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Abstract

Micro-Doppler (µDoppler) ultrasound imaging is a high frame rate ultrasound
imaging modality that provides high spatiotemporal resolution ultrasound im-
ages of blood flow. It is sensitive to slow blood flow and particularly suitable
for capturing fast-changing phenomena like rapid blood flow. Clutter filtering
is an essential step in µDoppler data processing to reject tissue clutter signals
and keep blood flow information as much as possible. 3D freehand µDoppler
imaging is an emerging ultrasound technique that can construct full spatial
vasculature images with a panoramic view that conventional 2D ultrasound
is not able to provide. As freehand implies the continuous and nonuniform
movement of the probe, it becomes more challenging for clutter filtering to
acquire high-quality images.

This thesis explores and compares different state-of-art clutter filtering
techniques on freehand in-vivo µDoppler imaging of the human brain. Specif-
ically, Singular Value Decomposition (SVD), Robust Principle Component
Analysis (Robust PCA), and Independent Component Analysis (ICA) clutter
filtering techniques have been investigated. The aim is to test and compare
their performance on in-vivo µDoppler ultrasound data with freehand probe
movement and understand how freehand motion affects the threshold selection
criteria. Besides that, a newly proposed method that combines ICA clutter
filtering and clustering is included in this thesis to bring another perspective
for sorting independent components corresponding to blood flow and rejecting
unwanted ones consisting mostly of tissue clutter signals.
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Introduction 1
Medical ultrasound using conventional ultrasonography emerged in the 1970s [8]. More
than thirty years ago, the concept of ultrafast ultrasound imaging was introduced [9].
Ultrafast ultrasound imaging, also known as micro-Doppler (µDoppler) ultrasound
imaging, is a high frame rate (HFR) ultrasound imaging technique that involves Doppler
processing of microvascular hemodynamics, providing high spatiotemporal resolution
images [10,11]. The underlying principle is to study the temporal variations of signals
backscattered by blood motions using repeated ultrasonic pulses [12]. It is a rapidly
developing non-invasive method used for imaging vasculature in neuroscience research.

Compared to conventional color flow imaging, µDoppler imaging has a much higher
sensitivity due to the combined sensitivity gains resulting from coherent planewave
compounding [13]. Its high sensitivity is suitable for slow blood flow and its ability to
achieve extremely high frame rates using planewave transmission makes it particularly
suitable for capturing fast-changing phenomena like rapid blood flow. It also offers
high spatiotemporal resolution and high signal-to-noise ratio (SNR), contributing to
enhanced image quality. These advantages bring value to many clinical techniques
and applications such as functional ultrasound (fUS), vascular anatomy, brain vascular
imaging, tumor resection, and surgical decision-making.

µDoppler data processing involves planewave transmission, raw radio frequency (RF)
data acquisition, image reconstruction, clutter filtering, and power estimation. Raw RF
data is acquired using planewave transmission, then the reconstructed image is filtered
using clutter filtering techniques. After that, the power intensity of the Doppler signal
at each pixel over the temporal dimension is summed over to reconstruct a power
Doppler image. Without clutter filtering, the reconstructed image cannot be directly
used for image visualization as it contains a significant amount of tissue clutter and
noise. The beamformed raw data is represented by complex variables consisting of
blood flow signals, clutter signals, and electronic/thermal noise [14]. Blood signals
contain useful information for brain activity and vasculature analysis, while clutter and
noisy signals mainly consist of tissue motion and noise disturbances, which need to be
removed.

2D ultrasound imaging with visualization of the region of interest has been widely
used [15, 16]. However, 2D ultrasound imaging alone cannot provide orientation or
anatomical information, thus limiting its diagnostic accuracy. To overcome this limita-
tion, 3D ultrasound imaging aims to construct full spatial anatomical images, providing
physicians with a panoramic view. 3D freehand ultrasound imaging involves obtain-
ing 3D ultrasound images while continuously moving the probe [4] by hand. As the
probe moves, image filtering becomes more complex and challenging, requiring adaptive
clutter filtering techniques to acquire high-quality images.
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Therefore, clutter filtering is crucial to remove tissue motion and noise disturbances,
especially for freehand µDoppler imaging with probe movement. Conventional clutter
filters can be applied to the beamformed data by simply using high-pass and low-pass
filters on the power spectrum. Tissue signals have high amplitude but low frequency,
blood signals have higher frequency but low amplitude, and thermal noise has low am-
plitude and high frequency. However, these methods are not highly effective, especially
when distinguishing between slow-velocity small blood vessels and tissue motion due
to overlapped subspaces. Singular value decomposition (SVD) makes use of different
spatiotemporal features of tissue and blood signals and significantly outperforms con-
ventional clutter filters based on high-pass temporal filtering [14]. Other clutter filtering
techniques include Robust PCA clutter filtering, which decomposes the signal matrix
into a sum of a low-rank matrix and a sparse matrix [17], ICA clutter filtering, which
seeks to transform the data onto a basis with statistically independent vectors [18,19],
Project Approximation Subspace Tracking (PAST) [20], and Nonnegative Matrix Fac-
torization [21]. After clutter filtering, the mean intensity of the Doppler signal at each
pixel is extracted to generate a power Doppler image for analysis.

(a) B-mode image (b) Power Doppler image

Figure 1.1: An example of the comparison between a B-mode image without clutter filtering
and a power Doppler image using clutter filtering. After planewave transmission and raw RF
data acquisition, a B-mode image is reconstructed as figure (a). After clutter filtering and
power estimation, a power Doppler image is reconstructed as figure (b).

1.1 Research question

The objective of this thesis is to explore and compare different state-of-art clutter
filtering techniques on freehand µDoppler imaging.

The following questions are investigated:

1. How to optimally estimate the boundary between the tissue subspace and blood
flow subspace using spatiotemporal SVD clutter filtering for µDoppler imaging?
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As tissue and blood flow subspaces are not always easy to separate, we hypothesize
that the difficulty of finding an optimal threshold comes from the fact that there is
an arbitrary orthogonality constraint for SVD clutter filtering. Later on, Robust
PCA and ICA clutter filtering techniques were explored in comparison with SVD
clutter filtering. More sub-questions involve:

2. How to illustrate that tissue and blood flow have overlapped subspaces on the
eigen-domain?

3. How does freehand motion affect the threshold selection criteria?

4. How is the performance of Robust PCA and ICA clutter filtering compared to
SVD clutter filtering for µDoppler imaging?

5. How to make fair comparisons and evaluate image quality among different clutter
filtering techniques?

1.2 Outline

Chapter 2 gives background knowledge of Doppler imaging, µDoppler data processing,
and 3D freehand ultrasound imaging. µDoppler data processing involves planewave
transmission, raw data acquisition, image reconstruction, clutter filtering, and power
estimation.

Chapter 3 delivers the methodology of state-of-art clutter filtering techniques: SVD,
Robust PCA, and ICA clutter filtering. In SVD clutter filtering, tissue and noise can
be rejected by discarding the largest singular components which mainly contain tissue,
and discarding the smallest singular components which mainly contain noise. There
are several methods of finding the rejection threshold: arbitrary thresholding, singular
value estimators, spatial singular vector estimators, and temporal singular vector es-
timators. Robust PCA clutter filtering decomposes the mixed signal matrix into one
low-rank matrix and one sparse matrix. It assumes that the tissue matrix has a low-
rank structure and blood flow matrix is more sparse. ICA clutter filtering seeks to
transform the data onto a basis with statistically independent vectors. Independent
sources corresponding to blood flow can be clustered by the hierarchical agglomera-
tive clustering method and then the power is estimated along temporal dimension to
reconstruct a power Doppler image.

Chapter 4 illustrates and analyses the results from three clutter filtering techniques
explained in Chapter 3. For SVD clutter filtering, the results consist of the effect of
probe movement on threshold choices, overlapped subspaces on eigen-domain, trade-off
choices between ensemble sizes, threshold selections, and image quality. The results of
Robust PCA clutter filtering include the choices of λ and µ on threshold selection. ICA
clutter filtering results contain the independent component classification and compar-
isons with SVD clutter filtering.

Chapter 5 discusses research questions that include challenges and uncertainties on
how to decide thresholds to distinguish tissue and blood flow, how to decide ensemble

3



lengths for different clutter filtering techniques, how to tune parameters for Robust
PCA clutter filtering, how to decide the number of independent components, how to sort
independent sources corresponding to blood flow signals, how to make fair comparisons
for the images filtered by different techniques, and also give future work suggestions.

Chapter 6 gives conclusions on the thesis work.
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Background 2
2.1 Doppler imaging

2.1.1 Doppler effect

There are A-mode (amplitude-mode), B-mode (brightness-mode), M-mode (motion-
mode), and Doppler-mode in ultrasound imaging systems. Doppler-mode imaging is
used to estimate blood flow by detecting the wave frequency change bounced back from
blood vessels. The transducer works both as a transmitter and a receiver. A higher-
frequency sound wave is reflected back when the red blood cell approaches the probe.
When cells move away from the probe, a lower-Doppler frequency wave is reflected.
Fig. 2.1 shows the Doppler effect diagram. Red blood cell movement gives rise to the
Doppler effect.

Figure 2.1: Diagram of Doppler effect [1]. Each red blood cell gives rise to a Doppler shift.
The transducer transmits Doppler signals and receives the back-scattered signals from red
blood cells (RBCs).

The Doppler shift equation 2.1 is shown as [22]:

Fd = Fr − Ft =
2 · Ft · V · cos θ

c
(2.1)

Here, Fd is the Doppler frequency shift signal. Fr is the received/reflected frequency.
Ft is the transducer/transmission frequency. V is the velocity of blood cells. θ is the

5



angle between the transducer and the blood cell. c is the sound speed in the tissue
medium. As the waves travel from the transducer and then get reflected back, there is
a factor two here for the round trip. Doppler shift is measured in Hertz (Hz).

