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Abstract

Introduction
Despite the vast amount of optimization algorithms, radiotherapy treatment planning re-
mains a manual, time-consuming and iterative process. To increase plan standardization,
we clinically use Pinnacle’s autoplanner for several disease sites. However, this introduces
new challenges: first, the autoplanner is not perfect and still requires substantial inter-
action from the radiotherapy technician (RTT). Second, it is difficult to judge whether a
plan has indeed the most optimal trade-off between cure and toxicity, since the RTT has
not worked the plan. Knowledge-based planning (KBP) could serve as a quality assurance
tool to resolve these problems. It uses historical data (anatomical and dosimetric) from
previous plans, to predict the likely dose distribution for the current patient. In this study,
we construct an initial, simplistic KBP model that serves as the clinical practice. We then
investigate of a variety of KBP modelling approaches to predict rectum dose-volume his-
tograms (DVHs), in order to complement the current clinical practice in prostate cancer.
Methods
For model evaluation, we formulate a clinical tolerance criterion (TC) bandwidth based on
a ground-truth set of existing radiotherapy plans. We evaluate on the overall prediction
accuracy (RMS), the fraction of correctly predicted DVH bins (TCα), and on the fraction
of patients that have ≥ 90% of their DVH correctly predicted (TCβ). We use the overlap
volume histogram (OVH) to encode for organ geometrical information, and use reduced
order modelling (ROM) to capture the most important characteristics of the DVH and
OVH. Optimization methods we use are Principal Component Analysis (PCA) eigenvalue
RMS minimization, direct DVH RMS minimization, and TCα and TCβ maximization.
Results
Analyses of the KBP clinical practice yielded training and testing errors of 81.4% and
80.8% for TCα and 53.3% and 51.1% for TCβ, with an RMS of 4.80 and 4.94 volume
percentage [%]. Eigenvalue-optimization resulted TCα of 86.5% and 82.4%, and TCβ of
68.8% and 59.1%, with respective RMS of 2.82 % and 3.22 %. Direct DVH-optimization
yielded TCα of 86.7% and 81.9%, and TCβ of 69.4% and 61.4%, with similar RMS. TCα
and TCβ maximizers resulted TCα training and testing errors of 92.1% and 78.5%, and
TCβ training and testing errors of and 84.3% and 53.4% respectively.
Discussion
The investigated models yielded significant improvements for direct eigenvalue- and DVH-
optimization methods. We have also been able to perform optimizations for the clini-
cal goal metrics, showing promising results in training data. Because TCα- and TCβ-
maximizers were unable generalize to perform well for unseen data, it is believed these
metrics are too sensitive to be trained reliably, and more consistent data may be required
for these optimizers to produce reliable test errors. Based on our findings, we advice the
clinical practice to extend KBP-approaches to optimize for DVH-least squares.
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CHAPTER 1

INTRODUCTION

Cancer is a generic term for diseases that are characterized by out-of-control cell-growth,
and is the second leading cause of death with an estimated mortality rate of 9.6 million
worldwide in 2017, World Health Organization reports show [WHO18]. The health care
costs that accompany these numbers continue to burden society as politics, insurance
companies, engineers and caregivers struggle to keep health care sustainable. These are
problems that have become especially apparent with the increase in world population, and
are expected to be ever more so in the future. Such societal challenges call for efficient
engineering solutions.

During the last few decades, improved computational power and insights in the fields
of data science and artificial intelligence have brought about an increased demand for
machine learning. Machine learning is an application of artificial intelligence where com-
puters are instructed to learn for themselves by using data to find a likely outcome. In
order to combat cancer, and therefore to reduce its share in health care costs, machine
learning is widely dispatched to take over tasks from radiotherapy physicians. The goal
of this thesis is to propose a machine learning approach to treatment planning in prostate
cancer, complementary to the current clinical practice. More specifically, this thesis will
cover the knowledge-based planning approach to radiotherapy and investigates how dif-
ferent modelling choices can predict the dose to the rectum, as a result of prostate cancer
treatment.
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1.1. INTRODUCTION TO RADIOTHERAPY

1.1 Introduction to radiotherapy

One of the main modalities to treat cancer is radiotherapy or radiation therapy (radio-
therapy, RT), and is typically used in combination with chemotherapy and surgery. Ra-
diotherapy is a field of cancer treatment in which ionizing radiation is used to battle the
proliferation of tumour cells, by damaging their DNA and thereby inducing cell death.

1.1.1 Types of radiotherapy

Generally, there are two ways to deliver dose to the tumour: through internal sources and
by external beams, each of which differs in the source of the radiation.

1. Internal radiotherapy
Internal radiotherapy includes brachytherapy and radioligand therapy. In brachyther-
apy, radiation comes from radioactive sources that are placed inside the body. These
sources are typically sealed vessels or seeds containing radioactive material that are
implanted in or near the tumour site. In radioligand therapy, the radioactive source
is brought to the tumour site either passively or actively. Passive radioligand therapy
makes use of the enhanced permeability and retention effect, which is based on the
retention of radioactive substances depending on the defective vascular architecture
of tumour tissue. This can be exploited by attaching radionuclides to molecules or
nanocarriers, which accumulate at the tumour site and consequently deliver their
dose selectively. Active targeting uses vectors such as peptides or antigens to target
specific tumour receptors. Typically, a high specific radionuclide activity is required
to prevent cold (non-radioactive) nuclides from occupying tumour receptor sites.

2. External beam radiotherapy
In external radiotherapy, rays are administered from outside the body, conformed to
tumour cells. Ionizing electromagnetic waves (photons), charged particles or heavy
ions (hadrons), or electrons can be used for dose delivery.

(a) Photon therapy
Photon therapy is the most widely used modality for external radiotherapy in
the Netherlands, because it is relatively simple compared to hadron therapy,
making it more cost-effective. However, the long (theoretically infinite) range
of photons, together with the scattering physics of photon-matter interactions,
poses a threat for all tissues in (the vicinity of) the beam line. This limits
healthy tissue sparing.

(b) Hadron therapy
As opposed to photons, charged particles, such as protons, have the advantage
that they completely stop inside the tissue after the maximum deposition peak,
known as the Bragg peak. This potentially allows for a better dose distribution
due to a more localized dose delivery. On the other hand, uncertainties are
typically more difficult to handle than in photon therapy.

(c) Electron therapy
Similar to hadrons, electrons exhibit a Bragg peak in which they deposit their
dose, however due to their smaller mass, they have a much smaller range,
making them suitable for superficial tumour irradiation. In addition, electrons
tend to scatter when interacting with tissue, causing a rather dispersed dose
deposition.

12 CHAPTER 1. INTRODUCTION



1.1. INTRODUCTION TO RADIOTHERAPY

1.1.2 External beam radiotherapy modalities

There are several photon radiotherapy modalities that have been used throughout history.
The goal of these modalities is conforming the applied radiation dose as much as possible
to the tumour. Technological advances have continued to increase dose conformity by
means of new imaging modalities, computational methods and different dose delivery sys-
tems. This section briefly summarizes three main photon RT modalaties, 3D conformal
radiotherapy (3DCRT), intensity modulated radiation therapy (IMRT) and volumetric
modulated arc therapy (VMAT).

1. 3D conformal radiation therapy
3DCRT is a type of conformal radiotherapy that uses 3D images to allow more
localised dose administration than conventional 2D methods. In current 3DCRT,
multi-leaf collimators (MLCs) are used to conform a beam of constant intensity to
different projections of the tumour. The advantage with respect to its 2D predecessor
is that it enables irradiation over multiple angles, spreading healthy tissue dose over
a larger volume. The main drawback of 3DCRT is that the intensity within a beam
cannot be varied.

2. Intensity modulated radiation therapy
IMRT allows not only for better tumour conformity with the help of MLCs, but also
allows for better modulation of the beam in accordance with the tumour shape and
position by allowing controlling intensity within the beam. A drawback of IMRT is
that it is still rather time-consuming.

3. Volumetric modulated arc therapy
VMAT was developed to provide further flexibility with respect to IMRT by allowing
the continuous movement of the gantry and MLCs, as well as changing the dose rate
[Ott08], making treatment treatments more time-efficient. Currently, IMRT and
VMAT are predominantly used.

1.1.3 Challenges in radiotherapy

Core challenges in external beam radiotherapy modalities may involve precise tumour or
critical structure localization, image guidance, palliative treatments, dealing with uncer-
tainties such as patient movement or organ displacement due to breathing, pulsation, or
the filling and emptying of the bladder and bowels. What’s more, a prominent challenge
that this study is involved with is balancing trade-offs between tumour cure and healthy
tissue toxicity, which is the main focus of radiotherapy treatment planning.

CHAPTER 1. INTRODUCTION 13



1.2. TREATMENT PLANNING

1.2 Treatment planning

Treatment planning in radiotherapy is a process with the goal of identifying a personalized
treatment plan with an optimal trade-off between tumour cure and healthy tissue toxicity.
In recent times, several tools have emerged in the market to automate treatment planning,
but in spite of this, treatment planning remains a complex, manual, time-consuming and
iterative process. A representation of the treatment planning process in terms of input
and output is shown in Figure 1.1, which we will now discuss in brief.

Figure 1.1: A simplified black box system representation of the treatment planning process

Here, the first input denotes the planning computed tomography (CT) scan, which contains
the anatomical information of the patient at hand. In the clinic, RT Struct contains the
information required by the treatment planning system (TPS) to tell apart important
structures. RT Dose is one of the outputs of the TPS, and describes the desired dose
distribution of the patient at hand. The process of finding this distribution is referred to
as fluence map optimization. RT Plan contains a description of the machine parameters
required to actually deliver this plan, which is find by an optimization referred to as
machine parameter optimization. Finally, a treatment plan complies with a set of plan
criteria, typically set by the radiation oncologist. We will now go over the treatment
planning process in some more detail.

1.2.1 Structure delineation

Every radiotherapy patient is treated with an individualized treatment plan. At the
basis of each treatment plan stands a planning computed tomography (CT) scan. This
information is used for dose calculation. For additional information on dose calculation,
the reader is referred to Appendix A.1. The CT is also used for delineation of the tumour,
as well as critical surrounding structures, or organs at risk (OARs). The tumour delineated
area considered in radiotherapy treatment planning is the planning target volume (PTV).
For more information on how the PTV is determined, the reader is referred to Appendix
A.2. Once the important structures have been delineated, the TPS requires the criteria
we wish our treatment plans to comply with.

1.2.2 Plan criteria

Depending on the clinical indications of the patient, a personalized radiotherapy treatment
plan should comply with a set of planning criteria. These criteria may be involved in soft
constraints or hard constraints.

14 CHAPTER 1. INTRODUCTION



1.2. TREATMENT PLANNING

Soft constraints

In basic terms, soft constraints involve objectives (which will be discussed in greater detail
in Section 1.2.3)) that hold true unless contradicted by another constraint that has a higher
priority. Some soft constraints involve the concepts of conformity and homogeneity and
the ALARA (As Low As Reasonably Achievable) principle. The conformity describes
how well the delivered dose distribution is shaped to the tumour and can be expressed
by the conformity index. This index is defined as the ratio between the PTV and the
irradiated volume at a specified reference prescription isodose Dref , typically being 95%
isodose [Sal+17]. The homogeneity is a measure that assesses the uniformity of a dose
distribution and can be expressed by the homogeneity index, defined as the maximum
dose in the target volume and Dref [Sal+17]. The ALARA principle represents a practice
mandate adhering to the principle of minimizing radiation doses to patients (both healthy
tissue and the PTV) as low as reasonably achievable [SK06].

Hard constraints

Hard constraints involve planning indications that absolutely cannot be violated. These
indications, as prescribed by the radiation oncologist, are defined such that the tumour is
expected to be cured, whilst limiting biological complications, and are typically represented
by dose-volume metrics. These are metrics that prescribe a certain amount of dose to a
fractional volume of an OAR or the PTV. In terms of prostate planning, for example,
plans are hard-constrained to deliver 95% of the prescribed dose to at least 99% of the
PTV volume, and 64 Gy to at most 35% of the rectum volume. Such dose-volume metrics
can be displayed by means of a dose-volume histogram (DVH).

Dose-volume histograms

The DVH is a way of displaying dose to a structure, however it has lost all spatial in-
formation about the dose distribution [Drz+91]. DVHs serve as simple tools to compare
treatment plans by presenting dose in the irradiated target and in critical adjacent struc-
tures (OARs). Two example DVHs of the rectum OAR and of the PTV of a prostate
patient are shown in Figure 1.2. The cumulative DVH is a one-dimensional function that

Figure 1.2: Typical example DVHs of a prostate primary PTV (red) and rectum (green)

CHAPTER 1. INTRODUCTION 15



1.2. TREATMENT PLANNING

displays a structure’s fractional volume fd that has received at least a dose d is described
by Equation 1.1. Throughout this thesis, there will be a main focus on predicting the
dose-volume histogram for prostate cancer patients.

fd = DVH(d) (1.1)

Fluence maps and machine parameters

Treatment planning relies on mathematical optimization, such that the tumour receives
the prescribed therapeutic dose, while keeping dose to surrounding healthy and OARs,
to a minimum [Bal17]. This is achieved by balancing trade-offs involving tumour confor-
mity and homogeneity, and structure dose-volume metrics, leading to an optimal desired
fluence map. There are many ways to find a desired dose distribution, and even when
one has been found, the challenge of finding the optimal way to deliver this distribution
remains. Finding the optimal machine parameter settings that best delivers the desired
dose distribution is referred to as machine parameter optimization. However, in radiother-
apy treatment planning practice, the balancing of trade-offs refers not only to plan quality
in terms of tumour coverage and the sparing of organs at risk, but also to efficiency in
terms of plan optimization time and dose delivery time, as well as planning robustness
in handling uncertainties. Due to the vast amount of parameters involved, RT treatment
planning is a complex problem.

1.2.3 Multi-criteria optimization

A treatment plan contains a description of radiation source locations, beam intensities,
duration of dose delivery and beam collimation, and how much dose is prescribed for
delivery to the tumour. These quantities are used to calculate the intended dose profiles.
Obtaining the desired dose distributions is referred to as fluence map optimization. Fluence
maps are two-dimensional maps of beamlet intensities that are found by the optimization
algorithm, based on its objective function and constraints. Such optimization problems
are typically approached by optimization of a set of conflicting objectives. Two general
approaches to planning are forward planning and inverse planning. Forward planning
approaches revolve around expert supervision to decide on treatment parameters before
computing and evaluating the resulting dose distribution. In inverse planning, a solution
on the Pareto frontier (i.e. the set of all solutions that cannot be improved for any criteria
without deteriorating other criteria) is found by optimization of one or more objective
functions. An objective function contains a mathematical description that maps values of
the included variables onto a number, representing a ”loss” that is associated with these
variables. Optimality is found by minimization of this loss. Contemporary IMRT and
VMAT systems use inverse planning approaches with multiple objective functions. When
more than one objective function is optimized simultaneously, we refer to it as multi-
criteria optimization (MCO). By means of example, objective functions may include the
balancing conformity vs. homogeneity, or tumour dose vs. healthy tissue toxicity, each of
which can be managed by controlling the values of the variables that are accepted by the
optimization. A type of optimization where variables are only allowed strictly within a
range is a constrained optimization. There are two main methods for identifying optimal
plans with MCO. First, the epsilon-constraint method generally constrains all but one of
the objectives to achievable levels, and then minimizes the remaining objective [Cra16].
Second, the weighted-sum method, being more common [BSH09], will be discussed in more
detail in the following paragraph.

16 CHAPTER 1. INTRODUCTION
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Weighted-sum optimization model

In a weighted-sum model, all associated objective functions, called objectives, are arbi-
trarily weighted and combined to form a general objective function. Depending on the
mathematical formulation, this can effectively turn a multi-criteria problem into single-
criterion objective, meaning that optimization is performed on one common objective
function as a whole, rather than on all objectives simultaneously, which is a more com-
plex procedure. Objectives can typically involve dose or dose-volume metrics for different
organs, such as for example minimum dose (in case of the PTV), average dose or V95
(the volume that receives at least 95% of the prescribed dose). Simultaneous objective
optimization is commonly done by using a scalarization approach, where objectives are
weighted such that all (non-negative) weights add up to one. An advantage of such an
approach is that the relative inter-criterion importance can be understood more easily
[Bal17]. With the help of Balvert et al. [Bal17] [Bal+15], let us provide a mathematical
description for the basic MCO model.

Basic MCO model

Let us denote a set of OARs by SOAR, and the complete set of relevant tissue structures
by S = SOAR ∪ PTV . All structures are discretized into voxels, and the set of voxels in
structure s ∈ S is denoted by Is, where s can be any delineated structure. Let us define
the set Y of all beamlets (intensities that account for the dose deposition along its line
of irradiation). Dose rates from each beamlet b to each voxel i are contained in matrix
ḋ of dimensions, where b ∈ [1, 2, · · · , |Y |] and i ∈ [1, 2, · · · , |Is|], where the absolute value
brackets denote set cardinality. Vector t contains the beam-on time for each beamlet,
such that tb denotes the beam-on time of beamlet b. While keeping in mind that ḋb is
a vector that contains dose rate from beamlet b to voxel i, it can be seen that the total

dose (from all beamlets) to voxel i results from the multiplication ḋ
T
i t. The prescribed

dose to the target is denoted by DP . The variable ui describes the difference between

the delivered and prescribed dose in voxel i, DP − ḋ
T
i t, if the delivered dose is less than

DP and 0 otherwise. Let ws be the weight assigned to the constraints corresponding to
structure s ∈ S , which satisfies

∑
s∈OARws = 1. wPTV is a value describing the trade-off

between PTV dose and OAR tissue sparing. Now, the general optimization model can be
formulated:

minu,t wPTV
1

|IPTV |
∑

i∈IPTV

ui + (1− wPTV )
∑

s∈SOAR

ws
1

|Is|
∑
i∈Is

ḋ
T
i t (1.2)

s.t. ui ≥DP − ḋ
T
i t ∀i ∈ IPTV

ui ≥0 ∀i ∈ IPTV
tb ≥0 ∀b ∈Y

It should be noted that this is only a general model that aims to minimize per-voxel-average
under-dose to the PTV and per-voxel-average over-dose to an arbitrarily weighted set of
OAR criteria. The model can be extended to include, for example, restrictions on PTV
over-dose or on the minimum, mean and maximum dose Dmin, Dmean and Dmax. The
optimization problem described here is a convex optimization problem [Bal17] [Bal+15],
so the Pareto frontier is guaranteed to be found and can be navigated by adjusting wPTV
and ws.
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1.2.4 Treatment plan segmentation

Inverse planning approaches yield fluence maps for each tumour projection. However, even
when fluence map optimization has yielded an ideal dose distribution, the optimal machine
parameter settings to deliver this distribution remain unknown. These settings are found
by machine parameter optimization, or plan segmentation. Machine parameters include
for example MLC positions, dose rates, gantry angles or (for VMAT) rotation speed.
There are two main problems that are accompanied by machine parameter optimizations:
non-convexity (hardware derived) of the optimization, and deterioration of time-efficiency.
Hardware derived non-convexities arise from the practical desire to use a small number
of MLC segments when delivering treatment plans [Cra16]. In addition, the MLC leaf
thickness limits the number of deliverable segments. Two reasons for the deterioration of
time-efficiency when delivering treatment plans are: first, although advancements in MLC
technology have sped up inter-segment MLC-adjustments, the adjustment speed can still
be an issue. As illustration, if the MLC leaf positions of two subsequent segments require
the MLC leafs to travel large distances, the time required to deliver the plan will grow
longer, and time-efficiency becomes an issue. Second (only for VMAT), subsequent MLC
states are not independent, because not every MLC configuration can be attained from a
previous MLC configuration, for time-efficiency reasons, making it impossible to always
achieve ideal dose distributions for every patient.

