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Summary

The company H2 Marine Solutions has designed a zero-emission hydrogen powered boat. This
boat is compared to its fossil fuel counterpart more than twice as heavy. The reason for this is
that the system components that are used in the hybrid powertrain of the hydrogen powered boat
are heavier. The main question of this research is: How can we establish the optimal energy and
power of the system components of a hybrid power system with optimal energy management for a
zero-emission hydrogen powered boat for different operational profiles? This results in a sizing and
control optimization problem. Because these two problems are coupled this is a multi-objective
double-layer optimization problem. The most popular strategy to solve this problem is with the
control problem nested in the sizing problem [1]. The most popular algorithms to solve these
problems are evolutionary algorithms.

Unfortunately due to the complexity of these algorithms and due to lack of time the sizing and
control problems are solved separately in this research. First, the system components of the plant
are described and modeled. The components that are modeled are the battery, the fuel cells, and
the DC/DC converter. To find the optimal energy management strategy an online optimization
strategy is used. This is done because the problem is solved in real-time than and could be used
in a real application. The strategy that is chosen to solve the control problem is the Equivalent
Consumption Minimization Strategy (ECMS). This strategy translates the electrical energy from
the battery into equivalent hydrogen consumption. For every timestep, the equivalent consumption
is minimized by the ECMS. Because there are different variants of ECMS three of these variants
are discussed and compared in the research. Also, two rule-based energy management strategies
are compared. The sizing problem is described by linear equality and inequality constraints. The
problem is solved by the Linprog function in Matlab. The objective of the sizing problem is to
minimize the weight of the system components. The input in the sizing problem is the energy
and power demand of the most energy intensive operational profile. After solving the sizing and
control problem the results are combined and the different operational profiles are used as input
to show the robustness of the optimization.

The three different energy management strategies all minimize the instantaneous equivalent
consumption but show different behaviors when controlling the system components. The optimal
energy management strategy is the Smooth Adaptive Penalty (SAP)-ECMS. With this controller,
the fuel cells work on a steady operating point and ramp up and down the output power smoothly
when necessary. Due to this behavior, the average efficiency of the fuel cell is the highest, and
the hydrogen consumption is the lowest compared to the other controllers. The results of the
sizing problem show that the weight will decrease when a bigger fuel cell is used in combination
with a smaller battery. The consideration between a bigger fuel cell and a smaller battery is a
consideration between lower weight and more hydrogen consumption. When a bigger fuel cell
is used it is recommended to implement an optimal energy management strategy such as the
SAP-ECMS to control the output power of the system components. This is preferable above a
rule-based controller which can not find the optimal operating point at all timesteps. Even better
energy management strategies may exist or could be made by combining different ECMS’s. When
the sizing and control problem are solved in a nested strategy more accurate results could be
achieved.
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1

Introduction

In times when sustainability is very important sailing is praised to be a clean sport. Unfortunately,
this image is not completely true, because at official competitions a lot of coach boats are used to
coach the competitors. These coach boats are almost all powered by fossil fuels. To change this
polluting part of the sport the company H2 Marine Solutions has built a zero-emission hydrogen
powered coach boat. The goal is that with this system the sailing sport could live up to its clean
image. This H2C boat is not only suitable to coach professional sailors but could also be used by
other users of RIBs (Rigid Inflatable Boat), like the police, the navy, or the coast guard [2]. By
making use of this zero-emission boat the users could reduce their carbon emissions. By doing
this the users would contribute to a sustainable maritime sector and to the goals of for example
the GD230 Green Deal in the Netherlands [3].

The powertrain in the boat consists of different components which are the hydrogen storage, the
fuel cell, the battery, and the electric propulsion motor. The fuel cells convert the hydrogen into
electricity. This electricity could be used to charge the batteries or to power the motor. The
hydrogen in this system is used as a range extender. The boat is designed to sail at a speed of
25 knots for approximately one hour. In total the boat is able to sail for five and a half hours
at 6.5 knots [4]. At this moment the components that are used in the powertrain of the H2C
boat are very heavy in comparison with a fossil fuel-powered coach boat. The difference can be
seen in Table 1.1. To make the system as light as possible it is essential to find their optimal size.
Another very important aspect is that during the operation, the demanded power is split between
the systems in an optimal way. In other words, systems need to have optimal energy management
to reduce fuel consumption and component size. The objectives of this research are therefore
to minimize the weight of the system components and to find the optimal energy management
strategy.

Table 1.1: Comparison between a fossil fuel powered coach boat and the H2C boat.

Fossil: Weight: Zero-emission: Weight:

Motor(60pk) 110 kg Motor(80pk) 80 kg

Petrol 66.5 kg Battery 284 kg

Fuel cells 40 kg

Hydrogen tank 59 kg

Total: 176.5 kg Total: 463 kg

Max speed 30 knots Max speed 25 knots

This sizing of components and optimizing energy management control are coupled with each other
[1]. The control layer is dependent on the physical system, but it can not change the physical

1
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Figure 1.1: Optimization strategies for system level design [5].

parameters because they act as bounds [5]. The physical system is also dependent on the energy
management system for the control of the components. This creates a multi-objective optimization
problem that spreads over two levels namely sizing and control. If the optimization problems
are solved sequentially then the solutions are by definition sub-optimal [5]. There are three ways
to solve the coupled optimization problem and they are shown in Figure 1.1. They are widely
used in the automotive industry and the most popular is the nested architecture with the control
design in the plant design [1].

An optimization problem consists of objective(s), constraints, and variables. To solve the opti-
mization problem different algorithms could be used, like Sequential Quadratic Programming
(SQP), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), DIviding RECTangles
(DIRECT), or others. Once the sizes of the components are selected it is essential that they are
properly controlled. This is done by splitting the power between the components in an optimal
way. For the control problem, two different methods are used in the literature: rule-based and
optimization-based. The rule-based strategies are based on expert knowledge and are easy to
implement. However, they are sub-optimal and require a lot of tuning effort [5]. For optimization-
based control, two categories could be distinguished: real-time and offline optimization. Dynamic
programming is widely used for offline optimization. For online optimization equivalent consump-
tion minimization strategy (ECMS), stochastic DP (SDP) strategies, or model predictive control
(MPC) strategies are used [5].

Various research has been done on the coupled optimization problem of sizing and control for
hybrid power systems. In [5] an overview is given of the methodologies used to optimally design
a Hybrid Electric Vehicle (HEV). This research states that Dynamic Programming is the most
popular algorithm to solve the control problem. For the sizing problem, it is the trend to use an
evolutionary algorithm. In [6] the powertrain of a hybrid mining truck is optimized. The hybrid
system consists of fuel cells, batteries, a brake resistor, and a motor. To solve the problem an
advanced global optimization search algorithm, Hybrid and Adaptive Metamodel (HAM) search
is used. For the control problem, an Equivalent Consumption Minimization Strategy (ECMS)
is used in combination with the shooting method to find the equivalent factors. The problem is
solved in a nested way. The objective of this study is to minimize the lifecycle cost considering
both system energy efficiency and performance degradation costs. Also, the size of the fuel cells is
already fixed and the focus is on finding the optimal size of the batteries. In [7] a Plug-in Fuel
Cell Urban Logistic Vehicle (PFCULV) is optimized. The difference between this system with the
system in [6] is that the batteries could be charged by a separate power source because of the
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plug-in option. The objective of this research is to minimize the costs. All the constraints and the
objective are convex and therefore the problem is solved by convex optimization in a simultaneous
way.

There is also research on the optimization of hybrid power systems for maritime applications.
Research on the optimization of a hybrid ship propulsion system is done in [1]. In this research,
the powertrain of an offshore support vessel is optimized. The hybrid system in this research
consists of diesel generators, fuel cells, and batteries. For the sizing problem, the Non-dominant
Sorting Genetic Algorithm 2 (NSGA-2) is used, and for the control problem Mixed Integer Linear
Programming (MILP). The problem is solved in a nested way. In [8] a completely zero-emission
hybrid system is optimized for a ferry. The system consists of fuel cells, batteries, and an electric
propulsion motor. In the problem the ship makes use of cold ironing to charge the batteries
during the stops. The optimization problem is solved simultaneously by an Improved Sine-Cosine
Algorithm (ISCA). There is also research on the optimal sizing and energy management of hybrid
electric propulsion systems which is not specific to an application. In [9] a system that consists of
diesel generators, an Energy Storage System (ESS), and shore power is optimized simultaneously.
For the sizing problem, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is
used. For the control part, a Modified Adaptive Equivalent Consumption Minimization Strategy
(MA-ECMS) is used.

Out of all the mentioned researches the system of [8] is most similar to the system optimized
in this research. The algorithm that is used to solve the optimization problem, namely ISCA is
only able to work with one objective and therefore not suitable to use in this research [10]. In
[5] and [1] the algorithm used to optimize the control part is Dynamic Programming. This is
an offline optimization algorithm and therefore less suitable to use in this optimization study,
because it is not able to execute a real-time optimization. Another conclusion from [5] is to use
an evolutionary algorithm to solve the sizing problem. The studies [6] and [9] use evolutionary
algorithms to solve the sizing problem and an Equivalent Consumption Minimization Strategy for
the control problem. The hybrid system in [9] is different from the H2C boat because it includes
diesel generators and no fuel cells. The system in [6] is similar, but the size of the fuel cells is fixed
before the optimization. The optimization strategy of [7] is interesting if the optimization problem
of this study could be solved in a convex way. In all of the mentioned references the objective
was to minimize the costs. None of the studies optimizes the weight of the system components in
combination with optimal energy management.

The aim of this research is to establish the optimal energy and power of the system components
of a hybrid power system with optimal energy management for a zero-emission hydrogen powered
boat for different operational profiles. The objective is to minimize the system components’ weight
with optimal energy management. This is a novelty in the optimization studies that combine
sizing and control. The first goal of this research is to find an optimization strategy to establish
the optimal energy and power of the system components of a hybrid power system with optimal
energy management for a zero-emission hydrogen powered boat. This will be done through a
literature study. Next to this, a model of the powertrain of a hydrogen powered boat will be used
to validate the optimization results. The last goal of this research is to make the optimization
robust. This means that for different operational profiles, the results of the optimization are still
suitable.

