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Abstract

This thesis reports the results of research into the stability of the all-to-all coupled discrete
time Kuramoto model under constant, matched input disturbances. The discrete time Ku-
ramoto model can be used as a dynamic, decentralized multi-agent orientation coordination
system: once initialized, the agents will communicate their orientations to all other agents
and calculate their own step-update based on the received data. A properly controlled and
undisturbed Kuramoto model can direct agents to two final, stable sets of orientations: either
all agents align to the same orientation or they form a balanced set of orientations with the
characteristic that the centre of gravity of all orientations on the unit circle is at the origin.

These final states will not be reached when at least one of the agents is influenced by a
disturbance. Not only will this agent be affected, but because of the networked system, the
disturbance in one agent will influence other agents as well. Understanding the Kuramoto
model enables the design of controllers that can attenuate the influence of disturbances. All
controllers are designed with the assumption of constant matched input disturbances.

The first controller is an error feedback controller. For this strategy, the original Kuramoto
model had to be modified. The resulting controller can attenuate the effects of matched input
disturbances in a system of agents, but individual agents with matched input disturbances
will not reach a steady state.

The second controller is based on predictor-error feedback and the Kuramoto characteristic
that the average orientation in a Kuramoto model is constant. The controller is augmented
with an algorithm that generates a one-step ahead prediction based on the known states and
inputs. Since the disturbance is assumed to be constant, its effects can be calculated and
attenuated in the next time step. This controller succeeds in directing the system to the same
aligned set as the undisturbed system, although via a different trajectory. The controller also
succeeds in directing the system to a balanced set, but for systems with N ≥ 4 agents that
balanced set is different from the undisturbed set.

Since the second controller showed that a deviation from the undisturbed trajectory leads to
a different balanced set, the third controller is designed with reference trajectories that do
not use the actual states and inputs, but are generated fully autonomously. The difference
between reference and actual state is processed by a proportional-integral algorithm to ensure
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zero steady state error. This controller however has the possibility of destabilizing the system,
when not properly tuned.

All controllers have their merits: the first controller decouples the agents, thereby preventing
that a disturbed agent affects others. Under constant disturbance, the second controller
guarantees stability, but will let the agents follow different trajectories than the undisturbed
system, leading to different balanced sets. The third controller can direct all agents to their
undisturbed trajectory, but can negatively impact the stability properties of the Kuramoto
controller when improperly tuned.
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Chapter 1

Introduction

1-1 Motivation

Since the late 1980s, researchers have been investigating mobile multi-agent systems [2]1.
Multi-agent systems are preferred over single agent systems when [3]:

1. the task complexity is too high for a single agent to accomplish;

2. the task is inherently distributed;

3. building several resource-bounded agents is much easier than having a single powerful
agent;

4. multiple agent can solve problems faster using parallelism;

5. the introduction of multiple agents increases robustness through redundancy.

For instance, in [4] it is described how a group of heterogeneous agents can plan and allocate
different tasks to different agents to construct a lunar base. In [5] an example is given of
multiple homogeneous agents working together to move an object that is too large for a single
agent to move. In [6] a group of agents is shown iteratively sweeping an area to provide
maximum coverage. In all three examples, the success of the group of agents depends on
coordination between the group members, specifically the coordination of the motions and
actions of the group members.

1-2 The coordination problem

To have an agent exhibit the desired behavior its states have to be controlled. Controlling
multiple mobile agents gives more challenges than just the sum of states. An agent in an

1In [2] the term robots is used. In this thesis, the more general term agents will be used
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2 Introduction

environment without other agents or obstacles can reach its desired location without risk of
collisions. Adding one or more agents creates the risk of collisions and thus the task of collision
avoidance. Decision-making structure, communication and motion planning are identified in
[3], [7] and [8] as additional problems for multi-agent systems.

1-2-1 Static versus dynamic coordination

Static coordination is also known as offline coordination. In general, this type of coordination
means that the mobile agents adopt a set of rules and agreements before they begin a task.
In [9] this has been exemplified by giving agents traffic rules to obey. According to [7], static
coordination can handle complex tasks, but is less suited for real time controlling, whereas
dynamic coordination is suited for real-time controlling, but it cannot handle complex tasks as
well as static coordination. The characteristics of coordination can be improved by combining
static and dynamic coordination into a hybrid form.

1-3 The Kuramoto model as a multi-agent coordination system

A particular example of a dynamic, multi-agent coordination system is the discrete time
representation of the Kuramoto model. The original, continuous time Kuramoto model [10]
was used to model chemical oscillations, waves and turbulence for all-to-all coupled particles.
Following the original research, a discrete time representation of the Kuramoto model [11]
was designed. This discrete time model was then further researched and applied to the
coordination of the orientation of mobile agents with constant velocities [12]. The discrete time
Kuramoto model enables users to design a group of mobile agents as a leaderless swarm that
can either align their orientations so that after a while all agents have the same orientation,
or they can balance their orientations2. More recent research [13] has augmented the discrete
time Kuramoto model to include collision avoidance and to shift the groups behavior from
aligned to balanced as a target location is approached. Until now, the discrete time Kuramoto
model has been researched with the assumption of absence of disturbances. As will be shown
in chapter 2, a disturbance in any of the agents in a Kuramoto model will affect all coupled
agents. Using the undisturbed Kuramoto model as reference, attenuating the disturbance and
its effect is a servo problem: all agents must track the undisturbed reference trajectory. By
investigating the servo problem, this thesis extends the research on the discrete time Kuramoto
model by researching disturbance attenuation options and provides recommendations for use
cases.

1-4 Outline

The subject of this thesis is disturbance attenuation in the discrete time Kuramoto model.
This subject was chosen after an initial literature review of multi-agent formation control. The
second chapter will give an introduction to the Kuramoto model, a review of relevant publica-
tions about the discrete time Kuramoto model and an overview of the disturbed discrete time

2Aligned and balanced behavior will be further explained in chapter 2.
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1-4 Outline 3

Kuramoto model. After these preliminaries, different disturbance attenuating controllers will
be designed and evaluated in chapters 3, 5 and 4. The last chapter contains conclusions and
recommendations.
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Chapter 2

Preliminaries: the Kuramoto model

This chapter introduces and explains the different variations of the Kuramoto model used in
research and applications. The chapter starts off with the original, continuous-time Kuramoto
model (2-1), followed by the zero-order hold, first order discrete-time approximation model
(2-2) and the discrete-time Kuramoto model in mean field coupling form (2-4). This chapter
then adds to the research in [14] by combining the relation between balanced orientations for
N = 2 and N = 3 with the constant average orientation in an undisturbed Kuramoto model
in order to precisely predict the final orientations. After the introduction of the undisturbed
Kuramoto model, the effects of matched input disturbances are demonstrated. After these
preliminaries, the chapter introduces and refines the research goals.

2-1 The original continuous-time Kuramoto model

The Kuramoto model is a mathematical model that describes the behavior of coupled phase
oscillators [10]. The continuous-time model is given by1

θ̇(t) = ωi − K

N

N∑
j=1

sin(θj(t) − θi(t)). (2-1)

The symbols used in equation 2-1 are given in Table 2-1. The subscript j is for all agents
that are coupled with agent i. In this thesis, unless explicitly stated otherwise, all models are
assumed to be all-to-all coupled systems. For a system of N = 4 agents, the graph topology is
then as shown in Figure 2-1, with the agents in red and the connections, including self-loops,
in black.

1Sometimes the Kuramoto model is represented with a ’+’ between ωi and K
N

instead of ’-’. This has no
effects on the research, since the coupling strength K can be either positive or negative, and the different
characteristics of the system behavior can always be selected.
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6 Preliminaries: the Kuramoto model

Table 2-1: Symbols from Equation 2-1

Symbol Description
θ Agent orientation
θ̇ Angular velocity
ω Natural frequency
K Coupling strength
N Number of agents
t Continuous time

Figure 2-1: Graph for four all-to-all coupled agents

2-2 The discrete-time Kuramoto model

A discrete-time model with fixed time step can be used, if the Kuramoto model is to be
used for a system of networked physical agents with intermittent communications. [11]. The
zero-order hold discretized Kuramoto model is then given by:

θi(h+ 1) = θi(h) − Kτ

N

N∑
j=1

sin(θj(h) − θi(h)), (2-2)

where the new symbols are τ for the time step used for discretization and h for the time
index in discrete-time. The natural frequency has been left out in equation 2-2, since all
agents are assumed to be identical, and the agents can be set in a rotating frame. Since
the difference in agent orientation between two consecutive time steps is determined by an
algorithm that determines the characteristics of the Kuramoto model, this part of equation

2-2 (−Kτ
N

N∑
j=1

sin(θj(h) − θi(h))) will be referred to as the Kuramoto algorithm. It is worth

noting that the Kuramoto model in equation 2-2 has no random parameters and is therefore
deterministic. This fact will be used later on in preditions and simulations.

The Kuramoto model in equation 2-2 has been reformulated in [12] using the phasor R as
order parameter:

R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
. (2-3)

J. Vlaardingerbroek Master of Science Thesis



2-3 Aligned and balanced sets 7

Using ρ(h) ≡ ∥R(θi(h))∥ and ψ(h) ≡ ∠R(θi(h)), the discrete-time Kuramoto model in mean
field coupling form becomes:

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)). (2-4)

The Kuramoto algorithm is now reformulated to:

−Kτρ(h) sin(ψ(h) − θi(h)) (2-5)

The magnitude of the phasor, ρ(h), can reach values from zero to one and is an indication of
the order in the system. The definitions of the aligned and balanced sets are [12]:

Aligned set : A = {θi(h) | ρ(h) = 1}
Balanced set : B = {θi(h) | ρ(h) = 0}.