When blood cells V move faster, the Doppler shift is larger. The strength of the Doppler
shift also depends on the amount of moving cells. The angle θ between the transducer
and RBCs has an effect on the Doppler shift. The Doppler shift wave reaches the
largest when the angle is the smallest (zero degrees). In clinical practice, however, the
probe is usually placed at around 60 degrees due to some considerations [1].

2.1.2 Color Doppler imaging

Color Doppler imaging is a classic Doppler sonogram. The encoding method of most
color Doppler scanners is the estimation of the mean Doppler frequency shift at a
specific position and representing it in color [23]. In color Doppler imaging, the speed
and direction of the blood flow are displayed. The red color represents a positive
shift (blood cells moving toward the probe), while the blue color represents a negative
shift (blood cells moving away from the probe). Color Doppler imaging has had a big
influence on ultrasonography. However, there are also some limitations. The biggest
weakness of this conventional Doppler ultrasound is the lack of sensitivity [24,25], which
is hard to detect small blood vessels (an example is shown in Figure 2.2).

2.1.3 Power Doppler imaging

Power Doppler imaging, also known as amplitude-mode color Doppler imaging or color
Doppler energy [25], was developed after color Doppler imaging to detect small blood
vessels and flow with low velocity. It has three times more sensitivity than conventional
color Doppler imaging. Instead of encoding the mean Doppler frequency, power Doppler
encodes the power in the Doppler technique and represents it in color. The mean power
is calculated as equation 2.2 [24]:

PW (nx, nz) =

∫
|B(nx, nz, nt)|2 dt (2.2)

Here, PW (nx, nz) is the mean intensity power. B (nx, nz, nti) is the clutter filtered
signal for each pixel (nx, nz) along time ti. nx, nz, and nti represent lateral, axial, and
time coordinates respectively. N is the size of the ensemble. To increase the estimation
of PW , the ensemble size must be large enough and the clutter in B must be reduced.

This technique weakens the noise disturbance in the imaging because the noise always
has uniformly low power due to the standard SNR requirements of a Doppler scan-
ner [23]. In this way, low power is represented only by a uniformly colored imaging
background instead of a random distribution of colors which can lead to confusion in
distinguishing any possible flows from noise. Compared with the mean frequency color
Doppler, power Doppler is angle independent. As the total power is related to the
number of moving scatters, it does not change with the angle of insonification. For

6



color Doppler imaging, the mean Doppler shift will be larger at a small angle and will
be smaller at a large angle, therefore, the probe angle should be carefully controlled for
color Doppler to get a good image.

Figure 2.2: Color Doppler imaging (left) and Power Doppler imaging (right) comparison [2].
They show longitudinal scans of the patella tendon (PT) with Doppler activity in a patient
with jumper’s knee. Power Doppler imaging is more sensitive to blood vessels.

2.2 µDoppler data processing

There are five main steps in µDoppler data processing: planewave transmission, raw
RF data acquisition, image reconstruction, clutter filtering, and power estimation. The
steps and their functions are illustrated in Table 2.1.

In summary, planewave transmission utilizes unfocused beamforming instead of line-
per-line focused beamforming. The transducer serves as both the transmitter and
receiver. By detecting frequency changes induced by blood red cells, high-frame-rate
beamformed raw RF data is acquired. To construct an image, a specific ensemble data
size is initially selected. The Brightness-mode (B-mode) image is generated by summing
the beamformed raw data over the temporal dimension. After image reconstruction,
clutter filtering techniques are applied to enhance the image quality by reducing tissue
clutters and other noise, while preserving the blood flow information. After summing
the power of every pixel over the temporal dimension of the clutter filtered data, a
power Doppler image (PDI) is reconstructed.

2.2.1 Planewave transmission

There are several beamforming options available in ultrasound imaging, including linear
and phased array beamforming, multi-line transmission beamforming, plane and diverg-
ing wave beamforming, and synthetic aperture beamforming [26]. Conventional ultra-
sound imaging commonly utilizes line-per-line pulsed focused beamforming (Fig. 2.3A).
The main drawback of this approach is its low frame rate.

To achieve the maximum frame rate, the number of transmission events required to form
an image needs to be minimized. Planewave beamforming (Fig. 2.3B) can generate
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µDoppler Processing Steps

Steps Processing Function

1 Planewave transmission Transmit and receive waves

2
Raw RF data
acquisition

Acquire raw RF data

3 Image reconstruction
B-mode image reconstruction

by summing over temporal dimension

4 Clutter filtering
Clutter filtering techniques

(SVD, Robust PCA, ICA, etc.)

5 Power estimation
Power Doppler image reconstruction

by estimating power for each
pixel over temporal dimension

Table 2.1: µDoppler data processing

an image with a single transmission event, resulting in ultrafast ultrasound imaging
with frame rates reaching thousands of hertz. However, this significant increase in
frame rate comes at the expense of image quality. This issue is addressed by image
compounding, where steering is applied before compounding. Steering refers to varying
the transmission angles. By averaging frames with different steering angles, the final
image is formed. While this reduces the frame rate by a factor equal to the number
of angles, it improves spatial resolution, penetration depth, and signal-to-noise ratio
(SNR) [26]. The number of angles can be adjusted for specific plane wave imaging
applications. The extremely high frame rates achievable with plane wave imaging
are well-suited for capturing fast-changing phenomena such as rapid blood flow. The
beamformed data is then summed over temporal dimension to construct a B-mode
image.

Figure 2.3: Comparison of line-per-line focused beam transmission (A) and planewave beam
transmission (B) [3].
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2.2.2 Doppler processing

Doppler processing involves clutter filtering and power estimation. Clutter filtering
techniques aim to suppress clutter sources and noise while retaining blood flow infor-
mation as much as possible. In some literature, clutter filtering techniques are also
referred to as blind source separation techniques [18, 21] or clutter suppression tech-
niques [27].

There are many clutter filtering techniques. Conventional high-pass filters make the
assumption that moving tissue is concentrated in the low-frequency band and has a
narrower bandwidth, while blood flow exhibits a broader bandwidth. However, this
assumption is not effective for small blood vessels due to the overlap of the frequency
spectrum. SVD-based clutter filtering relies on the assumption that tissue clutter,
blood flow, and noise are uncorrelated and their subspaces are orthogonal. Tissue and
noise are discriminated by discarding the largest singular components, which mainly
contain tissue motion, and the smallest singular components, which mainly contain
noise. SVD clutter filtering provides more robust and accurate clutter filtering in the
presence of blood vessels. There are also other clutter filtering techniques such as
Robust PCA or ICA clutter filtering. After summing the power of every pixel over the
temporal dimension of the clutter filtered data, a power Doppler image is reconstructed.
Chapter 3 will provide explanations of all the clutter filtering techniques used in this
thesis.

2.3 3D freehand ultrasound imaging

Real-time 2D ultrasound imaging with visualization of the region of interest has been
widely used [15, 16]. However, 2D ultrasound imaging alone cannot provide orienta-
tion or anatomical information, thus limiting its diagnostic accuracy. To overcome this
limitation, 3D ultrasound imaging aims to construct full spatial anatomical images,
providing physicians with a panoramic view. This technology not only facilitates accu-
rate surgical instrument placement but also enhances image evaluation efficiency. 3D
freehand ultrasound imaging involves obtaining 3D ultrasound images while continu-
ously moving the probe [4]. As the probe moves, image filtering becomes more complex,
requiring adaptive filtering techniques to acquire high-quality images.

The process of conducting 3D ultrasound imaging typically involves three main steps
[28]: acquisition, reconstruction, and visualization. Filtered B-scans with their relative
positions are acquired to reconstruct a volumetric grid, which can then be visualized
using specific rendering techniques. A state-of-the-art real-time approach for 3D ul-
trasound imaging is to remap 2D frames to a 3D volume, combined with an optical
tracking system [4, 28, 29]. An example of a 3D reconstructed vasculature is shown in
Figure 2.5. Although the focus of this thesis is on 2D imaging, the inclusion of this 3D
information provides users with a broader perspective on the application.
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Figure 2.4: 3D Doppler imaging reconstruction using optical tracking [4]. Ultrasound data
and optical tracking data are gathered by freehand scanning. After clutter filtering, the pixels
of ultrasound data are mapped into a 3D space using the optical tracking data to reconstruct
a 3D image.

Figure 2.5: An example of from freehand Doppler imaging [4].
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Clutter filtering techniques for
µDoppler ultrasound imaging 3
As discussed in Chapter 2, ultrasound images are often affected by tissue clutter, elec-
tronic thermal noise, probe or patient motion, and other artifacts that can obscure
blood vessel observations [21,30]. Consequently, ultrasound data can be represented as
the superposition of:

X(nx, nz, nt) = B(nx, nz, nt) + C(nx, nz, nt) +N(nx, nz, nt) (3.1)

where B, C, and N represent blood signals, clutter signals, and noise signals respectively,
and nx, nz, and nt represent lateral, axial, and time coordinates respectively. Clutter
filtering techniques aim to suppress clutter sources and noise while retaining blood flow
information as much as possible.

Chapter 3 covers the principles and algorithms of four clutter filtering techniques, in-
cluding the most basic conventional frequency-based clutter filtering, widely used SVD
based clutter filtering, low-rank-and-sparsity-assumed PCA based clutter filtering, and
non-Gaussian ICA based clutter filtering. The techniques are compared among each
other, and the results are further discussed in Chapters 4 and 5.

Figure 3.1: Frequency-based clutter filtering method using a high-pass filter to remove high-
coherent tissue motion and a low-pass filter to discard low-coherent noise. [5]

3.1 Frequency-based clutter filtering technique

A frequency-based clutter filter (Figure 3.1) distinguishes tissue motion and blood
vessels by considering their temporal properties. The ultrasound data is transformed
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into the frequency domain via discrete Fourier transform, and the frequency-based
clutter filter aims to discard undesired signals within a certain frequency range. Tissue
tends to move together and much slower than blood vessels. Therefore, tissue motion
has a lower frequency and narrower frequency bandwidth, while blood flow has a higher
frequency and broader frequency bandwidth. As a result, tissue, blood flow, and noise
can be distinguished by using a high-pass filter that filters out tissue with a lower
frequency characteristic and a low-pass filter that discards other noise with a higher
frequency feature. However, tissue and blood flow separation is often not ideal for
frequency-based clutter filters, especially for slow-flow blood vessels and fast tissue
motions that overlap on the frequency domain.

