs or relevant
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keywords about a vulnerability this is not always the case. It could happen that vital commits
are overlooked simply because their commit message might fall outside of the expected
patterns. On the other hand, if heuristic that are too broad are employed, e.g. only scan
for key words such as ”patch” or ”fix”, there is a high chance that commits that are totally
irrelevant to a CVE will be linked.

Our approach To address some of the limitations of existing work, this project focuses
on performing this patch finding solely through the available CVE data itself. By employing
only the use of CVE data we are mimicking more closely the behavior of an human inves-
tigator and we keep this project better scalable. For the approach in this paper we opted
to perform the patch finding using mainly the references, particularly searching for refer-
ences towards version control platforms. Where more targeted heuristics can be applied,
for instance the heuristic used for processing GITHUB issue references is to scan for commit
references within them. Since our approach is based on the CVE data references and does
not simply derive from larger aggregations, all commit references we identify should be
relevant to the CVE. We want our approach to be fully automated to ensure that our is also
more sustainable for the growing number of CVEs. Our approach is somewhat similar to
the approach in the paper by XU ET EL. [27]. However, in contrast to the approach of XU ET

AL. we do not build a reference network nor do we filter out candidate commit our approach
finds.

Another method for finding vulnerable code, that we introduce, utilizes the information
on the metadata of vulnerable PURLs and implicitly the non-vulnerable PURLs. By ex-
amining the differences between the vulnerable and non-vulnerable package versions one
can come to an (over) estimation of the vulnerable code. This method will almost certainly
capture irrelevant code changes, but we obtain the guarantee that we capture any changed
code related to a vulnerability.

5.2 Methodology for the CVE data collection and patch finding

Starting from a CVE to get more fine-grained details about the vulnerable code and the
actual impact the vulnerability has 2 things have to be known. First the actual vulnerable
package has to be known, in our approach represented by PURLs, to get the vulnerable
metadata. For these packages to get more fine grained reporting, on a finer level within
these package the vulnerability has to be identified. Thus the actual vulnerable code has to
be identified, e.g. in the form of method signatures or classes. As mentioned this can be
achieved with the code extracted from the patches identified during the patch finding which
uses the CVE data.

This section discusses the methodology of the first part of pipeline for getting from CVE
data towards the actual vulnerable code mapped towards a CVE. From the starting dataset
mentioned in Chapter 4 the data gets processed and patch finding is done.

Data collection First the starting dataset of CVEs as described in Chapter 4 is collected.
The data from the different data sources is collected through downloading/cloning or
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Figure 5.1: Part 1: Collection and patch finding

requesting the data, with the methods being dependent on the way the sources made
the CVE data available.

Parsing of the data into a Vulnerability Object The collected data is parsed into a
Vulnerability Object so that there is a uniform format the pipeline can work with.
If a CVE is present within multiple sources the different Vulnerability Objects with
the same CVE ID are merged without data loss within this process. During the pars-
ing there is one important difference compared to the NVD format. The vulnerable
packages in NVD CVEs are represented by Common Platform Enumeration (CPE)
ids. CPEs are mainly used by the NIST and provide a standardized format to identify
software, hardware and operating systems. However CPE don’t necessarily point to-
wards for example the distributor or code location of the package which is what we
are mainly interested in for getting finer grained details, this information however is
included in the PURLs. Additionally with a PURL it is possible to distinguish more
directly the package manager and thus also the programming language. Therefore it
was opted to save all vulnerable packages and versions as PURLs instead of CPEs.
In this process the use of the SCANOSS/PURL2CPE project1 was employed for getting
the mappings of CPE to their PURL. Another slight difference is that we elected to
translate the versions ranges to all versions within them, so we store all the individual
version entries as their own PURLs.

Source code Patch finding From the Vulnerability objects source code patch finding is
started. Patch finding looks to find code patches URLs by going through the refer-
ences of the CVE. The references are matched with regular expressions to identify
the version control platform references. Furthermore these references are matched
for their respective types of links corresponding to the same types as the GITHUB

commit, pull request and issue link types, i.e. merge requests are the same type as
pull requests. Each type has its own targeted heuristics, such as taking the closing
commit reference, to find further references towards the commit links.

Binary Releases Change finding Another change discovery method is the binary releases
change finding. Using the PURLs and the vulnerable ranges the vulnerable - non

1https://github.com/scanoss/purl2cpe
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vulnerable version pairs are identified per CVE. With this project being Java focused
these pairs consist of MAVEN PURLs. The choice was made in the binary release
change finding to focus on identifying vulnerable - fixed versions, as in practice it is
seen for CVE vulnerabilities that it is way less consistent and reliable to find non-
vulnerable - vulnerability introducing version pairs. For example it is not necessarily
the case that vulnerabilities are introduced in a single version upgrade, as sometimes
vulnerabilities are a result of a compound of changes within development. Meaning
that the actual introduction of vulnerability is likely to be way less clear cut between
versions. Also considered is that the vulnerability ranges seen in the data for exam-
ple indicate ’all versions until a certain version’ thus the occurrence of CVEs where
there are no non-vulnerable - vulnerable introducing version pairs. Furthermore the
availability of older versions for packages is less guaranteed. As older versions for
example get archived or are no longer hosted even. Using the PURLs and vulnerable
version ranges, vulnerable - patched version pairs are collected which consist of a last
in the range vulnerable version and a following non-vulnerable (patched) version.

Patch Extraction In patch extraction the changed code is retrieved from the patch commit
links by requesting the data from the commit links via for example the GITHUB API.
This Patch information is added to the Vulnerability Object.

These steps result in an intermediate dataset (from here on referenced as the ParsedVulns
dataset) where all code patches associated with a CVE are collected and linked to the CVE.

5.3 The reliability of commit links

Within the ParsedVulns dataset the patch links have been identified through the patch find-
ing. It is essential to find the right patch links, as this leads to collecting and associating
the right code to a CVE. However it can occur that CVEs don’t contain commit references
themselves, or on the other hand the identified commit links are not actually the correct
patch link. For achieving finer-grained vulnerability reporting we need to be able to find
encapsulating code mappings. Which depend on if we can even find commits for the code.
Moreover it is important that within the patch finding at least the correct commit links are
actually found. Therefore, it is important to evaluate both aspects: recovering commit links
and identifying the correct ones within them. A crucial part for these evaluations is estab-
lishing a ground truth on which these abilities can be evaluated on. For the ground truth on
recovering commits the NVD can be used. Furthermore given that PROJECT-KB is a man-
ually curated dataset, we can use it as a ground truth for evaluation the discovery of the
correct commit links.

The identified patch links are evaluated to measure the success of the patch-finding
process. This evaluation was carried out in two parts. In the first evaluation, a ground truth
was established using CVE patch link information from the NVD to assess how effectively
the patch-finding method recovers commit links. In the second evaluation, the collected
patch links were compared against the ECLIPSE STEADY (PROJECT-KB) dataset, providing
insight into how accurately the patch-finding process identifies the correct commit links.
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5.3.1 Can we recover commit links?

Since NVD is seen as a basis for most datasets it is the perfect candidate to evaluate the
recovery of commit links. By examining cases where there would be no direct information
about patch links from NVD itself the ability of recovering patch links can be assessed.
The NVD uses the ”Patch” tag specifically for references that should point towards a patch.
From this it can reasonably be assumed that all the ”Patch” tagged commit links are the
actual patch commit links or that the code within them, at the very least is highly connected
to the actual vulnerability. There it is important to find back as many of these references as
one can via the patch finding. Hence an evaluation for finding back the patch links inside
NVD is done.

Methodology For the evaluation initially to establish a ground truth all ”Patch” tagged
references received from NVD were taken and used for a ground truth to check if the commit
finding methodology works. This ground truth was extended with the non ”Patch” tagged
commit link, considering the results of the investigation that has been done for RQ1 where
it was found that the tag annotation might be inconsistent. As it was found that 90% of all
GITHUB commit links in NVD are tagged with the ”Patch” tag. And 78% of all GITHUB

Pull requests are tagged with the ”Patch” tag. Therefore a brief investigation into the non
”Patch” tagged commit links was performed. By manual checking 200 randomly selected
GITHUB commit links out of all 1267 non ”Patch” tagged GITHUB commit links, it was
found that 186 (93%) out of these 200 actually are patch commit links or at least highly
related to the patch. Thus the choice was made to perform the evaluation with a ground
truth that contains all commit links instead of only the ”Patch” tagged ones. The full list of
links manually inspected out of all non ”Patch” tagged GITHUB commit links can be found
at doi: 10.5281/zenodo.14219216.