Mathematical optimization techniques

Non-convexity of plan segmentation optimization discussed in Section 1.2.4 is problem
that is always inherent to RT treatment planning. Although there are reasons to believe
that resulting local minima are good approximations of global minima [Web03], extensive
efforts have been made to ensure that optimizers converge to the best plan possible.

Sequential quadratic programming One approach used in this study is sequential
quadratic progamming (SQP). SQP relies on a quadratic approximation of the objective
function and the constraints [GMW81]. For a more detailed description of SQP, the reader
is referred to [Bar+09].

Simulated annealing Another conventional approach is simulated annealing. Simu-
lated annealing is based on exploring the area of a local minimum to converge to an even
better spolution, before accepting the yielded result as the best one globally [Web89].

Lexicographic ordering Lexicographic optimization is a type of hierarchical priori-
tized optimization. For instance, lexicographic ordering provides a way to deal with a
large number of competing clinical trade-offs by attempting to compromise less important
criteria before more important ones such that a more optimal cure versus toxicity trade-
off can be obtained. This makes complex multi-criteria problems more manageable and
potentially makes the planning process more efficient [JMF07].
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1.2.5 Biological models

Models that provide quantitative biophysical measures can also be utilized for cost func-
tions [Nie98] [Nie97]. For additional information on radiobiology and an overview of some
of the commonly used biological models, the reader is referred to appendix A.3. In this
study, there is one biological model that we used, which is the generalized equivalent
uniform dose (gEUD).

Generalized equivalent uniform dose

The gEUD is defined as the uniform dose that, when irradiated homogeneously and given
over the same number of fractions, yields the same radiobiological effect as the actual
non-homogeneous absorbed dose distribution does and can be written as [Wan+16]:

gEUD =
( V∑
i=1

fiD
a
i

)1

a (1.3)

where V is the total number of voxels in the structure considered, fi is the fractional
volume receiving a dose Di, and a is a tissue-specific EUD-parameter. The practical use
of the gEUD is that by changing parameter a, we can control the importance of a certain
dose such that it counts more heavily towards the weighted average dose, which can in
turn be incorporated in a cost function. For example, low doses are more important when
an a-parameter closer to 0 is used, and vice versa for higher doses. It can be noted that
in the limit lima→∞ gEUD, the gEUD converges to the maximum dose. Similarly, in the
limit lima→0+ gEUD, the gEUD converges to the smallest dose. If a = 1, the gEUD equals
Dmean. In the case of the PTV, negative a is used [Nie97]. This essentially reverses the
effect of the weighted average.

1.2.6 Prostate planning

Figure 1.3: Schematic depiction of
the prostate (beige) and seminal
vesicles (pink).

The prostate is an organ that is part of the male’s
preproductive system and is located anterior to the
rectum in the lower abdomen region. The prostate
receives mature sperm cells from the testes, and se-
cretes nutrients and buffers that protect the sperm
against the acidic vaginal secretions [WRS11a]. The
seminal vesicles (SVs), two glands that are attached
posterior to the prostate, secrete chemicals that in-
crease sperm motility and prostaglandins [WRS11a].
Together, the mature sperm cells and the secretions
from the prostate and seminal vesicles make up the
fluid referred to as semen [WRS11a]. A schematic
drawing of the prostate and seminal vesicles is shown
in Figure 1.3. The prostate is planned clinically in
three separate groups that each have different plan-
ning objectives. Patients are distinguished by the
radiation oncologist, based on their individual plan-
ning indications. All groups are planned with a pri-
mary PTV and a secondary PTV. The primary is
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(a) Patient group 1 (b) Patient group 2 (c) Patient group 3

Figure 1.4: Schematic depictions of the three distinguishable patient groups. The inner
red area represents the surdose (primary) PTV, and the outer yellow area represents the
secondary PTV.

also referred to as the surdose or boost PTV. The primary PTV consists of the CTV
plus a 4 mm margin and is prescribed 77 Gy, whereas the secondary PTV consists of the
primary PTV plus a 3 mm margin and is prescribed 70 Gy. In the first group, the seminal
vesicles (SVs) were excluded from delineation in either of the PTVs. In the second group,
the SVs were included in only the secondary PTV. As for the third group, the SVs were
included in the primary PTV and thus also the second PTV. A visual interpretation of
the patient group division can be seen in Figure 1.4.

1.2.7 Clinical situation: problem posing

Finding a clinically acceptable treatment plan is not trivial, since RT treatment plan-
ning is an intrinsically difficult problem due to the vast amount of parameters that can
be controlled, and the conflicting objectives of achieving a uniform dose to the tumour
while limiting dose in healthy tissues [JDK17]. Therefore, the expertise and experience
of the treatment planner is heavily relied on, introducing subjectivities and increasing
patient risk. Furthermore, the present treatment planning framework is laborious, time-
consuming, and it is difficult to assess the quality of a certain plan, or if there is a plan
with a more optimal trade-off between cure and toxicity. For these reasons, it becomes
impossible to always achieve ideal, personalized treatments, leading to acceptable but
potentially sub-optimal treatment plans. To resolve these problems, an automated ap-
proach to treatment planning is used. At the NKI, we clinically use Philips Pinnacle’s
autoplanner. However, autoplanning introduces new challenges. Namely, autoplanning is
not perfect and still requires substantial interaction from the RT technician. In addition,
it is next to impossible to judge whether a resulting plan is indeed the best personalized
plan, since no RT technician has manually worked the plan. As a consequence, there is a
need for standardized quality assurance tools for detecting outliers. Moreover, if optimal
treatment plans could be used as feedback for new plans, we could potentially increase
overall plan quality. Knowledge-based planning (KBP) could potentially provide a tool
that resolves these issues. This thesis focuses on KBP for prostate cancer.
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1.3 Knowledge-based planning

Knowledge-based planning approaches use both historical structural and dosimetric data
from prior treatment plans to predict the likely dose distribution for the current patient.
KBP does this by comparing the internal geometry of a given patient with patients treated
in the past, and uses this knowledge to propose a plan for the current patient. In this way
one can hope that, if patients treated in the past had an optimal trade-off, new patients
will get this as well [JDK17]. Thus, KBP makes for an objective, automated and patient-
specific approach that ensures a realistic and achievable treatment plan. Such methods
are believed to enhance plan consistency, quality, standardization and planning efficiency.
Throughout this thesis study we focus on KBP for prostate cancer planning.

1.3.1 Overlap volume histogram

Experience has shown that optimality of treatment plans is strongly influenced by the
geometries of critical structures with respect to the target volume [Web03]. Specifically,
an OARs’ proximity to, or quite regularly even overlap with the PTV can be parameters
of interest. For the purpose of studying the influence of the OARs’ proximity to the
PTV on its received dose, the overlap-volume histogram (OVH) was introduced [WRS11b]
[Wu+13] [Pet+12]. The OVH is a one-dimensional function that describes the fraction of
the OAR volume that is encompassed by a uniform expansion or contraction of the PTV by
distance r [WRS11b] [Wu+13] [Pet+12]:

fr = OVH(r) (1.4)

Figure 1.5: Example OVH for the rectum. The OVH was calculated from the secondary
PTV. The OVH(r = 0) can be regarded as the PTV border

In its Euclidean form, the OVH value fr at distance r is given by the fraction of the OAR
voxels with its maximum distance to the PTV boundary less than r. Let us remember the
discretized voxel representation introduced for discussing the basic MCO model in Section
1.2.3. If s denotes the delineated structure, the set of all voxels in structure s is denoted
by Is. Let voxel i in structure s within distance r from the PTV boundary be vsi ∈ Is.
Similarly, let voxel k in the PTV be vk ∈ IPTV . Let V be the voxels that define the surface
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of the PTV. The distance function ρ from voxel vsi to the PTV surface is then formulated
as:

ρPTVs = d(vsi , IPTV )

= mink{‖ vsi − vk ‖ | vk ∈ V }
(1.5)

OAR voxels within the PTV volume are denoted by negative expansion. A more detailed
description of the OVH has been given previously ([Kaz+09] [Wu+09]). It can be argued
that in the case where a smaller expansion distance is needed to reach a certain OAR
overlap, sparing it is more difficult [Yua+12]. An important assumption of the OVH
model in KBP is that dose to OAR voxels decreases with increasing distance from the
PTV.

1.3.2 KBP literature overview

For the sake of providing an outline of previous research, we will briefly discuss some
studies that involve KBP. We discuss three general KBP-approaches: OVH-based meth-
ods, methods involving the projections of delineated structures, and methods involving
mathematical frameworks that do not belong to the first two classes.

OVH-methods

There have been many studies that have combined historical data with OVH-methods for
DVH prediction ([WRS11b] [Wu+13] [Moo+11] [Yua+12] [Pet+12] [Wan+16]). [WRS11b]
used the OVH to generate achievable DVH objectives for head-and-neck plans as initial
planning goals. [Wu+13] investigated the use of OVH for automated VMAT planning in
head-and-neck patients. They did this by using DVH objectives estimated from historical
IMRT plans as optimization parameters for VMAT plans. [Moo+11] et al. have used
OVH-information to predict OAR dose metrics for head-and-nack and prostate IMRT.
Yuan et al [Yua+12] used the OVH to explain inter-patient DVH variability in head-and-
neck and prostate cancer OARs. They used the first three principal component modes
to represent the OVH and DVH. Through this method, they identified three important
factors that explain a significant amount of inter-patient DVH varability, being the mean
OAR-PTV distance, OVH metrics and out-of-field OAR volume. [Pet+12] demonstrated
that a prior lexicographic ordering model for head-and-neck patients could be used to
predict the achievable dose to an abdomen OAR for a new pancreatic tumour patient. For
this, the OVH was used. They assumed that the minimal achievable OAR dose depends
mainly on its distance to and orientation with respect to the PTV, which holds for a
typical prostate case. They put this assumption to the test in head-and-neck cases. Wang
et al. [Wan+16] generated a ground-truth set of consistently planned Pareto-optimal
treatment plans for prostate patients, using lexicographic MCO. They then proceeded
to use an OVH-based KBP method on this ground-truth data set, improving planning
standardization and preventing validation with possibly suboptimal benchmark plans.

Structure projections

Some studies use the best matching OAR and PTV projections vor DVH prediction.
Chanyavanich et al. [Cha+11] demonstrated the use of a knowledge base of prior, clinically
approved archived plans for the creation of new, also clinically acceptable plans, by finding
the best matching reference case in the data base by matching OAR and PTV projections.
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Subsequently, treatment parameters of this best matching plan are used as a starting point
for planning. Similarly, [Goo+13] used KBP approaches that involved matching query
plans to the most similar reference OAR and PTV projections. Then, the treatment
parameters of the corresponding plan were taken and further individualized by applying
a deformable registration. Matching plans were then compared for PTV homogenieties,
which were found to be significantly lower in KBP plans.

Other mathematical frameworks

Lastly, there are studies that use other OAR-specific mathematical frameworks to do DVH
prediction. For example, [App+12] divided OARs into several sub-volumes. Then, they
determine the parameters of a skew-normal distribution by regression for each sub-volume.
In turn, the results of these regression models combined yield the DVH prediction.

Connection to this research

Although there are endless approaches to knowledge-based planning, KBP approaches
commonly involve the use of the OVH in some way to encode for patient anatomies. In
addition, reduced order modeling (ROM) (will be discussed in Section 3.2) is widely dis-
patched to capture the most important characteristics of the DVH and OVH. Throughout
this thesis study, we will follow these directives.

1.3.3 Aims and objectives

As a part of this thesis work, we have developed a relatively simplistic KBP tool, which
will be discussed in detail in Section 4.3. This tool has has yielded sufficient results to be
used in a pilot study at the NKI, and has been in use since October 2018. This model is
what will be referred to as the current clinical practice throughout this study. The aim of
this thesis project is to build a machine learning model that is able to predict the DVH for
new prostate patients, from their anatomical information and thereby to better understand
how to complement the current clinical practice. To do this, we will investigate a variety
of different machine learning modelling approaches in a KBP context. To evaluate these
models, we have formulated a quantitative, clinical goal (Section 4.2) to which our models
should comply. In short, this formulation entails that our goal is achieved when we create
a model that successfully predicts 90% of the DVH bins for 90% of patients. However, as
we are most interested in testing accuracy, we will only use models that are believed to
retain a sufficient degree of generalizability.
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CHAPTER 2

DATA

This chapter will cover the characteristics of the data that were used throughout this
study. This includes by which means the data were acquired, before being ready for use in
model development. This chapter also discusses how the data were selected, and describes
the characteristics of the data sets.
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2.1 Data collection

2.1.1 Acquisition

Retrospective analyses were performed based on clinical VMAT plans and planning CTs
of prostate cancer patients treated at the NKI. Philips Pinnacle3 was used for creating
VMAT plans, where optimization was done according to RaySearch White Paper guide-
lines [Eri+09]. DVHs and OVHs were calculated from the available DICOM (Digital
Imaging and Communications in Medicine) files stored in PACS (Picture Archiving and
Communication System). All geometrical information (OVHs and organ sizes) and DVHs
were matched by their Medical Record Number and Unique Plan Identifier.

2.1.2 Selection

The data set used for this study consisted of the combined data of three patient groups
as discussed in Section 1.2.6. The sample size of group 1 alone was considered too small
for reliable model development and was therefore omitted from this study. Also, despite
the differences in inter-group planning indications, intermediary analyses have shown that
groups 2 and 3 did not exhibit significant inherent differences in their secondary OVH and
rectum DVHs. For these two reasons, we focused on model development for the unification
of groups 2 and 3, and omitted group 1. Structures of interest were the rectum and anal
sphincter. The bladder was not believed to be of importance for planning purposes for
three reasons: first, the majority of the dose ends up in the urine, which in turn is excreted
from the body. Second, the complications caused by damage to the bladder wall are not
believed to be of primary concern, compared to other OARs. Third, sparing the bladder
wall often proves to be difficult in practice and typically compromises other planning
objectives. However, there are exceptional cases in which it was not deemed possible by
the radiotherapy technician to ignore the bladder as an OAR. These cases were omitted
from model development. Furthermore, patients with a bowel-loop or hip- or femoral
prosthesis are excluded from investigations. The reason for this is to ensure that model
development is done with data that best represents the the average cases. This way, model
development starts off simple, but exceptional cases, such as those including a bowel-loop
or femoral prosthesis, can be included when more complex models are constructed.

2.1.3 Data set specification

After selection of our data, a total of 92 ”good” patients remained for model development.
Of this, 51 and 41 patients belonged to group 2 and group 3 respectively. For the sake
of consistency, the plans within this data set contains plans created with Pinnacle’s auto-
planner. DVHs and OVHs were calculated with a dose resolution of 1 Gy and a spatial
resolution of 1 mm respectively.
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CHAPTER 3

THEORY

With machine learning being one of the cornerstones of this study, there are several topics
involved that require some mathematical background to understand their working prin-
ciple. Some of the general topics relevant to machine learning are regression analysis,
feature extraction, feature selection and model validation methods. In this chapter, we
will go over the mathematical bases of some regression methods, Principal Component
Analysis (PCA), and we will discuss the rationale of validation methods used to validate
our results.
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3.1 Regression

3.1.1 Basis function regression

Regression is used to find a general trend that exists between a reponse (dependent)
variable y, and one or more explanatory (independent) variables x. All regression models
have the same basic form:

y = f(x) (3.1)

where f(x) involves a set of regression parameters or coefficients that need to be fit. How
such a fit is found will be discussed in Section 3.1.4. Let us imagine a problem with a
single explanatory input variable x. We can write Equation 3.1 in terms of the regression
coefficients, for the one-dimensional case [HFB15]:

y = f(x) =
I∑
i=0

wiφi(x) (3.2)

where the functions φi(x) are called basis functions, wi are the regression coefficients, and
I is an arbitrary maximum number of basis functions. For convenience, let us express φi(x)
and wi in vector notation: the basis function vector Φ(x) = [φ0(x),φ1(x),· · · ,φI(x)]T , and
weight vector w = [w0, w1, · · · , wI ]T . Equation 3.2 can be rewritten as the multiplication
of the weight vector transpose and basis function vector:

f(x) = wTΦ(x) (3.3)

Basis functions should be chosen such that they fit the regression problem at hand. As
illustration, in an experiment with a known linear dependence between x and y, it would
make sense to use basis functions linear in x to predict y. However, especially in machine
learning, dependencies are not always known. So, basis functions are typically decided
upon by investigating the correlations that exist in the data. Alternatively, when no a
priori knowledge about the data’s dependency is available, one may choose to use basis
functions that allow for more flexibility. These funcions may involve radial basis functions,
support vector machines or artificial neural networks. Regressors using such models are
typically referred to as being non-parametric, because the free parameters that need to
be determined have no real relation to the regression problem, as opposed to parametric
basis functions [Orr96].

3.1.2 Linear regression

One of the most basic forms of regression is simple linear regression. It is called simple
when there is only a single input variable involved. In this case, it suffices to assume
a basis function with the monomial bases: Φ(x) = [1, x]T . The result of Equation 3.3
becomes the standard simple linear model:

y = w0 + w1x (3.4)

where w0 and w1 are the intercept and slope regression coefficient. If we wish to expand
this to the M-dimensional case, we have to choose φm(x) = xm, for m = [1, 2, · · · , M].
When substituting this into Equation 3.2, the regression model becomes that of multiple
linear regression:

y =
M∑
m=0

wmφm(x) = w0 + w1x1 + w2x2 + · · ·+ wMxM (3.5)
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Let the reader be informed that φ0(x) = 1 will be used in all regression models from here.