3.2 SVD-based clutter filtering technique

SVD-based clutter filtering is used to remove tissue clutter and noise from ultrasound
data. It relies on the assumption that tissue clutter, blood flow, and noise are un-
correlated and their subspaces are orthogonal. They are discriminated by discarding
the largest singular components, which mainly contain tissue motion, and the smallest
singular components, which mainly contain noise. This is because tissue tends to move
together over time and therefore exhibits high spatial-temporal coherence. Noise signals
are randomly distributed and thus have the lowest spatial-temporal coherence. Unlike
frequency-based clutter filtering, SVD-based clutter filtering considers both spatial and
temporal statistical properties by using the information in spatial singular vectors U ,
singular values Σ, and temporal singular vectors V .

The steps of SVD clutter filtering are illustrated in Figure 3.2. Firstly, a stack of
beamformed frames with a size of (nz, nx, nt) is selected and then reshaped into a
Casorati matrix with a size of (nz × nx, nt). The singular value decomposition is then
applied to obtain a spatial singular vector matrix (U) of size (nz × nx, nt), a singular
value matrix (Σ) of size (nt, nt), and a temporal singular vector matrix (V) of size
(nt, nt) as:

X = UΣV H (3.2)

U and V are also eigenvectors of the covariance matrices XXH and XHX:

XXH = UΣ2UH

XHX = V Σ2V H
(3.3)

Tissue clutter suppression can be achieved by setting singular values with the highest
magnitude and lowest magnitude to zero. The filtered dataset is reconstructed as:

Xfiltered =
n∑

i=m

UiΣi,iV
H
i , (3.4)

12



(a) A stack of beamformed frames with a size of (nz, nx, nt) is selected and then reshaped into
a Casorati matrix with a size of (nz × nx, nt). SVD is then applied to obtain a spatial singular
vector matrix (U) of size (nz ×nx, nt), a singular value matrix (Σ) of size (nt, nt), and a temporal
singular vector matrix.

(b) After finding the appropriate thresholds for discarding unwanted signals, a matrix with a size
of (nz×nx, nt) is reconstructed using SVD. The resulting matrix is then reshaped into frames with
a size of (nz, nx, nt). The power of each pixel is calculated, and the values are summed over the
time dimension to construct a power Doppler image.

Figure 3.2: SVD-based clutter filtering processing.

where m,n are cut-off thresholds. Singular values bigger than the mth and smaller than
the nth values will be discarded.

After reshaping the Casorati matrix back to a stack of frames, the power of pixels is
summed over time to construct a power Doppler image (Figure 3.2):

PW (nx, nz) =

∫
|B(nx, nz, nt)|2 dt (3.5)

The thresholds vary with the different numbers of frames selected, the size of the se-
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lected filter region, and the starting point of the frames. If the threshold is set too large,
some essential blood flow information may be not visible. If the threshold is too small,
some unwanted tissue clutter may appear. To determine the appropriate thresholds
for clutter filtering, various methods are used within SVD technique, including arbi-
trary thresholding, singular value estimation, spatial singular vector estimation, and
temporal singular vector estimation.

3.2.1 Arbitrary thresholding

Arbitrary thresholding is based on intuition to decide how many percentages of singu-
lar components are to be discarded and retained. Different thresholds are tried and
adjusted manually until the power Doppler image looks the most optimal. This method
can provide a direct understanding of how different thresholds can affect image quality.
However, when considering clutter filtering on many ensembles, it is time-consuming,
lacks robustness, and does not consider blood flow and tissue characteristics in ultra-
sound signals.

3.2.2 Singular value (Σ) estimators

Singular value estimators are based on singular values. Each singular value gives a
weighting to the contribution of each singular component in the whole dataset. The
amplitude of singular values corresponding to tissue is much higher than the amplitude
regarding blood flow. Baranger et al. [30] proposed three ways to decide the threshold
based on singular values. The first way is by discarding the singular values above or
below a certain magnitude (in dB). The second way is to calculate the ratio between
the cumulative sum of singular values in the middle regime to the sum of the whole
set. The threshold is set when the ratio reaches a certain level. The third way is to set
the maximum acceleration point (when the second derivative of the signal equals zero)
as the threshold.

Figure 3.3: singular value energy plots in dB for the stationary dataset with the ensemble
size 400. The curve is in a decreasing order based on the weighting of each singular value.
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3.2.3 Spatial singular vector (U) estimators

Spatial singular vector estimators take into account the spatial characteristics of the
ultrasound data. As tissue and blood flow have different spatial distributions, it is
expected that their corresponding column vectors of U are correlated only within their
subspaces. The noise is assumed to be white Gaussian and randomly spread, which
results in uncorrelated spatial vectors for the noise [30].

(a) Spatial similarity matrix of
U. It represents the correlation
among columns of the spatial
singular vector

(b) The image reconstructed
by the first 15 singular compo-
nents

(c) The image reconstructed
by the 16th to 65th singular
components

Figure 3.4: Different subspaces due to different spatial distributions....

The correlation coefficient matrix C (also called spatial similarity matrix) of U is cal-
culated as shown in Equation 3.6 [30], where n and m are the indices of each column of
U, ranging from 1 to the ensemble size. p represents the elements within the same col-
umn vector. The absolute mean differences of each column are divided by the standard
deviation and then normalized by dividing by the total number of column elements.

C(n,m) =
1

nx · nz

·
nx·nz∑

p

(
|un(p)| − |un|

)
·
(
|um(p)| − |um|

)
σn · σm

(3.6)

The threshold selection is based on finding subspaces in the shape of squares in the
similarity matrix of U (Figure 3.4a). This relies on the hypothesis that tissue and
blood flow have different spatial distributions. Tissue and blood flow subspaces fall
into two juxtaposed symmetrical square areas. These square areas can be separated by
optimally fitting two squares to the spatial similarity matrix [30].

Besides finding square subspaces on the spatial similarity matrix of U, clustering al-
gorithms such as K-means or hierarchical agglomerative clustering with connectivity
constraint algorithms can be applied to column vectors of U to create clusters with
similar spatial characteristics [4, 31].
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3.2.4 Temporal singular vector (V) estimators

Temporal singular vector estimators determine the separation threshold between tissue
and blood flow by looking at their temporal differences. Conventional high-pass filter
distinguishes tissue and blood flow by considering their frequency ranges. Their same
temporal characteristics can also be discovered in temporal singular vectors. Figure 3.5
shows the temporal variation for each singular component. Each column is one singular
component varying over time. The variance of the first several columns is lower and is
higher for the rest columns as their neighbor values tend to change faster.

Figure 3.5: Temporal singular vector visualization

The variance corresponds to the frequency. Having higher variances also means that the
value changes fast thus having higher frequencies. To find out their frequency range,
the Fourier transform is applied to V to get the power spectrum density (PSD).

(a) PSD of V (b) Threshold selection

Figure 3.6: PSD obtained by using fast Fourier transform on V. The x-axis is the temporal
dimension, and the y-axis is the frequency in Hertz (HZ).

As observed from figure 3.6, low frequency is associated with high-energy singular
vectors and high frequency with low-energy singular vectors. The reason is that high-
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energy singular vectors are associated with tissue that has high temporal coherence
because of the slow movement and the opposite for blood flow.

The threshold selection can be based on the central frequency. For example, frequencies
lower than a certain value can be considered as tissue and discarded. The extracted
central frequency of PSD of V is shown in Figure 3.7. The central frequency is cal-
culated by averaging the minimum frequency value and the maximum frequency value
of a certain frequency amplitude of each column. The central frequency curve is then
smoothed by mean envelope extraction (Matlab function envelope) or other smoothing
method.

Figure 3.7: Central frequency of PSD of V

So far, methods based on singular values, and spatial/temporal singular vectors to
decide the threshold has been introduced. These methods can be applied to global
SVD clutter filtering, or block-wise SVD clutter filtering [4, 7]. However, subspaces
for tissue and blood flow principle components are not always distinct after SVD [32].
Overlapped subspaces demonstration and explanation can be found in chapter 4.1.3.

Figure 3.8: Hierarchical agglomerative clustering example [6].

3.2.5 Clustering

Besides choosing the threshold criteria by discovering separated subspaces from spatial
similarity matrices ofU and PSD ofV as explained in section 3.2.3 and 3.2.4, clustering
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methods can also be used to group singular component vectors based on similarities.
Hierarchical agglomerative clustering is the most common clustering method based
on similarities. It works by iteratively merging clusters with minimal distances in a
bottom-up approach as Figure 3.8 shown. Different algorithms can be used to calcu-
late the distance between clusters. Ward’s method which calculates the inner squared
distance (minimum variance algorithm) is chosen in this thesis. The number of clus-
tering is not restrictive to be a certain number. It depends on different datasets and
used methods.

Figure 3.9: Schematic plot of processing 3D planewave data into overlapped blocks [7].

3.2.6 Block-wish approach

So far, all decompositions are based on global SVD clutter filtering. One of the chal-
lenges of taking a global threshold is that the threshold is not always applicable to all
fields. It can be the case that some tissue motion in the near field still remains while
some small blood vessels in the far field are overly removed. This can be addressed by
applying overlapped block decomposition approach. This block-wise approach works
by decomposing 3D planewave data into overlapped small blocks. After extracting the
small blocks, the clutter filtering process works the same as for global SVD clutter
filtering as explained in the previous section 3.2 in Figure 3.2.

Song et al. [7] has experimented with block-wise local SVD clutter filtering technique
and they have found that for some datasets this approach can improve the separation
of the tissue, blood flow, and noise, and also some small vessel PDIs can be further
improved due to the redundant nature of overlapped block decomposition.