To evaluate Part 1 of the pipeline on the ability of its patch finding, an evaluation parsing
run has been performed. The evaluation testing the ability to find commit links if these
would not have been present in a CVE. The first part of the pipeline has thus been run for
all CVEs from 1999-2023 for a total of 219489 CVEs. To be able to evaluate our solution, a
modified parsing was done for evaluation where all commit links and all ”Patch” tagged pull
request references from NVD were ignored for the test set. Simulating the situation as if
they were not present in NVD. It was opted to also remove these patch tagged pull requests
as in principal these are an 1 step away pointer towards the commit links. The patch finding
then proceeded as normal with the modified parsed CVEs, these modified patch finding
done CVEs were then evaluated for how well inside the patch finding the patch links from
the NVD ground truth were found back.

Starting with the Evaluation set of 19535 CVEs from NVD that contain a ”Patch” tagged
link or commit. Intersecting with the set of CVEs obtained from the evaluation parsing run
and filtering for commit or revision links we get a Comparion set of 14850 CVEs that
contain a patch link. These CVEs have a total of 17978 patch link that we are trying to
recover.
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Figure 5.2: NVD CVE recall: 46.5% Figure 5.3: NVD patchLinks recall: 41.5%

Figure 5.4: NVD ground truth recall evaluation results

Results Thus there is a NVD Evaluation set of CVEs which contains all CVE from NVD
that contain commit links and/or ”Patch” tagged pull links. These links from here on called
the NVD ground truth patchLinks. And there is a Parsed Set which consists of the CVEs
that were parsed and patch found without the NVD ground truth patch links.

The intersection of the CVE entries of this Parsed set with CVE entries of the NVD
Evaluation set results in a Comparison CVE set. From this the NVD ground truth patchLinks
have been filtered for only commits/revision links into a Comparison commit set. As after
the parsing and patch finding only commit links are saved into the patchLinks field (For pull
requests the merge commit or a list of all the commits within the pull request are stored).

In Figure 5.2 and Figure 5.3 the recall of finding back a commit from the NVD ground
truth commit links from the Comparison CVE set within the Parsed commit set can be seen.
With Figure 5.2 displaying the amount of CVE entries and recall for how many CVE entries
at least one NVD ground truth patchLink has been found back. In Figure 5.3 the recall for
all the patchLinks inside the Comparison commit set is seen.

We see that in the end for 46.5% of the CVE entries within the comparison set we have
found back at least one commit patch link. For the commit patch links themself we see a
recall of 41.5%. This shows that it is possible to find back some commit links through the
patch finding even with the absence of those in NVD. However we also see that both results
are less than 50% successful showing that our approach for patch link recovery misses the
majority of patchLinks.

Furthermore an investigation towards the precision has been done shown in Figure 5.5.
In Figure 5.5 we see the precision score of the commit links of the Parsed set. With a

precision of 62.7% and recovering an over estimation of other commit link amounting to
37.3%. Furthermore we achieve a recall 41.5% giving us a F1-score of 49.9%.

Both results for the recall and the precision indicate that the current implementation
does rely quite a bit on the property that there is an accurate starting link within the data,
from which the search can be started. It should be considered for the results that removal
of references towards patch links causes some of them to become impossible to recover
without manual effort. The absence of the patch links in our results can be attributed to a
combination of possible shortcomings in our approach and patch links becoming unrecov-
erable. The results do show however that we can still recover a significant portion of patch
links through our approach. Answering RQ2.1 we have shown that we indeed can recover
commit links for CVEs.
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17978 44237457

Comparison commit set

Parsed set

Figure 5.5: patchLinks recovery precision of the Parsed CVE patchLink set: 62.7%

EvaluationCVE PLFoundCVE TotalPLs FoundPLs additionalCLinks

1297 1195 1824 1824 1224

Figure 5.6: Eclipse steady evaluation

5.3.2 Can we find the right commit links?

Comparing against the ground truth established from NVD mainly investigates the capa-
bilities of the pipeline to find patch links through information that is not the patch links
themselves without knowing them already directly from NVD. With the results seen in
Figure 5.4 we see that for some CVE we can still in that situation can find commit links.
However more importantly to know is if within these commit links actually the right com-
mit links can be found. Furthermore in the NVD ground truth evaluation any direct patch
link information was ignored and thus this evaluation does not give an full overview of the
actual patch finding capabilities of the patch finding. Since PROJECT-KB is a manually cu-
rated dataset with information on the correct commit links for a CVE vulnerability it can
be used to evaluate if the patch finding actually finds the right commit links. Thus another
evaluation against the manually curated PROJECT-KB dataset is done. Which thus also shows
the performance of our fully automated collection approach vs a manually curated set.

Interestingly running an evaluation against the PROJECT-KB dataset where the PROJECT-
KB dataset was included in the parsing showed that the PROJECT-KB dataset itself was not
entirely consistent. All PROJECT-KB CVEs were compared to the resulting CVEs of the
pipeline without any filtering. It was evaluated how many CVEs had a patch link found
back for them (PLFoundCVE), how many patchlinks were found (FoundPLs, this is expected
to be 100% given that the PROJECT-KB is also included as a source) and how many other
over estimated patchlinks were found (additionalCLinks). The result of this investigation
is shown in Table 5.6

The main point of interest to take from Table 5.6 is that for not every CVE a patch link
was found back, however 100% of all patchLinks were found. This happened because 101
CVE entries from the PROJECT-KB dataset do not actually containing any information re-
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garding patch links. E.g. CVE-2020-24750 only contains artifacts information. Interestingly
this thus shows that even within a largely manually curated dataset such as PROJECT-KB the
data format itself is not 100% consistent.

Methodology For the evaluation against ECLIPSE STEADY, the full dataset of PROJECT-KB

is seen as ground truth. The parsing and patch finding pipeline is run with the exclusion of
the parsing of the PROJECT-KB data. Our project pipeline retrieves CVE data from the differ-
ent sources like NVD and the GITHUB ADVISORIES. However the CVE entries in PROJECT-
KB were published/last updated anywhere in the range of september 30th 2020 - july 24th
2023 with the bulk being released in 2020/2021. Since this time the corresponding CVE
entries in NVD and GITHUB ADVISORIES have been open to updates of their information.
To ensure a fair comparison, any discrepancies in starting/available data at the time were
addressed by aligning the datasets. For the comparison with ECLIPSE STEADY, we adjusted
our solution’s CVE dataset to reflect its contents at the time of PROJECT-KB’S release. This
has been done with the help of the NVD CVE CHANGE HISTORY API for the entries received
from NVD. For GITHUB ADVISORIES this has been done by accessing the change history of
the json statement files themselves.

For each entry in PROJECT-KB it is evaluated whether the patch finding was able to find
back the same commits that are in the PROJECT-KB ground truth. First the CVE set after only
parsing the collected CVE data is evaluated against the PROJECT-KB ground truth. Any patch
links that are found here were thus already available from the data collected itself directly.
Some patch links are for example already available from the NVD data. Secondly the CVE
set after patch finding has been evaluated against the Project-kb ground truth. By looking at
the difference we obtain an indication as to how our patch finding approach adds value by
finding additional correct patch links. Some pre-processing and filtering has been done for
the PROJECT-KB dataset and our evaluation set. Considering the the whole of the PROJECT-KB

dataset as an evaluation set, the CVEs that were not parsed in our approach were filtered out.
For example CVE-2018-7574 which is a rejected CVE and was thus not parsed. Furthermore
as seen in Figure 5.6 some entries from PROJECT-KB themselves actually had no commit link
data. These have thus also been removed, this filtering resulted in a Valid Set with which
the evaluation has been done. An evaluation for the recall of CVEs where at least a patch
link has been found back after both of the 2 stages is done. And an evaluation on the patch
links themselves after the 2 stages is done.