The main question of this research is: How can we establish the optimal energy and power of the
system components of a hybrid power system with optimal energy management for a zero-emission
hydrogen powered boat for different operational profiles? Out of this question, the next questions
follow:

• What are the system components of a hydrogen powered boat?
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• What model to use to model the system components to validate the optimization results?

• What is the best strategy to solve the optimization problem?

• Which algorithm to use to solve the optimization problems?

• What are the different operational profiles?

• What is the optimal energy management of the systems of a hydrogen powered boat for
different operational profiles?

• What is the optimal energy and power of the system components of a hybrid power system
of a hydrogen powered boat for different operational profiles?

These questions will be answered in this research.

To answer the questions first a literature study on combined sizing and control optimization is
executed. From this literature study, we learned that the combined optimization problem has to
be solved by an evolutionary algorithm. Furthermore, the best way to achieve real-time optimal
energy management is by using an online optimization algorithm for example ECMS. It was
found that there are different variants of ECMS and therefore they are compared with each other.
To solve the optimization problem, first, the case study is described and a model of the system
components is made. Also, different operational profiles are made and with data measured from
the H2C boat, a powerprofile is made to convert the speed data into demanded power. With
these different operational profiles and the model, the optimal energy management is investigated.
Unfortunately, due to the complex nature of evolutionary algorithms and lack of time, the sizing
and control problems are solved separately. The sizing problem is solved by a linear solver in
Matlab, namely Linprog. With the optimal size of the system components, the optimal energy
management strategy, and the different operational profiles the final result is obtained.

The research is structured in the following way. First, an analysis of research on combined
optimization of sizing and control is given in Chapter 2. Out of this analysis, a strategy follows on
how to solve the combined optimization problem. This is explained in Chapter 3. After this part,
the case study and the model of the system components are described in Chapters 4 and 5. The
energy management optimization problem is described in Chapter 6 and the sizing optimization
problem is described in Chapter 7. After this, the results of the optimization are presented and
discussed in Chapter 8. The last part of the research consists of a conclusion and reflection in
Chapters 9 and 10.
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Analysis of optimization strategies

The goal of this research is to establish the optimal energy and power of the system components
of a hybrid power system with optimal energy management for a zero-emission hydrogen powered
boat for different operational profiles. The question to answer in this chapter is: What is the
best strategy to find the optimal energy and power of the system components of a hybrid power
system with optimal energy management for a zero-emission hydrogen powered boat? And what
algorithms are suitable to solve the optimization problems? These questions will be answered by
a literature study. In this study, different researches are analyzed in which the optimal sizing and
control of hybrid power systems are investigated. By analyzing these studies the best strategy
and algorithm to optimize the zero-emission hydrogen powered boat will be chosen.

2.1. Combined sizing and control optimization
The optimization problem in this research is a combined sizing and control optimization problem.
This is the case because the sizing of components and optimizing energy management control are
coupled with each other [1]. The control layer is dependent on the physical system, but it can not
change the physical parameters because they act as bounds [5]. The physical components are
also dependent on the energy management system. This creates a multi-objective optimization
problem that spreads over two levels namely sizing and control. If the optimization problems
are solved sequentially then the solutions are by definition sub-optimal [5]. There are three ways
to solve the coupled optimization problem and they are shown in Figure 1.1. They are widely
used in the automotive industry and the most popular is the nested architecture with the control
design in the plant design [1]. The researches which are investigated in this study use different
strategies. Some make use of the simultaneous strategy and others use the nested strategy.

2.2. Size optimization algorithms
For the sizing problem algorithms like Sequential Quadratic Programming (SQP), Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), DIviding RECTangles (DIRECT), or others
could be used. One can distinguish between derivative-free algorithms and gradient-based algo-
rithms. Examples of derivative-free algorithms are Dividing Rectangles (DIRECT), Particle Swarm
Optimization (PSO), Genetic Algorithms (GA), and Simulated Annealing (SA). Gradient-based
algorithms include Sequential Quadratic Programming (SQP) or Convex Optimization (CO) [5].
The advantage of derivative-free algorithms is that they can handle non-linear cost functions and
constraints. When the cost function behaves smoothly a gradient-based algorithm will offer a
faster solution.

5
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2.3. Control optimization algorithms
For the control problem, two different methods are used in the literature: rule-based and
optimization-based. The rule-based strategies are based on expert knowledge and are easy to imple-
ment. However, they are sub-optimal and require a lot of tuning effort [5]. For optimization-based
algorithms, two categories could be distinguished: real-time and offline algorithms. Dynamic
programming is widely used for offline optimization. For online optimization the equivalent
consumption minimization strategy (ECMS), stochastic DP (SDP) strategies, or model predictive
control (MPC) strategies are used [5]. The downside of offline optimization algorithms is that the
optimization can not be done in real-time. When this is the case the strategy can not be used in
a real application. Therefore offline algorithms are mostly used as a benchmark to evaluate other
real-time algorithms.

2.4. Analysis of optimization strategies
Several research studies have been done on the combined problem of optimal sizing and optimal
energy management of hybrid power systems. In Table 2.1 an overview is given of the studies
which are analyzed in this research. This is not a complete list of studies on combined optimization
problems. In the table, the strategies and algorithms that these studies use to solve the optimization
problem are shown.

Table 2.1: Comparison of combined optimization studies.

Studies: Algorithm sizing: Algorithm control: Strategie:

Hybrid offshore support vessel [1] NSGA-2 MILP (DP) nested

Zero-emission ferry [8] ISCA ISCA simultaneous

Hybrid cars [5] GA/PSO DP nested

Hybrid electric propulsion system [9] MO-PSO MA-ECMS simultaneous

Hybrid mining truck [6] HAM Search ECMS/shooting nested

Plug-in fuel cell vehicle [7] Convex (CVX) Convex (CVX) simultaneous

The table shows that the algorithms used to optimize the size of the components and the energy
management can be different. Two different strategies are used to solve the problem namely
simultaneous and nested. In the next part, the methods used in the different research are analyzed.

In [1] the powertrain of a hybrid offshore support vessel is optimized. The proposed hybrid system
consists of diesel generators (DG’s), batteries, and fuel cells. Because of the Diesel Generators,
the system is more complex than the system which is optimized in this research. The problem is
a multi-objective double-layer optimization problem (sizing and control). The objectives to be
minimized are the CAPEX, OPEX, and fuel consumption. These objectives are different from
the objectives in this research, but the amount is the same. The problem is solved in a nested
way. This means that for every evaluation of the plant, a full optimization of the control design
is researched. The algorithms used to solve the problem are: Non-dominant Sorting Genetic
Algorithm 2 (NSGA-2) for the sizing and Mixed Integer Linear Programming (MILP) for the
control problem. MILP is a dynamic programming algorithm and this means that it is an offline
algorithm and not suitable to use in this study.

In [8] the hybrid power system of a completely zero-emission ferry is optimized. The powertrain
consists of fuel cells and batteries and is very similar to the power system in this research. The
ship travels a specific route and during the stops, it can charge the batteries by cold ironing.
This is different from the situation in this optimization study because the boat does not stop
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and cannot be charged during the operation. The optimization problem is solved simultaneously.
The objective is to minimize the costs divided into operation and investment costs. An Improved
Sine-Cosine Algorithm is used to solve the problem. A novel enhancement that uses Harmony
Search is considered in this work to increase the seeking capability of the SCA, which prevents it
from trapping in local optima. So, each solution is improved based on memory consideration, pitch
adjustment, and random selection. Studies show that the SCA algorithm is substantially faster
than most of the meta-heuristic methods like Genetic Algorithms, Particle Swarm Optimization,
Gravitational Search Algorithms, and so on. Unfortunately, this algorithm is only able to solve
optimization problems with one objective and therefore it is not suitable to use in this research
[10].

In [5] an overview is given of the methodologies used to optimally design a HEV (Hybrid Electric
Vehicle). According to this research, the most popular strategy to solve the combined optimization
problem is the nested variant. Furthermore, Dynamic Program (DP) is the most popular way
to solve the control problem. The limitation of DP is that it is offline and therefore not able to
solve a real-time optimization problem. For the sizing problem, there is no widely used algorithm.
However, the trend is to use evolutionary optimization algorithms. The most commonly used
algorithms are Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Furthermore,
multiple researches report the computational inefficiency of the exhaustive search. Depending
on the shape of the optimization function, as well as the types of constraints, an optimization
algorithm may prove to be better than others. Some general rules are given:

• When a problem is solved with Convex optimization it is required that the problem is
convexicated to guarantee finding the global optimum.

• When SQP is used, for the original problem (nonconvex), the initial point can be varied to
test the reach of local or global minimum.

• When evolutionary algorithms are used, various parameters have to be tuned (population
size).

In [9] a way to solve sizing and control of hybrid systems simultaneously is proposed. For the
sizing problem, the Multi-Objective Particle Swarm Optimization algorithm is used, because of its
merits in computational time and generational distance. An Adaptive Equivalent Consumption
Minimization strategy (A-ECMS), which has a light computational load, has been modified for
the control problem by updating the equivalence factor based on the battery stage of charge and
engine efficiency. The MA-ECMS can improve the traditional A-ECMS by adaptively adjusting
the equivalence factor according to the instantaneous operation of the battery and diesel engines.
This strategy could be used in this optimization study. Real-time Hardware In the Loop (HIL)
experiments are used to validate the results. The results are compared with two independent single-
level optimizations. The objectives of this study are to minimize: fuel consumption, greenhouse
gasses, and net present costs. The system consists of diesel engines, energy storage systems, and
shore power. This makes the system more complex than the system in this research. The bi-level
optimization proposed in this paper integrates component sizing and energy management into a
single algorithm. The equivalence factors are minimized by the upper-level optimization, which
calls for the results of the lower-level optimization in each iteration. The lower level is required
only to minimize the fuel consumption because the amount of fuel consumption on a voyage
determines the greenhouse gas emission and the operation cost away from the shore power station.

