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Abstract

Dam reservoirs form a crucial part for human society storing water, controlling floods, providing hydropower,
water for irrigation and drinking. Annually 1% of the worldwide dam reservoirs storage capacity is lost, caused
by sedimentation. The inflow of sediment and reduction of flow velocity and turbulence in the reservoir pro-
vides favourable conditions for settling. Several sediment transport mechanisms are responsible for this, one
of these is the turbid density current. The turbid density currents settle as the reservoir becomes wider, and it
is affected by forces along the top and the bottom of the current. Recently, focus on reservoir engineering has
shifted from primarily structural dam design towards complete sediment management strategies. In order
to improve the sustainability of dam reservoirs, many management techniques are developed that inhibit or
mitigate sedimentation. However, the effectiveness of these techniques is not yet known. This thesis provides
an additional concept for sediment management in dam reservoirs consisting of channelling of turbid den-
sity currents in dam reservoirs. The channel provides controllable parameters. The aim is to study the effects
of channelling turbid density currents.

The study starts with a literature review, to describe sedimentation, sediment transport, and turbid den-
sity currents in dam reservoirs, including their analytical and numerical descriptions.

Two computational models study the concept: a steady-state model and a numerical model. The steady-
state solution and is based upon an equation for open channel flows modified for turbid density currents.
This model is used to investigate the effects of hydraulic radii and slope of the channel on the turbid density
current — secondly, the dynamic numerical solution. An analytical description is provided using the one-
dimensional shallow water equations, consisting of the continuity, momentum and particle conservation
equations. The solution includes four sources: deposition, erosion, gravity and friction. It omits water en-
trainment and bed deformation. The model is discretised using the Generalised Lax Friedrichs method. First
validation and investigation of the quality of the source terms are done. Subsequently, the model, including
the four source terms, is used to study the effect of slope, hydraulic radii, concentration and sediment size
in the channel. Expanding the numerical study by a Water Injection Dredging case in which local velocity,
concentration and height are increased along a certain length to study possible effects.

To conclude, channelling turbid density currents is a viable solution to improve sediment transport. The
slope and depth of the channel have the most significant effects. The generalised Lax Friedrichs method
provides a valid and straightforward discretisation method for the numerical model. Furthermore, the model
provides an easy, quick and simple to use tool to make first estimations of the effects of channel dimensions.
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1
Introduction

1.1. Background
The oldest dam reservoir in operation is the 100 Mm3 Afengtang reservoir west of Shanghai build between
589 - 581 B.C. Originally the dam has been constructed of alternating layers of earth and straw, kept together
by chestnut piles[46]. Since then 2500 years have passed, and dam reservoir construction has developed
significantly in cooperation with engineers, governments and society. Dams now consist of well-engineered
concrete walls. The number of reservoirs and their size have increased over time. Currently, dam reservoirs
are responsible for 40% of the total irrigation and water supply, and 20% of the total energy supply worldwide
[46][50]. Until recently, governments could suffice with building new dam reservoirs within rivers, but space
is becoming scarce and this solution is not longer considered sustainable. The increased growth and devel-
opment of the last 100 years resulted in a sedimentation problems that have grown so large that this can no
longer be ignored.

Rivers transport more water than sediment, the time it takes to fill a reservoir with sediment is signif-
icantly longer. Due to this, the gradual accumulation of sediment has only been recognised recently. The
reduced rate of dam construction throughout the world, combined with reservoir sedimentation results in
more storage being lost yearly [23]. Studies show an annual worldwide storage loss of approximately 1%[46].
Currently, dam reservoirs are one of the most unsustainable factors in the modern water supply system[40].
With over 45,000 large dams (size > 7000km3) and increased attention, the need for sustainable dam reservoir
management is acknowledged by governments, engineers and supported by the world bank.

The sedimentation problem is caused by the influence of dam reservoirs on the natural sediment balance
within rivers. From the upstream river, sediment enters the dam reservoir by several types of sediment trans-
port, such as turbid density currents. Dam reservoirs provide favourable conditions for particle settling as
the flow velocity is reduced. In recent years several management techniques have been developed to reduce
sedimentation. These techniques consist of reduction, rerouting, removing, and redistribution of sediment
[5].

1.2. Problem statement
The problem is that within dam reservoirs sediment accumulation harms function. Compared to the river,
the flow velocity in a dam reservoir reduces due to increasing width, depth and stagnant water. The reduced
velocity and turbulence result in a reduction of sediment transport capacity contributing to sedimentation.

Sediment transport is divided into bed-, suspended, and wash-load transport, which is associated with
different sediment particle sizes. Suspended- and wash-load mainly transports finer sediment fractions.
Within Bed-load transport the sediment fractions are larger. Within suspended-and wash-load transport,
sediment is also as transported in the form of turbid density currents. The sediment is then transported over
the bottom of the reservoir utilising a turbid density current. Within a reservoir the turbid density currents di-
verge and are influenced by the bottom and top friction, resulting in velocity and transport capacity reduction
causing sedimentation.

To solve for the adverse effects of sedimentation, many different management approaches have been de-
veloped to reclaim dam reservoir space. Within this thesis, a concept is proposed to improve turbid density
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current transport in dam reservoirs. The concept consists of dredging a channel in the dam reservoir. The
channel could ensure that the density current does not diverge, preventing it from losing its flow velocity and
sediment transport capacity. Within the channel specific parameters (dimensions) can be altered which en-
sure optimal sediment transport. The idea is that sediment is kept in suspension as the channel can maintain
higher flow velocities. It is yet unknown if the channel is capable to transport density currents that are coming
from the upstream river. In addition to this sediment transport could be improved or maintained with Water
Injection Dredging. A model is developed to describe and study the phenomena and the concept.

1.3. Objective
The primary objective of this thesis is to investigate and answer the main research question:

Is channelling of turbid density currents an effective measure to transport sediment through dam reservoirs?

To answer this main research question, the following six sub-questions(SQ) are formulated:

SQ1. What mechanisms are responsible for sedimentation of dam reservoirs?
SQ2. Which management techniques are currently available to mitigate negative effects?
SQ3. What are the characteristics of a turbid density current and why do these settle in dam reservoirs?
SQ4. How to prevent settling of turbid density currents in dam reservoirs?
SQ5. How can turbid density currents be mathematically described and is there a simple method, either

analytically or numerically, to model this?
SQ6. Can Water Injection Dredging within a channelled reservoirs improve the transport of turbid density

currents?

The answers to the sub-questions are given throughout the thesis: SQ1 in chapter 2 and chapter 3, SQ2 in
chapter 2, SQ3 in chapter 3 and further elaborated on in chapter 4, SQ5 is introduced in chapter 4 and further
elaborated on through chapter 5 and chapter 6, SQ6 in chapter 5 and chapter 6. First the results are discussed
in chapter 7, the answers to the sub question and main research question are summarised in chapter 8, fur-
ther recommendations are given in chapter 9.

1.4. Methodology
The aim is to study the concept of channelling turbid density currents in dam reservoirs through computa-
tional modelling. The channel dimensions and current parameters can be adjusted to asses their influence on
the density current. To reduce sedimentation and stimulate erosion is the ultimate goal. Sediment is kept in
suspension if sufficient turbulence is available. Characteristics that determine if there is sufficient turbulence
are velocity, slope, concentration, sediment particle size and the hydraulic radius.

The section methodology describes the available methodologies and reason for the particular strategy
applied within this research.

Limited data on channelling turbid density currents in dam reservoirs are available. First, a literature
study as provided in Part II and then an experimental study that follows this. There are approximately three
experimental methods available to study the effects of the channelling of a dam reservoir. Either large life-
sized experiments, scaled experiments or numerical/computational modelling. First, within a life-sized ex-
periment, one can experiment by trial and error and try to extract data from this experiment to asses its
effectiveness. A reason to use such a method is that one can immediately observe the effects of the chan-
nelling of a reservoir. Usually, these experiments are expensive, labour intensive and will generate data for
one reservoir which are hard to generalise.

Second, a scaled experiment in a laboratory provides a representation of reality. Within such an exper-
iment, one tries to reproduce as many parameters from reality as possible. These experiments will provide
visualisations of the concept. It is harder to quantify the effects of the measures, and the set up of an experi-
ment is labour intensive and expensive,as repeating the experiment, changing it several times is required to
obtain valid results.

Third, a computational model experiment. One can choose to use readily available software and create
a numerical model. For first estimations modelling is the cheaper option of the three modalities mentioned.
The complicated part of modelling is grasping physical processes in analytic and numerical equations. For a
problem considering sediment transport, it has been proven to be complicated.

It is impossible to do life-sized experiments; a laboratory experiment has been considered but seemed
too complicated to set up. The decision was made to choose for a computational modelling study using
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analytical and numerical solutions of turbid density currents. In previous studies, it is has been proven to be
an effective method to simulate turbid density currents. One can refer to chapter 7 for more detail.

The model, as presented in chapter 4, offers a solution for the modelling of the turbid density current in
a channel. The model represents the characteristics of the flow and the channel, and it is one dimensional,
subdivided into two sections: a steady-state solution and a numerical solution.

The steady-state solution of the turbid density current is used to obtain information on the influence of
hydraulic radii, slope and velocity of the current. The steady-state is an iteration step that provides insights
on the effects of hydraulic radii and slopes on the current velocity.

The numerical model provides information on the development of the turbid density current over a part
of the assumed channel length. It is modelling the steady middle part of the current, not accounting for
the front of the current and the plunging of the flow. Initial and boundary conditions are stated in subsec-
tion 4.3.2. The numerical model is then validated and assessed through a dam break experiment, settling
model, grid size experiment and evolution experiment. In subsection 5.3.5 several scenarios are proposed.
The results are shown and discussed in Part IV.

At last, the modelling of a Water Injection Dredging(WID) by doing a case study. WID is a proven tech-
nique to erode and move sediment in rivers and ports. The sediment transported downstream by WID could
positively influence the proposed concept. The results are provided in Part IV, section 6.3.

1.5. Outline
To counteract the sedimentation of dam reservoirs this thesis proposes a conceptual idea of channelling tur-
bid density currents in dam reservoirs. The conceptual idea is investigated based on natural, physical, (em-
pirical) mathematical and numerical principles. The report is subdivided into five parts the I. Introduction,
II. Literature Study, III. Methodology, IV. Results, V. Discussion, Conclusions and Recommendation and VI.
Appendices.

Part I, Introduction: Provides background information, the problem statement, objective, methodology
and the structure of the report.

Part II, Literature Review: Provides a literature study of the methodology and is divided into three chap-
ters, Sedimentation and Management of Dam Reservoirs (chapter 2 ), Sediment Transport Principles (chap-
ter 3) and Turbidity Currents in Dam Reservoirs(chapter 4). First dam reservoirs, sedimentation and manage-
ment techniques(chapter 2) are discussed. Second, chapter 3 sediment transport principles include, types of
sediment transport, the behaviour of grains in currents and open channel flows. Third, chapter 4 the turbidity
currents in dam reservoirs which compromises the available theory (section 4.1), a mathematical derivation
and description of turbidity current in one dimension (section 4.2). Lastly the numerical method is proposed
and discretisation, including initial and boundary conditions of the model section 4.3.

Part III, Modelling: Provides the proposed concept and modelling approach (chapter 5). Two research
methods are proposed consisting of a steady-state and numerical approach. The numerical model is used to
asses a Water Injection Dredging case that can positively influence sediment transport in the channel.

Part IV, Results and Discussion: First, provides the Results(Part IV) and is divided into three sections the
steady-state solution(section 6.1), numerical approach(section 6.2) and Case Study for Water Injection Dredg-
ing (section 6.3). Each section includes graphs that are accompanied by analysis. The discussion(chapter 7),
discusses the meaning, significance of the results and comparing it to expectations obtained from literature,
noting any unexpected behaviour — further, an analysis of strengths, weaknesses, precision and validity. At
last, it is assessing the patterns and evaluation.

Part V, Conclusion and Recommendations: is divided into two chapters, Conclusions(chapter 7) and Rec-
ommendations (chapter 9). Finally, the conclusion, relating to the original problem statement, answering
the research question and assessing the success of the study. In the end, recommendations are provided for
further studies.

Part VI, Appendices: Provides in depth information on this thesis together width python scripts used for
modelling.
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2
Sedimentation and Management of Dam

Reservoirs

This chapter provides an introduction to dam reservoirs, management thereof and sedimentation therein.

2.1. Introduction
The main function of dam reservoirs is to store water to either control floods, for hydropower or to provide
(drinking) water. Other less regular functions are recreation, navigation and safety.

Dam reservoir consists of three main areas, regardless of their function, as can be seen in Figure 2.1: Dead-
, active-and maximum-storage area. Dead storage does not affect the function of the dam and is thus usually
located below the dam outlet. The active area determines the functional capacity of the dam, either one of
the functions listed above. The maximum storage is used to delay large amounts of water(floods) that come
from upstream in short periods, in the downstream direction.

Two function types exist for dam reservoirs, either run-of-river or storage reservoirs as can be seen Fig-
ure 2.2. The main function of Run of river types are hydropower generation; they consist of relatively small
active storage and relative large dead storage areas[5]. In contrast to this, storage reservoirs have a large active
storage area and small dead storage area. Using active storage water for hydropower generation, irrigation or
water supply[5]. The vast majority of large dam reservoir in the world are storage reservoirs.

Figure 2.1: Three storage areas in dam reservoirs with
arbitrary sizes [25] Figure 2.2: Storage and the run of river type reservoir[5]

Besides their function, characterising reservoirs is also done by shape and size. Four different shapes of
reservoirs are identified by Borland and Millers[11], based upon reservoir sedimentation data in the United
States. The data obtained indicates a connection between reservoir shape and the percentage of deposited
sediment at different depths. Relating it to a shape factor that results in a distinction between four types[5]:

• Type I: Lake ( M = 3.5−4.5), more sediment in upstream part of reservoir
• Type II: Floodplain-foothill ( M = 2.5−3.5)
• Type III: Hill (M = 1.5−2.5)
• Type IV: Gorge (M = 1.0−1.5), more sediment in dead storage area of reservoir

The types are compared in a graph, plotting the percent of reservoir depth against the percent sediment
deposited[5]. Knowing the type of reservoir is a crucial tool in reservoir management. The shape of the reser-
voir influences the velocity profile, effecting turbulence and sediment transport. Geometrical knowledge of
reservoirs allows for the prediction of the sedimentation zones [60].

9



10 2. Sedimentation and Management of Dam Reservoirs

The sediment management aims and techniques differ within reservoirs different reservoir types. For
run-of-river reservoirs, the purpose is to improve operational efficiency to limit abrasion and clogging impact
of turbines. For storage reservoir, sediment management aims to ensure large amounts of storage area to
provide water supply during droughts or too attenuated floods. [5] More details on sediment management
techniques within dam reservoirs are discussed in section 2.3.

With over 45,000 large dams in the world, the need and availability of data are immense. The largest most
and comprehensive database is the Global Reservoir and Dam (GRanD) database. It is a combined effort
of two projects. The world Register of Dams built by the International Commission of Larg Dams(ICOLD)
listing more than 33,000 large dam reservoirs. Secondly, Earth System Science Partnership(ESSP) who noticed
inconsistencies in the database and assisted in building the new corrected GRanD. The database is freely
available for non-commercial use.

2.2. Sedimentation of Dam Reservoirs
Recently focus within reservoir engineering has shifted from primarily structural dam design towards a com-
plete sediment management strategy. Placing a dam on a natural watercourse forms reservoirs. Depending
on the size, shape and inflow, all dam reservoirs will be subject to some degree of sedimentation during their
lifetime. The remainder of this section discusses, consequences, sedimentation patterns and trap efficiency.

2.2.1. Consequences
Currently, the average age of reservoirs is 30-40 years, losing approximately 1% of the worldwide storage ca-
pacity yearly[26]. Loss of storage due to sedimentation has both upstream and downstream impacts. Down-
stream retrogression occurs and on the upstream side aggregation and flooding occurs. Upstream conse-
quences of sediment trapping are storage loss, delta deposition, river navigation problems, abrasion, ero-
sion, energy loss, obstruction of intake and outlets and landslides. Downstream consequences of dams are
environmental impacts, stream morphology changes and reduction of suspended sediment concentration.
For a more detailed explanation on up-and downstream impact see Morris and Fan (1998)[46]. Further, the
influence of sediment on the hydropower generation is significant. It causes clogging of cooling intakes and
abrasion, resulting in a reduction of power[5].

2.2.2. Sedimentation Patterns
The unified view of the spatial distribution of deposited sediment in the dam reservoir is that sediment is
deposited near the dam in horizontal layers slowly filling up the reservoir[5][47]. This idea assumes that
sediment only deposits within the dead storage area and active storage area remains available for the reservoir
lifetime. The incorrect assumption of sedimentation causes over-prediction of reservoir lifetime and results
in an early loss reservoir capacity.

Figure 2.3: Shapes of deposited sediment in dam
reservoirs[46]

Sediment transported by rivers consists of grains with dif-
ferent properties(e.g. size, density), resulting in the spatial
distribution of sediment particles along the reservoir. As the
reservoir becomes, wider and deeper water velocity decreases
downstream. The larger sediment particles deposit in the first
part of the reservoir and the smaller particle deposit further
into the reservoir. Leading to a process referred to as segre-
gation that results in different settling types: Delta, Tapering,
Wedge and Uniform shapes, as shown in Figure 2.3 [46]. It is a
simple representation of reality, as these types coincide. The
wedge shape rarely occurs; it is a result of regular occurring
density currents and lack of coarse sediment. Density currents
do explain the transport and distribution of sediment particles within reservoirs; providing more detail on
this in chapter 4. The other shapes are an effect of by particle size distribution, flood occurrence, density
currents and reservoir operation.

2.2.3. Trap efficiency
Within reservoirs accumulation of sediment is caused by a reduction of water velocity as forces exerted by
the flow forces are insufficient and thus unable to transport sediment particles after some time sediment
interferes with sediment inflow from the river.
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The definition of trap efficiency is the retaining of the amount or part of the incoming sediment load
within a reservoir. Using both the formula for trap efficiency, Equation 2.1, and sediment inflow, one can
determine the amount deposited sediment. Larger reservoirs trap more sediment and thus have higher trap-
ping efficiency. Many slightly different empirical methods have been developed to determine trap efficiency;
the most widely used is the one provided by Brune (1953)[14], see Figure 2.4. It is a relatively simple method
with the volume trapped(Vtr apped ) and volume entered(Venter ed ) yielding the Trapp Efficiency(T E)[14]:

T E = (
Vtr apped

Venter ed
) ·100 (2.1)

The trap efficiency curve by Brune, as shown in Figure 2.4, results in over or underestimation of the Trap
Efficiency due to it being relatively straightforward. Its low precision is caused by not taking into account the
variable inflow of water and sediment, and it is advised to use it for a rough estimate only. A more recent
empirical relation with better prediction capacity is provided by van Rijn (2013)[71].

Figure 2.4: Trap efficiency as related to capacity inflow ratio type of reservoir and method of operation Source: Brune (1953)[14]

2.3. Sediment Management of Dam Reservoirs
Reservoir storage is crucial for human society, with the sedimentation of the dam reservoir, there is a need
for sustainable management techniques[40]. Many techniques are available to counteract and control the
adverse impacts of sedimentation on reservoirs. To achieve successful dam reservoir management is only
possible integral dynamic combination of active and adaptive strategies. Figure 2.5 provides an overview of
effectively used techniques[46]. Although the effectiveness of the techniques is not (yet) scientifically sup-
ported, the techniques are used many reservoirs.

Figure 2.5: Classification system for sediment management techniques [47]

The management techniques, as provided in Figure 2.5, for sustainable reservoirs are classified by Morris
(2015) [47]:
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1. Reduce yield from upstream: Subdivided into "Control at the source" and "trapping eroded sediment
upstream", as can be obtained from the top left Figure 2.5, further details are provided in subsec-
tion 2.3.1.

2. Route Sediments: Subdivided into "Bypass" and "Pass-Through" system, as can be obtained from the
top middel in Figure 2.5 further details are provided in subsection 2.3.2.

3. Focus, redistribute or remove sediment deposits, as can be obtained from the top right in Figure 2.5
further details are provided in subsection 2.3.3.

4. Adaptive strategies, as can be obtained from the bottom in Figure 2.5, further details are provided in
subsection 2.3.4.

2.3.1. Reduce Sediment Yield
To reduce the sediment yield from upstream two strategies are used, reduction of sediment production at its
source and sediment trapping upstream of the reservoirs.

The reduction of sediment production is achieved in two ways. Sediment will come from upstream if
the soil at forests, range-land, farms or construction areas as they do not provide enough structure. A pro-
tective vegetative cover can control soil erosion. The cover provides structure to the soil due to a physical
and chemical binding, improving soil structure, porosity and permeability[47]. When channel erosion oc-
curs, it is an effect of surface runoff water that forms concentrated flow creating channels. The concentrated
flow increases erosion capacity and results in a meandering channel, mainly eroding the outer bank. To slow
down, this process, gully and stream stabilisation and restoration of the land area is needed. Although it is a
straight forward solution, stabilising natural meandering streams is hard in practice[47]. Sediment trapping
upstream of the reservoir as not all sediment that enters a channel will reach the dam reservoir. Trapping
occurs by large dams or structures or by Sometimes small farm ponds, or small (natural-)structures can be
very effective to reduce sediment yield[71] [47].

2.3.2. Route Sediment
Routing sediment has two main goals, maintain transport capacity and minimise deposition; either by a
bypass or a pass-through system.

First, the sediment bypass solution: a flood bypass channel, bypass tunnel or off-stream reservoir. A
Sediment Bypass Tunnel(SBT) has an entrance upstream of the reservoir and transports both suspended, and
bedload transport is discharging it downstream of the dam. An SBT should have a size that fits a flood and
should be able to operate for long and multiple periods per year. There is a distinction between high-level,
no drawdown, and low-level, drawdown, bypass tunnel system. This classification depends on the location
of the tunnel inlet.

A high-level tunnel is installed upstream, combined with a check dam, during a flood flow the tunnel
entrance submerges by the backwater induced by the check dam and will create an orifice flow. Due to the
low flow velocity in front of the SBT, course sediment cannot enter the tunnel.

A low-level, which cannot go without drawdown of the reservoir, SBT has an entrance below the aver-
age pool elevation. It can bypass suspended load, including turbidity currents(chapter 4), without reservoir
drawdown. However, in practice, to control the moving and developing delta, the reservoir is drawn down for
flushing[37]. The flushing discharge may pass through the SBT or low-level outlets at the dam[46][47].

Another option, to bypass sediment, is to create an off-stream reservoir storage area outside the natural
river channel. Clearwater diverted into the off-stream reservoir. Water with sediment will pass beyond the
entrance. Although it is a highly effective method in reducing sedimentation, the off-streams reservoirs need
sediment management too as these filling up with sediment from upstream too[46].

Second, sediment pass-through system aims to maintain transport minimising deposition and subdivid-
ing the pass-through system in reservoir drawdown and sluicing and the venting of turbid density currents.

Reservoir drawdown and sluicing timed with flood flow events and seasonally. Using drawdown when
a flood occurs with high sediment inflow causes a reduction of residence time and enhances sediment dis-
charge.

Sluicing is a technique reducing the water level of the reservoir before a flood event. Operating the gates
so that impounded reach can transport both sediment and water downstream. Sediment sluicing is the oper-
ation during which the reservoir levels are lowered at high inflow, maintaining flow velocity keeping sediment
in suspension [36][47]. Sluicing the dam is causes high flow velocities that erode deposited sediment.
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Table 2.1: Difference between sluicing and flushing based upon there common parameters. Source: [47]

Differences: Sluicing and Flushing
Parameter Sluicing Flushing
Timing Occuring with natural flood flow Does not occur with natural flood
Reservoir inlet Operated during sluicing Not able to be used, due to sediment con-

centration or low water
Outlet capacity Can pass large floods with minimum

backwater
Discharge may be limited by low level
outlet capacity

Sediment discharge Sediment Outflow ≈ Inflow Sediment Outflow > Inflow
Erosion pattern No retrogressive erosion Retrogressive erosion of fine sediments

moving upstream the channel
Gate placement Set and operate to achieve desired hy-

draulic profile during drawdown
Set gates at lowest possible level to max-
imise erosion in an empty reservoir

Sluicing is often mistaken for flushing the differentiation between these techniques can be ambiguous. To
provide insight in Table 2.1 a the differentiating factors between sluicing and flushing is made. More details
on the flushing management technique is provided in subsection 2.3.3. [29][37][65][60]

2.3.3. Focus, Redistribute or Remove Sediment
The focus, redistribution and removal of sediment comprise several techniques that are intertwined. This
section highlights, the aspects of mechanical excavation, modification of operating rule and hydraulic scour.

Mechanical excavation focusses on the removal of sediment rather than the redistribution of it: a sepa-
ration between dry excavation and dredging. When the reservoir is drawn down dry excavation is possible,
the open excavation will recover coarse sediment from the delta. If sediment is submerged, dredging can be
applied. There are many techniques available such as hydraulic dredging with a slurry pump, water injec-
tion dredging, hydro suction dredging using a siphon, airlift dredge, mechanical lift such as bucket clamshell,
dragline and backhoe and agitation dredge[5]. Dredging is a very cost-effective method for removal of large
volumes of sediment as the drawdown of the reservoir is not required[47][25]. Hydropower dams can even
use self-produced energy to dredge the reservoir.

The modification of operating rule focusses on redistribution of sediment limiting the advancing delta
within the reservoir. When a reservoir has a consistent water level, the delta(see Figure 2.5) has a stable
profile, and sediment is deposited and focused on the front of the delta[47]. The delta gradually advances
towards the dam. Raising the minimum operating level retards this advance. Sedimentation occurs within
the upstream part of the reservoirs. On the other hand, the reservoir can be drawn down during flood events
to eroding and redistributing sediment, focusing the delta deeper into the impoundment[47]. It reduces the
backwater and upstream flood levels.

Hydraulic scour/erosion is focused on the redistribution of sediment along the reservoir and is done by
flushing and within the flushing technique, divided into pressure and empty flushing. Pressure flushing is
when an outlet is still submerged and opened to release sediment while the reservoirs water level is high [29].
It results in a local cone shape caused by erosion, above the reservoir outlet only removing sediment close to
the dam. Empty flushing is the opening of an outlet to empty the reservoir eroding sediment deposits and
releasing water completely.

They are reaching maximum flushing capacity when the outlets are placed at the lowest level. Due to a
higher potential energy level, the most sediment is removed. Flushing is a technique that mostly erodes the
fine fractions in the dam reservoir [47]. The release of the high concentration of sediment below the dam
will result in the accumulation of sediment in the river channel. It is essential to provide sufficient clearwater
release to transport released sediment downstream to make it a sustainable solution[47]

2.3.4. Adaptive Strategies
In the previous paragraphs, active strategies were highlighted to manage sedimentation impact within reser-
voirs. Within this paragraph, adaptive strategies are provided; these adaptive strategies are actions that do
not involve active handling of sediment[47]:

• Reallocating storage and improving operational efficiency: Reservoirs on several water levels and im-
provement of operations of the reservoir.
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• Change inlets or other structural measures to avoid adverse effects of sedimentation; accomplished by
improving the structures to withstand more sediment load.

• Increasing volume by raising the dam: by heightening the dam it increases the surface area and thus the
amount of available storage space. Also, the building of a dam downstream of the ’old’ dam reservoir is
one of the options.

• Water loss control and conservation: implies more efficient use of water within the reservoir. Reducing
physical water loss by improving irrigation systems.

• Decommission infrastructure: If a dam is no longer economical or sustainable to operate and the de-
velopment of an end of life strategy should be considered.

• Construction of replacement project



3
Sediment Transport Principles

Hydraulic transport of sediment is both theoretically and experimentally a difficult problem due to the nature
of the fluid flow — the interaction between liquid and solid phase and complicated phenomena of turbulence.
Many studies have been done and are still done to provide formulations and approximations for sediment
transport principles. Within this chapter the main aspects of sediment transport are discussed. This provides
a basis for both turbid density currents(chapter 4) and modelling(section 4.2, section 4.3) decisions. For this
study assessing transport of the coarser silt(0.02-0.063mm) and smaller fractions of fine sand (0.063-0.2) in
dam reservoirs is considered.

This chapter introduces the types of sediment transport, the behaviour of sediment grains in a current
and open channel flow.

3.1. Types of Sediment Transport
Transport of sediment takes place due to current (gravity-, wind-, wave-, tide-and density-driven currents),
waves (deformation of short waves with decreasing water depth; shoaling) or by both waves and currents[73][61].
For current flowing over a river bed, the transport is devided into three types: bed-, suspended-and wash-load
transport. With right conditions, a combination of these can result in turbid density currents, chapter 4. The
predominant transport mode depends on size, shape and density of sediment particles in respect to the ve-
locity and turbulence field of the water body[20].

Bed-load transport, is transport of particles by rolling sliding and saltating and is dominated by flow in-
duced drag forces and by gravity forces acting on the particles [73],section 3.2. Unfortunately bed-load trans-
port is not universally agreed upon. Several definitions are available such as Bagnold (1966)[7] and Einstein
1950 [24], the definitions are provided in Appendix A section A.1.

When particles are removed from the bed when bed shear velocity exceeds the particle fall velocity, refer-
ring to suspended-load transport, particles are push upwards to a point where turbulent forces are equal or
higher than the submerged particle weight. A result of the random particle motions due to velocity fluctuations[73].
Suspended sediment concentrations decrease with the height in the water column, subsection 3.3.1. Bagnold
(1966)[7] defines suspended-load transport as supporting the excess weight of the particles is by random suc-
cessions of upward impulses imported by turbulent eddies.

Wash-load transport is very fine sediment(<0.05 mm) that is supplied from upstream in suspension and is
barely found in the river bed. Hardly any exchange with the bed occurs, with little effect on channel slope and
bed surface texture. Fine sediment particles enhance suspended sand transport as it increases the viscosity
and the density. Reducing fall velocity of suspended particles and transport capacity of flow will increase [72].

Turbid density current is a combination of bed-, suspended-and wash-load transport and are essential
in describing erosion and deposition processes in reservoirs [49]. The supporting mechanism for the flow
is turbulence, moving the particles through the water column. A turbidity current is a form of gravity cur-
rent, and the driving force is the horizontal difference in density due to sediment particles and the ambient
fluid. Gravity pulls the current and accelerates downslope. It erodes sediment from the bottom and entrains
fluid(water) from above.

15
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3.2. Grains in a Current
This section includes the theory of threshold of motion, critical shield number, deposition and erosion.

3.2.1. Threshold of Motion

Figure 3.1: Forces on a grain

A submerged grain is in equilibrium, stable or in balance when the driving
forces(Fdr i ve ) due to flowing fluid are equal with the resisting forces(Fr es )
from the grain, Figure 3.1. The driving forces acting on a grain are lift(FL),
drag(FD ) and shear(Fs ) forces. The resisting forces are the submerged
weight(Fw ) and friction forces(F f ) consisting of contact and friction forces
along the surface of the grain. A grain is stable if both lift force and sub-
merged weight counterbalance and when drag, shear and friction forces
counterbalance. As soon as the driving forces are larger than the resis-
tance forces(Fdr i ve > Fr es ) a grain can starts moving.

The driving forces are expressed as[59]:

Fdr i ve = Fr es (3.1a)

Fdr i ve = Fl +FD +Fg (3.1b)

Fr es = Fw +F f (3.1c)

Drag force: FD = 1

2
CDρw u2 AD

Shear force: FS = 1

2
CFρw u2 As

Lift force: FL = 1

2
CLρw u2 AL


Fdr i ve ∝ ρw u2d 2 (3.2)

with ρw water density, u the velocity, CD ,C f ,CL is the coefficient of proportionality for drag, friction and
lift forces respectively(depending on the shape) and AD ,C f ,CL the exposed surface areas for drag, friction
and lift of the particle. All forces are proportional to the square velocity defined near the grain, and the pro-
portionality of the surface is proportional to the square of a size "d"(a function of d 2). The resultant load is
expressed a function of u2 and d 2.

The same holds for resisting forces that ensure a grain stays in its equilibrium position. Lift forces balance
with submerged weight. Shear and drag are balanced by momentum around arbitrary contact point A or by
friction force. The balance is independent of the type of equilibrium; either horizontal, vertical or momentum
forces. Only the proportionality of load and strength remains, expressed as[61][59]:

Fl +FW = 0 (3.3a)

Fd +Fs +F f = 0 (3.3b)∑
H = 0 :FD = f ·W = F f∑
V = 0 :FL =W∑
M = 0 :FD ·O(d) =W ·O(d)

ρw u2
c d 2 ∝ (ρs −ρw )g d 3 (3.4)

With the horizontal forces H , the vertical forces V , momentum forces M , the weight of the particle W , the
friction f, the distance towards rotation point O(d) The equation above can be rewritten with a dimensionless
parameter k:

ρw u2d 2 ∝ (ρs −ρw )g d 3k (3.5)

Rewriting Equation 3.5 above provides:

k = u2
c

∆g d
(3.6)

with the critical velocity uc , dimensionless density ∆ Equation 3.6 leads to the non-dimensional shear stress,
referred to as the shields parameter θ. Shields considers the friction force caused by the water on the bed
on an area larger than one grain. When the driving force exceeds a particular critical value, the bed starts
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to erode, and grains start to move. It should be noted that the Shields curve does not predict the exact mo-
ment at which single grains start to move. Grains could start to move at a lower or higher Shields parameter
due to different exposure levels and the influence of turbulence[8]. Shields provides the relation between a
dimensionless shears stress and the Particle Reynolds number in the following form[59]:

θ = τc

(ρs −ρw )g d
= u2∗c

∆g d
= f (Re∗) = f (

u∗d

v
) (3.7)

Shields plotted a curve by hand through the limited amount of data on the threshold of motion for cur-
rents available to him in the 1930s [61]. An updated version of this line by Soulsby(1997)[61] is provided in
Figure 3.2. The threshold implies that grains start to lose stability and start moving, which is called the critical
moment.

