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This paper investigates the problems of modeling and control of the morphing aircraft. Henceforth, a 
nonlinear dynamic model of a wing-sweep morphing aircraft is first established in this work. This model 
is suitable for larger envelopes by elaborating the variation of aerodynamic coefficients, air density, 
mass distribution at different altitudes, Mach numbers, and sweep angles. Considering the alterations 
in the dynamic characteristics of the morphing aircraft owing to the various flight conditions, we design 
the switching adaptive backstepping controllers for the altitude subsystem and velocity subsystem. The 
actuator dynamics have been explicitly included in the process of the controller design to alleviate 
the chattering problem caused by the switching. Furthermore, the closed-loop stability is rigorously 
proved via the Lyapunov stability theory and the technique of compact set. Comparative results from 
the simulations finally validate the effectiveness of the proposed scheme.

© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

Morphing aircrafts are flight vehicles that can change their aerodynamic shape to adapt to different environments and missions [1]. It 
has attracted tremendous attention from the academia and engineering fields owing to its ability to accomplish multi-objective and multi-
task [2,3]. Most of the literature concerning morphing aircraft has been focused on morphing structures and materials [4–6], aerodynamic 
performance analysis [7–10]. Nevertheless, certain obstacles need to be overcome in the modeling and control of morphing aircraft [3]. 
High-performance flight control system is required to maintain the stability during the morphing process. However, altering the aerody-
namic shape produces the time-varying effect of the aerodynamic coefficients and extra inertial force, which incurs tremendous difficulties 
to the design of flight control system. Being one of the critical techniques for the morphing aircraft, the design of the flight control system 
during the wing transition process is attracting widespread interest in the fields such as control engineering, aviation, and machinery.

Linear systems have been first utilized to model morphing aircrafts in [11–19], based on which, several control methodologies have 
been formulated. For example, in [11,12], linear quadratic regulators (LQR) have been used to determine optimal control laws minimiz-
ing the quadratic performance measure. In [13], the switching proportional-integral-derivative (PID) controllers have been devised in 
accordance with the six different morphing configurations. However, the variation of the mass distribution and aerodynamic coefficients, 
even at the same altitude and Mach numbers during morphing, indicates the conservativeness of the LTI models. Consequently, linear 
parameter-varying (LPV) models have been exploited to overcome the above-mentioned drawback [14–16]. The non-switching LPV model 
is originally obtained from the convex combination of a set of LTI models [17], and the tensor product (TP) modeling method has been 
developed to reduce the computational burden of the modeling [18]. To ensure the feasibility of the LPV controller, the switching LPV 
controller has been proposed to replace the non-switching controller [20,21]. In [22], the switching polytopic linear parameter-varying 
controller has been used for morphing the aircraft in full envelope, and the mode-dependent average dwell time (MDADT) switching 
logics has been proposed to improve the properties of both the robustness and computational complexity. However, it should be noted 
that the LPV system cannot accurately describe the morphing aircraft dynamics since it neglects some important nonlinear characteristics, 
such as the fast changes of the aerodynamics during the transitions between different flight conditions.
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Subsequently, several control methodologies have been formulated based on a nonlinear model of the morphing aircraft. For instance, 
in [23], a nonlinear controller based on the dynamic inversion has been proposed, with feed-forward off-line neural networks being 
utilized for the model inversion. Unfortunately, the dynamic inversion method necessitates the model to be known completely, and the 
errors caused by the model uncertainties may be relatively large. The sliding mode control has stronger robustness, and hence, a multi-
loop sliding mode controller has been designed for the time-vary nonlinear model of the morphing aircraft in [24], besides presenting 
an adaptive super-twisting algorithm sliding mode method to improve the tracking performance and the robustness of the controller 
[25]. However, the chattering issue appearing in the sliding mode control is challenging to solve. Another common nonlinear method is 
the adaptive control. In [26,27], an adaptive back-stepping controller has been devised, and the dynamics of the morphing aircraft have 
been approximated by the radial basis function neural networks. The primary drawback of this method is that the variation of the mass 
distribution and aerodynamic coefficients caused by the morphing cannot always be accurately approximated by the neural networks, 
which constrains the control performance of this type of method.

To balance the complexity and accuracy of the modeling, the theory of switched nonlinear system has been applied to the modeling and 
control of the morphing aircraft [28], and the morphing aircraft is modeled as a switched nonlinear system. Further, the adaptive dynamic 
programming method has been employed to generate an additional control input for the purpose of improving the tracking accuracy [29]. 
Although it is convenient to use the switched nonlinear system to describe the parameter variation of the morphing aircraft, it does not 
capture the behavior of the continuous dynamics of the morphing aircrafts in the real world. Consequently, the nonlinear switched system 
modeling method is not accurate enough, which will lead to certain conservativeness in the controller design. On the other hand, most 
of the nonlinear model-based controllers in the previous works did not consider the variation of the morphing aircraft parameters with 
the altitudes and Mach numbers, which makes the controller unsuitable for larger envelopes. It should be noted that good performance 
under multiple flight conditions is one of the main advantages of the morphing aircraft. Therefore, it is essential to take the different flight 
conditions into account during the modeling and controller design.

In this paper, the dynamic characteristics of a morphing aircraft under different configurations, altitudes, and Mach numbers have been 
studied, so that a nonlinear morphing aircraft model more suitable for larger envelopes is established. Further, the longitudinal model is 
decomposed into the altitude and velocity subsystems. Inspired by [30–33], the switching back-stepping adaptive controllers have been 
designed for the altitude and velocity subsystems. The primary contributions of this paper, with respect to the relevant literature, have 
been summarized in the following.

(1) In contrast with [28,29], a continuous nonlinear dynamic model combined with the switching controllers has been used instead of a 
switching model during the controller design and stability analysis, which can describe the dynamic characteristics more accurately 
than switching model. Furthermore, the variation of the aerodynamic parameters at different altitudes and Mach numbers is consid-
ered in the modeling process, which makes the proposed model suitable for larger envelopes. Further, it better reflects the original 
intention of the morphing aircraft to pursue the optimal performance under various flight conditions.