3.1.3 Polynomial regression

One of the most common basis functions used in regression is a polynomial. The basis
function used for Equation 3.4 is a first degree polynomial. In order to extend this model
to the Q-th order polynomial case, we would have to use the bases φq(x) = xq, for q = [0,
1, 2, · · · , Q]. Substituting this into Equation 3.2 will yield the one-dimensional Qth order
polynomial regression model:

y =

Q∑
q=0

wqφq(x) = w0 + w1x+ w2x
2 + ...+ wQx

Q (3.6)

The M-dimensional polynomial is more complex, because we cannot describe either the
basis functions or the regression coefficients with a single index. Instead, the indexer in 3.6
has to become multi-index: q̂ = [q1, q2, · · · , qM ], and the sum over q becomes a sum over
all indices in q̂ with q1 + q2 + · · · qm ≤ Q [Kon04]. The resulting general M-dimensional,
Qth order polynomial regression model and an example with M = 3 and Q = 2 are shown
in Equations 3.7 and 3.8 respectively:

y =

Q∑
(q1,q2,··· ,qM )

w(q1,q2,··· ,qM )φ(q1,q2,··· ,qM )(x) (3.7)

y =
2∑

(q1,q2,q3)

w(q1,q2,q3)φ(q1,q2,q3)(x) =

w0 + w(1,0,0)x1 + w(0,1,0)x2 + w(0,0,1)x3+

w(1,1,0)x1x2 + w(1,0,1)x1x3 + w(0,1,1)x2x3+

w(2,0,0)x
2
1 + w(0,2,0)x

2
2 + w(0,0,2)x

2
3

(3.8)

3.1.4 Cost function minimization

The linear and polynomial regression methods discussed in sections 3.1.2 and 3.1.3, are
examples of parametric regression methods. In parametric regression, models are fitted
by minimizing a cost function. Most regularly, least squares minimizers (or ordinary least
squares (OLS)) are used as a cost function, but absolute deviations may also be used.
OLS refers to finding a fit such that the total squared vertical discrepancies between this
fit and all given sample points are minimized. OLS-based methods are convenient for a
two reasons. First, it ensures that outliers that are very far off weigh more heavily in the
cost function. Second, when used in optimization, squared objective functions typically
have the convenient property that they are convex. This ensures the optimizer to reach a
global optimum. Another convenient property of OLS-solutions, is that they can be found
relatively easily with the help of the Moore-Penrose pseudoinverse [Weixxa] [Pen56]. Let
us explore how OLS methods work mathematically.
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Least squares methods

Let us assume a two-variable linear regression model. If ŷn is the nth observed data point
ŷ, the cost function is the total sum of squared residuals, RSS:

RSS =
N∑
n=1

(ŷn − yn)2

=
N∑
n=1

[
ŷn −

(
w0 + w1[x1]n + w2[x2]n

)]2 (3.9)

The set of regression coefficients w that result in residuals minimization are found by
setting their partial derivatives to 0 and solving the resulting system of linear equations:

∂(RSS)

∂w0
=− 2

N∑
n=1

[
ŷn −

(
w0 + w1[x1]n + w2[x2]n

)]
= 0 (3.10)

∂(RSS)

∂w1
=− 2

N∑
n=1

[
ŷn −

(
w0 + w1[x1]n + w2[x2]n

)]
[x1]n = 0 (3.11)

∂(RSS)

∂w2
=− 2

N∑
n=1

[
ŷn −

(
w0 + w1[x1]n + w2[x2]n

)]
[x2]n = 0 (3.12)

As long as there are as many equations as there are free variables, this is a solveable system
of linear equations. It can be shown that by using the Moore-Penrose pseudoinverse, the
solution to such a system of linear equations (3.10 - 3.12) can be automatically found
[Weixxa] [Weixxb] [Pen56]. We will now explain why this works mathematically, with the
help of [TK09]. Let [x]n be the n-sample vector containing all M variables. Minimizing
Equation 3.9 with respect to w results in the following vector notation:

N∑
n=1

(ŷn − [x]Tnw)[x]n = 0 −→(
N∑
n=1

[x]n[x]Tn

)
w =

N∑
n=1

([x]nŷn)

(3.13)

We can use the matrix notation:

X =


[x]T1
[x]T2

...
[x]TN

 =


x11 x12 . . . x1M
x21 x22 . . . x2M

...
...

. . .
...

xN1 xN2 . . . xNM

 , ŷ =


ŷ1
ŷ2
...
ŷN

 (3.14)

Here, X is an N x M matrix which rows are the sample-specific feature vectors, and y is
a vector that contains the corresponding observed responses. From Equation 3.14 it can
be seen that:

N∑
n=1

[x]n[x]Tn =XTX (3.15)

N∑
n=1

[x]nŷn =XT ŷ (3.16)
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where Σ = XTX is the covariance matrix. Hence, Equation 3.13 can now be rewritten
to yield the Moore-Penrose pseudoinverse matrix notation of the OLS approach to linear
regression.

(XTX)ŵ = XT ŷ −→ ŵ = (XTX)−1XT ŷ (3.17)

Here, the pseudoinverse X+ = (XTX)−1 is meaningful only if Σ is invertible, that is, of
rank M [TK09].

3.2 Dimensionality reduction

As a result of an increased demand for machine learning approaches, as well as the com-
putational resources to handle large data sets, comes a surge of data that is used in data
analysis. Although having more data is typically desirable, the implications of having too
many descriptive features at ones disposal is three-fold. First, features may hold no ad-
ditional descriptive value over other features: they can be redundant. Second, additional
features may correlate in no way to the response we are interested in: they are irrelevant.
Third, features are more likely to cause overfitting as their number grows, and thereby re-
duce model generalization (referring to Section 3.3). Additionally, data require storage and
large data sets increase processing time as well as complexity, hindering straightforward
interpretation. For these reasons, dimensionality reduction methods are used to decrease
the number of variables. Fundamentally, there are two steps that can be distinguished in
dimensionality reduction: feature extraction and feature selection [RS00].

3.2.1 Feature extraction

In feature extraction we start from an initial set of features, and subsequently redefine
them with the intention for them to be more informative. This can be referred to as
reduced order modeling (ROM). A widely exploited ROM method is Principal Component
Analysis (PCA), sometimes also referred to as the Karhunen-Loève (KL) transformation.
These are terms that are often used interchangeably, but are not equivalent. In order to
understand how the KL transformation and PCA are distinguished, let us imagine a binary
classification problem where we aim to classify some object O as either of the two classes.
Suppose that O can be represented by a number of m characteristics (features) in an
m-dimensional vector called the feature vector. If m is large, it means that we are dealing
with a high dimensional classification problem, whereas some characteristics may be more
important than others for correct classification of O. This makes the problem unnecessarily
complex and hence it would be desirable to have a method that reduces dimensionality
without compromising the classification accuracy of O. The KL transformation and PCA
provide such a method. The primary purpose of the KL transformation is to reduce
the dimensionality of a data set that contains interrelated variables into a smaller set of
mutually uncorrelated variables. PCA is then used to identify the features that retain
most of the variation among the data [Owe14].

Karhunen-Loève transform

The KL transformation essentially does a re-mapping of the original coordinates in which
the data are expressed into a more ”meaningful” basis of coordinates, such that separabil-
ity among these coordinates can be maximized. This transformation generates mutually
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uncorrelated features (but not necessarily independent) [TK09]. The new coordinate bases
are referred to as the principal components (PCs). Let us now explain why the KL trans-
formation works mathematically with the help of Theodoritis et al. [TK09]. Initially, let
us assume zero sample means. Let us define an input sample matrix (m measurements
x n samples) of random variables x, that is to be expressed in a new (m x n) basis of
coordinates c:

c = ATx (3.18)

with A being a square (m x m) matrix which rows form the new basis for x. Let the reader
be reminded that a correlation and covariance matrix describe the degree to which two
random variables can deviate from their respective means. From linear algebra we know
that the correlation matrix of x can be expressed as the expectation of the outer product
of x with its transpose, and similarly for c:

Rx ≡ E[xxT ] (3.19)

Rc ≡ E[ccT ] (3.20)

Then, by substituting Equation 3.18 in the definition of the correlation matrix, we get:

Rc ≡ E[ccT ] = E[ATxxTA] = ATRxA (3.21)

and it can be seen that, if A is chosen such that its columns contain N orthonormal
eigenvectors a i of Rx (with i = 0, 1, ..., N-1) of length m, then Ry is the diagonal
eigenvalue matrix Λ:

Rc = ATRxA = Λ (3.22)

where Λ = Iλ, where I is the identity matrix and λ is an eigenvalue vector that contains
the eigenvalue λi of each respective eigenvector ai. This resulting transformation is what
is known as the Karhunen-Loève transformation. In the typical case when the zero mean
assumption is not valid, the sample means needs to be subtracted. In summary, with
the KL transformation, we achieve a new, orthonogal basis of correlation matrix of x, by
means of an eigenvalue decomposition. However, we have not yet explained how we can
identify the characteristics that explain the largest variation in the data.

Principal component analysis

Once the principal components of Rx have been found, they need to be structured, such
that we can identify the fraction of the total variance in the data that they account for.
This fraction is what is referred to as the explained variance ratio (EVR). In terms of the
problem in Section 3.2.1, PCA is a linear transformation that retains most of the total
variance associated with an original random variable vector x , by approximating it with
a smaller subset of vectors, thereby finding the explained variance ratios of each PC. The
vectors in this subset turn out to be the eigenvectors, or principal component modes, of
Rx, such that a minimal amount of variance is lost. Let us select P eigenvectors, such
that we approximate x, from its projection x̂ spanned by the P orthonormal eigenvectors
involved:

x̂ =

P∑
i=1

ẏiai (3.23)

where, ẏi = aTi x. Generally, the mean square error (MSE) estimate z̃ of a random variable
z with mean z is given by:

z̃ = arg min
z
E
[
‖ z − z ‖2

]
(3.24)
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So, if we try to approximate x by its projection x̂, the resulting MSE is given by:

x̃ ≈ E
[
‖ x− x̂ ‖2

]
= E

[∥∥∥∥ N∑
i=P+1

ẏiai

∥∥∥∥2
]

(3.25)

The goal is then to identify the p ≤ P eigenvectors that best approximate x (i.e. mini-
mizes the MSE). From Equation 3.25 and by remembering the orthonormality property
of eigenvectors ai, it can be showed that:

E

[∥∥∥∥ N∑
i=P+1

ẏiai

∥∥∥∥2
]

= E

[
N∑

i=P+1

N∑
j=P+1

(ẏia
T
i )(ẏjaj)

]

=
N∑

i=P+1

E[ẏ2i ] =
N∑

i=P+1

aTi E[xxT ]ai

(3.26)

If we combine this result with the MSE in Equation 3.25 and remember the eigenvector
definition, it can be seen that:

E
[
‖ x− x̂ ‖2

]
=

N∑
i=P+1

aTi λiai =

N∑
i=P+1

λi (3.27)

Thus, if we select the eigenvectors in Equation 3.23 corresponding to the P largest eigen-
values of the correlation matrix, we are left with the minimized MSE from Equation 3.27,
being the sum of the N − P smallest eigenvalues. The PCs that account for the largest
EVR can simply be found by selecting the PCs with the largest corresponding eigenvalues.
However, the derivation in this section has the advantage over the derivation in Section
3.2.1 that the first P components are chosen, because they are ensured to describe the
highest variance out of all PCs.

PCA additional remarks

In conclusion, the advantage of PCA is that it re-maps a data set into mutually uncor-
related variables while retaining most of the variation in the data in the first ”few” PC
modes. One difficulty in practice is how to choose the number of PCs to include. In
addition, there are some limitations to PCA which may make it less attractive to use
for certain applications. First, it should remembered that PCA generally realizes purely
linear output mappings, whereas some applications (e.g. some neural networks) require
non-linearity from its input features [Kar94]. Second, PCA relies purely on covariances or
correlations, which can only describe completely Gaussian and stationary processing op-
tions [Kar94], although this does not mean Gaussianity is a prerequisite for PCA [TK09],
[Kar94]. Third, PCA outputs are mutually uncorrelated but not independent, which is a
stronger condition than uncorrelatedness [TK09].

3.2.2 Feature selection

As opposed to feature extraction, in feature selection we make do with the features cur-
rently at our disposal, and select the most meaningful ones. This helps to simplify the data,
shorten the time required for model training and increase model generalization (decrease
overfitting). Three approaches to feature selection are filter methods, wrapper methods
and embedded methods. In this study, mainly a combination between filter and wrapper
methods were used.
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Filter methods

The filter method is an information gain approach. Let us explain the basis for filter
methods with the help of Scheaffer et al. [SMM11], and let the reader be reminded of
the two-variable regresion model discussed in Section 3.1.4. Filter approaches to feature
selection use correlations between the independent and response variables to quantify the
importance of features. The metric used for this is the coefficient of determination R2:

R2 =1−
∑N

n=1 (ŷn − yn)2∑N
n=1 (ŷn − yn)2

=1− SSE

SSyy
=
RSS

SSyy

(3.28)

Here, the SSE being the sum of squared errors between the regressor and observed values,
SSyy being the sample variation of y (total sum of squares), and RSS being the regressor
summed squares [SMM11]. R2 = 0 implies a complete lack of fit of the model to the data,
whereas R2 = 1 implies a perfect fit.

Figure 3.1: Four typical linear regression programs, named Anscombes quartet [Ans73],
each yielding the same standard outputs (e.g. means, regression coefficients and R2).
Image adapted from [Asa18])

The main danger of this approach is that correlation coefficients can be rather misleading,
as is illustrated from Anscombe’s quartet where clearly different relations result in the same
standard outputs [Ans73], as displayed in Figure 3.1. This can lead to the erroneously
accepting a feature as the ”best” feature in terms of R2 improvement, even though there
is no clear relation between the response and dependent variables considered.

Wrapper methods

Wrapper feature selection methods search for the best set of features by assessing model
performance. The difference with filter methods is that wrapper methods use combinations
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of features to test whether a certain model performance improves. This performance can
be anything, but for the sake of simplicity let us once more assume R2 as a result from a
regression model. Let us imagine having K features to select for model use, from which
we wish to choose the L best features. When feature sets are large, it becomes impossible
to assess model performance exhaustively. Therefore, heuristic approaches are typically
relied on. One such approach is hill climbing, in which features are iteratively added,
until no further model improvement can be achieved [RN09]. The forward sequential hill
climbing framework is as follows: in the first iteration, K models are trained with each
individual feature and the best predictive feature is selected before progressing to the
second iteration. Then, K − 1 models are trained with each feature and the previously
selected feature and the best predictive second feature is added. This is repeated until
a subset of L features are selected. An example of such a feature selection scheme is
displayed in Figure 3.2. The main drawbacks of such methods are two-fold:

Figure 3.2: Wrapper method example framework, for selecting the L = 3 best features out
of K = 5 features A, B, C, D and E. By means of example, model performance is assessed
by R2-value, where the best L features yield D, E, A.

1. Computationally expensive
Since these methods rely on model performance with respect to feature inclusion,
formally, models have to be trained and cross-validated for each feature that is added.
This becomes an increasingly time- and resource expensive problem when models are
complex (e.g. time-consuming optimizations are involved rather than simple linear
fits) or when the number of variables is large [Ras18].

2. Risk of overfitting
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In greedy methods where one continues to add features until model performance is
maximized with a minimal set of features easily allows for overtraining, especially
when the number of samples is insufficient.

3.3 Validation

Proper validation of results requires an assessment of whether results really reflect what
they seem to reflect. To illustrate this, let us imagine a scenario where a specific approach
yields great results for one data set, whereas the same approach may completely fail to
perform well on other data. In such case, it would be desirable to make an adaptation
to the model based on the validated results, such that it maintains more of its ability
to generalize. In other words, proper results validation may affect model development.
The provided scenario is an example of overfitting and imposes a trade-off that is always
inherent to machine learning model design: overfitting versus underfitting. Overfitting
occurs when a model is trained to the point where it recognizes the variablilties inherent
to that specific dataset and it begins to fit noise. Consequently, the model loses its ability
to generalize (i.e. to perform well on unseen data drawn from the same distribution of
the data it has been trained on). On the other hand, underfitting occurs when a model
is inaccurate in identifying the general characteristics of a dataset, and typically happens
when training sets are small or when the selected features are insufficient in describing a
response variable. So, we need a way to know the degree of overfitting and underfitting.
An example of the effect of overfitting can be seen in Figure 3.3.

(a) Underfitting (b) Just right (c) Overfitting

Figure 3.3: The danger of overfitting. The scattered data show a clearly quadratic trend.
Using a linear fit (a) would lead to underfitting, whereas a higher-order fit would cause
overfitting to the noise in the data set. Image adapted from [Joh13].

3.3.1 Cross-validation

A good way to test for overfitting is to examine the models’ training and testing errors.
These are found by evaluating model performance on training and on testing data respec-
tively. If a model shows great results on training data and does not perform well on testing
data, it is likely that overfitting occurs. In order to quantify training and testing errors, a
data set is typically split into a training set and a testing set. The model is trained on the
training set, before evaluating the model performance to obtain training errors. Evaluat-
ing the performance of the trained model on the unseen data of the testing set then yields
the testing errors. However, an obvious consequence of splitting the data, is that the size
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of the data set available for training is compromised. This can be especially troublesome
when little data are available. Cross-validation (CV) is a technique that allows models
to be tested using the full training set by means of repeated resampling [RF08], before
averaging the final result. This maximizes the total number of points available for testing,
and simultaneously allows for results validation. Let K be the number of folds chosen
to use for cross-validation. We then split the available data samples into K sets, which
leaves K ways to choose K - 1 training folds, while always leaving one fold for testing.
This is repeated for every way there is to reclassify training testing folds and the result
is normalized over K afterwards. This technique is known as K-fold cross-validation and
an example where K = 4 is schematically displayed in Figure 3.4. When K equals the
total sample size N, K-fold CV becomes leave-one-out cross-validation (LOOCV), where
N-1 samples are used for training, and testing is done on the remaining sample. This can
be particularly useful when data are scarce and training data must be maximized.

Figure 3.4: K-fold cross-validation in the case where K = 4. Each fold uses the same data
set but differ in the way they were split. The test statistics of the entire data set are made
up of the results from all CV folds.
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CHAPTER 4

METHODS & MATERIALS

In this chapter we will first cover the PCA DVH-reconstruction, around which all models
are built. We will continue to cover the methodologies of the current clinical practice,
and then proceed our methodologies in developing our other, more complex, optimization-
based models. The latter involves feature selection, objective function formulations, as
well as the used validation methods.
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4.1 Principal Components DVH reconstruction framework

At the basis of all of our models stands a simplification of both the OVH and DVH by
means of PCA eigenvalues and eigenvectors. Instead of predicting few points on the DVH,
we predict only the first few PCA eigenvalues, and use the eigenvectors to reconstruct the
entirety of the DVH. The full DVHs follow from a linear combination of these eigenvalues
and their corresponding PCA eigenvectors. It can be said that any DVH in the dataset
can be perfectly reconstructed from the eigenvectors and their corresponding eigenvalues
that result from the DVH dataset PCA decomposition, as follows:

D̃V Hn = DVH +
D∑
i=1

λ̃i,nV i (4.1)

where the tilde denotes parameters that are identical to the data set, and D is the total
number of available dose bins. This works, because the PC set resulting from the PCA is
as large as the number of dose bins. λ̃i,n is the ith PCA eigenvalue of patient n resulting
from the PCA on the DVH data, and V i is the ith PCA eigenvector which is the same for
all samples. λ̃i,n and V i are both ranked from large to small according to their explained
variance ratio (EVR). The proper PCA DVH, DVHp, which is the DVH as approximated
by the first C PC modes, can then be written as follows:

DVHp,n = DVH +
C∑
i=1

λ̃i,nV i (4.2)

where C is the number of PCs chosen for DVH prediction. C should be picked such that a
large amount of the dataset variation is captured by the PCA, while remaining generally
descriptive for unseen data (i.e. the PCA does not ”overfit” to our data). If we now
predict C eigenvalues (λi,n), we can use the result to reconstruct a new DVH prediction
from Equation 4.2.