The bed shear stresses one of the flow-induced driving forces acting on the area of the grain determines
the threshold of motion. The total shear stress is equal to skin friction and drag. If sediment transport is not
too intense, the total bed shear stress is equal to the skin friction. With τb the bed shear or bottom friction
exerted on the bed by current flowing over it. And u∗ is the friction velocity related to (τb = τc ):

τb = ρwCD u2 (3.8)

with the drag coefficient CD . Several expression for the hydraulic roughness are provided below, the Darcy
Weisbach resistance coefficient(f), the Chezy coefficient(C) and Mannings coefficient(n). Those are related
CD for current flow in the following[61]:

CD = f

8
= g

C 2 = g n2

h1/3
(3.9)

Empirical relations are available to determine the coefficients of Darcy-Weisbach, Chézy and Manning. The
choice of friction coefficients is not entirely arbitrary. The Darcy-Weisbach friction coefficient seems to give
a great resemblance to the flow in a pipe or open channel flow; it is for this reason used within this thesis[61]:

τc = ρw
f

8
u2 (3.10)

u∗ =
√

(
τc

ρw
) =

√
CD u2 (3.11)

With Darcy-Weisbach f , the drag coefficient CD , There are many empirical relations available to determine
the friction factor although one can choose to use a constant friction coefficient, that approximates the coef-
ficient closely, which is assumed as f = 0.025.

3.2.2. Critical shields
The moment that a particle starts moving is called the critical moment. This critical moment corresponds to
a critical shields parameter. There are many functions available to determine this critical shields parameter,
such as the one provided by Brownlie (1981)[13] that is based upon the particle Reynolds number:

θcr = 0.22Re−0.6
p +0.06exp(−17.77Re−0.6

p ) (3.12)

With particle Reynolds number(Rep ) defined as:

Rep = d
√
∆g d

v
(3.13)

With dimensionless density ∆, grain/particle diameter d , kinematic viscosity v .
Shields originally plotted a curve, by hand, through the data available to him in the form of θcr versus

the particle Reynolds number, not shown. However, this is inconvenient since shear velocity u∗ appears on
both axes. A direct mathematical transformation can be made to plot the critical shield number θcr versus
dimensionless particle diameter D∗, Equation 3.15, which is easier to use in practical applications, as shown
in Figure 3.2. An algebraic expression using the dimensionless particle diameter (D∗) that fits the Shields
curve is given by Soulsby and Whitehouse (1997) [61]:



18 3. Sediment Transport Principles

Figure 3.2: Updated version of the shields curve providing the threshold of motion of sediment beneath waves and currents [61]

θcr = 0.24

D∗
+0.055[1−exp(−0.020D∗)] (3.14)

with:

D∗ = (
∆g

v2 )1/3d (3.15)

The curve plots well through waves and waves and current data, as well as the extensive set of current
data available. However for very fine grains, the equation over predicts. Force consideration by Bagnold
1966[7] showed that the critical shields θcr could not exceed a value of approximately 0.30 because this exerts
a sufficient force on the grains to overcome the weight of every grain in the topmost layer of the bed. Corrected
by Soulsby and Whitehouse (1997), see Figure 3.2, to give an improved threshold bed shear-stress formula[61]:

θcr = 0.30

1+1.2D∗
+0.055[1−exp(−0.020D∗)] (3.16)

The dimensionless grain size D∗ defined in Equation 3.15. Equation 3.16 gives good approximations for
small particle sizes but approximates constant values for large grains D∗ > 200 with θcr = 0.055. For these
larger grains correspond with d > 10 mm formula for the threshold for grain diameter is derived. Equation 3.16
is intended for a horizontal bed, and it can be altered to provide initiation of motion on a sloping bed. How-
ever, assuming the angles of the reservoir channels are small, this effect is insignificant and as a result not
accounted for within this study. Also, this study does not account for the influencing effect of ripples.

3.2.3. Erosion
If the threshold of motion, critical shields number, is exceeded particles start to erode. Many studies have
been done to quantify the process of pick up and erosion of sediment bed. Many pick up functions are avail-
able such as those by Cao (2004)[18], Hu Cao (2008)[33] Van Rhee (2010)[69], van Rijn (1984)[72]. The focus
of these studies is to improve the pick up functions for certain flow regimes. The van Rijn (1984)[72] pick up
function seems to make good predictions and is used within this study[8]:

Ep = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5ρs

√
∆g d50 (3.17)

With the pick up Ep in [kgm/s], shields number θ, the critical shields θcr , the sediment density, ρs , dimen-
sionless density ∆, gravitational acceleration g and median diameter d50.

Rewriting the equation by dividing van ρs for implementation in the model(section 4.2):

E = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5

√
∆g d50 (3.18)

With the median diameter of the grains d50. With dimensionless grain size D∗ defined as in Equation 3.15,
the critical shield number in Equation 3.16 as proposed by Soulsby and Whitehouse (1997)[61]. The data of
van Rijn (1984) [72] was based upon a flow velocity of 0.5-1 m/s, θ = 0.3−1.0 and d50 = 130−1500 and no near
bed concentration. This is in good resemblance with the flow velocities within the experimental model.
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3.2.4. Hindered Erosion
Hindered erosion occurs due to high concentrations of sediment at the bed, the near-bed concentration cnb ,
and turbulent eddies hindering pick up by pushing sediment particles back to the bed and particle-particle
interactions [8]. Besides this turbulence is suppressed by sediment as an effect of high bed concentrations.
First, Winterwerp et al. (1992)[76] determined that erosion is limited by the concentration, with higher con-
centrations lower erosion occurred. Winterwerp et al. (1992)[76] only considered the reduction of entrain-
ment by the influence of suspended particles on eroding particles, which is similar to the effect of hindered
settling. Secondly, van Rhee and Talmon (2010)[69] followed up on hindered erosion and included a reduc-
tion factor for the near-bed concentration on the "net erosion flux". The approach included an assump-
tion made by Cao (1997)[19] on turbulent burst. Meaning particles are picked up and transported back to
the bed hindering and causing reduced pickup. van Rhee and Talmon 2010[70] checked validity of Equa-
tion 3.19(Although the The equation did not fit data of Winterwerp et al. 1992[76]), van Rhee (2010)[69] also
suggested similar relation:

Eh = E · 1−ni − cnb

1−ni
(3.19)

With cnb the near-bed concentration, ni porosity of the bed. Equation 3.19 provides that a maximum amount
of particles can be eroded from the bed according to 1−ni and particles are transported back by turbulent
eddies is limited by the near bed concentration cnb . If cnb = 0 pick up is equal to regular erosion, if cnb >0
pick up is reduced by hindered erosion.

Another approach to include effects of concentration sediment is the reverse formulation of the hindered
settling provided in Equation 3.19, according to the reversed concept of hindered settling by Richardson and
Zaki (1954)[55]:

Eh = E · (1− 1

1− cmax
)n (3.20)

With pick up function E, and n equal to 1.38 that correlates with the data of Winterwerp (1992)[76] Parti-
cles start to move at lower and higher critical shields value due to different exposure to the flow. Miedema
(2012a)[44] made a theoretical model including exposure, velocity profile close to the bed, drag, lift and tur-
bulent velocity fluctuations and showed that almost all particles at the top bed are mobile(100-1000 moving
grains per m2). When the shields parameter has exceeded the pick up flux increases up to ∼1 m/s(θcr = 0.5),
until this point, the erosion is dominated by the erosion of single grains which are entrained into the flow
"grain by grain". Exceeding the shields parameters, the pick-up increases. The empirical pick-up flux as the
one proposed by van Rijn (1984a)[72] in Equation 3.17 is applicable in combination with hindered erosion
as proposed in Equation 3.20 . When higher flow velocities and shields parameters occur, bulk properties
of sand such as porosity and permeability start to play a role a strategy as proposed by van Rhee(2010) [69]
could be applied. Unfortunately, no theoretical models are available. Cao (1997) [19] includes the effect of
turbulent bursting in a pick-up function. Also the pick up for values beyond u = 1 m/s and θcr = 0.5 is not yet
understood [8].

3.2.5. Deposition
Deposition of sediment grains depends on the current velocity, grain settling velocity and turbulence. For a
single grain the settling velocity in a stationary water column can be determined with:

vs =
√

4∆g d

3CD
(3.21)

With the particle settling velocity vs , gravitation acceleration g , diameter d , drag coefficient CD .
Within river flow the water is not stationary, and settling depends on the turbulence regime. The drag coef-
ficient CD is depended on the flow regime and is related to the particle Reynolds number. There are three
different turbulence regimes described for the particle Reynolds number(Rep )[55][28]:

Rep = vs d

v
(3.22)

CD =


24

Rep
Rep < 1 Laminar regime

24
Rep

+ 3p
Rep+0.34

1 < Rep < 2000 Transition regime

0.34 Rep > 2000 Turbulent regime

(3.23)
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To determine the settling velocity, one should determine if the flow is laminar, transitional or turbulent.
Within the transitional regime, requires an iteration step. One should account for that particles have a par-
ticular grain size distribution over different diameters. Within this study, it is assumed that particles have a
median diameter(d50). The iterative process is avoided by using the settling velocity by Ferguson and Church
2004[28], which is valid for a wide range of particle Reynolds numbers(Rep ):

vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(3.24)

In which C 1 = 18, C 2 = 1 for natural sands(0.44 for spheres) Ferguson and Church (2004) found these values
for sediment as an intermediate relation for grains of varied shape as fitted to there data[28]. Gravitation
acceleration(g), kinematic viscosity v , median sedimentsize d50, relative density ∆

Within the current, a specific concentration of particles is present. Due to sediment concentration inter-
action with both the fluid and other particles, the settling velocity decreases, referring to the phenomenon as
hindered settling. Richardson & Zaki(1954)[55] proposes a relation for hindered settling:

vs,h = vs (1−φ)n (3.25)

Where vs is the settling velocity of a single grain, the concentration φ, the hindered settling velocity vs,h and
approximating n with the method of Rowe (1987)[57](or a value assumed between 2-4 if one wants to simplify
calculations):

n =
4.7+0.41Re0.75

p

1+0.175Re0.75
p

(3.26)

The Deposition flux D can now be defined when hindered settling occur:

D = ρsφvs (1−αφ)n (3.27)

With α = 0 for non-hindered settling, α = 1 for hindered settling. The Deposition flux D when non-hindered
settling occurs is:

D = ρs vsφ (3.28)

in which ρs is the sediment density.

3.3. Open Channel Flow
3.3.1. Types
One refers to open channel flow when the free surface flow is subject to atmospheric pressure on the sur-
face. River flow is an obvious example of open channel flow. The balance of forces in open channel flow
determine if and how much sediment is eroded and transported. A channel is prismatic when the cross-
section of a channel is constant in shape, size and bottom slope. The most common shapes of prismatic
channels are rectangular, trapezoidal, triangular and circular. There are four general types of flow in pris-
matic channels[15][67]:

1. Steady and unsteady flow: The steady-state flow, the depth and discharge velocity do not change with
time. Unsteady if this is not the case.

2. Uniform and non-uniform flow: Flow depth along the channel does not change; for every cross-section,
the flow is uniform. Non-uniform if flow changes in the direction of the flow for a certain time.

3. Uniform steady flow: Flow depth is not changing with time at every cross-section and is constant along
the flow direction, the free surface is parallel to the bed.

4. Non-uniform flow: Changing water depth along the channel cross-section.

3.3.2. Turbulence
Flow is laminar, turbulent or in an intermediate regime. Laminar flow occurs when viscous forces are domi-
nant compared to inertial forces; the flow is smooth and has constant fluid motion. Inertial forces dominate
turbulent flow compared to viscous forces; the flow has eddies and vortexes and other instabilities(turbulence).
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Open channel flows experience resistance due to friction; the velocity at the bottom is zero. It implies
that in laminar flow viscous forces should be dominant throughout the entire height of the flow. It has a
smooth velocity profile and follows a parabolic shape. Within the turbulent flow of a channel, a tiny boundary
layer occurs in which the viscosity dominates the flow. The upper part of the flow is inviscid, neglecting
viscosity, shear is small, and velocity is almost constant. The velocity profile shape is logarithmic and at the
top maximum velocity occurs in which shear is zero.

The Reynolds number provides a measure for the amount of turbulence, and it is used to determine if the
flow is turbulent or not, defined as:

Re = ρ f uL

µ
= uL

v
(3.29)

In which ρ f (1000 kg/m3 for water) is the density of the fluid, u the velocity of the fluid, L the characteristic
linear dimension, µ the dynamic viscosity(1.3· 10−3 for water of 10 degrees Celsius) of the fluid and v the
kinematic viscosity(1.3· 10−6 for water of 10 degrees Celsius) of the fluid. In the case of open channel flow, L
is equal to the hydraulic radiusR:

R = A

P
(3.30)

In which the hydraulic radius R, cross-sectional area A and wetted perimeterP . As a general rule in open
channel flow based on the hydraulic radius there are conditions for turbulent and laminar flow:

• Re < 500 laminar
• 500 <Re <1000 transitional
• Re >1000 turbulent

Using Equation 3.29 to determine turbulence regime Re. From this, one can obtain that for very low velocities
the flow in a river/open/prismatic channel is almost always turbulent. For this study, flow is always in the
turbulent regime.

3.3.3. Velocity and Shear Stress
When the current in a prismatic channel flows over a solid boundary, the channel bed, it experiences friction
shear stress. It will form a boundary layer. The boundary layer may take the complete depth in shallow water
or a part of the water column in deeper water. The no-slip condition dictates that the velocity of the flow at
the boundary is zero[15]. Within the boundary layer, the current velocity increases with height. At a certain
height above the boundary, the velocity is maximum. How the current velocity increases with the height is
the velocity profile. Between the boundary layer and top, one can use the depth-averaged current velocity. A
schematic representation of the velocity profile, shear stress and concentration profile is given in Figure 3.3.

Figure 3.3: Schematic representation of sediment transport over a lose bed [20]. With Ub the bed layer velocity.

In an open channel with bottom friction the logarithmic velocity profile holds, see Figure 3.3 and Equa-
tion 3.31:

u(z) = u∗
κ

ln
z

z0
(3.31)

u∗ =
√
τb

ρ
(3.32)
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With u(z) velocity at height z, the von Karman constant κ (0.40), bed roughness height z0 and the bed shear
stress τb . For the bed roughness height, according to Nikuradse (1933), that used smooth and rough pipes for
the experiments, and fitted by Christoffersen and Jonsson (1985)[61]:

z0 = ks

30
(1−exp(

−u∗ks

27v
))+ v

9u∗
(3.33)

With kinematic viscosity v and the Nikuradse roughness ks . The Nikuradse roughness depends on the vis-
cosity of water, current velocity and dimensions of the physical roughness of the bed. The most widely used
simple approximation is[61]:

ks = 2.5d50 (3.34)

Roughness coefficient ks , median diameter d50. Mud and sand are smooth or transitional, and coarse sands
and gravels are rough. If a flat bed is assumed: no ripples, dunes or sand waves and sediment transport small.
The total bed shear stress is equal to skin friction. It is assumed that bed shear stress is related to the depth-
averaged current velocity through the drag coefficient as given in Equation 3.8 (τb = ρwCD u2). With CD being
the drag coefficient, for drag coefficient approximations refer to Equation 3.9. In many cases, the bed is not
flat and will have ripples, dunes and sand-waves. The total bed shear stress is referred to τt and is composed
of the skin friction(effective shear-stress) τ s and τb due to drag on individual grains:

τt = τs +τb (3.35)

There are several methods available to calculate the skin friction developed by Einstein (1950) and Wilson
(1989). The bed is assumed to be flat within this study.

3.3.4. Concentration Profile
For currents in prismatic channels, suspended sediment concentration decreases when moving higher into
the water column, Figure 3.3. The rate of change depends on the balance between fall velocity vs and bed-
shear velocity u∗. Balancing settling by turbulent diffusion. The equation that governs this balance is[61]:

vsC =−Ks
dC

d z
(3.36)

With settling velocity vs from Ferguson and Church(2004)[28] see Equation 3.24, Volume concentration C of
sediment at height z above the bed and eddy diffusivity Ks of the sediment.

Equation 3.36 can be solved using different assumptions to give the vertical distribution of the concen-
tration of suspended sediment in the flow. The difference is eddy diffusivity Ks , it depends on turbulence in
the flow and height above the bed. The Rouse number determines the profile shape:

b = vs

κu∗
(3.37)

When the eddy diffusivity(Ks ) increases parabolic with the height:

Ks = κu∗(1− (
z

h
)) (3.38)

The rouse profile is obtained, see Figure 3.4, derivation is provided in Appendix A section A.2:

C (z) =Ca(
z

za
(

h − za

h − z
))−b (3.39)

In which height above seabed z, reference height near the seabed za , concentration at height z C (z), reference
concentration Ca at height za and the water depth h [61]. Many other assumptions on the distribution of the
eddy diffusivity are available in Soulsby 1997[61].

Figure 3.4: Rouse profile providing variation of grain size
and current velocity with linear axes showing difference

in rouse number[61]

The following types of transport hold for, Equation 3.37,
Rouse number(b):

• 0 < b < 0.8 wash load transport
• 0.8 < b < 1.2 suspended sediment transport
• 1.2 < b < 2.5 50% suspended sediment transport
• b > 2.5 bed load transport



4
Turbid Density Currents in Dam Reservoirs

4.1. Theory
"If turbid density currents can be entirely stopped or influenced in such a way that the sediments do not
deposit in critical locations, then the sustainability of the reservoir operation may be increased considerably
[60]."

This chapter provides a theoretical introduction of turbidity currents, mathematical description and the
translation to a numerical approach.

4.1.1. Introduction
When a fluid with a given density moves into another stagnant fluid of a different density, the flow stratifies
[53]. The flow either moves under, through or over the ambient fluid depending on density. Density dif-
ference is caused by temperature, chemical composition(e.g. salinity), pressure and suspended matters(e.g.
sediment)[53]. The stratified flows occur in oceans, lakes and reservoirs and stratification occurs by waves,
continental shelf collision, turbid water, mining and dredging. In literature, many expressions exist for strati-
fied flow such as density current, gravity current and turbidity current, each having a slightly different mean-
ing. The focus of this study is on turbid density currents(Turbidity currents).

Figure 4.1: Turbid density current travelling along a bed slope of a dam reservoir vented through the bottom outlet [21]

First a clarification of what is meant by a turbid density current: The adjective "turbid" means cloudy, opaque
or thick with suspended matter. 1. "Turbidity transported in reservoirs by temperature-induced density cur-
rents are density currents transporting turbidity[47]." 2. "Density currents caused primarily or entirely by the
presence of the turbidity are turbidity currents as stated by Middleton and Hampton, 1973[47]." The term
turbid density current applies to both.

Turbidity currents contain sediment and are denser than the ambient fluid; gravity pulls the solid particles
in the mixture, causing downslope flow. The fluids turbulence supports the suspension of particles. Density
and gravity are the driving forces having a dual role in in the control of velocity, thickness and underflow
characteristics[1]. Gravity currents are either conservative (temperature or dissolved substances) or non-
conservative (turbidity current on a mobile bed with erosion and deposition). The non-conservative turbidity

23
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currents are subdivided in low velocity, low density and high-velocity high-density currents. Characterising
the turbid density currents by a distinctive raised head, followed by quasi-uniform flow [35]. Figure 4.1 pro-
vides an example of a vented turbid density current in a reservoir. A Turbid density current will continue to
flow if[22]:

1. Shear stress-induced by downslope gravity is larger than the frictional resistance.
2. Sediment particles stay in suspension by the support mechanisms. The current need to generate suffi-

cient turbulence to keep sediment in suspension.
3. A turbidity current can only be sustained if inflow continues. When the duration of the inflow is less

than the travel time to reach the reservoir end the current will dissipate[46]. The maximum concentra-
tion for a turbid density current is approximately 8-9 % [6] [35].

The occurrence of turbidity currents impact water quality and sedimentation of lakes and reservoirs. Under
favourable conditions, the current transports through the submerged thalweg towards the dam. The defined
channel facilitates the current as it can not spread out. After the successive occurrence, the thalweg is filled
up[49]. The turbidity current starts to spread out, becoming wide and shallow with more significant top and
bottom surface areas. It increases frictional resistance, and also facilitates both sediment deposition plus
dilution from above with clear water[35]. Both processes lower the current’s density and velocity, allowing
more sediment to deposit, and eventually causing the current to stop.

As mentioned in section 2.3, turbid density currents are used in dam reservoir management strategies and
are usually vented or flushed through low-level outlets[46]. It reduces the accumulation of sediment within
the impoundment. Empty flushing can scour out and maintain a submerged channel which will help sustain
turbidity current motion[47].

The aim of is to see the effects of channelling a dam reservoir. By analytical and numerical modelling it
provides insight into the possible solution to keep a turbid density currents ’alive’ and let it reach beyond the
dam.

4.1.2. Development in a Reservoir
Turbidity currents can exchange sediment with the bed over which they flow and are affecting their dynamics.
Pantin (1986)[51] and Parker (1987)[52] proposed that under certain circumstances, turbidity currents may
ignite or self-accelerate to higher velocities by sediment entrainment from the bed. This section discusses
the development of a turbid density current in a dam reservoir.

Figure 4.2: Transition from non-stratified to stratified flow as provided by Morris and Fan 1998 [46]

The turbidity currents plunge beneath the impounded water in the reservoir due to a higher density than the
ambient fluid and can transport large quantities of sediment towards the dam. The developing current moves
along the lower sloping boundary of the receiving water, see Figure 4.2. As previously mentioned in subsec-
tion 4.1.1 the turbidity current focuses into the deepest part of the cross-section, referred to as the thalweg.
The current can travel long distances if it flows through a defined channel, and if inflow from upstream con-
tinues; otherwise, it will dissipate. Close to the dam it can either accumulate as a muddy lake when outlets
are closed, or it could be released when opened [47] [4].

The characteristics of a turbid density current in a dam reservoir consist of entering-, plunging-, separating-
and inter-flow. The following is a summary of the article by Alavian and Jirka (1992)[1]. Figure 4.3 show the
five possible characteristic flow zones within a turbid density current, explained in the following:

1 Initial flow from riverine with density ρm , is described as suspended sediment transport and can be
described with single-layer flow hydraulics using subsection 3.3.3 and subsection 3.3.4.
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Figure 4.3: Turbid density current into Stratified Ambient; Zone 1: Initial flow, Zone 2: Plunge, Zone 3: Density Current, Zone 4:
Seperation, Zone 5: Interflow. [1]

2 The plunge point: the area where the inflowing turbid water enters the reservoir and plunges beneath
the clear water resulting in stratified flow. The plunging of the current is an effect of temperature and
turbidity differences, in which the turbidity aspect is most important. The balance between momen-
tum and baroclinic pressure caused by density differences determines the plunging location[75]. Baro-
clinic pressure gradients driving the current downslope is formulated as: g ′ sinα, in whichα is the slope
angle and g’ the reduced gravity Equation 4.1. Reduced gravity is the driving force of a turbid density
current:

g
′ = g

ρm −ρw

ρw
(4.1)

With the reduced gravity acceleration g
′
, the gravitational acceleration g , the density of the mixture

of the turbidity current ρm and ambient fluid density ρw . The density of the ambient fluid depends
on the salinity and temperature [2]. In case of uniform under-flows, baroclinic pressure gradient force
is balanced by the boundary and interfacial shear stresses[1]. Due to this two-layer flow occurs and
mixing across the density interface and dilution of the underflow takes place. Within narrow reservoirs
plunging flow forms a line across the top width of the reservoir, the surface water is turbid upstream of
the line and clear downstream. Within a wide reservoir, the turbid surface is more irregular, and tongue
like that shifts from side to side. There are many empirical relations available to calculate the plunge
point in Knoblauch (1999)[35].

3 The flow is stratified: At this point, the flow separates into two layers, mixing occurs across the top
and bottom of the current. The bottom and ambient water influence the propagation velocity and
thickness of the head and thickness of the flow. The middle part of the current is in quasi-steady state.
The velocity must be sustained to keep sediment in suspension by turbulence and travel long distances.
It will maintain the density differences between the gravity current and surrounding fluid.
Turbidity currents contain a wide range of sediment particles. Even particles that are in theory not
able to be maintained in suspension are kept in suspension because the current hinders these. When
particles do settle, it reduces the currents density and gravitational acceleration force as gravitational
force maintains the velocity. Lower velocity implies less turbulence and energy and thus less sediment
in suspension.

4 Reduced density: Either the gravity and turbulent forces are in balance, and after the passage of the
head, a steady-state current forms. Alternatively, the underflow becomes buoyant due to entrainment
of water and settling of particles. The current move up into the reservoir, separating it from the reservoir
bed and resulting in inter-flow.

5 Intrusion or inter-flow: The intrusion will slowly dissipate due to frictional forces and water entrain-
ment.

4.1.3. Characteristics
Turbidity currents have low density, are Newtonian and have a low turbulent regime and have sequence type
deposits called turbidites[41]. Within a turbidity current, both dynamical and deposition processes coincide
in space and time. The flow transforms by sediment transport, erosion, deposition, mixing and water entrain-
ment. When buoyancy is maintained, and there is no interaction with the bed throughout the movement, it
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is called a conservative turbidity current. For non-conservative turbidity currents, there is an interaction with
the bed; there is an open boundary in which erosion and sedimentation take place. Figure 4.4 show the pro-
cesses that take place in a turbid density current. Erosion, deposition, the mixing zone, entrainment of water,
the inner layer, and the front force and the force of the ambient fluid.

Figure 4.4: Schematic of a turbid density current. Source: [41]

A turbid density current can be divided into three parts: 1. The Head, 2. The Body and 3. The Tail see
Figure 4.4[41]:

1. The head is the front of the turbid density current and has a semi-ellipse form. It is generally thicker
compared to the body and tail caused by the resistance of the ambient fluid. There are strong three
dimensional effects and mixing taking place, which are important for the flow dynamics. The front of
the head is the nose, which is just above the bottom — caused by the no-slip condition at the bottom
and the shear resistance of the surface Britter & Simpson (1978)[41].

Within the head, two types of instabilities are responsible for mixing with the ambient fluid. The first
type is an intricate pattern of lobes and clefts caused by second-order gravitational instabilities at
the fronts surface[41]. The second type of instabilities is a series of billows closely related to Kelvin-
Helmholtz instabilities[41], occurring occur behind the head and are an effect of viscous shear at the
surface of the head and body. The zone behind it is the neck of the current and creates large turbulent
mixing dividing the head from the body[41].

2. The body: the velocity is approximately 30-40% higher compared to the head. The head is slower due
to a large billow causing entrainment of ambient fluid, referred to as a diluted zone. For the flow to
maintain and advance the body current increases to compensate for the loss of sediment. The body
divides into two zones: near body zone and upper body zone. Within the near body zone, the density
is higher. In the upper body zone mixing with the ambient fluid occurs. Between these two zones, an
interface called the bipartite flow provides a discontinuity in the body, which is stratification in the flow.
It results in a gradient of velocity, concentration and viscosity.

3. The tail: is the back part of the current in which the flow decelerates and final dilution of the current
takes place.

As discussed, the turbidity currents have a body velocity and a head velocity. These velocities differ signifi-
cantly from open channel flow. The body has a quasi-steady velocity profile and can characterise the current
in terms of velocity and height. The head of the turbidity current is turbulent. Due to entrainment of clear
water and sediment, that increases the height and decreases the velocity in the head, explained in point 2
above. The velocity profile is significantly modified, see Figure 4.5. The velocity and concentration profile of
open channel flow on the left and that of a (subcritical) turbid density current on the right. For supercritical
flow, the velocity is greater and more peaked closer to the bottom. Velocity change is an effect of shear effects
on the upper surface; turbid density current profile has zero values at the top and bottom surfaces and in-
creases towards the middle of the flow. It is resulting in the balance of drag forces on the surfaces. The front
has a maximum value that lies at approximately 0.2-0.3 times the height of the current[41], which depended
on the concentration and en-trained sediment. The profile is complex due to matrix strength and cohesive
forces. The typical velocity, shear and concentration profiles for open channel flow, turbid density currents
and debris flow are given in Figure 4.6.
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Typical values for the velocity of a turbid density current are approximately 0.3 m/s. Larger velocities have
been measured by Brown(1943) and are approximately 0.9-1 m/s[41][35]. The concentration of the turbid
denstiy current range between 0.002 % and 9% [35]. With a height going up to approximately 30m [35].

Figure 4.5: Streamwise velocity and concentration profile of suspended sediment transport(left) and a turbid density current(right)

Figure 4.6: Stream wise vertical profiles of velocity, concentration and shear stress for a. open channel flow, b. turbidity currents and c.
debris flow

4.2. Mathematical Model
A turbid density current is complex due to the processes of erosion, entrainment and deposition coinciding
and in different directions. It is complicated and computationally intensive to model a turbid density current
in three dimensions. One can decide to model in one dimension to make first assumptions, leading to simpli-
fications of physical phenomena and aspects that have little influence on the current. It is a proven method
to model turbid density currents in one dimension with shallow water equations by [10][16][18][63][75].

In this section, the Navier-Stokes equations are used to derive the Shallow Water Equations. After the
derivation of the shallow water equations, one can make several assumptions. These assumptions lead to the
one-dimensional single-layer shallow water equations. As turbid density current is particle driven, this leads
particle conservation equation. Within the turbid density current, several source terms are incorporated;
including deposition, erosion, friction and omitting gravity and the entrainment of water and bed change.

4.2.1. Derivation
This section provides a summary of the derivation of the 1D Shallow Water Equations for particle driven flow
from the Navier-Stokes, a complete derivation is provided in Appendix B. For further reference one can refer
to [31], [3] and [63].

The general form of the Navier-Stokes can be derived from Newton’s second law. The density differences

within the flow are small the Boussinesq approximation. The assumption implies densi t ycur r ent
densi t y ambi ent f lui d ≈ 1

[34]. The variation of the density does not affect the flow field, except for buoyancy forces. Physically this
can be interpreted as that the density difference entering the system are in the form of gravitational forces.
Deriving from this, the Navier-Stokes equations for an incompressible Newtonian fluid with a conservative
external field:
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ρ(
∂−→v
∂t

+−→v ·∇−→v )︸ ︷︷ ︸
1

=−∇p︸ ︷︷ ︸
2

+µ∇2−→v︸ ︷︷ ︸
3

+ −→
f︸︷︷︸
4

(4.2)

With 1.Inertial forces of the fluid. 2. The volumetric stress tensor: Pressure forces inhibit motion due to
normal stresses and enlarging or reducing the size of the body. 3. The stress deviator tensor: shear stress and
horizontal friction. Shear stress induces viscous flow and turbulence. 4. The external force term: such as
friction and gravity.

Equation 4.2 can be written in the form of partial differential equations(PDE’s). The PDE’s can be simpli-
fied by several assumption for Turbid Density currents. Below a summary is given of the assumption made,
detailed derivation can be found in Appendix B, section B.2, subsection B.2.1. For further reference consider
[30][63] .

1. Height and width of current are much smaller than the length.
2. Flow is one dimensional and parallel to bottom and wall of the channel.
3. Hydrostatic pressure: Flow is varying slowly in time and horizontal(x)-direction and changes in the

vertical direction is small.
4. Inviscid flow: Reynolds number is ’high’, inertial forces dominate the current compared to viscous

forces.

Using the above assumption yields the one dimensional Shallow Water Equation:

∂uh

∂t
+ ∂u2h

∂x
+ g

1

2

∂h2

∂x
= fx (4.3)

In which fx is a source term that in this study is equal to gravity fg and friction forces f f :

fx = fg − f f (4.4a)

fg = g ′(φ)So (4.4b)

f f =− f

8R
u2 (4.4c)

With gravity term fg , reduced gravity g ′, volume concentration φ, slope So , Darcy Weisbach friction factor f ,
hydraulic radius R and velocity u. A Turbid density current is driven by density differences it results in hydro-
static pressure differences between the fluid and the turbidity current. This results in the reduced gravity. For
the derivation Appendix B subsection B.2.1 and for reference [34] [10]. The reduced gravity is in the form:

g
′
(φ) = g

ρm(φ)−ρa

ρa
(4.5)

With the mixture density ρm depending on the volume concentration φ and the ambient fluid density ρa (in
this study assumed as the density of freshwater ρw = 1000 kg/m3) The particles are assumed to be distributed
homogeneously over height and length of the current. The density of the ambient fluid is assumed constant.
The density of the current varies over time and length in the following form:

ρm(φ) =φ(x, t )ρs + (1−φ(x, t ))ρa (4.6)

The 1D Shallow Water equation assuming a Newtonian fluid for a current with density differences yields the
momentum equation [10][17]:

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fx (4.7)

The momentum equation is solved together with the continuity equation, the mass conservation equation)[18]:

∂h

∂t
+ ∂uh

∂x
= 0 (4.8)

The driving force behind the current is the variety of particles in suspension this requires an equation for
the conservation of particles. Accounting for entrainment and deposition and omitting water entrainment
and bed deformation. Assuming that the velocity and turbulence within the current are sufficient to keep
particles in suspension. The Particle conservation equation:
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∂φh

∂t
+ ∂uφh

∂x
= E −D (4.9)

With the source terms erosion E in Equation 4.10a derived in subsection 3.2.3, subsection 3.2.4 and depo-
sition D in Equation 4.10b , derived in subsection 3.2.5. The source terms for the 1D shallow water equation
describing the turbid density currents contain; friction, gravity, erosion and depositions. The derivation of
the friction and erosion source terms is provided in Appendix B, section B.5. For reference on the derivation
of gravity and friction refer to [67][39]. For reference on the Deposition term, refer to subsection 3.2.5. For the
erosion term refer to subsection 3.2.3 for non-hindered erosion and to subsection 3.2.4 for hindered erosion.
An overview of the source terms is provided below:

The Source terms:

Erosion: E = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5

√
∆g d50 · (1− φ

1− cmax
)n (4.10a)

Deposition: D = ρs vsφ(1−αφ)n (4.10b)

Friction: f f =− f

8R
u2 (4.10c)

Gravity: fg = g ′(φ)So (4.10d)

• u in [m/s]
• h in [m]
• f = 0.025 [-]
• R = Hydraulic radius [m]
• So = slope [-]
• D∗ = ( g∆

v2 )1/3d

• θ =
u2∗c
∆g d

• θcr = 0.30
1+1.2D∗ + 0.055[1 −

exp(−0.020D∗)]

• ∆ = ρs−ρw
ρw

= 1.65
• ρs = 2650 [kg/m3], sediment den-

sity

• vs =
∆g d 2

50

C1v+
√

0.75C2δg d 3
50

• φ = particle concentration
• n = exponent by Richardson and

Zaki (1954) [55]
• α = 0 non-hinder settling, 1 hin-

dered settling
• ρm = the mixture density

4.2.2. Mathematical Model Overview
The summary and complete analytical description of a turbid density current moving down a slope based
upon the 1D Shallow Water Equations derived in subsection 4.2.1 and Appendix B include the mass, moment
and the particle conservation equation. The four source terms incorporate erosion, deposition, friction and
gravity.