3.3 Robust PCA-based clutter filtering technique

Robust PCA-based clutter filtering is another method to decompose the mixed signal
matrix. It assumes that the beamformed data X can be decomposed into one low-
rank matrix containing tissue motion and one sparse matrix containing blood flow. It
improves clutter filtering on the aspect of microvessel sparsity [17]. It aims to recover a
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low-rank matrix and a sparse matrix from a corrupted measurement. Here the rank of
L and the cardinality of S are unknown. X ∈ Rnxnz×nx , L ∈ Rnxnz×nx , S ∈ Rnxnz×nx .

X = L+ S (3.7)

Figure 3.10: Robust PCA principle

The low-rank matrix L and sparse matrix S can be recovered by solving the principle
component pursuit convex program by minimizing the weighted combination of the
nuclear norm of L and of the ℓ1 norm of S [33] as 3.8:

minimize ∥L∥∗ + λ∥S∥1
subject to X = L+ S

(3.8)

where the nuclear norm ∥L∥∗ is the sum of its singular values and the ℓ1 norm ∥S∥1 is
the sum of its absolute vector values. λ is the regularization parameter that controls
the trade-off between the low rank and sparsity.

This convex program can be solved by many algorithms. Previous methods include
using interior point methods [34], repeatedly shrinking the singular values of an ap-
propriate matrix [35], or using Nesterov’s optimal first-order algorithm for smooth
minimization [36]. The alternating direction method of multipliers (ADMM) algorithm
is a classical way to solve this convex program which can achieve much higher accuracy
in fewer iterations [37]:

L(L, S, Y, µ) = ∥L∥∗ + λ∥S∥1 + ⟨Y,X − L− S⟩+ µ

2
∥X − L− S∥2F (3.9)

L is updated as:

LN+1 = D 1
µ

(
X − SN + µ−1YN

)
, (3.10)

where Dτ (X) = USτ (Σ)V
∗. S is updated as:
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SN+1 = Sλ
µ

(
X − LN+1 + µ−1YN

)
, (3.11)

where Dτ (X) = USτ (Σ)V
∗.

Sτ [x] = sgn(x)max(|x|−τ, 0) is the shrinkage operator andDτ (X) = USτ (Σ)V
∗ denotes

the singular value thresholding operator. L is first minimized by updating L with fixing
S, and then minimized by updating S with fixing L. Finally, the Lagrange multiplier
is updated based on the residual X − LN − SN .

(a) low-rank matrix (b) sparse matrix

Figure 3.11: Visualization of Robust PCA decomposition. The size of both images is nx×nz.
The image intensity is in dB.

Figure 3.11 compares low-rank matrix and sparse matrix decomposition from Robust
PCA. The ensemble size is 400, λ is set as 0.002, and µ is set as 5. There is most
tissue clutter in 3.11a but most blood vessels in 3.11b. The matrix decomposition is
largely affected by the values of λ and µ. The parameter value selection will be further
discussed in Chapter 4.

3.4 ICA-based clutter filtering technique

ICA can reveal their information by separating the mixed signals into independent
components with the assumption that independent sources have non-Gaussian distri-
bution [38].

3.4.1 ICA principles

Data model The mixing model can be written as [39]:

X = AS, (3.12)
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Where X is a Casorati matrix with a size of nt×nxnz, A has a size of nt×n, S has a size
of n× nxnz, and n is the number of independent components. The assumption is that
there are several sources with a certain spatial signature but their intensity varies over
time. The vectorized source images are sn and their temporal variation is expressed by
the rows of the mixing matrix, meaning that ajn express the intensity of the jth source
at time points nt.

xj can be written as the summation of the product of independent components sn and
mixing matrices ajn, where ajn gives the weighting of how sn is combined to construct
xj.

xj = aj1s1 + aj2s2 + . . .+ ajnsn, for all j. (3.13)

After estimating A, S can be obtained by:

S = A−1X (3.14)

Assumption and restriction The source signals are independent of each other, and
the distribution in each source signal is non-Gaussian, which is the fundamental as-
sumption and restriction for ICA. Gaussian variables (normal distribution with zero
mean and unit variance) make ICA impossible. Assuming that si is Gaussian and
A is orthogonal, then xi is Gaussian. The joint density is symmetric and, therefore,
does not contain information on the directions of the columns of the mixing matrix A.
Thus, A cannot be estimated. To separate independent signals from their mixtures,
it is important to ensure that the linear signal transformation is as non-Gaussian as
possible.

Maximizing non-Gaussianity can yield one of the independent components. Kurtosis,
negentropy, and the minimization of mutual information can be quantitative measures
of non-Gaussianity [39]. Kurtosis is a classic measure defined by the equation 3.15. As

y is assumed of unit variance, thus 3 (E {y2})2 simplifies to 3. If kurt(y) is zero, the
random variable is Gaussian. The absolute value of kurtosis can be used as a measure
of non-Gaussianity.

kurt(y) = E
{
y4
}
− 3

(
E
{
y2
})2

= E
{
y4
}
− 3 (3.15)

Pre-processing The pre-processing steps consist of centering and pre-whitening the
data [39]. Centering processing means that data is centered by subtracting the mean
vector. After the estimation of the mixing matrix, the mean can be added back to the
centered estimates of S.

Prewhitening is to transform the observed vector x linearly so that the new vector is
white, which means that the components are uncorrelated (covariance is zero) and they
have unity variances (E

{
x̃x̃T

}
= I). The whitening processing can reduce the number

of parameters to be estimated.
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For the steps of pre-whitening, first, take eigenvalue decomposition of the covariance
of X:

C = E
{
xxT

}
= EDET, (3.16)

where E is the orthogonal eigenvector matrices of C and D is the diagonal eigenvalue
matrices. Then, pre-whitened data is x̃ = ED−1

2ETX. The mixing matrix A can be
transformed into a new matrix Ã:

x̃ = ED−1
2ETX = ED−1/2ETAs = Ãs (3.17)

Now the components have unity variances and have zero covariance after whitening:

E
{
x̃x̃T

}
= ÃE

{
ssT

}
ÃT = ÃÃT = I (3.18)

E
{
x̃x̃T

}
− E {x̃}E {x̃} = 0 (3.19)

ICA algorithm There are many ICA algorithms for decomposing the mixing matrix
X. The Fast ICA algorithm is a fixed-point optimization method that optimizes over a
contrast function, usually defined by an approximation of negentropy or excess kurtosis.
The contrast functions are defined as statistical functions capable of separating or
extracting independent sources from a linear mixture [40]. Robust ICA is based on
the normalized kurtosis contrast function, which is optimized using a computationally
efficient iterative technique [41]. The main advantages of Robust ICA are its high
convergence rate and the ability to process both real- and complex-valued signals. In
this thesis, I adopted the Robust ICA algorithm, and the MATLAB package created
by V. Zarzoso and P. Comon [41] can be found at this link [42].

3.4.2 The application on functional ultrasound imaging

The observation of mixtures X can be considered as the linear combined mixtures of
tissue clutter C, blood flow B, and other noise N:

X = C+B+N (3.20)

where X, C, B, and N all have a size of (nt, nznx).

A direct way to apply ICA clutter filtering is to decompose the Casorati matrix X with
size (nz×nx, nt) into independent components (X = AS), as shown in Figure 3.12. ICA
works by solving the mixing matrixA, and S = A−1X. Another approach is to combine
SVD and ICA clutter filtering [18], as illustrated in Figure 3.13. Before applying ICA
to X, an additional SVD step is performed to remove N. The noise-removed X is then
divided into smaller time windows to apply ICA clutter filtering.

After extracting the independent components, another challenge is to select compo-
nents that correspond only to blood flow. Wahyulaksana et al. [18] proposed a sorting
method based on kurtosis measurement values. They believed that blood vessels are
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Figure 3.12: A direct way of ICA clutter filtering

Figure 3.13: SVD and ICA combined clutter filtering

sparser and thus have higher kurtosis values than tissue. Tierney et al. [19] used
sorted independent components based on correlation coefficients computed between
reconstructed power Doppler images created with each individual independent compo-
nent and a power Doppler image created with all components. They asserted that a
component that produces a high correlation coefficient likely contains tissue, while a
component that produces a low correlation coefficient contains blood. In this thesis,
the selection method employed is to apply hierarchical agglomerative clustering to in-
dependent sources to separate tissue clusters and blood flow clusters. This method does
not require independent component ordering and has been found to be effective for our
ultrasound data compared to kurtosis-based ordering and correlation-based ordering.
The results and analysis can be found in Chapter 4.
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3.5 Fair comparison methods

Making fair comparisons is important, especially among results from different clutter
filtering techniques. There are following aspects to consider:

Figure 3.14: The comparison between Robust PCA clutter filtering and SVD clutter filtering.
The dynamic range is set as the mean value of all pixels in the selected background area (red
rectangular area).

1. Stack of frames. The stack of frames used to reconstruct images needs to be the
same, including the starting point of the frames and the ensemble length. This
ensures that their spatial and temporal information are the same.

2. Image mean contrast intensity. Image mean contrast intensity needs to be on the
same level. This can be done by setting the limit of the dynamic range to the
mean value of all pixels in the background area. The background area contains
almost no tissue or blood flow. For example, when comparing images filtered
by Robust PCA and SVD as Figure 3.14 shows, the mean value of all pixels in
the selected background area (red rectangular area) is calculated and set as the
dynamic range limit so the image mean contrast visualization is similar.

3. Proper threshold choosing. Thresholds need to be carefully selected to reconstruct
an ultrasound image. For example, When comparing different clutter filtering
techniques with SVD clutter filtering, a too-high or too-low threshold can lead to
a wrong judgment of image quality. For Robust PCA clutter filtering, improper
λ and µ value selection could lead to the filtered image being too sparse or too
low-rank, thus affecting the image quality. For ICA clutter filtering, inappropriate
independent component sorting and clustering could result in revealing not much
blood flow information or too much tissue clutter.