In [6] the aim of the study is to optimize the powertrain of a hybrid mining truck. The objective
of the optimization is to minimize the mining costs. The method considers the system energy
efficiency and the performance degradation of the systems while minimizing the life cycle costs.
This is a different objective than the ones in this research. The powertrain of the truck consists of
the following components: fuel cells, batteries, brake resistor, and electric motors. The system
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looks similar to the system optimized in this research apart from the brake resistor. The braking
resistors are used to supplement the electric energy absorbing capability of the regenerative braking.
The fuel cells generate the primary propulsion power. The power of the fuel cell is already chosen
before the optimization at 150kW. This is different from the method in this optimization study.
The optimization is done by minimizing the amount of hydrogen fuel consumption. The integrated
and nested design optimization problem is a typical computation-intensive, black-box global
optimization problem. To solve this complex problem, an advanced, surrogate model (SM) based
global optimization search algorithm, Hybrid and Adaptive Metamodel (HAM) search, is applied
to find the solution. The optimal power control and energy management at the lower level further
require two levels of optimization. The very bottom level optimization uses the ECMS method to
realize optimal powertrain system control, while the higher-level optimization applies the shooting
method to search for the equivalent factor needed by ECMS.

In [7] a hybrid plug-in fuel cell urban logistic vehicle (PFCULV) is optimized. The optimization
is done by convex optimization. This is possible because all the formulas and constraints are
convex. If this is the case in this research this strategy could be used. The objectives are to
minimize the operational and initial costs while satisfying vehicle power demand and battery
health requirements. The powertrain consists of an H2 tank, fuel cells, batteries an inverter, and
an electric motor. A fuel cell system model and a convex battery health model are used. The
problem is solved in a simultaneous way in the Matlab environment. By varying the driving cycles
only the size of the fuel cell system is affected.

2.5. Outcomes
The questions to answer in this chapter were: What is the best strategy to find the optimal
energy and power of the system components of a hybrid power system with optimal energy
management for a zero-emission hydrogen powered boat? And what algorithms are suitable to
solve the optimization problems? The above mentioned researches use different strategies and
algorithms to solve the optimization problems of different hybrid systems. Some of the strategies
could be suitable for this optimization, but others are not. According to [5] the most popular
strategy to solve a combined optimization problem is in a nested way. Furthermore, Dynamic
Programming is most popular for solving the control problem and an evolutionary algorithm to
solve the sizing problem. Because Dynamic Programming is an offline algorithm and is not able
to solve a real-time optimization problem, it is not suitable to use in this research. Therefore an
Equivalent Consumption Minimization Strategy is a better option to solve the control problem.
For the sizing problem, different algorithms could be used like, the NSGA-2 algorithm or the
MO-PSO algorithm. Both algorithms are able to solve a multi-objective double-layer optimization
problem.

2.6. Gaps in the analyzed literature
The analyzed studies of combined optimal sizing and control of hybrid power systems cover a lot
of subjects. However, some gaps remain unfilled in the analyzed literature. None of the studies
has the minimization of the system components’ weight as an objective. Furthermore, none of the
studies compare different ECMS strategies with each other. This research tries to fill these gaps
and in the next chapter, the novelty of this research will be explained.
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Methodology

In this chapter, the method used in this research to solve the sizing and control optimization
problem is described. First, the structure of the methodology is explained. After this, the chosen
method is explained. The last section elaborates on the novelty of the research.

3.1. Structure
The first step in solving the optimization problem is to define the case study, this is done in
Chapter 4. After this the system components of the case study have to be modeled, this is done
in Chapter 5. To find the optimal energy management an ECMS will be used. Because there
are different variants of ECMS these strategies are compared in Chapter 6. In this chapter also
the problem definition and the constraints of the control problem are described. After this, the
objectives, variables, and constraints of the sizing optimization problem are defined in Chapter
7. Chapter 8 shows the results of the solved optimization problems with different operational
profiles. The structure of the methodology is also shown in Figure 3.1.

Figure 3.1: Structure of methodology used in this research.

3.2. Method used to solve the optimization problem
As explained in Chapter 2 the multi-objective double-layer optimization problem can be solved by
an evolutionary algorithm. This algorithm could be a Genetic Algorithm (GA) or a Particle Swarm
Optimization (PSO). Unfortunately due to the complex nature of evolutionary algorithms and
lack of time, it was not feasible to use one of these algorithms. Therefore a different method was
chosen. First, the control problem is described and the different variants of ECMS are compared
with each other in Chapter 6. Then the sizing optimization problem with objectives, variables,
and constraints is described in Chapter 7. The sizing and control problem are separated and the
sizing problem has one objective and only linear equality and inequality constraints. Therefore
the problem can be solved by the Linprog function of Matlab. In Chapter 8 the results of the
different ECMS’s are shown and the optimal strategy is chosen. Separate from this, the sizing
problem is solved and optimal sizes for the system components are obtained. The last step is to
combine the solutions of the sizing and control problem into a final solution. This solution is
tested for different operational profiles and the results are shown in Chapter 8.

9
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3.3. Novelty
One of the novelties of this research is the comparison of the different ECMS’s. All the other
studies that are analyzed and that use ECMS to control the system components in a combined
optimization study describe their ECMS but do not compare it with other variants. By comparing
the different strategies and showing the different outcomes the optimal strategy can be chosen.
This is a novel contribution of this research. The next novelty lies in the use of different operational
profiles to validate the results. Most studies only use one profile to find the optimal size and
control for the system components. By using multiple profiles the optimization is made robust.
Furthermore, the objective of minimizing the weight of the system components is a novelty.
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Plant description

The goal of this research is to find the optimal energy and power of the system components of
a hybrid power system with optimal energy management. The system that is optimized is the
powerplant of the H2C boat of the company H2 marine solutions. The system components of the
powertrain in this boat are the hydrogen storage, the fuel cells, the battery, converters, and the
electric propulsion motor. The weight of these components compared to the weight of the system
components of a fossil fuel-powered RIB are shown in Table 1.1. Because the total weight of the
system components of the hydrogen-powered boat that are used in this plant is more than twice
the weight of system components of the fossil-powered boat it is necessary to find the optimal size
for the system components and minimize the weight. To control these system components it is
also necessary to find the optimal energy management. In Figure 4.1 a picture of the system is
shown. In this chapter, the system components of the H2C boat are described and shown.

Figure 4.1: The H2C boat in Den Helder.

11
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4.1. Hydrogen storage
Under normal temperature and pressure conditions, hydrogen is a colorless and flammable gas.
Under these conditions hydrogen has the lowest volumetric energy density of any fuel [11]. To
compensate for this negative characteristic the hydrogen that is used in the H2C boat is compressed.
It can be stored under a pressure of 700 bar. This causes the volumetric energy density to increase
almost 450 times compared to hydrogen at 1 bar [12]. The hydrogen is used as a range extender for
the vessel. The tank has a volume of 76 liters which is approximately 3.1 kilograms of compressed
hydrogen. In Figure 4.2 a picture of the hydrogen storage tank in the H2C boat is shown.

Figure 4.2: Hydrogen storage tank with fuel cap.

4.2. Fuel cell
The fuel cell that is used in the H2C boat is a Proton Exchange Membrane Fuel Cell (PEMFC).
This system converts hydrogen and oxygen into water and electricity [13]. This electricity can
be used directly by the propulsion motor or it can charge the battery. In Figure 4.3 a fuel cell
system of the H2C boat is shown. There are two fuel cell systems on board the H2C boat which
both have a rated power of 4 kW [14]. The mass of the fuel cell is 20 kilograms each. The fuel
cells operate at 48V and this is converted by a DC/DC converter to the desired voltage.
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Figure 4.3: Fuel cell system with air filter.

4.3. Battery
The battery system in the vessel provides the propulsion motor with electrical energy. The battery
system used in this plant is a lithium battery system with an energy capacity of 38 kWh and a
nominal voltage of 350V [15]. The maximum continuous power the battery can deliver is 55 kW.
The Crate the battery is the maximum power divided by the energy capacity. This gives a Crate

of 1.45. The weight of the battery system is 284 kilograms in total. In Figure 4.4 a picture of the
battery system which is used in the vessel is shown.
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Figure 4.4: Lithium battery system.

4.4. Propulsion motor
The propulsion motor converts the electrical energy into mechanical energy to propel the vessel.
The motor used in the H2C boat is the Deep Blue 50 electric outboard motor of Torqeedo [15]. It
is an AC motor and has a peak input power of 55 kW. Because the motor is AC-powered the
voltage of the DC bus had to be converted by a DC/AC converter. In Figure 4.5 a picture of the
propulsion motor is shown.

4.5. Schematic presentation
In Figure 4.6 a schematic presentation of the hybrid energy system of the H2C boat is shown.
The black lines represent the minus connection and the red lines the plus connection. The blue
lines represent the hydrogen connection. The DC-bus voltage is controlled by the battery. The
voltage that comes out of the fuel cells is converted by a DC/DC converter. The voltage to the
propulsion motor is controlled by a DC/AC converter.
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Figure 4.5: Outboard electric propulsion motor Deep Blue 50 Torqeedo.

Figure 4.6: Line diagram of the system components of the H2C boat.
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Modelling

To solve the optimization problem it is necessary to model the system components of the H2C
boat. The components that are modeled in this research are the battery and the fuel cell. It is
chosen to model the systems in an analytical way and not with Simulink for example.

5.1. Battery
The battery is the main power source of the H2C boat at this moment. The power of the battery
depends on the demanded power and the power of the fuel cell. Also, the power losses have to be
compensated. The relation is described with the following equation:

Pbat(t) = Pdem(t)− Pfc(t) + Ploss(t) (5.1)

In this equation Pdem(t) is the demanded power and Pfc(t) is the output power of the fuel cell.
Ploss(t) is the power that is lost and that has to be compensated. Pbat(t) is the power that has
to be delivered by the battery. The amount of energy a battery has left can be described by a
SOC. In the optimization study of [1] the following equation is used to describe the SOC of a battery.