Results In Figure 5.9 the results are shown for the recall of CVEs where we found back
at least one patch link for them. Figure 5.12 shows the results on the evaluation of the
patch links showing both the recall and the precision. Figure 5.7 and Figure 5.10 show
the respective results after parsing but before the patch finding. Figure 5.8 and Figure 5.11
show the results after the patch finding has been performed.

As shown in Figure 5.9 for the pre-patch finding we achieve a precision of 69.5% and
a recall of 30.5% we obtain an F1 score of 42.4% For the post patch finding we achieve
a precision of 53.4% and a recall of 47.0% and we obtain an F1 score of 49.9% We show
that in the patch finding of patch links we achieve an increase of 16.5% for the recall of the
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Figure 5.7: pre-patch finding CVE recall
Eclipse steady: %

Figure 5.8: Patch found CVE recall Eclipse
steady: %

Figure 5.9: CVEs with a patch link recall

1824 244556

Pkb patchlink set

Pre patch finding set

Project-kb patchlink evaluation

Figure 5.10: Patch links evaluation of the
parsed pkb excluded CVEs set with re-
call: 30.5%

1824 749857

Pkb patchlink set
Parsed patchlink set

Project-kb patchlink evaluation

Figure 5.11: Patch links evaluation of the
mapped pkb excluded CVEs set with recall:
47.0%

Figure 5.12: Correct patch link discovery evaluation
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PROJECT-KB patch links. Interesting to note is the increase of finding at least one patch link
for an additional 297 cves, given that in total an additional 301 patch links are found. Indi-
cating that most of these extra patch links were found for CVEs that not yet had any patch
links found and that the patch finding by finding these patch links thus mainly improved the
coverage as opposed to the 4 patch links that would only mainly impact precision. How-
ever also here still less than 50% of the patch links is found back showing that the manual
approach is still very necessary for finding the right information.

Since our solution only goes off information that can be directly found from the CVE
information finding the correct commit highly depends on the references that are actually
being associated with a CVE. For example in cases where a CVE is published but fixed
in the future, finding the right commit link highly depends on if the CVE gets correctly
updated according to the fix being published. Furthermore our solution might under perform
on the recall metric when compared to solutions that actually scan and try to find right
commit links of whole GITHUB projects. But our approach does show that even with less
computation effort, being more scalable and maintainable, an increase of patch link finding
can be achieved. We have answered RQ2.2 by showing that we are able to obtain an F1-
score of 49.9% for finding the correct patch links. However more importantly to point out is
that our approach meaningfully was able to improve on the current directly available data.
Thus our approach is shown to be a good candidate for bridging the CVE reporting and
performing manual data enrichment.

5.4 Conclusion for finding commit links to a fix for a CVE

The results in Section 5.3 show that our approach for parsing and subsequent patch finding
is able to find commit links, even without their immediate presence within the NVD data.
Furthermore we have shown that the patch finding actually contributes a significant amount
towards finding back correct commit links. From both of the results it can be concluded that
the parsing and patch finding of our automated approach is able to meaningfully contribute
towards finding patch code that should be associated with a CVE vulnerability. However
considering that the results we achieve are around 50% for the F1-score, our approach is
not a replacement for doing manual work. Despite this the results are promising, with
room for improvement, showing that this approach can aid in the process of patch finding.
Even though the enrichment still requires manual efforts to ensure the best results, our
approach can support this immensely by providing some of the first steps for the enrichment.
Coincidentally both F1 scores for the NVD ground truth evaluation and for the ECLIPSE

STEADY evaluation on the patch links end up the same as 49.9%. Although both evaluations
and their results are expected to be related to each other and similar results are expected,
from the difference in precision and recall of the results it can be concluded that they are
not actually directly related to each other.

In this chapter we answered RQ2 by demonstrating that, finding commit links point-
ing us towards code patches for vulnerabilities, can indeed be accomplished. We have
shown that for both aspects of identifying commit links our approach can offer valuable
contributions. Given that this approach is able to recover commit links and actually con-
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tribute towards finding the correct commit links it is suggested that efforts should be made
for incorporating the concepts of our approach within the current processes for enrich-
ing/updating CVEs. The implementation of our automated approach can be found on
https://github.com/DanDanBro/fg-cve-aggregator.
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Chapter 6

How does code-mapping granularity
impact vulnerability detection?

To achieve finer-grained, code-centric vulnerability reporting, it is essential to investigate
the impact of vulnerabilities. This is accomplished by addressing two research questions re-
lated to the exposure and reachability of vulnerabilities: RQ3 How do commit, pull request,
and release version patch mappings of CVE information affect the exposure and reacha-
bility results of a vulnerability? RQ4 How do method and file-level granularity mappings
influence the exposure and reachability results of a vulnerability?

Working towards the goal of finer-grained vulnerability reporting, we obtained the
parsedVuln dataset, as described in Chapter 5. At this stage, the code associated with a
CVE is known. However, for finer-grained reporting, it is crucial to determine whether
this code is actually exposed or reachable by a package. To do this, we need mappings of
the vulnerable code to the corresponding methods and classes/files within the vulnerable
packages.

Extracting exact lines of code for each package from the patch links is impractical. A
more feasible approach is to map the vulnerable code to the methods and/or classes/files
affected by the patch. This mapping enables analysis of the call graph to assess reacha-
bility and exposure, allowing for static analysis of packages and facilitating finer-grained
vulnerability reporting.

The actual impact of vulnerable code on a package can be assessed through exposure,
which determines whether the vulnerability is reachable from public or protected methods
or classes. If no exposure is detected, it may indicate that a package is not vulnerable,
and, when used as a dependency, it could eliminate warnings from a normal package-level
reporter. However, it is important to consider that the absence of exposure could be due to
factors like code refactoring, which may cause false negatives where methods are no longer
detected.

Another aspect of vulnerability impact is reachability — how the vulnerable code is
accessed by other projects, providing insight into the vulnerability’s effect on package users.
For example, if vulnerable methods have limited exposure but are found to be frequently
reached by other projects, it suggests that the vulnerability resides in critical code within
the package.

32



6.1. Aggregation Layers of Change Discovery

This project aims to improve the precision of vulnerability reporting, ensuring that all
warnings are actionable. However, we recognize that the mappings of vulnerable code to
CVEs are still estimates, which implies varying guarantees of recall and precision. Striv-
ing for higher precision could result in a loss of recall. This trade-off must be examined,
and different approaches should be evaluated for their trade-offs between precision and re-
call. From this, the idea emerged to investigate different levels of aggregation for the code
mappings, as well as the appropriate level of granularity for vulnerability reporting.

This chapter discusses the second part of the project pipeline, where the parsedVuln
dataset from the first part is used to map the vulnerable methods/files/packages. Using these
mappings, the impact of vulnerabilities is evaluated through static analysis of the program
to determine the exposure and reachability of vulnerable code. This results in the final
MappedVulns dataset, which supports call graph generation, call detection, and vulnerability
usage/exposure detection. Additionally, this chapter addresses RQ3 and RQ4, exploring how
mappings at different levels of granularity affect vulnerability reporting and their impact.

6.1 Aggregation Layers of Change Discovery

Improving precision through the use of fine-grained information, obtained from patch com-
mit links, may lead to a loss of recall regarding vulnerabilities. The challenge with mapping
code from commits is that they may not exclusively contain the changes relevant to the
vulnerable code, or they might only include part of the patch for a given vulnerability. As
a result, using the patch commit data often provides an estimation of the vulnerable code
rather than an exact mapping. The primary concern with relying solely on patch commit
code is the potential for false negatives, where some vulnerabilities may not be detected.
This is emphasized in Section 5.3.2 where our approach demonstrated that is it not always
successful in identifying the correct commit.