(2) Compared with the non-switching back-stepping controller described in [26] and [27], a switching back-stepping controller has been 
designed in this work, which has better tracking performance. The switching of the control laws produces instantaneous jumping of 
the Lyapunov function, which incurs difficulties in the stability analysis. Inspired by [34], the invariant set theory has been applied to 
handle the possible jumping of the value of Lyapunov function and to facilitate stability analysis.

(3) Unlike [26–29], we consider the actuator dynamics throughout the control design and stability analysis processes, which alleviates the 
chattering problem possibly induced by the fast change of the command signals.

2. Modeling of morphing aircraft

2.1. Equations of motion of morphing aircraft

According to the results in [35], the equations of motion for the general morphing aircraft can be expressed in a vector form

F = m v̇ − S ẇ + m (w × v) − (w × S + 2 Ṡ
)

w +
∫

ρ̈ idmi, (1)

M = S v̇ + J ẇ + S (w × v) + w × ( J w) − 2
∫

ρ i×
(
ρ̇ i × w

)
dmi +

∫
ρ i × ρ̈ idmi, (2)

where F and M are the total applied force and moment, respectively. Further, m is the mass of the aircraft, and S and J are the static 
moment and inertia matrix of the aircraft, respectively, about O b (origin of body coordinates). w=[ p q r

]T
is the angular velocity 

vector; v = [ u v w
]T

is the velocity vector; ρi = [ ρxi ρyi ρzi
]T

is the position vector relative to O b of each particle in the whole 
aircraft, and mi is the mass of each particle (cf. Fig. 1).

Assumption 1. [25] There are only symmetrical morphing of the wings and longitudinal movement in the aircraft, and O b is located at 
the center of the mass of the rigid and nondeformable fuselage.

Remark 1. The symmetric morphing ensures the lateral unbalanced force and moment will not be generated. On the other hand, the 
location of the O b guarantees that the static moment of the wing is equal to that of the whole aircraft.

Let ρw
i

= [ ρw
xi ρw

yi ρw
zi

]T
denote the position vector of each particle in the wings. It follows from Assumption 1 that∫

ρ
i
dmi =

∫
ρw

i
dmi, (3)
2
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Fig. 1. Definitions of axes and motions.

∫
ρw

yi
dmi =

∫
ρw

zi
dmi = 0, (4)

p = r = v = 0. (5)

According to the coordinate transformation between the wind and body axes [36], the following equations hold.

ws = As/bw

=
⎡
⎣ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤
⎦
⎡
⎣ p

q
r

⎤
⎦=

⎡
⎣ p cosα + r sinα

q
−p sinα + r cosα

⎤
⎦ ,

(6)

v = Ab/s v s

=
⎡
⎣ cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤
⎦
⎡
⎣ V T

0
0

⎤
⎦=

⎡
⎣ V T cosα

0
V T sinα

⎤
⎦ .

(7)

Separating (1) and (2) into the stability and body axes, respectively, and combining with (3)-(7), the equations of motion can be 
represented by

V̇ = 1
m (T cosα − D − mg sinγ + Hx cosα + Hz sinα) ,

γ̇ = 1
V m (T sinα + L − mg cosγ + Hx sinα − Hz cosα) ,

q̇ = (M A + M F − Sx g cos θ + T ZT ) / J y,

(8)

where Sx = ∫ ρw
xi

dmi , J y = ∫ ρw
xi

2 + ρw
zi

2dmi , Hx = (− S̈x + Q 2 Sx
)
, Hz = (2Q Ṡx + Q̇ Sx

)
, M F = Sx1

(
V̇ sinα − V cosαγ̇

)− J̇ yq. Drag, lift, 
and pitching moment are formulated as

D ≈ q̄S w (ζ )
(

Cα2

D (ζ, V ,h)α2 + Cα
D (ζ, V ,h)α + C0

D (ζ, V ,h)
)

,

L ≈ Lαα + L0α = q̄S w (ζ )
(

Cα
L (ζ, V ,h)α + C0

L (ζ, V ,h)
)

,

M A ≈ M Aα + M A0 + M Aδe δe + M Aq
qc A (ζ )

2V

= q̄S w (ζ ) c A (ζ )

(
Cα

M (ζ, V ,h)α + C0
M (ζ, V ,h) + C δe

M (ζ, V ,h) δe + Cq
M (ζ, V ,h)qc A (ζ )

2V

)
,

where q̄ = 1
2 ρ (h) V 2 is the dynamic pressure, ρ (h) is the air density, S w is the wing area, and c A is the mean aerodynamic chord.

To obtain the values of c A , S w , J y , and Sx at the specific the sweep angle ζ , these parameters at ζ = 16◦, 25◦, 35◦, 45◦, 55◦, 60◦ are 
selected to generate one-dimensional tables as a function of the sweep, which are given in [13]. Further, the values of these parameters 
can be interpolated from these tables.

Remark 2. The equation of motion (8) is different from the rigid aircraft owing to the change of the shape and mass distribution caused 
by the morphing. The shape changes affect the wing parameters c A , S w , and the aerodynamic coefficients, viz., CL , C D , and CM . The 
variation of mass distribution affects the inertial parameters of the aircraft, viz., Sx and J y , and the position of the center of gravity (CG). 
The movement of CG invokes additional inertial force Hx , Hz and inertial moment M F , and it affects CM by changing the magnitude of 
the moment arm.
3
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Fig. 2. Aerodynamic coefficient for h = 3000 m.

2.2. Aerodynamic analysis

To acquire the accurate longitudinal nonlinear model, we need to obtain the complete aerodynamic data of the aircraft. There are 
primarily three methods to obtain the aerodynamic coefficients according to the literature, including CFD [7,8,10], Finite Element Anal-
ysis [9], DATCOM [13,25], and wind tunnel test [24]. The aerodynamic analysis in this paper is based on [13], and we extend the work 
to different conditions of Mach numbers and altitude. Aerodynamic derivatives at different sweep angles, altitudes, and Mach numbers 
have been obtained by DATCOM, and the geometric and inertial parameters of each configuration can be found in [13]. The aerodynamic 
derivatives obtained by DATCOM have been used to generate three-dimensional look-up tables, and the interpolation is used to construct 
the aerodynamic derivatives during the transition.