SOC(t) = SOC(t− 1)− Pbat(t) · △t

Ebat
(5.2)

In this formula SOC(t) is the SOC at every time step and SOC(t− 1) is the SOC of the time
step before. Pbat(t) can have a positive or a negative value, this depends on the output power
of the fuel cell and the demanded power. When Pbat(t) is negative the battery is charging and
the SOC will rise and when Pbat(t) is positive the battery will discharge. Ebat is the rated energy
of the battery. The optimal value of Ebat depends on the solution of the size optimization. To
calculate the losses of the battery the efficiency is used. To find the efficiency of the battery the
energy efficiencies map of [16] is used. The average efficiency for the different Lithium batteries
with a C-rate and capacity of the battery described in Section 4.3 is 98.5 percent. The model that
is used to calculate the losses is the battery Internal Resistance model (IR). In this model the
internal resistance and the nominal voltage are constant. The losses are only resistance losses and
these losses can be calculated by the following equation:

Ploss = I2bat ·Rint (5.3)

The current can be calculated by the following equation.

Ibat =
Pbat

Vnom
(5.4)

Vnom in this equation is a constant and is 350 V. Rint can be calculated by Equation 5.5 from
[17]. In this equation, the internal resistance can be calculated with the efficiency, the energy

16
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capacity, the C-rate, and the nominal voltage. Because these values are all known the Rint can
be calculated and becomes 95.3 mΩ. This value will be used in this research and the internal
resistance will be constant. In a real battery, the resistance is highly dependent on SOC, SOH,
and temperature and becomes higher when these values become lower [18].

Rint = Vnom · 1− ηbat
Crate · Ebat

(5.5)

5.2. Fuel cell
A fuel cell converts hydrogen and oxygen into electricity and water [13]. Unfortunately, not all
the power generated by the fuel cells is delivered to the load, but some of it disappears in the
form of losses. The efficiency of a PEMFC is the highest when it operates between 10 and 90
percent of its output power [19]. This range is called the operation range and is shown in Figure
5.1. To model the fuel cell system, it is important to take the efficiency into account. The fuel
cell’s efficiency depends on the percentage of the rated power that is used [20]. A typical efficiency
curve of a fuel cell system is shown in Figure 5.1. The input power can be calculated with the
relation between the percentage of the used power and the efficiency. The input power is the
output power divided by the efficiency. With this relation a power curve can be made and this
curve can be described by a second-degree polynomial function [20],[1]. Because the efficiency of
a fuel cell is the highest between 10 and 90 percent and because of degradation purposes only this
part of the power curve is used. The second-degree polynomial function has the following form:

Pin(t) = Pfc(t)
2 · a+ Pfc(t) · b+ c (5.6)

Pin(t) is the input power of the fuel cell in this equation and Pfc(t) is the output power. The
coefficients a, b, c can be derived from the fitted curve which is derived from the efficiency
related to the output power. Because the rated power of the fuel cell changes during the sizing
optimization it is necessary to normalize the function. This can be done by dividing the output
power in Function 5.6 by the rated power. After this, the whole function has to be multiplied by
the rated power to calculate the input power. The function becomes then:

Pin(t) = ((Pfc(t)/Pfcr)
2 · a+ (Pfc(t)/Pfcr) · b+ c) · Pfcr (5.7)

Pfcr in this function is the rated power of the fuel cell. The normalized power curve is shown
in Figure 5.2. The coefficients a, b, and c are respectively 0.855, 0.89, and 0.1123 and they are
obtained with the Curve Fitting tool in Matlab. The x represents the percentage of output power
of the fuel cell and the y is the corresponding normalized input power of the fuel cell. This
function is used to model the fuel cell in this optimization study. The approximation has an
accuracy of 99.55 Percent with the data used in [20]. After the power leaves the fuel cell, the
voltage is converted by a DC/DC converter. In this process also some energy is lost and the
efficiency of this converter is chosen to be constant at 95 percent [21]. The output power of the
fuel cell after the converter is therefore:

Pfc(t) = Pfc(t) ∗ ηcon (5.8)

ηcon in this equation is the efficiency of the DC/DC converter.
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Figure 5.1: Typical efficiency curve of fuel cell systems [1].

Figure 5.2: Normalized power curve of a fuel cell system.
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5.2.1. Hydrogen consumption
The system components are controlled by an ECMS which minimizes the equivalent consumption.
To do this it is necessary to calculate the instantaneous hydrogen consumption. This is done by
using the following equation:

H2(t) = Pin(t)△t ·m (5.9)

In this equation, H2(t) is the instantaneous hydrogen consumption, and Pin(t) is the input
power of the fuel cell which is calculated with Equation 5.7. m is the kWh to kg conversion
coefficient of hydrogen and is 0.03 kg/kWh [20]. The total hydrogen consumption is the sum of
the instantaneous hydrogen consumption at all timesteps.

5.3. Operational profile
All ships have a certain power that is needed to achieve a certain speed. When this power and
corresponding speed are measured a power profile can be made. In this research, such a profile is
made with data measured from the H2C boat. During this measurement, the H2C boat sailed in
two opposite directions with the same speed. This is done to take into account the differences
in circumstances that could exist when sailing in different directions. Factors that could be of
influence are for example wind and tide. With these power and corresponding speed measurements
a power profile is made. This graph is shown in Figure 5.3. The blue dots are the measured
points. The blue line is the curve fitted through these points. The first part of the curve from 0
to approximately 4 m/s is described by a polynomial. The second part is described by a linear
function. The functions are:

Pdem = 0.258 · v2 +−0.0311 · v + 1.17 · 10−13 (5.10)

Pdem = 2.9045 · v − 7.051 (5.11)

In these equations, Pdem is the demanded power in kW that corresponds to the speed v that is
asked. With this power profile and the corresponding formulas, an operational profile can be
made. Because the maximum power of the motor of the H2C boat is 55 kW, this is also the
maximum of the operational profile.

To solve the optimization problem an operational profile is needed as input. The operational
profiles used in this research are obtained out of a feasibility study from Tu Delft students [22].
The four different profiles are obtained with measured data from different training sessions with
a fossil fuel-powered coach boat. The measured data is speed over time and when this data is
converted to power over time the profiles in Figures 5.4, 5.5, 5.6 and 5.7 are obtained. The total
demanded energy in these profiles are respectively: 59.13 kWh, 22.11 kWh, 13.26 kWh, and 44.52
kWh.
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Figure 5.3: Power profile of the H2C boat with measured data.

Figure 5.4: Operational profile 1 with a total energy demand of 55.13 kWh.
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Figure 5.5: Operational profile 2 with a total energy demand of 22.11 kWh.

Figure 5.6: Operational profile 3 with a total energy demand of 13.26 kWh.
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Figure 5.7: Operational profile 4 with a total energy demand of 44.52 kWh.
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Equivalent Consumption Minimization
Strategy

As mentioned in the outcomes of Chapter 2 the strategy to control the system components will
be an ECMS. In this chapter, the general principle of ECMS are explained. Also, the problem
definition of the optimization problem and the constraints are described. After this different three
variants of ECMS are described.

6.1. Objective function and variables
To control the system components of a vessel, an energy management strategy has to be imple-
mented. In this research, an Equivalent Consumption Minimization Strategy (ECMS) is chosen
to control the system components of the hybrid powertrain. The objective of the ECMS is
to minimize the equivalent fuel consumption of the hybrid power system. ECMS is an online
optimization control method and therefore suitable to use in this study [23]. Online means that
the energy management strategy solves the optimization with real-time available data. It does not
need information about future working conditions but solves the optimization problem with the
instantaneous available data. In theory, it can be applied to actual ship control [24]. The core idea
is to convert electric energy into equivalent fuel consumption and minimize the total consumption
for every timestep. In general, the ECMS seeks the optimal power allocation between the fuel cell
and the battery by finding the minimal instantaneous equivalent fuel consumption for every time
step [25]. The optimization definition for the ECMS is given in Equation 6.1 [26].

uc(t) = arg min
uc

Mf,eqv(uc, we(t), EF (t)) (6.1)

In this equation uc are the control variables, uc = [Pfc(t)], we the exogenous inputs we =
f(Pdem(t), SOC(t)) and EF (t) the instantaneous Equivalent Factor. To calculate the instantaneous
equivalent fuel consumption the following formula is used:

Mf,eqv = H2 + Cbat (6.2)

In this equation Mf,eqv is the instantaneous equivalent fuel consumption, H2 is the instantaneous
hydrogen consumption which is calculated by Equation 5.9 and Cbat is the instantaneous equivalent
battery consumption. Cbat is calculated by the following equation [25]:

Cbat(t) = EF (t) · (Pbat(t) · △t)

Qlhv
(6.3)

EF(t) is the instantaneous Equivalent Factor which can be calculated in different ways depending
on the ECMS variant. The Equivalent Factor is always a combination between a chosen factor
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and a penalty factor. The penalty factor has to make sure that the battery SOC does not exceed
its constraints [26]. There are different methods to calculate this penalty factor and three of
these methods are explained in Sections 6.3, 6.4, and 6.5. Pbat(t) is the power of the battery and
Qlhv is the lower heating value of hydrogen which is 1.19 · 108J/kg [12]. Pbat(t) is not a control
variable but is dependent on the demanded power and the output power of the fuel cells as stated
in Equation 5.1 and shown in Figure 6.1. The ECMS chooses the output power of the fuel cells
for every timestep in such a way that the equivalent consumption is minimal. The optimization is
also subject to constraints which are defined in Section 6.2.

Figure 6.1: Block scheme of the working principle of ECMS.

6.2. Constraints
To determine the optimal energy management the optimization problem is subject to constraints.
The input to solve the control optimization problem is an operational profile which is a matrix with
timesteps and corresponding power demand. For the control problem the following constraints are
applied. The first constraint is that the power demand has to be satisfied. The total demanded
power should be in balance with the generated power at all times.

Pdem(t) = Pfc(t) + Pbat(t)− Ploss(t) (6.4)

In this equation is Pdem(t) the demanded power at time step t. The power is supplied by the
fuel cell system and the battery. Pfc(t) is the output power of the fuel cell system and Pbat(t)
is the output power of the battery. Ploss(t) are the losses that have to be compensated by the
battery. The next constraint is related to the battery system. The battery SOC always has to
stay between certain limits.

SOCmin ≤ SOC(t) ≤ SOCmax (6.5)

The maximum and minimum levels of SOC are respectively 100 and 12.5 percent. Below this level
the motor limits itself.
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Because of the big difference in efficiency with the corresponding operating point the fuel cells are
constrained. Therefore the next constraint is applied.