Furthermore it was shown in 5.3.1 that the Parsed Set contains 37.2% of (over esti-
mated) commit links outside of the ground truth and for 5.3.2 this even is 46.6%. This led
to the idea of obtaining a more conservative overestimation of vulnerability. The most ex-
treme form of overestimation is already seen in dependency checkers that use package-level
warning systems. In these systems, if the code within a package—or, more specifically, for
Java packages, the combination of groupId, artifactId, and version (GAV)—is vulnerable,
the GAV as a dependency automatically raises a vulnerability flag to ensure no false neg-
atives. However, as discussed earlier, this approach results in very low precision because
it overestimates the vulnerability by flagging all non-vulnerable code within the package
as reachable. This concept of overestimating vulnerable code leads to new levels of CVE
information that should be considered for mapping code. These levels include the package
metadata level and the commit information level, with commits being more precise but risk-
ing lower recall of the actual vulnerability. Between these levels, one could also examine
the pull request (PR) level, which aggregates several commits and may introduce additional
information or unrelated noise, and the binary releases information level, which captures all
relevant changes describing a fix, but also contains significant noise. Each of these levels
involves trade-offs in terms of precision, recall, and the guarantees regarding the correctness
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of code associations. In the following section, we will discuss these different levels of infor-
mation gathering and evaluate their respective benefits and challenges in finding vulnerable
code.

CVEs usually refer to vulnerable packages through package names and versions, yet,
these pointers could be resolved on multiple levels to find the associated code. a commit
is the most fine-grained information available, zooming out would give you a PR, which
might already aggregate several commits (which might include additional information about
a fix, but also introduce unrelated noise), and ultimately, the release level, which definitely
contains all relevant changes that describe a fix, but also a lot of noise. In this section,
we will discuss for the different levels of information gathering towards vulnerable code.
Each level has its own trade offs in terms of precision and recall but also on the guarantees
regarding the correctness of the code association.

Patch commit links information The finest granularity, the commit level where only the
changed code within the commits is marked vulnerable. Here all the patch links
extracted code is used to form the vulnerability code estimation. This level should
provide the most precise results given as the estimation is purely based of the associ-
ated commits. With commits in common practice being focused on specific tasks for
changing the code.

Pull requests information The pull request (PR) level uses all the commits within the
same pull request as the patch links collected to estimate the vulnerable code. This
approach builds on the patch links identified within the ParsedVulns set. For each
patch link, the goal is to identify and retrieve all other commits that are part of the
same pull request, if applicable. The idea behind using the pull request level is to
overestimate the possible vulnerable code, increasing the likelihood of associating
the vulnerability with related code. This improves the chances of flagging the vulner-
ability but results in lower precision regarding the exact vulnerable method(s). Pull
requests often introduce changes in code related to fixing an issue, meaning com-
mits within the same pull request are typically connected. Therefore, capturing all
commits in a pull request has a higher likelihood of capturing the complete fix.

Additionally, vulnerability fixes are sometimes spread across multiple commits, so
using pull requests helps ensure that all relevant changes are captured. Thus, the
expectation is that using the pull request information level offers improved recall at
the cost of reduced precision.

A potential downside of the pull request level is the low availability of data. Since not
all commits are part of a pull request, this approach may not be applicable for many
CVEs, limiting its overall usefulness.

Binary releases A higher level of overestimation can be achieved at the release/version
level. In package-level detection, warnings are typically issued based on the pack-
age and its version (GAV). However, by specifically analyzing the code changes be-
tween a vulnerable and a non-vulnerable version (preferably consecutive versions),
one can gain insights into the actual changes that address the vulnerability. This
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release-level information, like package-level detection, guarantees the absence of
false negatives. A vulnerability would have to be caused by a change between the
two versions, and capturing all changes ensures that the vulnerability is identified.
At the release/version level, the overestimation of vulnerable code is expected to be
significant. However, not all code within a package is necessarily changed between
versions, so this approach has the potential to increase detection precision while main-
taining a very high recall.

Additionally, code change discovery via (binary) releases/versions can be facilitated
using the Affected Configurations (PURLs) field. This is particularly useful for CVEs
that lack patch links, providing a solid alternative for identifying changes.

Package GAV level The highest CVE information level is the package version level, where
a vulnerable PURL indicates that a particular GAV is affected. At this level, all code
associated with the vulnerable GAV is considered vulnerable. Consequently, any
usage of the package would be flagged for the vulnerability. This approach mirrors
what is commonly seen in dependency checkers, where the inclusion of a vulnerable
dependency results in all code within that dependency being flagged as vulnerable.
While this level guarantees perfect prevention of false negatives within a GAV, it also
leads to a significant reduction in precision.

The four levels differ in sizes of vulnerable code estimation. Where commit data is a
subset of the pull request data, which in turn would be a subset of a binary release patch.
It is therefore interesting to understand how they affect the tracability of vulnerabilities in a
code base.

6.2 Associating CVEs with code on different granularities

For the exposure and the reach ability of course ideally only the usage of vulnerable meth-
ods should be flagged. However arguments can be made for not even allowing files/classes
that have a vulnerability inside them to be used. As already using a vulnerable class indi-
cates a higher potential risk of eventually using the vulnerability later in the development.
Furthermore using a coarser granularity would mean you let less pass by the checker which
should thus give a higher degree of confidence of avoiding false negatives.

Another angle for mapping code would be the granularity level. As code specifically is
mapped to methods to obtain precise results. However in programming languages such as
Java, methods are part of classes/types. Classes/types are the middle level between packages
and methods. Mapping CVEs to types/classes is already suspected to improve the precision
with regards to package level. The main motivation for flagging classes/types would be
to enable the option of over estimating additional relevant vulnerable code, beyond what
can be determined from the CVE information. Furthermore, it could be argued that one
should not only avoid using vulnerable methods but should also refrain from using any
vulnerable classes. Using a vulnerable class, even without directly calling a vulnerable
method, increases the likelihood that future development could inadvertently make use of
the vulnerability. In the same vein this could be argued for the whole package level of
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course. However with the package level as mentioned the precision is worse, mapping
towards the class granularity level could however provide a middle ground for improving
precision but having a coarser grained reporting than method level granularity. Thus an
investigation into the exposure and reach ability of vulnerable classes is warranted. Where
files/classes that have any vulnerable code are marked whole as vulnerable.

6.2.1 Granularity levels

We distinguish three different granularity levels, the method level, the class level and the
package level. Each of these levels are marked vulnerable based on a subpart being iden-
tified as vulnerable. Moving up from the method level, larger aggregations of code are
marked as vulnerable according to each level.

Method level The finest granularity level, the method call level, directly examines the
method calls within a project and flags only the usage of vulnerable methods. This level
provides the highest precision for detecting both the presence and location of vulnerabilities,
apart from knowing the exact lines of vulnerable code. By performing a method-level search
within call graphs, it is possible to achieve the most accurate results.

Class level The middle level of granularity focuses on the types/classes used in projects.
At this level, all types/classes that encapsulate vulnerable methods are marked as vulnera-
ble, and any usage of a vulnerable type/class triggers a vulnerability flag. This approach
increases coverage compared to the commit level while maintaining better precision than
the package level. An additional advantage of using class-level information is its ability
to capture vulnerabilities that are not tied to specific methods. By monitoring file changes
within class configurations, it is possible to detect static code changes that may impact the
entire class. While configuration vulnerabilities are outside the scope of this project, the
class level is well-suited for capturing such static code changes. An alternative would be to
scan code line by line to detect specific usages, but this approach would require significantly
more processing. Therefore, the class-level granularity strikes a balance by estimating vul-
nerabilities efficiently.

Vulnerable-package level At the coarsest level, which mirrors many current CVE detec-
tion systems, is the package level. In this approach, if any vulnerable code is identified
within a package, the entire GAV (groupId, artifactId, version) is marked as vulnerable,
and all methods and classes within the package are flagged as vulnerable. A distinction
is made between two related concepts: the package GAV CVE information level and the
vulnerable-package granularity level. The package GAV CVE information level relies on
CVE data that indicates a specific GAV is vulnerable. At this level, the assumption is that
all code within the package is vulnerable, and therefore, any usage of the GAV should be
flagged as vulnerable. On the other hand, the vulnerable-package granularity level is based
on the identification of vulnerable code (methods or classes) within the package itself. If
such vulnerable code is found, the entire GAV is then marked as vulnerable, reflecting the
granular analysis of the package’s code.
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Figure 6.1: Part 2: Mapping

6.3 Methodology for mapping the encapsulating method/types

In the ParsedVulns dataset, we have access to the locations of the changed code. To analyze
the vulnerability exposure and reachability, it’s essential to map this changed code to spe-
cific methods and classes. To achieve this mapping, two different approaches are used, each
corresponding to different CVE information levels. The first approach relies on the source
code extracted from the patch commit links. This method allows us to identify methods
and classes directly within the context of the source code changes. The result is a set of
methods, each associated with key attributes such as class name or filename, access modi-
fiers, return type, method name, parameter types, and any exceptions. In Java, a method is
uniquely identified by the combination of the class, return type, method name, and param-
eter types. While access modifiers and exceptions are not strictly necessary for identifying
unique methods, they are also recorded as they can contribute to refining the method sig-
nature and increasing precision. The second approach uses binary releases and works with
bytecode. This method involves analyzing compiled bytecode, which enables us to map the
changed code to methods and classes in a similar way to the patch commit links approach,
but with a focus on the compiled output rather than source code. For class identification, a
broader approach is taken: any file that has changed, whether due to modifications in meth-
ods or static fields, is recorded. Since patch diffs typically provide filenames rather than
class names, filenames are used for this mapping. While it is common in Java for filenames
to match the names of the classes they contain, using filenames could lead to mismatches if
there are multiple top-level classes within a single file.