DVHn = DVH +
C∑
i=1

λi,nV i (4.3)

In words, the general framework of the optimization-based methods is always to predict C
eigenvalues, such that a certain objective function is minimized. Such methods essentially
boil down to finding an estimation function that describes these eigenvalues from a set of
input features [ξ]n and regression coefficients A. Mathematically, we can write:

λi,n =
[
fi(Ai, [ξ]n)

]
n

(4.4)

where A denotes the regression coefficient matrix. The optimal result is found by identi-
fying the regression coefficients, such that a certain objective function is minimized. The
models we used differed in the formulation of these objective functions, for which decisions
were based on intermediate analyses of DVH prediction accuracies on testing and training
data, and on the TC scores. We will first discuss the current KBP clinical practice.
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4.2 Tolerance criterion

The purpose of the tolerance criterion is to define a boundary (the tolerance criterion
boundary, TCB), wherein DVH-predictions should lie to be considered a successful pre-
diction. This is not a statistical measure that is based on the spread of a population, hence
it is not the same as a confidence interval (CI). This boundary is patient-specific, and is

determined from the true DVHs in the data set, D̃V Hn, where n denotes the patient.
Let us imagine a point H on a hypothetical DVH, DVHH . Based on this point, four
TC boundary points can be defined, each a distance ε away from H, P dwnvolume,n, P upvolume,n,

P dwndose,n and P updose,n. The TC boundary, denoted by TCB, is then constructed from the
outer rim of the four sub-boundaries that result from these lower and upper vertical (vol-
ume axis) and horizontal (dose-axis) DVH points. These points can more conveniently be
named:

1. P dwnvolume,n = P southn ; TCdwnvolume,n = TCsouthn

2. P upvolume,n = Pnorthn ; TCupvolume,n = TCnorthn

3. P dwndose,n = Pwestn ; TCdwndose,n = TCwestn

4. P updose,n = P eastn ; TCupdose,n = TCeastn

where the subscript n denotes patient-dependence, which we drop for the rest of this
paragraph for convenience. The naming of each cardinal direction is intuitively explained
by the fact that each point dictates the furthest lower, upper, left and right point a
predicted DVH dose bin respective to point H may be to be counted as a successully
predicted point. In order to visualize this, let us imagine a hypothetical dose-volume

Figure 4.1: Three DVH points, H1, H2, and H3, sampled from DVHH , are indicated
by the blue, green and red dots. The outer boundaries are indicated by the semi-opaque
yellow line.
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histogram, DVHH , referring to Figure 4.1. Let us select three points on DVHH , denoted
by the blue (H1), green (H2) and red (H3) dots. If each point is assigned a lower, upper,
left and right point a distance ε away from DVHH(j), where j ∈ [1, 2, 3], the four TC-
boundaries are constructed from the lines that run through each of its corresponding
boundary points. The remainder of the line is determined by cubic interpolation. It
should be noted that ε, which spans the separation between DVHH and each of the
above-mentioned sub-boundaries, decreases linearly with dose. Formally, ε should be
distinguished by ε1 and ε2, describing vertical and horizontal separations respectively,
meaning they have different units (volume percentage and Gy). Throughout this study,
we have chosen ε1(d) and ε2(d) such that the initial separations ∆V

I and ∆D
I are 5 % and

5 Gy at ε(d = 0 Gy) and the final separations ∆V
F and ∆D

F amount 1 % and 1 Gy at
ε(d = 80 Gy). Remembering that D denotes the prescribed dose of the primary PTV, 77
Gy. Mathematically, ε(d) then translates to:

ε1(d) = ∆V
I −

(∆V
I −∆V

F )

D
d (4.5)

ε2(d) = ∆D
I −

(∆D
I −∆D

F )

D
d (4.6)

Each of the four sub-boundaries are calculated from:

TCsouth(d) = DVHH(d)− ε1(d) (4.7)

TCnorth(d) = DVHH(d) + ε1(d) (4.8)

TCwest(d− ε2(d)) = DVHH(d) (4.9)

TCeast(d+ ε2(d)) = DVHH(d) (4.10)

The yellow boundary indicated in Figure 4.1 results from the outer rim of all sub-boundaries:

TCdwn
′
(d) = min(TCwest(d), TCsouth(d)) (4.11)

TCup
′
(d) = max(TCnorth(d), TCeast(d)) (4.12)

Figure 4.2: The resulting lower and upper boundaries TCdwn
′

and TCup
′

are indicated by
the yellow line. The artefacts visible at the beginning and at the tail are due to sampling
differences between the four sub-boundaries.

42 CHAPTER 4. METHODS & MATERIALS



4.2. TOLERANCE CRITERION

Figure 4.3: The resulting TCB of DVHH is spanned by the area between bdwn and bup,
and is filled in yellow.

The resulting lower and upper TC boundaries, TCdwn
′

and TCup
′

(note the apostrophe)
are yet incomplete; as can be seen in Figures 4.1 and 4.2, the beginning and the tail
need to be processed. For the tail, simply cutting off at the final dose bin suffices, and
the same goes for TCdwn

′
(d < 0). However, for d < ∆D

I where TCeast is undefined,
we simply linearly interpolate with the the maximum of TCnorth. The restored area by
linear interpolation is indicated by green in Figure 4.2. This finally yields our two TC
boundaries: bdwn and bup.

4.2.1 Tolerance criterion evaluation metric 1: TCα

Now that we have discussed how the tolerance criterion is defined, we can continue to define
our final two evaluation metrics. If we imagine a population for which DVH-predictions
were done, one of the first TC-based metrics that comes to mind is the number of predicted
DVH-points that are within this boundary. The fraction of these points is what determines
TCα. This can be modelled with a step function, that is 1 inside the TCB, and 0 outside.
Naturally, as the boundary varies per patient and dose bin, so does the step function.
Given that we again include patient dependence, this step function can be written for
patient n and dose bin d:

Hα,n(d) =
1

2

(
(sgn(DVHn(d)− bdwnn (d)) + 1)

− sgn(DVHn(d)− bupn (d)) + 1)
) (4.13)

TCα,n, being patient-specific, can then be found by summing over all patients and dose
bins, before normalizing:

TCα,n =
1

ND

N∑
n=1

D∑
d=1

Hα,n(d) (4.14)

It should be noted that Hα,n is a series of functions, that is defined differently, depending
on n and d.
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4.2.2 Tolerance criterion evaluation metric 2: TCβ

The second and final TC-based metric is one to serve as a pass-fail criterion for a patient
DVH prediction. The criterion is that we aim for patients to have at least 90% of its dose
points within the TCB. If it does, it counts as a pass. The fraction of the patients who
pass is what defines TCβ. This can once more be modeled with a step function that is 0
for TCα,n ≤ ν = 90%, and 1 above it:

Hβ(TCα,n) =
1

2
(sgn(TCα,n − ν) + 1) (4.15)

TCβ =
1

N

N∑
n=1

Hβ(TCα,n) (4.16)

With this criterion in mind, the aim of our model to reach a TCα and TCβ accuracy of
at least ν = 90% in training data. From here, symbols with a subscript α and β denote
the their connection to TCα and TCβ respectively.
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4.3 Two-point predictor

One of the first approaches we believed to be fruitful was by predicting only a few points
through which a predicted DVH runs, and using the PCA eigenvectors to reconstruct
the remainder of the DVH. The goal was to investigate how well we can predict DVHs by
modelling with a clear focus on simplicity. To do this, we investigated dose-volume metrics
that correlated highly with OVH metrics, and used the DVH PCA modes to reconstruct
the rest of the DVH. Two points that we have found to work well are the V95 and Vmean.

4.3.1 DVH to OVH correlations

In order to select two DVH points to use for modelling, we investigated correlations in the
data. The data confirmed the use for the V95 and Vmean metrics for DVH prediction, as
they were found to correlate highly with the OVH at r = 0 and r = 10 mm respectively
(R2 = 0.946 and 0.866 respectively). For the first point, we determined the R2 of each
DVH point with several OVH points. The correlations can be seen in Figure 4.4. For the
second point, we investigated how the gEUD (Equation 1.3) with different EUD-parameter
values correlated to different OVH points. Correlations can be found in Figure 4.5. Scatter
plots of the V95 and Vmean for the two-point predictor model are shown in Figure 4.6.

Figure 4.4: The R2 values were collected for scatter plots of all DVH-dose bins with OVH
values at several distances r. This yields a number of highly correlating dose-volume
metrics in the high-dose region. The V95 was confirmed to correlate well with OVH(0)
(R2 = 0.94596212), as indicated by the peak in the green line at d = 66 Gy (≈ 0.95 ·DP ,
DP being the prescribed dose of the secondary PTV, 70 Gy)

Figure 4.5: The R2 values were collected for the scatter plots of DVH gEUD-dose for
different a, with respect to OVH values at several distances r. It can be seen that for the
average dose (a = 1), we find an R2-optimum for OVH(r = 10 mm) (R2 = 0.86594754).
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(a) V95 scatter plot with regression function
y = 0.208 + 0.994x, (R2 = 0.946)

(b) Vmean scatter plot with regression func-
tion y = 3.95 + 0.553x, (R2 = 0.866)

Figure 4.6: V95 and Vmean linear regression models and 95% CIs

There were two reasons why the gEUD for a = 1 was chosen, instead of any of the higher-
correlating gEUD metrics. First, the better correlating gEUDs result from scatter plots
with OVH metrics that lie closer to the OVH we are already using for the first point:
OVH(r = 0 mm). Therefore choosing points closer to this OVH point are more likely to
describe redundant information. Second, the OVH(r = 10 mm) gEUD peaks close to a
= 1. Since a = 1 corresponds to the average dose, this was chosen for convenience. In
addition, the OVH(r = 10 mm) seemed like a good trade-off between a decent R2 and
”new” information.

4.3.2 DVH reconstruction

Once we know the linear relationships, we can easily estimate the two DVH points for a
new patient, given his OVH. Let V i be the ith DVH PC mode, for i = [0, 1, 2], and let
DS be the maximum dose of the secondary PTV, 70 Gy. The predicted DVH for patient
n, DVHn, follows from a linear combination of the PC modes and two to-be-determined
coefficients α and β:

DVHn = V 0 + [λ1]nV 1 + [λ2]nV 2 (4.17)

where the subscript n indicates patient-specific parameters and [λ1]n and [λ2]n are scalars.
This results in a solveable system of two linear equations:

DVHn = V 0 +[λ1]nV 1 +[λ2]nV 2

DVHn(0.95 DS) = V 0(0.95 DS) +[λ1]nV 1(0.95 DS) +[λ2]nV 2(0.95 DS)
(4.18)

where the overline denotes averages. This may be written in matrix form:[
DVHn − V 0

DVHn(0.95 DS)− V 0(0.95 DS)

]
=

[
V 1 V 2

V 1(0.95 DS) V 2(0.95 DS)

] [
λ1
λ2

]
n

(4.19)

The solutions to λ1 and λ2 are found from:[
λ1
λ2

]
n

=

[
V 1 V 2

V 1(0.95 DS) V 2(0.95 DS)

]−1 [
DVHn − V 0

DVHn(0.95 DS)− V 0(0.95 DS)

]
(4.20)

The resulting scalar coefficients are put into Equation 4.17 to obtain the DVH prediction.
8-fold CV as well as LOOCV were used for result validation.
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4.3.3 Confidence intervals

In addition, under the assumption of their Gaussian distribution, we determine a 95%
confidence interval CI based on the V95 and Vmean spreads that resulted from the scatter
plots in Figure 4.6. This confidence interval was determined by using adding and subtract-
ing two standard deviations of the V95 and Vmean averages. By propagating the minima
and maxima of these spreads through the DVH reconstruction method as described by
4.3.2, the CI of the entire resulting DVH is determined. However, it should be noted that
V95 − Vmean correlations are unknown. Therefore, it is difficult to precisely determine the
95% DVH confidence interval. Namely, let us consider the CI boundaries that result from
propagation of the maximum V95 and Vmean, and the minimum V95 and Vmean, this would
be most conservative estimation of the 95% CI (i.e. it is likely to not be broad enough
over the entire DVH). The other side of the spectrum is where, in addition, we take into
account both cross-terms ((minimum V95 & and maximum Vmean and vice versa), and take
the outer boundary together with the non-cross terms to estimate the 95% CI. This only
occurs if the V95 and Vmean are completely uncorrelated, which is not expected. Moreover,
because it yields too many unphysical results as exemplified in Figures 4.7, we propose
two alternatives, which are shown in Figures 4.9 and 4.8. Note that forcing the DVH to
be physical is a post-processing step that will be discussed in Section 4.5.5.

(a) CI boundaries (b) CI boundaries forced physical (c) Resulting CI

(d) CI boundaries (e) CI boundaries forced physical (f) Resulting CI

Figure 4.7: A Typical (a-c) and an extreme (d-f) DVH prediction where the 95% CI
resulting from the progressive cross-term propagation does not yield articulate or physical
results
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As for the proposed solutions, we use two alternatives to determine the cross terms that
result in the 95% CI. An overview of how each model is found is shown in Table 4.1.

Alternative 1

The first alternative involves finding four additional cross-terms, by selecting: the max-
imum V95 and average Vmean for cross term 1, the minimum V95 and average Vmean for
cross term 2, the average V95 and maximum Vmean for cross term 3 and the average V95
and minimum Vmean for cross term 4. The CI is found from taking the encompassing of
all six (including the already found upper and lower boundaries) boundaries. Examples
using this methodology are shown in Figure 4.9.

Alternative 2

The second alternative involves finding four cross-terms, by selecting: the maximum V95
and average Vmean for cross term 1,the average V95 and maximum Vmean for cross term 2,
the minimum V95 and average Vmean for cross term 3 and the average V95 and minimum
Vmean for cross term 4. Then, cross term 1 is averaged with cross term 3 and cross term
2 is averaged with cross term 4. The resulting four boundaries define the CI by their
encompassing. Examples using this methodology are shown in Figure 4.9.

Upper boundary Lower boundary Cross term 1
V95 Vmean V95 Vmean V95 Vmean

Conservative Max Max Min Min x x
Progressive Max Max Min Min Max Min
Alternative 1 Max Max Min Min Max Med
Alternative 2 Max Max Min Min Max Med

Cross term 2 Cross term 3 Cross term 4
V95 Vmean V95 Vmean V95 Vmean

Conservative x x x x x x
Progressive Min Max x x x x
Alternative 1 Min Med Med Max Med Min
Alternative 2 Med Max Min Med Med Min

Table 4.1: Overview of the conservative, progressive and the two alternative approaches
for determining the boundaries that approximate of the 95% CI. This table should be
read as follows. For every model, the boundaries in each colum are obtained from taking
either the maximum, minimum or average V95 and Vmean values that result from their
Gaussianity. Med denotes the average, and is simply the determined linear regression
model value as can be seen in Figure 4.6. The ’x’ indicates that that particular boundary
does not apply to the corresponding model.
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(a) CI boundaries (b) CI boundaries forced physical (c) Resulting CI

(d) CI boundaries (e) CI boundaries forced physical (f) Resulting CI

Figure 4.8: These figures show the same two example DVH two-point predictions as in
Figure 4.7 and 4.9, but these are calculated with the first alternative approach

(a) CI boundaries (b) CI boundaries forced physical (c) Resulting CI

(d) CI boundaries (e) CI boundaries forced physical (f) Resulting CI

Figure 4.9: These figures show the same two example DVH two-point predictions as in
Figure 4.7 and 4.8, but now calculated with the second alternative approach.
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4.4 Feature selection

4.4.1 Feature specification

In the context of this research, we predict C PCA eigenvalues λi,n for i ∈ [1, 2, · · ·C], on
the basis of geometrical anatomical features (Equation 4.3). OVH-based features we use
are the OVH metrics OVH(d = 0mm) and OVH(d = 10mm) and the first three OVH PCA
eigenvalues of both the rectum and anal sphincter (AS). In addition, we use the volumes
of the PTV, VPTV and the rectum, Vrect, and we use three additional features that are
derived from CT slice numbers. These features are: first, the PTV length, denoted as
O1. Second, the PTV/rectum length ratio, denoted by O1

O2
. Third, the fraction of the anal

sphincter within the PTV + 5 mm, denoted by O3
O4

. All O1, O2, O3 and O4 are expressed
in millimeters. Figure 4.10 schematically shows a representation of the PTV and OARs
in question. In addition, the meaning of O1 − O4 is visualized. Let us define our feature
vector ξ of length M. The features ξ contains are enumerated as follows:

Figure 4.10: Schematic craniocaudal view of the coronal plane, showing the prostate PTV,
the PTV expanded by 5 mm, the rectum and anal sphincter. As illustration, CT slice
values are based on height coordinates in this image.

ξ1: Rectum OVH(0)

ξ2: Rectum OVH(10)

ξ3: Rectum OVH PCA λ1

ξ4: Rectum OVH PCA λ2

ξ5: Rectum OVH PCA λ3

ξ6: Anal sphincter OVH PCA λ1

ξ7: Anal sphincter OVH PCA λ2

ξ8: Anal sphincter OVH PCA λ3

ξ9: VPTV

ξ10: Vrect

ξ11: o1

ξ12:
o1
o2

ξ13:
o3
o4

4.4.2 Logarithmic regression

We have investigated the use for logarithmic regression basis functions for eigenvalue
prediction. For the analyses where we include logarithmic regression, ξ is appended with
the natural logarithm of ξi for i ∈ [1, 2, ..., 12]. ξ13 is omitted, because its logarithm reaches
minus infinity in the case where there is no AS-(PTV+5) overlap. Thus, in the cases where
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logarithmic regression is used, ||ξ|| = 25. However, logarithmic regressions only proved
useful for training data and deteriorated testing errors (thus causing overfitting), and was
therefore omitted from analyses in this thesis.

4.4.3 Polynomial feature vector

All of our optimization-based models use polynomial regression (i.e. regression usin poly-
nomial basis functions, resulting in the use of higher-order features). To obtain a Qth-order
polynomial feature vector, we simply redefine our basis feature vector ξ such that it con-
tains all Qth-order features. This gives us the polynomial feature vector ζ. For example,
if M = 2 and Q = 2, ζ would be of the form: [1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2 , ], there being 1 0th

order term, 2 1st order terms and 3 2nd order terms, totaling 6 elements. Similarly, if M
= 2 and Q = 3, ζ = [1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2 , ξ

2
1ξ2, ξ1ξ

2
2 , ξ

3
1 , ξ

3
2 ], there being 1 0th order term, 2

1st order terms, 3 2nd order terms and 4 3rd order terms, totaling 10 elements. For the
general case, the length of ζ, Z (i.e. the number of all unique combinations), is found from
an experiment of unordered sampling with replacement of the terms in ξ. Mathematically,
this means that Z results from summing the number of possible qth-order combinations
from q = 0 to q = Q, without using the same combination more than once:

Z =

Q∑
q=0

(
M + q − 1

M − 1

)
=

Q∑
q=0

(M + q − 1)!

(M − 1)!q!
(4.21)

The number of possible individual qth order combinations for varying M were calculated
and shown in Table 4.2

Table 4.2: The number of possible qth degree combinations (features) that can be made for
different numbers of features M, up to a 3rd order. The length of ζ is found by summing
over corresponding column M up to q = Q.

q\M 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 6 10 15 21 28 36 45 55 66 78 91
3 1 4 10 20 35 56 84 120 165 220 286 364 455

q\M 14 15 16 17 18 19 20 21 22 23 24 25 26

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 14 15 16 17 18 19 20 21 22 23 24 25 26
2 105 120 136 153 171 190 210 231 253 276 300 325 351
3 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276

4.4.4 Feature selection

We use the ”two subjects per variable” rule of thumb as proposed by Austin and Steyerberg
[AS15] as a limit for the maximum number of features that can be included, L. This is
a rule of thumb that is used to estimate the amount of regression coefficients that can
be predicted reliably, based on the sample size available. So: the feature vector limit
L = N/2. Since we typically end up with way more features (see also Table 4.2), we
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need a feature selection algorithm to find the most descriptive ones. For this, we use
a combination of a filter and a wrapper method. First, we do a simple, linear fit for
every individual feature with λ1 to see how well it correlates. This is the filter method
part. The feature corresponding to the highest R2 score is chosen. Next, we iteratively
make a new fit for each feature added to the previously chosen feature. The feature
that brings about the greatest R2 increase is the second feature chosen. This follows
a heuristic, forward sequential hill climbing framework as proposed by [RN09] (see the
wrapper methods paragraph of Section 3.2.2). The process is repeated until either all
features are used or when L features have been selected. Then, this process is repeated
C times, resulting in a specific optimal feature set for each eigenvalue. M is the minimal
value of L and the maximum feature vector length:

M = min(L,Z) (4.22)
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4.5 Optimization-based models

The following methods have all involved optimization, but differed in the way their ob-
jective functions were formulated. Optimizations were done by sequential quadratic pro-
gramming in MATLAB’s nonlinear programming solver fmincon.

4.5.1 EV-optimization

The first optimization-based approach was to use an objective function that minimizes
the PCA eigenvalues. This approach essentially is the same as C multiple linear regres-
sion models with polynomial (and logarithmic) features, because the objective function is
simply optimized by OLS. Equation 4.4 becomes for EV-optimization:

λi,n =
[
f(Ai, ζn)

]
n

=


λ1
λ2
...
λC


n

=


a10 a11 . . . a1M
a20 a21 . . . a2M
...