According to Fig. 2, for positive values of the angle of attack, the lift and drag coefficients are positively correlated with the sweep 
angle and negatively correlated with the Mach number. When the angle of attack is negative, they are negatively correlated with the 
sweep angle and positively correlated with the Mach number. The pitching coefficients decrease with the increasing sweep angle under 
a positive angle of attack. This owes to the increased magnitude of the moment arm contributing less to the pitching moment than the 
decrease of the reduced magnitude of lift. The Mach number has a significant impact on the aerodynamic coefficients, especially in the 
case of a small sweep angle. Mach number is therefore considered as an essential parameter in the following sections.

According to Fig. 3, the lift-to-drag ratio decreases slightly with the increase of altitude, and the rate of decline further decreases with 
velocity. The variation of the air density with the altitude is more significant than that of the lift-drag ratio, and the relationship between 
the altitude and air density is estimated as ρ (h) = ρ0 exp (−h/hs) [37], where ρ0 is the nominal air density at sea level and h−1

s is the air 
density decay rate. Obviously, with the increase of altitude, a larger angle of attack is required to generate sufficient lift, and the variation 
of the angle of attack changes the pitching moment M A and the inertia moment M F . Hence, the morphing aircraft have different dynamic 
characteristics at different altitudes. Therefore, it is inevitable to consider the altitude in the modeling and controller design to improve 
the accuracy of the model and the performance of the controller.

2.3. Model transformation

Assumption 2. The flight path angle γ is small, i.e., sinγ ≈ γ .

Similar to [25–28], the longitudinal model is decomposed into the velocity and altitude subsystems.
The altitude subsystem can be written as

ḣ = V γ ,

γ̇ = fγ + gγ θ + dγ ,

θ̇ = q,

q̇ = fq + gqδe + dq,

(9)

where fγ = L0−Lαγ
mV − g

V cosγ , gγ = Lα
mV , fq = M Aαα+M A0

J y
+ M Aqqc

2 J y V , gq = M Aδe
J y

, dγ = T sinα+Hx sinα−Hz cosα
mV +d�γ , dq = T ZT + M F − J̇ yq +d�q . 

Further, d�γ and d�q denote the equivalent disturbances caused by model uncertainties and unmodeled terms. The dynamics of the 
elevator are approximately modeled as the first-order dynamic system, given as
4
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Fig. 3. Variation of the air density and lift-drag ratio with altitude.

δ̇e = 1

Tδ

(δcm − δe) .

On the other hand, we express the velocity subsystem as

V̇ = f v + gv T + dv , (10)

where f v = 1
m (−D − mg sinγ ), gv = cosα

m , dv = Hx cosα + Hz sinα + d�v , in which d�v denote the equivalent disturbances caused by the 
model uncertainties and unmodeled terms, and the dynamics of the engine is also modeled as the first-order dynamic system as

Ṫ = 1

T T
(Tcm − Te) .

Assumption 3. [29] The disturbance dγ , dq and dv are bounded and differentiable. i.e., there exist positive constants d̄l and ¯̇dl, l = γ , q, v , 
such that |dl| ≤ d̄l , |ḋl| ≤ ¯̇dl .

Assumption 4. The velocity reference signal Vr is first-order differentiable and bounded, and the altitude reference signal hr is second-
order differentiable and bounded.

3. Controller design

3.1. Switching principle of the controller

According to the equations of motion and aerodynamic analysis, the aerodynamic parameters of the morphing aircraft vary widely 
under different altitudes, Mach numbers, and sweep angles, which make it challenging to find a global controller with good performance. 
To solve this problem, the idea of gain scheduling has been introduced into the backstepping adaptive control. The state-space of the 
scheduling parameters [h,Ma, ζ ] has been partitioned into different sub-intervals, as shown in Fig. 4. For each sub-interval, different 
control laws are designed, and fγ , fq, f v , gγ , gq are estimated according to the aerodynamic coefficients of the nearby working points in 
Section 2.2, denote as f σ

γ , f σ
q , f σ

v , gσ
γ , gσ

q , respectively. The switching rule of the controller is decided by the sub-interval to which the 
real-time scheduling parameters belong.

Remark 3. In Fig. 4, the division of sweep angles is based on several typical configurations in [13], and the division of Mach numbers is 
to divide the envelope into low speed, medium speed, and high speed zones. The reason for segregating the altitude values by an interval 
of 1000 m is that the air density decreases by about 10% for every altitude increment of 1000 m. On the other hand, the level of detail 
of the envelope division is a compromise between the tracking accuracy in each sub-interval and the number of switches. A high level of 
detail of the envelope division is beneficial for improving the tracking accuracy in each sub-interval, but it leads to the frequent switching 
of the control laws that is detrimental to the fast convergence of the system. The designing of a smoother switching nonlinear controller, 
intended to diminish this compromise, will be pursued in our future research.

Assumption 5. In the process of controller operation, there exists a positive constant βi ∈ (0, 1
2

)
such that 

∣∣gi − gσ
i

∣∣≤ βi |gi | for i = γ , q.

Remark 4. In this paper, fγ , fq, f v , gγ , gq are assumed to be unknown. Assumption 5 implies that the relative error of our estimates of 
gγ and gq is within 50%, which is useful to the stability analysis.
5
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Fig. 4. The switching rule of the controller.

3.2. Technical tools

This section introduces several lemmas that are instrumental in deriving the main results of this paper.

Lemma 1. [38] For any positive constant ε, the inequality

|x| − x tanh
(cx

ε

)
≤ ε, c = 0.2785

holds for any x ∈R.

Lemma 2. [39] For any positive constant kb, the inequality

ln

(
kb

2

kb
2 − z2

)
<

kb
2

kb
2 − z2

holds for any z in the interval |z| ≤ kb.