This vulnerable code that is mapped to the CVE has to be mapped to within the actual
code of the vulnerable packages. As based on this mapping of vulnerable code within the
packages the finer-grained vulnerability reports can be generated. Figure 6.1 shows the
steps within the second part of the pipeline to obtain a finer grained vulnerability report
based on the ParsedVulns dataset presented in Chapter 5.

CVE to product version mapping CVE to product mapping builts on the work done within
the data parsing of part 1, where the affected product and its versions are identified
through the purls. In this step here the binary releases (jars) are collected via the
Purls for later use. The Purls are filtered on containing ”maven” and are then fed into
a maven resolver for getting the jars.

Source code enclosing methods and files/classes mapping Enclosing file mapping takes
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the patches from patch extraction and from the source code of these patches maps the
CVE to the affected methods and files/classes. Within the mapping of the code there
are some important factors to consider for the different levels of mapping code. For
the commit, pull and PROJECT-KB commit information levels all the code within the
diffs from the commits is considered. Within this the method signatures of encapsu-
lating methods are determined. However static changes within code such as modifi-
cations within class fields are not necessarily bound within encapsulating methods.
This code cannot be mapped towards methods, however to preserve the knowledge
about these code changes they are stored within < clinit > placeholder methods. This
thus means that for files where only static information is modified the knowledge is
preserved that the file was modified. This ensures that within the mapping for classes
these files and thus classes are still marked vulnerable. Within the diffs extracted
from the patch links for the file/class granularity mapping all file names within the
diffs are stored. The methods signatures are identified and extracted with the use of
regular expressions for Java method signatures.

Bytecode enclosing methods and classes mapping Bytecode analysis between the vulner-
able - patched releases pairs is done obtaining the changed methods and classes be-
tween the versions. Discovering changed code between versions is possible in multi-
ple ways. Our method utilizes binary releases which are discovered through the use
of the PURLs. However another possible solution would be the use of the github
releases. As it is possible on GITHUB to obtain the source code diff between release
tags. These release tags could be identified with the help of the version parts of the
PURLs. It was decided to use the binary releases mainly because of the capabilities
of the PURLs. PURLs themselves indicate, through the <type> part, the protocol for
the package from this potentially both the programming language as well as the dis-
tributor protocol can be recognized. Via the package manager distributors obtaining
the binary release is fairly straightforward. Whereas for GITHUB projects some effort
has to be made to find the releases. For example the owner of the project might not
correspond with the <namespace> of the PURL. The use of a release reference is also
not very viable as the empirical study in Chapter 4 shows that a minority of CVE have
such a reference.

For the release bytecode analysis ASM1 was used. For all the vulnerable - patched
releases pairs the bytecode of the 2 versions in a pair were compared. From here
all the methods that were either removed or modified were extracted to flag them as
vulnerable. It was opted to not actually store and flag any methods that were added in
the patched release as although this could be part of a patch the method itself would
never be found back anyway in the vulnerable release. Thus forming the enclosing
methods and classes estimation of the vulnerability.

Call graph search Using the binary releases from the CVE to product mapping the call
graphs can be generated. For the call graph generation the WALA FRAMEWORK2

1https://asm.ow2.io/
2https://github.com/wala/WALA
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is used. Using the in built AllApplicationEntrypoints class of WALA a 0-CFA

callgraph is generated (reflection options set to ONE FLOW TO CASTS NO METHOD INVOKE/NONE

for performance reasons). It was opted to use a 0-CFA call graph as it allows a con-
servative approach for dealing with overrides and extendings for methods/classes. Us-
ing these call graphs combined with the method and classes identified in the enclosing
methods and classes mapping the call graphs can be searched for the reachability and
exposure of these mappings.

Finer grained vulnerability reporting Based on the findings within the call graph search
we are able to generate a finer grained vulnerability reporting.

The dataset that results from these mappings steps is the referenced within this paper by
the MappedVulns dataset. With both the final dataset and the call graph search formulated,
both the set and the vulnerability reporting can be evaluated.

6.4 Vulnerability (over) estimation comparison to Eclipse
steady

As PROJECT-KB is a manually curated dataset comparison against eclipse steady is done. The
idea behind this comparison is to evaluate the over estimation of vulnerable methods. So
how much more often does the full pipeline with the latest update flag a project vulnerable
in comparison to eclipse steady. As comparing the amount of methods that are associated
with a CVE should already give an indication/explanation towards the differences later for
the exposure and reachability evaluations the exposure and reachability of the vulnerability
in the packages.

From the programmers point of view, directly comparing the actual method sets that
are associated with a CVE. Thus the F1-score for the datasets of vulnerable methods from
eclipse steady and our dataset has been calculated.

For the methods sets evaluation the sizes of the eclipse steady methods vs the MappedVulns
methods sets (This thus also includes all the eclipse steady methods, having 100% recall)
are compared. All eclipse steady method sets are compared to their counterparts in the
MappedVulns set. We see the average difference of the MappedVulns method sets sizes with
respect to the eclipse steady method sets sizes. From this evaluating 551 sets we get an
average size difference of 32.07%, giving a precision of 75.71% and a F1-score of 0.8616.
However it was noticed that there was an extreme outlier case within these method sets.
The method set for CVE-2020-13921 showed an increased size of 7560% which is over 30
times the average increase. Furthermore this increase is 9 times as large as the second
largest increase. Therefore it was decided to evaluate the dataset again with the exclusion
of CVE-2020-13921. This resulted in a evaluation of 550 method sets getting an average size
difference of 18.38% giving a precision of 84.51% and a F1-score of 0.91.

As earlier presented, 1224 extra over estimated patch links have been found, however as
is also shown in 6.2 this results in 2000 extra over estimated methods that would be flagged
vulnerable. This gives us a recall of 0.991, precision of 0.858, and a F1-score of 0.919.
From this we show that although we found a substantial amount of patch links outside of
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Figure 6.2: Venn diagram for the method in PROJECT-KB and mapped method

the ground truth, these extra patch links result in a relatively smaller impact on the actual
code (over) estimations we obtain. This over estimation is even less noticed in the viewpoint
of the user where in over 95% of the cases the reachability analysis for MappedVulns and
eclipse steady report the same results.

6.5 How do (different) CVE impact code mappings?

The CVE to code mapping levels can be expressed in 2 dimensions. The first dimension is
the CVE information level, described in section 6.1 where this paper investigates the level
of patch information that is collected. The second dimension is the granularity level from
section 6.2 which inspects the level on which projects are using vulnerable packages. Inves-
tigating the granularity level in terms of method, file/class and package level, the vulnerable
package is thus marked vulnerable on.

It is important to evaluate what the actual impact of our work/ the mappings of CVE to
code is. As stated in introduction the aim is to reduce the amount of false positive warn-
ings or in other words improve the precision of vulnerability reports. For the impact of
vulnerabilities on packages it is important to consider 2 sides of the CVE mappings to code.