In the balanced set, when ρ(h) = 0, the phasor will not have an orientation. However, since
the Kuramoto model converges asymptotically ρ(h) = 0 will only be reached as h → ∞,
so before h = ∞, ψ(h) can still be calculated. A visual representation of the aligned and
balanced set can be seen in Figure 2-2. Figure 2-2a shows that the phasor is at a distance
ρ(h) = 1 from the origin, while in Figure 2-2b the phasor coincides with the origin.
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Figure 2-2: Visual representation of an aligned and a balanced set

2-3 Aligned and balanced sets

For all-to-all coupled, identical agents, the behavior of the system is determined by the value
of the product Kτ . If −2 < Kτ < 0, then the agents will converge to an aligned set. If
0 < Kτ < 2, the agents disperse until they are in a balanced set [12].
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8 Preliminaries: the Kuramoto model

2-3-1 Characteristics of the aligned set

Asymptotic stability of the aligned set for N = 2 is proven in [11]. Asymptotic stability of
the aligned set for any N is proven in [12]. The evolution of N = 4 agent orientations towards
an aligned set is illustrated in Figure 2-3.

0 1 2 3 4 5 6

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

i [
ra

d
]

Figure 2-3: Agent orientations

The evolution of ρ(h) for the same agents as used in the system in Figure 2-3 is given in
Figure 2-4. To better show the asymptotic behavior of the aligned set, the vertical axis in
Figure 2-4 is changed into 1 − ρ(h).

0 1 2 3 4 5 6

Time [s]

10-6

10-5

10-4

10-3

10-2

10-1

100

1
-

Figure 2-4: Magnitude of the phasor

An interesting observation can be made in Figure 2-5: θavg(h) = 1
N

N∑
i=1

θi(h)) never changes.

The reason that θavg(h) never changes is that the function that handles the interaction be-
tween agents (the sine) is an odd function, and the adjacency matrix for the symmetric graph
in Figure 2-1 is undirected, resulting in a symmetric Laplacian matrix L with the property
1

⊤L = 0 [15]. This will be very useful when designing controllers, since the average orienta-
tion can be checked for errors at every time step, and the final aligned orientations can be
predicted.

J. Vlaardingerbroek Master of Science Thesis



2-3 Aligned and balanced sets 9
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Figure 2-5: Orientations

2-3-2 Characteristics of the balanced set

Asymptotic stability of the balanced set for N = 2 is proven [11], while asymptotic stability
of the balanced set for any N has not been proven yet, but is conjectured [12]. Further
research [14] has proven for N < 5 that the complex exponentials of balanced orientations
in the Kuramoto model sum up to zero. This is equivalent to stating that the magnitude
of the phasor is zero. It also explains why it is difficult to predict balanced orientations for
the Kuramoto model with N > 3: the complex exponential of an agents orientation will
sum up to zero with that of a single other agent that has an angle of π with respect to the
first agent. The remaining agents (two remaining if N = 4) can have any combination of
orientations whose complex exponentials sum up to zero, without influencing the first two.
However, under the assumption that the set of balanced states found in [14] also holds for
the discrete-time Kuramoto model (2-2), it is possible to predict the balanced orientations
for N = 2 and N = 3, which is useful for control. For N ≥ 4, not enough equations can be
formulated for the number of unknown variables. The final orientations for the agents can
not be predicted, so they cannot be used in a feedback setting. The average orientation can
be predicted, since it is constant in an undisturbed Kuramoto model.

Balanced orientations, N = 2

According to [14],

lim
h→∞

θ2(h) − θ1(h) = π. (2-6)

Recalling that the average orientation in the Kuramoto model is constant

lim
h→∞

θ1(h) + θ2(h)
2 = θavg(0) = θ1(0) + θ2(0)

2 , (2-7)

allows for combining equations 2-6 and 2-7, finding:

lim
h→∞

θ1(h) = 2θavg(0) − lim
h→∞

θ2(h),

= 2θavg(0) − lim
h→∞

θ1(h) − π,

= θavg(0) − π

2 ,

(2-8)
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10 Preliminaries: the Kuramoto model

and combining equations 2-6 and 2-8 results in:

lim
h→∞

θ2(h) = θavg(0) + π

2 . (2-9)

The results of a simulation can be seen in Figure 2-6: both agents converge to their predicted
orientation and the average orientation is constant.
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Figure 2-6: Simulation for N = 2, balanced

Balanced orientations, N = 3

According to [14], if one balanced orientation is determined, the other two balanced orienta-
tions can be found by adding or subtracting 2π

3 . Mathematically:

lim
h→∞

θ1(h) = lim
h→∞

θ2(h) − 2π
3 ,

lim
h→∞

θ2(h) = lim
h→∞

θ2(h),

lim
h→∞

θ3(h) = lim
h→∞

θ2(h) + 2π
3 .

(2-10)

Recalling that the average orientation in the Kuramoto model is constant:

lim
h→∞

θ1(h) + θ2(h) + θ3(h)
3 = θavg(0) = θ1(0) + θ2(0) + θ3(0)

3 (2-11)

allows for combining equations 2-10 and 2-11, finding:

lim
h→∞

θ2(h) = 3θavg(0) − lim
h→∞

θ1(h) − lim
h→∞

θ3(h),

= 3θavg(0) − lim
h→∞

θ2(h) + 2π
3 − lim

h→∞
θ2(h) − 2π

3 ,

= θavg(0),

(2-12)
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2-4 Matched input disturbance in the Kuramoto model 11

and therefore:

lim
h→∞

θ1(h) = θavg(0) − 2π
3 ,

lim
h→∞

θ2(h) = θavg(0),

lim
h→∞

θ3(h) = θavg(0) + 2π
3 .

(2-13)

The results of a simulation are illustrated in Figure 2-7: all agents converge to their predicted
orientation and the average orientation is constant2.
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Figure 2-7: Simulation for N = 3, balanced

2-4 Matched input disturbance in the Kuramoto model

Until now this thesis has only discussed undisturbed models. The purpose of this thesis is
disturbance attenuation in discrete-time Kuramoto models. Now, a constant matched input
disturbance (di) will be introduced, changing the model into:

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) + di (2-14)

The system is represented in Figure 2-8. The signals and systems are given in Table 2-3.

Since the Kuramoto model only uses relative measurements between agents, disturbances may
spread through the network [16]. Figures 2-9 to 2-11 show a simulation of a system that is
supposed to go towards an aligned or balanced set, but one agent has been given a constant
matched input disturbance.

2In Figure 2-6a, the Kuramoto model moving towards a balanced set shows a remarkable difference with
the Kuramoto model moving towards an aligned set in Figure 2-5. In an aligned set, ψ(h) always coincides
with θavg(h). In a balanced set with N > 2, ψ(h) may coincide with θavg, but it never did for any simulation
for this thesis. Further exploration and proof for this observation are outside the scope of this thesis.
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12 Preliminaries: the Kuramoto model

Figure 2-8: Kuramoto model with matched input disturbance

Table 2-2: Blocks from Figure 2-8

Block Description
KA Here the Kuramoto Algorithm (2-5) is used to calculate input ui(h)
P Plant: here the agents carry out their step-update

Table 2-3: Variables from Figure 2-8

Variable Description Equation
or constant

ui(h) calculated input ui(h) = −Kτρ(h) sin(ψ(h) − θi(h))
ρ(h) phasor magnitude ρ(h) = ||R(θi(h))||
ψ(h) phasor orientation ψ(h) ≡ ∠R(θi(h))

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
θi(h) agent state θi(h+ 1) = θi(h) + ui(h) + di

di disturbance unknown constant
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Figure 2-9: Agent orientations

In Figure 2-9 the disturbed agent displays the saw tooth movement. This is caused by angle
wrapping. It is clear that the disturbance spread to other agents as well. Furthermore, Figure
2-10 shows that the average orientation is not constant in the disturbed systems. Figure 2-11
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2-5 Research goal 13

shows that the system does not converge to either an aligned or balanced state.
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Figure 2-10: ψ(h) and θavg(h)
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Figure 2-11: Magnitude of the phasor

2-5 Research goal

Previous publications on the discrete-time Kuramoto model [11], [12], [13] did not report about
disturbances in the Kuramoto model. This thesis will contribute to the field of research into
the discrete-time Kuramoto model by being the first publication to investigate the effects of
disturbances and methods for disturbance attenuation. The focus of this thesis will be on
matched input disturbances because of practical applications: the mobile agents as researched
in [12] and [13] can be affected by real world load disturbances caused, for example, by wind
or terrain. Since load disturbances typically have low frequencies [17], this thesis will focus on
the lowest frequency: constant disturbances. The results of this thesis will enable the mobile
agents from [12] to attenuate constant disturbances and it will be a step towards attenuating
disturbances with dynamics that are much slower than the dynamics of the agents in [12] and
[13]. This thesis not only designs controllers that reach asymptotic stability of the disturbed
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14 Preliminaries: the Kuramoto model

systems, but also lets the agents exhibit behavior as close to undisturbed behavior as possible.
The main research goal can be defined as follows:

"The goal of this research is to design a controller that attenuates the effects of constant
matched input disturbances in a discrete-time Kuramoto model"

This research goal can be further refined, because the characteristics of the term discrete-time
Kuramoto model are not completely defined. Moving the Kuramoto model from continuous
to discrete-time leaves some space for simplifications and adjustments to suit the problem at
hand. For example, in the past, a one-to-all coupled controller has been implemented with
successful results [12], which is not strictly according to the all-to-all characteristic of the
Kuramoto model. Therefore, in this research other simplifications and adjustments will be
implemented and explained to reduce model complexity and computational cost and to reach
the research goal.

