

Condition monitoring of railway transition zones using acceleration measurements on multiple axle boxes Case studies in the Netherlands, Sweden, and Norway

Li Wang¹, Siwarak Unsiwilai¹, Yuanchen Zeng¹, Chen Shen^{1*}, Jurjen Hendriks¹, Jan Moraal¹, Arjen Zoeterman², Alfredo Núñez¹, Rolf Dollevoet¹ and Zili Li¹

^{*}Corresponding author, email: C.Shen-2@tudelft.nl

Li Wang
Postdoc researcher
Section of Railway Engineering
Delft University of Technology

¹ Section of Railway Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands

² ProRail BV, Moreelsepark 3, 3511EP, Utrecht, the Netherlands

Background

What is a railway transition zone?

Segments
between
normal embankment
and
civil structures,
bridges, culverts, tunnels...

Background

What is the problem?

Broken sleeper

Track geometry degrades fast

Much more maintenance, in case safety problem, such as derailment

IN2ZONE D2.1 report, 2021

Background Reasons behind? - complex and case dependent

a) Track longitudinal view

DIC Device

DOI: 10.3390/s18020413

DOI: 10.1016/j.engstruct.2017.02.020

DOI: 10.1115/JRC2015-5645

- Generally, it is because of significant variation in track support conditions - uneven track stiffness/damping
- But could be quite complex/different in cases

ABA measurements Axle box accelerations - efficient solution

DOI: 10.1007/s13349-024-00766-0

Accelerometers — Vertical, lateral and longitudinal accelerations
 [On 4 wheelsets thus 8 wheels]

Locate the wheels, thus the defects

• Tachometer

Onboard measurements – special measuring wagon or equipped on normal vehicle

ABA measurements

Wavelet analysis and various indicators

WPS

$$WPS_{w,r}(x,s) = \left| \sum_{n'=0}^{N-1} a_{w,r}(n') \psi^* \left(\frac{(n'-n)\delta_t}{s} \right) \right|^2$$

GWPS

$$GWPS_{w,r}(s) = \frac{1}{n_2 - n_1} \sum_{n=n_1}^{n_2} WPS_{w,r}(x_n, s), \quad x_{n_1} < x_n < x_{n_2},$$

Global wavelet power spectrum is used to evaluate an average of the WPS within a particular segment of positions

SAWP

$$SAWP_{w,r}(x) = \frac{\delta_j \delta_t}{C_{\delta}} \sum_{j=j_1}^{j_2} \frac{WPS_{w,r}(x, s_j)}{s_j},$$

scale average wavelet power is used to investigate the *WPS* within a considered spatial frequency range

Possible specific indicators for specific track/substructure defects

Case studies – the Netherlands

Case studies – the Netherlands

TuDelft ProRail

Case studies – the Netherlands

TuDelft ProRail

- Identify defects from rail surface to substructures
- Speed independent faster train speed makes signal more pronounced

Case studies – Sweden

- The effects of the welds can be identified easily
- The responses are obvious at 0.65 m
 - → sleeper interval in Sweden

Case studies – Sweden

- The effects of the welds can be identified easily
- The responses are obvious at 0.65 m
 - → sleeper interval in Sweden

Case studies – Sweden

The strong responses on the culvert is found in the wavelength from about 3-10 m.

 \rightarrow Probably due to dynamic characteristics of the degraded structure

Further analysis of falling weight tests data and hammer tests data will confirm this

Case studies – Norway

- Differential settlement was found at transition zones due to the large variation in track support.
 - High-energy areas in the range 1-10 m, indicated by the white dash boxes, are found due to bumps caused by differential settlement.
- The responses due to sleeper interval are observed but not so distinguishable from other short wavelength responses.
 - Probably due to short sleeper interval of 0.52 m, making discrete rail support effect less pronounced.

Conclusion and future works

- ABA is promising in health condition monitoring at transition zones
- Case studies in the Netherlands, Sweden, and Norway prove this.
- ABA has the potential to evaluate transition zones health conditions:
 - Different transition zones and railway bridges provide unique characteristics of ABA signals.
 - Differences in dominant wavelengths and energy distribution of ABA signals are found.
- ABA responses are more pronounced at higher train speed.
- Trackside measurements and numerical studies are needed to further interpret the ABA measurement results.

Acknowledgements

Parts of this study have been funded by ProRail in the projects:

In2Track3 - 101012456

IAM4RAIL - 101101966.

Welcome any suggestions, comments and question!

If any following discussion:

C.SHEN-2@TUDELFT.NL

L.WANG-7@TUDELFT.NL