The complete description of the system is given below:

Continuity equation:
∂h

∂t
+ ∂uh

∂x
= 0 (4.11a)

Momentum equation:
∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fg − f f (4.11b)

Particle equation:
∂φh

∂t
+ ∂uφh

∂x
= E −D (4.11c)

Reduced gravity: g
′
(φ) = g

ρm(φ)−ρw

ρw
(4.12a)

Current density: ρm(φ) =φρs + (1−φ)ρw (4.12b)
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Source terms: (4.13a)

Erosion: E = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5

√
∆g d50 · (1− φ

1− cmax
)n (4.13b)

Deposition: D = ρs vsφ(1−αφ)n (4.13c)

Friction: f f =− f

8R
u2 (4.13d)

Gravity: fg = g ′(φ)So (4.13e)

4.3. Numerical Model
4.3.1. Discretisation method
There is no analytical solution for the 1D shallow water equations with particle driven current, erosion, sed-
imentation, gravity and friction. The equations are solved numerically. The numerical method has to cope
with hyperbolic equations with shocks and jumps and preset boundary and initial conditions. The Gener-
alised Lax Friederich Scheme is used to discretise the continuity, momentum and particle conservation equa-
tion. It method used in previous studies that it is a good tool to model a comparable system of equations[63].
The scheme is a transformation of an unconditionally unstable scheme, the Forward in Time and Central
in Space (FTCS) scheme. It is a cell centred finite difference method as shown in Figure 4.7, cell centres are
located between the boundaries that are located on i − 1

2 and i + 1
2 . There is numerical diffusion within the

equation. The amplitude of the solution will decrease.

 hi
 ui
Φi

Δx 
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Figure 4.7: Cell centred finite difference scheme

Before the method is applied to the system of equations, this section describes which aspects are taken into
account before the scheme is applied. First the Generalised Lax Friederich Scheme with an arbitrary value u:

un+1
i = Aun

i−1 +Bun
i +Cun

i+1

A+B +C
− v

∆t

2∆x
(un

i−1 −un
i+1) (4.14)

The Generalised Lax Friederich Scheme is a form of the Forward in Time and Central in Space(FTCS) scheme.
It is an explicit method that determines the state of the system in the next time step(n+1) based on the current
time step(n)[78]. The scheme is 1st order accurate in space and 2nd order accurate in time. Let us denote the
1D advection equation:

∂u

∂t
+ v

∂u

∂x
= 0 (4.15)

The above equation is a hyperbolic partial differential equation that describes the advection of scalar u(x,t)
transported by the flow at a constant speed v and its solution is wave-like as the analytical problem described
in section 4.2 [78]. Within a wave-like equation, disturbances are moved though the domain and are not
in every location. Equation 4.15 is almost similar to the continuity equation, Equation 4.11a. Let us first
discretise Equation 4.15 with the FTCS scheme:

un+1
i −un

i

∆t
=−v

un
i−1 −un

i+1

2∆x
(4.16)

Rewriting the Equation 4.16 yields:
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un+1
i = un

i − v
∆t

2∆x
(un

i−1 −un
i+1) (4.17)

Within numerical modelling, one aims to find a numerical recipe or algorithm that leads to a solution that
is close to the exact or analytical solution of the differential equation. Although convergence is somewhat
apparent, proof of convergence is far from trivial[78]. Instead, one aims to find a numerical solution with
consistency and stability. In which consistency provides a relation between the numerical scheme and the
differential equation. So where stability provides a relation between the computed solution and exact so-
lution of the numerical scheme[78]. The stability criterion is only for the numerical scheme and does not
contain a condition on the differential equation. The von Neumann stability analysis, a necessary condition
but not sufficient, due to incomplete analysis, shows that the FTCS is unconditionally unstable, for details re-
fer to Zijlema (2015)[78]: The amplification factor is greater than unity(1) for all values implying the scheme
is unconditionally unstable. A finite difference scheme is stable in the limit of ∆t− > 0 and ∆x− > 0, if the
amplification made at on time step of the calculation does not cause errors to increase too large as the com-
putation continues.

One can also apply the Courant-Friedrichs-Lewy(CFL) condition, which is a necessary condition for con-
vergence of a finite difference scheme to a (non-)linear hyperbolic Partial Differential equation is based on
the domain of dependence. The CFL condition states:

|u|∆t

∆x
≤ 1 (4.18)

"The CFL condition means that the distance ∆x covered during ∆t with speed/velocity u must be smaller or
equal to∆x. While the CFL condition is a necessary condition for convergence, it does not guarantee conver-
gences while not meeting it does guarantee non-convergence. Convergence implies CFL condition, usually
referring to an explicit scheme. According to the CFL condition, there is no explicit unconditionally stable
finite difference scheme for solving a hyperbolic PDE[78]." It proves that the FTCS scheme is unconditionally
unstable.The Lax-Friedrichs discretisation of the advection-diffusion equation [66]:

un+1
i = 1

2
(un

i−1 +un
i+1)− v

∆t

2∆x
(un

i+1 −un
i−1) (4.19)

The Lax-Friedrichs numerical method does not consider the point that is updated. The generalised Lax-
Friedrichs(LxF) scheme does consider the point and is formulated in the following, for reference Tong(2012)
[66]:

un+1
i = Aun

i−1 +Bun
i +Cun

i+1

A+B +C
− v

∆t

2∆
(un

i+1 −un
i−1) (4.20)

With A = 1, B = 0, C = 1, one obtains the Lax-Frierichs method [66]. Values of A= 0.1, B = 1 and C = 0.1 are
chosen for convenience and provide good solutions. When A = 0, B = 1, C = 0 is applied the FTCS scheme is
obtained as in Equation 4.16.

4.3.2. Initial and Boundary Conditions
For the problem to be well posed sufficient initial and boundary conditions should be imposed to solve for
the different equations and variables[78].

Ghost
node

h0 = h1
u0 = u1
Φ0 = Φ1

 h1
 u1
Φ1

 hn
 un
Φn

Δx 

 hn+1 = hn
un+1 = un
Φn+1= Φn

Figure 4.8: Cell centred finite difference scheme with ghost cells and nodes

The ghost nodes are needed at the start and end of the domain to represent the boundaries as shown
in Figure 4.8, a central space scheme needs information on the left and right of the point of interest. The
schematic representation is provided in Figure 4.8. The walls of the system are located on i − 1

2 and i + 1
2 . To

solve the system of equations boundary conditions are set at the starting point(x=0) and end(x=L) point. For
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the system of equations provided in subsection 4.2.2, Neumann and Dirichlet boundary conditions are used.
The initial inflow values are a height, velocity and concentration coming from upstream(x=0), the Neumann
boundary. At the end of the domain, Dirichlet boundary conditions as there is flow out of the system. As
the central space scheme is used, both ghost cells left of the boundary and right of the boundary are needed.
Height, velocity and concentration are assumed to be equal to the cells centre. The initial condition is set to
ensure the numerical scheme is not divided by zero and to solve for incoming concentration.

The boundary conditions:

h(x = 0, t ) = hi n and ( ∂h
∂x )L,t = 0

u(x = 0, t ) = vi n and ( ∂h
∂x )L,t = 0

φ(x = 0, t ) =φi n and ( ∂h
∂x )L,t = 0

The initial conditions:

h(x, t = 0) = 0.001 for 0 ≤ x ≤ xL

4.3.3. Numerical Model Overview

This section gives a model overview of; the discretised numerical 1D Shallow Water Equations for a Turbid
Density Current with gravity, friction, Particle Settling and Erosion. The equations are discretised using the
Generalised Lax Friedrichs Method, as discussed in subsection 4.3.1. The diffusion term values are: A = 0.1, B
= 1.0, C = 0.1.

Continuity equation:

hn+1
i = Ahn

i−1 +Bhn
i +C hn

i+1

A+B +C
− ∆t

2∆x
([uh]n

i+1 − [uh]n
i−1) (4.21)

Momentum equation:

[uh]n+1
i = A[uh]n

i−1 +B [uh]n
i +C [uh]n

i+1

A+B +C
−∆t

un
i+1[uh]n

i+1 −un
i−1[uh]n

i−1

2∆x
−

1

2
∆t

g ′(φ)n
i+1hn

i+1hn
i+1 − g ′(φ)n

n−1hn
i−1hn

i−1

2∆x
+∆t g ′(φ)n

i So −∆t
f

8R
un

i un
i (4.22)

Particle conservation equation:

[φh]n+1
i = A[φh]n

i−1 +B [φh]n
i +C [φh]n

i+1

A+B +C
−∆t

un
i+1[φh]n

i+1 −un
i−1[φh]n + i −1

2∆x
−∆tDn

i +∆tE n
s,i (4.23)
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Reduced gravity: g ′(φ)n
i = ρm(φ)n

i −ρw

ρw
(4.24a)

Current density: ρn
m,i = (1−φn

i )ρw +φn
i ρs (4.24b)

Source terms: (4.24c)

Erosion: E n
s,i = 0.00033D0.3

∗ (
θn

i −θcr

θcr
)1.5

√
∆g d50 · (1− φn

i

1− cmax
)n (4.24d)

Deposition: Dn
i = vn

s,iφ(1−αφ)n (4.24e)

Friction: f n
f ,i =

f

8R
un

i un
i (4.24f)

Gravity: f n
g ,i = g ′(φ)n

i So (4.24g)

Parameters: (4.24h)

To obtain u: un+1
i = [uh]n+1

i

hn+1
i

(4.24i)

To obtain φ: φn+1
i = [φh]n+1

i

hn+1 (4.24j)

Shields (θ) : θn
i = Cd [un

i ]2

∆g d50
(4.24k)

Critical shields (θcr ): θcr = 0.30

1+1.2D∗
+0.055[1−exp(−0.020D∗)] (4.24l)

Dimensionless grainsize D∗: D∗ = (
g∆

v2 )1/3d50 (4.24m)

Fall velocity (vs ) vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(4.24n)

Hydraulic radius: R = A

P
P: wett perimeter, A: Cross sectional area (4.24o)

Physical parameters
d50 [µm] h [m] u [m/s] φ [-] L [m] φ [-] Wb [m] t[s] S [-] m [-] vs [m/s] ∆ D∗ R [m] v θ θcr g C1 C2
50 - 200 5-30 0.3-2.0 0.01-0.09 700-2000 10 variable 0.001-0.05 4 variable 1.65 variable variable 1.310−6 variable variable 9.81 18 1

Table 4.1: Physical parameters to test the influence of grid size on the numerical model

h = water depth
∆t = time step size
∆x = space step size
u = velocity
κ = 0.4 von Karman constant
CD = Drag coefficient
u∗ = friction velocity
Es = erosion capacity
g ′(φ) = reduced gravity [m/s2]
So = slope of the channel
R = Hydraulic radius of trapezoidal
channel
ρm = mixture density depended on
concentration
ρs = 2650 kg/m3 (density sand)

ρw = 1000 kg/m3 (density water)
v = 1.3 ·10−6 kinematic viscosity
φi ni t i al = 0.02 (2 % vol.)
z0 = 0.06
c = 0.6
d50 = 50 - 200 µm median sediment
diameter(??)
g = 9.81
∆ = 1.65
C1 = 18
C2 = 1
P = wett perimeter [m]
A = area of the channel
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5
Modelling

5.1. Introduction
This chapter provides the concept and modelling approach for this study.

First, in this section, summarising the literature study in subsection 5.1.1. Followed by an explanation
of the concept on channelling turbid density currents in dam reservoirs in subsection 5.1.2 and the channel
properties in subsection 5.1.3. The materials and apparatus for modelling in subsection 5.1.4 and preliminary
modelling of the rouse profiles in subsection 5.1.5.

Secondly, in section 5.2 and section 5.3, the two modelling approaches respectively the steady-state so-
lution and the numerical approach are discussed. The steady-state model, section 5.2, is derived from the
analytical model in section 4.2. The numerical model, in section 5.3, derived in section 4.3 is used to model
the dynamic behaviour of the turbid density current in the channel. Before the model is applied: the model
is validated by a dam break experiment(subsection 5.3.1), influence of the grid size(subsection 5.3.3) and
choosing a settling model(subsection 5.3.2). After this, the scenarios and parameters for the source terms
and the the full model are provided in subsection 5.3.5.

The results of the steady-state solution and numerical scenarios are given in chapter 6. There meaning is
discussed in chapter 7.

5.1.1. Summary
Sedimentation in dam reservoirs is a major problem that finally receives the necessary attention as is appar-
ent from chapter 2. Reconsider the flow and sediment dynamics in a dam reservoir, as discussed in chapter 3
and chapter 4. The upstream river transports both water and sediment into the dam reservoir. Sediment is
transported utilizing different transport mechanisms; bed-, suspended- and wash-load transport, see sec-
tion 3.1. In some cases, a turbid density current is formed, see chapter 4, from suspended- and wash-load
transport that enters the reservoir. This density current moves towards the lowest point in the river, assuming
density is higher than the ambient fluid, referred to as the thalweg. Density differences and gravity drive the
current as an effect of the sloping bed. Over time the thalweg is filled up due to sedimentation. As the den-
sity currents can no longer flow through the thalweg, the current starts to be affected by the change of depth
and width in the reservoir. Friction increases at the top, bottom and front of the turbid density current, see
subsection 4.1.3. The increased friction reduces the velocity resulting in increased water entrainment and
settling of sediment, reducing the dam reservoirs water capacity.

5.1.2. The Concept
The concept is to dredge a channel, that efficiently transports the density current downstream with minimal
sedimentation occurring. The concept is provided in an artist impression in Figure 5.1.

The current situation in a dam reservoir illustrated in Figure 5.1a; the turbid density current enters the
dam reservoirs, plunges below the surface and moves downslope while spreading and settling, causing sedi-
mentation of the dam reservoir.

The new situation is illustrated in Figure 5.1b. A channel is created, the turbid density current plunges into
the channel and is no longer affected by width changes. The hydraulic radius and slope can be controlled to
increase velocity and turbulence, improving the transport of sediment.

37
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The aim is to investigate the effectiveness of the channelling concept. The dimensions of the channel
chosen in such a way that the turbid density current fits in it. The impact of different hydraulic radii, slopes
and shapes on turbid density current transport are studied. The primary focus is on sediment particles with
sizes in a range of 50 µm - 200 µm.

(a) Turbid density current entering a reservoir from an
upstream river

(b) Turbid density current entering a reservoir through a
channel

Figure 5.1: The concept: Channelling a turbid density currents in dam reservoirs. An artist impression specially made for this study by
B.C. van Schaik

5.1.3. Channel Properties
Both the steady-state and dynamic model include a hydraulic radius of the channel in the calculations. The
hydraulic radius depends on the area and the wetted perimeter of the channel. The wetted perimeter consists
of the walls on which the fluid acts upon with shear stress; this depends on channel type.

In open channel flow for a rectangular channel, the upper boundary is omitted due to zero shear, and the
wetted perimeter consists of the two walls and the bottom. The channel in the reservoir is created "underwa-
ter" the top of the flow should now experience shear stresses from the upper water layer too. But from studies
it is found that the shear and friction along the top is very minimal provided in Figure 4.6 and subsection 4.1.3.
The open channel flow characteristics are assumed.

The channel dimensions ensure that the turbid density current is captured within the channel. The loss
of sediment that would occur due to turbulent mixing, not accounting for water entrainment and overflow
of the channel. Within the first modelling approach a rectangular channel,Figure 5.2a, is used as it provides
an easy starting point for estimations, Equation 5.1. In the numerical model and the steady-state model, a
trapezoidal channel Figure 5.2b, is assumed as sediment in the dredged channel will settle under a natural
angle of repose; when sediment is submerged in the water, this is approximately 30 ◦. To simplify calculations,
the ratio of the slope of the rectangular channel is chosen to be 2:1, the natural angle of repose approximately
26.5 ◦. Dredging a channel will most certainly provide such a trapezoidal channel due to the earlier mentioned
natural angle of repose. It will affect the hydraulic radius of the channel. The hydraulic radius, cross-sectional
area and wetted perimeter are calculated with equations for the Trapezoidal channel below, Equation 5.3,
Equation 5.1, Equation 5.2. A given depth and width will result in a certain assumed channel shape. Next, to
this, the natural slope in a river is approximately 0.001[-]. Within calculations, the minimum slope is 0.001[-]
and is gradually increase towards a maximum of 0.05[-]. The maximum slope strongly depends on the length
and depth of the available reservoir.

Rectangular Channel Trapezoidal Channel

Rr ect = Ar c

Pr c
Rtr ap = Atr ap

Ptr ap
(5.1)

Ar ect =W h Atr ap =Wbh +2h2 (5.2)

Pr ect =W +2h Ptr ap =Wb +2h
p

5 (5.3)
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(a) Rectangular channel

wt

wb

λλ h h

β

α

β

α

(b) Trapezoidal channel

Figure 5.2: Frontview sketch of the rectangular channel and trapezoidal channel providing height(h), width(w), slope length(λ) and
angles(α and β)

5.1.4. Materials and Apparatus
The model for this thesis is written in Python 3, a general-purpose, open-source programming language. The
scripts(for rouse profiles, Steady State and Numerical model are provided in Appendix C. Any computer with
Python 3 can be used to run the model, installing can be done through "anaconda", the processing time
depends on numerical detail and processor capacity. The scripts did successfully run on multiple computers:
Windows 10 and OSX 10.14.5 with a 2,3 GHz Intel Core i5 processors. Editing of the code is done with Spyder
3.3.2. The needed packages are stated within the scripts and should be sufficient to make the model work.
Copying and pasting the code it into a ".py" file from the appendix should work, note that both simulator and
plotting file is needed. If one wants to understand the script, one can follow the notes and comments within
it(marked by a # and ”’ signs). Plots are printed to both ’.png’ and ’.pdf’ formats within the directory.

5.1.5. Preliminary Modelling
The preliminary modelling is done to obtain insight in the rouse profiles induced by open channel flow at
different average flow velocities and particle sizes. The figures provide an overview of the concentration over
the height. The results are provided in section A.3.

5.2. The Steady State Model
The steady-state model is derived from the analytical model from section 4.2 including all source terms set
equal to zero. It yields the simplest form of the equations and describes the velocity of the turbid density
current based upon gravity, friction, density, hydraulic radius and slope. The mass balance is used for the
river, reservoir and current. By using the mass balance 3 scenarios are studied: Reservoirs With Return Flow
subsection 5.2.2, Reservoir Without Return Flow in subsection 5.2.3 and Reservoir Without Return Flow: Sim-
plified subsection 5.2.4.

5.2.1. The Steady State Model
Turbid density currents are unsteady for discharge, sediment concentration, grain size distribution, velocity,
and thickness[46]. The steady-state solution for a turbid density current holds when there are no changes over
time and length of the flow, a kinematic wave. The flow is uniform, and the friction slope is equal to the slope
of the channel. The kinematic wave equation holds when the change in height and velocity along the channel
are negligible, the shallow water equations. With Friction and gravity as proposed in section 4.2: Simplifying
the continuity, Equation 4.11a, momentum, Equation 4.11b and particle conservation, Equation 4.11c, with
the assumptions above, this yields:

fg − f f = 0 (5.4)

For friction and gravity:

Friction: f f =− f

8R
u2 (5.5)

Gravity: fg = g ′(φ)So (5.6)

Combining Equation 5.4, Equation 5.5 and Equation 5.6 yields:
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g ′(φ)So − f

8R
u2 = 0 (5.7)

With g ′ the reduced gravity:

g
′
(φ) = g

ρm(φ)−ρw

ρw
(5.8)

After rewriting this provides the velocity of the steady state solution of the turbid density current:

uc =
√

8

f
Rg ′So (5.9)

With uc the flow velocity of the turbid density current, the hydraulic radius R of the channel, the reduced
gravity g’(φ), Darcy Weisbach friction factor f (= 0.025) and the slope So of the channel. Equation 5.9 is also
proposed by Morris and Fan (1998)[46].

In chapter 4 section 4.1 it is described that a turbid density currents is gravity-driven flow, it is focused
into the deepest part of the cross-section. It follows the thalweg or dredged channel. The river and current
enter the reservoir it imposes a flow downstream that has to be compensated by a return flow to account for
the balance of mass. The scenarios in subsection 5.2.2, subsection 5.2.3 and subsection 5.2.4 are based on the
mass balance, Equation 5.10 within the river and the reservoir:

Qr −Qc −Qr w = 0 (5.10)

In which Qr is the river discharge, Qc the channel discharge and Qr w the reservoir return flow. The above
equation relies on the assumption that the inflowing sediment-water mixture from upstream flowing into the
reservoir is in balance with the channel discharge and the resulting reservoir return flow.

In the first scenario "With Reservoir Return Flow" the entering turbid density current is compensated by
return flow of the reservoir water.

The second scenario "Without Reservoir Return Flow" the reservoir return flow is assumed to be negligible
(Qr w = 0).

The third and last situation is a simplified situation in which there is no return flow, and the characteristics
of velocity, surface area and density are equal in both the river and the channel.

5.2.2. Reservoir With Return Flow
In the first scenario it is assumed that the turbid density current is in balance with return flow and the channel
flow in the reservoir. The mass balance for discharge of the currents:

Qr −Qc −Qr w = 0 (5.11)

With total river discharge Qr , turbid density current discharge Qc and the return discharge of the reservoir
Qr w . Since Q = u A, with flow velocity u and surface area A, the following holds:

ur Ar −uc Ac −ur w Ar w = 0 (5.12)

with flow velocity for the river ur , channel uc and reservoir ur w . The area for the riverAr , channel Ac and
reservoir Ar q . The balance depends on density differences it is incorporated in the equation as follows:

ρr ur Ar −ρc uc Ac −ρr w ur w Ar w = 0 (5.13)

With density for the riverρr , channel ρc and reservoir ρr w . The turbid density velocity in the channel is
assumed to be the same as Equation 5.9 and as proposed by Morris and Fan(1998)[46].

uc =
√

8

f
g ′RSo (5.14)

With friction coefficient f(0.025), the hydraulic radius R(as proposed in subsection 5.1.3), reduced gravity
g’(Equation 5.8) and an assumed slope slope So (0.001 - 0.5 [-]).
The velocity and area of the reservoir are unknown, Equation 5.13 is combined with Equation 5.15:

ur Ar −uc Ac = ur w Ar w (5.15)
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The equation is solved in the following form:

(1− ur Ar

uc Ac
)ρr w +ρr

ur Ar

uc Ac
−ρc = 0 (5.16)

Using, Equation 5.1, Equation 5.2 and Equation 5.3, to determine the hydraulic radius, channel area and
wetted perimeter. The area and velocity for the river, the densities for the river, channel and reservoir are
constant. The only part were the Equation 5.16 depends on are the Width(W), Height(h) and Slope (S). The
form for a turbid density current flowing into a reservoir with return flow is:

ρr
ur Ar√

8
f
ρc−ρw
ρw

g A
P (A)

+ (1− ur Ar√
8
f
ρc−ρw
ρw

g
Ac,i
Pc,i

(Ac,i )

)ρr w −ρc = 0 (5.17)

Equation 5.17 depends on the slope and hydraulic radius, which depend on width W and height h.
The physical parameters for the model can be found in Table 5.1. The results can are provided in sec-

tion 6.1.

Table 5.1: Physical variables: Steady state turbid density current in a channelled reservoir. With return flow.

Turbidity Current in Reservoir With Return Flow
Variable Value Unit Notes
uc variable [m/s] Depends on the given slope(S) and Hydraulic radius(R)
A Variable [m/s] The values depend on the Height(H) and
P Variable [m/s] Width (H) of the channel and are influenced
R Variable [m/s] by the slope and channel shape, either trapezoidal or Rectangular.

The variation is provided in the graphs
S Variable [kg/m3] The slope varies between 0.001 and 0.05 and influences the channel

velocity
ρc 1040 [kg/m3] The density of the channel is the same as that from the river, all sedi-

ment is transported by the turbidity current
ur 2.0 [m/s] Is a chosen value based upon average river discharge
Ar 500 [m2] Based on an average height of 5 m and a width of 100 m
ρr 1040 [kg/m3] The river density is the same as the channel density, it is assumed all

sediment is transported by the turbidity current
ρr w 1000 [kg/m3] The ambient water of the reservoir is the water density
g 9.81 [m/s2] gravitational acceleration
ρw 1000 [kg/m3] assumed water density
f 0.025 [-] darcy weisbach friction coefficient
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5.2.3. Without Reservoir Return flow
In the previous section, assumes a return flow. The contribution of the return flow seems to be minimal;
eliminating the return flow from the equation. In the below the derivation of the equations without reservoir
return flow is given. The table with the variables is Table 5.2. Results are presented in section 6.1.

When the return flow is omitted, the mass balance is reduced to Equation 5.18 rewriting it with velocity
and cross sectional area yields:

Qr −Qc = 0 (5.18)

ur Ar −uc Ac = 0 (5.19)

By adding the density and applying the previously derived channel velocity this yields:

Mass Balance: ρr ur Ar −ρc uc Ac = 0 (5.20)

Channel velocity: uc =
√

8

f
g ′RSo (5.21)

Densities: ρr = ρc (= 1040kg /m3) (5.22)

With the hydraulic radius for a rectangular or trapezoidal channel:

Rectangular channel: Rr ect = Ac

P
=

p
Ac

3
p

(Ac )
(5.23)

Trapezoidal channel: Rtr ap = Ac

P
= W bH +2H 2

Wb +2H
p

5
(5.24)

Rewriting the equation and substituting the Hydraulic radius R and channel velocity uc yield:

u2
r A2

r f ρc

8g (ρc −ρw )S
= R A2

c (5.25)

u2
r A2

r f ρc

8g (ρc −ρw )S
= A3

c

P
(5.26)

Equation 5.17 is solved assuming a channel height H resulting in a channel surface Ac and a wet perimeter
P. the equation is solved for specific slopes that results in steady velocity uc , by implementing the hydraulic
radius in Equation 5.21. Results of the simulation are provided in section 6.1.

Table 5.2: Physical variables: Steady state turbid density current in a channelled reservoir. With return flow.

Turbidity Current in Reservoir With Return Flow
Variable Value Unit Notes
uc variable [m/s] Depends on the given slope(S) and Hydraulic radius(R)
A Variable [m/s] The values depend on the Height(H) and
P Variable [m/s] Width (H) of the channel and are influenced
R Variable [m/s] by the slope and channel shape, either trapezoidal or Rectangular.

The variation is provided in the graphs
S Variable [kg/m3] The slope varies between 0.001 and 0.05 and influences the channel

velocity
ρc 1040 [kg/m3] The density of the channel is the same as that from the river, all sedi-

ment is transported by the turbidity current
ur 2.0 [m/s] Is a chosen value based upon average river discharge
Ar 500 [m2] Based on an average height of 5 m and a width of 100 m
ρr 1040 [kg/m3] The river density is the same as the channel density, it is assumed all

sediment is transported by the turbidity current
g 9.81 [m/s2] gravitational acceleration
ρw 1000 [kg/m3] assumed water density
f 0.025 [-] darcy weisbach friction coefficient
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5.2.4. Without Return Flow: Simplified
Since particles stay in suspension at a specific flow velocity and turbulence, these particles should be kept in
suspension if the velocity is not decreasing. So, in other words, if the velocity is constant or increases, particles
will not settle. Reaching higher flow velocities when increasing slope or hydraulic radius in the reservoir. In
this case, assuming that the channel surface, channel velocity and channel density of the current are the same
upstream and within the channel:

ur = uc (5.27)

Ar = AC (5.28)

ρr = ρc (5.29)

(5.30)

This results in the equation derived in first section namely the steady state solution:

Channel velocity: uc =
√

8

f
g ′RSo (5.31)

The slope is between 0.001 and 0.05 and the hydraulic radius by a change in width and height. The only
aspects that changes are u and R in this scenario the equation in the model appears in the following form:

So = u2
c f ρc

8(ρc −ρw )Rg
(5.32)

Results are provided in section 6.1.

5.3. The Numerical Model
5.3.1. Dam Break
To verify convergence and consistency of the proposed numerical model, it is compared with an analytical
solution. A standardised test for 1D Shallow Water Equations(Saint Venant Equations) is the dam break ex-
periment, first proposed by Saint Venant (1871)[58] and Ritter 1892[56]. Later, Stoker (1957) [62] provides a
solution to the dam break problem with a non-wet front in which a shock wave travels forward and a rare
fraction wave backwards with a constant depth connecting the shock wave and the beginning of the rare
fraction wave [32]. Since the dam break problem has an analytical solution, it is compared with the proposed
numerical model proposed in subsection 4.3.3. To solve for the dam break experiment a prismatic channel
with a horizontal bed, infinite length, and no bed friction is assumed, and removing the dam instantaneously
[42]. Both wet and dry dam-break problem exists. A wet dam-break problem is performed and compared to
the analytical solution to test how the scheme handles the shock.
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Figure 5.3: Schematised dam break problem with a wet downstream for t=0 and t>0

The problem has been schematised for the initial situation(t = 0) before the dam break in Figure 5.3a and
for the situation after the dam break(t > 0) in Figure 5.3b. The problem can be approached as a Riemann
problem, that is used to find the characteristics of a set of hyperbolic equations [38]. With constant initial
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conditions and a discontinuity at X0, Figure 5.3a. In which X0 ∈ R with X0 the point of the discontinuity.
Defining the initial conditions of the water height, see Figure 5.3a:

h(0, x) =
{

hg x ≤ x0

hd x ≥ x0
with 0 ≤ hd ≤ hg (5.33)

Initial conditions for the velocity:

u(0, x) = 0 ∀x ∈R (5.34)

The source terms E ,D, fg and f f are zero and gravity g ′(φ) is equal to the constant gravitational acceleration
g .
The solution for the dam break for the set of hyperbolic non linear equations as proposed in subsection 4.2.2
and reformulated without source terms(E ,D, fg and f f ) and with constant gravitational acceleration in this
section in Equation 5.35a, Equation 5.35b and Equation 5.35c are obtained through the Method of Character-
istics:

Continuity equation:
∂h

∂t
+ ∂uh

∂x
= 0 (5.35a)

Momentum equation:
∂uh

∂t
+ ∂u2h

∂x
+ g

1

2

∂h2

∂x
= 0 (5.35b)

Particle equation:
∂φh

∂t
+ ∂uφh

∂x
= 0 (5.35c)

In which the the characteristics of the Riemann Invariants are calculated(1) and the depth and velocity for
the domain is determined(2). The derivation of the characteristics are provided in Martins (2016) [42]. The
equations Equation 5.35a, Equation 5.35b and Equation 5.35c are discretised according to the Generalised
Lax Friederich Method as proposed in subsection 4.3.1, with A = 0.1, B = 1.0 and C = 0.1.

The analytical description of the dam break problem, can be described by assuming X0 = 0, and evaluate
the results after t > 0. The initial condition(t = 0) before the dam break occurs are provided in Equation 5.33,
Equation 5.34 and can bee seen in Figure 5.3a. After the dam break, see Figure 5.3b, the problem is divided
into four zones:

• Zone 1: is the upstream condition with height hg and velocity u1 = 0
• Zone 2: has a parabolic shape with decreasing height h2 and increasing velocity u2, it connects Zone 1

at height hg with Zone 2 at height hm

• Zone 3: has a constant velocity um and constant height hm between point B and the shock C between
hm and hd

• Zone 4: Starts with the shock C that is between hm and hd and it is the downstream condition with
depth hd and velocity u4 = 0

In Table 5.3 the expression for the analytical solution of the 1D shallow water equations for a dam break
are given as derived by Martins 2016[42] and Gunawan 2016[32]. Within Table 5.3 the heights, celerity’s and
different velocities are provided, according to the Riemann invariants and the characteristics in each of the
four zones. In Table 5.4 the initial conditions for the model are provided. In Table 5.5 the analytical solutions
are given as for the equations provided in Table 5.3 together with the numerical solutions obtained from
the three grid sizes modelled(1.0,0.5,0.1). The height and velocity gradients after t = 50s are provided in
Figure 5.4.