0.1 · Pfcr ≤ Pfc(t) ≤ 0.9 · Pfcr (6.6)

Pfcr is the rated power of the fuel cell which is a variable of the sizing optimization problem. The
minimum and maximum percentages of output power for the fuel cell are respectively 10 and 90
percent as stated in Chapter 5. Below 10 percent the fuel cell shuts off.
Because the hydrogen storage has a limited capacity the total hydrogen consumption is constrained.
The maximum capacity of the tank is 3.1 kg of compressed hydrogen as explained in Chapter 4.
The instantaneous hydrogen consumption is calculated by Equation 5.9. When this instantaneous
consumption is added up for every timestep the total hydrogen consumption is calculated.

t=tf∑
t=0

H2 ≤ 3.1 kg (6.7)

6.3. AP-ECMS
The Equivalent Factor is a combination between chosen factors and a penalty factor. The
Equivalent Factor in [25] is calculated with Equation 6.8. This variant of ECMS is called
AP-ECMS in this research. AP stands for Adaptive Penalty factor.

EF (t) = δSOC(t) ·M +

∫ t

t0

δSOC(t)dt ·N (6.8)

In this formula, δSOC(t) is the penalty factor and M and N are the chosen factors. M and N
reflect the adjusting intensity of the fuel cell. These chosen factors can be optimized to find the
optimal behavior for the fuel cell. With a higher chosen factor M, the EF will be bigger when
δSOC(t) is bigger. With a bigger EF, it will be more expensive to use the battery because Cbat

will be higher as shown in Equation 6.3. The integral from t0 till t is the sum of δSOC(t) from
t = 0 till the actual timestep. Chosen factor N has more impact on the EF at the end of the cycle.
The bigger the sum of δSOC(t) is the more impact N has on the EF. Therefore, M and N have a
great influence on Cbat and thus the behavior of the ECMS. The δSOC(t) in this equation is the
difference between the reference SOC and the real SOC and is functioning as a penalty factor.
δSOC(t) is described by Equation 6.9.

δSOC(t) = SOCref(t)− SOC(t) (6.9)

The real SOC is calculated by Equation 5.2 and the reference SOC is calculated by the following
equation:

SOCref(t) = SOC(0)− t

T
· (SOC(0)− SOC(tf )) (6.10)

In this equation SOC(0) is the initial State Of Charge and SOC(tf ) is the desired SOC at the
end of the cycle. T is the total duration of the cycle. By calculating the SOCref(t) in this way
it will decrease from SOC(0) till SOC(tf ) in a linear way over time. With every timestep the
SOCref(t) will decrease. The goal of this method is to let the real SOC decrease over time until
the desired SOC(tf ) at the end of the cycle. The more SOC(t) differs from SOCref(t) the higher
or lower δSOC(t) will be. This effect can be seen in Figure 6.2. In this figure, the reference SOC
is 50 at this timestep and is marked with a red dot. If the real SOC is for example 30 at this
timestep then the penalty factor is 20. The high penalty factor causes the EF to become bigger
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and this causes the cost of using the battery will be higher. When these costs are higher than
the costs of using the fuel cell, the fuel cell will be used. When the SOC(t) is higher than the
reference SOC the penalty factor is negative. This causes a negative cost for using the battery
and therefore the battery will be used to cover the demanded power.

Figure 6.2: Changing penalty factor with changing SOC with a reference SOC of 50 percent at
this timestep.
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6.4. LAP-ECMS
In [27] the Equivalent Factor is calculated with Equations 6.11, 6.12 and 6.13. This variant of
ECMS is called LAP-ECMS in this research. LAP stands for Low Adaptive Penalty function.

δSOC(t) =
SOC(t)− σ

SOCmax − SOCmin
(6.11)

σ =
SOCmax − SOCmin

2
(6.12)

EF (t) = 1− β · δSOC(t) (6.13)

δSOC(t) is the penalty factor and is calculated with Equation 6.11. The penalty factor changes
when the SOC changes. The penalty factor stays between 1 and -1 when SOC(t) stays between its
boundaries. When SOC(t) hits the upper bound, δSOC(t) is 1, and when it hits the lower bound
-1. This effect can be seen with changing SOC in Figure 6.4. σ is a constant that is calculated
by subtracting the SOC boundaries and dividing them by 2 as shown in Equation 6.12. β is the
chosen factor and reflects the adjusting intensity of the ECMS. When β is bigger the EF will be
bigger with a change in SOC and penalty factor. The EF is calculated by Equation 6.13. The
effect of a changing SOC on the EF with β = 1 can be seen in Figure 6.4. When SOC(t) hits the
lower bound the EF is 2 and when it hits the upper bound the EF is 0. This means that with a
high SOC the EF is low and the costs of using the battery are low. The lower the EF the lower
Cbat is and when Cbat is lower than the cost of using the fuel cell the battery will be used.

Figure 6.3: Changing penalty factor with changing SOC.



6.4. LAP-ECMS 28

Figure 6.4: Changing Equivalent Factor with changing penalty factor(δSOC) and β = 1.
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6.5. SAP-ECMS
In [26] the penalty function is calculated with Equations 6.15, 6.16, and 6.17. The Equivalent
Factor is calculated with Equation 6.14. This ECMS is called SAP-ECMS in this research. SAP
stands for Smooth Adaptive Penalty factor.

EF (t) = k · δSOC(t) (6.14)

δSOC(t) = 1 + (
SOCa − SOC(t)

σ
)a : SOC(t) < SOCa (6.15)

δSOC(t) = 1 : SOCb < SOC(t) < SOCa (6.16)

δSOC(t) = 1− (
SOC(t)− SOCb

σ
)a : SOC(t) > SOCb (6.17)

k in Equation 6.14 is the chosen factor that can be optimized to find the optimal behavior for the
fuel cells. δSOC(t) is the penalty factor which is dependent on the SOC(t), SOCa, and, SOCb.
SOCa and SOCb are chosen limits of the penalty factor. When the SOC is between the limits
SOCa and SOCb Equation 6.16 is in effect and δSOC(t) = 1. When the SOC exceeds the limits
SOCa or SOCb the penalty factor is calculated by Equations 6.15 or 6.17. σ is the same constant
as used in LAP-ECMS and is calculated by Equation 6.12. a is a chosen factor that reflects the
adjusting intensity of the penalty factor. The effect of this penalty factor with a = 1 can be seen
in Figure 6.5. a determines the slope of the penalty factor when the SOC exceeds the limits SOCa

or SOCb. With a different a the slope of the penalty factor will be different and the ECMS will
react differently to changes in SOC. The penalty factor becomes higher when the SOC exceeds
the lower limit SOCa and becomes lower when it exceeds the upper limit SOCb. This means
that the EF becomes higher when the SOC(t) exceeds SOCa and therefore the cost of using the
battery will be higher. The more SOC(t) exceeds SOCa the higher δSOC(t) will become and
the higher the EF will become. How fast δSOC(t) becomes higher depends on the slope of the
penalty factor and this depends on the chosen factor a. It is necessary to choose the SOCa and
SOCb with distance from the SOC constraints SOCmin and SOCmax. By doing this the penalty
factor can grow smoothly before SOC(t) hits the final boundaries and the ECMS can react in
a smooth way. The goal of this ECMS is that the energy management system reacts smoothly
to changes in SOC so that the fuel cell system can also react smoothly. The benefit of this is
that the system can work as efficiently as possible. In Chapter 8 the results and effects of these
different energy management strategies are compared and discussed.
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Figure 6.5: Effect of multiplicative penalty function with a = 1.
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Sizing optimization

In this chapter, the sizing optimization problem is described. First, the objectives and variables
are defined. After this, the constraints for the sizing problem are described.

7.1. Objective function and variables
The objective of the sizing problem is to minimize the weight of the system components. The
problem definition is given in Equation 7.1.

S = arg min W (Pfcr, Ebat) (7.1)

The control variables in this optimization problem are the rated power of the fuel cell Pfcr and
the rated energy of the battery Ebat. These variables are respectively in kW and kWh. In this
problem, there are no exogenous input parameters. The function to calculate the total weight is
defined by the following equation.

W = Wb · Ebat +Wfc · Pfcr (7.2)

In this equation Wb and Wfc are the weight factors of the rated power and energy of respectively
the fuel cell and the battery. Wb is calculated by dividing the original battery weight by its energy
capacity. These factors are given in Chapter 4 and Wb is therefore 7.1 Kg

kWh . For calculating Wfc

the same method is applied with data given in Chapter 4 only now the power is used instead of
the energy. Wfc is therefore 5 Kg

kW .

7.2. Constraints
To solve the optimization problem it is necessary to have constraints. The sizing problem is solved
with a linear programming algorithm in Matlab named Linprog. All constraints are therefore
linear equality or inequality constraints. The first constraint is the maximum power demand
constraint. The battery and the fuel cell together have to be able to deliver the maximum output
power of the motor.

Ebat · Crate + Pfcr · 0.9 ≥ Pmax (7.3)

In this equation, the battery rated energy is multiplied by the C-rate to obtain the maximum
output power. The rated power of the fuel cell is multiplied by the maximum percentage of
the output power of the fuel cell to obtain the maximum output power. Pmax is the maximum
continuous input power of the motor. The second constraint is related to the operational profile.
To be able to satisfy the energy demand required to perform a certain profile, the battery and the
fuel cell have to be able to deliver this demanded energy. To make sure this is the case for all

31
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profiles, the profile with the highest power and energy demand is used.

Ebat · 0.875 + Pfcr · 0.35 · T ≥ Edemand (7.4)

In this equation, the battery rated energy is multiplied by 87.5 percent of its maximum capacity.
Because of SOC limits not the complete energy capacity of the battery can be used. The rated
power of the fuel cell is multiplied by its most efficient powerpoint. Ideally, the fuel cell works on
this point all the time. T is the total time that is required to perform the operational profile.
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Results and discussion

In this chapter, the results of the research are shown and discussed. The first section discusses the
results of the different energy management strategies to control the hybrid power system. The
second section shows the results of solving the sizing problem. The third section combines the
results of the control and sizing problem and shows their impact on different operational profiles.
In the last section, the results are verified.