2-5-1 Refined research goals - aligned set

The first refined research goal is based on convergence to an aligned set. The controller should
direct the agents in a way that the magnitude of the phasor in the presence of disturbances
asymptotically goes to 1 if −2 < Kτ < 0. Mathematically:

lim
h→∞

||Rd(h)|| = 1 (2-15)

Since it might be possible that the agents in a disturbed system converge (marked by the
superscript d) to an aligned set with an orientation that is different from the agents in an
undisturbed system (marked by the superscript u), this must be countered. The second re-
search goal is therefore based on the characteristic of the Kuramoto model that the average
orientation is constant. If −2 < Kτ < 0 and the magnitude of the phasor goes to 1, the
orientation of all agents in the disturbed system asymptotically should go to the same ori-
entation as the agents in the undisturbed system, that is, to the initial average orientation.
Mathematically:

lim
h→∞

∠Rd(h) = lim
h→∞

∠Ru(h) (2-16)

If the first two research goals are achieved by more than one controller, a third criterion can
be used to compare the controllers and quantify which controller is more effective. An ideal
controller would direct the evolution of agent orientations in a disturbed system to the same
trajectories as in an undisturbed system. Mathematically:

θd
i (h) − θu

i (h) = 0 (2-17)

In real world applications, with unknown disturbances, equation 2-17 cannot hold for all h. If
at every time step the square of the difference between disturbed and undisturbed orientation
is taken, and this difference is summed over time, then the controller with the lower deviation
sum is more effective:
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2-5 Research goal 15

Deviation sum =
∞∑

h=0

N∑
i=1

(θd
i (h) − θu

i (h))2 (2-18)

2-5-2 Refined research goal - balanced set

The first research goal for the balanced set is to investigate whether the magnitude of the
phasor in the presence of disturbances asymptotically goes to 0 if 0 < Kτ < 2. Mathemati-
cally:

lim
h→∞

||Rd(h)|| = 0 (2-19)

If research goal 2-19 is achieved, the second research goal for the balanced set is to investigate
whether the agent orientations in the presence of disturbances asymptotically go to the same
orientations as the agent orientations in the undisturbed if 0 < Kτ < 2. Mathematically:

lim
h→∞

θd
i (h) = lim

h→∞
θu

i (h) (2-20)

If research goals 2-19 and 2-20 are achieved by more than one controller, a third research
goal for the balanced set can be used to investigate which controller is more effective. The
indicator for the best controller is the controller with the lowest score on the deviation sum:

Deviation sum =
∞∑

h=0

N∑
i=1

(θd
i (h) − θu

i (h))2 (2-21)
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Chapter 3

The Kuramoto model and error
feedback

Feedback can be used as a means to control a system, for example to track a reference,
or to attenuate disturbances [17]. The Kuramoto model is a feedback system, since it can
be seen as two dynamical systems that influence each other: the agents communicate their
orientation to the controller, and the control algorithm calculates the step-update for each
agent. The orientation is both the state and the output of the system. The Kuramoto model
can therefore be described as both a state feedback system and an output feedback system. A
third feedback option is error feedback. Since the error is the difference between a reference
and the actual state, a reference is required. As shown in chapter 2, the reference for all
agents moving towards an aligned set can be the initial average orientation, since this is
where all agents will move their orientation to. When the error is zero, the servo problem has
been solved. This will be proven in section 3-2. Choosing the initial average orientation as
reference for error feedback will disable the option to direct the system towards a balanced
set. This will be proven in section 3-3. The reference for both the aligned and the balanced
set can be the predicted final orientations of the agents. As explained in section 2-3-2, current
knowledge restricts this prediction for a balanced set to a system of two or three agents, but
using the predicted final orientations will enable a controller that direct a system to both an
aligned and balanced set, as will be proven in section 3-4.

3-1 The error feedback model with initial average orientation as
reference

For error feedback with the initial average orientation (θavg(0) = 1
N

N∑
i=1

θi(0)) as reference, the
undisturbed discrete-time Kuramoto model will be modified into

θi(h+ 1) = θi(h) −Kτρ(h) sin(θavg(0) − θi(h)). (3-1)
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18 The Kuramoto model and error feedback

The modified Kuramoto algorithm in equation 3-1 is:

ui(h) = −Kτρ(h) sin(θavg(0) − θi(h)). (3-2)

The system in equation 3-1 is not equal to the systems in equations 2-2 and 2-4. In equation
3-1 every agent is coupled only to the reference, θavg(0), so the new system is not all-to-all
coupled. Furthermore, Kτρ(h) sin(θavg(0) − (θi(h)) ̸= Kτρ(h) sin(ψ(h) − θi(h)), so the step-
updates are different. Although different from the original model, the controller in equation
3-1 can still direct the agents to an aligned set, as will be shown later.

The system is shown in Figure 3-1, the blocks and variables used in the system are given in
Tables 3-1 and 3-2. When initializing at h = 0, all θi(0) are known, so the controller can
calculate ρ(0), θavg(0) and all inputs for the agents, ui(0). While the agents (in block P)
update their orientations, the clock counter h is increased one step. All θi(1) are sent back
to the controller, and calculation of the next step update can be carried out.

Figure 3-1: Error feedback system with the initial average orientation as reference

Table 3-1: Blocks from Figure 3-1

Block Description
MKA Here, a Modified Kuramoto Algorithm (3-2) is used to calculate ui(h)

P Plant: here the agents carry out their step-update.

Table 3-2: Variables from Figure 3-1

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h)
ui(h) calculated input ui(h) = −Kτρ(h) sin(θavg(0) − θi(h))
ρ(h) magnitude of the phasor ρ(h) = ||R(θi(h))||

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
θavg(0) initial average orientation θavg(0) = 1

N

N∑
i=1

θi(0)
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3-1 The error feedback model with initial average orientation as reference 19
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Figure 3-2: Agent orientations
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Figure 3-3: Phasor and average orientation
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Figure 3-4: Magnitude of the phasor
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20 The Kuramoto model and error feedback

3-2 Proof for convergence to an aligned set with negative coupling
strength

In Figure 3-2a the agents in the error feedback model with initial average orientation as refer-
ence (3-1, indicated as EFM in the figures) appear to be following the same trajectory towards
an aligned set as the agents in the Kuramoto model, but the trajectories are slightly different.
The difference is best visible in Figure 3-3a. The average orientation in the Kuramoto model
is constant, but in the error feedback model, the average orientation deviates from its initial
value before returning to it. This shows that transforming the Kuramoto model (2-2) into
an error feedback model with the initial average orientation as reference (3-1) is changing the
model into another model, even when undisturbed. However, if the disturbed system in an
error feedback model always converges to an aligned state at the initial average orientation,
the first two research goals for the aligned set (2-15 and 2-16) are achieved, meaning that a
controller based on error feedback might work.

Define the error in the ith agent as the difference between its current orientation and the
predictable final orientation: ϵi(h) := θi(h) − θi,fin. Then the evolution of that error is:

ϵi(h+ 1) = θi(h+ 1) − θavg(0),
= θi(h) −Kτρ(h) sin(θavg(0) − θi(h)) − θavg(0),
= θi(h) − θavg(0) +Kτρ(h) sin(θi(h) − θavg(0),
= ϵi(h) +Kτρ(h) sin(ϵi(h)) = f(ϵi(h)).

(3-3)

Take as Lyapunov candidate function V (ϵi(h)) := (ϵi(h))2. Then follow definition 3.6 from
[18] to prove whether V (ϵi(h)) is a Lyapunov equation for the system from equation 3-3.
Equation 3-3 proofs that ϵi(h+ 1) = f(ϵi(h)). V (ϵi) is continuous in ϵi and V (0) = 0. V (ϵi)
is positive definite and ∆V (ϵ) = V (f(ϵi)) − V (ϵi) is negative definite:

∆V (ϵi) = V (f(ϵi)) − V (ϵi),
= (f(ϵi))2 − (ϵi)2,

= (ϵi(h) +Kτρ(h) sin(ϵi(h)))2 − (ϵi)2.

(3-4)

Equation 3-4 is negative definite if

(ϵi(h) +Kτρ(h) sin(ϵi(h)))2 < (ϵi)2,

|ϵi(h) +Kτρ(h) sin(ϵi(h))| < |ϵi|,
|1 +Kτρ(h)sinc(ϵi(h))| < 1

(3-5)

Take as domain D for ϵi < −π, π >. On D, 0 < sinc(ϵi(h)) ≤ 1. Since −2 < Kτ < 0 and if
the balanced and aligned sets are excluded as possible initial conditions, 0 < ρ < 1, equation
3-5 always holds. Finally, with ϕ(||ϵi||) := 1

2(ϵi)2,

0 < ϕ(||ϵi||) < V (ϵi) (3-6)
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3-3 Proof for convergence to an aligned set with positive coupling strength 21

and since ϕ(||ϵi||) → ∞ if (||ϵi||) → ∞, by theorem 3.4 in [18] the solution ϵi(h) = 0 is
asymptotically stable for all allowed initial conditions on D. This means that all agents will
converge to the initial average orientation.

3-3 Proof for convergence to an aligned set with positive coupling
strength

The error feedback model with initial average orientation as reference (3-1) has also been
simulated with K = 3 (and τ = 0.1). The product Kτ = 0.3 would direct the discrete-time
Kuramoto model (2-2) to a balanced set, but the error feedback model (3-1) directs the system
to an aligned set at an angle of π with the initial average orientation, as shown in Figures
3-2b1, 3-3b and 3-4b. Stability analysis is required to prove when the error feedback model
with 0 < Kτ < 2 converges to an aligned set.

The error feedback model (3-1) (in a possibly rotating reference frame) is in equilibrium if
θi(h+ 1) = θi(h), ∀ i ∈ N . For this to be true, −Kτρ(h) sin(θavg(0) − θi(h)) = 0 must hold
for all agents. This has two possible solutions:

1. ρ(h) = 0;

2. θi(h) = θavg(0) + aπ ∀ i, with a ∈ {−1, 0, 1}.