To conclude, by comparing the analytical solution and numerical solution(Figure 5.4), it can be seen that
the numerical solution provides reasonable estimates. When decreasing the grid size, the solution converges
towards the analytical solution. The numerical solution under-predicts the height, travel distance and veloc-
ity with approximately 10 %. Further studies are needed to identify where this under-prediction is originated.
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Table 5.3: Dam Break expressions, for each zone, the Analytical Solution of the 1D Shallow Water Equations is given

Variable Zone 1 Zone 2 Zone 3 Zone 4
h* hg h2 = 4

9g (cg − x
2t ) hm hd

u* 0 u2 = 2
3 ( x

t + cg ) um = 2(cg − cm) 0
* = if x ≤ X A(t ) X A(t ) ≤ x ≤ XB (t ) XB (t ) ≤ x ≤ XC (t ) x ≤ Xc (t )

c cg =
√

g hg c2 =
√

g h2 = 2
3 (cg − x

2t ) cm =
√

g hm cd =
√

g hd

vc - - vc = hm um
hm−hd

-

Position(t>0) X A(t ) = cg t XB (t ) = (um − cm)t = (2cg −3c −m) XC (t ) = vc t -

Table 5.4: Dam Break initial conditions for numerical simulation of 1D Shallow Water Equation

Grid size X0 [m] hg [m] hd [m] Number of cells Number time steps t [s]
0.1 500 1.0 for 0 ≤ x ≤ X0 0.25 for x ≥ X0 10001 7500 50
0.5 500 1.0 for 0 ≤ x ≤ X0 0.25 for x ≥ X0 2001 1500 50
1.0 500 1.0 for 0 ≤ x ≤ X0 0.25 for x ≥ X0 1001 750 50

Table 5.5: Results for the Analytical solution and Numerical solution for t = 50 s

Analytical Solution Numerical Solution
Parameter ∆ x unit Grid size Grid size Grid Size

- - - 1.0 0.5 0.1
hg 1.0 m 1.0 1.0 1.0
cg 3.13 m/s - - -
X A 157 m 327 333 336
XB 27 m 482 474 476
XC 161 m 147 (641-651) 147 (645-651) 147 (647-648)
hd 0.25 m 0.245 0.245 0.25
hm 0.55 m 0.55 0.54 0.55
cm 2.28 m/s - - -
um 1.69 m/s 1.61 1.61 1.61
h2 0.51 m 1.0 - 0.55 1.0 - 0.54 1.0 - 0.55
u2 0-1.69 m/s 0-1.61 0 - 1.61 0 - 161
vc 3.22 m/s - - -
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(a) Dam Break for grid size 1.0: Height
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(b) Dam Break for grid size 1.0: Velocity
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(c) Dam Break for grid size 0.5: Height
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(d) Dam Break for grid size 0.5: Velocity
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(e) Dam Break for grid size 0.1: Height
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(f) Dam Break for grid size 0.1: Velocity

Figure 5.4: Dam Break: Numerical solutions(t = 50s) of the dam break problem for the Generalised Lax Friederichs scheme for three
different grid sizes(1.0,0.5,0.1) and initial height of hg = 1.0 and hd = 0.5
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5.3.2. Choosing a Settling Model
Within the numerical simulations, a trade-off between time, diffusion and detail are essential; this can be
studied further by a convergence study. Comparing the results, one can use the velocity, height or concen-
tration profile. Since both the velocity and height profile change too quickly and the concentration profile is
used. Concentration is the main subject of this study; it not allowed to give negative solutions.

Increasing the numerical detail yields a good solution but increases the computational time significantly.
When applying the diffusion terms A = 0.1, B = 1 and C = 0.1 seems to give good solution compared to the
results with [45]. To understand the results presented in Figure 5.5, one needs to understand the difference
between the slow and fast mixing model explained below.

First, the derivation of the slow mixing model: When considering a rectangular system with horizontal
area A and depth h and no velocity. The initial concentration of Co , in the system, is distributed uniformly. If
diffusion is slow in comparison to settling the diffusion, the mixing can be neglected[45]. Assuming the con-
centration within the particle cloud does not change as settling progresses. Particle distribution is uniform,
have same particle size and density, the particles settle at the same velocity, vs . The particle flux at the bed is
due to vertical advection, m =−vsCo A. This flux continues until the entire water depth free of particles. The
loss of particle mass M is constant and independent of the concentration or mass[45]. The depth-averaged
concentration is defined as C = M/h A:

∂M

∂t
=−vsCo (5.36)

∂C

∂t
=−vs

h
CoC (t ) =Co(1− vs

h
t ), f or t < h

vs
(5.37)

To conclude, in the slow mixing model the particles settle in Tset t l e = h/vs

Secondly, deriving the fast mixing model; In this case, mixing is rapid enough to maintain uniform con-
centration C throughout the system, even if particles settle. The flux at the bed is assumed to be:

m(z = 0) =−vsC (5.38)

Although mixing by diffusion mixing cannot be neglected, it assuming that C is uniformly distributed,
neglecting diffusion terms because:

∂C

∂z
= ∂C

∂y
= ∂C

∂x
= 0 (5.39)

The conservation equation of mass is:

∂M

∂t
= AH

∂C

∂t
=−vsC A (5.40)

∂C

∂t
=−vs

h
C (5.41)

The loss of particles depends on concentration with a constant speed of vs /h. Partial concentration de-
creases exponentially with 95% of the initial mass lost in time according to:

t = 3h

vs
(5.42)

As the slow and fast mixing model are now clear, one can choose a settling model. Choosing a settling
model is important to obtain the right settling velocity. The two models that described above differ in the
importance of mixing and settling. The time-scale can compare the two processes for settling over the depth
of the water body. As described above Tset t l e ≈ h/vs and the time scale for mixing over the depth TD ≈ h2/D
if TD >> Tset t l e the slow mixing model applies. When TD << Tset t l e the fast mixing model applies.

Using the scale D ≈ u∗h∗ for turbulent channel flow, it is found that the ratio of time-scales:

time-scale for settling over h

time-scale for mixing over h
= h/vs

h2/D
= vs

u∗
(5.43)

For turbulent channel flow if vp << u∗ the turbulence in the water column is strong enough to keep the
particles mixed, in this case, the fast model applies, and the suspended sediment load decays exponentially. If
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vs >> u∗ the turbulence is too weak to mix sediment vertically, the slow mixing model applies and suspended
sediment load decays linearly.

The model is tested for settling of both 50 µm and for 100 µm, other modelling parameters provided in
Table 5.6. All source terms are zero except for the settling term described as δt vsφ. For a volume concentra-
tion of 2%, height 1m and the velocity 0.3 m/s, vp << u∗ holds, 95% should be settled after 3h/wp. For 50 µm
at a velocity of 0.3 m/s at 1 m height 95% of the sediment should settle at 542m and for 100 um this is approxi-
mately 145m. The model shows to have a good approximation for the settling in a system with turbulent flow
and rapid mixing, see the result in Figure 5.5. The results validate the model for settling.

0 100 200 300 400 500 600 700
Distance [m] 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
nc

en
tra

tio
n[

%
]

Model Test for Settling of Turbidity Current
50 m
100 m

Figure 5.5: 1D Turbid Density current in a channel with settling only. The graph
shows that 95% of the particles have settled after 3h/vs proving to make a right

approximation of settling in turbulent flow. With height 1m, flow velocity 0.3 m/s,
vp << u∗

Table 5.6: Parameters for choosing a
settling model

Data for Figure 5.5
Data type Value unit
Time 2000 [s]
Length 700 [m]
Cell size 0.1 [-]
Concentration 2.0 [%]
Height 1.0 [m]
Flow velocity 0.3 [m/s]
vs,50µm 0.00166 [m/s]
vs,100µm 0.00619 [m/s]
ρw 1000 [kg/m3]
ρs 2650 [kg/m3]
g 9.81 [m/s2]

5.3.3. Influence of Grid Size
Due to the limitation of computers, computational modelling is a constant consideration between computa-
tional time and accuracy. Grid size influences both accuracy and computational time. A smaller cell induces
more points in the grid; more detail is obtained. If the solution is consistent and stable, the numerical so-
lution will approach the analytical solution more accurately. The Courant-Friedrich-Lewy(CFL) condition is
a necessary condition for convergences. It states that variables are not able to exceed the boundaries of a
cell within a time-step in order to maintain stability. Smaller grid cells imply a decrease of the time step size
to satisfy the CFL condition. However, higher accuracy yields longer computational time, which increases
non-linearly. A trade-off between detail, accuracy and computational time.

The concentration profile (φ) is compared for different numerical detail. Since the solution of the numer-
ical scheme is convergent, it is expected it will approach the analytical solution. Based on the results of the
computational time and detail, a grid size is chosen for further simulations.

The CFL condition states that variables can not go beyond a cell within a time step in order to maintain
stability. Decreasing in the grid-cell size results in a decrease of the time step. The CFL condition is stated as:

u
∆t

∆x
≤ 1 (5.44)

When decreasing∆x it implies a decrease of∆t . The CFL-condition is a necessary condition for convergence,
but it is not a sufficient one. In the case of the used Forward in Time Central in Space (FTCS) scheme, the CFL
provides an unstable solution. To solve this problem, the diffusion terms were introduced.

The Physical parameters are given in Table 5.7 and numerical parameters are given in Table 5.8. The
results of the model simulations are given in Figure 5.6. These results are compared with the computational
time, given in Table 5.7. F

It is concluded that a computational grid of 0.1 does give good results for a computational time of ap-
proximately 70 seconds. This is the runtime for just a part of the model. Since more arrays will be included,
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computational time increases to approximately 1-3 hours. If one wants to obtain a rough estimate, a compu-
tational grid of approximately 1.0 or 2.0 will suffice(if the model stays within stability regions).

Table 5.7: Physical parameters to test the influence of grid size on the numerical model
Physical parameters

d50 [µm] h [m] u [m/s] φ [-] L [m] φ [-] Wb [m] t[s] S [-] vs [m/s] ∆ D∗ R [m] v θ θcr g
50 1 0.3 0.02 700 0 2000 0 9 1.66 · 10−3 1.65 1.061 0 1.3·10−6 15 9.81

Table 5.8: Numerical parameters to test the influence of grid size on the numerical model

Numerical Parameters
∆x [m] ∆t [s] nx [-] t [s] nt [-] Computation time[s]

2.0 0.133 351 2000 15000 2.1
1.0 0.067 701 2000 30000 3.5
0.5 0.033 1401 2000 60000 7.0

0.25 0.017 2801 2000 120000 18.0
0.1 6.7· 10−3 7001 2000 300000 69.5

0.05 3.3· 10−4 14001 2000 600000 220.9
0.01 6.7· 10−4 70001 2000 3000000 19862
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Figure 5.6: Comparison of the concentration development for different cell sizes for the model with settling only
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5.3.4. Evolution
A shock has two solutions in one point on the left and right side of the point of interest. The Rankine-Hugoniot
conditions that describe the relationship between the states on both sides of the shock wave. Investigating
the numerical model to see how it handles shock, the solution of the numerical model is solved for eight
time steps in Figure 5.7. For the numerical model without source terms results are provided in Figure 5.7a,
Figure 5.7c and Figure 5.7e the evolution of the concentration, velocity and height are plotted respectively.
For the numerical model with source terms results are provided in Figure 5.7b, Figure 5.7d and Figure 5.7f
the evolution of the concentration, velocity and height are provided respectively. The height of the shock is
solved according to the expected Navier-Stokes (low) front.
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(a) Concentration without source terms
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(b) Concentration with source terms
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(c) Velocity without source terms
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(d) Velocity with source terms
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(e) Height without source terms
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Figure 5.7: Evolution of the shock wave in the numerical model with and without sourceterms
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5.3.5. Scenarios

The numerical one-dimensional shallow water equations with gravity, friction, deposition and erosion stud-
ied for several situations. First, the numerical model studied for 1. No Source Terms, 2. Deposition only, 3.
Erosion Only and 4. Gravity and friction, see Table 5.9 providing the scenario and expected results. Second,
the model evaluates four scenarios(5. full numerical model). It is used to see the effects of changing the pa-
rameters of 5.1 sediment sizes, 5.2 concentrations, 5.3 slopes and the hydraulic radius for 5.4 widths and 5.5
heights. The parameters that are used for the different scenarios are listed in Table 5.10, Table 5.11, Table 5.12
and Table 5.13. The results of the scenarios given in section 6.2.

Table 5.9: Scenarios for dynamic(numerical) model and the expected results of the simulations

Scenarios for modelling of the different source terms and the full model scenarios
# Scenario Expected result
1. No Source Terms Shallow Water Equations and Particle

conservation equation; No changes of
the concentration over time

1.1 Concentration ( 1 - 8 %) Changes velocity profile and height
profile

2. Deposition(Settling) only Particle concentration settles with L =
3h/vs

2.1 Sediment size (d50 = 50, 100, 150, 200 µm) Larger particles settle faster as vs in-
creases and according to particle set-
tling relation L = 3h/vs

2.2 Concentration (1-8 %)
3. Erosion only Maximum concentration is 60%
3.1 Non-hindered erosion particles erode, concentration in-

creases according to van Rijn 1984a
3.2 Hindered erosion particles erode, and interact with each

other according to [55] [72]. Erosion
is less compared to non-hindered ero-
sion

4. Gravity and Friction Produces velocity according to the
steady state solution (d50 = 50 µ, u =
0.3 m/s, h = 1 m, φ= 0.02, wb = 10)

4.1 Slope Increased slope, increases flow veloc-
ity

4.2 hydraulic radius (height: 1.0, 2.0, 3.0, 4.0) Increase hydraulic radius, increases
flow velocity. Effect of Height is
largest.

5. Full Equation: Deposition, Erosion, Gravity and Friction Concentration will become constant
at a certain point

5.1 Sediment size d50 (50, 100, 150, 200 µm) Larger sediment particles settle faster
5.2 Concentration φ (1-8 %) increased concentration yields in-

creased velocity, driving force of the
current

5.3 Slope (0.001, 0.002, 0.004, 0.01, 0.05) Increased velocity due to increased
slope, erosion capacity increases

5.4 Hydraulic Radius: Water depth(height h) (1, 2, 4, 8, 16, 32) Increased height, reduced friction and
greater distance, settling time in-
creases

5.5 Hydraulic Radius: Width (10, 20, 40, 80, 160) Greater width, longer settling time
6. Case Study: Water Injection Dredging Case Study For details subsection 5.3.6
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Table 5.10: Physical constant parameters

Physical parameters constants)
Variable Range

L [m] 1000
t[s] 8000
∆ 1.65
v 1.3 · 10 −6

g [m/s2] 9.81
f 0.025

C1 18
C2 1

ρw [kg/m3] 1000
ρs [kg/m3] 2650

Table 5.11: Physical variable parameters

Physical parameters (Variables)
Variable Range
φ [-] 0.01-0.08
d50 [µm] 50-200
h [m] 1-32
u [m/s] 0.3
Wb [m] 10-160
t[s] 8000
S [-] 0.001-0.05
θ loc.vel.dep
R [m] 0.83- 43.6
vs [m/s] Table 5.13
D∗ Table 5.13
θcr Table 5.13

Table 5.12: Numerical parameters

Numerical parameters
Variable Value
Cell size 0.1

Time step 6.7 · 10−3

L 1000
nx 10001
nt 1200000
A 0.1
B 1
C 0.1

Table 5.13: Parameters depending on Particle Size d50

Particle size and corresponding values
d50 [µm] D∗ θcr vs

50 1.062 0.133 0.00166
100 2.124 0.089 0.0062
150 3.186 0.066 0.0128
200 4.24 0.054 0.021
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5.3.6. Case Study: Water Injection Dredging

Water Injection Dredging(WID) is a technique in which high-velocity water flow erodes sediment and brings it
into suspension. Through nozzles and under low-pressure water is injected into the sediment. The beam with
nozzles moves along the bottom as can be seen in Figure 5.8. Due to the high flow velocities, water penetrates
the bottom, and the sediment is fluidised overcoming cohesive(fine sediment) and internal(coarse sediment)
friction forces[77]. WID is a technique more suitable for very fine sand, silt and clay, mainly due to coarse
sediment settling too quickly. The fine sediments are dispersed over the water column(1-3m high) forming
a water-sediment mixture. The mixture results in a turbid density current that is forced by density/pressure
differences and gravity. Since WID is a technique that only requires natural current to transport sediment,
in comparison to other conventional dredging techniques, it does not require hoppers, barges or discharge
pipelines. As an effect, WID is a cost-effective method to apply in areas where natural currents are available
such as the channel.

The concept of channelling dam reservoir can provide the necessary natural current for sediment eroded
by WID. Next, to this, the turbid density transport might be improved by WID as transport and concentra-
tion of sediment increases. Evaluating the concept of WID within channelled dam reservoirs, a case study is
performed. This case study is done with the one-dimensional shallow water equation model modified in this
section. Two source terms are provided: first, for the continuity equation a formula is proposed, based upon
estimations and available equations given by van Rijn (2015) [74], Schrieck (2011)[68] and Swart (2015)[64].
Second, for the particle conservation equation, the erosion term is based upon Bisschop et al. (2010)[9] that
considers high-velocity sediment erosion. The local impulse effects of the WID are assumed to be negligible
in this case study. Further, WID along a length of 5m in the middle of the channel.

Figure 5.8: Sketch of Water Injection Dredging[77]

First, the source term for the continuity equation is derived. The WID injects water into the system, increasing
the water height. To account for this a source term, denoted as VW I D , is added to the continuity equation. The
source term is formulated by the use of equations and estimates provided by van Rijn (2015) [74], Schrieck
(2011)[68] and Swart (2015)[64]. In Table 5.14 the estimates of WID related aspects are given.

Table 5.14: Caption

Water Injection Dredging Parts Approximate values Unit
Beam widths[74] 5 - 10 [m]

Nozzle spacing[64] 0.25 - 0.30 [m]
Nozzle diameter [64] 0.05 - 0.08 [m]
Nozzle velocity[74] 5 - 15 [m/s]
Number of Nozzles 16 - 33 [-]

Pressure drop over nozzle[64] 100 - 150 kPa
Current concentration [74] 20 - 100 kg/m3

Horizontal Jet pip [74] 0.6-0.8 m
Injected flow rate 1-2 m3/s

Regular water injeciton device 0.3 m3/s/
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The following formula’s are used for the derivation of the source term relation[74][64][12]:

Nozzle velocity: unozzle =
√

2∆p

ρw
(5.45a)

Nozzle area: Anozzle =
1

4
πD2 (5.45b)

Number of nozzles: Nnozzle =
Lbeam

Snozzle
(5.45c)

Total nozzle area: Atot = Nnozzle Anozzle (5.45d)

Total discharge: Qwi d = u Atot Cwi d (5.45e)

Specific discharge: qwi d =Qwi d /Lbeam (5.45f)

Source term: Vwi d = qwi d

Lwi d
(5.45g)

As can be seen from Figure 5.8, the WID has a certain length over which super-critical flow changes into
a hydraulic jump, between 2 and 3. There is no data available about the super-critical effective flow length
from a jet. When the effective length of the super-critical flow is estimated, the added water height calculated.
Flow velocities reach high values, 5 - 15 m/s; the length is in the order of 1 - 10m. Within this case study, an
effective influence length of if the WID Lwi d estimated at 5 m. Equation 5.45a up until Equation 5.45g requires
an iterative process, to solve for this an equation is derived. The equation provides increased height due to
increased water inflow. For the equation pressure drop, nozzle diameter and the jet influence length are the
input parameters:

Vwi d =
√

2∆pπD2
n

4
p
ρw Lwi d Snozzle

(5.46a)

wi th : Snozzle =
Lbeam

Nnozzle
(5.46b)

Further, the flow from the WID intrudes into the sediment layer, causing the flow height to increase. This
study does not account for bottom changes. Although not used, for convenience, the intrusion depth can be
calculated with[54]:

Si ntr =
√

3ρw u2
nozzle D2

n

Cu
(5.47)

(Note: The intrusion depth has higher influence on the flow height compared to the water input from the
water injection dredging.)

Second, the concentration of sediment in the water column increases due to erosion caused by the WID;
this is accounted for by a source term added to the particle conservation equation. Although an erosion term
is formulated in Equation 4.10a, this equation will not suffice. The equation holds for low-velocity erosion
only, in which sediment particles erode grain by grain. For high flow velocities, this assumption no longer
holds. WID is a form of high velocity(u > 4m/s) sediment erosion. The conventional erosion models, such
as the one used in this study from van Rijn 1984[72] in Equation 3.17, overestimate the erosion induced by
high flow velocities. High flow velocity erosion is influenced by properties of the soil mass(non-cohesive
soils)[70]. The parameters that govern the erosion are dilatancy, permeability(particle size and porosity) and
the (un)drained shear strength of the soil(particle size, porosity, composition/mineralogy, hydraulic gradient
pushes the top layer)[8]. Further, the concentration in the water influences the flow by hindered erosion, in-
fluenced by the principles of dilatancy and permeability. For high-velocity erosion properties of the complete
layer should be considered, instead of grains only.

Bisschop et al. (2010)[9] derived a simplified form of the high-velocity sediment erosion formula; it added
as a source term to the model. The formula provides good approximations for jetting(u>4m/s) in dredging
practice, for lower flow velocities(u>4m/s) the error is less than 10%. The formula by Bisschop et al. (2010)
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for the source term of the particle conservation equation is provided in the following form:

Source term: v5
e =α2D0.6

∗
(
θ−θcr

θcr

)3

(
k

δ
)3 (5.48a)

with: α= 0.00033

√
∆g d50

1−n0
(5.48b)

Critical shields: θcr =
τb,cr

(ρs −ρw )g d50)
(5.48c)

Dilatancy: δ= ni −n0

1−ni

1

∆(1−n0)
(5.48d)

Permeability: k =Ck
g

v
D2

10

n3
0

(1−n0)2 (5.48e)

With the sediment erosion term ve , dimensionless particle size D∗, dimensionless density ∆, fall velocity g ,
median diameter of particles d50, in situ porosity n0, critical shields parameter θcr , critical bed shear stress
τb,cr , sediment density ρs , water density ρw , porosity of the sheared layer ni , diameter 10% smaller d10,
kinematic viscosity fluid v , coefficient depending on particle size distribution and angularity of the grainsCk .

An increase of porosity is related to an increase of permeability; the permeability of a rather loosely packed
granular material is approximately three times higher than of a densely packed granular material.

At last, the two terms that have been derived can be implemented into the model. This results in the
continuity, momentum and particle conservation equation for the WID case study:

Continuity equation:
∂h

∂t
+ ∂uh

∂x
=Vwi d (5.49a)

Momentum equation:
∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fg − f f (5.49b)

Particle equation:
∂φh

∂t
+ ∂uφh

∂x
= E −D + ve (5.49c)

with: Vwi d =
√

2∆pπD2
n

4
p
ρw Lwi d

(5.49d)

and: ve = 5

√
(0.00033

√
∆g d50

1−n0
)2D0.6∗

(
θ−θcr

θcr

)3

(
k

δ
)3 (5.49e)
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WIDCase study assumptions
The effects of the WID evaluated by making assumptions on the aspects of the dredging technique. The case
study assumptions and calculated values, based on equations in this section, are listed in Table 5.15. As no d10

value is available a d50 value is used. The results of the case study are provided in section 6.3. In which first,
the evolution of concentration, velocity and height over time are given followed by a steady-state solution.

Table 5.15: Water Injection Dredging Case Study Assumption for Modelling

WID Model Aspects Parameter Value Unit
Beam width Lbeam 10 [m]

Nozzle spacing Snozzle 0.30 [m]
Nozzle diameter Dn 0.05 [m]
Nozzle velocity unozzle 14.14 [m/s]

Number of Nozzles Nn 33 [-]
Pressure drop over nozzle ∆p 100 [kPa]

Injected flow rate Q 0.9 [m3/s]
Sediment size d10 10 [µm]
Water density ρw 1000 [kg /m3]
Dredge length Lwi d 5 [m]

Slope S 0.001 [-]
In situ porosity n0 0.4 [-]

Porosotiy sheared layer ni 0.6 [-]
Cell size ∆x 0.1 [-]

WID location - 500-505 [m]
WID location (Cells) 5000-5050 [-]

Height in hi n 1.0 [m]
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6
Results

This part of the thesis provides the modelling results for both the steady-state solution and the numerical ap-
proach. The modelling approach was proposed in for the steady-state solution is provided in section 5.2, and
the results in section 6.1. The numerical approach is provided in section 5.3 and the results for the numerical
model of the turbid density current in the channel are provided in section 6.2.

6.1. Steady-State
6.1.1. With Reservoir Return flow
In Figure 6.1 velocity profile for the rectangular and trapezoidal channel is provided. Five different channel
dimensions were evaluated. For both the rectangular channel as the trapezoidal channel: The velocity in-
creases as the slope increases. As the channel area increases the maximum velocity decreases. In Figure 6.1a
it obtained that the average channel dimensions are smaller than that of the trapezoidal channel. Velocities
are slightly higher for the same channel cross-sectional area. In Figure 6.1b average channel dimensions are
higher than that of the rectangular channel. The average velocity in the trapezoidal channel is slightly lower
compared to the rectangular channel.

In Figure 6.2 channel velocity, hydraulic radius, depth and channel surface area for different channel widths in
the trapezoidal channel are provided. As the width of the channel increase, as a result, velocity and hydraulic
radius decrease and the depth decrease and the surface area decreases towards an asymptotic point. The
width influences the solutions much less than the change in depth.

In Figure 6.2a channel velocity increases as the slope increases from 0 towards 0.05. The effect of width
change is larger for the widths from 5 to 30 m than for 30 - 90 m. For 50 - 90 m, the solutions are approximately
the same, no clear difference in answers is seen.

In Figure 6.2b hydraulic radius decreases rapidly for slopes between 0 and 0.01. The effect of the width
change is significant for widths between 5-30m. For widths 40-90m the solutions similar for a hydraulic radius
of 1.5m.

In Figure 6.2c depth decreases as the slope increases. For a width of 5m, the channel depths are largest.
For a channel width of 90m, the depth is smallest. The solutions decrease with the highest gradient between
0 and 0.01.

In Figure 6.2d cross-sectional area decreases as the channel slope increases. There is a negative non-
linear relationship for the results. For the width of 5m, the cross-sectional areas are smallest, for 90m, the
cross-sectional areas are largest. Between the lines of the 5-40m width, the spacing is even and clear, for the
50-90m widths the spacing is small and some lines for area overlap.
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Figure 6.1: With reservoir return flow, flow velocities for rectangular channel and slope for changing cross sectional area of the channel
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Figure 6.2: Trapezoidal Channel with Reservoir Return Flow the influence of slope and width on velocity, hydraulic radius, depth and
cross-sectional area
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6.1.2. Without Reservoir Return Flow
n Figure 6.3 the rectangular channel without reservoir return flow is provided. Channel densities are constant
in the cross-section of the channel. As slope increases, flow velocity increases, hydraulic radius decreases
and area decreases. In Figure 6.3a velocity increases non linearly with increasing slope. In Figure 6.3b cross-
sectional area of the channel decreases non linearly as the channel slope increases. In Figure 6.3c hydraulic
radius decreases non linear but less than in Figure 6.2b. From the graphs, it can be obtained what the min-
imum quantities of velocity, area and hydraulic radius need to be. For example, at a slope of 0.01, minimum
velocity is 2.0 m/s, hydraulic radius 400 m2 and the hydraulic radius is 5.0.

In Figure 6.4 the trapezoidal channel without reservoir return flow with changing widths is provided. As the
channel slope increases, flow velocity increase. On the other hand, water depth, hydraulic radius and cross-
sectional area of the channel decrease. Within Figure 6.4a flow velocity increases non-linearly with the slope.
As the width increases the flow velocity decreases. In Figure 6.4b the channel depth decreases non-linearly
with increasing slope. The effect of the change in width is unclear. Between 0 and 0.01 solutions decrease
rapidly, and in 0.01 towards 0.05, the solutions are more stable. In Figure 6.4c hydraulic radius decreases as
slope increases non linearly and is constant from 0.01-0.05. The effect of width is less compared to change
in-depth as can be obtained from Figure 6.4b.In Figure 6.4d the cross-sectional area decreases non-linearly
with the channel width.
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6.1.3. Without Reservoir Return Flow: Simplified
In Figure 6.5 without reservoir return-flow and equal area, density and velocity up and downstream. The
solution is plotted for channel velocities of 1 - 5 m/s. The cross sectional area Hydraulic radius and Discharge
are plotted for changing slope. Each solution decreases non-linearly width increased slope. From the graphs
the minimum flow velocity at a certain hydraulic radius and slope can be obtained.In Figure 6.5a increased
velocity yields increased slope to solve for the equation . In Figure 6.5b increasing velocity yields increasing
slope and larger hydraulic radius at larger slope. In Figure 6.5c increasing velocity yields increasing slope and
larger discharge.

From the figures it can be obtained what a minimum slope should be to maintain a certain velocity com-
bined with either surface area, hydraulic radius or discharge within the channelled reservoir.

0.00 0.01 0.02 0.03 0.04 0.05
Slope [-]

0

500

1000

1500

2000

2500

3000

3500

4000

Su
rfa

ce
 [m

2]

Trapezoidal Channel: Surface, Slope. Equal U, A, rho
u = 1 m/s
u = 2 m/s
u = 3 m/s
u = 4 m/s
u = 5 m/s

(a) Cross sectional area

0.00 0.01 0.02 0.03 0.04 0.05
Slope [-]

0

5

10

15

20

Hy
dr

au
lic

 ra
di

us

Trapezoidal channel: Hydraulic radius, Slope. Equal U, A, rho
u = 1 m/s
u = 2 m/s
u = 3 m/s
u = 4 m/s
u = 5 m/s

(b) Hydraulic radius

0.00 0.01 0.02 0.03 0.04 0.05
Slope[-]

0

2000

4000

6000

8000

10000

Di
sc

ha
rg

e 
[m

3/
s]

Trapezoidal channel: Discharge, Slope. Equal U, A, rho
u = 1 m/s
u = 2 m/s
u = 3 m/s
u = 4 m/s
u = 5 m/s

(c) Discharge

Figure 6.5: Trapezoidal Channel without reservoir return flow and equal up-and downstream velocity and radius, influence of slope on
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6.2. Numerical
6.2.1. Without Source Terms
In Figure 6.6 no source terms are included in the model. The concentration profiles are constant along the
length, see Figure 6.6a. However, changes are observed as velocity is increased (Figure 6.6b and height is
decreased (Figure 6.6c) velocity(increased) and height(decreased). For Figure 6.6b, velocities are higher for
increased concentration and from left to the right boundary velocity increases by 0.1 m/s for each concentra-
tion. Velocity increases suddenly at the left boundary(x=0) and right boundary(x=L). For Figure 6.6c, height
of the current decreases as concentration and velocity are higher. The effects of concentration change is less
for concentration larger than 5 %. At both the left boundary(x=0) and right boundary(x=L) concentration
decreases with a steep gradient.

The effects on the boundary and velocity and height change can be an effect of the boundary conditions
or the change of super-critical to sub-critical flow. The densimetric Froude number is around unity and
becomes smaller at the right boundary, this causes both the upstream and downstream to be effected, sub-
critical flow occurs. The rapid changes on the boundary can be an effect of the boundary conditions.
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Figure 6.6: Numerical model without source terms concentration, velocity and height profile for concentrations between 1-8%
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6.2.2. Deposition
2.1 Sediment Size
In Figure 6.7(a,c,e) deposition term for different particle sizes d50 with incoming concentration 2%, height
1m and velocity 0.3 are provided. In Figure 6.7a concentration decreases non-linearly along the length of the
channel. Larger particle sizes settle faster due to higher settling velocity according to Equation 3.24. The par-
ticles concentrations settle according to subsection 5.3.2 (3h/vs )∗ui n and 95% settled: for d50= 50, 100, 150,
200 µm this is 45, 70, 150, 550m respectively. In Figure 6.7c velocity increases rapidly and non linearly on the
left boundary(x=0) towards 0.7 m/s, the velocity of d50 = 50 µ increases with smaller gradient. In Figure 6.7e
height decreases with a steep gradient and non linearly from the left boundary(x=0) towards h = 0.5m. Height
for d50 = 50 µ decreases slowest which is a combined effect of the model evaluating concentration, velocity
and d50.

2.2 Concentration
In Figure 6.7(b,d,f) deposition term for different incoming concentrations(1-8 %), velocity 0.3 m/s, height
1.0 m and d50 50 µm. Figure 6.7b concentration decreases non linearly for each particle size according to
(3h/vs )∗ui n 95% is settled, as mentioned in previous paragraph 2.1 Sediment Size. The concentrations are
settled at L > 800 m. Figure 6.7d The velocity at the left boundary increase with large gradient. The velocities
become constant at L > 400m. Highest velocities are found for concentration of 8.0 %. In Figure 6.7f height
decreases for each concentration and is constant at L>250m. At the left boundary height decreases rapidly
and at the right boundary height is constant. The results provide similar results to sediment size changes,
increased concentration results in decreased height and increased velocity.
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Figure 6.7: Numerical model for deposition only, concentration, velocity and height for both different sediment sizes d50 (a, c, e) and
different concentrations φ (b, d, f).
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6.2.3. Erosion
3.1 Non-Hindered Erosion
Figure 6.8(a,c,e) non-hindered erosion term for different particle sizes. With an incoming concentration 2%,
height 1.0 m and velocity 0.3 m. Particles erode from the bottom, increasing the concentration from the initial
2 %. In Figure 6.8a concentration is increasing with a small gradient up until L = 400 m. Compared to L > 400m,
the concentration starts increasing with large gradient and non-linearly along the length of the channel. It is
caused by a positive feedback mechanism that is not damped by settling and friction. In Figure 6.8c velocity,
responds by similar behaviour and is constant up until L = 400m, from L > 400m the velocity increases non-
linearly. At the left boundary, a decrease of the velocity is noticeable, from 0.3 m/s towards 0.2-0.25m/s. In
Figure 6.8e height, decreases non linearly from the left boundary (x=0) towards the right boundary (x=L).
Particles erode rapidly compared to the hindered erosion.

3.2 Hindered Erosion
Figure 6.8(b,d,f) the hindered erosion term for different particle sizes. With an incoming concentration 2
%, height 1.0 m and velocity 0.3 m/s. Particles erode from the bottom increasing the concentration with a
starting concentration of 2 %, the incoming velocity of 0.3 m/s and height of 1.0 m. The particles are eroding
slower than in the non-hindered settling situation. In Figure 6.8b The concentration is constant until L =
150m and increases non-linearly until the end of the system(x=L). Figure 6.8d The velocity is constant up to
L = 200 m and increases non-linearly towards the end of the system. At the left boundary(x=0) the velocity
decreases towards 0.25 m/s and at the right boundary(x=L) the velocity increases suddenly. Figure 6.8f The
height decreases non-linearly and somewhat linearly from the left towards the right boundary. For 850 < L
< 100 the velocity change is reduced. At the right boundary, a sudden decrease of velocity is noticed; it is an
effect of the hindered erosion term that limits erosion.