8.1. Results of energy management strategies
There are different ways to control the system components of a hybrid power system. In this
section, the results of different energy management systems are shown and discussed. First, two
rule-based strategies are shown and after this, the results of the three different variants of ECMS
are shown. To compare the results of the different strategies the operational profile with the
highest energy demand, profile 1, is used. The sizes of the battery system and fuel cell system
that are used are respectively 20 kWh and 32 kW. The original sizes of 40 kWh for the battery
and 8 kW fuel cell system are not used because the energy management strategies would not have
much effect with these sizes and operational profile 1 as input.

8.1.1. EMS H2C boat
The original controller of the H2C boat is a rule-based controller. The rules of this controller are
that the fuel cells are switched on when the SOC is below 85 percent and that they are off when
the SOC is above 95 Percent. When the fuel cells are on they work at their maximum operating
point. The effect of this controller can be seen in Figure 8.1. In this figure, the demanded power
is represented by the red line. The blue line shows the output power of the fuel cells and the
yellow line the output power of the batteries. The total hydrogen consumption is 3.09 kg with
this energy management strategy. In Figure 8.2 the SOC of the battery during the same cycle is
shown. It can be seen that the SOC stays always between 70 and 100 percent. The effect of these
rules is that the battery SOC will always be high until the hydrogen runs out. The downside is
that it costs a lot of hydrogen to keep the battery SOC at this level. The other downside is that
using the fuel cell at its maximum operating point is not efficient. The average efficiency with this
energy management strategy is 53 percent for the fuel cells. Another downside of the rule-based
controller is that it uses hard boundaries to control the fuel cell systems. By using these hard
boundaries the fuel cells have to ramp up and down the power very fast.

33
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Figure 8.1: Output power of the system components controlled by the EMS of the H2C boat
with operational profile 1 as input.

Figure 8.2: SOC of the battery during the cycle shown in Figure 8.1.
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8.1.2. Rule-based controller
To show that the rule-based controller of the H2C boat is not the most efficient and uses a lot
of hydrogen another rule-based controller is designed. The rules of this controller are that the
fuel cells are off when the SOC is above 95 percent. The fuel cells work at their most efficient
operating point when the SOC is between 30 and 90 percent and at their maximum operating
point when the SOC is below 30 percent. The most efficient operating point is 35 percent of
the fuel cells rated power. The efficiency at this operating point is 63 percent. The effect of
this controller can be seen in Figure 8.3. The input is again operational profile 1. The total
hydrogen consumption with this controller is 2.51 kg. The average efficiency of the fuel cells is 58
percent. These results show that the fuel cells work more efficiently with this controller and use
less hydrogen than with the original controller of the H2C boat. In Figure 8.4 the SOC of the
batteries during the cycle is shown. The downside of this rule-based controller is that it only uses
two different operating points for the fuel cells. Because of this, the fuel cells can not work at
their optimal operating point at all times. To make this possible for the fuel cells a lot more rules
have to be implemented and this makes a rule-based controller complex and not optimal.

Figure 8.3: Output power of the system components controlled by a rule-based controller with
operational profile 1 as input.
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Figure 8.4: SOC of the battery during the cycle shown in Figure 8.3.

8.1.3. AP-ECMS
When the systems are controlled by the AP-ECMS the system components behave as shown
in Figure 8.5 with operational profile 1 as input. The blue line represents the output power of
the fuel cells and it can be seen that they ramp up and down the output power very fast. This
behavior is caused by the penalty factor calculated with Equation 6.9. The penalty factor becomes
bigger when the SOC is lower than the reference SOC and lower when the SOC is higher than the
reference SOC. This growing and shrinking of the penalty factor causes the EF to grow or shrink
and this causes a change in the costs of using the battery. When the costs of using the battery are
higher than the costs of using the fuel cell, the fuel cell will be used. When the costs of using the
battery are lower, the battery will be used as power source. This effect can be seen in Figures 8.5
and 8.6. When the SOC(blue line in Figure 8.6) is close to or higher than the reference SOC(red
line in Figure 8.6) the costs of using the battery are low and the fuel cells are off. When the
SOC is lower than the reference SOC the costs of using the battery are high and the fuel cells are
turned on. The ECMS minimizes the equivalent consumption for every timestep. The calculation
of the costs with this ECMS and penalty factor causes the costs to change a lot and this causes
the fuel cells output power to ramp up and down fast. This behavior is not beneficial for the
fuel cell’s efficiency and the average efficiency is 53,98 percent. In Figure 8.6 it can also be seen
that the SOC follows the reference SOC. This shows that the SOC can be controlled during the
cycle with this controller. The result of this is that the SOC at the end of the cycle is very low,
namely 21,67 percent. The downside of this strategy is that the operating time has to be known
in advance to calculate the reference SOC during the operation. Due to this the ECMS does not
completely work in real-time but needs knowledge in advance. The other parameters to influence
the calculation of the EF and therefore the behavior of the ECMS are the chosen factors M and
N. By changing these factors the calculation of the costs of using the battery is influenced. This
influence of calculating the costs influences the adjusting intensity of the ECMS. This means that
when the costs grow faster the fuel cells ramp up faster and vice-versa. In general, it can be said
that the lower M and N are the slower the ECMS reacts to changes in SOC because the EF grows
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slower. This causes the fuel cells to be turned on later and the SOC can differ more from the
reference SOC. This causes less hydrogen to be used. When M and N are too low the fuel cell
reacts too slowly to changes in SOC and the SOC constraints can not be satisfied. The changes
in hydrogen consumption with different M and N are shown in Figures 8.7 and 8.8. The M and
N with the lowest hydrogen consumption found for this operational profile are respectively 22
and 0.3 and the hydrogen consumption is then 2.46 kg. The differences in hydrogen consumption
are very small with different M and N and also the overall behavior of the controller does not
change. In Figure 8.7 it can be seen that the hydrogen consumption is lower for a lower M factor.
The lowest possible M factor with an N of 0.3 and this operational profile is 22. When a lower M
factor is used the SOC limits are exceeded. In Figure 8.8 the hydrogen consumption for different
N factors and their lowest possible M factor is shown. It can be seen that for very low N factors
the M factor has to be very high to make sure the ECMS reacts fast enough with changing SOC
to keep the SOC between the boundaries. When the results of this ECMS are compared with the
rule-based controllers less hydrogen is consumed and the SOC is controlled very well.

Figure 8.5: Output power of the system components controlled by AP-ECMS with operational
profile 1 as input.
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Figure 8.6: SOC of the battery during the cycle shown in Figure 8.5 and reference SOC.

Figure 8.7: Changing H2 consumption for changing M factor.
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Figure 8.8: Changing H2 consumption for changing N factor.
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8.1.4. LAP-ECMS
In Figure 8.9 the output power of the system components controlled by the LAP-ECMS with
operational profile 1 as input is shown. In Figure 8.10 the SOC of the battery during the operation
is shown. From this figure, it can be seen that the SOC drops fast at the beginning of the cycle.
It can also be seen that the fuel cells are off or working at a low operating point in the beginning.
The reason for this is that the cost of using the batteries is low at the beginning of the cycle
when the SOC is high. When the SOC reaches the lower limit the costs of using the batteries
grow. Around this time the fuel cells ramp up the output power and the batteries are charged.
From this moment the SOC of the batteries balances around 30 percent. The average efficiency
of the fuel cells with this controller is 57 percent. The total hydrogen consumption is 2.45 kg.
In comparison with the AP-ECMS, the fuel cells have a higher average efficiency but the total
hydrogen consumption is almost the same. The reason for this is that the SOC at the end of the
cycle for this ECMS is higher, namely 34 percent. This means that more hydrogen is used to
charge the batteries. This causes almost the same amount of hydrogen to be consumed for both
controllers. A downside of this controller is that the SOC drops fast at the beginning of the cycle.
If later during the operation more power is demanded than the fuel cells can deliver and if the
batteries are empty then the power has to be constrained and the demanded power can not be
delivered. To calculate the EF with this ECMS a factor β has to be chosen. In Figure 8.11 it can
be seen that with a lower β less hydrogen is consumed. With a lower β the EF grows less with
changes in SOC and this causes the cost of using the batteries to grow less. Because the cost of
using the batteries grows less they are used more and the fuel cells are used less. This causes the
SOC to drop more and with a too low β the SOC constraints are exceeded. Therefore the chosen
factor β can not be too low and for this operational profile, the minimal β is 170.

Figure 8.9: Output power of the system components controlled by LAP-ECMS with operational
profile 1 as input.
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Figure 8.10: SOC of the battery during the cycle shown in Figure 8.9 controlled by LAP-ECMS.

Figure 8.11: Changing H2 consumption for changing Beta factor.
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8.1.5. SAP-ECMS
In Figure 8.12 the output power of the system components controlled by SAP-ECMS and with
operational profile 1 as input is shown. In Figure 8.13 the SOC of the batteries during the
operation can be seen. The blue line in Figure 8.12 represents the output power of the fuel cells.
It can be seen that the fuel cells work around a constant operating point most of the time. This
operating point is determined by the chosen factor k. It is found that the fuel cells work around
their most efficient operating point when k is 93. The EF is calculated with a chosen factor and a
penalty factor. When the SOC is between the limits SOCa and SOCb the penalty factor of this
controller is one and the fuel cells work around a constant operating point. These limits have to
be chosen before the SOC constraints so that the fuel cells can adjust the output power when
the constraints are getting closer. The values of these limits are chosen to be 45 and 70 percent
respectively. When these limits are exceeded the operating point of the fuel cell changes. This
behavior is caused by the calculation of the penalty factor with Equations 6.15 and 6.17. When
the SOC becomes higher than SOCb the fuel cell power is ramped down and when the SOC is
lower than SOCa the output power of the fuel cell is ramped up. This ramping up and down goes
smoothly because the penalty factor changes smoothly. How fast the penalty factor changes is
dependent on the chosen factor a. In Figure 8.14 the total hydrogen consumption with changing a
factor is shown. The a factor influences the slope of the penalty factor after the SOC limits. With
a higher a factor the slope of the penalty factor becomes smoother. When the slope becomes
smoother the EF reacts less to changes in SOC and the costs of using the battery change less.
When the costs of using the battery change less the output power of the fuel cell also changes less.
With higher a therefore less hydrogen is consumed but when a is too high the controller reacts
too slowly and the SOC constraints are exceeded. The highest a for this operating profile with a
factor k of 93 is 1.95. With these factors, the total hydrogen consumption is 2.36 kg. The SOC at
the end of the cycle is 38 percent and the average efficiency of the fuel cell is 60,3 percent.