The first solution, ρ(h) = 0 is a balanced state. It is, however, an unstable equilibrium: if
only a single agent is moved away from its balanced position, then ρ(h) ̸= 0, and all agents
move away from θavg(0): K, τ and ρ are always positive, resulting in the − sin giving positive
input for an agent with θavg(0) < θi(h) and negative input to agents with θavg(0) > θi(h).
This is a violation of the requirements for stability from definition 3.1 in [18].

The second solution, θi(h) = θavg(0) + aπ ∀ i, with a ∈ {−1, 0, 1} can be divided in several
sub-options:

1. Half of all agents are at θavg(0), and the other half are at θavg(0) ± π. This means
ρ(h) = 0, an unstable equilibrium;

2. Both at θavg(0) and at θavg(0) ± π are at least 1 agent. If any agent is perturbed,
θavg(0) will change. Since then ρ(h) ̸= 0, all agents will move towards θavg(0) ± π: if
θi(h) > θavg(0)(h), then sin(θavg(0) − θi(h)) < 0, and with 0 < Kτ < 2 this leads to
θi(h+1) > θi(h). Next, the changed average orientation has all other agents move away
from the new average orientation as well. The same reasoning applies for a disturbance
that leads to θi(h) < θavg(0). This option thereby fails definition 3.1 for stability in
[18];

3. All agents are at θavg(0) ± π.
1The orientations in Figure 3-2b have not been wrapped, since this would negatively affect the simulation.

The agents in the disturbed set in Figure 3-2b at different orientations have an relative orientation of 2π.
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22 The Kuramoto model and error feedback

A remarkable case is N = 2: both agents will move away from the average orientation at
exactly the same speed, but in opposite directions. They converge to a state where their
orientation exact opposites (π angle difference), but if even one of them is slightly perturbed,
both start moving again towards anti-aligning with the average orientation.

The third sub-option (all agents are at θavg(0) ± π) describes the equilibrium that was found
in the simulations in Figures 3-2 to 3-4. Using the error feedback model (3-1), let the defini-
tion of the error be the angle between the agent and anti-alignment with the initial average
orientation:

ϵi(h) = θi(h) − θavg(0) − π, {ϵ, θi, θavg(0)} ∈ [−π, π].2 (3-7)

Then the error dynamics are:

ϵi(h+ 1) = θi(h+ 1) − θavg(0) − π,

= θi(h) −Kτρ(h) sin(θavg(0) − θi(h)) − θavg(0) − π,

= θi(h) − θavg(0) − π −Kτρ(h) sin(θavg(0) − θi(h)),
= ϵi(h) −Kτρ(h) sin(θavg(0) − θi(h)),
= ϵi(h) +Kτρ(h) sin(θi(h) − θavg(0)),
= ϵi(h) −Kτρ(h) sin(θi(h) − θavg(0) − π),
= ϵi(h) −Kτρ(h) sin(ϵi(h)) = f(ϵi(h)).

(3-8)

The candidate Lyapunov function is:

V (ϵi(h)) = (ϵi(h))2. (3-9)

This candidate Lyapunov function is continuous in its argument, V (0) = 0 and it is positive
definite. Furthermore, the Lyapunov function must be negative definite:

∆V (ϵi(h) = V (f(ϵi(h))) − V (ϵi(h)),
= (ϵi(h) −Kτρ(h)sin(ϵi(h)))2 − (ϵi(h))2 (3-10)

For equation 3-10 to be negative definite, the following inequality must be true:

(ϵi(h) −Kτρ(h)sin(ϵi(h)))2 < (ϵi(h))2,

|ϵi(h) −Kτρ(h)sin(ϵi(h))| < |ϵi(h)|,
|1 −Kτρ(h)sinc(ϵi(h))| < 1.

(3-11)

In equation 3-11, 0 < Kτ < 2, 0 < ρ(h) < 1 and 0 < sinc(ϵi(h)) < 1 for all possible ϵi(h) ̸= 0,
equation 3-11 is true for all sets outside the unstable equilibrium sets. Then by Lyapunov’s
stability theorem [18] θi(h) = θavg(0) − π is asymptotically stable. For all initial conditions
that are not unstable equilibria, the error feedback model (3-1) and 0 < Kτ < 2 does not
converge to a balanced state, but to an aligned state, with θi(h) = θavg(0) ± π, ∀ i.

2With angles wrapped to the stated domain, adding or subtracting π makes no difference.
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3-4 Error feedback with predicted final orientations as reference 23

3-4 Error feedback with predicted final orientations as reference

The error feedback model in equation 3-1 does not lead to a balanced state with positive
coupling strength K, so the model must be improved. As shown in section 3-3, θi(h) =
θavg(0) − π is asymptotically stable for 0 < Kτ < 2. This includes the selected reference
θavg(0) for error feedback. In section 2-3-2 it is explained that the final orientations of agents
in a balanced set can be predicted for N = 2 and N = 3. If these predicted final orientations
are used as a reference vector θi,fin, with:

θi,fin = lim
h→∞

θi(h), (3-12)

then the system will be as shown in Figure 3-5.

Figure 3-5: Error feedback system with the predicted final orientations as reference

The step update for the new error feedback model in Figure 3-5 is:

θi(h+ 1) = θi(h) −Kτρ(h) sin(θi,fin − θi(h)). (3-13)

The modified Kuramoto algorithm for the system in Figure 3-5 is:

ui(h) = −Kτρ(h) sin(θi,fin − θi(h)). (3-14)

The block in Figure 3-5 are explained in Table 3-3. The variables from equation 3-13 are
explained in Table 3-4.

Table 3-3: Blocks from Figure 3-5

Block Description
MKA Here, a Modified Kuramoto Algorithm (3-14) is used to calculate ui(h)

P Plant: here the agents carry out their step-update.

The system, with predicted final orientations as reference (3-13), has been simulated for
convergence towards an aligned set (Figures 3-6a to 3-8a) and towards a balanced set (Figures
3-6b to 3-8b). In these figures the evolution of the agents’ orientation in the original Kuramoto
model (equation 2-4) are indicated by the annotation ’Kuramoto’ and the evolution of the
agents moving according to the system in equation 3-13 by the annotation ’EFM2’.

The system in equation 3-13 is in equilibrium if θi(h + 1) = θi(h), ∀ i. For this to be true,
−Kτρ(h)(sin(θi,fin − θi(h))) = 0 must hold for all agents. This has several possible solutions:
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24 The Kuramoto model and error feedback

Table 3-4: Variables from Figure 3-5

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h)
ui(h) calculated input ui(h) = −Kτρ(h) sin(θi,fin − θi(h))
ρ(h) magnitude of the phasor ρ(h) = ||R(θi(h))||

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
θi,fin predicted final orientations (see section 2-3-2)
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Figure 3-6: Agent orientations
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Figure 3-7: Phasor and average orientation

1. θi(h) = θi,fin ∀ i with ρ(h) = 0, a balanced set,

2. θi(h) = θi,fin ∀ i with ρ(h) = 1, an aligned set

3. θi(h) = θi,fin + aπ ∀ i, with a ∈ {−1, 0, 1} and a ̸= 0 for at least a single i, which
means neither an aligned nor a balanced set.
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Figure 3-8: Magnitude of the phasor

The stability of all three types of equilibria can be analyzed. If the error in the ith agent is
defined as the difference between its current orientation and its predicted final orientation:
ϵi(h) := θi(h) − θi,fin, then the evolution of the error is:

ϵi(h+ 1) = θi(h+ 1) − θi,fin,

= θi(h) −Kτρ(h)(sin(θi,fin − θi(h))) − θi,fin,

= θi(h) − θi,fin +Kτρ(h)(sin(θi(h) − θi,fin)),
= ϵi(h) +Kτρ(h)(sin(ϵi(h))) = f(ϵi(h)).

(3-15)

The candidate Lyapunov function is:

V (ϵi(h)) = (ϵi(h))2. (3-16)

This candidate Lyapunov function is continuous in its argument, V (0) = 0 and it is positive
definite. For the system to be asymptotically stable, the Lyapunov function must be negative
definite:

∆V (ϵi(h) = V (f(ϵi(h))) − V (ϵi(h)),
= (ϵi(h) +Kτρ(h) sin(ϵi(h)))2 − (ϵi(h))2 (3-17)

For equation 3-17 to be negative definite, the following must hold:

(ϵi(h) +Kτρ(h) sin(ϵi(h)))2 < (ϵi(h))2,

|ϵi(h) +Kτρ(h) sin(ϵi(h))| < |ϵi(h)|,
|1 +Kτρ(h)sinc(ϵi(h))| < 1,

−1 < 1 +Kτρ(h)sinc(ϵi(h)) < 1,
−2 < Kτρ(h)sinc(ϵi(h)) < 0.

(3-18)

If any agent i is in any of the three equilibria, then ϵi(h) ∈ {−π, 0, π}. Under the assumption
that no agent is in one of its equilibria, then 0 < ρ(h) < 1 and (because of angle wrapping)
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26 The Kuramoto model and error feedback

0 < sinc(ϵi(h)) < 1. Since both ρ(h) and ϵi(h) are strictly positive and < 1, for equation
3-18 to be true, −2 < Kτ < 0 must be true for both a system moving to an aligned set
and a system moving to a balanced set. This means that for a system moving towards
an aligned set the research goals in equations 2-15 and 2-16 are fulfilled. Although the
research goals in equation 2-19 and 2-20 have not been met completely (since the result of
equation 3-18 indicates that −2 < Kτ < 0 and current knowledge is limited to predicting the
final balanced orientations for N = 2 or 3 agents), the error feedback model can be used to
direct a system of agents towards an aligned or balanced set. Because of this, it is useful to
investigate the disturbance attenuation properties of the error feedback model with predicted
final orientations as reference (3-13).