By comparing height, velocity and concentration for hindered and non-hindered erosion. It clearly shows
that hindered erosion is increases slower than non-hindered erosion. It is an effect of hindered erosion. It is
affected by particles and reduced turbulence that affects the concentration in the flow reducing its erosive
capacity.
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Figure 6.8: Non-hindered(a,c,e) and Hindered(b,d,f) erosion for different sediment sizes: Concentration, velocity and height profile
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6.2.4. Gravity and Friction
4.1 Gravity
In Figure 6.9(a,c,e) the gravity and friction term for different slopes are provided. Incoming concentration 0.02
%, velocity 0.3 m/s and height 1.0 m. There are no source terms in the system that govern the erosion and
settling of sediment. In Figure 6.9a it is obtained that changing the slope is not effecting the concentration, it
stays constant at 2.0% for different slopes 0.001-0.050. In Figure 6.9c velocity increases as the slope increases.
At the left boundary (x=0) the velocity increases towards the steady-state solution. The steady-state velocities

give solutions as would be expected from the given slopes and are equal to uc =
√

8
f g ′Rs. In Figure 6.9e

height decreases as slope increases. At the left boundary(x=0) a steep gradient in the velocity is observed for
the slopes 0.004, 0.010 and 0.050. The model is approaching its steady-state solution. The right boundary
shows a rapid decrease of height for 0.001, 0.002 and 0.004. The smaller slopes affect the velocity of the flow,
causing it to be either super or sub-critical flow. The densimetric Froude number is lower than unity causing
sub-critical flow in which effects downstream are transported upstream. The sudden at the boundaries are
effect the solution if the super-critical flow becomes sub-critical. Another effect could be due to the boundary
condition imposed on the right boundary of the model.

4.2 Hydraulic Radius
In Figure 6.9(b,d,f) gravity and friction terms for different hydraulic radii are. Incoming concentration is 0.02
%, velocity is 0.3 m/s and height 1.0 m. There are no source terms in the system that govern the erosion
and settling of sediment. A result of this is that concentrations are constant for changing hydraulic radius
in Figure 6.9(b,d,f). In Figure 6.9d velocity increases on the left boundary towards the steady-state solution

equal to uc =
√

8
f g ′Rs. Due to the low slope, the velocity increases towards the right boundary. It could be an

effect of either a low densimetric Froude number(Fr < 1) or the imposed boundary condition. In Figure 6.9f
height (almost) instantly decreases on the left boundary towards the steady-state solution yet decreasing non-
linearly at the right boundary.
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Figure 6.9: Changing slopes(a,c,e) and changing hydraulic radii(b,d,f) for numerical model with the gravity and friction source term
only.
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6.2.5. Complete Numerical Model Scenarios
5.1 Sediment Size
In Figure 6.10(a,c,e) the complete numerical model for changing sediment size in that includes the source
terms for deposition, erosion, gravity and friction is provided. With incoming concentration of 2.0 %, velocity
0.3 m/s and height 1.0 m.

In Figure 6.10a concentration decreases non-linearly along the length of the domain. Sediment settles
significantly slower compared to the deposition only situation. For d50 = 50 µm the minimum particle con-
centration is 0.2 %. About 95 % of the particles are settled out from suspension at 400, 300 and 250m for 100,
150, 200 µm respectively.

In Figure 6.10c velocity decreased along the length of the channel as an effect of decreased concentration
and increased height. The velocity gradient for particle sizes of 50 µm is significantly smaller compared to
100, 150, 200 µm. At the left boundary(x=0) velocity increases and after that decreases along the length. Be-
tween 50<L<400 velocity decreases linearly. Between 400<L<800 velocity decreases non-linearly, from L>800
velocity is approximately constant. At the right boundary, an increase of velocity is recognised for 50 µ, which
might be an effect of sub-critical densimetric Froude number(Fr <1) or the boundary condition.

In Figure 6.10e height increases and decreases along the length of the channel. At the left boundary(x=0)
height decreases with a steep gradient, yet staying around the 0.3 m/s incoming velocity. The height for
50µm is approximately constant along the length. For d50 100, 150, 200 µm the height is constant between
0<x<200, increases for 200< L < 800 and 200< L<900. Decreases from L >800 and L> 900, first linear and then
non-linearly.

5.2 Concentration
In Figure 6.10(b,d,f) the complete numerical model including the source terms deposition, erosion, gravity
and friction with changing concentration, is provided. The incoming concentrations changes between 1-8%,
velocity 0.3 m/s and height of 1.0 m.

In Figure 6.10b concentrations decrease for concentrations from 1-3%. While concentrations ≥ 4% in-
crease along the length of the channel. For the provided parameters, the turbid density currents start to have
a positive feedback mechanism from concentrations higher than 4 %. At the right boundary, the concentra-
tion increases with a steep gradient between 950 < L < 1000, this might be an effect of the boundary condition.
A low slope is causing a low velocity and thus lower Froude number(Fr<1) causing subcritical flow.

In Figure 6.10d velocities decrease along the channel length. At the right boundary, a sudden increase in
velocity is recognised, probably due to lower Froude number. The concentration of 1 % has Froude number
larger than unity, which results in super-critical flow.

In Figure 6.10f height is somewhat constant for concentrations 2, 3 and 4%, in which a rapid decrease on
the right boundary is seen due to the Froude number being lower than 1. The concentration of 1.0% shows,
an increase in velocity along the length of the reservoir, a sudden decrease at the right boundary that is not
seen in the velocity graph. The 5-8% decrease in velocity with rapid decreasing height at the right boundary
due to either boundary conditions or Froude number.
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Figure 6.10: Results of concentration, velocity and height for different sediment sizes(a,c,e) and different concentrations(b,d,f) for the
complete numerical model
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5.3 Slope
In Figure 6.11(a,c,e) the complete numerical model including the source terms deposition, erosion, gravity
and friction with changing slopes(0.001-0.05[-]) is provided. With incoming concentration of 2.0 %, velocity
of 0.3 m/s and height of 1.0 m.

In Figure 6.11a the concentration decreases for a slope of 0.001 the current could is not self-accelerating
and friction forces are higher than driving forces for the slopes ranging from 0.002-0.05 the concentrations
increases. The concentration for the slope of 0.002 increases linearly and becomes stable at the end of the
domain at 9.5%. The slope of 0.004 increases linearly up to 300m and is constant for >300m at 12 %. The
concentration for the slope of 0.05 is stable from approximately 50m at 13 %. Compared to the gravity and
friction where the concentration was stable, the concentration increases in this case.

In Figure 6.11c velocity decreases for a slope of 0.001 and increases for slopes larger and equal than 0.002.
For different parts in the first section, a linear increase is noticed. After the increase, the velocities become
constant along the channel. For the slopes of 0.001 and 0.002 increase at the boundary is noticed that, yet the
effects are much smaller than in the gravity and friction only situation, which could be the effect of bound-
ary conditions or Froude number smaller than unity. The velocities are higher compared to the gravity and
friction only situation in subsection 6.2.4.

In Figure 6.11e height for 0.001 increases along the length and at the boundary, the Froude number or
boundary conditions decreases its solution. The heights for slopes 0.002 and larger decrease linearly and
than become constant.

5.4 Hydraulic Radius: Depth
In Figure 6.11 provides the complete numerical model including the source terms deposition, erosion, gravity
and friction with changing hydraulic radius as an effect of depth change. With incoming concentration of 2.0
%, velocity of 0.3 m/s, height of 1.0 m and slope 0.001[-].

In Figure 6.11b concentration in the channel increases non linearly as the depth of the channel increases
except for the height of 1.0 m. It can be an effect of low velocity which related to the hydraulic radius. When
the height of the channel is too small, the velocity and the resulting turbulence is too small to keep the sedi-
ment in suspension.

In Figure 6.11d velocities increase along the channel length as the depth increases. At the right bound-
ary(x=L) the velocity increases with a steep gradient that could be an effect of boundary conditions rather
than Froude number as Fr > 1, and thus super-critical flow occurs.

Figure 6.11f The height decrease along the length of the channel. At the left boundary, a rapid decrease in
height is seen. For example, the depth of 16.0 m decreases towards 10m. It could be either due to low initial
velocity or a boundary condition. At the right boundary, heigh decreases suddenly as an effect of boundary
condition or low Froude number; it was stable before the boundary.
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Figure 6.11: different slopes(a,c,e) and depths(b,d,f) for the complete numerical model.
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5.5 Hydraulic Radius: Width
In Figure 6.12 provides the complete numerical model including the source terms deposition, erosion, gravity
and friction with changing hydraulic radius as an effect of width change. With incoming concentration of 2.0
%, velocity of 0.3 m/s, height of 1.0 m and slope 0.001[-].

In Figure 6.12a, the concentration of the flow decreases along the channel length. The average concen-
tration is higher as the width of the channel is increased. The effect is less significant than the height change
— the concentration increases at the right boundary, which again is an effect of the low Froude number.

In Figure 6.12b velocity decreases linearly over the length of the channel. At the left boundary, the velocity
increases with a steep gradient towards approximately 0.32 m/s. At the right boundary concentration with
steep gradient occurs due to low Froude number or boundary condition.

In Figure 6.12c height decreases at the left boundary towards approximately 0.85 m. From the left bound-
ary, the heights increase towards a point of 950m. Between 950 < L < 1000 the height suddenly decreases as
an effect of Froude number or boundary conditions.
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Figure 6.12: Complete Model: different widths



6.3. Case Study: Water Injection Dredging 79

6.3. Case Study: Water Injection Dredging
The WID case study results and explanation of these are provided in this section. The derivation for the equa-
tions and the list of input parameters are provided in subsection 5.3.6. First the evolution of the WID is mod-
elled in Figure 6.13(a,c,e). It can be seen that the concentration over the height instantly increases towards
30%. This increase in concentration is added over a small height as can be obtained from Figure 6.13(e). A
small front is formed that moves in the positive x-direction. After t = 500 seconds, the turbid density current
starts to interact with the input of the WID and the front has moved further into the domain. The concentra-
tion, velocity and height to the left of the water injection dredge are significantly higher compared to previous
modelling situations. As time increases the situation for the water injection dredging starts to move towards
a stable situation.

The solution for t = 100 000 s is provided in section 6.3(b,d,f). The height on the left of the water injection
dredge is approximately 3.6m, while the concentration and velocity in the current are almost zero. It could
be an effect of the water injection dredging, causing flow in two directions. In the downstream direction of
the water injection dredge the velocity, concentration is significantly higher. The height is 0.5m, velocity 0.55
m/s and concentration is around 8%. The total amount of sediment moved by the current in the channel is
higher compared to the situation before dredging.

In both Figure 6.13(a,c,e) and Figure 6.13(b,d,f) boundaries seem to suffer from either boundary condi-
tions or the densimetric froude number.
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Figure 6.13: Case Study: Water Injection Dredging





7
Discussion

This thesis starts with a literature study(Part II), followed by a conceptualisation and modelling approach
(chapter 5) on channelling turbid density currents in dam reservoirs. Channelling aims to inhibit the set-
tling of sediment particles in dam reservoirs. In the literature review, an overview of sedimentation in, and
management of, dam reservoirs is given. Followed by a study on sediment transport mechanisms, that are
involved in sedimentation in reservoirs. Empirical relations describe the transport mechanisms. The con-
cept proposes the channelling of turbid density currents in dam reservoirs. This form of sediment transport
is mainly responsible for the transport of fine sediments into dam reservoirs. The concept of channelling
turbid density current is that channel dimensions can be controlled and positively influence the transport of
sediment within the current. Both a new steady-state model and a new numerical model are developed to
investigate the concept. The incorporation of WID in the channel improves the concept. The model provides
a straightforward, easy to use tool to make first estimations for the applicability of channelling turbid density
currents and the support by water injection dredging.

Sedimentation of dam reservoirs and management techniques is a new research field, mainly because
sustainability has gained public interest in recent years. In the meantime, studies on sediment transport
have been performed already for many decades. Nevertheless, sediment transport estimations deal with sig-
nificant uncertainties, leading to a large number of empirical relations to make estimations. Only some apply
to the proposed concept. More studies have to be done on the subject of sediment transport in the coming
decades to improve the reliability and precision of these relations. Furthermore, within the field of sediment
transport, turbid density currents are examined. Both numerical and scaled experiments have been devel-
oped to make approximations on their behaviour. Likewise, numerical models or schemes and scaled exper-
iments are research subjects on their own. Whereas these aspects are investigated separately, they are not
integrated into a format that is proposed and utilised within this thesis. To provide an answer to the main re-
search questions: "Is channelling turbid density currents an effective measure to transport sediment through
dam reservoirs?" The proposed conceptual solution is an integrated approach of studies on dam reservoir
management, (fine) sediment transport, turbid density currents, Water Injection Dredging and an analytical
and numerical scheme to evaluate and estimate the effectiveness of channelling turbid density currents in
dam reservoirs. Two research methods are proposed to investigate the channelling concept. Firstly, a steady-
state solution is used in which the effects of hydraulic radii and slope are investigated. Secondly, a dynamic
numerical approach is used in which gravity, friction, deposition and erosion are incorporated. The influence
of concentration, sediment size, slope and hydraulic radii are investigated. The results of these studies are
provided in chapter 6.

As outlined in the previous paragraph, this study uses assumptions to provide an integrated approach to
counteract the problem of sedimentation in dam reservoirs and to study its effectiveness. This is the first
study to do so in this format. The assumptions on sediment transport and channelling are provided in chap-
ter 3 and chapter 5. Within this section, the discussion results of the steady-state solution and numerical
model are interpreted, and their meaning is explained and evaluated. Second, within the results, general pat-
terns and findings are seen, it is discussed if these aspects confirm or reject the findings within this study and
what there limitations and implications are. This is followed by critical evaluation and analysis of strong and
weak aspects within this study, the models precision, validity and any unexpected behaviour are discussed,
the available literature is listed, and suggestions are made to contribute future research. Final conclusions
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are provided in chapter 9.

7.1. Interpretation of the Results
An interpretation and explanation of the meaning of the results for the steady-state solution, numerical vali-
dation, numerical source terms and full numerical model are provided.

7.1.1. Steady state
First, the steady-state approach is used to describe the kinematic behaviour of the turbid density current
through a channel. The solutions provide the maximum possible velocities in the channel as friction and
omitting entrainment of water and the bed. Three situations have been investigated using a mass balance
for the channel, river and reservoir for both rectangular and trapezoidal channels transporting turbid density
currents with reservoir return flow, without reservoir return flow and a simplified form with similar up and
downstream parameters.

No significant differences between rectangular and trapezoidal channels can be obtained. If one wants
to estimate channel dimensions, first estimates can be made for the dimensions of the rectangular chan-
nel using the simple relation of the hydraulic radius to estimate width and height; w = h = 3R. Further, the
slope and hydraulic radius do significantly influence the velocity of a turbid density current, increasing these
parameters yields an increase in velocity. Within the hydraulic radius, changing the depth has a more signif-
icant effect than changing the width. This is because in the formula for the hydraulic radii of the trapezoidal

channel (Rtr ap = Wb H+2H 2

Wb+2H
p

5
) height is quadratic and thus its influence is stronger than the width. It is also the

reason why a small change in depth has more influence than a small change in slope. From this, it can be
concluded that height and slope provide the opportunity to control the velocity of the current.

The channel flow with reservoir return flow yields flow velocities slightly less than that of the channel
flow without return flow, but these differences are minimal. Change in slope or hydraulic yields a non-linear

change in flow velocity according to x
1
2 , which is a logical result of the formula by Morris and Fan (1992) due

to the square root; [46] (uc =
√

8
f g ′RSo).

Within the third scenario, parameters of concentration, velocity and area are kept the same in the up-
stream and downstream direction. The results of this third scenario can be used as a nomogram to make
estimations on flow velocity, which will maintain specific sediment transport, surface area, hydraulic radius
and discharge. A factor not investigated is the change in concentration of the current. The effect of concen-
tration should be studied as a higher concentration can cause an increase in flow velocity, providing a better
capability of sediment transport.

If the particle size is known, it can be determined if the particles stay in suspension from the rouse profiles
as a first estimate using rouse profiles in section A.3. (E.g. d50 =63 µm, velocity of 2 m/s, volume concentra-
tion ≈ 12 %) The approach could be used the other way around as-well. When one knows a certain particle
diameter, minimum velocity can be determined. With the minimum velocity, one can then approximate if a
turbid density current can travel through available channel dimensions.

Finally, the slopes in each of the three scenarios are at the higher range compared to conventional dam
reservoirs and channels(S = 0.001). The slopes should be provided in more detail between 0-0.1 to improve
the steady-state study. These slopes are closer to the working range for the available slopes for the channel in
the reservoir.

In short, hydraulic radius and slope influence the velocity of the turbid density current most significantly
and the results of the third scenario in the steady-state solution can be used as nomogram to estimate the
density current velocity, hydraulic radius(depth and width) and cross-sectional area. Slopes smaller than
0.01 have to be simulated in more detail to provide graphs that provide better workability.

7.1.2. Numerical Model
Secondly, the numerical model is a dynamic solution incorporating time, concentration, velocity, length,
width, height, slope, friction, gravity, deposition, erosion and sediment size of the turbid density current
within the channel. This form of the dynamic model is not yet available in the literature, and a more substan-
tial part of this research is performed to incorporate the source terms of friction, gravity, erosion and depo-
sition. The numerical model uses one-dimensional one-layer shallow water equations with Boussinesq ap-
proximation for the continuity and momentum equation in combination with a particle conservation equa-
tions. Assuming the turbidity current is influenced by the four source terms. The effects bed deformation, top
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friction and water entrainment are omitted in this study; this might result in overprediction of concentration,
velocity and height of the current.

The system of equations does not have an analytical solution; a numerical solution is proposed. The goal
was to find a numerical scheme that was easy to implement. The scheme that provided an easy discretisation
method is the Generalised Lax Friederichs scheme that includes three diffusion terms. The scheme is easy
to use compared to some other conventional numerical models and provides the opportunity to make quick
numerical estimations. A numerical dam break experiment has validated the numerical model. The numeri-
cal solution of the dam break model showed to underestimate the analytical solution by approximately 10 %.
It is not clear what the reason for this underestimation is, it might be an effect of the diffusion terms in which
the upstream has a higher effect than downstream. Next, to this, smaller grid size approximations showed
convergence towards the analytical solution. Next, to this, the settling model experiments were in agreement
with the settling model[45]. The numerical solution provides reasonable first estimates and looks promising,
although performing experimental tests are required to validate this numerical model.

7.1.3. Source Terms for the Numerical Model
Four source terms studied for the numerical model, namely, gravity and friction, erosion and deposition. The
validity of the source terms is based on the assumption that each source term describes its process correctly.

First, without source terms, the concentration is constant; it was expected that velocity and height were
constant too. Velocity increases and height decreases, it is assumed that this is an effect densimetric Froude
number that becomes lower than unity at the boundaries, combined with the boundary conditions imposed
on the right boundary.

Secondly, the deposition term is decreasing nonlinearly with increasing length. Tested and showed to
provide good results according to t = 3h

vs
[45]. The velocity(0.65 m/s) and height(0.47 m) become constant

when all particles are settled out of the current. Increasing the concentration yields the same settling pattern,
while velocity increases and height decreases.

Thirdly, the erosion term that is used gives similar solutions as proposed by [72], [69]. The non-hindered
erosion provides modelling problems as the velocity is to the power 3 (u3) and solutions become infinite.
Hindered erosion solution gives better results as the term limits the growth of the solution. The erosion term
does give good results, yet it has not proven to be valid, further research on the erosion term is recommended.

Fourthly, the friction and gravity term are evaluated and show that the constant velocities agree with

uc =
√

8
f g ′RS as proposed by Morris and Fan 1998 [46] and classical fluid mechanics. Concentration is con-

stant as no settling or eroding term is provided. Increasing slope yields increased velocity according and be-
comes constant at a certain as is according to Morris Fan (1998)[46], Tonina (2012) [67] and MIT (2008)[45] so-
lution and becomes constant. Increasing the hydraulic radius yields higher flow velocities per the steady-state
solutions. On the right boundary sudden increase of the velocity is seen, the boundary conditions probably
cause it. The friction, gravity and deposition term provide excellent results, compared to results presented in
and respectively.

Testing the source terms separate does not necessarily prove that the combination of source terms pro-
vide an ultimate solution. The erosion term needs validation, and the full model needs to be validated with
another numerical experiment or a scaled experiment to verify the source terms.

7.1.4. Full Numerical Model
For the full numerical model, five scenarios have been evaluated. Firstly, sediment size for a constant in-
coming velocity of 0.3 m/s, sediment concentration decreases, velocity decreases and height increases. The
exception is 50 µm due to a constant decrease in concentration, and velocity decreases linearly with constant
height. It shows that particles larger than 50 µm are almost unable to be transported by the current veloci-
ties. Secondly, the influence of concentration is minimal. Velocity is higher for higher concentration, height
increases and more significantly for 1.0% which is contradicting. Thirdly, increasing slope yields increased
concentration and velocity. Velocity is much higher than for gravity friction only. Next to this concentration
increases, increasing the velocity significantly. Fourthly, the depth(hydraulic radius) is increased increasing
concentration, velocity increases. Fifthly, the width(hydraulic radius) slightly decreasing concentration, de-
creasing velocity, increasing height, effects are much smaller than height change.

To summarise, the full numerical model showed that slope and depth change(hydraulic radius) have the
most substantial influence on velocity, concentration and height of the solution. The change in width and
concentration have far less influence. Turbid density currents hardly transport sediment sizes largen than 50
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µm.

7.1.5. Case Study: Water Injection Dredging
A case study is simulating Water Injection Dredging(WID) by two source term equations, namely a formula for
the height increase caused by the WID that is derived within this thesis and the erosion of sediment simulated
by high-velocity sediment erosion as proposed by Bisschop et al. (2010) [27]. The location of the WID is in the
middle of the domain. The concentration in the flow immediately increases, and height only slightly increase.
It means that concerning the available flow height, only a small amount of sediment is added to the system. As
time increases, the height with high sediment concentration increases. The increased concentration moves
in two directions, in which the movement in the downstream direction is faster, which is an effect of the
slope. Results show that the WID increase sediment transport in the downstream direction. It suggests that
WID is an appropriate solution to increase turbid density transport. Although this may be true, the case
study is a purely experimental approach to determine if it can positively influence the channelled turbid
density current. The results are not validated as no other data or experiments are available. To conclude
from this experiment, one needs to perform WID experiments to validate results. Further, the WID is applied
continuously while in reality, the WID will only work during certain periods and over certain distances, this
will change the results too.

7.2. Patterns
Within the results, general patterns are seen. These are highlighted in this section, discussing the implications
and limitations.

Within the numerical model, at the right boundary, a sudden decrease or increase of the solution is seen.
These are either an effect of boundary conditions or the densimetric Froude number that determines sub-
or super-critical flow, the influence is more significant for small slopes and (resulting) low flow velocities. It
is found that in some cases, the densimetric Froude number on the boundaries is lower than unity, which
yields a sub-critical flow. In the centre of the domain, the Froude numbers are above unity. In some cases,
the densimetric Froude number is above unity and solution still increases. An example can be found in the
evaluation of the source term for friction and gravity. The Froude numbers are above unity, and still, a sudden
increase is seen on the boundary. The effect might be related to the imposed Dirichlet boundary conditions
or initial condition that imposes a minimum height in the system, but this can not be excluded based upon
available information. The implication is that there is either an over- or under-prediction of velocity that
prevents the solution to divide by zero, concentration and height. A limitation is that the solution on the
boundaries is unreliable. A solution might be to change and test different boundary conditions and initial
conditions. In literature, some examples are found that solve hyperbolic equations and subcritical flow that
use different numerical schemes effectively. Next, to this velocity and height are directly related as, when
velocity decreases, height increases and vice versa.

By comparing the results of the steady-state and numerical solution, it is found that the slope and depth
have the most substantial influence on the solution. Concentration affects the numerical solution only slightly.
Besides this, the solutions for gravity, friction and change in slope show a certain distance over which velocity
enlarges towards a particular steady solution. The same occurs for the depth, concentration and width but is
less noticeable. It implies that incoming concentrations, heights and velocities of the system are either to low
or too high and will change the initial height and concentration of the flow. It takes the system a particular
time to move towards a steady solution, implying that on the first part of the solution, the system needs time
to ’spin-up’. It is limiting the area to make good predictions towards the middle of the domain. Solved by
making estimations in advance using the balance of Erosion(E) and Sedimentation(D) one can determine if
the current starts to erode or deposit depending on a positive or negative value. This depends on the channel
velocity(uc ), which can be determined by the channel dimensions.

7.3. Evaluation
A critical evaluation of strengths, weaknesses, precision and validity of this study approach and results. These
are supplemented by literature suggestions to improve future research on the subject of channelling turbid
density currents in dam reservoirs. (3)

The strengths of this study are: that a numerical model for turbid density currents in a channel with
a straightforward discretion method is used. It is easy to implement and most importantly, the model is
easy to use. The results can be obtained within 10-30 seconds, depending on the number of parameters



7.3. Evaluation 85

incorporated. The model provides an excellent tool to make first estimates. Several studies have been done
on turbid density currents. However, this is the first model to explicitly model a turbid density current in a
channelled dam reservoir and, to include a form of Water Injection Dredging to measure the effects on turbid
density currents.

The weaknesses and opportunities for improvement in this study are that: (1)as the numerical model is
not validated by experiment, results have to be interpreted with caution. (2) As the model is only doing ex-
periments with an incoming height of 1.0 m, a velocity of 0.3 m/s and a concentration of 2.0%. (3) For the
hydraulic radius, the wetted perimeter for open channel flow is assumed, which might over-predict the hy-
draulic radius. (4) The right boundary of the numerical approach significantly influences the solution. (5) The
erosion term used is for open channel flow; it should be validated if this term can be used for turbid density
currents without change. (6)Within the deposition, term settling velocity of particles is strongly influenced by
the increase in fluid concentration mainly because the fall of the particles induces an upward movement of
water; the buoyancy of the particle increases due to high-density fluid, and by the interaction between par-
ticles (effect of concentration - hindered settling). The transport capacity of the flow tends to increase with
high sediment concentration. However, these changes also depend on the composition of sediment present
in suspension, which is not taken into account[41]. Not accounting for (7)Coriolis and centrifugal forces in
the dam reservoirs, (8)water entrainment, (9) bottom change. (10) friction along the top and front of the cur-
rent. (11) Simulations are one dimensional(1D) while turbid density currents are a three dimensional(3D)
process. (12) To plot the results in the form of concentration, height a velocity makes them less applicable to
other situations, by non-dimensionalising the equation with the Froude number they can be used in more
situations.

The precision within sediment studies is a complicated subject, over- or under-prediction for sediment
transport by currents is in the range of 2-5 times the natural range[61]. The model is based upon many em-
pirical relations and combined with a numerical solution. It will lead to deviation from reality; to quantify,
this is impossible without a data set of experiments.

With respect to validity, the steady-state solution is a valid solution to predict the velocity of a turbid
density current[46]. Sedimentation term is valid for turbulent flow[45]. No clear evidence is provided for the
validity of the erosion term. The dam break model shows that the numerical scheme under estimates height
and velocity with 10% compared to the analytical solution for a dam break.

To continue research on this subject, several literature suggestions: The steady-state solution and infor-
mation on turbid density currents in dam reservoirs are provided by Morris and Fan (1998) [46]. Huppert
(1993)[34] provides a paper on Particle driven gravity currents with a different numerical method. Bonnecaze
(1999)[10] improves this by providing a solution for Particle driven density currents on a slope. Parker (1987)
provides experiments on turbid density currents over erodible beds. Cao (2004)[18] provide a numerical so-
lution for a dam break over an erodible bed, which could provide a bed change source term. Oehy(2007)[48]
provides a study on the control of turbid density currents in reservoirs over solid and permeable obstacles.
Hu(2009) provides a fully coupled(from the river to reservoir) mathematical modelling of turbidity current
over erodible bed [33]. Wang (2017)[75] provides a one-dimensional morphodynamic model coupling open-
channel flow and turbid density currents in dam reservoirs. It includes the 1D equation of turbidity currents
and gravity closure relationships by Pantin(1979), Cao (2009)[17] and Parker (1986) [52].
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Conclusion

To conclude, from both the steady-state solution and the numerical solution, channelling a turbid density
current can be an effective measure in order to transport fine sediment through dam reservoirs. Both the
slope and depth of the channel have the most significant influence on the effectiveness of this measure.

This conclusion is based on several sub-questions as shown in the next paragraphs

• The main mechanisms causing sedimentation of dam reservoirs are the reduction of velocity and tur-
bulence that transport sediment in the form of bed-, suspended-and wash-load transport. The change
in width mainly causes the reduction of velocity and turbulence. (SQ1)

• To successfully manage dam reservoirs an integral approach of several techniques, such as reduction of
sediment yield, route sediment, focus, remove sediment and several adaptive strategies are necessary.
The effectiveness of the technique is mainly dependent on dam reservoir type(fine sediment, widening,
sufficient depth available) and the efficiency of these management techniques are unclear and require
more research. (SQ2)

• A turbid density current containing suspended sediment is denser than the ambient fluid in the reser-
voir, supported by turbulence and, driven by density differences and gravity. The characteristics of the
turbid density current can be described by the head, body and tail of the current each having their own
internal and external mechanisms. Turbid density currents settle due to increased friction along the
bottom and top of the current as of the width of the reservoir increases. (SQ3)

• Both the steady-state and the numerical model show that slope and depth(hydraulic radius) have the
most substantial influence on the velocity in increasing sediment transport. Changes in-depth have a
more significant influence compared to the change of width, as depth appears quadratic in the equa-
tion of the hydraulic radius. (SQ4)

• The turbid density current is mathematically described by the one-dimensional shallow water equa-
tions, with a Boussinesq approximation, supplemented by the particle conservation equation. The
Generalised Lax Friedrichs scheme, with diffusion terms A = 0.1, B = 1.0 and C = 0.1, provided a valid
and straightforward numerical solution for the dynamic one-dimensional shallow water equations.
The dam break experiment validates the numerical scheme, that provides an analytical solution. The
results of the numerical solution underestimate the velocity and height of the analytical solution by
approximately 10%. (SQ5)

• The effect of the Water Injection Dredge is described by two source terms. The erosion term for WID
term added to the particle conservation equation and, the source term for the added water causing
an increase in height. The model results show that Water Injection Dredging successfully enhances
sediment transport in a channelled dam reservoir. Further research, computational or experimental,
is required to validate the assumptions made for the integration of the Water Injection Dredge in the
model. (SQ6)

• The developed model provides a very simple, quick and easy to use estimation tool. The modelling
tool can assess the applicability of channelling turbid density currents in dam reservoirs. The model
provides the opportunity to change concentration, depth, width and the slope and also to asses the
effects of water injection dredging.
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• Median particle diameters(d50) of 50, 100, 150 and 200 have been modelled. Particles larger than 50
µm are hardly kept in suspension by turbid density transport. The model shows that turbid density
transport is only suitable for (very) fine sediment only.

• Increasing the slope of the channel in the dam reservoir, fine sediment transport(d50 =50µm) increases.
• The four source terms, gravity, friction, erosion and deposition are successfully incorporated in the 1D

single-layer shallow water equation and particle conservation equation.
• The graphs from the steady-state solution can be used as a graphical tool, nomogram, to estimate first

dimensions for a channel in a reservoir. It provides the first estimates for the slope, velocity and hy-
draulic radius for a trapezoidal reservoir channel.

The numerical solution provides good first estimates and looks promising, although performing experimen-
tal tests are required to validate this numerical model.
Sedimentation is causing sustainability problems for dam reservoirs around the world. Several types of sedi-
ment transport are responsible for the sedimentation of reservoirs; one of these is the turbid density current.
Several management techniques have been developed to counteract sedimentation and increase the sustain-
ability of reservoirs. This report examines a concept in which turbid density currents are channelled within
dam reservoirs to enhance sediment transport, thereby reducing sedimentation of dam reservoirs. Two com-
putational models are introduced to investigate the concept, a steady-state model describing the velocity of
the current and a numerical model that describes the dynamic behaviour. Many assumptions are made in
modelling of the turbid density current in a channel, the model has limitations, with implications for the ap-
plication of the results. chapter 7. However, this concept provides a viable new solution that can be developed
for application in reservoirs with fine sediment in order to increase the sustainability of dam reservoirs.

Further studies, both computational and experimental, are needed. These need to provide considerably
more evidence, that channelling turbid density currents is both theoretically and practically feasible within
dam reservoirs. The recommendations for future research are provided in chapter 9.



9
Recommendations

For future research on channelling turbid density currents in dam reservoirs, this chapter provides recom-
mendations for theoretical and practical applications.

• Use the model to make first estimations for the channelling of turbid density currents and the applica-
tion of Water Injection Dredging in dam reservoirs.

• Model related recommendations:

– Experimental research to validate findings of computational model.
– Do research on the boundaries of the proposed numerical model, assessing both the boundary

conditions and Froude number to ascertain what affects the solution of the model. The model
results can be non-dimensionalised by assessing the Froude number along the channel instead.

– The model can be expanded by incorporating other source terms such as bottom deformation[18],
water entrainment, bed entrainment and friction along the top, to make a complete description
of the processes within and along with the turbid density current [75] [18].

– The model can be improved by coupling upstream river transport with turbid density current in a
dam reservoir[33][75].

– Expand the one-dimensional model into a two-layer equation[63] or even expand to two or three-
dimensional models although, two and three-dimensional models significantly increase compu-
tational time.

– Asses the effect of slope and depth on different particle sizes.
– Use different numerical schemes to discriminate/discern the system of equations and compare

it with the results provided by the Generalised Lax Friedrich Schemes and assess the reasons for
underprediction of velocity and height. A possible solution could be found with the use of the
method of characteristics.

• Scaled experiments to validated the source terms for the channelled turbid density currents and to
measure the effects of Water Injection Dredging within it.

• This concept is applicable to a certain amount of dam reservoirs. Do a feasibility study for large dam
reservoirs, to asses which dam reservoirs are suitable for the proposed solution of channelling, includ-
ing a list of criteria to asses the applicability of the concept. Characteristics such as; fine sediment,
no delta (implies course sediment), enough space (width/height) to make a channel and for dredging
equipment(if the channel is supported by Water Injection Dredging).

• When much sediment is eroded and released from a dam reservoir the river downstream has to cope
with an increased amount of sediment, the capability of the river to on the one hand transport the
sediment and the effects on the downstream environment and community should be assessed.

• Water Injection Dredging:

– Improve the description and assumptions of Water Injection Dredging as little is known about the
process.