...
. . .

...
aC0 aC1 . . . aCM



ζ1
ζ2
...
ζM


n

(4.23)

in which the estimation function may also be written as:

[
f(Ai, ζn)

]
n

=

M∑
m=0

ai,m[ζm]n (4.24)

The objective function is the squared differences between the true and predicted EVs:

Ei1 =
1

N

N∑
n=1

(
λ̃i,n − λi,n

)2
=

1

N

N∑
n=1

(
λ̃i,n −

[
f(Ai, ζn)

]
n

)2
(4.25)

In which we want to find Ai for which Ei is minimized for i ∈ [1, 2, · · · , C].

min
ai,m

Ei1 = min
ai,m

1

N

N∑
n=1

(
λ̃i,n −

M∑
m=0

ai,m[ζm]n

)2
(4.26)

This results in the OLS-optimal regresion coefficients for predictions at the PCA eigenvalue
level. A drawback of this approach is this model optimizes for something that we are not
directly interested in; it would make more sense to use an optimizer that ensures finding
a fit for the eigenvalues, such that the DVH that results from it is predicted optimally. A
second drawback of this approach is that it is not trivial to constrain the EV optimizer on
the resulting DVH, because the relation between eigenvalues and DVH-imposed constraints
is not intuitive.

4.5.2 DVH-optimization

In order to have the optimization better fit our goal of predicting accurate DVHs, the
objective function was formulated such that quadratic differences between predicted and
true DVHs are minimized. This means that we still predict eigenvalues, however the result
is optimized for the DVH root mean square. Referring to Equation 4.25, we use the DVH
dose bins least squares instead of EVs least squares:

E2 =
1

ND

D∑
d=1

N∑
n=1

(
D̃V Hn(d)−

C∑
i=1

[
f(Ai, ζn)

]
n
V i(d)

)2
(4.27)

CHAPTER 4. METHODS & MATERIALS 53



4.5. OPTIMIZATION-BASED MODELS

and for the optimal regression coefficients:

min
ai,m

E2 = min
ai,m

1

ND

D∑
d=1

N∑
n=1

(
D̃V Hn(d)−

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

(4.28)

As a result, we can find regression coefficients by means of DVH OLS minimization (i.e.
as close to the true DVH along the entire dose grid for the whole population as can get).

4.5.3 Penalized DVH-optimizations

We further investigated ways to improve DVH optimizers to yield better results with re-
spect to our set tolerance criterion boundary (TCB). In addition to minimizing overall
DVH squared differences, we use additional weighted penalty terms for points that are
outside of our tolerance criterion. This means that we sacrifice a bit of overall prediction
accuracy, but we trade that for pushing the DVH prediction closer to or inside the toler-
ance criterion. There are two types of weighted DVH optimizations that we have looked
into. They first one assigns weighted penalties purely based on the TCB. The second one
involves a second boundary, the halfway-boundary (HWB), which is the boundary that
runs halfway between the true DVH and the TCB. Both methods handle weights in the
same way. Let us define ψl(d), the weight basis function of each weight l, that regulates
the penalty weights between 0 and 1, based on the dose bin:

Wk,l(d) = Jk · ψl(d) (4.29)

where Jk is an arbitrary base weight factor, Wk(d) is the resulting weight at dose bin d,
and k denotes the region for which the weight penalizes, the significance of which becomes
apparent in the next paragraph, and l ∈ [1, . . . , 5]. We investigated weight basis functions
of different parametrizations, which are summarized in Figure 4.11.

(a) Constant (b) Linear (c) Quadratic

(d) Exponential (e) Double sigmoidal

Figure 4.11: Figures (a) through (e) display the forms of the used weight basis functions.
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The reasoning behind the shape of these weight basis functions is as follows. First, the
shapes of Figures 4.11a and 4.11c were decided upon to assign more importance to the
higher dose region. Although this basically means that mispredicted points in the high-
dose region are penalized double (once by the TC boundary, once by the increased penalty
weight), it was believed to further improve the model’s predictive power. This was con-
firmed for high-dimensional training data. Second, the shapes of the quadratic and double
sigmoidal weight basis functions (Figures 4.11c and 4.11e) were decided upon, based on
both training and testing errors in the best performing model that showed for a large
number of models the erroneously predicted DVH points were distributed rather uni-
formly along the dose grid. This can be seen in Figure 4.12. Supposedly, using penalty
functions with these shapes would improve predictions roughly between 25 Gy and 65 Gy,
at the cost of accuracy outside of these dose regions. The rationale behind the stationary
weight to penalize points outside the TC boundary along the whole dose grid, and thereby
to aid the optimizer in pushing points closer to the TCB.

Figure 4.12: Wrongly predicted points (i.e. outside the TCB) by the weightless DVH-
optimized predictor . The weight basis function dashed lines are included to visualize how
each corresponding weight penalty relates to model inaccuracy, and are represented by the
right axis.

TC-penalized DVH-optimizations

We included a penalty term for points outside of the TCB. That way, two regions that
can be distinguished, separated by the TC boundary. Regions are denoted by k ∈ [1, 2],
referring to Equation 4.29, where J1 is the union of the two regions and J2 denotes the
region outside of the TC boundary. Intermediate analyses have shown that a base weight
(J1 : J2) ratio of (1 : 10) for points inside vs outside the TCB yielded the best predictions
(much lower penalty weights generally didn’t improve TC scores, whereas higher penalty
weights confounded the overall DVH prediction too much to improve the result in any
way). In line with Equation 4.29, the resulting weights are:

W =

[
W1,l(d)
W2,l(d)

]
= ψl(d)

[
J1
J2

]
(4.30)
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From here on, let us simplify our notations by naming xd,n(d) =
∑C

i=1

[
f(Ai, ζn)

]
n
V i(d),

being the predicted DVH resulting from Equation 4.3. In the objective function used for
the penalized DVH optimizer, OLS is still optimized for. The penalties alter the objective
function and are incorporated as follows:

E3,l =
1

ND

D∑
d=1

N∑
n=1

[
W2,l(d) ·

(
D̃V Hn(d)− xd,n(d)

)2
+

Hdwn
α,n (d) ·W2,l(d) ·

(
bdwnn (d) − xd,n(d)

)2
+

Hup
α,n(d) ·W2,l(d) ·

(
bupn (d) − xd,n(d)

)2]
(4.31)

where Hdwn
α,n (d) and Hup

α,n(d) are the lower and upper boundary terms of the TCα step
function (Equation 4.13):

Hdwn
α,n (d) =

1

2
(sgn

(
xd,n(d)− bdwnn (d)

)
+ 1) (4.32)

Hup
α,n(d) =

1

2
(sgn

(
bupn (d)− xd,n(d)

)
+ 1) (4.33)

With
[
f(Ai, ζn)

]
n

being expressed as
∑M

m=0 ai,m[ζm]nV i(d), written explicitly, the optimal
regression coefficients result from:

min
ai,m

E3,l = min
ai,m

1

ND

D∑
d=1

N∑
n=1

[
W1(d)·

(
D̃V Hn(d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Hdwn
α,n (d) ·W2(d)

(
bdwnn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Hup
α,n(d) ·W2(d)

(
bupn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2]

(4.34)

It should be noted that the normalization factor 1
ND normalizes simply for the patients

and DVH bins without penalty terms. Because the normalization factor does not influence
the optimization, the normalization factor was left as it is for the non-penalized DVH case,
and does not corect for penalty terms. Also, similar to Equation 4.13, it should be noted
that Hdwn

α,n and Hup
α,n are a series of functions that is defined for all n and d.

HWB-penalized DVH-optimizations

To complement the penalized DVH-optimization model, we included an additional bound-
ary, halfway between the true DVH and the TC boundary, the halfway boundary (HWB).
We did this in order to further enable the optimizer to improve the TC score. The ratio-
nale was that the regular DVH weighted optimizer may help to push DVH points towards
the outer boundary of the TCB, but does not necessarily optimize points to be within
the TCB. Moreover, such an approach does not prevent points that are initially inside
the TCB to be pulled outside in order to push another point closer to but not within the
TCB. This may result in an overall deterioration of the TC scores. Having an additional
boundary at the mid-point was believed to further facilitate the algorithm in pushing these
points inside the TCB, and to be less likely to lose accuracy in other points. We included
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an additional penalty term for points outside of the TCB. That way, three regions can
now be distinguished are: within the halfway boundaries, within the TCB and outside the
TCB. Based on these regions, referring to Equation 4.29, we can re-define our weight bases
for k ∈ [1, 2, 3]. Here, J1 denotes the union of all three regions, J2 denotes the region out-
side the halfway boundary, and J3 denotes the region outside the TC boundary. To judge
the effect of the halfway boundary model, we initially used weights of equal magnitude.
Let us denote the weight base factors for equal weights as J0

k , where for this initial model
(J0

1 : J0
2 : J0

3 ) is (1 : 1 : 1). The objective function is set up in the same way (only Jk
are different) as the other models to be discussed now, and is denoted by E0

4 . Continuing,
based on intermediate analyses, we chose weight ratios of (1 : 5 : 10) for (J1 : J2 : J3),
respectively referring to points within the HWB vs. points in between the HWB and the
TCB vs. points outside the TCB.

W =

W1,l(d)
W2,l(d)
W3,l(d)

 = ψl(d)

J1J2
J3

 (4.35)

Note that J2 is re-defined with respect to the penalized regular DVH model. Similar
to penalized DVH-optimization, DVH OLS is still optimized for. However, the halfway
boundaries are now involved, which are defined as the midpoint between the true DVH
and TC boundaries:

cdwnn (d) =
1

2

(
D̃V Hn(d) + bdwnn (d)

)
, ∀d ∈ [1, 2, . . . , D] (4.36)

cupn (d) =
1

2

(
D̃V Hn(d) + bupn (d)

)
, ∀d ∈ [1, 2, . . . , D] (4.37)

such that the objective function can be written:

E4 =
1

ND

D∑
d=1

N∑
n=1

[
W1,l(d)·

(
D̃V Hn(d) −xd,n(d)

)2
+

Gdwnα,n (d) ·W2,l(d)·
(
cdwnn (d) −xd,n(d)

)2
+

Gupα,n(d) ·W2,l(d)·
(
cupn (d) −xd,n(d)

)2
+

Hdwn
α,n (d) ·W3,l(d)·

(
bdwnn (d) −xd,n(d)

)2
+

Hup
α,n(d) ·W3,l(d)·

(
bupn (d) −xd,n(d)

)2]
(4.38)

where Gdwnα,n (d) and Gupα,n(d) are the lower and upper halfway boundary step functions:

Gdwnα,n (d) =
1

2

(
sgn
(
xd,n(d)− cdwnn (d)

)
+ 1
)

(4.39)

Gupα,n(d) =
1

2

(
sgn
(
cupn (d)− xd,n(d)

)
+ 1
)

(4.40)

With
[
f(Ai, ζn)

]
n

being expressed as
∑M

m=0 ai,m[ζm]nVi(d), written explicitly, the optimal
regression coefficients result from Equation 4.41:
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min
ai,m

E4,l = min
ai,m

1

ND

D∑
d=1

N∑
n=1

[
W1,l(d)·

(
D̃V Hn(d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Gdwnα,n (d) ·W2,l(d)·
(
cdwnn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Gupα,n(d) ·W2,l(d)·
(
cupn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Hdwn
α,n (d) ·W3,l(d)·

(
bdwnn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2

+

Hup
α,n(d) ·W3,l(d)·

(
bupn (d) −

C∑
i=1

M∑
m=0

ai,m[ζm]nV i(d)
)2]

(4.41)

Similar to the regular penalized DVH objective function, it should be noted that there is
no intuitive interpretation of the physical meaning of the objective function value, because
the normalization factor does not account for penalized terms. Similar to Equation 4.13,
Gdwnα,n and Gupα,n are separately defined for all n and d.

4.5.4 TC-optimizations

TC optimizers are different from its predecessors in the sense that they do not use any
form OLS optimization in order to determine the optimal linear regression coefficients.
Instead, cost functions are based on the TC evaluation metrics discussed in Section ??.
We have investigated TC-based regressors for both the TCα and TCβ. As discussed,
TC boundaries can be perfectly modeled with step functions (Equations 4.13 and 4.15).
However, because the finite-differencing methods used by fmincon to estimate the gradient
field fall short in this situation (gradients are 0 at every infinitesimally small point in
coefficient hyperspace), it fails to converge to a global optimum. To deal with this, we
used sigmoid-approximations of the point and patient step functions, with the goal of
better enabling the optimizer to navigate through the objective function hyperspace. The
TCβ sigmoid, an example TCα sigmoid function and their approximations are shown in
Figure 4.13. Providing the gradient field directly to the optimizer for more accurate results
has been looked into, but the gradients were not used to obtain the results for these models.
We provide the method to demonstrate how it can be done for future reference.

TCα-optimization

The first TC-based model optimizes for the total number of points within the TCB. We do
this by approximating the step function in Equation 4.13, as this proved to be sufficient
for the optimizer to converge. This is a double-sided function that must be determined
for each patient, at every dose bin. Its sigmoid approximation can be described as:

Sα,n(d) =

[[
1 + e−η

(
xd,n(d)−bdwnn (d)

)]−1
−
[
1 + e−η

(
xd,n(d)−bupn (d)

)]−1]
(4.42)

where η is the sigmoid steepness and its value was arbitrarily chosen to be 100. bdwnn (d)
and bupn (d) define the centerpoints of the sigmoid, which are simply the lower and upper
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TCB values at dose bin d. The TCα optimizer incorporates Equation 4.42 in the objective
function to find a solution that maximizes the TCα.

(a) (b)

Figure 4.13: (a) Example DVH, n = 5 (b) Example representation of the step function
and its double-sigmoid approximation that models the TC boundary at dose d = 10 Gy.

For each patient n separately, every point in DVHn is fed into Sα,n(d) and summed over
the number of dose bins to find the amount of points inside the TC boundary:

TCα,n =
D∑
d=1

Sα,n
(
xd,n(d)

)
=

D∑
d=1

[[
1 + e−η(xd,n(d)−b

dwn
n (d))

]−1
−
[
1 + e−η(xd,n(d)−b

up
n (d))

]−1] (4.43)

Since we want to maximize TCα, the objective function can be written as the sum of
−1 · TCα,n averaged over all patients and dose bins:

Eα,5 =
−1

ND

N∑
n=1

D∑
d=1

[[
1 + e−η(xd,n(d)−b

dwn
n (d))

]−1
−
[
1 + e−η(xd,n(d)−b

up
n (d))

]−1]
(4.44)

where DVHn(d) =
∑C

i=1

∑M
m=0 ai,m[ζm]nV i(d), and the optimal regression coefficients are

found by minimizing E5:

min
ai,m

Eα,5 = min
ai,m

−1

ND

N∑
n=1

D∑
d=1

[[
1 + e−η(xd,n(d)−b

dwn
n (d))

]−1
−

[
1 + e−η(xd,n(d)−b

up
n (d))

]−1] (4.45)

TCβ-optimization

The second TC-based optimizer is one that optimizes for the number of patients that
pass the criterion of having more than ν % of its dose bins inside the TC boundary. A
straightforward way to do this is by approximating the TCβ step function (Equation 4.15)
with a sigmoid as we did for TCα. This approximation is shown by Sβ,n:

Sβ,n
(
TCα,n

)
=
[
1 + e−θ(TCα,n−ν·D)

]−1
(4.46)
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where ν denotes the threshold required for the number of correctly predicted points to
be considered a passing DVH prediction, and θ is the steepness of the sigmoid. However,
in the TCβ optimization, the objective function becomes significantly more complex, and
convexity issues proved problematic. Either the optimizer was unable to identify the
gradient field of the objective function, or converged immediately to a local optimum.
It would require excessive smoothing with the θ term, such that fmincons optimization
becomes unreliable. For that reason, a more complicated approximation was chosen, in
order to better enable fmincon to identify the gradient field. Instead of Equation 4.46, we
used an alternative of the following general form:

Iβ
(
TCα,n

)
=
I ′β
(
TCα,n

)
I ′β
(
D
) (4.47)

I ′β
(
TCα,n

)
= U1

(
TCα,n

)(
1− U2

(
TCα,n

))
+ U2

(
TCα,n

)
(4.48)

Where U1 and U2 are:

U1(TCα,n) =
(
2
TCα,n
ν·D − 1

)R (4.49)

U2(TCα,n) =
( 1

π

(
tan−1(TCα,n − ν ·D) +

π

2

))
(4.50)

Here, R = 9 and is chosen such that Iβ
(
TCα,n = ν · D)

)
= 90%. The Iβ and Sβ,n

approximations of H2 are shown in Figure 4.14.

Figure 4.14: TCβ step function, Hβ, and its approximations, Iβ and Sβ

This function shape was chosen to help the objective function push patients with TCα,n
close to but below ν · D within the TC boundary. This is expected to happen, because
there is much to win in terms of cost minimization in the 60 − 72 TCα region. In the
region TCα > 72, Iβ increases more slowly, and allows for further optimization of TCα,n,
even when the objective of reaching ≥ 90% of the DVH has already been reached. The red
area under Iβ is used to emphasize the are under the curve used for the objective function.
As can be seen, Sβ requires too much smoothing with the θ term to be used as a reliable
approximation of Hβ.
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Next, TCβ is found by averaging the optimized result of Iβ, to obtain our final objective
function value:

Eβ,5 =
1

N

[
N∑
n=1

Iβ(TCα,n)

]
(4.51)

This leaves us with our objective function value that approximates the fraction of patients
that pass the TCβ condition. Remembering that, in order to maximize TCβ, we need can
simply multiply the objective function by −1 and minimize. For the resulting regression
coefficients that maximize TCβ, we can write:

min
ai,m

Eβ,5 = min
ai,m

−1

N

[
N∑
n=1

Iβ(TCα,n)

]
(4.52)

TCβ objective function gradients

Alternatively, one could provide the objective function gradient field to fmincon. This has
the advantage that the optimizer can better navigate through coefficient gradient space,
allowing fmincon to converge to points that better represents the true outcome of TCβ. In
order to provide the gradient field to fmincon, we have to provide the analytical expressions
of:

∂TCβ(ai)

∂ai,m
∀ ai, i ∈ [1, . . . , C], ∀ am,m ∈ [0, . . . ,M ] (4.53)

Generally, the Cth M coefficients contribute to the Cth eigenvalue. Or, one could say that
we use the same regression model C times to predict each corresponding eigenvalue, where
∂[λi]n
∂ai,m

= [ζi,m]n. The partial derivatives are found from:

∂[λi]n
∂ai,m

= [ζi,m]n (4.54)

Then, from Equation 4.3 we find:

∂DV Hn

∂ai,m
= [ζi,m]nV i (4.55)

Remembering that the derivative of a sigmoid has the general form:

d

dx
sigm(x) =

d

dx
[1 + e−γ(x−c)]−1 =

γe−γ(x−c)

(1 + e−γ(x−c))2
(4.56)

It can then be seen from Equation 4.43 that TCα,n for patient n results:

∂TCα,n
∂ai,m

=

D∑
d=1

[ η e−η(DVHn(d)−b
dwn
n (d))

(1 + e−η(DVHn(d)−bdwnn (d)))2

− η e−η(DVHn(d)−b
up
n (d))

(1 + e−η(DVHn(d)−b
up
n (d)))2

]
· ∂DV Hn(d)

∂ai,m

(4.57)

Since we analytically provide the gradient, there is no need for a rough approximation
of Hβ in order for fmincon to estimate the gradient. In this case, using Sβ,n (Equation
4.46), with a large steepness suffices. We can then find the partial derivative of the final
objective function TCβ:

∂TCβ
∂ai,m

=
1

N

∂

∂ai,m

N∑
n=1

Sβ,n(TCα,n) · θe−θ(x−c)(
1 + e−θ(x−c

))2 · ∂TCα,nai,m
(4.58)
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4.5.5 Constrained DVH-optimizations

All of the previously mentioned prediction approaches are unconstrained. So, these mod-
els are allowed to produce any DVH that best fits the objective function. Consequently,
predicted DVHs are allowed to be unrealistic. This means that they can show DVH points
above 100% or below 0%, or that the cumulative DVH has a non-negative derivative.
For this reason, we investigated the possibilities to constrain optimizations to counter-
act these problems and ensure physical DVH predictions. Imposing constraints on the
DVH becomes straightforward as a direct result of having the non-weighted DVH op-
timizer. This is because the DVH-optimizer objective function is directly expressed by
the regression coefficients, as opposed to the EV-optimizer, that requires an intermediary
DVH-reconstruction step. The optimization that was solved for is the same as shown in
Equation 4.28, however now subject to the following constraints:

(i) ∀j,∀n, DV Hn(dj) ≤ 100%

(ii) ∀j,∀n, DV Hn(dj) ≥ 0%

(iii) ∀j,∀n, dDV Hn
ddj

≤ 0%

We have investigated strict and flexible hard constrained optimizations. In strict opti-
mizations, we allow absolutely no violations of the requirements to DVH physicality. For
the flexible case, we hard constrain on the requirements to DVH physicality, allowing a
larger margin. Written explicity in terms of the regression coefficients, optimizations are
constrained to:

∀j,∀n, DV H(dj) +
C∑
i=1

M∑
m=0

ai,m[ζi,m]n · V i(dj)− 100% ≤ Θ1 (4.59)

∀j,∀n, DV H(dj) +

C∑
i=1

M∑
m=0

ai,m[ζi,m]n · V i(dj) ≤ Θ2 (4.60)

∀j,∀n, d(DVH(dj))

ddj
+

C∑
i=1

M∑
m=0

ai,m[ζi,m]n ·
d(V i(dj))

ddj
≤ Θ3 (4.61)

For strictly constrained optimizations, Θ1, Θ2 and Θ3 are 100%, 0% and 0% respectively.
For the flexibly constrained optimizations, Θ1, Θ2 and Θ3 are chosen 102%, -0.5% and 1%
respectively. The model used for constrained optimizations was the non-weighted DVH
optimizer.