3-5 The error feedback model with constant disturbance

The introduction of a constant matched input disturbance to the system in Figure 3-5 will
lead to the system in Figure 3-9.

Figure 3-9: Error feedback system with the predicted final orientations as reference

The step update for the system in Figure 3-9 is:

θi(h+ 1) = θi(h) −Kτρ(h) sin(θi,fin − θi(h)) + di. (3-19)

The modified Kuramoto algorithm for the system in Figure 3-9 is:

ui(h) = −Kτρ(h) sin(θi,fin − θi(h)). (3-20)

The block in Figure 3-9 are explained in Table 3-3. The variables from equation 3-13 are
explained in Table 3-4.

Table 3-5: Blocks from Figure 3-9

Block Description
MKA Here, a Modified Kuramoto Algorithm (3-20) is used to calculate ui(h)

P Plant: here the agents carry out their step update.

In order to determine whether the disturbed error feedback model (3-19) can successfully
attenuate the effects of constant matched input disturbances, and possibly converge to the
same (aligned or balanced) set as the undisturbed error feedback model (3-13), first it must
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3-5 The error feedback model with constant disturbance 27

Table 3-6: Variables from Figure 3-9

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h) + di

ui(h) calculated input ui(h) = −Kτρ(h) sin(θi,fin − θi(h))
ρ(h) phasor magnitude ρ(h) = ||R(θi(h))||

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
θi,fin predicted final orientations (see section 2-3-2)
di constant disturbance (unknown)

be determined whether the agents in a disturbed error feedback model reaches a steady state
at all. An agent is in steady state if θi(h+ 1) = θi(h), meaning that:

ui(h) + di = 0,
−Kτρ(h) sin(θi,fin − θi(h)) + di = 0,

Kτρ(h) sin(θi,fin − θi(h)) = di

(3-21)

If the constant matched input disturbance is equal for all agents, then the system can be
placed in a rotating reference frame. This is the same solution as was used for removing the
natural frequency in section 2-2, but trivial for this thesis. The more relevant results can be
found when at least a single agent has a constant matched input disturbance, that is different
from the other agents. To illustrate the effects of a constant matched input disturbance, a
system with the same agents and settings as in Figures 3-6 to 3-8 has been simulated, but
with a disturbance in a single agent. The results can bee seen in Figures 3-10 to 3-12.
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Figure 3-10: Agent orientations

When comparing the results in Figure 3-10 to those in Figure 2-9, the added value of de-
coupling the agents in controller (3-19) are clear: the main research goal of the thesis has
been achieved, because the undisturbed agents in Figure 3-10 converge to the same orienta-
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Figure 3-11: Phasor and average orientation
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Figure 3-12: Magnitude of the phasor

tion as their counterparts in the undisturbed system, albeit via different trajectories.3 The
refined research goals in sections 2-5-1 and 2-5-2 have not been achieved since the effect of
the disturbance on the disturbed agent itself has not been attenuated. In the system from
equation 3-19, the disturbed agent will never reach a steady state. If the error in the disturbed
agent is defined as the difference between the actual state and the predicted undisturbed final
orientation:

ϵi(h) = θi(h) − θi,fin, (3-22)

then the evolution of this error is:

3For the undisturbed agents di = 0, meaning that 3-19 is equal to 3-13. This means that the proof for
converging to the same orientation as their undisturbed counterparts in paragraph 3-4 (equations 3-15 to 3-18)
can be used.
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3-6 Conclusion and recommendation for the error feedback model 29

ϵi(h+ 1) = θi(h+ 1) − θi,fin,

= θi(h) −Kτρ(h) sin(θi,fin − θi(h)) + di − θi,fin,

= θi(h) − θi,fin +Kτρ(h) sin(θi(h) − θi,fin) + di,

= ϵi(h) +Kτρ(h) sin(ϵi(h)) + di

(3-23)

Equation 3-23 shows that even if at any moment ϵi(h) = 0 for the disturbed agent, the
non-zero di will cause that at h+ 1 ϵi ̸= 0.

3-6 Conclusion and recommendation for the error feedback model

The error feedback model with predicted final orientations (3-19) can attenuate the effects of
matched input disturbances in a discrete-time Kuramoto model, but this comes with adap-
tations of the model and limitations. First, the newly designed Kuramoto model loses the
property of all-to-all coupling. Second, convergence towards an aligned or balanced set is no
longer determined by the value of the product Kτ , but by the predicted final orientations.
This currently limits the number of agents moving towards a balanced set to three, since it is
still unknown how to predict the balanced final orientations for N ≥ 4. The third limitation
of 3-19 is that the the effect of the disturbance on the disturbed agent itself is not attenuated.

Because of the limitations mentioned above, it is recommended only to use the controller in
situations where loss of functionality of disturbed agents is acceptable in the system. A second
recommendation is to do further research into predicting the final orientations of agents in a
system with N ≥ 4 moving towards a balanced set.
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Chapter 4

One step ahead prediction and
deadbeat control

In control theory, many methods exist to attenuate the effects of disturbances. One of these
methods is Predictive Active Disturbance Rejecting Control [19]. The concept of active distur-
bance rejecting control enables engineers to design systems that can accommodate unknown
internal dynamics and disturbances. In active disturbance rejecting control, an extended
state observer is used to estimate the system states and the unknown internal dynamics and
disturbances. The robustness of the system as a whole is influenced by the tuning of the
extended state observer gain. In [19] an improvement of active disturbance rejecting control
is introduced to counter this weakness, called predictive active disturbance rejecting control.
The improvement consists of a predictor for the system states, based on the input.

Predictive active disturbance rejecting control can also be used for the discrete-time Kuramoto
model, but with some changes when compared to [19]. The first change is small: this thesis
assumes absence of unknown internal dynamics in the system. The second is that the output of
the system is the known system state, so a state observer is not required. The predictor takes
as input the known current state and the known calculated input, and provides a predicted
output for the next step of an undisturbed system. This is a one-step ahead predictor [20].
The difference between the predicted state and the actual state can then be used to filter the
disturbance in the next step-update, without knowing or directly measuring the disturbance.
If the disturbance is countered in a single step, it is known as deadbeat control [18], [20].
Deadbeat control completely counters the disturbances and leaves the Kuramoto model with
all its stability, aligned and balanced properties intact. However, the nonlinear properties
of the Kuramoto model may still cause the system to behave different from a completely
undisturbed system.
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32 One step ahead prediction and deadbeat control

4-1 One step ahead prediction and deadbeat control without av-
erage state as reference

The Kuramoto system with matched input disturbance can be seen in Figure 4-1. The
controller is indicated by the dashed blue line. The predictor for undisturbed behavior is
represented by P̂ . The undisturbed predicted states are calculated as the agents update their
actual states. The filter variable for deadbeat control is represented by d̂i(h) = θi(h) − θ̂i(h)
and the (unmodified) Kuramoto algorithm by the block KA.

Figure 4-1: One step ahead prediction and deadbeat control

The corresponding step update is:

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) − d̂i(h) + di. (4-1)

The blocks and variables from Figure 4-1 are given in Tables 4-1 and 4-2, the initial conditions
are given in equation 4-2. When initializing at h = 0, the system knows all θi(0) and θ̂i(0).
The controller can then calculate ρ(0), ψ(0) and all inputs ui(0). Since d̂i(0) = 0, this
variable has no effect at h = 0, and since di ̸= 0, the disturbed agent(s) move to a new
orientation based on θi(0), ui(0) and di. While the real agents (in block P) and the modelled
agents (in block P̂ ) update their orientations, the clock counter h is increased one step.
The predicted orientation (θ̂i(h)) is subtracted from the actual orientation (θi(h)) and this
difference d̂i(h) is the estimated disturbance. The controller uses all θi(1) to calculate ui(1)
and also communicates the now nonzero d̂i(1) to the actual and modelled agents. This process
repeats until the system is stopped.

Table 4-1: Blocks from Figure 4-1

Block Description
KA Here the Kuramoto Algorithm (2-5) is used to calculate ui(h).
P Here the agents carry out their step-update.
P̂ Predictor: here the controller calculates the predicted, undisturbed output,

based on the actual state, calculated input and estimated disturbance.
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Table 4-2: Variables from Figure 4-1

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h) − d̂i(h) + di

θ̂i(h) predicted output θ̂i(h+ 1) = θi(h) + ui(h) − d̂i(h)
ui(h) calculated input ui(h) = −Kτρ(h) sin(ψ(h) − θi(h))
ρ(h) phasor magnitude ρ(h) = ||R(θi(h))||
ψ(h) phasor orientation ψ(h) ≡ ∠R(θi(h))

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
d̂i(h) estimated disturbace d̂i(h) = θi(h) − θ̂i(h)
di disturbance unknown constant

θ̂i(0) = θi(0),
d̂i(0) = 0.