– Assess the applicability of a Water Injection Dredge, is it able to access the reservoir. It might be
possible to apply WID alike applications locally increasing the flow velocities. Such as jets on sev-
eral locations in the channel. Further study of water injection dredging as most of the information
on dredging is kept within companies.
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A
Sediment Transport Principles

A.1. Definitions on Sediment Transport
Several definitions of bed load transport have been have been provided. Two of those are given by Bag-
nold(1956) and by Einstein (1950) [73]:

1. Bagnold (1956): Bed-load transport is transport in which particles have successive contact with the bed
and are limited by the effect of gravity.

2. Einstein (1950): Bed-load transport is the transport of sediment particles in a thin layer of two parti-
cle diameters thick just above the bed. The movement is by sliding, rolling and some jumps with a
longitudinal distance of a few particle diameters. The bed layer is considered as a layer in which the
mixing due to the turbulence is so small that it cannot influence the sediment particles, and therefore
suspension of particles is impossible in the bed-load layer. Further, it is assumed that the average dis-
tance travelled by any bed-load particle in a series of successive movements is a constant distance of
100 particle diameters, independent of the flow condition, the transport rate and the bed composition.
Saltating motion is referred to as suspended load transport, as the jump length is larger than a few grain
diameters(Einstein 1950).

A definition given on suspended-load transport is given by bagnolds:

1. Bagnold 1956 defines suspended-load transport as that in which the excess weight of the particles is
supported by random successions of upward impulses imported by turbulent eddies. The suspended
sediment particle velocity is almost equal to the fluid velocity. Suspended sediment particles are de-
scribed with sediment concentration, this is expressed in volume(m3)/fluid volume(m3) or solid mass
(kg )/fluid volume(m3)

A.2. Concentration profile
A.2.1. Derivation of Rouse Profile
In a stationary uniform flow, the time derivative δc

δt = 0 and the coordinate in x = 0 the equation simplifies to:

δ

δz
(wc) = δ

δz
(ε
δc

δz
) (A.1)

In this case vertical velocity of particles is equal to the settling velocity ws =−w , substition of ws and integra-
tion of Equation A.1 results in the following equation:

ws c =−εδc

δz
(A.2)

In channel flow the eddy viscosity is assumed to be a parabolic function:

Ks = κu∗(1− z

H
) (A.3)

99



100 A. Sediment Transport Principles

When an linear profile is assumed, referred to as the power law:

Ks = κu∗z (A.4)

Or a uniform distribution:
nog i nvul l en (A.5)

Where H(or z)= Waterdepth,κ = Von Karman constant = 0.4, u∗ = friction velocity =
√

τb
ρ , τb= beds-

hearstress. Substitution in equation Equation A.2 yields:

ws c =−κu∗
σ

z(1− z

H
)
δc

δz
(A.6)

Rearranging and integration: ∫ c

ca

δc

c
=−wsσ

κu∗

∫ z

za

δz

z(1− z
H )

(A.7)

Integral on the right of Equation A.7, can be seen as a standard integral:∫
d x

x(ax +b)
=− 1

−b
ln

ax +b

x
(A.8)

with b = 1 and a =− 1
H and x = z it follows that:

lnc − lnca = wsσ

κu∗
[ln

1− z
H

z
]z

za
(A.9)

or

lnc − lnca = wsσ

κu∗
(ln

1− z
H

z
− ln

1− za
H

za
) (A.10)

Rewriting equation Equation A.10 results in equation Equation A.11. In which the exponent is referred
to as the Rouse number, which is an important parameter to determine whether the transport mechanism is
suspended transport or bed load transport.

c

ca
= (

H − z

z
· za

H − za
)

wsσ
κu∗ (A.11)

B = wsσ

κu∗
(A.12)

Ratio of B determines slope of the profile

u∗ = sqr t (
τo

ρw
) (A.13)

Power l aw : C (z) =Ca(
z

za
)−B (A.14)

A.2.2. Several concentration profiles
u∗ = sqr t (g hi ) (A.15)

if i goes up, u∗ goes up, b goes down, c(z) goes up.
The concentration distribution is plotted for different values as a function of depth z/H . When B in-

creases, the settling velocity only has only a limited amount of sediment in suspension in the water-column.
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Shear stress in fluids.The extent of a turbidity current depends on the shear stress at the bed and the
turbulence intensity. The capacity to keep the sediments in suspension. Their life period depends directly on
the discharge and indirectly on the sediment concentration.

A real fluid moving along a solid boundary will put a shear stress at the boundary.
In fluid dynamics, the no-slip condition for viscous fluids assumes that at a solid boundary, the fluid will

have zero velocity relative to the boundary.
The fluid velocity at all fluid–solid boundaries is equal to that of the solid boundary.[1] Conceptually, one

can think of the outermost molecules of fluid as stuck to the surfaces past which it flows.
Particles close to a surface do not move along with a flow when adhesion is stronger than cohesion. At the

fluid-solid interface, the force of attraction between the fluid particles and solid particles (Adhesive forces;
dissimilar particles or surfaces to cling to one another) is greater than that between the fluid particles (Cohe-
sive forces; similar or identical particles/surfaces to cling to one another). This force imbalance brings down
the fluid velocity to zero.

For all Newtonian fluids in laminar flow, the shear stress is proportional to the strain rate in the fluid,
where the viscosity is the constant of proportionality. For non-Newtonian fluids, the viscosity is not constant.
The shear stress is imparted onto the boundary as a result of this loss of velocity.

Given the flow characteristics, the manner in which sediment is transported by the (turbid)flow can be
estimated using the Rouse number. This relates to the settling velocity of a grain to the shear boundary stress
acting on it. The Rouse number(b) is defined as:

b = ws

κu∗
(A.16)

ws = settling velocity of particles, κ= von Kármán constant, generaly taken as 0.41, u∗ = shear velocity [m/s]
The values of the Rouse numbber can differ between the following values:

• 0 < b < 0.8 "wash load" transport of very fine sediment
• 0.8 < b < 1.2 suspended sediment transport
• 1.2 < b < 2.5 50% suspended sediment transport
• b > 2.5 bed load transport

Sand in suspension is a result of diffusion of sand upwards due to turbulence of the water and a settling of
the grains due to gravity. The equation governing this balance is(The rouse number given above is part of a
solution of this equation):

wsC =−Ks
dC

d z
(A.17)

ws = settling velocity of sediment grains, C = volume concentration of sediment at height z, Ks = eddy dif-
fusivity, depends on the height above the bed, it could be solved as a uniform, linear or a parabolic distribu-
tion. When equation Equation A.17 is solved the vertical distribution of the concentration of the suspended
sediment is given, ofcourse subjected to several assumptions. These different assumptions lead to different
expressions for the concentration profile. The shape of this profile depends upon the Rouse number.
Entertainment of sediment from the bed is governed by skin friction:

τ0s = ρu2
∗s (A.18)

As form drag of ripples does not act directly on grains lying on the surface of the bed, but it generates turbu-
lence which governs the diffusion process. the distinction disappears for sheet flow conditions. Diffusion of
sediment higher into the water column is governed by the total shear-stress:

τs = ρ∗u2
∗ (A.19)

In turbulent flow the shear stress is equal to:

τ=µd y

d x
−u′v ′ρ = ρu2

∗ (A.20)

If the eddy diffusivity(Ks = κu∗z) is assumed to increase linearly with height above the bed the corresponding
concentration profile is the power-law profile:

C (z) =Ca(
z

za
)−b (A.21)
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If eddy diffusivity is assumed to vary parabolically with the height(Ks = κu∗z[1− (z/h)]) the rouse profile is
obtained:

C (z) =Ca(
z

za

h − za

h − z
)−b (A.22)

van Rijn(1984) assumed a lower half that varies parabolically with the height and is constant with height in the
upper half of the watter column. van Rijn also took account of the difference between diffusion of sediment
and fluid momentum, and the density stratification by the sediment, by introducing a modified form of the
exponent b. As provided in [61]Equation 3.17

C (z) =Ca(
z

za
h−za
h−z

)−b′
for za < z < h

2
(A.23a)

C (z) =Ca(
za

h − za

b′
)exp(−4b′(

z

h
− 1

2
)) for

h

2
< z < h (A.23b)

with (A.23c)

b′ = b

B1
+B2 (A.23d)

B1 = 1+2(
ws

u∗

2
) f or 0.1 < ws

u∗
< 1 (A.23e)

B1 = 2 f or
ws

u∗
>= 1 (A.23f)

B2 = 2.5(
ws

u∗
)0.8(

Ca

0.65
)0.4 f or 0.01 ≤ ws

u∗
≤ 1 (A.23g)

B2 = 0 f or ws > u∗or za > 0.1h (A.23h)

z = waterdepth
za = reference height near the bottom
C (z) = sediment concentration at height z
Ca = sediment reference concentration at height za

h = Water depth
b = Rouse number

The concentration can be expressed as volume/volume or mass/volume, when C(z) and Ca have the same
units. To make a prediction of the concentration reference concentration Ca at reference height za should
be known. Both the Rouse and van Rijn equations give reasonable predictions, the powerlaw is useful when
there is a desire to simplicity of mathematical calculations.

To predict Ca and Za Garcia and Parker 1991 have tested several expressions of which the following two
give the best predictions:
Smith and Mclean (1977):

Ca = 0.00156Ts

1+0.0024Ts
at height za = 26.3τcr Ts

ρg (s −1)
+ d50

12
(A.24)

van Rijn (1984)Equation 3.17:

Ca = 0.015dT 3/2
s

zaD0.3∗
at heightza = ∆s

2
with∆s given by a minimum value of za = 0.01h (A.25)

Zyserman and Fredsoe (1994)[61]:

Ca
0.331(θs −0.045)1.75

1+0.720(θs −0.045)1.75)
(A.26)

In equation xxx to xxx the following parameters are used:

Ca = concentration (volume/volume) at height za

Za = reference height
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τ0s = skin-friction bed shear stress
τcr = threshold bed shear stress for motion of sediment
Ts = (τ0s −τcr )/τcr

d50 = median grain diameter
h = water depth
g = gravity acceleration
ρw = density of water
ρs = density of sediment
s = ρs /ρw

v = kinematic viscosity of water

D∗ = ( g (s−1)
v2 )1/3d50

θs
τ0s

gρ(s−1)d50
= skin-friction

∆s = height of sandwaves

A.2.3. Description of Suspended Sediment Transport
Calculations performed by programme and order of calculations:

Figure A.1: Hjulstrom curve

D50 = i sag i venvalue (A.27)

Density ratio of sediment and water:
s = r hos /r how (A.28)

Roughness length for hydrodynamically rough flows [61]:

z0 = d50

12
(A.29)

Dimensionless grainsize diameter:

D∗ = (
g (s −1)

v3 )1/3d (A.30)

Fall velocity(ws ) as derived by soulsby (1997)[61] formula for natural sands, based on optimising two coeffi-
cients in a combined viscous plus bluff body drag law against data for irregular grains:

ws = v

d50
((10.362 +1.049D3

∗)1/2 −10.36) for all D∗ (A.31)

The drag coefficient:

CD = (
κ

1+ ln(z0/h)
)2withκ= 0.40 (A.32)

The bed shear stress is related to the depth-averaged current velocity u through the drag coefficient by the
quadratic friction:
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τ0s = ρwCd u2 (A.33)

Threshold bed shear-stress formula as corrected by Soulsby and Whitehouse 1997 [61]:

θcr = 0.30

1+1.2D∗
+0.055(1−exp(−0.020D∗)) (A.34)

Threshold bed shear stress:
τcr = θcr g (r hos − r how ∗d50) (A.35)

The transport parameter:

Ts = τ0s −τcr

τcr
(A.36)

Calculating the reference height and reference concentration using the relation provided by Smith and
McLean (1977):

Ca = 0.00156Ts

1+0.0024Ts
at height za = 26.3τcr Ts

ρg (s −1)
+ d50

12
(A.37)

Total skin friction:

u∗ =C 1/2
D u (A.38)

Calculating the rouse number:

b = ws

κu∗
(A.39)

Calculating the concentration at a certain height using the simple power law profile

C (z) =Ca(
z

za
)b (A.40)

Calculating the concentration at a certain height using the Rouse profile:

Cz =Ca(
z

za

h − za

h − z
)−b (A.41)

Calculating the concentration in kg/m3:

Cm =C (z)ρs (A.42)
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A.2.4. Shear stress
Skin-friction contribution acts directly on the sediment grains, and it is therefore this contribution which
is used to calculate the threshold of motion, bed load transport(with a few exceptions), and reference con-
centration or pick-up rate for grains in suspension. On the other hand, it is the total bed shear-stress that
corresponds to the overall resistance of the flow, and determines the turbulence intensities which influence
the diffusion of suspended sediment to higher levels in the water column(Chapter) 8. [61]

• Skin friction:(tau0s) produced by (and acting on) the sediment grains

• form drag (tau0f) produced by the pressure field associated with the flow over ripples and-or larger
features on the bed

• sediment-transport contribution (Tau0t) caused by momentum transfer to mobilise grains

τ0 = τ0s +τ0 f +τ0t (A.43)

Thee contributions to Ustar, Theta and Z0 can be identified, using the subscripts s, f, t to produce rela-
tionships like equations (1), (2), (3 for each contribution.

If the bed is flat, and sediment transport is not intense, then equation Equation A.43 simplifies to tau0 =
tau0s, and the distinction between total en skin-friction quantities is not necessary. This case is not uncom-
mon for coars grains(d50>0.8mm), but finer sands are usually either ripppled(possibly with larger bedforms)
or have intense sheet-flow transport. Calculate skin-friction bed shear-stress, tau0s, friction velocity, ustarS,
and shields parameter, ShieldsS, using d=d50:

• if ThetaS < ThetaCR, then bed is immobile (assume rippled)

• ThetaCR < ThetaS < 0.8, then bed is mobile and rippled and or duned

• if thetaS > 0.8 then bed is mobile and flat with sheet-flow

• UstarS <= wS then no suspension

• if Ustar S > wS then sediment is suspended

• d50 > 0.8 ripples do not form w

for determining Tau0, a river based method can be used to determine the tau0. Ranging in value from
(e.g. 0.384, 0.6, 0.965), resp, engelund, white et al, van rijn. Thesemethods predict dunes rather than ripples
as the main roughness element.

A.3. Preliminary modelling: Concentration Profiles
Within this section the results of the Suspended sediment transport relations are provided.

• Suspended sediment transpot profiles for concentration and flow velocity(Rouse?)
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Figure A.2: Five graphs showing the concentration profiles for different d50 sedimetn sizes ranging from 63 um - 1 mm. The different
lines in the graph show flow velocity ranging from 1 - 9 m/s.

Figure A.3: 9 graphs showing different different flow velocities and the resulting concentration profiles due to different sediment sizes.



B
Derivation of 1D Shallow Water Equations

for a Turbid Density Current

B.1. Navier-Stokes equations
B.1.1. Newton’s Second Law
The Navier-Stokes equations describe the relation of velocity, pressure, temperature and density of a moving
fluid. They can be derived with the basic conservation equation and continuity equations applied on the
properties of fluids. To derive the fluid motion in equation form the continuity equation that dictates con-
ditions of conservation apply the equation to the conservation of mass and momentum. These equations
combined with a physical aspects [31].

The derivation of the momentum equation can be done in several ways. A quick derivation can be done
by using Newton’s laws combined with the application of the chain rule. Newtons second law:

−→
F = m−→a (B.1)

Body force is
−→
F =−→

b and substituting density for mass as a fixed control volume and infinitesimal fluid parcels
are considered:

−→
b = ρ d

d t
−→v (x, y, z, t ) (B.2)

The body force acts throughout the fluid body. Applying the chain rule to derivative of the velocity:

−→
b = ρ(

∂−→v
d t

+ ∂−→v
∂x

∂−→v
∂t

+ ∂−→v
∂y

∂−→y
∂t

+ ∂−→v
∂z

∂−→z
∂t

) (B.3)

Using the vector differential operator notation:

−→
b = ρ(

∂−→v
∂t

+−→v ·∇−→v ) (B.4)

The conservation equations is complete. To derive the equations of motions for fluids assumptions about
forces on the behaviour of fluids are needed. The force on the body force on the fluid is separated into two
components, fluid stresses caused by viscosity assuming a Newtonian fluid and the external forces (later
defined as slope and friction)[31]:

−→
b =∇·σ+−→

f (B.5)

In Equation B.5, σ is the stress tensor and
−→
f the external forces. The stress tensorσ consists of two terms, the

hydrostatic pressure force and the stress deviator term. The stress deviator term accounts for shape change

of the body. The
−→
f term can be composed of gravity and friction.

107
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B.1.2. General Form of the Navier-Stokes Equation
The stress tensor σ can be denoted into two terms for the general form of the Navier-Stokes equation. First,
the stress tensor[31]:

σ=

σ
′
xx τx y τx y

τy x σ
′
y y τy z

τzx τz y σ
′
y y

 (B.6)

From there the stress tensor can be split:

σ
′
xx τx y τx y

τy x σ
′
y y τy z

τzx τz y σ
′
y y

=−
p 0 0

0 p 0
0 0 p


︸ ︷︷ ︸

1

+
σxx τx y τx y

τy x σy y τy z

τzx τz y σy y


︸ ︷︷ ︸

2

(B.7)

1. The volumetric stress changing the volume of the body in the form of pressure force like the hydrostatic
pressure. acting perpendicular on the the volume

2. The stress deviator tensor consists of normal-and shear-stresses determining the deformation and
movement of the body.

Writing the stress deviator tensor in the form of T and substituting in Equation B.7 yields:

σ=−pI +T (B.8)

With p the stress tensor, I the identity or unit matrix and T the stress deviator. Substituting equations Equa-

tion B.8 into Equation B.5 with
−→
b equal to Equation B.4 yields the most general form of the Navier-Stokes

equation[31]:

ρ(
∂−→v
∂t

+−→v ·∇−→v︸ ︷︷ ︸
1

=−∇p︸ ︷︷ ︸
2

+ ∇T︸︷︷︸
3

+ −→
f︸︷︷︸
4

(B.9)

with:

1. Inertial forces of the fluid.
2. The volumetric stress tensor: Pressure forces inhibits motion due to normal stresses and enlarging or

reducing size of the body.
3. The stress deviator tensor: shear stress and horizontal friction. Shear stress induces viscous flow and

turbulence.
4. The external force term: such as friction and gravity

The Navier-Stokes equations are is the balance of momentum and can not be applied until more aspects
of the flow have been specified. To fully describe fluid flow additional information is needed. The addi-
tional information includes boundary data, conservation of mass, balance of energy and/or an equation
of state. It depends on the type of fluid. But a at least a stress tensor T must be determined and if the fluid
is compressible an equation of state and energy are needed. The continuity equation for 3D shallow water
equations is described in the next section. The continuity equation for incompressible fluid is a statement
for the conservation of mass:

∂ρ

∂t
+∇(ρu) = 0 (B.10)

To apply the general form of the Navier-Stokes equation several elements have to be specified: The type of
fluid needs an expression for the stress tensor and the fluid is assumed to be incompressible. An equation of
state and an equation dictating conservation of energy are needed.
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B.1.3. Newtonian Fluid
If an incompressible Newtonian fluid is assumed the assumption is concerned with the nature of the stress
tensor. In this case the stress is proportional to the rate of deformation of the fluid, this means the change in
velocity in the direction of the stress. The rate of deformation e.g. in the x-direction[31]:

τi j =µ(
∂ui

∂x j
+ ∂u j

∂xi
) (B.11)

The proportionality constant µ represents the viscosity of the fluid. The Navier-Stokes equation uses Stress
divergence of ∇·T [31]:

∇·T =µ∇
σxx τx y τx y

τy x σy y τy z

τzx τz y σy y

=µ

 2 ∂u
∂x

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂u
∂y + ∂v

∂x 2 ∂v
∂x

∂v
∂z + ∂w

∂y
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y 2 ∂w
∂z

 (B.12)

This could be extended to the divergence terms in the same manner, the divergence can be replaced with a
vector:

∇·T =µ∇2v (B.13)

The Navier-Stokes equations for a incompressible Newtonian fluid with a conservative external field yield
[31]:

ρ(
∂−→v
∂t

+−→v ·∇−→v )︸ ︷︷ ︸
1

=−∇p︸ ︷︷ ︸
2

+µ∇2−→v︸ ︷︷ ︸
3

+ −→
f︸︷︷︸
4

(B.14)

with:

1. Inertial force of the fluid consisting of the variation and convection term
2. The (hydrostatic) pressure forces by normal stresses and internal source term.
3. Stress term for horizontal friction an shear stress causing diffusion
4. External forces on the fluid such as gravitational forces and friction forces imposed by the bottom and

wall. The terms are also referred to as source terms.

The equation Equation B.14 is the fundamental equation in the field of Hydraulic Engineering. It should
be noted that many non-Newtonian approaches exist such as Bingham platics and Power-law fluids, this is
beyond the scope of this thesis and are not discussed here.

The derivation provided in the above is a summary of [31].

B.2. Shallow Water Equations
B.2.1. Derivation of 1D Single Layer Shallow-Water Equations
Having derived the Navier stokes equations for an incompressible Newtonian fluid one can now derive the
Shallow Water Equations(SWE’s). To do so, several assumptions have to be made to arrive at the 1D Shallow
Water equations.

First, rewriting the Navier stokes equations, Equation B.14 in the form of partial differential equations, this
yields [63]:

ρ(
∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
) =−∂p

∂x
+µ∇2u + fx (B.15)

ρ(
∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ ∂u

∂z
) =−∂p

∂y
+µ∇2v + fy (B.16)

ρ(
∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
+ ∂w

∂z
) =−∂p

∂z
+µ∇2w + fz (B.17)
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First assumption: the current depth/height and current width are much smaller than the length[34]. The flow
is one dimensional and parallel to the bottom and walls of the channel and is varying slowly in time and hor-
izontal direction. The terms in Equation B.16 become equal to zero. Also horizontal processes, x−direction,
are most important for the dynamics of the current. The accelerations in the vertical direction are very small.
One can assume hydrostatic pressure distribution. This is still reasonable when the current propagates on a
very small incline. This yields to the hydrostatic balance for Equation B.17:

0 =−∂p

∂z
−ρg (B.18)

Changes in y and z direction are very small compared to the x direction, y and z are neglected for Equa-
tion B.15 this yields:

ρ(
∂u

∂t
+u

∂u

∂x
) =−∂p

∂x
+µ∇2u + fx (B.19)

Secondly, either inertial or viscous forces dominate the current. The Reynolds number indicates the ratio of
inertial resistance to viscous resistance for a flowing fluid:

Re = U L

v
(B.20)

In the Equation B.20; U is the velocity, L is the length(hydraulic radius or height) and v is the kinematic
viscosity(1.3 · 10−6) of the current. When the Reynolds number is larger than 1000 the current is inertial or
inviscid, also referred to as turbulent flow. When the Reynolds number is smaller is more viscous or even
laminar. Most currents within dam reservoirs will be in the turbulent regime, high Reynolds number, as the
kinematic viscocity is very small compared to U and L. This results in the assumption that the current is
inviscid. The viscous force term is small, second term on the right hand side of Equation B.19 is neglected:

ρ(
∂u

∂t
+u

∂u

∂x
) =−∂p

∂x
+ fx (B.21)

Thirdly, change of water depth over the length is very small, no (short-)waves nor a bottom topography is
present influencing the water depth. Equation B.19 is integrated over the height h. This results in the pressure
p with p0 being the constant atmospheric pressure, this yields:

p(x, t ) = p0 +ρg h(x, t ) (B.22)

Substituting B.22, the pressure equation, into B.21 and dividing by ρ yields:

∂u

∂t
+u

∂u

∂x
=−g

∂h

∂x
+ fx (B.23)

Integrating Equation B.23 over the height of the water column gives the 1D SWE for conservation of momen-
tum:

∂uh

∂t
+ ∂u2h

∂x
+ g

1

2

∂h2

∂x
= fx (B.24)

In which fx is a source term, i.e. equal to friction and/or gravity if accounted for.
Fourthly, a turbid density current is driven by density difference. This assumption yields the following shallow
water equation for the conservation of momentum:

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fx (B.25)

With g ′(φ) being the reduced gravity. This equation can be solved with the continuity equation, Equa-
tion B.26, and the particle conservation equation Equation 4.11c which will be introduced in the section for
the particle conservation equation. The continuity equation, for the conservation of mass, yields:

∂h

∂t
+ ∂uh

∂x
= 0 (B.26)

Fifth, a homogeneous fluid is assumed, particles are distributed evenly across the height and length of the
fluid. The density of the ambient fluid is constant and density of the current varies over length and time as
particles will settle from the current. The density of the current is given by:
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ρc (φ) =φ(x, t )ρs + (1−φ(x, t ))ρa (B.27)

In which ρa is the density of the ambient fluid, ρs the sediment density and φ the volumetric concentration
of the particles. The reduced gravity term yields:

g
′
(φ) = g

ρc (φ)−ρa

ρa
(B.28)

The reduced gravity is a function of the volume concentration of particles. It is assumed that φ is small
and used as a Boussinesq approximation. Neglecting the O(φ) in the equation of mass and momentum except
for teh gravitational term. The influence of the top fluid can be neglected due to the fact that the reservoir
depth with ambient fluid is very large compared to the gravity current[34].

B.2.2. Summary: 1D Single Layer Shallow Water Equations
Continuity equation

∂h

∂t
+ ∂

∂x
(uh) = 0 (B.29)

Momentum equation
∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fx (B.30)

With fx = 0 and the reduced gravity(g’) in the form:

g
′
(φ) = g

ρc (φ)−ρa

ρa
(B.31)

B.3. Particle Conservation Equation
The concentration of particles in the current varies over depth and along the length of the turbidity current.
Particles are kept in suspension and are move due to turbulence caused by advection. Particles leave the
current by deposition and enter by erosion. Distribution of particles is assumed to be uniform along the
depth of the current. Entrainment of water is neglected in this study, information on water entrainment is
found in chapter 7. To account for the particles in the current one can now introduce the particle conservation
equation[10][34]:

∂φh

∂t
+ ∂uφh

∂x
= E −D (B.32)

The left side describes the conservation of particles. The right side contains, E the erosion of sediment
and D the deposition of sediment explained in the next section which explains the source terms continuity,
momentum and particle conservation equations.

B.4. 1D SWE with Particle Conservation, Friction, Gravity, Deposition and
Erosion

Continuity equation
∂h

∂t
+ ∂uh

∂x
= 0 (B.33)

Momentum equation with friction and gravity

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fx (B.34)

With reduced gravity(g’):

g
′
(φ) = g

ρc (φ)−ρa

ρa
(B.35)

And with fx ,:
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fx = g ′(φ)So − f

8R
u2 (B.36)

The derivation of fx including the slope and friction terms is provided in subsection B.5.1.
Particle conservation equation:

∂φh

∂t
+ ∂uφh

∂x
= D −E (B.37)

With D and E equal to:
D = (B.38)

E = (B.39)

The derivation of D and E is provided in

B.5. Derivation of Source Terms
B.5.1. Friction and gravity
It was first assumed that fx = 0. Within this section the fx 6= 0. It is assumed that gravity and friciton within
the channel are present. Conservation of momentum:

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= fx (B.40)

There are two body forces acting on the channel fluid gravity and friction:

fx = fx,g + fx, f (B.41)

where fx,g is the body force due to gravity and fx, f is the body force due to friction.
The gravity component is calculated using trigonometry:

Fg = si n(θ)g M (B.42)

Where Fg is the force of gravity in the x-direction, g the gravitational acceleration force, θ the angle of the
slope and M the mass.
The angle θ is described as:

si nθ = Opposi tesi de

ad j acent si de
(B.43)

For small θ, which is the case for the slopes of rivers and channels and which is the case for the conceptual
channels within the dam reservoirs, it can be assumed that:

sinθ = tanθ = Opposi tesi de

ad j acent si de
= S (B.44)

This yields:

fx,g = g S (B.45)

fx,g is the force per unit mass and S as the slope.

With the assumption that the energy grade line is not the same as the channel slope and for a reach of con-
sistent slope there is consistent friction loss along the reach, this yields:

fx, f = g S f (B.46)

To insert Equation B.46 and Equation B.45 into Equation B.40 it will become the 1D Saint-Venant equation in
x direction:

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
=−g (S f −S) (B.47)

Assumptions for one dimensional unsteady open channel flow in the form of Saint-Venant equations:
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1. The flow is one dimensional, the velocity is uniform in a cross-section and the transverse free-surface
profile is horizontal

2. The streamline curvature is very small and the vertical fluid accelerations are are neglible; as a result,
the pressure distrubtions are hydrostatic

3. Flow resistance and turbulent losses are the samea s for a steady unfirom equilitbirum flow for the same
depth and velocity regardless of trends of the depth

4. the bed slope is small enough to satisfy: cosθ ≈ 1 and si nθ ≈ t anθ = θ
5. The water density is constant
6. The Saint Venant equations were developed for fixed boundary channels: That is, sediment motion is

neglected....

Water flowing in a river is subject to two principal forces: gravity and friction. Gravity as driving force and
friction resisting it. The balance between these forces determines the ability of flowing water to transport and
erode sediment. The conservation of mass and momentum, given below, can be used to derive shear stress
that acts on the channel bed, velocity profile and equations governing channel flow[67]:

Conservation of Mass:Q = Au (B.48)

Conservation of Momentum:ρ1Q1u1 = ρ2Q2u2 (B.49)

There are general types of flow:

• Steady: Velocity is constant with time
• unsteady: Velocity is variable with time
• Uniform: Velocity is constant with position
• non-uniform: Velocity is variable with position

To make a mathematical model the flow in a channel should be uniform and steady. Although in natural
rivers the flow is non-uniform and unsteady, some models do incorporate this, but this will take a lot of
computational effort.

Rivers or channel have irregularities in bed and bank topography that causes convergence and divergence
of flow. These impose local gradients in flow velocity and shear stress. To make a solvable model, local differ-
ences are averaged by taking a reach average view of the river or channel.

A force balance of a volume of water in a reach with length l and slope θ is taken. It is assumed that ac-
celerations are negligible and a non moving bed. A balance between gravitational force causing accelerating
down stream and frictional resistance by the boundary slowing down the fluid to zero at the bed. This causes
internal deformation of the fluid flow.

The gravitational force downstream:

Fg = 2ALρg si nθ (B.50)

The boundary/frictional resistance force:

F f = τbLP (B.51)

τb is the average drag force per unit area on the boundary. Assuming no additional energy inputs or losses
the gravitational force and the frictional resistance force have to be in balance:

F f = F f (B.52)

τbLP = ALρg si nθ (B.53)

The length L, wet perimeterP, surface area A, gravitational acceleration g, slope angle θ.
Assuming angles in the dam reservoir are small si nθ ≈ t anθ = S, dividing by L and rearranging:

τb = (
A

P
)ρg S (B.54)

Defining the hydraulic radius as R = A/P , simplifying the equation to an expression for the reach average
shear stress:
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τb = Rρg S (B.55)

(If channels are wide it could be assumed that A/P ≈ D thus resulting a in an equation approximately equal
to the depth. Than it could be approximated by the depth slope product "The force exerted by flow on the
channel bed is proportional to flow depth and slope": )

τb = ρg DS (B.56)

This shear stress formula still does not provide any information on the flow velocity within the channel. This
is done by Chezy in 1775 he applied a mathematical anayliss of the mechanics of uniform flow. For this two
assumptions were made:

1. Force driving flow which is the down slope component of the weight of the water is exactly equal to the
total force of bed resistance.

2. The resisting force of the flow per unit bed area varies with the square of the velocity: τb = ku2. With k
being the roughness coefficient.

Rewriting Equation B.56:

ku2 = Rρg S (B.57)

Rearranging:

u =
√

Rρg S

k
(B.58)

The Chezy equation:

u =
√
ρg

k

p
RS =C

p
RS (B.59)

With:

C =
√
ρg

k
(B.60)

With Chezy coefficient C. The average velocity in the channel should increase with square root of the gradi-
ent. The square root of the hydraulic radius, for wide shallow channels this is equal to the average depth. A
coefficient that reflects the smoothness (inverse roughness) of the channel. Many empirical relations have
been created. For this several empirical investigations have been done in which the simultaneous measure-
ments of u, R and S in experimental flumes indicated that C varied slighlty with R in any given channel. From
this new proportionalities were defined by Manning, Chezy, Darcy Weisbach, Soulsby etc etc. Each of them
have there pro’s and con’s...

In this case the Darcy-Weisbach equation is used that is a fit for frictional losses in circular pipes that is mod-
ified for open channel in the form of:

f f =
8g RS

u2 (B.61)

The Darcy Weisbach equation has the advantage that it is suitable for open channel flow
Rewritting:

u =
√

8

f
g RS (B.62)

The gravitational acceleration is modified to express the gravitational force exerted by the density difference
∆ρAssuming the current is also driven by a density difference the equation can be rewritten in the following
form:
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u =
√

8

f
g ′RS (B.63)

with

g ′ = ρs −ρa

ρa
(B.64)

with:
∆ρ = ρs −ρa (B.65)

An assumption for the friction factor is that of darcy weissbach that gives an empirical equation for the friction
along a given length of the pipe to the average velocity of the fluid flow for an incompressible fluid. To describe
the velocity of the turbidty current the chezy equation is used, this equation contains a dimensionless friction
factor by darcy weisbach and the reduced gravity. This equation is proposed as an estimate for the velocity of a
turbid density current, by Morris and Fan 1992 in the Reservoir sedimentation handbook [46] or by Middleton
1966 or Lofquist 1960 [43]:

uc =
√

8

f
g ′Rg S f (B.66)

− g ′(S f −S0) = 0 (B.67)

with

S f =
f

8g ′R
u2 (B.68)

− g ′(
f

8g ′R
u2 −So) = 0 (B.69)

g ′So − f

8R
u2 = 0 (B.70)

B.5.2. Deposition
The deposition flux(D):

D = ρs vsφ(1−αφ)n (B.71)

With ρs sediment density, vs particle settling velocity,φ particle concentration, n exponent depending on
turbulence and α is 1 for hindered settling and 0 for non-hindered settling depending on the concentration
of the flow. Within literature it is not clearly specified when one make a distinction between non-hindered
and hindered settling. Within this study it is chose to always assume hindered settling.