Lemma 3. [40] For any positive constant kb, let Z1 = {z1 ∈R : |z1| < kb
} ⊂ R and N = {Rl × Z1

} ⊂ Rl+1 be open sets. Consider the system 
η̇ = h (t, η), where η = [w, z1]T ∈ N is the state and the function h : R+ × N → Rl+1 is piecewise continuous in t and locally Lipschitz in z1 , 
uniformly in t on R+ ×N . Suppose that there exist continuously differentiable and positive definite functions U :Rl →R+ and V : Z1 →R+ such 
that

V 1 (z1) → ∞ as |z1| → kb

γ1 (‖w‖) ≤ U (w) ≤ γ2 (‖w‖)
with γ1 , γ2 , as κ∞ functions. Let V (η) = V 1 (z1) + U (w), and z1 (0) ∈ Z1 , if the inequality holds

V̇ ≤ −μV + λ

in the set η ∈N and μ, λ positive constants, then w remains bounded and z1 (t) ∈ Z1, ∀t ∪ [0,∞).

3.3. Altitude controller design

Define the tracking errors as e1 = h − hr , e2 = γ − αc1, e3 = θ − αc2, e4 = q − αc3 and e5 = δa − αc4, where αci is the output of the 
first-order filter with the virtual control law ασ

i as the input as given below,

α̇ci = 1
τi

(
ασ

i − αci
)
,αi (0) = ασ

ci (0) . (11)

Define the filter error zi+1 = ασ
i − αci .

Remark 5. The introduction of the first-order filter circumvents the ‘explosion of complexity’ in the sense that the derivative of virtual 
control law is estimated by the output of the filter, and smoothens the command signals in the sense that the output of the filter changes 
continuously. The latter point can be observed from the results of the simulation in this paper.
6
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Step 1: Choose the Lyapunov function as Lh1 = 1
2 e2

1, and taking the derivative of Lh1 yields

L̇h1 = e1
(
ḣ − ḣr

)= e1
[
V
(
ασ

1 + z2 + e2
)− ḣr

]
, (12)

and designing the virtual control law as

ασ
1 = (−kσ

1 e1+ḣr
)
/V . (13)

Then, substituting Eq. (13) into (12) yields

L̇h1 = −kσ
1 e2

1 + e1 (e2 + z2) .

Step 2: Choose the Lyapunov function as Lh2 = Lh1 + 1
2 e2

2, and taking the derivative of Lh2 arrives at

L̇h2 = L̇h1 + e2 (γ̇ − α̇c1)

= L̇h1 + e2
[

f σ
γ + gσ

γ

(
ασ

2 + e3 + z3
)

+
(

gγ − gσ
γ

)(
ασ

2 + e3 + z3
)+ �σ

γ + dγ − α̇c1
]
,

(14)

where �σ
γ = f σ

γ − fγ , whereas designing the virtual control law as

ασ
2 = 1

gσ
γ

[
−kσ

2 e2 + α̇c1 − f σ
γ − D̂γ tanh

( ce2 D̂γ

εV

)
− V e1

]
, (15)

in which D̂γ is adapted by

˙̂Dγ = |e2| − kDγ D̂γ . (16)

Then, combining (14)-(16) and Assumption 5 yields

L̇h2 ≤ L̇h1 − kσ
2 e2

2 + e2
(
dγ + �γ

)+ gσ
γ e2 (z3 + e3) − D̂γ e2 tanh

(
cD̂γ e2

εV

)

− V e1e2+
∣∣∣e2λγ gσ

γ

∣∣∣ |α2 + e3 + z3|

− V e1e2+λγ

∣∣∣∣∣−kσ
2 e2

2 + e2α̇c1 − e2 f σ
γ − e2 D̂γ tanh

(
ce2 D̂γ

εV

)
−V e1e2 + gσ

γ e3 + gσ
γ z

∣∣∣∣∣
≤ L̇h1 − kσ

2

(
1 − λγ

)
e2

2 + |e2| Dσ
γ + gσ

γ e2 (z3 + e3) − D̂γ e2 tanh

(
cD̂γ e2

εV

)

− V e1e2+λγ

∣∣∣∣∣e2 D̂γ tanh

(
ce2 D̂γ

εV

)∣∣∣∣∣ ,
where λγ = βγ

1−βγ
.

Step 3: Choose the Lyapunov function as Lh3 = Lh2 + 1
2 e2

3, and by taking the derivative of Lh3, we obtain

L̇h3 = L̇h2 + e3
(
θ̇ − α̇c2

)= L̇h2 + e3
[(

ασ
3 + e4 + z4

)− α̇c2
]
, (17)

and thus, designing the virtual control law as

ασ
3 = −kσ

3 e3 + α̇c2 − gσ
γ e2. (18)

Substituting Eq. (18) into (17) yields

L̇h3 = L̇h2 − kσ
3 e2

3 − gσ
γ e2e3 + e3 (e4 + z4) .

Step 4: Choose the Lyapunov function as Lh4 = Lh3 + 1
2 e2

4, and the derivative of Lh4 leads to

L̇h4 = L̇h3 + e4
[

f σ
q + gσ

q

(
ασ

4 + e5 + z5
)

+ (gq − gσ
q

) (
ασ

4 + e5 + z5
)+ �σ

q + dq − α̇c3
]
,

(19)

where �σ
q = f σ

q − fq . Design the virtual control law as

ασ
4 = 1

gσ
q

[−kσ
4 e4 + α̇c3 − f σ

q − D̂q tanh
(ce4 D̂γ

εV

)− e3
]
, (20)

where D̂q is adapted by
7
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˙̂Dq = |e4| − kDq D̂q. (21)

Then, combining Eqs. (19)-(21) with Assumption 5 yields

L̇h4 ≤ L̇h3 − kσ
4 e2

4 + e4
(
dq + �q

)+ gσ
q e4 (z5 + e5) − D̂qe4 tanh

(
cD̂qe4

εV

)
− e3e4

+ λq

∣∣∣∣∣−kσ
4 e2

4 + e4α̇cc − e4 f σ
q − e4 D̂q tanh

(
ce4 D̂q

εV

)
− e3e4 + e4e5 + e4z5

∣∣∣∣∣
≤ L̇h3 − kσ

4

(
1 − λq

)
e2

4 + |e4| Dσ
q + gσ

q e4 (z5 + e5)

− D̂qe4 tanh

(
cD̂qe4

εV

)
− e3e4+λq

∣∣∣∣∣e4 D̂q tanh

(
ce4 D̂q

εV

)∣∣∣∣∣ ,
where λq = βq

1−βq
.