First is the view of vulnerability exposure which for Java code means what public and
protected code has reachability to the vulnerability. This would thus indicate how much of
a dependency is actually vulnerable or not. The other side to consider for the impact of
mappings is the practical impact on actual usage of a package. As a vulnerability could for
example be small only affecting a small set of methods/classes in a package. However if the
vulnerability is inside important code, inside features/the core of what people mainly use
from that dependency, the impact of the vulnerability would be different than if for example
a whole feature would be vulnerable but one which is not often actually used. For example
take the WALA framework used in this project, a vulnerability within the callgraph with for
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example the intermediate representations (IR) would have a different (larger) impact than a
vulnerability that is inside code to turn a CGNode into json. Thus it is important to look at
the impact for users.

Since this paper focuses on Java packages the CVEs were filtered for indicating a vul-
nerable maven PURL. This resulted in a set of 2176 CVE which have a maven vulnerable
purl. For both evaluations the CVEs evaluated were randomly picked out of this set.

6.5.1 Vulnerability exposure

To quantify the extent to which vulnerabilities impact their affected package, we want to
quantify how much of them is exposed through transitive method calls. This will provide a
better understanding of the likelihood that dependents are actually affected by the vulnera-
bility. To measure this, we conduct a analysis with the MappedVulns dataset, in this analysis
we establish the exposure of vulnerable code through public and protected methods. Where
we show that our approaches using more fine grained code change mappings can achieve
better precision than dependency checkers.

Methodology For this evaluation, we compare the exposure of public and protected meth-
ods across different levels of granularity in the vulnerability mapping. To do this, for each
CVE, all vulnerable packages associated with that CVE are collected. The vulnerable pack-
ages are identified through the vulnerable PURLs (Package URLs) present in the CVE data.
Since this project focuses on Java code, the Maven PURLs are resolved via Maven Cen-
tral, and if available, the corresponding JAR files of the vulnerable PURLs are retrieved.
Once the JAR files are obtained, the call graphs for these projects are generated. The next
step is to search for vulnerable methods associated with the CVE across these call graphs.
The methods flagged as vulnerable are determined based on the different CVE information
levels. After identifying the vulnerable methods within a package, a backward search is
conducted to find all the callers of these vulnerable methods. This backward search should
result in identifying all public and protected methods within the package that could po-
tentially call a vulnerable method, either directly or indirectly. The focus of this analysis
is to determine the exposure of the vulnerability within the package. Public methods are
exposed to external access, so they are naturally of concern. Protected methods are also
included in the analysis since they may be called through inheritance in subclassed code,
making them potentially accessible and vulnerable in a different context. This approach
allows for a comprehensive assessment of the vulnerability’s exposure in the package, both
from directly accessible methods and those that might be accessible through inheritance or
other means.

For the exposure evaluation for every CVE entry for every (maven) vulnerable purl in
that CVE the jar of the release was retrieved and a WALA framework callgraph was gen-
erated. Using this callgraph a search for matching identified vulnerable methods/classes in
the mapping to actual methods/classes in the callgraph is done. From any found vulnera-
ble method/class in the callgraph a backwards search through all callers of the vulnerable
method/class is done. Along this backwards search the set of all public/protected meth-
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Granularity Level %

CVE Information JAR File Class Method #Cases #CVEs

GAV + Project kb commit links 64.9 13.7 6.4 7365 127

GAV + commit link 69.0 15.1 6.4 7465 130
GAV + commit’s pull requests 75.3 38.8 28.4 124 2
GAV + binary releases 95.0 87.9 56.9 7234 116

Figure 6.3: Exposure of Vulnerabilities

ods/classes that could (indirectly) call a vulnerable method is extracted. This thus gives the
set of exposed vulnerable methods.

As mentioned for the class granularity level all methods within a class with vulnerable
code are mapped and flagged as vulnerable. For the exposure, if another method from a non
vulnerable class would call a method from a vulnerable class the class of that method stays
marked as non vulnerable. As marking that class as vulnerable would give an avalanche
effect which would give an over inflated picture of the vulnerability exposure.

Due to the nature of jars and thus inclusion of code that might not actually be part of a
package but of one of its dependencies some filtering was done for the exposed methods.
This was done by checking parts of the class paths for corresponding with part of the purl.

Results In Table 6.3 the results for the exposure of vulnerable methods/classes are pre-
sented. Here we present the exposure of vulnerable public/protected methods as a percent-
age of all public/protected methods. The results are obtained by taking a double average
over the exposure of the GAVs and CVEs. First within a single CVE the exposure of all
GAVs within that CVE is averaged. Then our results are obtained by averaging over the
CVE percentages. This is expressed as number of found public or protected methods that
can reach a vulnerable method as a ratio of the total number of public or protected methods
in the vulnerable packages.

The package granularity level is the ratio of packages where vulnerable code has been
found. For the type and method levels the double average of the methods is taken. So over
the ratio of methods within a packages the average is taken. This ensures that each package
is as important as other packages. Given that some packages have more or less public or
protected methods than others.

To note here is also that for some versions no vulnerable exposed methods or classes
were actually found. This is mainly due to no actual vulnerable method being found at all
inside those versions call graphs. This on the one hand could indicate as also seen in Eclipse
steady that some versions in the vulnerable versions range are not actually vulnerable. Or
on the other hand this could be due to other factors such as the possibility of code refactor-
ing between versions. Where thus some code and classes have been identified within the
mapping that are not present in that package version. Thus leading that some vulnerabilities
might actually be present in the code, however due to refactoring the vulnerable methods
found in the patches are not reflected in these ’older non refactored’ different versions.
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For example CVE-2018-1257 within NVD points towards Spring framework version.
Evaluating the spring-core versions no exposure is found of vulnerable methods. How-
ever when evaluating the spring-messaging versions the vulnerable methods are found and
exposure is found.

Furthermore when comparing the different levels of CVE information it is noticed that
the cases where commit’s pull request information can be used is very low. Using commit’s
pull request information might provide a broader over estimation the low number of cases
it can actually be used makes this a nice extra conservative approach. Although very little
extra computation is needed for the commit’s pull level it would not be very viable to rely
on this solely for getting more conservative reporting.

6.5.2 Vulnerability reachability

To better understand the impact of vulnerabilities on dependent projects, we quantify how
many vulnerabilities are exposed through transitive method calls. This helps us assess the
actual exposure of the vulnerability within the dependent projects, providing a clearer pic-
ture of the vulnerability’s real-world impact. The study utilizes the MappedVulns dataset,
which contains the mappings of vulnerable code to methods and classes. In this evalua-
tion, we focus on reachability, specifically investigating how dependent projects interact
with and use vulnerable packages. While exposure alone gives insight into how acces-
sible a vulnerability is within a package, it does not fully capture the impact on depen-
dents. For instance, even if a class granularity level shows more exposure, it might not
necessarily affect the practical risk if a dependent has already been flagged vulnerable due
to a method granularity-level flag. Therefore, this evaluation takes reachability into ac-
count—determining if and how dependent projects call the vulnerable code. This step eval-
uates the practical implications of CVEs, i.e., whether the vulnerable code is actually being
used by projects that rely on the package, and how that usage affects the dependents’ vul-
nerability status. The results of this experiment are influenced by the dataset of dependents
chosen for evaluation. To ensure a diverse representation, we combined both random and
targeted selection methods for the dependents. This approach ensures a broad evaluation of
different vulnerabilities and how they propagate through a variety of dependent packages,
ultimately providing a more accurate reflection of the real-world impact of the vulnerabili-
ties.

Methodology For the evaluation of the mapping a comparison between the different lev-
els of granularity is done. For this evaluation for each CVE various projects that use a
vulnerable package associated with this CVE have been collected. These projects have
their call graphs generated and searched for the usage/reachability of the vulnerable marked
method/file/class with regards to the different levels of granularity. The selection of pack-
ages and related cve and vulnerable package to be evaluated has been done by picking a
random pkgVulnerablePurl of the CVE Vulnerability, and then collecting a random depen-
dent of this purl found in the list of the Maven central repository3.

3https://central.sonatype.com/
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Results In 6.4 the results of vulnerability reach-ability within various projects is shown.
Expressed as a percentage of projects being flagged in the experiment by this tool for each
of the different levels of mapping. On the x-axis mapping of the granularity levels are
compared against each other for the number of projects represented by the #cases. This is
done for each of the CVE information levels mapping displayed on the y-axis.