Deposition of sediment grains is depended on the current velocity, grain settling velocity, turbulence and
concentration. For a single grain the settling velocity in a stationary water column can be determined with:

vs =
√

4∆g d

3CD
(B.72)

For river flow the water is not stationary and settling is depended on the turbulence regime. The drag
coefficient(CD ) depends on the flow regime which is related to the particle Reynolds number. There are three
different turbulence regimes described for the particle Reynolds number(Rep ):

Rep = w0d

v
(B.73)

CD =


24

Rep
Rep < 1 Laminar regime

24
Rep

+ 3p
Rep+0.34

1 < Rep < 2000 Transition regime

0.34 Rep > 2000 Turbulent regime

(B.74)
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To determine the settling velocity one should determine if the flow is laminar, transitional or turbulent.
Within the transitional regime an iteration is required to determine the settling velocity. It should be ac-
counted for that particles have a certain grain size distribution over different diameters. Within this study it
is assumed that particles have a median diameter(d50). The iterative process is avoided by using the settling
velocity by Ferguson and Church 2004, which is valid for a wide range of particle Reynolds numbers(Rep ):

vs =
∆g d 2

50

C1v +
√

0.75C2δg d 3
50

(B.75)

In a turbidity current a certain concentration of particles is present. Due this concentration interaction
with both the fluid and particles the settling velocity decreases compared to settling a stationary water col-
umn. The phenomenon is referred to as hindered settling. A relation for hindered settling is proposed by
Richardson & Zaki (1954)[55]:

vs,h = vs (1−φ)n (B.76)

The exponent n is determined by Rowe(1987). Where vs is the settling velocity of a single grain and n is
calculated with the method of Rowe (1987):

n =
4.7+0.41Re0.75

p,w

1+0.175Re0.75
p,w

(B.77)

The Deposition flux (D) for hindered settling:

D = ρs vsφ(1−αφ)n (B.78)

Introducing α equal to 0 if non hindered settling occurs or 1 hindered settling occurs.

B.5.3. Erosion
For particles to be eroded from the bed the the threshold of motion should be exceeded and partilces start
to move and erode from the bed. Many studies have been done to quantify the process of erosion(pick-up)
from the sediment bed. Many pick up functions are available such as those by Cao 2004, van Rijn 1984, Hu
Cao 2008 Van Rhee 2010. Most of these pick up functions are based upon experimental result. The main
focus of these studies was to improve the function for certain flow regimes. Within this study the flow is in
the lower flow velocity regime, in which the van Rijn 1984 pick up function has provide to provide reasonable
predictions. The van Rijn pick-up function denotes:

Ep = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5ρs

p
∆g d50 (B.79)

Since the mass, momentum and particle equation do not contain the sediment density one should devide
by the density. The pick up function by van Rijn 1984 is used in the following form:

E = 0.00033D0.3
∗ (

θ−θcr

θcr
)1.5

√
∆g d50 (B.80)

with E being the pick up flux in [m/s] and the dimensionless grain size diameter (D∗):

D∗ = (
g∆

v2 )1/3d (B.81)

With the critical shield number (θcr ):

θcr = 0.30

1+1.2D∗
+0.055[1−exp(−0.020D∗)] (B.82)

B.5.4. Erosion by Cao 2004
Erosion capacity by Hu and Cao Concentration

φn
i = c(1+31.5(

un
∗,i

vs
)−1.46) (B.83)
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with c = 0.6

E n
s,i =


0.3 Z n

i > Zm

3 ·10−12Z 10(1− Zc
Z ) Zc < Z n

i < Zm

0 Z n
i < Zc

(B.84)

Z n
i = (

un
∗,i

vs
)(

√
∆Rk g d50

3

v
)0.6 (B.85)

un
∗,i =

√
C n

D,i un
i un

i (B.86)

C n
D,i = (

κ

1+ l n( zo
hn

i
)

) (B.87)

z0= 0.06
Settling velocity by Ferguson and Church

vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(B.88)

φn+1
i = [φh]n+1

i

hn+1 (B.89)

Erosion and Deposition by Cao 2004 Computational Dam-Break[18]

D = vs (1−Ca)mCa (B.90)

Ca =αc (B.91)

α = min [2, (1-p)/c]
m = 2.0
n = 0.03
p = 0.4
s = 1.65
v = 1.2E-6
θcr = 0.045

E = 160

R0.8

(1−p)

θcr

(θ−θcr )d50U∞
h

(B.93)

Can be written as:

D =αφvs (1−αφ)m (B.94)

D =αφn
i vs (1−αφn

i )m (B.95)

E =
{
Φ(θ−θc )uh−1d−0.2 θ ≥ θcr

0 el se
(B.96)

E n
i =

{
Φ(θn

i −θcr )un
i (hn

i )−1d−0.2
50 thet a ≥ θcr

0 el se
(B.97)

un
∗,i =

√
cd un

i un
i (B.98)

θn
i =

un
∗,i un

∗,i

So g d50
(B.99)
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B.6. Model overview: check what to do with it
B.6.1. 1D SWE for Particle Driven Turbid Density Current: Friction, Gravity, Deposition

and Erosion
• Equilibrium situation =0

• Friction and Gravity

• Deposition and Erosion

Continuity equation:
∂h

∂t
+ ∂uh

∂x
= 0 (B.100)

Momentum equation with friction and gravity

∂uh

∂t
+ ∂u2h

∂x
+ g ′(φ)

1

2

∂h2

∂x
= g ′(φ)So − f

8R
u2 (B.101)

h is height, u is velocity, t is time, x is directional coordinate

Particle conservation equation with Deposition and Erosion:

∂φh

∂t
+ ∂uφh

∂x
= D −E (B.102)

with f the friction coefficient by darcy weissach and equal too 0.025. D is the deposition and E the erosion.
R is the hydraulic radius:

Rtr apezoi d al =
Ac

P
= Wbhc +2hc

Wb +2hc
p

5
(B.103)

with Ac = channel dimension, P the wet perimeter. Wb the bottom width, hc the channel height. It is assumed
that the channel is Trapezoidal with a natural sloping of the walls of 30 degrees.

Reduced gravity(g’):

g
′
(φ) = g

ρm(φ)−ρw

ρw
(B.104)

With ρw = 1000 kg/m3 and r hom the density of the mixture of water and sand:

ρm(φ) = (1−φ)ρw − (φ)ρs (B.105)

with ρs = 2650 kg/m3 the density of sand. And φ the concentration. The deposition and erosion for a turbid
density current over an erodible bed are proposed by Hu an Cao 2009 [33] For D the deposition and E the
erosion:

D = vs cb (B.106)

E = vs Es (B.107)

With cb the near bed concentration and the settling/fall velocity equal to that of ferguson and churche:

vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(B.108)

With d50 the median grain size, C1 = 18, C2 = 1.
cb

cb = c(1+31.5(
u∗
vs

)−1.46) (B.109)

Es friction coefficient, c the layer averaged volumetric sediment concentration (approximatly 0.6)
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Es =


0.3 Z > Zm

3 ·10−12Z 10(1− Zc
Z ) Zc < Z < Zm

0 Z < Zc

(B.110)

With Z [33]:

Z = (
u∗
vs

)(

√
Rk g d50

3

v
)0.6 (B.111)

with v the kinematic viscosity of water (1.3*10-6 water at 10 degrees), Rk = the submerged specific gravity of
sediment Zc = 5.0 a critical value for the onset of significant suspension, Zm = 13.2 denotes the maximum
value of Z. [33]

Rk = ρs −ρw

ρw
= 1.65 (B.112)

u2
∗ =CD u2 (B.113)

With CD the drag coefficient as proposed by Soulsby 1997[61]:

CD = (
κ

B + ln( zo
h )

) = (
0.40

1+ ln( zo
h )

) (B.114)

with κ the von Karman constant and B = 1. zo is obtained from the table below:
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B.6.2. 1D SWE for Kinematic wave
For the numerical discretisation of the continuity, momentum and particle conservation equation a Forward
in time Central in Space(FTCS) scheme is used.

• Explaination of method used
• stability criterion
• flux limiters
• convergence

Continuity equation:
∂h

∂t
+ ∂

∂x
(uh) = 0 (B.115)

Discretisation continuity equation:

hn+1
i −hn

i

∆t
+ [uh]n

i+1 − [uh]n
i−1

2∆x
= 0 (B.116)

hn+1
i = hn

i − ∆t

2∆x
([uh]n

i+1 − [uh]n
i−1) (B.117)

Momentum equation:

∂uh

∂t
+ ∂u2h

∂x
=−1

2
g ′(φ)

∂h2

∂x
(B.118)

[uh]n+1
i − [uh]n

i

∆t
+u

[uh]n
i+1 − [uh]n

i−1

2∆x
+ 1

2
g

′
(φ)

hn
i+1hn

i+1 −hn
i−1hn

i−1

2∆x
= 0 (B.119)

un+1
i = [uh]n+1

i

hn+1
i

(B.120)

Particle equation:
δ

δt
(φh)+ ∂

∂x
(uφh) =−vsφ (B.121)

[φh]n+1
i − [φh]n

i

∆t
+u

[φh]n
i+1 − [φh]n

i−1

2∆x
+ vs,iφi = 0 (B.122)

φn+1
i = [φh]n+1

i

hn+1 (B.123)

The particle settling velocity is described by Ferguson and Church:

vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(B.124)

Reduced gravitational force

g ′(φ)n
i = ρm(φ)n

i −ρw

ρw
(B.125)

ρn
m,i = (1−φn

i )ρw +φn
i ρs (B.126)
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B.6.3. Model Overview
This paragraph provides the model overview of the 1D Shallow Water Equations for a Particle driven Turbid
Density Current with gravity, friction, Particle Settling and Erosion.

continuity

hn+1
i = hn

i − ∆t

2∆x
([uh]n

i+1 − [uh]n
i−1) (B.127)

momentum

[uh]n+1
i = [uh]n

i −∆t
un

i+1[uh]n
i+1 −un

i−1[uh]n
i−1

2∆x
−1

2
∆t

g ′(φ)n
i+1hn

i+1hn
i+1 − g ′(φ)n

n−1hn
i−1hn

i−1

2∆x
+∆t g ′(φ)n

i So−∆t
f

8R
un

i un
i

(B.128)

un+1
i = [uh]n+1

i

hn+1
i

(B.129)

Particle conservation equation:

[φh]n+1
i = [φh]n

i −∆t
un

i+1[φh]n
i+1 −un

i−1[φh]n + i −1

2∆x
−∆t vn

s,iφ
n
i +∆t vn

s,i E n
s,i (B.130)

φn+1
i = [φh]n+1

i

hn+1 (B.131)

Reduced gravitational force

g ′(φ)n
i = ρm(φ)n

i −ρw

ρw
(B.132)

ρn
m,i = (1−φn

i )ρw +φn
i ρs (B.133)

Concentration

φn
i = c(1+31.5(

un
∗,i

vs
)−1.46) (B.134)

with c = 0.6
Erosion capacity by Hu and Cao:

E n
s,i =


0.3 Z n

i > Zm

3 ·10−12Z 10(1− Zc
Z ) Zc < Z n

i < Zm

0 Z n
i < Zc

(B.135)

Z n
i = (

un
∗,i

vs
)(

√
∆Rk g d50

3

v
)0.6 (B.136)

un
∗,i =

√
C n

D,i un
i un

i (B.137)

C n
D,i = (

κ

1+ l n( zo
hn

i
)

) (B.138)

z0= 0.06
Settling velocity by Ferguson and Church

vs =
∆g d 2

50

C1v +
√

0.75C2∆g d 3
50

(B.139)

φn+1
i = [φh]n+1

i

hn+1 (B.140)

Erosion and Deposition by Cao (2004) Computational Dam-Break
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D = vs (1−Ca)mCa (B.141)

Ca =αc (B.142)

α = min [2, (1-p)/c]
m = 2.0
n = 0.03
p = 0.4
s = 1.65
v = 1.2E-6
θcr = 0.045

E = 160

R0.8

(1−p)

θcr

(θ−θcr )d50U∞
h

(B.144)

Can be written as:

D =αφvs (1−αφ)m (B.145)

D =αφn
i vs (1−αφn

i )m (B.146)

E =
{
Φ(θ−θc )uh−1d−0.2 θ ≥ θcr

0 el se
(B.147)

E n
i =

{
Φ(θn

i −θcr )un
i (hn

i )−1d−0.2
50 thet a ≥ θcr

0 el se
(B.148)

un
∗,i =

√
cd un

i un
i (B.149)

θn
i =

un
∗,i un

∗,i

So g d50
(B.150)

h = water depth
∆t = time step size
∆x = space step size
u = velocity
κ = 0.4 von Karman constant
CD = Drag coefficient
u∗ = friction velocity
Es = erosion capacity
g ′(φ) = reduced gravity m/s2
So = slope of the channel
R = Hydraulic radius of trapezoidal channel
ρm = mixture density depended on concentration
ρs = 2650 kg/m3 (density sand)
ρw = 1000 kg/m3 (density water)
v = 1.3 ·10−6 kinematic viscosity
φi ni t i al = 0.02 (2 percent volume concentration ≈ 1030 kg/m3)
z0 = 0.06 (Table 7 Soulsby)
c = 0.6
d50 = 60 - 400 um median sediment diameter(??)
g = 9.81
∆r k = 1.65
C1 = 18
C2 = 1
Z = ....
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Physical parameters
d50 [µm] h [m] u [m/s] φ [-] L [m] φ [-] Wb [m] t[s] S [-] m [-] vs [m/s] ∆ D∗ R [m] v θ θcr g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table B.1: Physical parameters to test the influence of grid size on the numerical model





C
Python Code

C.1. Steady State

# ! / usr /bin/env python3
# −*− coding : utf−8 −*−
"""
Created on Mon Feb 25 11:47:51 2019

@author : koos
"""
import numpy as np
import matplotlib . pyplot as p l t
from sympy . solvers import solve
from sympy import Symbol
from sympy import roots , solve_poly_system

c l a s s Turbidity :
def _ _ i n i t _ _ ( s e l f , U_r , A_r , rho_w , rho_rw , rho_r , f , A_c , S , g , rho_c , W_b, H, H_trap , Wb_trap ) :

s e l f . U_r = U_r
s e l f . A_r = A_r #100.0
s e l f . rho_w = rho_w
s e l f . rho_rw = rho_rw# 1000.0
s e l f . rho_r = rho_r #1050.0
s e l f . f = f #0.025
s e l f . A_c = A_c# 20.0
s e l f . S = S #0.001
s e l f . g = g #9.81
s e l f . rho_c = rho_c #1100#1160.3
s e l f .W_b = W_b
s e l f .H = H
s e l f . H_trap = H_trap
s e l f . Wb_trap = Wb_trap

def set_values ( s e l f , U_r ) :
s e l f . U_r = U_r

def calc_R_hydraulic_radius ( s e l f ) :
s e l f . R = s e l f . A_c / ( 2 * (np . sqrt ( s e l f . A_c)+np . sqrt ( s e l f . A_c ) ) )
return ( s e l f . R)

125
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def calc_u_channel ( s e l f ) :
s e l f . U_c = np . sqrt ( ( 8 / s e l f . f ) * ( ( s e l f . rho_c − s e l f . rho_w ) / ( s e l f . rho_w ) ) * s e l f . R * s e l f . S * s e l f . g )
# print ( " U_c_square = " , s e l f . U_c)

def calc_rho_channel ( s e l f ) :
s e l f . rho_channel = ( 1 . 0 − ( s e l f . U_r * s e l f . A_r ) / ( s e l f . U_c* s e l f . A_c ) ) * s e l f . rho_rw + s e l f . rho_r * ( ( s e l f . U_r* s e l f . A_r ) / ( s e l f . U_c* s e l f . A_c ) )
# print ( " Rho_channel =" , s e l f . rho_channel )

def calc_R_trapezoidal_30_degree ( s e l f , afdrukken = False ) :
s e l f . labda_trap = s e l f . H_trap * np . sqrt ( 5 )
s e l f . kappa = 2 * s e l f . H_trap
s e l f . Wt_trap = s e l f . Wb_trap + 2* s e l f . kappa
s e l f . A_trac = s e l f . Wb_trap * s e l f . H_trap + s e l f . kappa * s e l f . H_trap
s e l f . P_trac = s e l f . Wb_trap + (2* s e l f . labda_trap ) #+ s e l f . Wt_trap
s e l f . R_trac = s e l f . A_trac / s e l f . P_trac

def calc_u_channel_trap ( s e l f ) :
s e l f . U_c_trap = np . sqrt ( ( 8 / s e l f . f ) * ( ( s e l f . rho_c − s e l f . rho_w ) / ( s e l f . rho_c ) ) * s e l f . R_trapezoidal * s e l f . S * s e l f . g )
# print ( " U_c_trap =" , s e l f . U_c_trap )

def calc_rho_channel_trap ( s e l f ) :
s e l f . rho_channel = ( 1 . 0 − ( s e l f . U_r * s e l f . A_r ) / ( s e l f . U_c_trap * s e l f . A_c ) ) * s e l f . rho_rw + s e l f . rho_r * ( ( s e l f . U_r* s e l f . A_r ) / ( s e l f . U_c_trap * s e l f . A_c ) )
# print ( " Rho_channel_trap = " , s e l f . rho_channel )

def determine_rho_channel ( s e l f ) :
s e l f . calc_R_hydraulic_radius ( )
current_guess_rho_c = 1100
# print ( " Slope " , s e l f . S )

for i in range ( 1 0 0 ) :
guess_U = np . sqrt ( ( 8 / s e l f . f ) * ( ( current_guess_rho_c − s e l f . rho_w ) / ( current_guess_rho_c ) ) * s e l f . R * s e l f . S * s e l f . g )
next_guess_rho_c = ( 1 . 0 − ( s e l f . U_r * s e l f . A_r ) / ( guess_U* s e l f . A_c ) ) * s e l f . rho_rw + s e l f . rho_r * ( ( s e l f . U_r* s e l f . A_r ) / ( guess_U* s e l f . A_c ) )

i f abs ( current_guess_rho_c − next_guess_rho_c ) < 0 . 5 :
return ( next_guess_rho_c , guess_U )

else :
current_guess_rho_c = next_guess_rho_c

print ( " I t e r a t i o n l i m i t reached ! ! ! " )

def determine_rho_channel_trapezoidal ( s e l f ) :
s e l f . calc_R_trapezoidal_30_degree ( )
current_guess_rho_c_2 = 1080
# print ( " Trap slope = " , s e l f . S )
for i in range ( 1 0 ) :

guess_U_2 = np . sqrt ( ( 8 / s e l f . f ) * ( ( current_guess_rho_c_2 − s e l f . rho_w ) / ( current_guess_rho_c_2 ) ) * s e l f . R_trac * s e l f . S * s e l f . g )
next_guess_rho_c_2 = ( 1 . 0 − ( s e l f . U_r * s e l f . A_r ) / ( guess_U_2 * s e l f . A_trac ) ) * s e l f . rho_rw + s e l f . rho_r * ( ( s e l f . U_r* s e l f . A_r ) / ( guess_U_2 * s e l f . A_trac ) )

i f abs ( current_guess_rho_c_2 − next_guess_rho_c_2 ) < 0 . 5 :
return ( next_guess_rho_c_2 , guess_U_2 )
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else :
current_guess_rho_c_2 = next_guess_rho_c_2

print ( " I t e r a t i o n l i m i t reached ! ! ! " )

def plot_dens_slope_higher_density_rectangle ( s e l f ) :
s e l f . A _ c _ l i s t = [100 , 225 , 400 , 625 , 900]
s e l f . Col o u r _l i s t = [ ’ b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’w’ ]
s e l f . zipped = zip ( s e l f . A_c_l is t , s e l f . Co l ou r _l i s t )

for ( s e l f . A_c , s e l f . colour ) in s e l f . zipped :

s e l f . outputs = [ ]

for s e l f . S in np . arange (0 . 0 0 1 , 0.05 , 0 . 0 0 1 ) :
#T = Turbidity ( s e l f . U_r , s e l f . A_r , s e l f . rho_w , s e l f . rho_rw , s e l f . rho_r , s e l f . f , s e l f . A_c , s e l f . S , s e l f . g , s e l f . rho_c , s e l f .W_b, s e l f .H, s e l f . H_trap , s e l f . Wb_trap )
s e l f . r e s u l t = s e l f . determine_rho_channel ( )
s e l f . outputs . append ( ( s e l f . r e s u l t [ 0 ] , s e l f . r e s u l t [ 1 ] , s e l f . S ) )

s e l f . s l o p e _ l i s t = [ ]
s e l f . d e n s i t y _ l i s t = [ ]
s e l f . v e l o c i t y _ l i s t = [ ]
for s e l f . t r i p l e t in s e l f . outputs :

s e l f . s l o p e _ l i s t . append( s e l f . t r i p l e t [ 2 ] )
s e l f . d e n s i t y _ l i s t . append( s e l f . t r i p l e t [ 0 ] )
s e l f . v e l o c i t y _ l i s t . append( s e l f . t r i p l e t [ 1 ] )

# f i g = p l t . f i g u r e ( )
#ax1 = f i g . add_subplot (211)

p l t . f i g u r e ( 1 )
T i t l e = " Slope_Density "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . d e n s i t y _ l i s t , s e l f . colour , l a be l = "W = H = " + s t r (np . sqrt ( s e l f . A_c ) ) + " , A_c = " + s t r ( s e l f . A_c ) )
p l t . t i t l e ( " Rectangular Channel ; Slope , Density " + " ( A_river = " + s t r ( s e l f . A_r )+"m2" + " U_river = " + s t r ( s e l f . U_r)+ "m/ s ) " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Density channel [ kg/m3] " )
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e ( 2 )
T i t l e = " Slope_Velocity "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . v e l o c i t y _ l i s t , s e l f . colour , l a be l = "A_c = " + s t r ( s e l f . A_c ) )
p l t . t i t l e ( " Rectangular Channel ; Slope , Velocity " + " ( A_river = " + s t r ( s e l f . A_r )+"m2" + " U_river = " + s t r ( s e l f . U_r)+ "m/ s ) " )
p l t . x label ( " Slope channel [ −]")
p l t . y label ( " Velocity channel [m/ s ] " )
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

s e l f . Wb_trap = 10
s e l f . H_trap_l ist = [10 , 15 , 20 , 25 , 30]
s e l f . Col o u r _l i s t = [ ’ b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’w’ ]
s e l f . zipped = zip ( s e l f . H_trap_list , s e l f . Co lo u r _l i s t )

for ( s e l f . H_trap , s e l f . colour ) in s e l f . zipped :
s e l f . outputs = [ ]
# for s e l f . H_trap in s e l f . H_trap_l ist :
for s e l f . S in np . arange (0 . 0 0 1 , 0.05 , 0 . 0 0 1 ) :

#T = Turbidity ( s e l f . U_r , s e l f . A_r , s e l f . rho_w , s e l f . rho_rw , s e l f . rho_r , s e l f . f , s e l f . A_c , s e l f . S , s e l f . g , s e l f . rho_c , s e l f .W_b, s e l f .H, s e l f . H_trap , s e l f . Wb_trap )
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s e l f . r e s u l t = s e l f . determine_rho_channel_trapezoidal ( )
s e l f . outputs . append ( ( s e l f . r e s u l t [ 0 ] , s e l f . r e s u l t [ 1 ] , s e l f . S ) )

s e l f . s l o p e _ l i s t = [ ]
s e l f . d e n s i t y _ l i s t = [ ]
s e l f . v e l o c i t y _ l i s t = [ ]
s e l f . H_trap_l ist = [ ]

for s e l f . t r i p l e t in s e l f . outputs :
s e l f . s l o p e _ l i s t . append( s e l f . t r i p l e t [ 2 ] )
s e l f . d e n s i t y _ l i s t . append( s e l f . t r i p l e t [ 0 ] )
s e l f . v e l o c i t y _ l i s t . append( s e l f . t r i p l e t [ 1 ] )
# s e l f . H_trap_l ist . append( s e l f . t r i p l e t [ 3 ] )

p l t . f i g u r e ( 3 )
T i t l e = " Slope_Density_Changing_denst "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . d e n s i t y _ l i s t , s e l f . colour , l a be l = " A_trac = " + s t r ( s e l f . A_trac ) + " , H = " + s t r ( s e l f . H_trap ) )
p l t . t i t l e ( " Trapezoidal channel : Slope , Density"+ " ( A_river = " + s t r ( s e l f . A_r )+"m2" + " U_river = " + s t r ( s e l f . U_r)+ "m/ s ) " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Velocity channel [m/ s ] " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e ( 4 )
T i t l e = " Slope_Velocity_Changing_Denst "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . v e l o c i t y _ l i s t , s e l f . colour , l a be l = " A_trac = " + s t r ( s e l f . A_trac )+ " , H = " + s t r ( s e l f . H_trap ) )
p l t . t i t l e ( " Trapezoidal channel : Slope , Velocity " + " ( A_river = " + s t r ( s e l f . A_r )+"m2" + " U_river = " + s t r ( s e l f . U_r)+ "m/ s ) " )
p l t . x label ( " Slope channel [ −]")
p l t . y label ( " Velocity channel [m/ s ] " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

def calc_hydr_rect_radius_vs_slope ( s e l f ) : #WITHOUT RESERVOIR RETURNFLOW
s e l f . outputs = [ ]
for s e l f . S_1 in np . arange (0 . 0 0 1 , 0.05 , 0 . 0 0 1 ) :

s e l f . A_c_123 = ( ( 3 * s e l f . rho_c * s e l f . f * s e l f . U_r**2 * s e l f . A_r * * 2 ) / (8 * s e l f . g * ( s e l f . rho_c−s e l f . rho_w ) * s e l f . S_1 ) ) * * ( 2 / 5 )
s e l f . A_c = s e l f . A_c_123
s e l f . r e s u l t = s e l f . calc_R_hydraulic_radius ( )
s e l f .W_H = np . sqrt ( s e l f . A_c_123 )

s e l f . R = s e l f . A_c / ( 2 * (np . sqrt ( s e l f . A_c)+np . sqrt ( s e l f . A_c ) ) )
s e l f . Uc_rect = np . sqrt ( ( 8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . R * s e l f . g * s e l f . S_1 ) / ( s e l f . f * s e l f . rho_c ) )

s e l f . outputs . append ( ( s e l f . A_c_123 , s e l f . S_1 , s e l f . result , s e l f .W_H, s e l f . Uc_rect ) )
# print ( s e l f .W)

s e l f . s l o p e _ l i s t = [ ]
s e l f . s u r f a c e _ l i s t = [ ]
s e l f . h y d r _ r a d i _ l i s t = [ ]
s e l f . W_H_list = [ ]
s e l f . U c _ r e c t _ l i s t = [ ]

for s e l f . duplet in s e l f . outputs :
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s e l f . s l o p e _ l i s t . append( s e l f . duplet [ 1 ] )
s e l f . s u r f a c e _ l i s t . append( s e l f . duplet [ 0 ] )
s e l f . h y d r _ r a d i _ l i s t . append( s e l f . duplet [ 2 ] )
s e l f . W_H_list . append( s e l f . duplet [ 3 ] )
s e l f . U c _ r e c t _ l i s t . append( s e l f . duplet [ 4 ] )

p l t . f i g u r e ( 5 )
T i t l e = " Slope_Surface_Height_equals_Width "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . s u r f a c e _ l i s t , l a be l = " A_rect " + " for rho_c = " + s t r ( s e l f . rho_c ) )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,1000)
p l t . t i t l e ( " Rectangular channel (h=W) : Slope , Cross−sect ional area " )
p l t . y label ( " Area [m2] " )
p l t . x label ( " Slope [ −]")
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e ( 6 )
T i t l e = " Slope_hydraulic_radius "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . hydr_radi_ l is t , l a be l = "Radius" + " for rho_c = " + s t r ( s e l f . rho_c ) )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim ( 0 , 8 )
p l t . t i t l e ( " Rectangular Channel (h=W) : Slope , Hydraulic Radius " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius [m] " )
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (16)
T i t l e = " Flow_Velocity_Slope "
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . Uc_rect_l ist , l a be l =" for rho_c = " + s t r ( s e l f . rho_c ) )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Flow v e l o c i t y [m/ s ] " )
p l t . t i t l e ( " Rectangular Channel (h=W) : Flow velocity , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (15)
p l t . plot ( s e l f . s l o p e _ l i s t , s e l f . W_H_list , l ab el = "W=H= " + " for rho_c = " + s t r ( s e l f . rho_c ) )
# p l t . xlim ( 0 , 0 . 0 5 )
# p l t . ylim ( 0 , 8 )
T i t l e = " Width_Height_Hydraulic_radius "
p l t . t i t l e ( " Rectangular Channel (h=W) : Width , Height and Hydraulic radius " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius [m] " )
p l t . legend ( )
p l t . s a v e f i g ( " Rectangular_channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

def calc_hydr_trap_radius_vs_slope ( s e l f ) : #WITHOUT RESERVOIR RETURNFLOW

s e l f . W_b_list = [ 5 , 20 , 40 , 60 , 80 , 160 , 320] # , 15 , 20 , 25 , 30]
s e l f . Col o u r _l i s t = [ ’ b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’ darkgrey ’ , ’ k ’ , ’ skyblue ’ , ’ cyan ’ ]
s e l f . zipped = zip ( s e l f . W_b_list , s e l f . Co l ou r _l i s t )
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for ( s e l f .W_b, s e l f . colour ) in s e l f . zipped :
s e l f . outputs = [ ]
for s e l f .H in np . arange ( 1 . 0 , 50.0 , 1 . 0 ) :

s e l f . A_c_trap = s e l f .W_b * s e l f .H + 2* s e l f .H**2

# print ( s e l f . A_c_trap )
s e l f . p = s e l f .W_b + 2 * s e l f .H* np . sqrt ( 5 )
s e l f . R_trap = s e l f . A_c_trap / s e l f . p
s e l f . S_12 = ( s e l f . p / s e l f . A_c_trap * * 3 ) * ( ( 3 * s e l f . f * s e l f . rho_c * s e l f . U_r**2 * s e l f . A_r * * 2 ) / ( 8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . g ) )

s e l f . U_c_22 = np . sqrt ( ( ( 8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . g * s e l f . R_trap * s e l f . S_12 ) ) / ( s e l f . f * s e l f . rho_c ) )
s e l f . outputs . append ( ( s e l f .H, s e l f . A_c_trap , s e l f . p , s e l f . R_trap , s e l f . S_12 , s e l f . U_c_22 ) )

s e l f . H _ l i s t = [ ]
s e l f . A _ c _ t r a p _ l i s t = [ ]
s e l f . p _ l i s t = [ ]
s e l f . R _ t r a p _ l i s t = [ ]
s e l f . S _ 1 2 _ l i s t = [ ]
s e l f . U_c_22_list = [ ]

for s e l f . f i v e p l e t in s e l f . outputs :
s e l f . H _ l i s t . append( s e l f . f i v e p l e t [ 0 ] )
s e l f . A _ c _ t r a p _ l i s t . append( s e l f . f i v e p l e t [ 1 ] )
s e l f . p _ l i s t . append( s e l f . f i v e p l e t [ 2 ] )
s e l f . R _ t r a p _ l i s t . append( s e l f . f i v e p l e t [ 3 ] )
s e l f . S _ 1 2 _ l i s t . append( s e l f . f i v e p l e t [ 4 ] )
s e l f . U_c_22_list . append( s e l f . f i v e p l e t [ 5 ] )

p l t . f i g u r e ( 7 )
T i t l e = " Hydraulic_radius_Slope "
p l t . plot ( s e l f . S_12_l is t , s e l f . R_trap_l is t , s e l f . colour , l a be l = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius [m] " )
p l t . t i t l e ( " Trapezoidal Channel : Hydraulic radius , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e ( 8 )
T i t l e = "Depth_Slope"
p l t . plot ( s e l f . S_12_l is t , s e l f . H_list , s e l f . colour , l ab e l = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,40)
p l t . x label ( ’ Slope [ − ] ’ )
p l t . y label ( ’ Depth [m] ’ )
p l t . t i t l e ( " Trapezoidal Channel : Depth , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e ( 9 )
T i t l e = " Velocity_Slope "
p l t . plot ( s e l f . S_12_l is t , s e l f . U_c_22_list , s e l f . colour , l a be l = "W_b = " + s t r ( s e l f .W_b) + "m " )
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p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim ( 0 , 5 )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Flow v e l o c i t y [m/ s ] " )
p l t . t i t l e ( " Trapezoidal Channel : Velocity vs Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (10)
T i t l e = " Cross_section_Slope "
p l t . plot ( s e l f . S_12_l is t , s e l f . A_c_trap_l ist , s e l f . colour , l a be l = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Surface area [m2] " )
p l t . xlim ( 0 , 0 . 0 1 )
p l t . t i t l e ( " Trapezoidal Channel : Cross−sect ional area , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

def calc_1040 ( s e l f ) : #WITHOUT_RESERVOIR_RETURN_FLOW_CHANGING_WIDTH
s e l f . calc_R_trapezoidal_30_degree ( )
s e l f . rho_c = 1040
# s e l f .W_b = 10

s e l f . W_b_list = [ 5 , 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90] # , 15 , 20 , 25 , 30]
s e l f . Col o u r _l i s t = [ ’ b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’ darkgrey ’ , ’ k ’ , ’ skyblue ’ , ’ cyan ’ ]
s e l f . zipped = zip ( s e l f . W_b_list , s e l f . Co l ou r _l i s t )
for ( s e l f .W_b, s e l f . colour ) in s e l f . zipped :

s e l f . outputs = [ ]
for s e l f .H in np . arange ( 5 . 0 , 30.0 , 1 . 0 ) :

s e l f . A_c_5 = ( s e l f .W_b * s e l f .H) + (2* s e l f .H* * 2 )
s e l f . p = ( s e l f .W_b* s e l f .H) + (2 * s e l f .H* np . sqrt ( 5 ) )
s e l f . R_5 = s e l f . A_c_5 / s e l f . p
s e l f . rho_r = s e l f . rho_c
s e l f . U_c = ( ( s e l f . U_r * s e l f . A_r * s e l f . rho_rw ) − ( s e l f . rho_r * s e l f . U_r * s e l f . A_r ) ) / ( ( s e l f . A_c_5 * s e l f . rho_rw)−( s e l f . rho_c * s e l f . A_c_5 ) )
s e l f . S_123 = ( s e l f . U_c* * 2 ) * ( ( s e l f . f * s e l f . rho_c ) / ( 8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . R_5 * s e l f . g ) )

s e l f . U_c_123 = np . sqrt ( ( ( 8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . g * s e l f . R_5 * s e l f . S_123 ) ) / ( s e l f . f * s e l f . rho_c ) )
s e l f . outputs . append ( ( s e l f . S_123 , s e l f . R_5 , s e l f .H, s e l f . U_c , s e l f . A_c_5 ) )
# print ( s e l f . U_c)