4. Quantitative metrics. Quantitative metrics are objective numerical measurements
used to evaluate image quality. They serve as ancillary tools for direct image ob-
servations. SNR and CNR are commonly used in evaluating µDoppler images.
SNR measures the ratio of blood flow intensity in the region of interest and the
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standard deviation of the background noise. CNR measures the ratio of the dif-
ference between blood flow intensity in the region of interest and the standard
deviation of background noise. However, when using quantitative metrics, it re-
mains crucial to keep a critical approach when using these measurements and
ensure that the measurements are fair and reliable.
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Results 4
4.1 SVD clutter filtering

4.1.1 The effect of probe movement on threshold choices

Probe movement means that the area scanned by the probe changes over time. Under-
standing how movement influences threshold choices is essential to provide guidance on
operating probe scanning and determining appropriate thresholds.

Threshold choices for separating tissue and blood flow between stationary and moving
datasets using an ensemble size of 200 and 400 are compared in Figure 4.1a and 4.1b.
Thresholds were determined using an automated SVD clutter filter based on spatial
similarity matrices (Chapter 3.2.3), as proposed and tested by Baranger et al. [14].
Their method is widely used and generally known to produce good results. In this
part, we consider thresholds determined by this method as optimal thresholds. The
focus of this analysis is on the threshold results, rather than the specific clutter filtering
methods employed.

In both figures, thresholds are compared for a stationary dataset and a moving dataset,
both obtained from the same patient’s brain during surgery. The scanned areas in
these datasets are close to each other, ensuring that probe movement could be the only
influencing factor for the threshold choices.

The common observation in both figures is that the optimal thresholds exhibit relative
stability over time for the stationary dataset, while they show significant variation
for the moving dataset. In the left-side figure, which compares the thresholds with
an ensemble size of 200, the variance of threshold choices is 2.5299 for the stationary
dataset, whereas it increases to 76.5161 for the moving dataset. This difference in
variance becomes even more pronounced for an ensemble size of 400, which covers a
wider time range. The variance of threshold choices for the stationary dataset is 2.1195,
whereas for the moving dataset, it rises to 122.2126.

The probe movement information can also be revealed from the correlation matrix.
The correlation matrix is calculated as:

ρ(X,X) =
1

nt − 1

nt∑
i=1

(
Xi − µX

σX

)(
Xi − µX

σX

)
, (4.1)

where X is the Casorati matrix, µX is the column mean, and σX is the column standard
deviation. It has the same calculation as Equation 3.6. It represents the correlation
values among the columns ofX containing the spatial information from different frames.
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(a) (b)

(c)

(d)

Figure 4.1: (a)(b) Threshold comparisons between stationary and moving datasets with an
ensemble size of 200 and 400 using an automated SVD clutter filer. The x-asix represents
different stacks of frames index of the same datasets. (c)(d) The correlation matrix of neigh-
boring pixels calculated as Equation 4.1 is of dimension 200× 200 and 400× 400.

It is symmetric and non-negative. Figure 4.1c presents the correlation matrix of a
stationary dataset and a moving dataset of dimension 200× 200.

For the correlation matrix of the stationary dataset, the magnitude of the correlation
values is very high as observed. This indicates that the spatial information of each
frame is highly correlated with each other. This observation also aligns with the stable
threshold criteria shown in Figure 4.1a. On the other hand, when observing the correla-
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tion matrix of the moving dataset, very high correlation values concentrate around the
diagonal area. This reveals that neighboring frames highly resemble each other, while
for frames further apart, the spatial coherence decreases, resulting in lower correlation.
As 200 frames take only 250ms, the lowest correlation still has a high value.

The same analysis can be applied to Figure 4.1d, which displays the correlation matrix
of a stationary dataset and a moving dataset of dimension 400 × 400. Overall, the
correlation values in the off-diagonal area are lower compared to those in Figure 4.1c
of dimension 200× 200. This is evident from the darker colors in the off-diagonal area
and the narrower width of the bright diagonal area. This indicates that with more
frames involved, the difference between the very first and very last frames becomes
larger. This makes sense as the total displacement between the first and last frame
is larger. Nevertheless, the correlation of the stationary dataset still exhibits higher
overall values than the moving dataset. In the stationary dataset, the areas with lower
values could indicate a small shift in the tissue, for example, during a heartbeat.

Figure 4.2: Comparison between B-mode images and reconstructed PDIs of a stationary
dataset and moving dataset with the dimension 800× 800 for a stack of frames from 4900 to
5699.

Besides comparing thresholds and frame correlation on different moving and stationary
datasets with different scan areas, it is also interesting to discover these differences for
datasets with similar scan areas. Figure 4.2 displays two sets of B-mode and SVD-
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Figure 4.3: Comparison between correlation matrices of a stationary dataset (left-side figure)
and moving dataset (right-side figure) with the dimension 800 × 800 for a stack of frames
from 4900 to 5699.

Figure 4.4: Comparison between spatial similarity matrices C of a stationary dataset and
moving dataset with the dimension 800× 800 for a stack of frames from 4900 to 5699.

filtered power Doppler images reconstructed from different datasets. Their scanned
areas are very close to each other, therefore it is considered that tissue and blood
flow characteristics are very similar for both sets. Their movement characteristics are
shown in Figure 4.3 where the frames are more correlated in a stationary dataset
than in a moving dataset. The movement information can also be discovered from
spatial similarity matrices, as shown in Figure 4.4. The subspace squares display more
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distinguishable in a stationary dataset than in a moving dataset.

Figure 4.5: Calculation of correlation coefficients: the correlation coefficients are computed
by correlating juxtaposed matrices filled in all 1’s with the spatial similarity matrix.

Tissue and blood flow subspaces are not always in a square shape and correlation
coefficients are computed to evaluate the fit of data distribution in spatial similarity
matrices segmented by a threshold. The calculation method is outlined in Figure 4.5.
Following the threshold selection for separating tissue and blood flow, the juxtaposed
matrices (matrices represented by dark color) filled with all ones are correlated with
the spatial similarity matrices to derive the correlation coefficients.

The correlation coefficients computed between spatial similarity matrices and unit jux-
taposed matrices of size 800 is presented in Table 4.1, with varying starting points of
the frames. The objective is to identify common findings regarding the correlation of
their own respective subspaces across different frames. As observed in the table, the
correlation coefficients consistently indicate higher values for stationary datasets com-
pared to moving datasets, regardless of the spatial content of the frames. This suggests
that tissue and blood flow subspaces exhibit greater distinguishability and correlation
with their respective subspaces in stationary datasets compared to moving datasets.

Ensemble size Start Point Dataset Type Correlation coefficients

800

1400
Moving 0.2438

Stationary 0.3086

2200
Moving 0.2946

Stationary 0.4175

3000
Moving 0.3682

Stationary 0.4157

3800
Moving 0.4002

Stationary 0.4344

4600
Moving 0.3901

Stationary 0.3928

Table 4.1: Comparison of correlation coefficients between spatial similarity matrices and unit
juxtaposed matrices (matrices with a dark area) of a stationary dataset and moving dataset
with an ensemble size of 800.
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4.1.2 Trade-off choices between ensemble sizes, threshold selections, and
image intensity

Figure 4.6: Comparisons of ensemble sizes and threshold choices: vertical axis - same ensemble
sizes and different thresholds, horizontal axis - same thresholds and different ensemble sizes.

SVD takes advantage of the large ensemble length achieved by the ultrafast Doppler
technique. A large ensemble size results in high power Doppler contrast. However, it
also implies that the ensemble covers a longer time duration. This can be vulnerable,
particularly in the case of moving datasets, as the image content changes over time.
Consequently, when images are integrated over temporal dimension, vessels that are
not in the same location are compounded, thereby making it seem that vessels are
connected even though they can be far apart in reality.

Figure 4.6 compares the image quality of different ensemble sizes (200, 500, and 800)
and threshold choices (5%, 15%, and 30%) for a moving dataset. From empirical
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research, the 5% threshold is much lower than the optimal threshold to remove all
tissue clutter and the 30% threshold is way higher that some blood flow information
could disappear. The colorbar limit of each image is adjusted based on the background
intensity as a reference. When examining the comparisons horizontally, which means
considering the same ensemble size but different thresholds, several observations can
be made: with a threshold of 5%, indicating that the first 5% of singular components
are discarded, a significant amount of tissue motion appears in the upper middle area
compared to thresholds of 15% and 30%. When using a threshold of 30%, it becomes
evident that some blood vessel structures are not visible on the right side of the image.
This suggests that the high threshold value leads to the discarding of certain blood flow
information. By analyzing these comparisons, we gain a better understanding of the
impact of different threshold choices on the visualization of tissue motion and blood
flow information: a low threshold can result in the retention of tissue motion, while a
high threshold can lead to the exclusion of important blood flow information.

When observing the comparisons vertically, which means considering the same thresh-
olds but different ensemble sizes, the image mean contrast becomes higher as the en-
semble length increases. Figure 4.7 provides a zoomed-in view of SVD-filtered images
with a threshold of 15% and ensemble sizes of 200 and 800, respectively. It is evident
that the left-side figure exhibits a greater amount of blood vessels overlapping each
other compared to the right-side figure. This phenomenon indicates that during the
time range covered by the ensemble length of 800, the content of blood vessels changes,
resulting in the visualization of overlapping vasculature.

A longer ensemble length improves image intensity but also introduces the issue of
overlapping blood vessel information. Trade-off choices regarding ensemble length need
to be made to balance image intensity and the occurrence of overlapping information.
Additionally, it is crucial to make appropriate threshold choices to exclude excessive
tissue motion while preserving essential blood flow information.

Figure 4.7: Image comparison of the upper-left region: ensemble size 800 (left-side figure)
and 200 (right-side figure) with the same threshold 15% (zoomed-in view).
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4.1.3 Overlapped subspaces on eigen-domain

SVD clutter filtering performs well in the case of slow tissue motion and fast blood flow
as their power spectrum and spatial information are more separately distributed. They
can be expressed by different subspaces, but they may be usually overlapped. From
the perspective of the power spectral density (PSD) of V, their frequency spectra can
overlap. Figure 4.8 is PSD of V on a stationary dataset with an ensemble size 600. In
the case of a stationary dataset where the probe does not move, the overlap between
tissue and blood flow subspaces can be attributed to the movement of tissue and blood
flow. The 20th component is selected as the threshold to be able to distinguish tissue
and blood flow the most. In this figure, two black-dashed lines represent the 10th and
200th components, which are assumed to belong to tissue and blood flow respectively.