Step 5: Choose the Lyapunov function as

Lh5 = Lh4 + 1

2
log

k2
h

k2
h − e2

5

, (22)

and taking the derivative of Eq. (22) results in

L̇h5 = L̇h4 + e5

k2
h − e2

5

[ 1

Ta
(δe − δa) − α̇c4

]
,

and then, design the control law as

δe = δa + Ta
[−k5e2

5 + ȧc4 − (k2
h − e2

5)gσ
q e4
]
. (23)

Then

L̇h5 = L̇h4 + k5e2
5

k2
h − e2

5

− gσ
q e4e5.

Assumption 6. The controller can only switch a limited number of times in a finite time, i.e., Zeno behavior will not occur [41], and the 
minimum dwell time of the mode of the controller is denoted as μm .

Theorem 1. Consider the closed-loop system composed by (9), by the control laws (13), (15), (18), (20), (23), and by the adaptive laws (16), (21), let 
Assumptions 1-6 hold. Given any initial error condition |e5(0)| < kh, then there exist a set of design parameters, such that all signals of the closed-loop 
system remain bounded, and the altitude tracking error e1 will converge to a small neighborhood of the origin determined by the design parameters. 
Furthermore, e5 will remain in the set |e5| < kh.

Proof. Consider the compact set

A = Ae × AD × Ah

=
{

4∑
i=1

ei
2 + 1

2
log

kh
2

kh
2 − e5

2
≤ 2ρ1

}
×
{

D̂2
γ +D̂2

q ≤ 2ρ2

}
×
{

hr
2 + ḣ2

r + ḧ2
r ≤ ρ3

}
.

Part I. To show that the filter error zi is bounded in the compact set Ai .
Choose the Lyapunov function as

Lzi =
1

2
z2

i .

The virtual control law αi will jump instantaneously at the time of switching instants tσ , and without loss of generality, we assume that 
the filter error zi satisfies

zi
(
tσ

+)= zi
(
tσ

−)+ lσzi
,σ ∈ S, i = 2,3, · · · ,5.

Since the output of the filter is continuous, the magnitude of the lσzi
is completely determined by the difference of the adjacent switching 

modes. Consequently, the maximum of lσz can be expressed by

i

8
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max
σ

∣∣lσz2

∣∣= max
σ

∣∣α2
(
tσ

+)− α2
(
tσ

−)∣∣
≤ max

σ1,σ2

∣∣∣[(kσ1
1 − kσ2

1

)
e1

]
/V
∣∣∣ ,

max
σ

∣∣lσz3

∣∣= max
σ

∣∣α3
(
tσ

+)− α3
(
tσ

−)∣∣
≤ max

σ1,σ2

∣∣∣(kσ1
2 − kσ2

2

)
e2 +

(
f σ1
γ − f σ2

γ

)∣∣∣/min
σ

∣∣∣gσ
γ

∣∣∣ ,
max

σ

∣∣lσz4

∣∣= max
σ

∣∣α4
(
tσ

+)− α4
(
tσ

−)∣∣
≤ max

σ1,σ2

∣∣∣(kσ1
3 − kσ2

3

)
e3

∣∣∣ ,
max

σ

∣∣lσz5

∣∣= max
σ

∣∣α5
(
tσ

+)− α5
(
tσ

−)∣∣
≤ max

σ1,σ2

∣∣∣(kσ1
4 − kσ2

4

)
e4 +

(
f σ1
q − f σ2

q

)∣∣∣/min
σ

∣∣gσ
q

∣∣ .
Let kσ1

i − kσ2
i ≤ k̄ci, i = 1, 2, · · ·5, σ1, σ2 ∈ S . Then, in the case of i = 2, 

∣∣lσzi

∣∣ have maximums on A, say Mpz2 . In the case of i > 2, 
∣∣lσzi

∣∣ have 
maximums on A × Az2 × · · · × Azi−1 , i > 2, say Mpzi . The jumping of the Lyapunov function therefore can be given by

Lzi
(
tσ

+)− Lzi
(
tσ

−)= lσzi
2 + 2zi

(
tσ

−) lσzi

≤ M2
pzi + 2 |zi | Mpzi .

Define the compact set Azi = {z2
i ≤ Mpli

}
, where Mpli >

(
1 + √

2
)2

M2
pzi , so that the jumping of the Lyapunov function have maximum 

M2
pzi + 2

√
Mpli Mpzi on the compact set A × Az2 × · · · × Azi . For every interval between two consecutive switching times t ∈ [tσ +, tσ+1

−),
L̇zi = − 1

τi
z2

i − żiα̇
σ
i−1. (24)

There exist continuous functions ηdzi such that∣∣α̇σ
1

∣∣≤ ηdz2

(
e1, e2, z2,k1,hr, ḣr, ḧr, V , V̇

)
,∣∣α̇σ

2

∣∣≤ ηdz3

(
e1, e2, e3, z2, z3,k1,k2, D̂γ ,hr, ḣr, ḧr, V , V̇

)
,∣∣α̇σ

3

∣∣≤ ηdz4

(
e1, e2, e3, e4, z2, z3, z4,k1,k2,k3, D̂γ ,hr, ḣr, ḧr, V , V̇

)
,∣∣α̇σ

4

∣∣≤ ηdz5

(
e1, e2, e3, e4, e5, z2, z3, z4, z5,k1,k2,k3,k4, D̂γ , D̂q,hr, ḣr, ḧr, V , V̇

)
,

and ηdzi have maximums on the compact set A × Az2 × · · · × Azi , say Mσ
zi . Define Mzi = max

σ
Mσ

zi , according to Young’s inequality, it holds 
that

ziα̇i−1 ≤ (Mzi zi)
2

2εzi
+ εzi . (25)

Substituting Eq. (25) into (24) yields

L̇zi ≤ −
(

1

τi
− Mzi

2

2εzi

)
z2

i + εzi .