# print ( s e l f . U_c_123 )
# print ( s e l f . S_123 )
# print ( s e l f . A_c_5 )

s e l f . S _ 1 2 3 _ l i s t = [ ]
s e l f . U_123_list = [ ]
s e l f . R _ 5 _ l i s t = [ ]
s e l f . H _ l i s t = [ ]
s e l f . U_c_l ist = [ ]
s e l f . A_c_5_l is t = [ ]

for s e l f . oneplet in s e l f . outputs :
s e l f . S _ 1 2 3 _ l i s t . append( s e l f . oneplet [ 0 ] )
# s e l f . U_123_list . append( s e l f . oneplet [ 1 ] )
s e l f . R _ 5 _ l i s t . append( s e l f . oneplet [ 1 ] )
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s e l f . H _ l i s t . append( s e l f . oneplet [ 2 ] )
s e l f . U_c_l ist . append( s e l f . oneplet [ 3 ] )
s e l f . A_c_5_l is t . append( s e l f . oneplet [ 4 ] )

p l t . f i g u r e (11)
T i t l e = " Hydraulic_radius_Slope "
p l t . plot ( s e l f . S_123_l ist , s e l f . R_5_l ist , s e l f . colour , l ab el = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim ( 0 , 8 )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius [m] " )
p l t . t i t l e ( " Trapezoidal Channel with Reservoir−Returnflow : Hydraulic Radius , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_with_Returnflow_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (12)
T i t l e = " Velocity_Slope "
p l t . plot ( s e l f . S_123_l ist , s e l f . U_c_list , s e l f . colour , l ab el = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim ( 0 , 5 )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Channel v e l o c i t y [m/ s ] " )
p l t . t i t l e ( " Trapezoidal Channel with Reservoir−Returnflow : Velocity , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_with_Returnflow_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (13)
T i t l e = "Depth_Slope"
p l t . plot ( s e l f . S_123_l ist , s e l f . H_list , s e l f . colour , l ab e l = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,30)
p l t . x label ( " Slope [ −]")
p l t . y label ( " Channel depth " )
p l t . t i t l e ( " Trapezoidal Channel with Reservoir−Returnflow : Depth , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_with_Returnflow_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (14)
T i t l e = " Cross_section_Slope "
p l t . plot ( s e l f . S_123_l ist , s e l f . A_c_5_l ist , s e l f . colour , l a be l = "W_b = " + s t r ( s e l f .W_b) + "m " )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,1000)
p l t . x label ( " Slope [ −]")
p l t . y label ( " Channel surface area [m2] " )
p l t . t i t l e ( " Trapezoidal Channel with Reservoir−Returnflow : Cross−sect ional area , Slope " )
p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_with_Returnflow_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

# print ( s e l f . H_1)
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def dimensieloos ( s e l f ) :
s e l f . rho_c = 1040
# s e l f .Q = 1000
s e l f .W_b = 10
s e l f . U_river_1 = [ 0 . 1 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 ]

for s e l f . U_river in s e l f . U_river_1 :
s e l f . outputs = [ ]
for s e l f . A_c in np . arange (0.001 ,500 , 1 0 ) :

# print ( " 2 " , s e l f . A_c )
s e l f . H_1 = (− s e l f .W_b + np . sqrt ( s e l f .W_b**2 − (4 * 2 * (− s e l f . A_c ) ) ) ) / 4
# print ( s e l f . H_1)
s e l f . P = s e l f .W_b + 2 * s e l f . H_1 * np . sqrt ( 5 )
s e l f . R = s e l f . A_c / s e l f . P
s e l f . S = ( s e l f . U_river **2 * s e l f . f * s e l f . rho_c ) / (8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . R * s e l f . g )

s e l f .Q = s e l f . U_river * s e l f . A_c

s e l f . outputs . append ( ( s e l f . S , s e l f . H_1, s e l f . A_c , s e l f .Q, s e l f . U_river , s e l f . R ) )
# print ( s e l f . S )
# print ( s e l f . P)

s e l f . S _ l i s t = [ ]
s e l f . H_1_list = [ ]
s e l f . A _ c _ l i s t = [ ]
s e l f . Q _ l i s t = [ ]
s e l f . U _ r i v e r _ l i s t = [ ]
s e l f . R _ l i s t = [ ]
for s e l f . plet in s e l f . outputs :

s e l f . S _ l i s t . append( s e l f . plet [ 0 ] )
s e l f . H_1_list . append( s e l f . plet [ 1 ] )
s e l f . A _ c _ l i s t . append( s e l f . plet [ 2 ] )
s e l f . Q _ l i s t . append( s e l f . plet [ 3 ] )
s e l f . U _ r i v e r _ l i s t . append( s e l f . plet [ 4 ] )
s e l f . R _ l i s t . append( s e l f . plet [ 5 ] )

# print ( s e l f . S _ l i s t )

p l t . f i g u r e (34)
p l t . plot ( s e l f . S _ l i s t , s e l f . A _ c _ l i s t )
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,500)
p l t . x label ( " Slope [ −]")
p l t . y label ( " Surface [m2] " )

p l t . f i g u r e (35)
p l t . plot ( s e l f . S _ l i s t , s e l f . Q_l ist , l a be l = "U = " + s t r ( s e l f . U_river_1 ) )
p l t . xlim ( 0 , 0 .05)
p l t . ylim ( 0 , 2000)
p l t . x label ( " Slope [ −]")
p l t . y label ( " Discharge [m3/ s ] " )

p l t . f i g u r e (36)
p l t . plot ( s e l f . S _ l i s t , s e l f . R _ l i s t )
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p l t . xlim ( 0 , 0 .05)
p l t . ylim ( 0 , 7 . 0 )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius " )

def Voor_H_en_Wb( s e l f ) :
s e l f . rho_c = 1040
# s e l f .Q = 1000
s e l f . W_b_1 = [20 , 30 , 40 , 50 , 60]
s e l f . H_1_1 = np . arange ( 1 , 40 , 1)
s e l f . U_river_1 = [ 1 , 2 , 3 , 4 , 5]

for s e l f . U_river in s e l f . U_river_1 :

for s e l f .W_b in s e l f . W_b_1 :
s e l f . outputs = [ ]
for s e l f . H_1 in s e l f . H_1_1 :

# print ( " 2 " , s e l f . A_c )
# s e l f . H_1 = (− s e l f .W_b + np . sqrt ( s e l f .W_b**2 − (4 * 2 * (− s e l f . A_c ) ) ) ) / 4
# print ( s e l f . H_1)
s e l f . A_c = s e l f .W_b * s e l f . H_1 + 2 * ( s e l f . H_1) * * 2
s e l f . P = s e l f .W_b + 2 * s e l f . H_1 * np . sqrt ( 5 )
s e l f . R = s e l f . A_c / s e l f . P
s e l f . S = ( s e l f . U_river **2 * s e l f . f * s e l f . rho_c ) / (8 * ( s e l f . rho_c − s e l f . rho_w ) * s e l f . R * s e l f . g )

s e l f .Q = s e l f . U_river * s e l f . A_c
# print ( s e l f . S )
s e l f . outputs . append ( ( s e l f . S , s e l f . H_1, s e l f . A_c , s e l f .Q, s e l f . U_river , s e l f . R ) )
# print ( s e l f . S )
# print ( s e l f . P)

s e l f . S _ l i s t = [ ]
s e l f . H_1_list = [ ]
s e l f . A _ c _ l i s t = [ ]
s e l f . Q _ l i s t = [ ]
s e l f . U _ r i v e r _ l i s t = [ ]
s e l f . R _ l i s t = [ ]
for s e l f . plet in s e l f . outputs :

s e l f . S _ l i s t . append( s e l f . plet [ 0 ] )
s e l f . H_1_list . append( s e l f . plet [ 1 ] )
s e l f . A _ c _ l i s t . append( s e l f . plet [ 2 ] )
s e l f . Q _ l i s t . append( s e l f . plet [ 3 ] )
s e l f . U _ r i v e r _ l i s t . append( s e l f . plet [ 4 ] )
s e l f . R _ l i s t . append( s e l f . plet [ 5 ] )
# print ( s e l f . S _ l i s t )

p l t . f i g u r e (30)
T i t l e = "Surface_Slope_Equal_Rho_U_A"
p l t . plot ( s e l f . S _ l i s t , s e l f . A _ c _ l i s t )# l ab e l = "U = " + s t r ( s e l f . U_river_1 [n ] ) ) # s e l f . U_river_1
p l t . xlim ( 0 , 0 . 0 5 )
p l t . ylim (0 ,4000)
p l t . t i t l e ( " Trapezoidal Channel : Surface , Slope . Equal U, A , rho " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Surface [m2] " )
p l t . legend ( [ ’ u = 1 m/s ’ , ’u = 2 m/s ’ , ’u = 3 m/s ’ , ’ u = 4 m/s ’ , ’ u = 5 m/s ’ ] )
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p l t . s a v e f i g ( " Trapezoidal_Channel_Equal_Parameters_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (31)
T i t l e = " Discharge_Slope "
p l t . plot ( s e l f . S _ l i s t , s e l f . Q _ l i s t ) # , l ab e l = "U = " + s t r ( s e l f . U_river_1 ) )
p l t . xlim ( 0 , 0 .05)
p l t . ylim ( 0 , 10000)
p l t . t i t l e ( " Trapezoidal channel : Discharge , Slope . Equal U, A , rho " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Discharge [m3/ s ] " )
p l t . legend ( [ ’ u = 1 m/s ’ , ’u = 2 m/s ’ , ’u = 3 m/s ’ , ’ u = 4 m/s ’ , ’ u = 5 m/s ’ ] )
# p l t . legend ( )
p l t . s a v e f i g ( " Trapezoidal_Channel_Equal_Parameters_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (32)
T i t l e = " Hydraulic_Radius_Slope "
p l t . plot ( s e l f . S _ l i s t , s e l f . R _ l i s t ) # , l ab e l = "U = " + s t r ( s e l f . U_river_1 ) )
p l t . xlim ( 0 , 0 .05)
p l t . t i t l e ( " Trapezoidal channel : Hydraulic radius , Slope . Equal U, A , rho " )
p l t . x label ( " Slope [ −]")
p l t . y label ( " Hydraulic radius " )
p l t . legend ( [ ’ u = 1 m/s ’ , ’u = 2 m/s ’ , ’u = 3 m/s ’ , ’ u = 4 m/s ’ , ’ u = 5 m/s ’ ] )
p l t . s a v e f i g ( " Trapezoidal_Channel_Equal_Parameters_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)

def main ( ) :
U_r = 2.0 #bovenstroomse snelheid
A_r = 550 #oppervlakte
rho_rw = 1000 #dichtheid r i v i e r water (word nu niet gebruikt )
rho_w = 1000 #dichtheid water
rho_r = 1040.0 #dichthied inkomende r i v i e r
f = 0.025 # f r i c t i o n c o e f f i c i e n t
#A_c = 170 #Oppervlakte channel
#S = 0.01 #Slope channel
g = 9.81 # f a l l v e l o c i t y
rho_c = 1040 #rho channel die g e l i j k moet z i j n aan Rho_channel
H_trap = 5
Wb_trap = 5
W_b = 10 #breedte van de bodem van trapezoidal kanaal
H = 10 #diepte van trapezoidal kanaal
A_c = 1
S = 0.001

T = Turbidity ( U_r , A_r , rho_w , rho_rw , rho_r , f , A_c , S , g , rho_c , W_b, H, H_trap , Wb_trap )

#T . plot_dens_slope_higher_density_rectangle ( )
#T . calc_hydr_rect_radius_vs_slope ( ) #WITHOUT RESERVOIR RETURNFLOW

#T . calc_hydr_trap_radius_vs_slope ( ) # WITHOUT RESERVOIR RETURNFLOW
#T . calc_hydr_rect_radius_vs_slope ( )
#T . calc_hydr_trap_radius_vs_slope ( )
#T . calc_1040 ( )
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#T . calc_Ur_Uc ( )
T . Voor_H_en_Wb ( )
#T . dimensieloos ( )

i f __name__ == ’ __main__ ’ :
main ( )

C.2. Numerical Model
C.2.1. Simulator

import math
import numpy as np

def simulate ( simulated_time , simulated_length , c e l l _ s i z e , u , h_in , d , phi_in , W_b, g , Delta , C_1 , C_2 , vis , rho_w , rho_s , S , f , C_d , m, p , phi_constant , A , B, C, source_gravity , source_fr ict ion , source_sedimentation , source_erosion , hindered_erosion ) :
d_50 = d * 10**−6
nx = math . c e i l ( simulated_length / c e l l _ s i z e ) + 1 # number of c e l l s / s p a t i a l resolution / number of space steps
l = simulated_length # t o t a l length of simulated domain
dx = c e l l _ s i z e # c e l l size , step s i z e . . .
dt = 0.01 * (2* dx / u) # dt according to c f l condition = 1
nt = math . c e i l ( simulated_time / dt ) # number of time steps
H = h_in
D_star = d_50 * ( ( ( g* Delta ) / ( ( v i s ) * * 2 ) ) * * ( 1 / 3 ) )
theta_cr = (0.30 / ( 1 + ( 1 . 2 * D_star ) ) ) + (0.055 * (1−(np . exp (−(0.020* D_star ) ) ) ) )
# theta_cr = 0.045
#Hydraulic radius dependend op height H
R = (W_b*H + 2* H** 2) / (W_b + 2 * H * np . sqrt ( 5 ) )
# f a l l v e l o c i t y ferguson and church :
v_s = ( Delta * g * ( d_50 ) * * 2 ) / ( C_1 * ( v i s ) + np . sqrt (0 .75 * C_2 * g * ( d_50 ) * * 3 ) )

print ( ’ vs = ’ , v_s )
print ( ’ c e l l s i z e ( dx ) = ’ , c e l l _ s i z e )
print ( ’ time step ( dt ) = ’ , dt )
print ( ’ simulated time ( t ) = ’ , simulated_time )
print ( ’number of time steps ( nt ) = ’ , nt )
print ( ’number of c e l l s ( nx ) = ’ , nx )
print ( ’ D_star = ’ , D_star )
print ( ’ theta_cr = ’ , theta_cr )
print ( ’ h_in = ’ , h_in )
print ( ’ u_in = ’ , u)
print ( ’R( hydraulic radius ) = ’ , R)
#zero l i s t s
h = np . zeros ( nx ) #array with zeros
u _ l i s t = np . zeros ( nx )
uh = np . zeros ( nx )
p h i _ l i s t = np . zeros ( nx )
phi_h = np . zeros ( nx )
rho_mn_list = np . zeros ( nx )
gn = np . zeros ( nx )
phi_hn = np . zeros ( nx )
U_star = np . zeros ( nx )
theta = np . zeros ( nx )
E_s = np . zeros ( nx )
hn = h . copy ( )
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un = u _ l i s t . copy ( )

#INITIAL CONDITIONS

# i n i t i a l conditions van h
hn[ i n t ( 0 ) : ] = 0.001

for n in range ( nt + 1 ) : #looping accros a number of time steps
### Boundary conditions
hn[−1] = hn[−2] #neumann boundary
h[−1] = h[−2] #neumann boundary
h [ 0 ] = h_in
hn[ 0 ] = h_in

u _ l i s t [ 0 ] = u
u _ l i s t [−1] = u _ l i s t [−2] #
un[ 0 ] = u
un[−1] = un[−2] #

uh[ 0 ] = u* h_in

phi_hn [ 0 ] = phi_in * h_in
phi_h [ 0 ] = phi_in * h_in
p h i _ l i s t [ 0 ] = phi_in
phi_hn[−1] = phi_hn[−2] #
p h i _ l i s t [−1] = p h i _ l i s t [−2] #

E_s [ 0 ] = 0
E_s[−1] = E_s[−2] #

### input van WID
#hn[ 7 0 : 8 0 ] = 1.2
#h[ 7 0 : 8 0 ] = 1.2
#u[ 7 0 : 8 0 ] = 1.2

#un[ 7 0 : 8 0 ] = 1.1
# u _ l i s t [ 7 0 : 8 0 ] = 1.1
#phi_h [ 7 0 : 8 0 ] = 0.09
#phi_hn [ 7 0 : 8 0 ] = 0.09
# p h i _ l i s t [ 7 0 : 8 0 ] = 0.09
#hn[ 7 0 : 8 0 ] = 1.2
#h[ 7 0 : 8 0 ] = 1.2

h[1: −1] = (A* hn [ 2 : ] + B * hn[1: −1] + C * hn[ : −2 ] ) / (A+B+C) \
− ( dt / (2* dx ) ) * (un [ 2 : ] * hn [ 2 : ] − un[: −2] * hn[ : −2 ] )

rho_mn_list [1: −1] = p h i _ l i s t [1: −1] * rho_s + (1 − p h i _ l i s t [1: −1] ) * rho_w

gn[1: −1] = g * ( rho_mn_list [1: −1] − rho_w ) / rho_w

i f source_gravity :
source_gravity_value = ( dt * gn[1: −1]* S *hn[1: −1])

e lse :
source_gravity_value = 0
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i f source_fr ict ion :
source_frict ion_value = ( ( dt * f ) / (8*R ) ) * un[1: −1] * un[1: −1] *hn[1: −1]

else :
source_frict ion_value = 0

#de d i s c r e t i s a t i e van uh Momentum Equation
uh[1: −1] = ( ( A* un [ 2 : ] * hn [ 2 : ] + B * un[1: −1] * hn[1: −1] + C * un[: −2]* hn[ : −2 ] ) / (A+B+C) ) \
− ( dt / (2 * dx ) ) * (un [ 2 : ] * un [ 2 : ] * hn [ 2 : ] − un[: −2] * un[: −2] * hn[ : −2 ] ) \
− ( 1 . 0 / 2 . 0 ) * ( dt /(2* dx ) ) * ( gn [ 2 : ] * hn [ 2 : ] * hn [ 2 : ] − gn[: −2]*hn[ : −2]*hn[ : −2 ] ) \
+ source_gravity_value − source_frict ion_value
#+ ( dt * gn[1: −1]* S *hn[1: −1]) − ( ( dt * f ) / (8*R ) ) * un[1: −1] * un[1: −1] *hn[1: −1]

\

# u bepalen
u _ l i s t [1: −1] = uh[1: −1]/ (h[1: −1]) # epsilon divide by zero

# phiH bepalen op nieuwe t i j d s s t a p
#U_star [1: −1] = np . sqrt (C_d * un[1: −1] ** 2)
#theta [1: −1] = ( U_star [1 : −1]**2) / ( Delta * g * d_50 )

# simpli f ied form of the above :
#theta = (C_d * u ** 2) / ( Delta * g * d_50 )
# print ( ’ theta = ’ , theta )
#theta [1: −1] = ( ( C_d * ( ( un[1: −1]) ** 2 ) ) / ( Delta * g * d_50 ) )

theta = (C_d * (un* * 2 ) ) / ( Delta * g * d_50 )

c r i t i c a l _ c e l l s = theta > theta_cr
E_s = ((0.00033* D_star * * 0 . 3 ) * ( ( ( ( theta−theta_cr )/ theta_cr ) * c r i t i c a l _ c e l l s ) * * 1 . 5 ) * np . sqrt ( Delta * g * d_50 ) )

#E_s = (0.00033*1.0618**0.3) * ( ( ( theta−theta_cr )/ theta_cr ) * * 1 . 5 ) * np . sqrt ( Delta * g * d_50 )
# print ( E_s )
# print ( E_s )
’ ’ ’
for i in range ( len ( theta [ 1 : −1 ] ) ) :

E_s [ i ] = 0
i f theta [ i ] > ( theta_cr + 0 . 0 5 ) :

E = (0.00033* D_star * * 0 . 3 ) * ( ( ( theta [ i ]− theta_cr )/ theta_cr ) * * 1 . 5 ) * np . sqrt ( Delta * g * d_50 )
#E = phi_constant * ( theta [ i ] − theta_cr ) * ( 7 / 6 ) *un[ i ] * (hn[ i ]**−1) * ( d_50 **−0.2)
E_s [ i ] = E
#E_s [ i ] = A * E_s [ i ] + B * E_s [ i −1] / A+ B

# print ( i )
# print ( E_s [ i ] )
# print (un[ i ] )

’ ’ ’
i f source_sedimentation :

source_sedimentation_value = dt * v_s * p h i _ l i s t [1: −1]
else :

source_sedimentation_value = 0

i f source_erosion :
source_erosion_value = dt * E_s [1: −1]

else :
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source_erosion_value = 0

i f hindered_erosion :
hindered_erosion_value = (1 − ( ( p h i _ l i s t * 3 ) / ( 1 − 0 . 6 ) ) ) * * 1 . 3 8

else :
hindered_erosion_value = np . ones ( nx )

# ’ ’ ’ s e t t l i n g of p a r t i c l e s due to v , ferguson and churge ’ ’ ’
# ’ ’ ’ Erosion capacity of the flow ’ ’ ’
phi_h [1: −1] = (A* phi_hn [ 2 : ] + B * phi_hn [1: −1] + C * phi_hn [ : −2 ] ) / (A+B+C) \
− ( dt / (2* dx ) ) * (un [ 2 : ] * phi_hn [ 2 : ] − un[: −2] * phi_hn [ : −2 ] ) \
+ source_erosion_value * hindered_erosion_value [1: −1] − source_sedimentation_value

#+dt * E_s [1: −1] #− dt * v_s * p h i _ l i s t [1: −1] +
#− dt * v_s * p h i _ l i s t [1: −1] * (1−p h i _ l i s t [1: −1] ) * * 4

# phi bepalen door te delen door h van de nieuwe t i j d s t a p
p h i _ l i s t [1: −1] = ( phi_h [1: −1]) / (h[1: −1])

# l i m i t i n g the concetration to 100% otherwise (+− i n f i n i t y solutions )
phi_list_max = p h i _ l i s t < 0.30
p h i _ l i s t = p h i _ l i s t * phi_list_max + np . invert ( phi_list_max ) * 0.30

hn[−1] = hn[−2] #neumann boundary
h[−1] = h[−2] #neumann boundary
h [ 0 ] = h_in
hn[ 0 ] = h_in

u _ l i s t [ 0 ] = u
u _ l i s t [−1] = u _ l i s t [−2] #
un[ 0 ] = u
un[−1] = un[−2] #

uh[ 0 ] = u* h_in

phi_hn [ 0 ] = phi_in * h_in
phi_h [ 0 ] = phi_in * h_in
p h i _ l i s t [ 0 ] = phi_in
phi_hn[−1] = phi_hn[−2] #
p h i _ l i s t [−1] = p h i _ l i s t [−2] #

E_s [ 0 ] = 0
E_s[−1] = E_s[−2] #

hn = h . copy ( )
un = u _ l i s t . copy ( )
phi_hn = phi_h . copy ( )

return (h , u _ l i s t , p h i _ l i s t )

i f __name__ == ’ __main__ ’ :
print ( ’ This i s not a stand−alone python f i l e ! \ nImport i t in your main f i l e and c a l l the simulate function from there . ’ )

C.2.2. Plotting Scripts
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# ! / usr /bin/env python3
# −*− coding : utf−8 −*−
"""

@author : koos2
"""
import numpy as np
import matplotlib . pyplot as p l t
import math
import time

s t a r t = time . clock ( )
print ( ’ Simulation Started ’ )

import simulator_WID as sim

def plot_full_model ( simulated_time , simulated_length , c e l l _ s i z e , u , W_b, g , Delta , C_1 , C_2 , vis , rho_w , rho_s , f , C_d , m, p , phi_constant , A , B, C, source_gravity , source_fr ict ion , source_sedimentation , source_erosion , hindered_erosion , input_values_S_in , input_values_h_in , source_wid_concentration , C_k , n_i , u_wid ) :
#PRESET CONDITONS

# S t a r t of plo tt i ng part
output_l ist_phi = [ ]
output_l ist_u = [ ]
output_l ist_h = [ ]
output_l ist_d = [ ]
o u t p u t _ l i s t _ s = [ ]

for h_in in input_values_h_in :
for S in input_values_S_in :

for phi_in in input_values_phi_in :
for d in input_d_50_values :

(h , u _ l i s t , p h i _ l i s t ) = sim . simulate ( simulated_time , simulated_length , c e l l _ s i z e , u , h_in , d , phi_in , W_b, g , Delta , C_1 , C_2 , vis , rho_w , rho_s , S , f , C_d , m, p , phi_constant , A , B, C, source_gravity , source_fr ict ion , source_sedimentation , source_erosion , hindered_erosion , source_wid_height , Delta_p , D_nozzle , L_wid , n_0 , source_wid_concentration , C_k , n_i , u_wid )
output_l ist_phi . append( p h i _ l i s t )
output_l ist_u . append( u _ l i s t )
output_l ist_h . append(h)
output_l ist_d . append(d)
o u t p u t _ l i s t _ s . append( S )

print ( ’ Simulation for = c e l l s i z e = ’ + s t r ( c e l l _ s i z e )+ ’ d_50 = ’ + s t r (d) + ’FINISHED ( ! ) ’ )
print ( ’ Finished , phi_in = ’ , s t r ( phi_in ) )

l = simulated_length
nx = math . c e i l ( simulated_length / c e l l _ s i z e ) + 1
# pl o tt i ng f i g u r e s
for i in range ( len ( output_l ist_phi ) ) :

nx2 = math . c e i l ( simulated_length / i n p u t _ c e l l _ s i z e s [ 0 ] ) + 1
# p l t . plot (np . linspace ( 0 , l , nx2 ) , output_l ist_phi [ i ] , l ab e l = " c e l l s i z e = "+ s t r ( i n p u t _ c e l l _ s i z e s [ i ] ) )
p l t . f i g u r e (51)
p l t . plot (np . linspace ( 0 , ( l ) , nx2 ) , output_l ist_phi [ i ] / 0 . 0 1 , l a be l = " t : " + ’%.1 f ’

% ( simulated_time ) + ’ [ s ] ’ ) # + ’%d ’ % ( output_l ist_d [ i ] ) + ’$\mu$m’ ) # s t r ( output_l ist_d [ i ] ) + ’ $\mu$m’ ) # ) , l ab e l = " Concentration ( phi ) " )
p l t . f i g u r e (52)
p l t . plot (np . linspace ( 0 , ( l ) , nx2 ) , output_l ist_u [ i ] , l ab e l = ’ t : ’ + ’%.1 f ’

% ( simulated_time ) + ’ [ s ] ’ ) #+ ’%d ’ % ( output_l ist_d [ i ] ) + ’ $\mu$m’ )
p l t . f i g u r e (53)
p l t . plot (np . linspace ( 0 , ( l ) , nx2 ) , output_l ist_h [ i ] , l ab e l = " t : "+ ’%.1 f ’

% ( simulated_time ) + ’ [ s ] ’ ) #+ ’%d ’ % ( output_l ist_d [ i ] ) + ’ $\mu$m’ )
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T i t l e = "Full_Model_WID_case_study_0_1"
T i t l e _ p l o t = ’ $h_ { in } $ = ’ + s t r ( h_in ) + ’ , $u_ { in } $ = ’ + s t r (u) + ’ , $\ phi_ { in } $ = ’+ s t r ( phi_in ) + ’ , WID area = ’ + ’500−505m’ + ’\ nd_50 = ’ + ’50 $\mu$m’

+ ’ , Slope = ’ + s t r ( S ) + ’ , $\ Delta$t = 0.007 ’ + ’ , $\ Delta$x = ’ + ’ 0 . 1 ’

p l t . f i g u r e (51)
p l t . xlim ( 0 , ( l ) )
p l t . ylim ( 0 , 4 0 . 0 )
p l t . grid (b=bool , which= ’major ’ , ax is = ’both ’ )
p l t . grid ( which= ’minor ’ , l i n e s t y l e = ’− ’)
p l t . minorticks_on ( )
# p l t . rcParams [ " axes . t i t l e s i z e " ] = 8
p l t . t i t l e ( s t r ( T i t l e _ p l o t ) ) # + s t r (u) + ’ , h_in = ’ + s t r ( h_in )+ ’ , d_50 = ’ + s t r (d)+ ’ , Time ’+ s t r ( simulated_time ) )
p l t . y label ( ’ Concentration [%] ’) #Height [m] , , Velocity [m/ s ]
p l t . x label ( ’ Distance [m] ’ )
p l t . legend ( loc = ’upper right ’ , prop ={ ’ size ’ : 8 } )
p l t . s a v e f i g ( " Concentration_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)
p l t . s a v e f i g ( " Concentration_ " + s t r ( T i t l e ) + ’ . png ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (52)
p l t . xlim ( 0 , ( l ) )
p l t . ylim ( 0 , 1 . 7 )
p l t . grid (b=bool , which= ’major ’ , ax is = ’both ’ )
p l t . grid ( which= ’minor ’ , l i n e s t y l e = ’− ’)
p l t . minorticks_on ( )
p l t . t i t l e ( s t r ( T i t l e _ p l o t ) ) # + s t r (u) + ’ , h_in = ’ + s t r ( h_in )+ ’ , d_50 = ’ + s t r (d)+ ’ , Time ’+ s t r ( simulated_time ) )
p l t . y label ( ’ Velocity [m/ s ] ’ ) #Height [m] , , Velocity [m/ s ]
p l t . x label ( ’ Distance [m] ’ )
p l t . legend ( loc = ’upper right ’ , prop ={ ’ size ’ : 8 } )
p l t . s a v e f i g ( " Velocity_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)
p l t . s a v e f i g ( " Velocity_ " + s t r ( T i t l e ) + ’ . png ’ , bbox_inches=" t i g h t " , pad_inches =0)

p l t . f i g u r e (53)
p l t . xlim ( 0 , ( l ) )
p l t . ylim ( 0 , 4 . 0 )
p l t . grid (b=bool , which= ’major ’ , ax is = ’both ’ )
p l t . grid ( which= ’minor ’ , l i n e s t y l e = ’− ’)
p l t . minorticks_on ( )
p l t . t i t l e ( s t r ( T i t l e _ p l o t ) ) # + s t r (u) + ’ , h_in = ’ + s t r ( h_in )+ ’ , d_50 = ’ + s t r (d)+ ’ , Time ’+ s t r ( simulated_time ) )
p l t . y label ( ’ Height [m] ’ ) #Height [m] , , Velocity [m/ s ]
p l t . x label ( ’ Distance [m] ’ )
p l t . legend ( loc = ’upper right ’ , prop ={ ’ size ’ : 8 } )
p l t . s a v e f i g ( " Height_ " + s t r ( T i t l e ) + ’ . pdf ’ , bbox_inches=" t i g h t " , pad_inches =0)
p l t . s a v e f i g ( " Height_ " + s t r ( T i t l e ) + ’ . png ’ , bbox_inches=" t i g h t " , pad_inches =0)

end = time . clock ( )
print ( ’ Simulation time = ’+ s t r (end − s t a r t ) + ’ [ s ] ’ )
print ( ’ Simulation Complete ’ )

i f __name__ == ’ __main__ ’ :
g = 9.81 # Gravitat ional acceleration [m/ s2 ]
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Delta = 1.65 #
v i s = 1.3 * 10**−6 #Kinematic v i s c o s i t y at 10 degrees ce lc i u s [m2/ s ]
rho_w = 1000 #density water [ kg/m3]
rho_s = 2650 #density sediment [ kg/m3]
f = 0.025 #darcy weissbach f r i c t i o n f a c t o r [−]
C_d = f /8 #drag c o e f f i c i e n t according to darcy weisbach [−]
#n = 0.03
p = 0.4
phi_constant = 0.015
#RICHARDSON AND ZAKI SETTLING
C_1 = 18
C_2 = 1

#Channel parameters
W_b = 10
input_values_S_in = [ 0 . 0 0 1 ]

m = 4.0
#h_in = [ 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 ]
input_values_h_in = [ 1 . 0 ]
u = 0.3
#phi_in = 0.02 # rho_w * %water + rho_s * %sediment
input_d_50_values = [ 5 0 ]
input_values_phi_in = [ 0 . 0 2 ] # , 0 .03 , 0.04 , 0 .05 , 0.06 , 0 .07 , 0 . 0 8 ]
#Nummerical aspects
i n p u t _ c e l l _ s i z e s = [ 1 . 0 ]
c e l l _ s i z e = 1.0 # s i z e of the c e l l s in meters ; lower value = more d e t a i l = more computation time
simulated_time = 8000
#input_values_simulated_time =[100] # t o t a l simulated time in seconds 2000
simulated_length = 1000 # t o t a l simulated domain length in meters 700
# numerical scheme
A = 0.1 #0.01 standaard
B = 1.0 #1.0 standaard
C = 0.1 #0.01 standaard
#WID PARAMETERS
Delta_p = 100000 #kpa pressure drop
D_nozzle = 0.05 #nozzle diameter
L_wid = 5.0 #wid influence length
n_0 = 0.4
n_i = 0.6
u_wid = 14.14
C_k = 1.0

#Sourceterms : I f true i t i s taken into account , i f f a l s e i t s not taken into account
source_gravity = True
source_fr ict ion = True
source_sedimentation = True
source_erosion = True
hindered_erosion = True # default = f a l s e
source_wid_height = True
source_wid_concentration = True

plot_full_model ( simulated_time , simulated_length , c e l l _ s i z e , u , W_b, g , Delta , C_1 , C_2 , vis , rho_w , rho_s , f , C_d , m, p , phi_constant , A , B, C, source_gravity , source_fr ict ion , source_sedimentation , source_erosion , hindered_erosion , input_values_S_in , input_values_h_in , source_wid_concentration , C_k , n_i , u_wid )
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