Figure 4.8: PSD of V: Fourier transform of temporal singular vectors. Two dashed lines
represent the 10th and 200th components respectively.

When their frequencies are extracted, as shown in Figure 4.9, there is an overlap at a
frequency of 30Hz. If frequency amplitudes below -25dB are considered insignificant,
the frequency range of the 10th component is between 0Hz and 50Hz, while the fre-
quency range of the 200th component is between 5Hz and 400Hz. The bandwidths
overlap between 5Hz and 50Hz.

Figure 4.9: frequency spectra of the 10th and 200th singular component.

The overlapped frequency spectra can be observed from the visualizations of the 10th
and 200th components, as shown in Figure 4.10. The left image primarily represents
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tissue motion, but there are certain areas that appear to belong to blood vessels. For
instance, a few high-intensity blood vessels can be observed in the orange squares. The
reason these bright and intense areas could be identified as blood flow is that they are
also visible in the visualization of the 200th component, which most likely corresponds
to blood flow.

Figure 4.10: Visualization of the single 10th component (left figure) and the single 200th

component (right figure). It is hard to define rigorously whether or not a feature in an image
is a blood vessel and this is generally done in the field by visual inspection.

After summing the PSD of the tissue subspace (first 20 components) and the blood
flow subspace (20-600 components), the frequency distribution is shown in Figure 4.11.
The same analysis methodology used to analyze the frequency spectra of the 10th and
200th components can be applied here. The frequency spectra of the tissue subspace
range from 0Hz to 40Hz, while the frequency spectra of the blood flow subspace range
from 15Hz to 400Hz if the frequency amplitude greater than -15dB is considered. The
overlapped frequency spectra are between 15Hz and 40Hz.

Figure 4.11: Frequency spectra of the first 20 components and 20-600 components.

After summing the power over tissue subspace and blood flow subspace to reconstruct
PDIs, as shown in Figure 4.12, it can be observed that there is tissue motion present
in the PDI from the blood flow subspace (right side figure), and there are blood vessels
visible in the PDI from the tissue subspace (left side figure) that should not be observed.
This observation shows that there is an overlap between the subspaces of tissue motion
and blood flow, leading to incomplete separation of the subspaces.
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Figure 4.12: PDIs reconstructed by first 20 components (left figure) and 20-200 components
(right figure).

Overlapping can also be observed in the similarity matrix of U, which represents the
correlation among columns of the spatial singular vectors. For instance, Figure 4.13
compares the similarity matrices of a moving dataset with ensemble sizes of 100 and
800. Since the sampling frequency Fs is 800 samples/second, an ensemble size of 800
covers a time course of 1 second, while an ensemble size of 100 covers a time course
of 0.125 seconds. Distinct subspaces are more pronounced in the left figure with an
ensemble size of 100 compared to the right figure with an ensemble size of 800. This
indicates that the overlapping phenomenon worsens with more movement, meaning that
the structure of tissue and blood flow varying more rapidly can cause more overlapping.

Figure 4.13: Comparison of similarity matrices of U for ensemble sizes of 100 and 800 in a
moving dataset (zoomed-in view)

Figure 4.14 compares the similarity matrices of a stationary and a moving dataset
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with an ensemble size of 800. For the stationary data acquisition, the probe was
attached to a rigid arm which was mounted on the operating table so it was very
stable. For the moving data acquisition, the probe was moved continuously by hand
to scan the brain. Separated subspaces are more pronounced in the left figure for a
stationary dataset compared to the right figure for a moving dataset. This is because
with spatial information that varies, tissue and blood flow tend to have overlapped
spatial characteristics, resulting in overlapped subspaces in the similarity matrix.

Figure 4.14: Comparison of spatial similarity matrices of U for ensemble sizes of 800 in a
stationary dataset and a moving dataset (zoomed-in view). The rest of the view is largely
noise.

4.2 Robust PCA clutter filtering

SVD clutter filtering is not always able to completely separate tissue and blood flow
components due to their overlapped subspaces on the eigen-domain, as discussed in
Chapter 4.1.3. Therefore, Robust PCA clutter filtering, which models the signal matrix
as a sum of a low-rank matrix and a sparse matrix, could provide another decomposition
perspective to reject tissue clutter.

4.2.1 Choices of λ and µ on threshold selection

As previously discussed in Chapter 3.3 about the theoretical aspects of Robust PCA,
there are two things to be optimized: the rank of the L matrix and the sparsity of the
S matrix which depend on two parameters λ and µ. λ controls the trade-off between
the low rank and sparsity and µ is a constant number which balances the error term.
It is important to discover how different combinations of these parameters impact the
quality of the resulting images and it could provide guidance for parameter value choices
on other datasets.
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The metric to evaluate the image quality is the correlation coefficient R. The range of R
is between −1 to 1. The closer it gets to 1 or −1, the more similar the two components
are. It computes the correlation coefficient between two matrices [43] as Equation 4.2,
where in our case A and B are two matrices with a size nz × nx. Specifically, A is
an SVD clutter-filtered PDI with a rejection threshold of 10% (the first 40 out of 400
singular components are discarded), and B are Robust PCA clutter-filtered PDIs with
different λ and µ values. SVD clutter filtering is the most common and widely used
method to reject tissue clutter and it has an overall good performance regardless of the
overlapped subspaces. The aim of calculating the correlation between the results from
these two clutter filtering methods is to test which parameter value combinations can
have good performance. The correlation between the Robust PCA-filtered images and
the SVD-filtered ones will provide initial guidelines for selecting good parameter values
for the Robust PCA algorithm.

R =

∑
m

∑
n

(
Amn − Ā

) (
Bmn − B̄

)√(∑
m

∑
n

(
Amn − Ā

)2)(∑
m

∑
n

(
Bmn − B̄

)2) (4.2)

The default parameters are calculated as λ = 0.1√
(max(nt,nx×nz))

, and µ = 100 × λ. As

the chosen ensemble length is 400, the lateral dimension nx is 256, and the depth in
the medium in front of the ultrasound probe nz is 576, thus the default parameters
λ = 0.005 and µ = 0.5. Different values around default parameters are tested and the
results are shown in Table 4.2:

The sizes of both L and S are of (nt, nz × nx), which is 400 × 147456. Therefore the
maximum rank of L is 400, and the maximum cardinality of S is 58982400. Regarding
correlation coefficients, it reaches the highest at 0.9355 with λ = 0.002 and µ = 5 and
30. Since the reference SVD-filtered PDI has a good performance in rejecting tissue
clutter, a higher correlation coefficient means that the Robust PCA-filtered PDIs with
certain λ and µ values can work better. Overall, the values of λ can more strongly
affect the correlation values and the cardinality of S than the value of µ. When λ
increases, this trade-off weighting parameter leans towards sparsity, as the cardinality
of S becomes less, indicating that S becomes more sparse. The sparsity of S does
not necessarily relate to high correlation coefficients. As this table shows, when the
cardinality of S becomes very small (less than 1,000,000), the correlation coefficients
get negative. When it reaches around half of the full cardinality (29,491,200), the
correlation coefficients become higher and closer to 1.

After testing different combinations of λ and µ, λ = 0.002 and µ = 5 are selected to
have the best performance as their correlation coefficient reaches the highest among
all combinations that have been tested. The visualization of reconstructed PDIs of L
and S is shown in Figure 4.15, with the comparison of the SVD clutter-filtered PDI
by a clutter rejection percentage of 10%. With a correlation coefficient similarity of
0.9355, the PDI of S and SVD-filtered PDI look very alike, with most tissue clutter
being removed and most blood vessels being kept. On the reconstructed PDI of L, it
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µ λ
Iteration
number

Rank(L) Card(S)
Correlation
coeefficients

Computational
time

5 0.001 2 400 49104362 0.9287 21.8872

1 0.001 28 29 58561575 0.8585 226.9385

0.5 0.001 42 16 58576931 0.753 333.9717

0.01 0.001 189 11 58391107 0.5936 1568

100 0.002 1 400 26715200 0.9331 11.9973

30 0.002 2 400 26951635 0.9335 23.5944

5 0.002 2 400 28082956 0.9355 23.8451

1 0.002 35 52 58258890 0.9303 305.9845

0.5 0.002 39 45 58334767 0.8836 339.3636

0.01 0.002 57 10 58246308 0.8143 494.0975

5 0.005 2 400 1566166 0.5794 23.6614

1 0.005 10 400 2315343 0.7115 89.7235

0.5 0.005 17 400 2820448 0.7559 105.5275

0.01 0.005 20 400 3034322 0.7497 175.411

5 0.008 2 400 348083 -0.4514 23.5598

1 0.008 7 400 428384 -0.4247 64.5816

0.5 0.008 14 400 516773 -0.4144 125.8938

0.01 0.008 54 400 562552 -0.4323 466.8485

5 0.01 2 400 43071 -0.4744 23.6139

0.01 0.01 53 400 328356 -0.5746 461.0167

Table 4.2: The relations between µ and λ value selections, iteration numbers, rank of L, the
cardinality of S, correlation coefficients with SVD-filtered image, and computational time.

can be seen that most tissue is concentrated in the middle upper regions but there are
still some vessel-like structures left in the middle of the image.

Figure 4.15: PDIs of the reconstructed L matrix, S matrix, and SVD-filtered image with a
tissue threshold of 10% for an ensemble size of 400.

There is still some extent of the remaining blood flow signal in L. It would be highly
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beneficial if the spatial distribution information could be investigated first as we would
know if there are correlated spatial subspaces for tissue clutter and potential blood
vessels respectively. When comparing their spatial similarity matrices as Figure 4.16
shows, it is obvious that spatial similarity matrices of L and X look very alike. As there
are tissue and blood flow spatial subspaces that can be separated from the similarity
matrix of X, it is also expected that there is similar information contained in the
similarity matrix of L.