Let 1
τi

= M2
dγ

2εγ
+ ai0, then L̇zi ≤ −2ai0 Lzi + εzi for t ∈ [tσ +, tσ+1

−). Define Lmzi = Lzi − εzi
2ai0

, then L̇mzi ≤ −2a0Lmzi . for t ∈ [tσ +, tσ+1
−), we 

have

Lmzi (t) ≤ Lmzi

(
t+
σ

)
e−2a0(t−tσ ).

Let

�Mi = Mpli − M2
pzi − 2

√
Mpli Mpzi

= �mi1 + �mi2,
(26)

Lmzi will decrease on each time interval t ∈ [tσ +, tσ+1
−), and therefore, the maximum of Lmzi , say Mlmi will appear at tσ + and satisfy 

the following inequality

Mlmi

(
1 − e−2a0μm

)
≥ M2

pzi + 2
√

Mpli Mpzi,

such that the minimum decreased value is no less than the maximum jumping. Therefore, Lmzi has maximum Mlmi = M2
pzi+2

√
Mpli Mpzi(

1−e−2a0μm
) . In 

order to guarantee that the magnitude of Mlmi cannot exceed the compact set Azi , let
9
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M2
pzi + 2

√
Mpli Mpzi(

1 − e−2a0μm
) ≤ Mpli − �mi1

and

�Mi = Mpli − M2
pzi − 2

√
Mpli Mpzi

= �mi1 + �mi2,
(27)

in which �m1 and �m2 > 0. Combining Eq. (26) with (27) results in

ai0 ≥ 1

2μm
ln

Mpli − �mi1

�mi2
.

According to Lzi = Lmzi + εzi
2ai0

, it holds that Lzi ≤ Mpli − �mi1 + εzi
2ai0

.

Let ai0 ≥ max
{

εzi
2�m1

, 1
2μm

ln
Mpli−�mi1

�mi2

}
, then, zi will remain in the compact set Azi . The process of Part I can be recursive from i = 2 to 

i = 5, and define Az = Az2 × Az3 × Az4 × Az5.

Part II. To show A is an invariant set.
Note that there exist continuous functions ηdγ , ηdq such that

max
σ

Dγ ≤ ηdγ

(
hr, ḣr, e1, e2, e3, z1, kσ

1
σ=1,2,···l

, V

)
,

max
σ

Dq ≤ ηdq

(
hr, ḣr, e1, e2, e3, e4, z1, z2, z3, kσ

1
σ=1,2,···l

, kσ
2

σ=1,2,···l
, kσ

3
σ=1,2,···l

V

)
.

It is not hard to verify ηdγ and ηdq have maximums on A × Az , say D̄γ and D̄q respectively. We define D̃γ = Dγ − D̄γ , D̃q = Dq − D̄q . 
Choose the candidate Lyapunov function as

LD=1

2
D̂2

γ +1

2
D̂2

q . (28)

Take the derivative of Eq. (28) gives

L̇D = −kdγ D̂2
γ − kdq D̂2

q + D̂γ |e2| + D̂q |e4| .
Be aware of that |e2| and |e4| have maximum of 

√
2ρ1 on the compact set A, thus we have that

L̇D ≤ −
(

kdγ − ρ1

εdeγ

)
D̂2

γ −
(

kdq − ρ1

εdeq

)
D̂2

q + εdeγ + εdeq.

Let kdγ = aD + ρ1
εdeγ

and kdq = aD + ρ1
εdeq

, it follows that L̇D ≤ −2aD LD+bD . Let aD > bD
2ρ2

, then L̇D < 0 on LD = ρ2. Therefore, if e1, e2, e2, 

e3, and e4 do not exceed the compact set A, then D̂γ , and D̂q will remain in the compact set A. Combine Lemma 2 with the Lyapunov 
function of the tracking error as

L̇h5 = −kσ
1 e2

1 − (1 − λγ

)
kσ

2 e2
2 − kσ

3 e2
3 − (1 − λq

)
kσ

4 e2
4 + k5e2

5

k2
b5

− e2
5

− gσ
q e4e5

+ V e1z2 + gσ
γ e2z3 + e3z4 + gσ

q e4z5 + |e2| Dσ
γ − D̂γ e2 tanh

(
cD̂γ e2

εV

)

+ λγ

∣∣∣∣∣e2 D̂γ tanh

(
ce2 D̂γ

εV

)∣∣∣∣∣+ |e4| Dσ
q − D̂qe4 tanh

(
cD̂qe4

εV

)

+ λq

∣∣∣∣∣e4 D̂q tanh

(
ce4 D̂q

εV

)∣∣∣∣∣
≤ −kσ

1 e2
1 − (1 − λγ

)
kσ

2 e2
2 − kσ

3 e2
3 − (1 − λq

)
kσ

4 e2
4 + k5e2

5

k2
b5

− e2
5

+ V e1z2

+ gσ
γ e2z3 + e3z4 + gσ

q e4z5 + +|e2|
[(

1 − λγ

)
D̃γ + λγ D̄γ

]
+ |e4|

[(
1 − λq

)
D̃q + λq D̄q

]
.