(4-2)

Since the disturbance is assumed to be constant, it can be countered once it has been identified.
For this, a disturbance observer [21], [22] has been implemented. This disturbance observer
(represented in Figure 4-1 by a circle) estimates the disturbance by subtracting the predicted
states from the actual states. The initial disturbance estimate is calculated after the first
step-update, at h = 1. The initial conditions in equation 4-2 show that θ̂i(0) = θi(0) and
d̂i(0) = 0. Then for h ̸= 0:

d̂i(h) = θi(h) − θ̂i(h)
= (θi(h− 1) + ui(h− 1) + di) − (θi(h− 1) + ui(h− 1))
= di

(4-3)

Now the step-update in equation 4-1 can be reformulated for h ̸= 0:

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) − d̂i(h) + di,

= θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) − di + di,

= θi(h) −Kτρ(h) sin(ψ(h) − θi(h)).
(4-4)

This means that the disturbance in the disturbed agent itself is countered from h = 2 on, and
the system behaves as if undisturbed, confirming research goal 2-15. Next to that, equation
4-4 is equal to the original discrete-time Kuramoto model as researched in [12], and therefore
all proof and conjectures of stability from [12] are valid. The results of a simulation of the
system from equation 4-1 with a single disturbed agent can be seen in Figures 4-2a, 4-3a and
4-4a. Figure 4-2a shows that the disturbance in a single agent also affects the trajectories of
other agents, as stated as a possibility by [16]. The effect of θi(1) ̸= θ̂i(1) for the disturbed
agent is twofold: the undisturbed agents deviate from the path in the undisturbed system
after h = 1, and the average orientation of all agents is changed, which results in the system
converging to an orientation that is different from the undisturbed system. As a consequence,
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34 One step ahead prediction and deadbeat control

the second research goal for the aligned set (equation 2-16) is not fulfilled. This is illustrated
in Figures 4-2a, 4-3a and 4-4a, where although the system still converges to an aligned state,
this state is different from the one in the undisturbed system.
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Figure 4-3: Phasor and average orientation
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4-2 One step ahead prediction and deadbeat control with average state reference 35

4-2 One step ahead prediction and deadbeat control with average
state reference

Since section 4-1 shows that a disturbance in one agent affects all other agents via the phasor
orientation in the control algorithm, the effects of a disturbance must be countered both in
the disturbed agent itself and in the other agents. The known fact that the average orienta-
tion is constant in the undisturbed Kuramoto model can be used for this: the system from
equation 4-1 can be augmented with the average orientation of the real agents, θavg(h) and an
undisturbed reference for this state, θavg(0) and an additional filtering variable, θ̃avg(h). The
predictor P̂ will not only generate undisturbed one step ahead predictions [18] as reference for
each individual agent, but also the undisturbed average orientation. In the new disturbance
estimator, L, the effect of the matched input disturbance will now be estimated by calculating
two differences: the difference between the predicted and actual orientation for every agent,
and the difference between the actual average orientation and the initial average orientation.
This way, constant disturbances on the agents and the effect on the average orientation are
countered by the filter variables generated by the disturbance estimator. The designed system
then becomes as shown in Figure 4-5, where the controller is represented by the dashed blue
line.

Figure 4-5: One step ahead predictor and deadbeat control with average state reference

The blocks and variables used in the system from Figure 4-5 are given in Tables 4-3 and 4-4,
and the initial conditions in equation 4-2. When initializing at h = 0, the system knows all
θi(0) and θ̂i(0). θavg(0) is calculated and stored, so that the internal model can use it at every
time step. The controller can calculate ρ(0), ψ(0) and all inputs ui(0). Since d̂i(0) = 0 and
θ̃avg(0) = 0, these variables have no effect at h = 0, and since di ̸= 0, the disturbed agent(s)
move to a new orientation based on θi(0), ui(0) and di. While the real agents (in block P) and
the modelled agents (in block P̂ ) update their orientations, the clock counter h is increased
one step. After the step-updates the disturbance estimator L calculates θavg(1), θ̃avg(1) and
all d̂i(1). θ̃avg(1) and all d̂i(1) are then communicated to the controller. The controller uses
the control algorithm to calculate ui(1) and also communicates the now nonzero d̂i(1) and
θ̃avg(1) to the real and modelled agents. This process repeats until the system is stopped.

The initial conditions are:
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36 One step ahead prediction and deadbeat control

Table 4-3: Blocks from Figure 4-5

Block Description
KA Here the Kuramoto Algorithm (2-5) is used to calculate ui(h)
P Here the agents carry out their step-update: θi(h+ 1) = θi(h) + ui(h) + di

P̂ Predictor: here, the controller calculates the predicted output,
based on the actual state, calculated input and filter variables

L Disturbance estimator: here d̂i(h) and θ̃avg(h) are calculated

Table 4-4: Variables from Figure 4-5

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h) − d̂i(h) − θ̃avg(h) + di

θ̂i(h) predicted output θ̂i(h+ 1) = θi(h) + ui(h) − d̂i(h) − θ̃avg(h)
ui(h) calculated input ui(h) = −Kτρ(h) sin(ψ(h) − θi(h))
ρ(h) phasor magnitude ρ(h) = ||R(θi(h))||
ψ(h) phasor orientation ψ(h) ≡ ∠R(θi(h))

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
d̂i(h) filter variable d̂i(h) = θi(h) − θ̂i(h)
θ̃avg(h) filter variable θ̃avg(h) = θavg(h) − θavg(0)

θavg(h) avg orientation θavg(h) = 1
N

N∑
i=1

θi(h)

θavg(0) initial avg orientation θavg(0) = 1
N

N∑
i=1

θi(0)

di disturbance unknown constant

θ̂i(0) = θi(0),
d̂i(0) = 0,

θ̃avg(0) = 0.
(4-5)

The step-update for agents in the system from Figure 4-5 is:

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) − d̂i(h) − θ̃avg(h) + di. (4-6)

Because the disturbance is unknown, the new filter variable θ̃avg(h) is 0 when the system from
equation 4-6 is initialized. The evolution of the new filter variable is:
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θ̃avg(h+ 1) = θavg(h+ 1) − θavg(0),

= 1
N

∑
i

(θi(h+ 1)) − θavg(0),

= 1
N

∑
i

θi(h) + 1
N

∑
i

ui(h) − 1
N

∑
i

d̂i(h) − 1
N

∑
i

θ̃avg(h) + 1
N

∑
i

di − θavg(0).

(4-7)

The input ui(h) in equation 4-6 is equal to input in the original discrete-time Kuramoto
model (equation 2-4), 1

N

∑
i
ui(h) = 0, and can be left out from equation 4-7. Using θavg(h) =

1
N

∑
i
θi(h) and 1

N

∑
i
θ̃avg(h) = θ̃avg(h), equation 4-7 becomes:

θ̃avg(h+ 1) = θavg(h) − 1
N

∑
i

d̂i(h) + 1
N

∑
i

di − θ̃avg(h) − θavg(0),

= θavg(h) − θavg(0) − θ̃avg(h) − 1
N

∑
i

d̂i(h) + 1
N

∑
i

di,

= θ̃avg(h) − θ̃avg(h) + 1
N

∑
i

di − 1
N

∑
i

d̂i(h),

= 1
N

∑
i

di − 1
N

∑
i

d̂i(h),

= 1
N

∑
i

(di − d̂i(h)).

(4-8)

Equation 4-8 shows that the evolution of θ̃avg(h) depends on d̂i(h). The evolution of d̂i(h) in
equation 4-6 can be derived from Table 4-4:

d̂i(h+ 1) = θi(h+ 1) − θ̂i(h+ 1),
= di.

(4-9)

Equation 4-9 shows that if h ≥ 1, then d̂i(h) = di. The initial conditions state that θ̃avg(0) = 0.
Using h = 0 and d̂i(0) = 0 in equation 4-8 gives:

θ̃avg(1) = 1
N

∑
i

(di − d̂i(0)) = 1
N

∑
i

di. (4-10)

For h ≥ 1:

θ̃avg(h+ 1) = 1
N

∑
i

(di − d̂i(h)) = 0. (4-11)

Figure 4-3b illustrates the proof from equation 4-11: for h ≥ 2 the average orientation of
the disturbed system is equal to the average orientation of the undisturbed system. Using
θ̃avg(h ≥ 2) = 0 and d̂i(h ≥ 1) = di means that from h = 2 on, the step-update system from
equation 4-6 is:
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38 One step ahead prediction and deadbeat control

θi(h+ 1) = θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) − d̂i(h) − θ̃avg(h) + di,

= θi(h) −Kτρ(h) sin(ψ(h) − θi(h)).
(4-12)

Equation 4-12 proofs that from h = 2 on behaves the same as the original discrete-time
Kuramoto model as researched in [12]. This means that again all proof and conjectures of
stability from [12] are valid: for −2 < Kτ < 0 asymptotic stability of the aligned set (the first
refined research goal for the aligned set, in equation 2-15) is proven and asymptotic stability
of the balanced set (the first refined research goal for the balanced set, in equation 2-19) is
conjectured [12].
The second refined research goal for the aligned set (in equation 2-16) is to find out whether
the agents converge to the same aligned orientations as the undisturbed system. This research
goal is also achieved since equation 4-11 proves that for h ≥ 0 the average orientation of the
disturbed system is equal to that of the undisturbed system, and the agents converge to the
average orientation if −2 < Kτ < 0.

4-3 One step ahead prediction and deadbeat control towards a
balanced set

The previous sections shows the analysis of how a controller with one step ahead prediction
and deadbeat control can counter a matched input disturbance and direct a system towards
an aligned or balanced state, while also rejecting effects on the average orientation. Figure
4-2b also illustrates that although the agents move towards alignment with the initial average
orientation, the path they follow is different. The results for movement towards a balanced
set are worse: in section 2-3-2 and [14] it is explained that for N > 3 it is still unknown how
the balanced orientations can be predicted. The results of a simulation of the system from
equation 4-6 for N = 3 and N = 4, both with a single disturbed agent, can be seen in Figures
4-6 to 4-8.
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Figure 4-6: Agent orientations

Figure 4-8 and 4-7 show that the systems converge to balanced sets with the average ori-
entation identical to that of their undisturbed counterparts. In Section 4-2, mathematical
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Figure 4-7: Phasor and average orientations
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Figure 4-8: Magnitude of the phasors

proof is given that this will always be true for the system from equation 4-6 with constant
disturbances.