Granularity Level %

CVE Information Class Method #Cases

group artifact version (GAV) 1 1 360

GAV + Project kb commit links 90.0 66.1 340

GAV + commit link 90.0 66.7 360
GAV + pull request link 91.8 89.8 49
GAV + binary releases 72.3 70.6 300

Figure 6.4: Reachability of Vulnerabilities (From client A to library L)

The package version row and also the package granularity level column are to show that
the actual package within the evaluations are actually used by the to be evaluated purl. This
shows the baseline and shows the same results as other package warning tools.

The commit information level shows that based on the methods flagging a significant
portion of warnings could be reduced. However with the knowledge that the patch finding
is quite lacking a portion of this reduction could be due to poor patch finding. Another in-
teresting point however is the large difference between the method and the type information
level. Where the type level indicates that in a high percentage of cases the classes usage
is actually flagged meaning also at least some methods within those classes were flagged
which would point to having at least found methods for a large number of cases in the right
direction.

The pull information level shows a high flagging ratio which as thus far seen in the data
is likely due to a large number of the cases where the package was already flagged on the
commit information level also being the CVEs where pull evaluation could be done for. A
correlation between being flagged on commit level and the commits of those CVEs being
in pull requests would have to be researched. But that is out of the scope of this project.

Finally in the releases information level both the type and method level show the same
reachability analysis results. However of interest the rates are lower than the commit in-
formation level type level. And also for a reduced number of CVE actually release meth-
ods could be collected. With the way random purls were collected and the whole CPE
- PURL conversion and perhaps imprecise ranges some release information could have
been lost. Furthermore some releases versions are so outdated they are no longer hosted in
maven. Thus performing release method extraction would require ad hoc solutions search-
ing through archives to find a vulnerable - patched release pair.

The results compared between the different CVE information levels are out of line with
what would be expected. This is likely due some bias in the selection of the evaluated
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dependent packages, this has less effect on the results between the class and method level.
The results do provide insights into the trade-offs between the class and method granularity
levels. We show that as expected the class level raises warnings more conservatively than
the method level.

6.6 Conclusion

We have answered RQ3 and RQ4 in this chapter. We show that the method granularity and
commit information levels achieve the most precise results for the vulnerability reporting.
However these levels have weaker guarantees on finding the vulnerability, resulting in them
being prone to losing recall. Moving to higher levels of aggregation, the pull request infor-
mation and class granularity levels have shown to be more conservative alternatives. Both
the pull request information level and the class granularity level show a trade-off against
the most precise levels. The precision is lower but this is traded off for better guarantees
on higher recall of a vulnerability. Lastly the release information level shows that the preci-
sion can be improved without notably compromising on recall. Overall it is shown that each
level can positively impact the vulnerability reporting by obtaining more precise results than
dependency checkers.
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Chapter 7

Conclusion

This paper has presented an empirical study into CVEs in practice, where we determined
that references and the affected configurations could be used for code change discovery. An
investigation into the ability of our approach to find patch links has been conducted. Chap-
ter 5 showed that we are able to, first off, recover a substantial portion of patch links. Fur-
thermore, we showed that we are able to provide significant contribution towards finding the
correct patch links. Lastly, the impact of different code mapping levels on the vulnerability
reporting has been outlined, where we show that different levels can provide alternatives,
trading off precision and recall. More importantly, we demonstrated that each approach
for the different levels can provide a positive impact on the precision versus dependency
checkers.

7.1 Discussion

In this paper an empirical study into the CVEs in practice and the identification of useful in-
formation fields for getting finer grained details on a vulnerability was done. We formulated
and evaluated an automated approach for enriching CVEs with code change information.
Lastly we evaluated the impact of different CVE change discovery aggregations layers and
different code mapping granularity levels on the vulnerability reporting. Mainly focusing
on the impact on the precision and the recall of these different methods.

Other useful information fields In our empirical study the references and PURLs have
been identified as the main fields through which patches in the form of commit links and
changed code could be found. However, an idea that could be worth investigating is the pos-
sibility of combining our approach, which uses the code obtained from the references and
purls, with efforts for vulnerability detection through CWEs. This could prove to further en-
hance the precision or on the other hand provide better guarantees for finding vulnerabilities
within OSS packages. The precision could potentially be improved by for example utilizing
the vulnerability patterns from the associated CWEs to scan through the vulnerable code
that has been identified. This could be used to filter out unrelated code, or it could find that
the vulnerability pattern is not detected within the code, indicating that a more conservative
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approach might be more appropriate. The use of CWE code mappings is however expected
to require a significant bigger effort to allow combining with the patch code approach. Fu-
ture research should be conducted to investigate if the results of such a combination are
significant enough to justify the extra effort.

A complimentary automated approach In Chapter 5, we presented our automated ap-
proach with an F1-score of 49.9% for finding commit links for NVD CVEs. Furthermore,
we have shown an increase of 16.5% in recall for finding the correct commit links for
ECLIPSE STEADY. With the results presented in Chapter 5, we concluded that the automated
approach of this project can actually help in finding the patch link. Although the results of
the patch finding are still far from perfect, they show that meaningful enrichment of CVEs
can be made with our automated approach. Our approach trades off the guarantees on cor-
rectness for less effort needed compared to some of the other solutions, such as ECLIPSE

STEADY. For ECLIPSE STEADY, first of all, an entire model had to be trained; furthermore,
entire GITHUB repositories are crawled by the prospector to find candidate commits. Since
this project opted for an automated approach, our approach is more suitable and scalable
for integration within the processes of updating CVEs. Additionally, our approach only
performs the search for patches based on the CVE information itself. This would imply that
the patch links found by the patch finding that are not actually in the ground truth should
still be related to the CVE. Our patch finding is, however, still somewhat limited. Given
the many different websites and resources to which the references could point, it is not
feasible to develop an approach that would be able to perfectly handle all kinds of refer-
ences. Therefore, our approach mainly tries to find references to version control platforms.
However, future research could look into improving the reference scanning. In many of
the other solutions for finding code, they use heuristics, and in some cases, even machine
learning models are used for finding/filtering commits within the GITHUB repositories of the
vulnerable packages. The concepts behind these methods could actually prove to be very
useful to apply to, for example, forum references. Future work for this could thus look into
ways to add heuristics or even use machine learning models to allow the processing of some
of the other types of references encountered within CVE data. For example, if some heuris-
tics or an NLP model could be used/developed to allow for scanning through a forum post
that reports a CVE and scanning for references towards code. By applying the concepts
of the heuristics/ machine learning models for the references, the patch finding could be
improved by having it mimic more closely what manual work would be for the references.

Using (binary) releases One benefit of relying on releases for change-based code discov-
ery, rather than patch links, is that almost all CVEs contain information on the vulnerable
versions. Whereas, only a subset of CVEs have a patch link that could be associated with
the CVE. Furthermore, we obtain a very high guarantee that the patch was captured within
the vulnerable-fixed pairs, so the number of false negatives should be very low at this level.

However, a key concern when using mapped code from any of the approaches across
the different levels is the risk of false negatives occurring due to code refactoring across
different releases. If vulnerable code is within a method that was refactored between older
versions (e.g., method signature change or class refactoring), the mapped code may fail to
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identify the vulnerable methods within these older versions. To mitigate this threat, future
work should look into the possibility of tracking refactoring of the vulnerable code.

Finer-grained levels increase precision Chapter 6 demonstrated that our approach yielded
results very similar to those when only using the patch link information from PROJECT-KB.
We showed that the commit method level provided the most precise results. Additionally,
we demonstrated that with each increase in either the CVE information level or the gran-
ularity level, there was a corresponding increase in vulnerability warnings and a decrease
in precision. From the results shown in chapter 6, several conclusions can be drawn. First,
from the results shown in 6.2 and 6.3, we observed that although the vulnerable method set
sizes for our approach include an additional 16.4% of methods that fall outside the ECLIPSE

STEADY ground truth, these additional methods cause less than a 6% increase in the expo-
sure findings. This indicates that the overestimation caused by having more commit links
contributes less substantially to an overestimation of vulnerable methods. These results
demonstrate that, despite a significant overestimation of vulnerable code, our vulnerability
reporting aligns closely—within 6%—with the results from ECLIPSE STEADY. Given that
ECLIPSE STEADY relies on a manually curated, high-quality dataset, the similarity in results
suggests that our approach can also achieve high-quality outcomes.