Figure 8.12: Output power of the system components controlled by SAP-ECMS with
operational profile 1 as input.
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Figure 8.13: SOC of the battery during the cycle shown in Figure 8.12 controlled by
SAP-ECMS.

Figure 8.14: Changing H2 consumption for changing a with chosen factor k = 93.
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8.1.6. Comparison of different Energy Management Strategies
In this section, different energy management strategies to control the system components of a
hybrid power system of a hydrogen powered boat are compared. The results of the different control
strategies are shown in Table 8.1. The first two control strategies that are used are rule-based
and the last three are different versions of an ECMS. The rule-based controllers are by definition
not optimal. The reason for this is that the controllers are based on a limited amount of rules
and they cannot find the optimal operating point for the system components for every timestep.
The first rule-based controller is the EMS of the H2C boat. With this controller, the fuel cells
ramp up and down their output power very fast. The reason for this is that the fuel cells operate
at their maximum operating point when the SOC is below 85 percent and they are off when the
SOC is higher than 95 percent. This behavior of the fuel cells is not beneficial for the average
efficiency and therefore much hydrogen is consumed. With the second rule-based controller, the
fuel cells work most of the time on their most efficient operating point. This causes the average
efficiency to be much higher when compared to the EMS of the H2C boat. Therefore the hydrogen
consumption is also lower. When the SOC is below 30 percent the fuel cells ramp up to their
maximum operating point. This ramping up of the output power does not go smoothly and
therefore the fuel cells show some quick changes in output power. With this controller, the most
efficient operating point for the fuel cells can not be found at all timesteps. The three ECMS
variants work in different ways, but all versions minimize the equivalent consumption for every
timestep. Because of their different calculations of the penalty factor their behavior is different.
With the AP-ECMS as controller, the fuel cells ramp up and down the output power very fast.
The reason for this is that the ECMS reacts fast to changes in SOC. This behavior is not beneficial
for the efficiency of the fuel cells. The benefit of this controller is that the SOC can be controlled
very well. Therefore the SOC at the end is very low and the hydrogen consumption is less than
with the rule-based controllers. With the LAP-ECMS as controller, the fuel cells ramp up and
down the output power smoothly. The controller lets the SOC drop at the beginning of the cycle
and ramps up the output power of the fuel cells when the SOC constraint is close. This ramping
up of the fuel cells goes smoothly and the average efficiency of the fuel cells is higher than with the
AP-ECMS. With SAP-ECMS as a control strategy, the fuel cells work most of the time around a
constant operating point. This operating point is chosen to be the most efficient operating point.
If the SOC limits are exceeded the fuel cells ramp their power up or down smoothly due to the
penalty factor. Due to this behavior and the chosen operating point, the average efficiency of the
fuel cells is the highest for this controller. Due to this also the hydrogen consumption is the lowest.
Therefore this controller is chosen to be the optimal controller compared to the other controllers.

Table 8.1: Results of the different energy management strategies with operating profile 1 as
input.

EMS: Hydrogen consumption(kg): SOC end(%): Average efficiency fuel cells(%):

H2C 3.09 73,71 53,24

Rule-based 2.51 43,07 58,01

AP-ECMS 2.46 21,67 53,98

LAP-ECMS 2.45 34,39 57,46

SAP-ECMS 2.36 38,08 60,35
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8.2. Results of sizing optimization
To solve the sizing problem the objectives, variables, and constraints stated in Chapter 7 are
used. The objective is to minimize the weight of the components as defined in Equation 7.2. The
control variables are the energy capacity of the battery and the rated power of the fuel cell. To
solve the sizing optimization problem the linprog function in Matlab is used. The code used to
solve the problem is shown in Appendix A in Figure A.1. For the optimization, the most energy
intensive operational profile is used as input. This is operational profile 1 and is shown in Figure
5.4. This is the worst-case scenario and the system components that can cover the energy and
power demand of this profile can also cover the other profiles. The total energy demand, Edemand

is 59.13 kWh. The total duration T of this profile is 3.4 hours. The Crate used to convert the
battery energy into power is the same as the Crate of the battery used in the original plant and
is 1.45. The usable battery capacity C is 87.5 percent. The reason that it is not 100 percent is
because of the SOC constraint of 12.5 percent. The most efficient operating point of the fuel
cell Pfceff is 35 percent. The results of the sizing optimization problem are shown in Figure
8.15. The blue line shows the Pareto front of all the possible size combinations of the battery and
the fuel cell. The red line shows the total weight of the system for the different combinations of
battery and fuel cells. The optimal combination with the lowest weight is a battery with 13.17
kWh energy capacity and a fuel cell with a rated power of 39.90 kW. With a lower battery energy
capacity the fuel cell rated power has to be bigger to cover the power demand. This causes the
total system to be heavier. With a higher battery energy capacity the fuel cell system can be
smaller, but to cover the energy demand it cannot be much smaller. Therefore the total weight of
the system will increase with a bigger battery. The total weight of this combination of system
components is 293 kg. This is a reduction of weight of almost 10 percent compared with the
original system. The consequence of this combination of system components is that the battery
capacity is more than 50 percent smaller than the original battery and the fuel cell rated power is
5 times bigger than the original system. This means that the fuel cells are now the main power
source. The consequence of this is that when the batteries are empty the system can still work
with a power of approximately 35 kW. The other consequence of this is that the system consumes
more hydrogen. This consideration can be seen in Figure 8.16. In this figure, the blue line shows
the weight of the system components with different battery capacities and the corresponding
fuel cells. It can be seen that with higher battery capacity the weight of the system components
increases after the optimal solution. The red line shows the minimal hydrogen consumption with
different battery capacities. It can be seen that with a higher battery capacity, less hydrogen is
consumed. This consideration is also shown in Figure 8.17. With a higher weight of the system
components, less hydrogen is consumed.
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Figure 8.15: Pareto front of optimal size combinations of battery and fuel cell with
corresponding weight.

Figure 8.16: Weight and minimal hydrogen consumption for different battery energy capacities.
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Figure 8.17: Weight and minimal hydrogen consumption.
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8.2.1. Discussion of sizing optimization results
The sizing problem is constrained by the energy and power demand of the most energy intensive
operational profile. One of the factors that influence the size of the components is the Crate of the
battery. With a higher Crate the battery can produce more power with the same energy capacity.
Therefore a smaller battery could be used to cover the power demand and the total weight of the
system decreases. In the sizing optimization problem, it is chosen to let the fuel cells work at
their optimal operating point at all times. This means that they work at 35 percent of their rated
power at all times to cover the energy demand. When a higher operating point is chosen the fuel
cells rated power could be lower and the total weight would decrease. To calculate the weight of
the system components weight factors are used as explained in Chapter 7. For the calculation of
the weight factor of the fuel cells, the original system of 4 kW is used. When a bigger fuel cell is
used this weight factor can be lower. For example, a fuel cell of 40 kW with a weight of 48 kg
exists [28]. This would give a weight factor of 0.833 kg

kW instead of 5 kg
kW . When a bigger fuel cell

system is used the total weight could decrease therefore.

8.3. Results of combined sizing and control
In this section, the system components with optimal sizes are controlled by the SAP-ECMS
controller. The different operational profiles are used as input. This is done to show the robustness
of the optimization results. In Figures 8.18, 8.20, 8.22, and 8.24 the output power of the fuel
cell and the battery with the different operational profiles used as input are shown. In Figures
8.19, 8.21, 8.23, and 8.25 the SOC of the battery during the different operations are shown. In
Table 8.2 the results of the system components controlled by the SAP-ECMS with the different
operational profiles as input are shown. Profile 1 is the most energy intensive profile and was
used to find the optimal sizes of the system components. According to Figure 8.17 the minimal
hydrogen consumption for the optimal sizes is around 2.25 kg with operational profile 1 as input.
The hydrogen consumption for the optimal sizes controlled by the SAP-ECMS is around 2.64
kg. The difference is caused by the fact that for the sizing problem, it is assumed that the fuel
cells work at their optimal operating point at all times. When the fuel cells are controlled by the
SAP-ECMS this is not the case and this can be seen in Figure 8.18. This difference in hydrogen
consumption could be used to improve the sizing optimization problem. In Figures 8.22 and 8.24
the output power of the system components with operational profiles 3 and 4 as input is shown.
In these figures, it can be seen that the fuel cells operate at their minimum operating point or
sometimes shut off. The reason for this is that almost no power is demanded and the SOC reaches
its maximum constraint. This behavior causes the average efficiency with these profiles as input
to be lower than with operational profiles 1 and 2 as input. A solution to prevent this behavior is
to shut the fuel cells off when no power is demanded. Table 8.2 shows that the average efficiency
for the fuel cells is above 55 percent for all different profiles. Also the SOC at the end of the
cycle is above 50 percent. This means that the battery is always still available at the end of the
cycle and the maximum power of the battery combined with the fuel cells can be reached at all
times. The hydrogen consumption for all profiles is below 3.1 kg and therefore this controller in
combination with the sizes of the system components is suitable to use with the current hydrogen
storage of 3.1 kg. The hydrogen consumption for profile 1 is higher than the results shown in
1.1. The reason for this is that the sizes of the system components that are used are different.
Therefore more hydrogen is used and less energy is provided by the battery.
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Table 8.2: Results for the optimal sizes of the system components controlled by the SAP-ECMS
with different operational profiles used as input.

Operational profile: Hydrogen consumption(kg): SOC end(%): Average efficiency fuel cells(%):

Profile 1 2.64 54,87 61,41

Profile 2 0.94 77,67 61,55

Profile 3 0.53 73,99 56,00

Profile 4 2.17 83,79 59,26

Figure 8.18: Output power of the system components with optimal sizes controlled by
SAP-ECMS with operational profile 1 as input.