4.5.6 Post-processing

A potential pitfall for strictly constrained optimizations could be that this may heavily
influence DVH prediction accuracy of our models. For that reason, the most pragmatic
approach would be to simply force the constraints mentioned in Section 4.5.5 as a post-
processing step to all DVHs. This step is performed on all non-constrained methods.
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4.6 Validation

4.6.1 K-fold cross-validation

In order to choose the appropriate fold sizes for K-fold CV, we performed multiple K-
fold (from K = 2 to K = 10) cross-validations to investigate the sample size needed
to sufficiently train our models. This was done for the EV-optimizer, the direct DVH-
optimizer, and the penalized direct DVH optimizer models. In addition, we investigated
for all evaluation metrics the training and testing errors with respect to the amount of
features included, thereby getting an idea at which point overfitting occurs. The optimal
number of features for all evaluation metrics were estimated 10. For this reason, L = 10
was chosen (Equation 4.22). The graphs on which these choices were based can be viewed
in the appendix (Figures B.2 - B.4).

4.6.2 Training and testing metrics

All prediction methods resulted in a model that takes geometrical features as input, and
outputs a set of DVHs. The resulting DVHs are evaluated by comparing the prediction
to the true DVH in terms of the DVH bins RMS, TCα,n and TCβ. These are also the
error statistics that we use for both training and testing. We have chosen to use 8-fold CV
in all of our optimization-based methods. However, as the only exception, also LOOCV
was done for the two-point method. For the optimization-based methods, the 8-fold CV
resulted in 8 differently trained models. All 8 CVs combined ensure that each patient
is tested once. Since patients end up 7 times in a training set, there are 7 models that
result in a training prediction for every patient. These predictions were averaged to find
the average training prediction. The cross-validation spread is determined by the range
(maximum−minimum) of cross-validation errors.
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4.7 Model overview

For the sake of clarity, this section contains an overview of all the used models. This
overview is displayed below, in Table 4.3

General model Model Optimized Sub-model Objective

objective quantity function

Residuals Two-point predictor V95 - -

minimization Vmean

EV DVH PCA EVs - Ei1

DVH DVH dose bins - E2

DVH − TC φ1 E3,1

φ2 E3,2

φ3 E3,3

φ4 E3,4

φ5 E3,5

DVH −HWB DVH dose bins J0
k E0

4

φ1 E4,1

φ2 E4,2

φ3 E4,3

φ4 E4,4

φ5 E4,5

Constrained DVH dose bins Strict E2

DVH Flexible E2

TC-metrics TCα Sα - E5,α

maximization TCβ Iβ - E5,β

Table 4.3: An overview of the used models. Models can be roughly distinguished by the
general shape of their objective function. Two classes of objective functions are those that
minimize residuals between the true and optimized quantity, and those that maximize the
proposed TC−metrics, as indicated by the blue and red rows respectively. The models are
named based on the model structure. The models DVH−TC and DVH−HWB represent
the respective models that were penalized based on the TCB and the HWB. For some
models, we have investigated similar models that differed slightly in one aspect, but the
general structure of the objective function is the same. The variable or manners by which
sub-models differ is indicated by the sub-model column. The objective function column
displays the symbols used to indicate each objective function as proposed throughout
Section 4.5
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CHAPTER 5

RESULTS

In this chapter we will start by displaying the PCA results of our data sets, followed by
results from our feature selection scheme. From there, we will provide the results obtained
with our used models, starting off with the two-point predictor. Each model section covers
global results that say something about overall performances with respect to the entire
population. Following, we will show a number of DVH predictions that are specific to that
model. With that being said, it should be noted that for the two-point predictor, 95%
CIs are included for their predictions, whereas for the optimization-based models there is
not. They are all, however, evaluated in the same way. A second difference is that the
two-point predictor is validated using LOOCV, in addition of 8-fold CV, whereas for all
optimization-based methods we used only 8-fold CV. For all optimization methods, we
train the models with 10 features. We decided to omit analyses done with logarithmic
features from model evaluation sections, as none yielded better results for testing data,
and ensued a greater degree of overfitting.
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5.1 Preliminary analyses

5.1.1 Principal Component Analysis

The first analysis involved doing the PCA, and finding the resulting variance ratios ex-
plained (EVRs) by each PC mode. We calculated the EVRs for the rectum DVH, for the
rectum OVH and for the AS OVH. The results are displayed in Table 5.1. In addition, the
PCA-reconstructed set of DVHs TCβ was calculated for each subsequent PC mode addi-
tion. These results are shown in Table 5.2. It was based on the information in these tables
that we have decided to include 4 rectum PCA components in our models for prediction.
These PC modes are shown in Figure 5.1

EVR: 1 2 3 4 5 6 7 8

Rectum DVH 87.79 95.66 98.73 99.42 99.66 99.83 99.89 99.93

Rectum OVH 84.46 95.69 98.41 99.37 99.69 99.85 99.91 99.94

AS OVH 88.82 98.25 99.37 99.66 99.81 99.89 99.92 99.94

Table 5.1: Cumulative explained variance ratios for the first 10 principal components of
the rectum DVH and OVH, and the anal sphincter OVH

PC modes: 0 1 2 3 4 5 6 7 8

RMS 8.11 2.83 1.69 0.915 0.617 0.473 0.334 0.271 0.220

CFα 42.70 85.84 93.37 98.61 99.48 99.63 99.76 99.95 99.95

CFβ 11.96 57.61 76.09 94.56 100 100 100 100 100

Table 5.2: The evaluation metrics of the DVH dataset reconstructed with an increasing
number of PC modes. The 0th PC mode designates the average DVH. These values serve
as an upper boundary for model performance.

(a) V0 (b) V1 (c) V2

(d) V3 (e) V4

Figure 5.1: Eigenvectors resulting from the rectum data set PCA
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5.1.2 Feature analysis

The best 5 polynomial features resulting from the methods described in Section 4.4.4, and
their corresponding cumulative correlation coefficients with each of the DVH eigenvalues
are shown Table 5.3. For the remaining features, as well as the best linear features, and the
best features including logarithmic features, the reader can examine Tables B.1 and B.2,
as appended. In addition, a comparison between the cumulative R2 for different feature
selection methods are shown in Figure 5.2. This can be seen for linear features and for
polynomial features in appendix Figure B.1

DVH EVs λ1 λ2 λ3 λ4

1 Feature OVH(10) λrect3 · VPTV λrect3 · VPTV λrect1 · λrect2

R2 0.8458 0.3696 0.2743 0.1453

2 Feature OVH(10) · Vrect λrect2 λrect2 · VPTV OVH(0) · O3
O4

R2 0.8794 0.6606 0.4878 0.2523

3 Feature λrect1 · VPTV VPTV · O1
O2

(OVH(0))2 OVH(10) · O3
O4

R2 0.8972 0.7590 0.6322 0.3081

4 Feature λrect3 · λAS2 (λAS3 )2 OVH(10) · Vrect (λAS3 )2

R2 0.9075 0.7778 0.6855 0.3699

5 Feature (λAS2 )2 λAS2 · Vrect (λAS1 )2 λrect3 · λAS3
R2 0.9120 0.7909 0.7113 0.4164

Table 5.3: The first 5 best correlating polynomial features for each of the four DVH
eigenvalues, as indicated by the columns. The eigenvalues written in the table indicate
rectum and anal sphincter OVH PCA eigenvalues

Figure 5.2: R2 relations for all EVs when fitted with an increasing number of polynomial
(Q = 2) features, using only non-logarithmic features. Thin and thick lines denote filter
and filter-wrapper methods results respectively.
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5.1.3 Clinical practice analysis

RMS TCα TCβ

8-fold CV train errors 4.8042 81.40% 53.26%

8-fold CV test errors 4.9902 80.79% 51.09%

LOOCV test errors 4.9385 80.45% 50.00%

Table 5.4: Training and testing errors resulting from the two-point predictor model

(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The PCA falls short
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(e) Predictions barely fit the TCB (f) Predictions barely miss the TCB

Figure 5.3: Overview of typical DVH-predictions acquired with the two-point predictor

The prediction of patient n = 9 in Figure 5.3c is an example of a bad prediction, where the
two-point predictor is insufficient in correctly predicting most of the DVH, and the con-
fidence interval even more so. Figure 5.3d shows an example where the (two-component)
PCA-reconstructed DVH falls for a large part outside of the TC boundary. Figures 5.3e
and 5.3f show examples of decent (but typical) DVH predictions that run closely along
the boundary of the TCB.
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5.2 Optimization-based predictions

5.2.1 EV-optimization predictions

The CV average and spread train and test errors resulting from the EV-optimization
method are shown in Tables 5.5. Figure 5.4 shows some representative DVHs predicted
with this model.

Training errors Testing errors

RMS TCα TCβ RMS TCα TCβ

Average 2.8213 86.46% 68.83% 3.2242 82.40% 59.09%

Spread 0.1445 2.47% 6.17% 1.1891 20.34% 36.37%

Table 5.5: EV-optimization 8-fold CV train and test errors

(a) A good prediction (b) An average prediction

(c) A bad prediction (d) An improved prediction (Figure 5.3a)
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(e) Otherwise decent prediction failing the TC (f) The PCA falls short

Figure 5.4: Some typical DVH-predictions acquired with the EV-optimized model

In Figure 5.4d we see an improved prediction for specifically patient n = 9 (Figure 5.4d,
compared to the two-point predicted DVH in Figure 5.3a. Also, we can see in Figure
5.4f an example where the DVH reconstructed from the true DVH eigenvalues fails to
be in the tolerance criterion along the entirety of the DVH. What’s more, this proper
reconstruction exhibits unphysical behaviour. In addition, the DVH prediction fails to
capture the behaviour of the PCA.

5.2.2 DVH-optimization predictions

This subsection covers the results of direct DVH-optimization predictions of the regular
DVH optimizer, as well as the penalized DVH optimizers, as well as the halfway-boundary-
assisted models. This includes both the non-weighted and weighted least squares models.

Regular DVH optimization

The CV average and spread training and testing errors resulting from the non-weighted
and weighted regular DVH-optimization method are summarized in Table 5.6. Figure
5.5 shows some representative DVHs predicted with the non-weighted DVH optimizer.
Predictions made with the penalized DVH predictions were omitted, because based on
Table 5.6, it was believed that this optimizer performed about equally well.

Halfway boundary optimization

The CV average and spread training and testing errors resulting from the non-weighted
and weighted DVH halfway-boundary-optimization method are summarized in Table 5.7.
Figure 5.6 shows some representative DVHs predicted with this model. For the same
reason as for the regular DVH-optimizer, we omitted figures of predictions by the penalized
halfway-boundary-assisted models.
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Training errors Testing errors

Sub-model RMS TCα TCβ RMS TCα TCβ

Weightless Average 2.8271 86.66% 69.44% 3.2294 81.90% 61.36%

Spread 0.1064 1.18 % 1.23 % 0.7869 13.97% 36.37%

Stationary Average 2.9028 85.46% 65.12% 3.3390 81.53% 63.64%

Spread 0.1059 2.11 % 6.18 % 0.7532 8.29 % 27.27%

Linear Average 3.0911 87.20% 66.36% 3.5946 82.02% 57.95%

Spread 0.1503 2.87 % 11.11% 0.8962 9.55 % 9.09 %

Quadratic Average 3.0010 85.81% 64.20% 3.4923 81.18% 57.95%

Spread 0.1371 1.75 % 4.94 % 0.8011 8.87 % 27.27%

Exponential Average 2.9973 86.46% 65.12% 3.4803 82.02% 62.50%

Spread 0.1320 2.02 % 7.41 % 0.8078 8.30 % 18.18%

Double Average 3.2867 86.28% 62.04% 3.8295 81.36% 56.82%

sigmoid Spread 0.1920 2.36 % 9.88 % 0.9331 15.22% 27.27%

Table 5.6: Summary for all regular non-weighted and weighted DVH optimizations. Each
color represents the weight as shown in Figure 4.11

Training errors Testing errors

Sub-model RMS TCα TCβ RMS TCα TCβ

Weightless Average 2.8362 86.57% 68.21% 3.2274 82.37% 63.64%

Spread 0.1889 2.88 % 9.87% 1.4093 17.04% 27.27%

Stationary Average 2.9541 87.19% 68.98% 3.4120 82.76% 60.23%

Spread 0.1343 3.29% 7.41% 1.4257 18.86% 27.27%

Linear Average 3.1463 88.10% 67.44% 3.5105 81.76% 56.82%

Spread 0.2197 3.89% 12.34% 1.6298 13.64% 36.37%

Quadratic Average 3.0826 87.63% 67.75% 3.4203 82.20% 57.95%

Spread 0.2023 3.67% 12.34% 1.4983 13.18% 27.27%

Exponential Average 3.0765 88.08% 68.21% 3.4114 82.22% 56.82%

Spread 0.2053 4.95% 13.58% 1.5110 12.61% 36.37%

Double Average 3.3657 88.17% 66.36% 3.7512 81.51% 55.68%

sigmoid Spread 0.2824 3.16% 11.11% 1.8101 16.70% 45.46%

Table 5.7: Summary for all halfway boundary non-weighted and weighted DVH optimiza-
tions. Each color represents the weight as shown in Figure 4.11
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(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The test case barely fails

(e) The test prediction fails (f) The predictions are barely outside of the TCB

Figure 5.5: Overview of some typical DVH-predictions acquired with the DVH-optimized
model
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(a) A good prediction (b) An average prediction

(c) A bad prediction (d) Improved example compared to 5.5d

(e) Another improved example compared to 5.5e (f) A third improved example compared to 5.5f

Figure 5.6: Overview of some typical DVH-predictions acquired with the DVH halfway-
boundary-assisted model
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5.2.3 TC-optimization predictions

Maximizing TCα

The CV average and spread train and test errors resulting from the TCpts-optimization
method are summarized in Table 5.8. Figure 5.7 shows some representative DVHs pre-
dicted with this model.

Training errors Testing errors

RMS TCα TCβ RMS TCα TCβ

Average 3.9304 92.05% 80.09% 4.4255 78.51% 46.59%

Spread 0.5867 2.24% 8.64% 2.7218 22.50% 45.46%

Table 5.8: TCα score optimization 8-fold CV training and testing errors

(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The test case fails
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(e) The train DVH barely passes for all points (f) Similar to 5.7e, but the test case fails

(g) The test case fails (h) Both the regression and the PCA are insufficient

(i) The train case barely misses the TCβ criterion (j) Both predictions miss the criterion

Figure 5.7: Some typical DVH-predictions acquired with the TCα-optimized model

In general, the trend that we see from the TCα-optimizer is that it pushes as many DVH
points within the TC boundary, at the expense of overall prediction accuracy. In training
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data, we see this confirmed in Table 5.8. We see that TCα has improved compared to
all other models, showing a relatively small CV spread (2.24%). The increase in TCα
brings about an increase in TCβ as well (80.1%). On the other hand, we see that the
RMS deteriorates compared to all previous models. The same observations are not seen
in testing data, where typically all evaluation metrics are seen to have deteriorated.

Maximizing TCβ

The CV average and spread training and testing errors resulting from the TCβ-optimization
method are summarized in Table 5.9. Figure 5.8 shows some representative DVHs pre-
dicted with this model.

Training errors Testing errors

RMS TCα TCβ RMS TCα TCβ

Average 4.4607 88.73% 84.26% 4.7371 79.32% 53.41%

Spread 1.0915 5.32% 6.17% 1.5435 9.32% 27.27%

Table 5.9: TCβ score optimization 8-fold CV training and testing errors

(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The test case fails
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(e) The training DVH barely passes the TCβ criterion (f) The testing DVH barely fails the TCβ criterion

(g) The testing DVH barely fails the TCβ criterion (h) The testing DVH barely fails the TCβ criterion

(i) Both the regression and the PCA are insufficient (j) The testing DVH barely fails the TCβ criterion

Figure 5.8: Some typical DVH-predictions acquired with the TCβ-optimized model

The training predictions in Figure 5.8 are often seen to run close to the inner side of the TC
boundary border. In addition, compared to the TCα-model, we observe more predictions
with ≥ 90% of their dose bins inside the TCB, passing the TCβ condition. Examples of

78 CHAPTER 5. RESULTS



5.2. OPTIMIZATION-BASED PREDICTIONS

this are shown in Figures 5.8b, 5.8d, 5.8f, 5.8h and 5.8j. This is also confirmed by Table
5.9, where the TCβ value scores the highest of all of our models, even with a smaller
CV spread than in the TCα-model. Even in atypical situations such as shown by Figure
5.8i (where even the (4-component) PCA reconstruction of the DVH does not suffice),
it appears that the optimizer tries to fit the prediction in the TCB. Another thing that
stands out is that training and testing predictions typically do not show much variation.
Finally, similar to the TCα model, the optimizer does this at the cost of overall accuracy
(and TCα in this case), and this model also does not score very well in terms of testing
errors.

5.2.4 Constrained DVH-optimization predictions

Strictly constrained Flexibly constrained

Training Testing Training Testing

Max DVH 100.0000 101.8634 101.2585 102.4015

Min DVH -0.0026 -3.2598 -0.04980 -0.03790

Max derivative 0.0029 1.7271 1.0000 2.3317

Table 5.10: An overview of the requirements to DVH physicality in the resulting training
and testing DVHs for the strict and flexible models.