Figure 4.16: Spatial similarity matrices of L, X (X is made up by L+S as discussed in 3.7),
and S with a zoomed-in view. The areas out of the zoomed-in view are all blue (similarity
value is 0).

As an optimal tissue threshold of 10% is chosen for SVD clutter filtering of X in
Figure 4.15, this 10% threshold will also be applied to SVD clutter filtering of L as their
spatial similarity maps are indistinguishable. After the filtering, the PDI visualization
of refiltered L is shown in Figure 4.17. To enhance the image quality, the refiltered L
matrix is added up to S matrix to construct a final image. This image is then correlated
with the reference image and it turns out that the correlation coefficient reaches 0.9996,
which could indicate that there is more revealed blood flow information. However, a
high correlation with the SVD-filtered image is not really the goal. A method that
reveals more blood vessels than the SVD may have a lower correlation value. This will
be discussed in Chapter 5 Discussion part.

This combination of Robust PCA clutter filtering and SVD clutter filtering could pro-
vide insight into extracting blood flow information not only from the sparsity matrix
but also from the low-rank matrix to fully extract all the blood flow information.

4.3 ICA clutter filtering

4.3.1 SVD pre-processing

The ICA clutter filtering procedure involves removing the most coherent tissue clut-
ter and non-coherent noise by SVD clutter filtering first, separating the reconstructed
Casorati matrix into short time windows, decomposing each window into independent
sources, selecting the most relevant ones to blood flow, and summing over the power
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Figure 4.17: Reconstructed PDIs of the refiltered L matrix and the superposition of the
refiltered L and S matrix (a stack of frames from 100 to 500).

to reconstruct a PDI. The graphical explanation was previously demonstrated in Fig-
ure 3.13.

All the results are tested on an ensemble of 200 frames of a moving dataset. Regarding
the prior step of applying SVD clutter filtering to remove the most coherent tissue
clutter and non-coherent noise before ICA clutter filtering, two thresholds of 2 and 92
are selected. This means that the first 2 (1%) singular components and the components
from 92 to 200 are discarded. This threshold criteria selection is based on the singular
value estimator and spatial singular vector estimator as Figure 4.18 shows. 1% threshold
is a very low threshold for SVD clutter filtering as usually the threshold is set as around
10%. The reason to select a very low threshold is to remove the most coherent tissue
and avoid accidentally removing part of blood flow whose subspaces might overlap in
tissue subspaces. The noise threshold is set as +0.4dB higher than the lowest singular
component energy (−36.6236dB), as the energy level after 92 components is very low.
On the spatial similarity map, it can also be observed that the color is very blue on the
right side of the second white-dashed line, indicating a low correlation.

4.3.2 Independent component classification

After SVD pre-processing, the reconstructed Casorati matrix of size nt × nxnz (200×
147456) is divided into five short time windows, and the size of each window is 40.
The number of independent components is set as 40, and hence the mixing matrix is of
40× 40 and the size of independent components is of 40× 147456 for each short time
window.

It is always hard to sort independent components or select independent components
belonging to blood flow based on a quantitative metric. As Chapter 3.4 mentioned, so
far there are two methods that have been presented in the literature to sort independent
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(a) (b)

Figure 4.18: (a) Singular value energy curve in dB. The noise threshold is set as 92 with
energy value −36.1931dB. (b) Spatial similarity map. Two dashed lines represent thresholds
of 2 and 92.

components for ICA clutter filtering on µDopper imaging:

1. Independent components sorting based on correlation coefficients computed be-
tween reconstructed power Doppler images created with each individual indepen-
dent component and a power Doppler image created with all components: the
higher the correlation coefficients is, the more likely that the source belongs to
tissue clutter [19], and then set a threshold to choose sources belonging to blood
flow.

2. Independent components sorting based kurtosis measurement values: the higher
the kurtosis value is, the more independent the source is, and the more likely
that the source belongs to blood flow as it is assumed that blood flow signals
are sparser and thus have higher independency and thus kurtosis than tissue [18].
After sorting, a threshold is set to choose sources belonging to blood flow.

For this thesis, a new automatic independent components selection method is
proposed and has been tested effective on the selected frames:

3. Grouping independent component sources by applying hierarchical agglomera-
tive clustering. This is based on grouping clusters with minimal inner squared
distances in a bottom-up approach. The hierarchical agglomerative clustering
methodology is explained in Chapter 3.2.5.

This clustering method is applied to 40 independent components in each short time
window. The number of clusters is set as 2. It is assumed that one cluster belongs to
tissue and another one belongs to blood flow. An example is shown in Figure 4.19. It is
observed that among these unsorted independent sources, there are some contain mas-
sive tissue clutter and some contain blood flow structures. After clustering independent
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Figure 4.19: Unsorted independent components clustered by hierarchical agglomerative clus-
tering after SVD pre-filtering with an ensemble length of 200. Small windows of size 40 are
applied for ICA-clutter filtering and this is the second window.

sources into two groups, the 1st, 2nd, 29th, and 30th sources belong to one group and the
rest belong to another group. For the 1st, 2nd, 29th, and 30th sources, tissue clutter are
the most outstanding compared to other independent sources. As observed from the
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Figure 4.20: Independent components sorted by kurtosis measure, with the first independent
component having the highest kurtosis value and the last independent component having the
lowest kurtosis value.

figure, most independent sources are related to blood flow. Therefore, when cluster-
ing is applied to every window, it is assumed that the cluster with fewer components
belongs to tissue and should be removed. The same results also can be discovered in
other windows, which shows that this hierarchical agglomerative clustering method can
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Figure 4.21: Independent components sorted by correlation coefficients, with the first in-
dependent component having the highest correlation coefficient and the last independent
component having the lowest correlation coefficient.

be effective in grouping sources corresponding to tissue clutter in ICA clutter filtering.

Compared to hierarchical agglomerative clustering, sorting independent sources by kur-
tosis may not be very effective. In Figure 4.20, the independent sources are sorted by
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ascending order. It is assumed that higher kurtosis corresponds to blood flow and lower
kurtosis corresponds to tissue. However, the result is not ideal as some independent
sources with a high kurtosis contain a lot of tissue clutter. For example, for 24th and
29th independent sources, tissue structure can be clearly observed from the middle re-
gion, while for 25th, 26th, 27th, and 28th independent sources with kurtosis values higher
than 29th but lower than 24th sources, vasculature can be fairly observed compared to
tissue. In an ideal case, the independent source with a bigger index always contains
more tissue. This result shows that it is worth discovering other methods of sorting
independent sources.

Sorting independent sources by correlation coefficients provides another perspective to
sort independent components. Independent components with a low index show a strong
correlation with the original µDoppler image. Since the image without clutter filtering
is filled with most tissue clutter, high correlation independent sources contain most
tissue clutter. By comparing them with their neighbors, it seems that this method can
work well. However, a threshold problem of how to separate independent sources also
occurs. The number of independent components to be discarded may differ for different
windows, and thus it is hard to just have an arbitrary threshold applied to all windows.

Comparing these three methods, hierarchical agglomerative clustering provides a robust
and automatic method for selecting independent components corresponding to blood
flow without the need for manually choosing parameters to decide them.

4.3.3 Comparisons with SVD clutter filtering

After sorting the independent sources belonging to blood flow and summing them over,
a filtered PDI is reconstructed as Figure 4.22c shows. The remaining independent
sources consist of most tissue clutter and after summing over the image is shown in
Figure 4.22b. SVD pre-filtered PDI as an initial input image is also shown in Figure 4.22
in comparison with them.

To test the performance of ICA clutter filtering, SVD clutter filtering is compared with
it. To make fair comparisons, SVD clutter filtering is applied to the same SVD pre-
filtered image. The threshold is determined by an automatic estimator based on the
spatial similarity matrix of U as proposed and tested by Baranger et al. [14]. For these
specific frames, the threshold is set as 22, which means that singular components from
1-22 are considered tissue clutter, and singular components from 23-200 are considered
blood flow. The results of collected tissue and blood PDI after SVD clutter filtering
are shown in Figure 4.23.

When ICA clutter filtering and SVD clutter filtering are compared in a zoomed-in
view as Figure 4.24 shows, it can be observed that their vasculature shows a similar
structure, while there is still some tissue clutter concentrated in the middle region
within the tumor. The ideal case is that no tissue clutter appears in the middle region.
Next, we take a certain row of both images to find out their signal intensity.

After extracting the signal intensity from a certain row which covers not only the blood
flow but also the middle-region tissue clutter, the signal is shown in Figure 4.25. From
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(a) (b) (c)

Figure 4.22: (a): PDI of SVD pre-filtering. The first 2 (1%) and the last 108 components
are discarded. (b): Tissue PDI of independent components clustered by hierarchical agglom-
erative clustering. (c): Blood flow PDI of independent components clustered by hierarchical
agglomerative clustering.

(a) (b)

Figure 4.23: PDI from SVD clutter filtering. The threshold is decided by an automatic spatial
estimator and is set as 22. The first 22 singular components are considered as tissue and the
last 178 components as blood flow. (a): Tissue clutter PDI. (b): Blood flow PDI.

the x-axis 140 to 170 which corresponds to the tissue clutter, there is a rise for both
clutter filtering techniques. The difference between them is that the red dashed line
displays a much bigger peak while the blue dashed line shows a much lower peak. For
SVD clutter filtering, the tissue clutter signal intensity has almost the same value as
other blood flow signals. Compared to ICA clutter filtering, the tissue clutter signal
intensity still remains at a relatively low level compared to blood flow signals.

We have explored the middle-region tissue signal intensity, but it is also worth discov-
ering other region parts of the tissue and blood flow. The zoomed-in upper-left view
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Figure 4.24: Comparison of zoomed-in view with a highlighted line between ICA clutter
filtering and SVD clutter filtering.

Figure 4.25: Signal intensity of the highlighted line.