There is a maximum value of 
(
1 − λγ

)
D̃γ + λγ D̄γ on the compact set A × Az , independent of kσ

1 , denoted by MDγ . And there is a 
maximum value of 

(
1 − λq

)
D̃q + λq D̄q independent of kσ

4 , denoted as MDq . According to Young’s inequality, the following inequalities 
hold:
10
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|e2|
[(

1 − λγ

)
D̃γ + λγ D̄γ

]
≤ M2

Dγ e2
2

2εDγ
+ εDγ ,

|e4|
[(

1 − λq
)

D̃q + λq D̄q

]
≤ M2

Dqe2
4

2εDq
+ εDq,

V e1z2 ≤ V 2z2
2

4λ1
+ λ1e2

1 ≤ Mλ1 z2
2 + λ1e2

1,

gσ
γ e2z3 ≤ gσ

γ
2z2

3

4λ2
+ λ2e2

2 ≤ Mλ2 z2
3 + λ2e2

2,

e3z4 ≤ z2
4

4λ3
+ λ3e2

3 ≤ Mλ3 z2
4 + λ3e2

3,

gσ
q e4z5 ≤ gσ

q
2z2

5

4λ4
+ λ4e2

4 ≤ Mλ4 z2
5 + λ4e2

4,

(29)

where Mλ1 , Mλ2 , Mλ3 , Mλ4 are the maximum magnitude of V 2

4λ1
, 

(
gσ
γ

)2

4λ2
, 1

4λ3
, gσ

q e4z5 ≤
(

gσ
q

)2

4λ4
+ λ4e2

4, respectively. Therefore, for t ∈[
tσ +, tσ+1

−), one has

L̇h5 ≤ − (kσ
1 − λ1

)
e2

1 −
[(

1 − λγ

)
kσ

2 − λ2 − MDγ
2

2εDγ

]
e2

2 − (kσ
3 − λ3

)
e2

3

−
[(

1 − λq
)

kσ
4 − λ4 − M2

Dq

2εDq

]
e2

4 + k5e2
5

kb2
5
− e2

5

+ bh,

where bh = εDγ + εDq+
6∑

i=1
Mλi Mpli , let kσ

1 = λ1 + ασ
h , kσ

2 = λ2+ασ
h + M2

Dγ
2εDγ

1−λγ
, kσ

3 = λ3 + ασ
h , and kσ

4 = λ4+αh
σ + M2

Dq
2εDq

1−λq
, it holds that L̇h5 ≤

−2aσ
h Lh5 + bh . Let min

σ
aσ

h >
nbh
2ρ1

, n ≥ 1, it holds that L̇h5 < 0 on Lh5 = ρ1. As a consequence, it can be concluded that the compact 
set A is an invariant set.

Part III. To show the convergence of the tracking error.
For each interval t ∈ [tσ +, tσ+1

−), it holds that

Lh5 (t) ≤
(

Lh5
(
tσ

−)− bh

aσ
h

)
e−aσ

h (t−tσ ) + bh

aσ
h

≤ Lh5
(
tσ

−) e−aσ
h (t−tσ ) + bh

ah

(
1 − e−aσ

h (t−tσ )
)

=
(

Lh5
(
tσ

−)− bh

ah

)
e−aσ

h (t−tσ ) + bh

ah

,

(30)

where ah = min
σ

aσ
h . �

Remark 6. The virtual control law αi is not differentiable at the moment of switching instant, hence Eq. (30) can only hold in every 
interval between the two consecutive switching times.

Let Lmh = Lh5 − bh
ah

, then Lmh (t) ≤ Lmh
(
tσ +) e−aσ

h (t−tσ ) , we can verify that Lmh
(
tσ +) = Lmh

(
tσ −). Therefore, lim

t→∞ Lmh (t) ≤ 0, and it 
follows that

lim
t→∞ e1 ≤

√
2bh

ah
.

Since bh is independent of kσ
1 , kσ

2 , kσ
3 and kσ

4 , if ah is large enough, e1 can be arbitrarily small. Therefore, it can be verified that the 
conditions of Lemma 3 are satisfied on every interval between the two consecutive switching instants, so that |e5| will not exceed kh .

Remark 7. Since e5 = δa − α4c , and α4c can be arbitrary, and thus, the condition |e5(0)| < kh in Theorem 1 can always be satisfied. 
Furthermore, the velocity usually changes slower than the altitude angle, and thus, V and V̇ are regarded as bounded variables in the 
proof of Theorem 1, which is a weak assumption generally used in the existing literature.

3.4. Velocity controller design

Define the tracking error as ev1 = V − Vr , ev2 = Te − αvc , where αvc is the output of the first-order filter with the virtual control law 
as the input, which is given below as
11



α̇vc = 1
τv

(
ασ

v − αvc
)
,αvc (0) = ασ

v (0) . (31)

Step 1: Define the Lyapunov function as LV 1 = 1
2 e2

v1, taking the derivative of LV 1 yields

L̇v1 = ev1

[
f σ

v + gv
(
ασ

v + ev + zv
)+�σ

v + dv − V̇ r
]
, (32)

where �σ
v = f σ

v − f v . Design the virtual control law as

ασ
v = 1

gv

[
−kσ

v ev1 + V̇ r − f σ
v − D̂ v tanh

( cev1 D̂ v

εV

)]
, (33)

where D̂ v is adapted by

˙̂D v = |ev1| − kD v D̂γ . (34)

Substituting (33), (34) into (32) yields

L̇v1 = −kσ
v e2

v1 + ev (dv + �v) + gv ev1 (zv + ev2) − D̂ vev1 tanh
( cD̂ v ev1

εV

)
,

where Dσ
v = ∣∣dv + �σ

v

∣∣.
Step 2: Choose the Lyapunov function as

Lv2 = Lv1 + 1

2
log

k2
v

k2
v − e2

v2

. (35)

Taking the derivative of Eq. (35) leads to

L̇v2 = L̇v1 + ev2

k2
v − e2

v2

[ 1

Tte
(Tcm − Te) − α̇vc

]
. (36)

Design the control law as

T σ
cm = Te + Tte

[−kv2ev2 + ȧcv − (k2
v − e2

v2)gv ev1
]
. (37)

Then, we have

L̇v2 = L̇v1 + k2
v2e2

v2

k2
v − e2

v2

− gσ
v ev1ev2.

Theorem 2. Consider the closed-loop system composed by (10), by the control laws (33), (37), and the adaptive laws (34). Let Assumptions 1, 3, 4, 5, 
6 hold. Given any initial error condition |ev2(0)| < kv , there exist a set of design parameters, such that all the signals of the closed-loop system remain 
bounded, and the velocity tracking error ev1 will converge to a small neighborhood of the origin determined by the design parameters. Furthermore, 
ev2 will remain in the set |ev2| < kv .