Two sub-models that were investigated, were constrained optimization with strict con-
straints and with more flexible constraints. In the strictly constrained case, no violations
of the requirements of realistic DVHs as described in 4.5.5 were allowed. In the flexibly
constrained case, we allowed DVH values up between 102 and -0.5, and a DVH derivative
of at maximum 1. The CV average and spread training and testing errors resulting from
constrained direct DVH-optimization are summarized in Tables 5.11 and 5.12. Figures
5.9 and 5.10 show some representative DVHs predicted with strict and flexible models
respectively. Lastly, it was checked if predictions complied with the set constraints. An
assessment of the requirements to DVH physicality is shown in Table 5.10. Unexpectedly,
there were cases where the strictly constrained training DVHs still showed very minor
violations of the physicality requirements. It was uncertain why this happened, but since
these violations were of such a small magnitute (≤ 0.01 volume %), this was deemed
acceptable even for the strict optimization.

Strict constraints

Training errors Testing errors

RMS TCα TCβ RMS TCα TCβ

Average 4.7998 64.80% 31.64% 4.9166 61.95% 28.41%

Spread 1.1830 11.76% 14.81% 1.5407 25.46% 27.27%

Table 5.11: Strict hard-constrained optimization directly for the DVH dose bins, 8-fold
CV training and testing errors.
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(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The PCA-reconstruction falls short

(e) Another average prediction (f) Relatively good, realistic predictions

Figure 5.9: Overview of some typical DVH-predictions acquired with a strictly hard-
constrained DVH-optimized model.
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Flexible constraints

Training errors Testing errors

RMS TCα TCβ RMS TCα TCβ

Average 3.5161 79.87% 55.09% 3.9947 74.13% 39.77%

Spread 1.9274 22.49% 34.56% 2.4553 20.11% 45.46%

Table 5.12: Flexible hard-constrained optimization directly for the DVH dose bins, 8-fold
CV training and testing errors.

(a) A good prediction (b) An average prediction

(c) A bad prediction (d) The PCA-reconstruction falls short
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(e) Another average prediction (f) A correct training prediction

Figure 5.10: Overview of some typical DVH-predictions acquired with a flexibly hard-
constrained DVH-optimized model.

One of the first things that comes forward from Table 5.10 is that testing DVHs resulting
from constrained models do not have to be purely physical, or even have imposed the
same constraints. From Table 5.11 we see that using strict constraints largely deteriorates
DVH prediction, at least in the direct DVH-optimization model, as we see a decrease in
all evaluation metrics. In addition, the DVH graphs shown for all 6 examples in Figure
5.9 show similar (but obviously not equal) training and testing DVHs, even when the
true DVH clearly differs. When we look at the flexible constraint results in Table 5.12,
we see that these effects are still present (accuracies are still substantially worse than
for the unconstrained DVH predictor), but are already much less expressive. In the DVH
prediction graphs in Figure 5.10, we now see increased DVH variability, as well as improved
predictions when compared to the strictly constrained case.
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CHAPTER 6

DISCUSSION

Through a variety of computational approaches, we have been able to make DVH predic-
tion models, each showing different characteristic DVH predictions, and have shown how
these models perform on the used clinical data set. By constructing a clinical criterion,
we were able to evaluate these models in terms of metrics that were believed better serve
clinical interests, complementary to global prediction accuracy metrics. The two-point
predictor method has been assumed as the current clinical practice, and with this study
we aim to assess how to further improve this current clinical practice. An additional aim of
our study was to construct a model with a TCβ score of ≥ 90%. We will now discuss how
the results coming from each model should be interpreted, cover some of their strengths
and drawbacks, and address the validity of the results of our models.
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6.1 Results interpretation

6.1.1 Clinical practice

The two-point predictor is the simplest of our methods. Its implementation stems from
a clinical wish for methods to be no more complicated than they need to be. But this
simplicity comes at a price; since there are two PC modes and geometrical descriptors
involved, its predictive power is limited. Nevertheless, judging from Table 5.4, the two-
point predictor generally shows a decent performance, where approximately 80% of dose
bins are correctly predicted. One of the assets is its ability to generalize, as training and
testing error differences are minimal. However, there is still much room for improvement in
terms of our evaluation metrics. Something that stands out about the individual prediction
grahps (Figure 5.3), is the production of unphysical DVHs by this model. They show some
very clear violations of the three requirements to DVH physicality. This is an effect that
is inherent to the model, for a large part because this model utilizes (and is limited to)
2 principal components. Because these violations propagate multiplicatively into the CI,
these effects are expressed even more in the confidence intervals. It should be noted
that the way this CI is determined, the CI on display is not a true CI because the true
correlations between V95 and Vmean have not been properly investigated. In addition,
as can be seen from Table 5.2, 2 PCs simply do not explain enough of the DVH data’s
variance to perform well.

6.1.2 EV-optimizer

By optimization on the PCA eigenvalues, we can bring about an increase in overall accu-
racy in the resulting DVH predictions, and thereby increase the correctly predicted points,
and the number of patients that pass our TCβ criterion. Compared to the current clinical
practice, this method shows a clear improvement in all of our evaluations. Although this
model already loses some of its ability to generalize, training and testing errors in 5.5
suggest that this model still reatins a good degree of generalizability. Another peculiar
result is the large spread that is found in the testing errors. As this is something we see
in all our cross-validations, this will be discussed in a later section (Section 6.2.5). The
DVH-prediction graphs resulting from this exhibit lesser degrees of DVH unphysicality
than those from the clinical practice, Figures 5.3a and 5.4d. There are also cases where
the model is insufficient (5.4c) and cases where the PCA is insufficient (5.4f). In the former
case, the regression model is not able to sufficiently predict the eigenvalues, whereas in
the latter case is a rather unique case that contains DVH variantion that is not captured
by the 4 PC modes.

6.1.3 DVH-optimizer

By optimization directly for precision (in terms of quadratic differences) at the level of
the DVH, we have observed this model to allow increased prediction accuracy. Though
only a minor improvement in both training and testing errors, different cross-validations
yielded consistently better average CV-errors. The DVH-prediction graphs (Figure 5.5)
confirm that we see subtle improvements with respect to the EV-optimizer. Finally, the
TCα and TCβ training spreads of 1.18% and 1.23% suggest that this model is more robust
variations due to the random patient sampling of cross-validation.
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6.1.4 Penalized DVH-optimizer

By imposing penalty terms on erroneously predicted points, we have not been able to make
a model that improves traning or testing errors. Although Figure 5.6 shows a minor testing
improvement for the stationary-weighted model (63.64% vs. 61.36%), the deterioration of
training errors suggest that this is a coincidental cross-validation result. None of the other
sub-models yielded better results. However, during earlier stages of this work, we have
seen clear improvements with these models when more features were included, as well as
logarithmic features.

6.1.5 Halfway-boundary DVH-optimizer

Similar to the regular penalized DVH optimizer, from the halfway boundary-assisted model
(Figure 5.7) we see a minor increase in testing error for the weightless sub-model. However,
due to the deterioration of training errors, as well as the increase of training CV spreads,
this model was not directly accepted as superior. Namely, it is uncertain whether this
is an effect that is inherent to the model, or if it is due to the randomness that in CV
sampling. Regardless, three examples of improved generalizability are shown in Figures
5.5d - 5.5f and 5.6d - 5.6f. Although the difference is subtle, the DVH shown in Figure
5.6f shows a testing results that are pushed within the TCB.

6.1.6 TCα-optimizer

By constructing a model that maximizes the amount of correctly predicted points for the
entire patient population in the data set, we have been able to clearly improve TCα and
TCβ scores for training data. With TCα = 92.1% and TCβ = 80.1%, as we can see
from Table 5.8, that the model is effective at reaching this goal. This is confirmed by
the reported CV training spreads, which are of the same order of magnitude most of the
other models penalized models, as well as the EV-optimizer. The TC-metric improvements
come at the cost of overall prediction accuracy, as is confirmed by the deteriorated RMS.
Based purely on the data in the table, this model does not generalize well, as testing errors
show substantially decreased RMS, TCα and TCβ averages. However, representing the
accuracy of a model purely judging from these metrics seems inappropriate. The reason
why becomes clear when examining the DVH prediction graphs (Figure 5.7). A general
trend that arises is that predictions end up close to the TC boundary, such that it can
fit the other DVHs within their respective boundary as good as possible. The problem of
the TC-metrics is that when DVHs are predicted near or on the boundary on such a large
scale, small anatomical deviations from training cases can cause the resulting testing DVH
to be rejected. This makes TC-metrics very sensitive to anatomical changes with respect
to the ”typical” anatomy. As for the DVH prediction graphs (Figure 5.7a), we observe that
the model is still able to predict typical cases well (5.7a). A potential pitfall of this model
may be for the model to completely disregard a ”difficult” patient, in order to increase
the number of correctly predicted points for the majority of the patients. However, we
have not observed this, and DVHs that models were unable to predict well end up to be
not much worse (Figures 5.5c, 5.6c and 5.7c). We can see that the model predicts the
course of the DVH just within the TCB, as exemplified by Figures 5.7c - 5.7e. However,
the DVH shown in Figure 5.7e is a rather peculiar example, as it shows a trend in the 0 -
10 Gy dose region that is not representative of a typical DVH, compared to the ”typical”
results shown in Figures 5.5e and 5.6e. Another patient that appeared difficult for the
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TCα model (and all other models) to predict predict is shown in Figure 5.7h. However,
this result has improved in terms of TCpnts. The prediction shown in Figures 5.7i and
5.7j end up fairly well, but fail for the test case. These two predictions demonstrate the
motivation to use a TCβ optimizer. Seeing TCα result 62.5% and 82.5% in the respective
figures, they do not reach the TCβ criterion to be counted a pass. What’s more, since the
entirety of the DVH training predictions are very close to the TC-boundary, improving
their result in terms of TCβ should require only minimal cost from its cost function. The
ability of this model to generalize will be discussed in the next section, as the TCβ model
exhibits the same behaviour as TCα.

6.1.7 TCβ-optimizer

By incorporating an approximation of the TCβ criterion in out TCα objective function, we
have been able to construct a model that maximizes the number of successfully predicted
patients. Judging from Table ??, this optimizer manages to further increase the average
TCβ score (84.3%). Expectedly, this comes at the expense of TCα (and overall accuracy).
As for the DVH prediction graphs (Figure 5.8), we observe that there are fewer examples
of patients that have a TCα score just below 90%. An example of this is shown in Figure
5.8j. Similar to the TCα model, the TC-metric improvements of this model are carried
over to testing predictions. It is believed in the case for TC-based optimizers that the
proposed TC-metrics allow for a misrepresentation of the testing errors, demonstrating
the sensitivity of these TC-metrics when predictions are close to the TC boundary. This
is reinforced by the fact that the resulting training and testing RMS are very similar,
suggesting that this model does not show a good degree of generalizability.

6.1.8 Constrained DVH-optimizer

By imposing strict constraints on the requirements to DVH physicality, we have forced
realistic DVH predictions from the direct DVH-optimization model. Tables 5.11 and 5.12
suggest that these constraints greatly deteriorate the optimizers ability to make accurate
predictions, and the more flexible we choose our constraints, the better predictions get. In
addition, the strictly constrained model (Figure 5.9) consistently predicts DVHs that are
very much alike. The more flexible we set our constraints, the more variation is observed
in the predicted DVHs (Figure 5.10). However, the desired result of this optimizer is to
produce good DVH that are also realistic. An example that shows the optimizer is able to
do this is from patient n = 7 in Figures 5.5f and 5.6f. These unconstrained models show
good predictions by the DVH and HWB-optimizers, that have been forced physical as can
be seen by the flattened area in the d < 10 Gy dose region. Figure 5.9e shows a decent
and entirely realistic, prediction by the hard-constrained optimizer, whereas the flexibly
constrained optimizer further improves this result (5.10e).
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6.2 Assumptions

All results were acquired under certain assumptions. Some of the most important assump-
tions concern the number of PC-modes, the composition of our feature vector ζ, the way
our TC-boundary was determined, the way we chose to validate our results and lastly our
data selection. Let us now discuss each of these.

6.2.1 PCA

Throughout all of our analyses, we chose to use 4 components for model training and DVH
reconstruction. This was based on the the explained variance ratios of each PC mode, and
on TC-score performances of the proper PCA-reconstructions. It is likely that using 4
components is a good trade-off to include enough variance vs. endangering the model of
over-fitting, but the use of a smaller or larger set of components has not been properly
investigated.

6.2.2 Features

The feature selection method proposed was of a heuristic nature, where we included only
the polynomial features that were most descriptive in terms of DVH PCA eigenvalues
R2. It is believed that this method should provide a set of features that should work
generally well for all models, however it would make more sense to have our feature
selection method custom fit the objective function of each optimization model. In addition,
our feature selection method has not covered all of the feature combinations exhaustively
for computational efficiency reasons. Finally, we have chosen to use the 10 best features
as suggested by our selection method, to minimize over-fitting and to optimize our results
in terms of testing errors. An overview of the least squares error, TCα and TCβ with
respect to different CV fold sizes and features included can be seen in figures B.2, B.3 and
B.4. Based on these figures, it can be argued that the number over-fitting starts to occur
from the inclusion of 10% of the maximum features and onward for least squares error,
and even from 6-8% for TCα and TCβ.

6.2.3 TC-sensitivity

As observed, TCα and TCβ scores exhibit a large range in cross-validation errors, espe-
cially in testing cases. Naturally, the way the TC-boundary was determined influences
this. We performed analyses to make an assessment on the sensitivity of these criteria to
its initial and end width, ∆I and ∆F respectively. The rationale behind this was to con-
firm if the TC-based metrics could fairly reflect the accuracy of a model, by investigating
how these metrics differ for a varying TC boundary initial and end width. To illustrate
this, let us imagine a model with a considerable amount of DVH-predictions that run
barely out of the TCB. Based on its TC scores, it is considered a bad model, although the
global predictions may be considered as quite good, especially if the chosen TCB width is
narrow. The TCα and TCβ scores with respect to different ∆I and ∆F are displayed for
two typical (linear and polynomial regression) EV-optimization models in Figure 6.1.

CHAPTER 6. DISCUSSION 87



6.2. ASSUMPTIONS

(a) Polynomial regression model TCα sensitivity (b) Linear regression model TCα sensitivity

(c) Polynomial regression TCβ sensitivity (d) Linear regression model TCβ sensitivity

Figure 6.1: An overview of the TCα and TCβ scores for training DVHs predicted training
data from two typical EV-regression models done with a manual selection of features.

Judging from Figure 6.1, we can see that TCα and TCβ scores increase at the same
rate when increasing the end-width vs. when increasing the initial width for both the
polynomial model and linear model. This means there is no clear indication that predic-
tion accuracies would improve mostly by changing either one of the parameters ∆I , ∆F .
However, due to the steep increase in TCα and TCβ accuracies in both models in the
lower-width regions, one could argue that the proposed ∆I = 5 and ∆F = 1 are slightly
harsh. Although the TC boundary dimensions were chosen as a mere initial assumption
(i.e. it was not exactly known how strict or exactly how strict or mild the TC boundary
width would be), they were chosen to reflect the clinical desire of KBP models.

6.2.4 Cross-validation

Our validation methods were mostly based on 8-fold CV, in which we use 87.5% of the
available data for model training and 12.5% for testing. It is good practice to reserve a
sample set outside the set that is used for CV, in order to gain an unbiased idea of how
models are expected to perform on completely new data. This would be valuable in order
to provide an unambiguous advice to the clinic on how to improve the clinical practice.
However, because the data set was on the small side, we decided to include the complete
data set for training and testing. In addition, the large spread exhibited by testing data
may be an indication that more training data is required to provide reliable predictions.
For that reason, it may be ideal to cross-validate the results in a leave-one-out (LOOCV)-
manner.
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6.2.5 Data selection

Cross-validations exhibit a large spread for testing data. This suggests that cross-validations
depend highly on the random sampling method used to choose which patients are in the
training and testing set. One of the assumptions we have made when selecting the data
to use for model development was that patient groups 2 and 3 were sufficiently similar in
order to unify them. This was done to maximize the amount of data available for model
training. In hindsight, this may explain some of the spread seen in testing data. Ideally,
models should be re-evaluated with patient groups separated.
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CHAPTER 7

CONCLUSION

Radiotherapy treatment planning remains a complex, time-consuming and often manual
process. Various tools have emerged in the market that automate the treatment planning
process and thereby increase plan standardization. However, automated planning ap-
proaches are not perfect, and still require substantial interaction from the RT treatment
planner. Additionally, it is difficult to judge whether a plan with a more ideal trade-off
between tumour cure and healthy tissue toxicity exists, since the RT technician has not
worked an automated plan. To resolve these issues, knowledge-based planning could be
used. As a part of this thesis study, we have constructed an initial, simplistic KBP tool
that serves as the current clinical practice. We continued to investigate several KBP mod-
elling approaches, in order to improve this clinical practice. Finally, we aimed to build
a model that could correctly predict ≥ 90% of the dose-volume histogram for ≥ 90% of
patients.
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7.1 Conclusion

7.1.1 Summary

In compliance with knowledge-based planning literature, we have shown that the overlap-
volume histogram (OVH) can be used for KBP modelling to predict VMAT rectum dose-
volume histograms in prostate cancer. Reduced order modelling of the OVH and DVH can
be effective in simplifying the data before being used for KBP modelling. However, the
two-point predictor has shown that OVH-metrics can be used to accurately predict specific
DVH points. Regardless, our investigated models included the OVH PCA. Compared to
the current clinical practice, the greatest improvement in overall DVH prediction accuracy
was by means of direct DVH dose bin squares minimization. This model yielded a good
degree of generalization. We then further improved predictions by using the clinically-
driven tolerance criterion (TC), and were able to further improve the amount of correctly
predicted DVH points (TCα = 92.1%), as well as the amount of patients that have ≥ 90%
of their DVH correctly predicted (TCβ = 84.3%). This means that we have not reached
our initial goal of building a model that yielded a TCβ of ≥ 90% in training data.

7.1.2 Study limitations

There are some limitations to this study that should be acknowledged. First, it is im-
portant to note that the criteria on which data selection was based involved only patient
groupification and the prevalence of a femoral prosthesis or bowel loop. There is a pos-
sibility that improved guidelines on data selection may result in more consistent plans,
resulting in better models. In addition, it should be remembered that the data involved
only patients treated at the NKI. On the one hand this increases plan consistency, but on
the other hand limits the available data, and may introduce some bias.