Figure 4-6a shows that for N = 3, the controller will direct the agents in the disturbed system
to the same balanced set as their counterparts in an undisturbed system. Figure 4-6b shows
that for N = 4, the controller will direct the agents towards a balanced set that is different
from the undisturbed system. This is in line with Section 2-3-2: a balanced set for N = 2 or
N = 3 agents with known and constant average orientation has only one possible solution. A
balanced set for N ≥ 4 agents with known and constant average orientation has an infinite
amount of possible solutions. Even if it were possible to predict the balanced orientations, the
controller in equation 4-6 will only achieve research goal 2-20 for N = 2 and N = 3 agents.
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40 One step ahead prediction and deadbeat control

4-4 Conclusions and recommendations for one step ahead predic-
tion and deadbeat control

In [12] asymptotic convergence of the agents in a Kuramoto model towards a balanced set has
been proven, and convergence towards a balanced set has been conjectured. In [18], [20] and
[23], it is explained how discrete-time predictor-feedback can reject disturbances. This thesis
has added to that research the conclusion that, with a predictable consensus point and under
constant disturbance, the system in equation 4-6 with −2 < Kτ < 0 will reach an aligned
state identical to the undisturbed consensus point for any N . The agents however follow a
trajectory that is different from the undisturbed trajectory. Using 0 < Kτ < 2, the controller
will direct the agents to a balanced set, but only systems with N = 2 or N = 3 agents will
reach the same set as their undisturbed counterparts. It is still unknown how to predict final
orientations for systems with N ≥ 4 agents, as explained in [14] and Section 2-3-2.

It is recommended to use this system in applications where the agents need to be aligned and
the trajectory is less important. Another possible application is when agents need to be in a
balanced set while the individual orientations have no specific requirements.
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Chapter 5

Autonomous reference trajectories and
Proportional-Integral control

Since the controller in Chapter 4 does not meet the research goal of directing the agents to
the same balanced orientations as their counterparts in an undisturbed system when N > 3,
another controller must be designed. The system with one step ahead prediction and dead-
beat control in equation 4-6 can direct agents in a system with matched input disturbances
to the same final orientation for all aligned sets and for balanced sets if N = 2 or N = 3.
The agents in those disturbed systems follow a different trajectory than their counterparts in
an undisturbed system, and for balanced sets with N ≥ 4, this results in balanced orienta-
tions that are different from their counterparts in an undisturbed system. The only feasible
option to direct a system with N ≥ 4 and matched input disturbance to the same balanced
orientations as their undisturbed counterparts is to use the trajectories of the agents in the
undisturbed system as reference. This means that attenuating disturbances in a Kuramoto
model must be handled as a tracking problem.

5-1 The reference trajectory

The goal of the tracking problem is to let the output (θi(h) in the Kuramoto model) asymp-
totically track a reference trajectory. Since the Kuramoto model is deterministic (see Chapter
2), the known initial states can be used to generate a reference trajectory before the agents
in the disturbed system begin their trajectories. At every time step h, the controller can use
the individual orientations of all agents as references to determine the error in every agents
actual orientation.
The system to generate the reference trajectories can be seen in Figure 5-1. The blocks and
variables from Figure 5-1 are explained in Tables 5-1 and 5-2.
The step update for the system in Figure 5-1 is:

θ̂i(h+ 1) = θ̂i(h) −Kτρ̂(h) sin(ψ̂(h) − θ̂i(h)), (5-1)
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42 Autonomous reference trajectories and Proportional-Integral control

Figure 5-1: The system to generate reference trajectories

Table 5-1: Blocks from Figure 5-1

Block Description
K̂A Here the Kuramoto algorithm (5-2) is used to calculate ûi(h)
P̂ Plant: here the agents carry out their step-update.

Table 5-2: Variables from Figure 5-1

Variable Description Equation
θ̂i(h) agent orientation θ̂i(h+ 1) = θ̂i(h) + ûi(h)
ûi(h) calculated input ûi(h) = −Kτρ̂(h) sin(ψ̂(h) − θ̂i(h))
ρ̂(h) phasor magnitude ρ̂(h) = ||R̂(θ̂i(h))||
ψ̂(h) phasor orientation ψ̂(h) = ∠R̂(θ̂i(h))

R̂(θ̂i(h)) phasor R̂(θ̂i(h)) ≡ 1
N

N∑
i=1

[
cos(θ̂i(h))
sin(θ̂i(h))

]

The unmodified Kuramoto algorithm used in equation 5-1 is equal to equation 5-2, but with
hats, to indicate that these are not the actual agents:

ûi(h) = −Kτρ̂(h) sin(ψ̂(h) − θ̂i(h)). (5-2)

If the initial orientation of the simulated agents in the system in Figure 5-1 are equal to the
initial orientation of the actual agents (θ̂i(0) = θi(0)), then the reference trajectories θ̂i(h) are
exactly those of the undisturbed system. The stability of the reference system (5-1) is proven
for −2 < Kτ < 0 and conjectured for 0 < Kτ < 2 [12].

5-2 The tracking problem

A common strategy for a tracking problem is a negative feedback loop [17]. In a negative
feedback loop, the actual state is subtracted from the reference. Next, this difference is used
as input for the controller. With the reference trajectories θ̂i(h) from the system in Figure 5-1
known, designing a simple controller that directs the agents towards the desired trajectories
is straightforward. Since the reference system is asymptotically stable for −2 < Kτ < 0
and 0 < Kτ < 2, the reference agents settle to their aligned or balanced orientations, and
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a proportional feedback controller can asymptotically direct the actual agents to the same
orientation. Since a matched input disturbance is a constant (nonzero) input, this can be
countered by the integral part of a Proportional-Integral (PI) controller [18]. A well tuned
PI-controller with a nonzero integral gain (KI) will direct the actual agents in a disturbed
system to their reference trajectories and as h → ∞ all agents go to the same orientation as
their reference counterparts. The purpose of this thesis however is to attenuate the effects
of disturbances in agents that behave according to the Kuramoto model themselves. This
requires a different system design.

5-3 Designing the Proportional-Integral controller

Designing the optimal PI-controller for a Kuramoto model is a difficult task. An often used
technique to design a general, stable controller for closed loop systems (which the Kuramoto
model is) is the Youla-parametrization [20]. A Youla-parametrization requires the z-transform
of the system that is to be controlled [18], [20]. The z-transform of the discrete-time Kuramoto
model would be very difficult to calculate since it is a nonlinear and multivariable system
whose behavior not only depends on all states θi(h), but also on the the value of kτ . Even if
the Youla-parametrization works, the resulting class of controllers may be designed without
the use of the Kuramoto algorithm or a modified version of it. The controller will therefore
be designed with PI-gain and the Kuramoto algorithm in it. Stability of the system will be
proven by showing that the designed system is exactly equal to the system from equation 2-2
if di = 0 and by showing that the system is stable near aligned or balanced steady states.

5-4 The system

The Kuramoto model with previously generated reference trajectories and PI-control can be
seen in Figure 5-2 and the step-update in equation 5-3. The blocks and variables are further
explained in Tables 5-3 and 5-4. The controller in Figure 5-2 is represented by the dashed
blue line. The unmodified Kuramoto algorithm (equal to equation 5-2) generates the normal
input for the agents while the PI-input algorithm counters the effects of the disturbances. The
reference trajectories (θ̂i(h)), the PI-input algorithm (ũi(h)) and its outcome, the Kuramoto
algorithm and its outcome (ui(h)) are all part of the controller. The orientations of the actual
agents (θi(h)) and the unknown disturbance (di) are exogenous signals.
The step-update for the system in Figure 5-2 is

θi(h+ 1) = θi(h) + ui(h) − ũi(h) + di. (5-3)

5-5 Stability of the Proportional-Integral controlled system

Stabilizeability of the system with PI-control will be shown by proving that in absence of
disturbance the system from equation 5-3 is equal to the original discrete-time Kuramoto
model in equation 2-2 and by proving that the system with matched input disturbance can
reach a steady state at the same orientations as the undisturbed system.

Master of Science Thesis J. Vlaardingerbroek
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Figure 5-2: The system with autonomous reference trajectories and PI-control. The controller
is indicated by the dashed blue line

Table 5-3: Blocks from Figure 5-2

Block Description
KA Here the Kuramoto algorithm (2-5) is used to calculate ui(h).
P Plant: here the agents carry out their step-update.
PI PI-controller: here the input to counter the disturbance is calculated.

Table 5-4: Variables from Figure 5-2

Variable Description Equation
θi(h) agent orientation θi(h+ 1) = θi(h) + ui(h) − ũi(h) + di(h)
ui(h) control algorithm ui(h) = −Kτρ(h) sin(ψ(h) − θi(h))
ρ(h) phasor magnitude ρ(h) = ||R(θi(h))||
ψ(h) phasor orientation ψ(h) ≡ ∠R(θi(h))

R(θi(h)) phasor R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
ũi(h) input from PI-algorithm ũi(h) = KP (θ̂i(h) − θi(h)) +KI

h∑
j=0

(θ̂i(j) − θi(j))

KP proportional gain constant
KI integral gain constant
θ̂i(h) reference trajectory see section 5-1
di disturbance unknown constant

5-5-1 Proof of equality in absence of disturbances

In absence of disturbances di = 0 and with identical initial states (θi(0) = θ̂i(0)), the system
from equation 5-3 is equal to the system from equation 2-2:
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θi(h+ 1) = θi(h) + ui(h) − ũi(h) + di,

= θi(h) + ui(h) − ũi(h),

= θi(h) + ui(h) −KP (θ̂i(h) − θi(h)) −KI

h∑
j=0

(θ̂i(j) − θi(j)),

= θi(h) −Kτρ(h) sin(ψ(h) − θi(h)) −KP (θ̂i(h) − θi(h)) −KI

h∑
j=0

(θ̂i(j) − θi(j)).

(5-4)

Using the initial states θi(0) = θ̂i(0), the parts in equation 5-4 with proportional (KP ) and
integral (KI) gain are set to zero and equation 5-4 becomes exactly the same as equation
2-2. This means that undisturbed, asymptotic stability of of the aligned set is proven and
asymptotic stability of the balanced set is conjectured.