Proof. The proof of Theorem 2 is analogous to that of Theorem 1, and thus, we omit it here owing to space limitations. �
4. Simulation

We present a comparison simulation to demonstrate the control performance of our proposed control scheme. The controller proposed 
in this paper is compared with the method proposed in [26], which gives the design of the controllers based on the nonlinear morph-
ing aircraft model with fixed altitude and Mach number. To illustrate the effectiveness of the proposed controllers, the cases devoid of 
switching and actuator dynamics are also simulated. For the sake of brevity, the method proposed in this paper is represented by m1, and 
the switching controller without considering the actuator dynamics is represented by m2. Further, the non-switching controller method is 
represented by m3, and the method in [26] is represented by m4.

To satisfy Assumption 4, the reference signals hr and Vr have been obtained from the square waves passing through the second-
order filter Hr (s) = 0.00144

s2+0.077s+0.00144
. The sweep angle signal is obtained from the square wave passed through the second-order filter 

Hs (s) = 0.0064
s2+0.08s+0.0064

, which makes the signal change smooth. Fig. 5 depicts the mission profile of a morphing aircraft which climbs 
from a high lift configuration to a maneuver configuration, and then back to the high lift configuration.

In the simulation described in this paper, actuator parameters are set as Tδ = 0.05 and T T = 0.2. The initial conditions are set as 
[h0, γ0, θ0,q0, V 0, δe0, T0] = [1500 m, 0◦, 1.72◦, 0◦/s, 140 m/s, −1.08◦, 5600 N]. Filter parameters are selected as, viz., τ1 = 0.01, τ2 = 0.01, 
τ3 = 0.01, τ4 = 0.02, and τv = 0.1. Tracking error limits are set as kb1 = 0.6 and kb2 = 0.2. Gains for adaptive laws are selected as kD1 = 1, 
kD2 = 1, and kD v = 2. Gains for the switching controllers are listed in Table 1, and gains for non-switching controller of m3 are selected 
as k1 = 2, k2 = 7.8, k3 = 3, k4 = 5.4, k5 = 1, kv1 = 2.5, and kv2 = 3.

The results from the simulation are shown in Figs. 6-13. Figs. 6-8 reveal the tracking errors and the root mean square errors (RSME) [
1
T

∫ t
0 e2dt

] 1
2

of altitude and velocity subsystems, when the morphing does not occur during t ∈ [0s,20s], the tracking errors of all the 
four methods have negligible difference. However, with the occurrence of morphing and the changes of the altitude and Mach number, 
W. Xu, Y. Li, M. Lv et al. Aerospace Science and Technology 122 (2022) 107349
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Fig. 5. Reference signals and sweep angle change law.

Fig. 6. Altitude tracking.

Fig. 7. Velocity tracking.
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Fig. 8. RSME for different methods.

Fig. 9. The responses of γ and α.

Fig. 10. The responses of θ and q.
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Table 1
Gains for the switching controllers.

Modes
Gains for the different modes

k1 k2 k3 k4 k5 kv1 kv2

σ = 21 2 8 3 7 1 2 3
σ = 22 2 7.6 3 6.6 1 2 3
σ = 23 2 7.2 3 6.3 1 2.5 3
σ = 28 2 7.0 3 5.5 1 2.5 3
σ = 29 2 7.6 2.8 5.2 1 3 3
σ = 30 2 7.6 2.4 4.5 1 3.5 3
σ = 45 2 8 2 4.5 1 3.5 3
σ = 44 2 7.6 1.6 4.1 1 3 3
σ = 43 2 7.2 2.7 4.8 1 2.5 3
σ = 42 2 7 3.3 5.8 1 2.5 3

Fig. 11. The control inputs δe and δcm .

Fig. 12. The control inputs T and Tcm .

Fig. 13. The tracking errors of actuators of m1.
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the tracking performance of m1 excels other methods. m2 has better tracking performance than m3 and m4 in most time periods owing 
to the taking of all the changes of the model parameters into account, and designing different control laws for various flight conditions. 
Nevertheless, during t ∈ [20 s,50 s] and t ∈ [200 s,230 s], the occurrence of the chatter leads to larger altitude tracking error. m4 has 
better tracking performance than m3 owing to the employment of neural network to estimate the uncertainty caused by the morphing, 
though the improvement brought by this estimation is limited. The responses of the state variables of the closed-loop system are depicted 
in Figs. 9-10. Accordingly, α, γ , θ , q stay bounded and eventually reach a new equilibrium point. Figs. 11-12 show the command signals 
of actuators. According to Figs. 9-12, the switching of the control laws may cause chattering phenomenon, and the comparison between 
m1 and m2 demonstrates that this problem can be alleviated by including the actuator dynamics in the controller design process. Fig. 13
illustrates the dynamics and the tracking errors of the actuators. Owing to the introduction of the barrier Lyapunov function technique, 
the tracking errors e5 and ev2 are always limited in the preset range, which improves the tracking performance of the closed-loop system.

5. Conclusion

The modeling and control of the morphing aircraft have been explored in this study. A nonlinear morphing aircraft model suitable for 
larger envelopes is first demonstrated, which elaborates the variation of the aerodynamic coefficients and mass distribution at different 
altitudes, Mach numbers, and sweep angles. We employ a continuous nonlinear model combined with a switching controller to replace 
the switching morphing aircraft model, which describes the dynamic characteristics of the aircraft more accurately than switching model. 
Concomitantly, the switching of the control laws makes it challenging to perform the stability analysis. To solve this problem, we quantify 
the jumping of Lyapunov functions by introducing the concept of a compact set, and prove the stability of the closed-loop system. 
Furthermore, this article includes the actuator dynamics in the controller design process, and introduces the Lyapunov barrier function 
to improve the dynamic response of the actuators, which alleviates the chatter phenomenon caused by the switching. Finally, the results 
from the simulation verify the effectiveness of the proposed method in this paper.

We will focus on designing a smoother switching nonlinear controller, in a future work, to improve the performance of the transition 
process of the switching, and we will apply that to the six degrees of freedom of the morphing aircraft model.
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