7.1.3 Future directions

Based on our findings, there are several proper recommendations we can make for future
research. First, although, based on the population-wide accuracy evaluations, one may
conclude that the TCα and TCβ models are unable to generalize for unseen data, it is
believed that additional research is required to investigate whether metrics that include a
tolerance criterion are useful for DVH prediction. If the DVH prediction uncertainty could
be better understood based on the anatomy, we could adapt TC-based models and make
robust optimization models such that we can account for these prediction uncertainties.
This would require a quantitative, statistical analysis of the DVH prediction uncertainties
for unseen patients, with respect to their anatomies. Second, investigating how these
models perform when analysed separately for patient groups 2 and 3 may allow models to
be more consistently trained and better generalize for unseen data. To reliably train such
models for the separate groups, additional data may be required. Third, it is believed
that there is a use for non-parametric regression models. This has the advantage that
fitting parameters have no real relation to the independent variables at hand. This way,
the predictor is constructed according to information derived from the data. Previous
KBP literature has shown the support vector regressor to be suitable for DVH prediction
in head-and-neck and prostate cancer [Yua+12]. Additionally, the radial basis regressor
and random forest regressor may be well-suited. To do non-parametric regression reliably,
additional data may be required.
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7.1.4 Proton therapy

Under the veil of personal interest, I will very briefly cover the potential of knowledge-based
planning approaches for proton therapy. As discussed in Section 1.1.1, protons are used
as an alternative external beam radiotherapy modality to photons. Because protons have
the advantage that they completely come to rest inside the tissue after the Bragg peak,
they potentially allow for a better dose distribution due to a more localized dose delivery.
However, since protons are more sensitive to changes in the anatomy of the patient, robust
alrogithms that deal with anatomical undertainties are needed. One way to do this is to
use computational optimization algorithms that find treatment planning settings such
that all anatomical uncertainties are accounted for. This way, for the majority of patients,
a good plan can be found, whereas for the remaining patient additional measures are
required. Although it is not yet much used throughout in state-of-the-art proton therapy
clinics, knowledge-based planning could potentially provide an additional quality assurance
tool also for proton therapy. As an extension of the photon KBP model proposed by
Appenzoller et al. [App+12], one study has successfully incorporated an KBP tool that
can predict bladder and rectum DVHs for proton therapy of prostate cancer [YMS17].
However, KBP for proton therapy is not commonly used, for which some reasons are
enumerated. First, KBP modelling relies heavily on high-quality data (the model can
only be as good as the data allows). With proton therapy being more scarcely used
than photon therapy, having this data at ones disposal can prove problematic. Second,
optimization methods may Second, dose distributions in proton therapy strongly depend
on beam angles and intensities, unlike in IMRT [YMS17]. Therefore, in order to use KBP
for proton therapy, first it needs to be understood how the physics of proton therapy
translates into machine learning modelling.
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APPENDIX A

BACKGROUND INFORMATION

A.1 Dose calculation

For accurate dose calculation, the interaction between radiation and tissue needs to be
known. For photons, this is given by the electron densities, which are given by CT
Hounsfield Units (HUs). The relation of HUs to relevant interaction properties of ra-
diation with tissue have been published and are the basis of dose calculation [Cho+84]
[PHC79]. With the known interactions, treatment planning becomes a matter of finding
proper treatment parameters, such as angles, intensities and machine parameters.

A.2 Uncertainty handling in radiotherapy

In radiotherapy there are many different sources of error during treatment preparation
and execution that limit the accuracy of dose delivery. As a consequence, several safety
margins are required to ensure actually delivering the planned dose. This appendix gives
a short description of only of the most important errors in radiotherapy and the margins
that account for them. The major error sources regarded here are tumour delineation
uncertainties, organ positional variation within the patient and patient setup variations,
and errors are regarded as any deviation between planned and executed treatment.

Systematic and random errors

Error sources have systematic and random components. In fact, each of which has a
different effect on the dose distribution. Random errors blur the dose distribution, which
can in practice be described as a convolution of the dose distribution with the probability
distribution function of the random error [Her04] [LLB99]. Systematic errors cause a shift
of the cumulative dose distribution relative to the target [Her04]. A description of these
errors can be used to create a margin that protects for under-dose of the tumour volume.

94



A.3. BIOLOGICAL MODELLING

Target volume definition

Typically, the process of radiotherapy commences by delineation of relevant OAR struc-
tures and primary tumour volume, or gross tumour volume (GTV), in a planning com-
puted tomography (CT) scan. The clinical target volume (CTV) incorporates the GTV,
and microscopic disease extensions not shown by clinical examination and the CT. Defi-
nition of the CTV is based on radiation oncologist experience, as well as local recurrence
patterns and histological examination of post mortem specimen assessment [Bar+09]. In
order to ensure adequate dose to the CTV, the planning target volume (PTV)) is used in
radiotherapy.

Setup accuracy

Setup errors arise from inaccuracies in the positioning of the patient with respect to the
treatment field. In particular, motion of the skin with respect to internal anatomy limits re-
producibility of the patient setup, introducing a systematic error [Her+00]. However, gross
setup errors are typically prevented by anatomy matching software [Mur+08]. Depending
on the RT indication, immobilization may also aid in minimizing setup errors and improv-
ing reproducibility of treatment. Immobilization is particularly helpful in head-and-neck
treatment, because organ position variation relative to the rigid skull is relatively small.
Studies have indicated that with present-day immobilization methods and well-designed
setup protocols, a setup error standard deviation (SD) of 2 mm or better for each axis is
achievable for prostate irradiation [Bel+96].

Organ motion

A third major source of error is organ motion. It includes periodic movement such as
breathing or pulsation and non-periodic movement such as the filling and emptying of
the bladder and bowels. Organ motion can cause both systematic and random errors. In
prostate irradiation, organ motion errors were found to be more significant than setup
errors, with a motion SD of 5.8 mm in anterior-posterior and 3.3 mm in superior-inferior
direction [Ala+01].

Incorporation of uncertainties into treatment planning margins

Population-based studies have showed the relation between the PTV)-CTV margin and
PTV) coverage. From these, a margin recipe for the CTV was derived, such that 90% of
patients in the population are guaranteed to receive a minimum cumulative CTV dose of
at least 95% of the prescribed dose [Her04] [Her+00]. This CTV margin is approximately
2.5(SDsystematic) + 0.7(SDrandom). This directive is followed by the NKI.

A.3 Biological modelling

Since the goal in radiotherapy is to bring about a biological effect in order to control a
tumour, biological models can be useful for optimization purposes in treatment planning.
Such models are more complex and more difficult to control because of the sheer amount
of uncertainties introduced by the radio-biology.
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A.3.1 Radiobiology

The biological target

DNA molecules are the carriers of all genetic information of the human cell (genome). The
DNA is known to encode for the information of a large number of proteins, which in turn
are responsible for many of the cells processes that are necessary for it to carry out its
function and proliferate. The DNA is made up of two strands of nucleotides (the building
blocks of the DNA), that are tied into one another to form a double helix. All DNA
molecules are contained within chromosomes. These are macromolecules that are known
to encode the information for a large number of proteins, which in turn are responsible for
many of the cells processes that are necessary for it to carry out its function and prolifer-
ate. The fraction of the DNA containing important genetic information is also known as
the biological target. To provide a quantitative feeling for the scale of this target, it can
be stated that only about 1% of human cell volumes consists of chromosomes, and that
about 10% of the chromosomes’ content actually concerns relevant genetic information
[BDO07]. Radiotherapy aims to disrupt cancer cells by effectuating irreparable damage
to this biological target.

Types of damage

The most important forms of radiation-induced DNA-damage are nucleotide damage, DNA
cross-links, single strand breaks (SSBs) and double-strand breaks (DSBs) [BDO07]. When-
ever DNA damage has occured, it can typically be repaired completely from to the comple-
mentary genetic information in the non-damaged DNA strand, leaving no lasting effects.
However, damage may also be repaired incompletely. In this case, the effect of damage
may or may not become apparent at a later stage of the cell or after reproduction. If
sufficient damage is caused, the cell may enter a state of cell cycle arrest (reproductive
death), or apoptosis (self-induced, programmed cell-death). These effects may be caused
through either the direct effect of radiation, or through the indirect effect.

1. Direct effect
The minority (∼ 30%) of DNA damage is caused by ionising rays directly hitting
the DNA. This is referred to as the direct effect of radiation.

2. Indirect effect
The majority (∼ 70%) of the damage is caused indirectly by molecules that are
radicalized due to the ionising radiation. This is referred to as the indirect effect
of radiation. As a consequence, these radicals react with and cause damage to the
DNA. Oxygen-containing molecules, such as the hydroperoxy- (HO2 ) and hydrogen-
peroxide (H2O2 ) radicals, are known to largely contribute to this effect. This is used
for modeling, and will be discussed in paragraph A.3.2.

Fractionation

Tumour cells are known to be intrinsically less effective in repairing DNA damage than
normal tissue cells. This difference is widely exploited in radiotherapy by fractionation of
the total dose over a large number of daily fractions during treatment, allowing normal
tissue to regenerate, ultimately destroying the tumour more effectively.
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A.3.2 Biological models

NTCP and TCP

Basic models that consider biological responses in RT involve tumour control probability
(TCP) and the normal tissue complication probability (NTCP), which are used to model
tumour control and healthy tissue complications. TCP and NTCP models are believed
to be effective cost functions for MCO to map dose distributions into toxicity or cure
outcomes [Cra13].

Linear-quadratic model

In cell studies, survival curves are used to describe the survival fraction of a cell population
when exposed to a certain condition. Such curves are typically assessed on a logarithmic
scale with respect to dose and can be modeled by a linear-quadratic model of the form:

S = e−(αD+βD2) (A.1)

where S is the fraction of surviving cells, D is the dose delivered, and α and β are pa-
rameters capturing intrinsic sensitivity of the cells to ionizing radiation. The mechanistic
interpretation of the model is that cell death is either caused by an SSB, which is char-
acterized by α, or by a DSB, characterized by β [BDO07]. The ratio of α/β denotes
the relative importance of the linear and quadratic dose terms, and controls the shape
of the curve [Bar+09]. When α/β is large, the linear term dominates and the survival
fraction shows a so-called shoulder in the low dose region. Conversely, when α/β is low,
the quadratic term dominates and causes a steepening curve.

Radio-biological effectiveness

A metric that is used for quantifying biological damage is the relative- or radio-biological
effectiveness (RBE). The RBE is defined as the ratio between a reference dose Dref,b

(typically 250 keV photons) necessary to induce a certain biological effect b, and the dose
Da,b of radiation type a of interest, required to achieve the same biological effect under
the same circumstances:

RBEa,b =
Dref,b

Da,b
(A.2)

For the purpose of quantifying the contribution of oxygen radicals to DNA damage, the
oxygen enhancement ratio (OER) was introduced. The OER can be used to quantify the
enhancement of biological damage due to oxygen in the vicinity of the irradiation field.
It is defined as the dose Dhypoxia,j required to induce a certain biological effect j in the
presence of oxygen, compared to the dose Dnon−hypoxia,j inducing the same biological effect
in the absence of oxygen:

OER =
Dhypoxia,j

Dnon−hypoxia,j
(A.3)

This is a principle that can be exploited in tumour sites, because they typically have an
altered vascular structure such that these sites receive sufficient nutrition required for con-
sistent tumour growth [BDO07].
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FIGURES AND TABLES

Figure B.1: R2 relations for all EVs when fitted with an increasing number of features.
The left column shows polynomial feature results with logarithmic features. The mid-
dle and right columns show linear feature results, without and with logarithmic features
respectively. Thin and thick lines denote filter and filter-wrapper results respectively
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Non-log. features Incl. log. features

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

1 ξ2 ξ4 ξ5 ξ4 ξ2 ξ4 ξ5 ξ4
2 ξ10 ξ5 ξ4 ξ13 ξ23 ξ5 ξ4 ξ23
3 ξ3 ξ12 ξ1 ξ10 ξ3 ξ25 ξ1 ξ1
4 ξ6 ξ11 ξ3 ξ1 ξ18 ξ11 ξ15 ξ2
5 ξ7 ξ9 ξ10 ξ2 ξ6 ξ22 ξ23 ξ5
6 ξ1 ξ8 ξ12 ξ5 ξ7 ξ12 ξ25 ξ22
7 ξ5 ξ10 ξ13 ξ9 ξ14 ξ7 ξ13 ξ9
8 ξ9 ξ2 ξ7 ξ11 ξ5 ξ21 ξ12 ξ8
9 ξ11 ξ1 ξ8 ξ8 ξ1 ξ8 ξ7 ξ24
10 ξ13 ξ13 ξ2 ξ12 ξ9 ξ19 ξ3 ξ21
11 ξ8 ξ7 ξ11 ξ6 ξ24 ξ16 ξ2 ξ19
12 ξ12 ξ6 ξ9 ξ7 ξ19 ξ13 ξ8 ξ18
13 ξ4 ξ3 ξ6 ξ3 ξ15 ξ18 ξ18 ξ15
14 1 1 1 1 ξ22 ξ9 ξ10 ξ11
...

...
...

...
...

Table B.1: The 14 linear features most descriptive of each DVH eigenvalue, as selected
by filter-wrapper feature selection. The ones at index 14 are included to account for the
intercept coefficient. This table resembles the middle and right columns in Figure B.1

Non-log features Incl. log features

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

1 ξ2 ξ5ξ9 ξ5ξ9 ξ3ξ4 ξ2ξ23 ξ5ξ16 ξ5ξ9 ξ3ξ4
2 ξ2ξ10 ξ4 ξ4ξ9 ξ1ξ13 ξ3ξ9 ξ4ξ17 ξ4ξ9 ξ1ξ15
3 ξ3ξ9 ξ9ξ12 ξ21 ξ2ξ13 ξ5ξ7 ξ24ξ25 ξ21 ξ9ξ25
4 ξ5ξ7 ξ28 ξ2ξ10 ξ28 ξ3ξ16 ξ5ξ9 ξ2ξ10 ξ7ξ20
5 ξ24 ξ7ξ10 ξ26 ξ5ξ8 ξ5ξ21 ξ4ξ23 ξ2ξ25 ξ1ξ8
6 ξ4ξ5 ξ5ξ10 ξ24 ξ4ξ6 ξ5ξ25 ξ9ξ25 ξ6ξ19 ξ5ξ18
7 ξ210 ξ3ξ5 ξ1ξ5 ξ2ξ7 ξ9ξ18 ξ28 ξ4ξ13 ξ2ξ8
8 ξ22 ξ5ξ8 ξ4ξ10 ξ6ξ13 ξ4ξ16 ξ22 ξ16ξ17 ξ18ξ25
9 ξ3ξ8 ξ4ξ8 ξ4ξ7 ξ3ξ8 ξ5ξ6 ξ7ξ10 ξ1ξ5 ξ28
10 ξ4ξ13 ξ8ξ9 ξ8ξ9 ξ1ξ7 ξ24 ξ5ξ10 ξ6ξ18 ξ5ξ6
11 ξ28 ξ8ξ12 ξ2ξ4 ξ1ξ5 ξ14ξ17 ξ4ξ19 ξ1ξ16 ξ5ξ19
12 ξ3ξ5 ξ4ξ5 ξ3ξ5 ξ25 ξ5ξ20 ξ2ξ5 ξ1ξ17 ξ3ξ5
13 ξ4ξ6 ξ2 ξ3ξ13 ξ7ξ11 ξ5ξ10 ξ1ξ8 ξ15ξ17 ξ29
14 ξ1ξ4 ξ3ξ12 ξ10ξ12 ξ7ξ9 ξ5ξ18 ξ6ξ20 ξ6ξ10 ξ12ξ18
15 ξ3ξ13 ξ1ξ4 ξ8 ξ23 ξ8ξ13 ξ5ξ8 ξ5ξ7 ξ214
16 ξ10 ξ1ξ9 ξ8ξ12 ξ4ξ5 ξ7ξ18 ξ4ξ13 ξ12ξ15 ξ9ξ15
17 ξ5ξ8 ξ11 ξ213 ξ13 ξ8ξ16 ξ13ξ20 ξ1ξ4 ξ6ξ20
18 ξ8ξ9 ξ2ξ12 ξ28 ξ9ξ13 ξ7ξ12 ξ4ξ6 ξ4ξ11 ξ24
19 ξ8 ξ9ξ11 ξ3ξ7 ξ3ξ13 ξ8ξ25 ξ13ξ16 ξ1ξ15 ξ9ξ18
20 ξ7ξ8 ξ2ξ11 ξ6ξ7 ξ4ξ12 ξ8ξ9 ξ4ξ15 ξ13ξ19 ξ8ξ25
...

...
...

...
...

...
...

...
...

Table B.2: 20 polynomial features most descriptive of each DVH eigenvalue, as selected
by filter-wrapper feature selection. This table resembles the left column of Figure B.1.
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(a) 4% features (b) 5% features

(c) 6% features (d) 8% features (e) 10% features

(f) 12% features (g) 14% features (h) 16% features

(i) 20% features (j) 25% features (k) 28% features

(l) 33% features (m) 40% features (n) 50% features

Figure B.2: Least square error train and test errors for several models, with respect to K
folds and L maximum features. Only non-logarithmic features were included.
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(a) 4% features (b) 5% features

(c) 6% features (d) 8% features (e) 10% features

(f) 12% features (g) 14% features (h) 16% features

(i) 20% features (j) 25% features (k) 28% features

(l) 33% features (m) 40% features (n) 50% features

Figure B.3: TCα train and test errors for several models, with respect to K folds and L
maximum features. Only non-logarithmic features were included.
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(a) 4% features (b) 5% features

(c) 6% features (d) 8% features (e) 10% features

(f) 12% features (g) 14% features (h) 16% features

(i) 20% features (j) 25% features (k) 28% features

(l) 33% features (m) 40% features (n) 50% features

Figure B.4: TCβ train and test errors for several models, with respect to K folds and L
maximum features. Only non-logarithmic features were included.
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ABBREVIATIONS

3DCRT 3-dimensional conformal radiotherapy. 13

ALARA As Low As Reasonably Achievable. 15

AS Anal sphincter. 50, 66

CI Confidence interval. 41, 46–49, 65, 84

CT Computed Tomography. 14, 26, 50, 94, 95

CTV Clinical Target Volume. 20, 95

CV Cross-validation. 37, 46, 63, 65, 70, 71, 75, 77, 79, 81, 84, 85, 87, 88

DSB Double-Strand Break. 96, 97

DVH Dose Volume Histogram. 3, 7, 15, 22, 23, 26, 39–41, 43–47, 49, 53–60, 62, 63,
65–67, 69–88, 92, 93

EV Eigenvalue. 7, 53, 62, 63, 67, 70, 71, 84, 85, 87, 88, 98

EVR Explained Variance Ratio. 32, 33, 40, 66

gEUD Generalized equivalent uniform dose. 19, 45, 46

GTV Gross Target Volume. 95

HU Hounsfield Unit. 94

HWB Halfway boundary. 54, 56, 57, 64, 86

IMRT Intensity Modulated Radio-Therapy. 13, 16, 22, 93

KBP Knowledge-based planning. 3, 20–23, 40, 88, 91–93

KL Karhunen-Loève. 31, 32
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Abbreviations

LOOCV Leave-one-out cross-validations. 37, 46, 63, 65, 88

MCO Multi-criteria optimization. 16, 17, 21, 22, 97

MLC Multi-leaf collimator. 13, 18

MSE Mean Square Error. 32, 33

NKI Netherlands Cancer Institute. 3, 5, 20, 23, 26, 92, 95

NTCP Normal tissue complication probability. 97

OAR Orgat at Risk. 14–17, 21–23, 26, 50, 95

OER Oxygen-Enhancement Ratio. 97

OLS Ordinary least squares. 29, 31, 53, 54, 56–58

OVH Overlap Volume Histogram. 3, 7, 21–23, 26, 40, 45, 46, 50, 66, 67, 92

PC Principal Components. 32, 33, 40, 46, 66, 84, 87

PCA Principal Component Analysis. 3, 27, 31–33, 39, 40, 45, 50, 53, 65–69, 71, 76,
78–81, 84, 87, 92

PTV Planning Target Volume. 14, 15, 17, 19–23, 42, 45, 46, 50, 95

RBE Relative or Radiobiological Effectiveness. 97

RID Reactor Institute Delft. 3, 5

RMS Root mean square. 3, 63, 70, 72, 75, 77, 79, 81, 85, 86

ROM Reduced Order Modelling. 3, 23, 31

RT Radiotherapy. 12, 13, 16, 18, 20, 91, 97

RTT Radiotherapy Technician. 3

SD Standard deviation. 95

SQP Sequential quadratic programming. 18

SSB Single-Strand Break. 96, 97

SV Seminal Vesicles. 19, 20

TC Tolerance criterion. 3, 7, 40–44, 55–60, 69, 71, 76, 78, 85–88, 92

TCB Tolerance criterion boundary. 41, 43, 44, 54–59, 64, 69, 73, 78, 79, 85, 87

TCP Tumour control probability. 97

TPS Treatment Planning System. 14

VMAT Volumetric Modulated Arc Therapy. 13, 16, 18, 22, 26, 92
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