5-5-2 Proof of existence of steady state with matched input disturbance

The Kuramoto model in equation 2-2 can asymptotically reach steady states. This means
that θi(h + 1) = θi(h), and therefore −Kτρ(h) sin(ψ(h) − θi(h)) = 0. In the aligned set this
is because ψ(h) − θi(h) = 0 and in the balanced set because ρ(h) = 0. In the system from
equation 5-3 the difference between two consecutive time-steps (θi(h+ 1) − θi(h)) is given by:

−Kτρ(h) sin(ψ(h) − θi(h)) −KP (θ̂i(h) − θi(h)) −KI

h∑
j=0

(θ̂i(j) − θi(j)) + di. (5-5)

At the aligned or balanced states, the output of the Kuramoto algorithm (−Kτρ(h) sin(ψ(h)−
θi(h))) equals zero. This leaves to proof that

di −KP (θ̂i(h) − θi(h)) −KI

h∑
j=0

(θ̂i(j) − θi(j)) = 0. (5-6)

In the introduction of this section it was mentioned that the investigated steady state is at
the same orientations as the undisturbed system, so thetai(h) = θ̂i(h) and therefore the part
with proportional gain drops out, leaving to proof that the following is possible:

di = KI

h∑
j=0

(θ̂i(j) − θi(j)). (5-7)

Since di can have any constant value, it is possible that it is equal to the integral of the
difference between the reference and actual orientations over time. This zero input will persist
in all following time-steps, proving the possibility of stability of the aligned and balanced sets
for the system from equation 5-3.
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46 Autonomous reference trajectories and Proportional-Integral control

5-6 Simulations

To illustrate the stability and disturbance attenuation properties of the system from equation
5-3, the results of simulations can be seen in Figures 5-3 to 5-5.
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Figure 5-3: Agent orientations
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Figure 5-4: Average and phasor orientations
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Figure 5-5: Magnitude of the phasor

The simulations show that the agent with the matched input disturbance initially deviates
strongly from its reference trajectory, but is quickly returned to it. Because of the networked
nature of the Kuramoto model, the undisturbed agents are affected through the step-update,
but these agents are also quickly guided back to their reference trajectories.
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5-7 Conclusions for autonomous reference trajectories and PI-control

When properly tuned, the strategy of combining a priori generated autonomous reference
trajectories with a PI-controller will direct the discrete-time Kuramoto model under constant
matched input disturbance towards an aligned or balanced state that is equal to its undis-
turbed counterpart. Furthermore, the agents trajectories in the disturbed system are almost
identical to the trajectories in the undisturbed system. However, due to the nature of the
PI-controller, it must be checked for stability. Wrong choices in parameters KP or KI can
prevent the system from converging to consensus. Further research could investigate how the
interactions between the product Kτ , the PI-gains KP , KI and the disturbance influence the
stability of the system.
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Chapter 6

Comparing controllers, conclusions and
recommendations

6-1 Comparing controllers

The purpose of this thesis was to research the behavior of systems of identical, all-to-all
coupled oscillators in the discrete-time Kuramoto model under constant, matched input dis-
turbances. If the disturbance was found out to change the behavior of the agents, the goal of
the research was to design and evaluate controllers that counter the effects of the disturbance.

6-1-1 Design choices

The academic field of control gives many possible choices for designing controllers that handle
disturbances. Several options have been researched and reported in this thesis, and others
have not. The options that have been researched and reported in this thesis are:

1. No additional control. This design choice is discussed in Section 2-4, where was shown
that all agents are affected by a matched input disturbance in a single agent. The
system can neither reach an aligned, nor a balanced state.

2. Error feedback with average initial orientation as reference. This design choice is re-
searched and reported in Sections 3-1 - 3-3. In order to enable error feedback, the
system must have a reference. This reference required a modification of the Kuramoto
algorithm (2-5) that removed the agent coupling in the system and changed the effect
of the product Kτ . Section 3-3 showed that using the initial average orientation as ref-
erence disabled the possibility to reach a balanced set, so this option was not researched
further.

3. Error feedback with predicted final orientation as reference. This design choice is re-
searched and reported in Sections 3-4 and 3-5. After modification of the Kuramoto
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algorithm (2-5 into 3-14), choosing between moving towards an aligned or balanced set
is no longer determined by the product Kτ , but by the reference orientations. Using
reference orientaions also removes the all-to-all coupling characteristic of the Kuramoto
model. As shown in Section 3-14, a disturbance in an agent no longer affects other
agents. The undisturbed agents will reach their reference orientation, but agents with a
matched input disturbance will not. As a result, the system will not reach an aligned or
balanced state. In addition to this shortcoming, current understanding of the balanced
set limits the possibility of predicting balanced orientations tot systems of N = 2 or
N = 3 agents. For predicting balanced sets with N ≥ 4 agents, further research is
required.

4. One step ahead prediction and deadbeat control. After the previous two mentioned error
feedback options, this design choice returns to using the unmodified Kuramoto algorithm
(2-5) and combines it with prediction-error feedback. While current understanding of
the balanced set limits the option to predict the final orientations for N ≥ 4 agents,
it is possible to predict the orientations of all agents in the next time step as if the
system were undisturbed. Section 4-2 shows that including the initial average orientation
as reference will enable directing all agents in a disturbed system to the same final
orientation as their undisturbed counterparts. This is a significant improvement over
the error feedback models in Chapter 3. Also, prediction-error feedback enables directing
a system of any number of agents towards a balanced set. Section 4-3 explains that for
N = 2 and N = 3 the balanced set will be identical to the undisturbed reference, but
for N ≥ 4 the balanced orientations will different from the undisturbed references.

5. Autonomous reference and Proportional-Integral control. This controller is designed to
enable agents in a disturbed system to move to the same balanced orientations as their
counterparts in an undisturbed system. Since the Kuramoto model is deterministic,
reference trajectories can be generated when the initial states are known. At every time
step the error for every agent can be calculated and countered by a PI-algorithm that
is added to the controller. This controller gave the best results for the research goals in
Section 2-5.

6-1-2 Other design options

The design choices in the previous section are not the only options. Other possible design
choices for controllers that have been considered are:

1. One step ahead prediction with Proportional-Integral (PI)-control. This design com-
bined the predictions from Chapter 4 with the PI disturbance attenuation from Chapter
5. This option was not researched further since it has the same limitations in predicting
final balanced orientations as the system in Chapter 4.

2. Autonomous reference trajectories with deadbeat control. This design combined the
predictions from Chapter 5 with the deadbeat control from Chapter 4. This design was
not researched further since it was similar to the controller in Chapter 5, but without
the integral control, resulting in steady state errors.
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3. Machine learning algorithms. This would require designing a system that can learn the
behavior of undisturbed systems in a Kuramoto and then learn to counter disturbances.
The amount of extra research required for machine learning put this option outside the
scope of this thesis.

4. Model Predictive Control (MPC) [24]. In MPC the controller will calculate the optimal
input based on weighted penalties for state error and input, calculated for a set number
of steps ahead. The state error has to be calculated in relation to a reference, which
results in additional choices. The reference could be an autonomous system, as in
Chapter 5, or a limited number of steps ahead, based on known states, as in Chapter
4. The input would have be based on the weight of the input penalty in relation to
the state penalty. This becomes difficult when the scope of the research is to use the
Kuramoto algorithm (2-5) or a modified version. The additional research required to
design the model and augment the MPC model from [24] with disturbance attenuation
resulted in leaving MPC outside the scope of this thesis.

6-2 Conclusions

The discrete-time Kuramoto model with matched input disturbances is a very interesting
and challenging system. Understanding the properties of the undisturbed Kuramoto model
is an essential prerequisite for designing disturbance attenuating controllers. In Chapter 2,
the properties of the discrete-time Kuramoto model were introduced and explained, as were
the effects of matched input disturbances in a system without additional control.

The controllers in Chapters 3 and 4 reinforce the statement in [14] that

balanced states are a highly underexplored class of solutions of the Kuramoto model

The current inability to predict final balanced orientations for systems with N ≥ 4 agents puts
a limit on the usability of the error feedback models in Chapter 3 and the prediction-error
feedback model in Chapter 4.

The best results are achieved when the outcome of an autonomous simulation is used as
reference for a controller with a PI-algorithm to attenuate the matched input disturbances.

6-3 Recommendations

For use in real world applications, choosing between the designed controllers is a choice of
desired characteristics: stability under matched input disturbances will only be guaranteed by
the controller with one step ahead prediction and deadbeat control, while the controller with
an autonomous reference system and PI-control will direct the system to the same balanced
set as the undisturbed system with the risk of introducing instability due to bad PI-tuning.

Next to practical applications, the strategies in this thesis give several options for further
research. First, matched input disturbances are only one type of disturbance, all other types
can still be investigated. Second, it is possible that the strategy of an autonomous reference
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system with PI-control can lead to sustained oscillations or even instability, even if the product
Kτ is within the specified ranges for the aligned and balanced sets. Further research could
be aimed at understanding the interaction between the disturbance, the PI gain parameters
KP and KI and the product Kτ .

On a more fundamental level, the all-to-all coupled discrete-time Kuramoto model still pro-
vides options for research. The asymptotic stability of the balanced set has been conjectured
[12] but is still to be proven. The characteristics of the balanced set have been researched
[14], but prediction of balanced orientations for N ≥ 4 is still an open research option.
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Glossary

List of Acronyms

MPC Model Predictive Control
PI Proportional-Integral

List of Symbols

θ̇ Angular velocity
ω Natural Frequency
ψ(h) Orientation of R
ρ(h) Magnitude of R
τ Time step used for discretization
θ Agent orientation

R Phasor, R(θi(h)) ≡ 1
N

N∑
i=1

[
cos(θi(h))
sin(θi(h))

]
h Time index
K Coupling strength
N Number of agents
t Continuous time
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