Even when using more conservative CVE information level approaches, we can im-
prove precision over dependency checkers. We demonstrated that using binary release code
changes for mapping vulnerable code, as expected, raises more (imprecise) warnings than
the precise commit information level. However, we also showed that the binary release
information level still offers a considerable increase in precision compared to the package
level. Given these characteristics of the binary release information level, the approach with
this level would be the prime candidate as the next step after dependency checkers in the
fields of vulnerability detection and prevention.

Regarding the different granularity levels, we have shown that the method granularity
level provides the most precise results. Using the method granularity level would positively
impact vulnerability reporting by providing more precise results. The class granularity pro-
duces more warnings than the method level. However, while the method granularity is
considered the most precise level, the class granularity offers a compromise between preci-
sion and coverage. Even though the class level sacrifices some precision compared to the
method level, it still shows considerable improvements in vulnerability reporting precision
when compared to package dependency checkers. The class granularity approach thus of-
fers a more conservative alternative to approaches that focus on achieving the most precise
reporting at the method level. Furthermore, the class level could provide a more precise
approach for future vulnerability prevention. As class granularity does not necessarily indi-
cate that a vulnerability is actively used, it can still provide valuable insight. In cases where
a warning would be raised at the class granularity but not at the method level, it indicates
that code usage is near a vulnerability. With this knowledge, a better-informed decision
can be made for further development involving vulnerable classes, proceeding with extra
caution if at all. For the reasons mentioned above, we recommend that class granularity
be incorporated or, at the very least, considered in any future work related to finer-grained
vulnerability reporting.
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Overall, we have shown that by examining more fine-grained details of the CVE and
the associated vulnerable code, better precision in warning generation can be achieved com-
pared to dependency checkers. Most importantly, we showed that it is possible to signifi-
cantly reduce false positive warnings. For each level, further investigation into improving
and refining the approach is worthwhile.

Finding non-vulnerable package versions in the affected configurations data Lastly,
we presented findings showing that for some indicated vulnerable packages, we actually
found no exposure of a vulnerability. As mentioned earlier, this could be due to code refac-
toring between versions. However, this could also indicate that certain GAVs are not actu-
ally vulnerable. This supports the findings of DONG ET AL. [9], who suggested that CVEs
sometimes overstate the ranges of vulnerable versions. Therefore, more fine-grained expo-
sure reporting could be used to filter out non-vulnerable versions, resulting in a more precise
identification of vulnerable versions. A similar observation is made within the PROJECT-KB

dataset, where some versions are marked as non-vulnerable based on analysis.

False negatives As discussed throughout the project, our approach provides an estimation
of the vulnerability. At best, it maps the precise vulnerable code, but it is also possible that
we either overestimate or underestimate the vulnerability. Since we have demonstrated that
there is still room for improvement in precision, overestimation of a vulnerability is not
a significant concern. However, underestimation poses a major risk, which motivated the
introduction of different levels of granularity, though even these levels do not guarantee
100% accuracy. Additionally, there is currently no reliable method to validate the impact
of false negatives other than manually inspecting entire packages, which is not a feasible
solution. Therefore, the results should be interpreted with the understanding that there is no
100% guarantee of perfect recall at this stage. This limitation could affect the actionability
of the results. A warning from our approach is always actionable, as all warnings correspond
to code related to the vulnerability. However, when no warning is raised—particularly with
regard to reachability—the results can only be trusted to a certain degree, with confidence
based on whether our approach at least identified some exposures within the package.

For improved actionability, we recommend that future work integrate dynamic analysis
alongside static analysis. One potential idea for handling warnings would be to incorporate
an agent within the dynamic analysis process that triggers an error if a vulnerable method
is called, ensuring that malicious code does not execute.

Reproducibility The CVE initiative is an ongoing process, with new CVEs being added
or updated daily. Additionally, the methods for retrieving CVE data may evolve over time.
For example, during the development of this project, NIST released version 4.0 of the
CVSS. Due to the dynamic nature of CVE data, collecting it independently and process-
ing it through our pipeline could yield different results. To improve reproducibility, we
have made a snapshot of our starting dataset available at DOI: 10.5281/zenodo.14219216.
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7.2 Threats to Validity

Due to the inconsistent nature of the data and the fact that our automated approach is not
infallible, there are potential threats to validity that must be considered.

Java focus This project focused exclusively on investigating Java packages. Java was
chosen due to its widespread use and the vast number of open-source packages available
for it. Additionally, Java is a well-defined and structured programming language, which
facilitates the clear extraction and separation of different levels in the analysis. However,
restricting the study to Java introduces a threat to validity in terms of the generalizability of
our approach. By concentrating solely on Java, more specifically, Maven packages, the
findings are inherently tied to vulnerabilities present in Java-based systems. That said,
the approach could be extended to other programming languages. For instance, ECLIPSE

STEADY already supports Python, and interestingly, the class/file granularity might be more
suitable for Python, as its code is not necessarily confined to defined methods. In principle,
the concepts used in this project can be adapted to other programming languages, provided
that some form of encapsulation of vulnerable code exists and its usage can be tracked (e.g.,
through a call graph). Despite the focus on Java in this thesis, we believe the trade-offs
presented are still valid, given the language’s prominence and the diverse set of CVEs and
packages analyzed.

Unreliable version information in CVEs Previous research has shown that the versions
associated with CVEs may not always accurately reflect the actual vulnerable versions [9].
In our own study, we encountered inconsistencies in the CPE and PURL mappings, as well
as references to packages no longer hosted on the Maven Central repository. We found that
the CPE-to-PURL conversion is not flawless; for instance, the CPE for Spring-framework:*
incorrectly points to the PURL for Spring-core. Additionally, the PURL-to-Maven JAR
conversion can be imprecise, leading to version mismatches where older, unmaintained
versions of projects are no longer available on Maven.

Currently, there is no definitive method—aside from manual inspection—to verify the
accuracy of the version ranges specified in all CVEs. Nonetheless, for the purposes of
this project, we treated the indicated versions as accurate. However, during the exposure
evaluation, we observed instances where no actual vulnerable code could be traced back,
raising concerns about version accuracy.

Another challenge we encountered involved the use of JAR files, which may include
code not strictly belonging to the package in question. For instance, JAR files might contain
code from other dependencies. To address this, we performed filtering to exclude non-
relevant code. Although this filtering is not perfect, it is not typically an issue if too little
code is filtered out. The greater concern arises when too much code is filtered out, poten-
tially causing warnings to be missed. One example is the case of
pkg:maven/org.apache.flex.blazeds/flex-messagingcore@4.7.2, where no methods were
found in the exposure due to class names being unidentifiable with standard PURL parts.
This was an outlier case in the project, and therefore, we assumed that if some methods
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could still be identified after filtering, the filtering process and the resulting findings were
valid.

7.3 Summary

Current work using CVEs for detecting the use of vulnerable dependencies is often very
imprecise raising many false positive warnings. Various challenges are faced in achieving
more precise finer-grained vulnerability reporting. The first hurdle is the variability of CVE
data which makes working with CVEs complex and often introduces the need for manual
work. This means that work for finer-grained vulnerability information is often not easily
scalable and maintaining the work is difficult. This creates the need for establishing a robust
approach for processing and enriching this data. This (automated) approach should bridge
the gap between the reporting and complex often manual enrichment of CVE data. However
with an automated approach potential risk of recall loss arises, thus different methods have
to be considered which balance a trade off between precision and recall guarantees.

This paper has addressed these challenges by showing that an automated approach for
collecting patches can meaningfully contribute in the processes of enriching CVE data.
Furthermore the concept of collecting different level of CVE code information and the idea
of mapping vulnerabilities to different granularity levels has been introduced. The methods
for these different levels have been evaluated, showing that through each of the different
CVE code information collection levels a greater precision than dependency checkers can
be achieved. Additionally it is demonstrated that mapping vulnerabilities towards the class-
level granularity provides an viable solution for compromising between the most precise
method granularity and the imprecise marking of a full package as vulnerable. For each
level across the two dimensions of CVE code information and granularity, the trade off
between coverage and precision is shown. Where it is demonstrated that each approach still
provides improved precision over vulnerability reporting that relies solely on dependency
metadata.
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