8.3. Results of combined sizing and control 50

Figure 8.19: SOC of the battery during the cycle shown in Figure 8.18.

Figure 8.20: Output power of the system components with optimal sizes controlled by
SAP-ECMS with operational profile 2 as input.
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Figure 8.21: SOC of the battery during the cycle shown in Figure 8.20.

Figure 8.22: Output power of the system components with optimal sizes controlled by
SAP-ECMS with operational profile 3 as input.
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Figure 8.23: SOC of the battery during the cycle shown in Figure 8.22.

Figure 8.24: Output power of the system components with optimal sizes controlled by
SAP-ECMS with operational profile 4 as input.
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Figure 8.25: SOC of the battery during the cycle shown in Figure 8.24.
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8.4. Verification of results
In the section above the results of the output power of the system components controlled by the
SAP-ECMS are shown. In this section, the results are verified. In Figures 8.26, 8.27, 8.28 and
8.29 the demanded power and the output power of the battery and the fuel cell added together
are shown with the different operational profiles used as input. From these figures, it can be seen
that the output power of the system components always matches the demanded power or is higher.
This shows that the results of the optimization are robust and that the sizes of system components
controlled by the SAP-ECMS are suitable to use to cover the power and energy demand of the
operational profiles. The difference between the output power and the demanded power is caused
by the losses of the battery. Because of these losses, the battery has to produce more power to
provide the demanded power. The percentage of lost energy is 1,05 percent on average for all
profiles.

Figure 8.26: Verification of the power balance with profile 1 used as input.
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Figure 8.27: Verification of the power balance with profile 2 used as input.

Figure 8.28: Verification of the power balance with profile 3 used as input.
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Figure 8.29: Verification of the power balance with profile 4 used as input.
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Conclusion

This research is based on a real project, namely the H2C boat of the company H2 Marine Solutions.
The H2C boat is one of the first zero-emission hydrogen powered vessels in the Netherlands. The
system components of the hybrid powersystem are more than twice as heavy as their fossil fuel
powered counterpart. The main question of this research is: How can we establish the optimal
energy and power of the system components of a hybrid power system with optimal energy
management for a zero-emission hydrogen powered boat for different operational profiles? This is
a multi-objective double-layer optimization problem. To execute this project different steps are
taken. First, different studies on double-layer optimization problems are analyzed in Chapter 2.
The outcome of this analysis is that different methods and strategies are used to solve a combined
sizing and control problem. The most popular strategy is the nested strategy where the control
design is nested in the plant design. Also, different algorithms are used to solve the optimization
problem and the most popular is to use an evolutionary algorithm. Unfortunately because of the
complexity of solving the combined optimization problem with an evolutionary algorithm and due
to lack of time a different strategy is chosen. The sizing and control problems are solved separately
and the results are combined. To solve the control problem two different options are possible
namely, online or offline optimization. In this research, it is chosen to solve the optimization
problem in real-time because then the controller could be used in an actual application. Therefore,
an online optimization method, the Equivalent Consumption Minimization Strategy (ECMS) is
used.

To solve the optimization problem, first, the case study is described. After this, a model of the
system components of the plant is built. The hybrid powertrain consists of fuel cells, a battery
system, hydrogen storage, different converters, and a motor. The system components that are
modeled in this research are the battery, the fuel cell, and the DC/DC converter. The different
operational profiles used in the optimization are made with measured data from the H2C boat.
With this data, a powerprofile is made and the speed data is converted into demanded power.
Four different operational profiles are used in the optimization to make the result robust.

To find the optimal energy management an ECMS is used. Because there are different variants
of ECMS three of them are compared with each other. All ECMS’s minimize the instantaneous
equivalent consumption. This equivalent consumption is calculated by converting the electric energy
of the battery into equivalent hydrogen consumption. By adding this equivalent consumption
to the hydrogen consumption the minimum equivalent consumption for every timestep can be
found. To convert the battery power into equivalent hydrogen consumption an Equivalent Factor
(EF) is used. This EF is a combination between a chosen factor and a penalty factor. The
differences between the three ECMS’s are mainly in the calculation of the penalty factor. This
penalty factor makes sure that the State Of Charge (SOC) of the battery stays between its
constraints. The different ECMS’s are compared with each other and also with two rule-based
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controllers. The two rule-based controllers are by definition sub-optimal. The reason for this is
that they use rules to control the system components and can not find the optimal operating
point for every timestep. The first rule-based controller is the EMS of the H2C boat. When
the system components are controlled by this controller, the average efficiency of the fuel cells
is the lowest. Also, the hydrogen consumption is the highest compared to the other controllers.
With the second rule-based controller, the average efficiency of the fuel cells is higher. Also, the
hydrogen consumption is lower compared to the other rule-based controller. With this controller,
the fuel cells work on their most efficient operating point most of the time. But still applies to this
rule-based controller that it cannot find the optimal operating point for the system components
for every timestep. The different ECMS’s show different behavior when controlling the system
components. With AP-ECMS as the controller, the fuel cells ramp up and down their output
power fast. This causes a low average efficiency for the fuel cells. The benefit of this controller is
that the SOC can be controlled very well and therefore the hydrogen consumption is low. With
LAP-ECMS as the controller, the SOC drops very fast at the beginning of the cycle and the
fuel cells are off. When the SOC reaches its constraint the fuel cell output power is ramped
up smoothly. With this controller, the fuel cells have a higher average efficiency than with the
AP-ECMS but almost the same amount of hydrogen consumption. The downside of this controller
is that the battery SOC lowers very fast in the beginning and when the battery is empty only the
fuel cell output power can be used. With SAP-ECMS as the controller, the fuel cell works around
a steady operating point most of the time. When this operating point is chosen to be the most
efficient operating point the average efficiency of the fuel cells is the highest and the hydrogen
consumption the lowest compared to the other controllers. With this controller, the output power
of the fuel cells is ramped up or down smoothly when the SOC comes close to the constraints. By
doing this in a smooth way the optimal operating point is found for every timestep. Therefore
the SAP-ECMS is chosen as the optimal controller.

To establish the optimal energy and power of the system components the optimization problem
is described with linear objectives and constraints. The sizing problem is solved by the linprog
function in Matlab. To find the optimal sizes the most energy intensive operational profile is used
as input. This is done to make sure that the system components are able to cover the energy and
power demands of all profiles. The objective of the sizing problem is to minimize the weight of the
system components. The results of this problem show that the weight of the system components
can be decreased by using a bigger fuel cell and a smaller battery than the original system. The
consideration between a bigger fuel cell and a smaller battery is a consideration between lower
weight and more hydrogen consumption. The optimal solution to the optimization problem is
a rated power of 39.90 kW for the fuel cell system and an energy capacity of 13.17 kWh for
the battery system. With a smaller battery energy capacity the fuel cell rated power has to be
bigger to cover the power demand and the total weight becomes higher. With a bigger battery,
the fuel cell can be smaller but not much smaller because the energy demand has to be satisfied
and therefore the total weight will be higher. The weight of the optimal combination of system
components is 293 kg in total and this is a reduction of 10 percent compared to the weight of the
original combination of system components used in the H2C boat. A battery system with a higher
C-rate could even lead to a smaller battery and a lower weight of the total system. The weight
could also be lowered when a different and bigger fuel cell system is used than the original 4 kW
fuel cell systems. When a bigger fuel cell is implemented it is recommended to use an optimal
energy management strategy such as the SAP-ECMS to control the system components and to
minimize the equivalent consumption. This could lead to a higher average efficiency for the fuel
cells and lower hydrogen consumption. This is preferable above a rule-based controller which can
not find the optimal operating point at all timesteps for the system components.



10

Reflection and recommendations

In this chapter, a reflection is given on the research. Also, recommendations to improve the
research are given. The first section reflects on the model used in this research. After this, the
method to solve the optimization problem is reflected. The last part gives some recommendations
about the ECMS.

10.1. Model
The model used to simulate the system components is described in Chapter 5. This model is
kept simple to focus more on solving the optimization problem. By improving the model the
optimization result could be more accurate. The model can be improved in different ways for
the different components. Not al components that are in the plant are modeled. For example,
the AC motor of the plant is not modeled. Also, the DC/AC converter is missing. The DC/DC
converter is modeled but in a very simple way considering an efficiency of 95 percent. For the
battery model, a very simple model based on internal resistance is used. To improve this model
a more accurate model could be used where the internal resistance is influenced by the SOC,
SOH, and temperature. Such a model would improve the accuracy of the efficiency of the battery.
For the fuel cell, the efficiency is modeled, but not validated with measurements of a real fuel
cell. To improve the model the components could be validated with measurements from the real
components. To achieve the operational profile measurements are used to achieve reliable data.
The operational profiles that are used could be more accurate with smaller timesteps to improve
the results.

10.2. Methodology
The methodology to solve the optimization problem is described in Chapter 3. The problem is a
multi-objective double-layer optimization problem. The original idea was to solve this problem
combined in a nested structure. Unfortunately, this problem was too complex to solve in the
remaining time. Therefore the sizing and control problems are separated. The sizing problem is
solved by a linear solver, namely linprog in Matlab. The control problem is solved by an ECMS.
By separating the sizing and control problem the results become less accurate. The results of
the sizing problem influence the results of the control problem and also the other way around.
A recommendation is therefore to solve the sizing and control problem combined in a nested
structure. This could improve the accuracy of the results.

10.3. ECMS
It was chosen to solve the control problem in real-time because the controller could then be
used in a real application. To do this an online optimization strategy has to be used and it was
chosen to use an ECMS. During the research, it was found that there are different variants of
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ECMS, and therefore they are researched and compared in Chapter 6. Most likely more variants
of ECMS exist and therefore it could be beneficial to also investigate these. Due to lack of time,
not more EMCS’s are investigated in this research. A better version of ECMS could exist when
the AP-ECMS and SAP-ECMS are combined. This could lead to a smooth adaptive ECMS in
which the SOC is controlled very well.
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Matlab code sizing optimization

Figure A.1: Matlab code of size optimization problem.
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