Figure 4.26: Comparison of zoomed-in upper-left view between ICA clutter filtering and SVD
clutter filtering.
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between ICA clutter filtering and SVD clutter filtering is shown in Figure 4.26. The
result of ICA clutter filtering can give a clear blood flow structure, and the result of
SVD clutter filtering can reveal more blood vessels. From CNR’s perspective, if certain
regions of blood flow are selected and their CNRs are calculated, SVD clutter filtering
will have a higher value. Because there is no ground truth for blood flow signals, it is
hard to distinguish blood flow and tissue clutter in a small region. The blurred area
nearby blood flow can be considered as remaining tissue, but it also could be considered
as blood flow.
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Discussion 5
Freehand movement is challenging for clutter filtering on in-vivo µDoppler ultrasound
data, especially when the ground truth is unknown. Challenges and uncertainties in-
clude how to decide thresholds to distinguish tissue and blood flow, how to decide
ensemble lengths for different clutter filtering techniques, how to tune parameters for
Robust PCA clutter filtering, how to decide the number of independent components,
how to sort independent sources corresponding to blood flow signals, and how to make
fair comparisons for the images filtered by different techniques. This chapter discusses
answers to the research questions posed at the start of this thesis and potential im-
provements for future work.

Clutter filtering techniques on freehand µDoppler in-vivo ultrasound data: The
goal of this thesis is to explore and compare three clutter filtering techniques (SVD,
Robust PCA, and ICA clutter filtering) on freehand µDoppler in-vivo ultrasound data.
For SVD clutter filtering, there are several estimators being explored, including arbi-
trary thresholding, singular value estimators based on singular energy, spatial singular
vector estimators based on spatial similarity matrices or clustering on spatial singular
vectors, and temporal singular vector estimators based on the frequency spectra. All
estimators can perform on a global perspective or block-wise perspective, depending on
the datasets and the purpose of use. The thresholds also differ for different datasets,
different ensemble sizes, and different estimators. Deciding the threshold based on the
spatial similarity matrix could be the most promising method as the threshold can be
determined by finding the optimal fitting for the juxtaposed matrices and the spatial
similarity matrix in an automated way.

Through the research on theories and testing on µDoppler data, Robust PCA clutter
filtering is applied by proper parameter choices of λ and µ. Furthermore, the image is
enhanced by combining SVD and Robust PCA clutter filtering for not only extracting
the sparsity matrix but also extracting the remaining blood flow information from
the low-rank matrix. The image evaluation is done by correlating an SVD clutter
filtered image to Robust PCA clutter filtering. There could be better ways to test
image qualities with different parameter values as an SVD clutter filtered image is not
ideal and some better performed images might have a lower correlation. For ICA clutter
filtering, it is applied by selecting appropriate independent sources by using hierarchical
agglomerative clustering. In this thesis, an ensemble size of 200 and window size 40 is
used for ICA clutter filtering. This is based on a paper from Wahyulaksana et al. [18].
For our data, these sizes work well for our moving dataset to produce images with good
performance. When the ensemble size is increased to 400 and the window size keeps to
40, the performance is decreased as there is more blood flow information being wrongly
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removed. After SVD pre-processing, the reconstructed Casorati matrix is divided into
10 windows with a size of 40 for each window. One of the reasons for the poorer
performance could be the number of clusters. The default number of clusters is set
as two, with one corresponding to tissue and another one to blood flow. This number
could be very small that some tissue and blood flow independent components with very
close spatial features could be treated as the same cluster.

Regarding computational complexity, Robust PCA clutter filtering with λ = 0.002 and
µ = 5 for an ensemble size of 400 takes around 23 seconds and has very similar com-
putational time for SVD clutter filtering with the same ensemble size. For ICA clutter
filtering combined with clustering for an ensemble size of 200 and clustering window of
40, the computational time takes around 160 seconds. This is much longer than other
clutter filtering techniques. Overall, for a general application, SVD clutter filtering is
more suitable as there will only be one threshold to decide. Robust PCA clutter filter-
ing needs to have two parameters to decide and ICA clutter filtering needs sorting or
clustering on independent components. If only a specific stack of frames is needed to
apply clutter filtering, then Robust PCA and ICA could provide more perspectives in
decomposing signal matrices as they do not take the arbitrary assumption that tissue
and blood flow have orthogonal subspaces.

Overlapped subspaces on the eigen-domain: One of the sub-questions is: ”How to
illustrate that tissue and blood flow have overlapped subspaces on the eigen-domain”.
Overlapping causes difficulty in finding an optimal threshold to separate tissue and
blood flow. It is shown by the power spectrum density of temporal singular vectors,
where tissue and blood flow are observed to have overlapped frequency spectra under
a certain frequency amplitude. If the threshold is set at a certain frequency, it could
be the case that some blood flow can be discarded and some tissue clutters can be
kept. Another demonstration is based on spatial similarity matrices where in most
fast-movement cases subsquares are not distinguishable and cannot be easily separated.

Freehand motion effect: For this sub-question: ”How does freehand motion affect the
threshold selection criteria”, thresholds to separate tissue and blood flow are compared
between stationary datasets and moving datasets. Stationary datasets tend to have
more stable thresholds than moving datasets for different stacks of frames. The effect
of probe movement can be seen in the correlation matrix of the Casorati matrix, which
shows the correlation between each frame and its neighboring frames. The correlation
matrix of a moving dataset concentrates high correlation values around the diagonal
while correlation has overall very high values for a stationary dataset. Because of the
probe movement, spatial distributions vary over time, and this can cause a phenomenon
that subspace squares on spatial similarity maps have more distinct characteristics
for stationary datasets than for moving datasets. Therefore, we need an automated
method as each threshold cannot be manually selected because of high time costs. In
this thesis, freehand motion can cause subspaces to overlap spatialtemporally for SVD
clutter filtering. The proposed ICA clutter filtering with clustering on blood flow can
work adaptive to reject tissue clutter and keep blood flow in an automated manner
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and the image quality shows comparably good performance. The image provides a
clear vasculature with a great amount of blood flow. Robust PCA clutter filtering
investigation only focuses on parameter tuning for a specific stack of frames, and it
aims to provide an automated way to decide parameter values in the future.

Fair comparisons: The last research question is about evaluating image quality and
making fair comparisons among different clutter filtering techniques. In general, making
fair comparisons is difficult, as the extracted signal intensity and range could be varying
for different techniques. When constructing power Doppler images, the power intensity
of each pixel is divided by the maximum power intensity among all pixels. Therefore,
the range of power intensity for every pixel is always within a certain value from 0dB
to around −80dB. When we visualize PDIs, if all images are set for the same dynamic
ranges (0dB to −40dB), the images are like Figure 5.1a. If the averaged intensity from
some part of the background is set as the limit of dynamic ranges, the images look
as Figure 5.1b shows. The comparisons are fairer when the background color is set at
the same level. Regarding the metrics SNR and CNR to evaluate the image quality,
we need to have a critical judgment on whether those values best describe the image
quality especially when ground truth is unknown. If some tissue clutter appears very
nearby the blood flow area, their CNR value will be considered as blood flow CNR,
which might lead to a misunderstanding conclusion for comparisons. When using SNR,
we need to make sure that their noise and aimed signals are on the same intensity level,
or the SNR evaluation would be not effective. Signal amplitude levels can be moved
upwards or downwards to be aligned to avoid this problem. Besides that, the image
quality can differ from different applications. In this thesis, SNR and CNR are not used
for evaluating image quality as the comparison conclusion can be directly derived from
extracted signal intensity. For example, in Figure 4.25, signals corresponding to tissue
located inside the tumor are easily compared between two clutter filtering techniques
as the amplitude makes a big difference.

(a) (b)

Figure 5.1: An example of two pairs of PDI comparisons. (a): fixed dynamic range from 0dB
to −40dB. (b): adjusted dynamic range from 0dB to −29dB and 0dB to −38dB.

Future work: There are some possible improvements for the work in this thesis. A
block-wise filtering approach could be further explored on different datasets for SVD
clutter filtering. The correlation matrix of the Casorati matrix and spatial similarity
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matrix of fast movement and slow movement in the same image region could be tested
and compared to further understand how motion affects threshold selection criteria. In
terms of Robust PCA clutter filtering, the method used to evaluate image quality for
different parameter settings involves correlating the filtered image with an SVD-filtered
image as a reference. The results are promising, as the quality of the reference image
shows good performance. A high correlation between Robust PCA-filtered images and
the reference image indicates high image quality. However, since the reference image
filtered by SVD is not ideal, this comparison method still needs improvement. It aims
to find another method to evaluate Robust PCA image quality and compare the best-
filtered image with images filtered by other clutter filtering techniques. For ICA clutter
filtering, currently the number of clusters is set as two, including the tissue cluster and
blood flow cluster. Future work could involve testing on more clusters and selecting
correlated clusters corresponding to blood flow. Another possible improvement could
be the metric to evaluate the image quality. More metrics could be tested on µDoppler
data, for example, generalized-CNR (gCNR), etc.
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Conclusion 6
µDoppler ultrasound imaging is an HFR ultrasound imaging modality that is suitable to
provide high spatiotemporal resolution ultrasound vasculature images. Clutter filtering
is an essential step in µDoppler data processing to reject tissue clutter signals and keep
blood flow information as much as possible. Freehand movement of the probe make
clutter filtering on in-vivo datasets challenging to acquire high-quality filtered images
as the spatial content changes over the temporal dimension when the probe moves
continuously by hand. This thesis has explored three clutter filtering techniques: SVD,
Robust PCA, and ICA clutter filtering. The summarized methods for these techniques
are presented in Table 6.1.

Besides exploring these techniques and methods, SVD clutter filtering is also used
to investigate how freehand motion affects threshold selection and demonstrate the
overlapped subspaces on the eigen-domain. The result shows that freehand motion can
cause unstable threshold criteria for different stacks of frames and the subspaces for
tissue and blood flow overlap spatiotemporally. Robust PCA clutter filtering combined
with SVD clutter filtering provides new insight into extracting blood flow information
not only from the sparse matrix but also from the low-rank matrix. ICA clutter filtering,
with hierarchical agglomerative clustering assisted, could reconstruct a good quality
PDI with great amounts of blood flow and less tissue clutter compared to SVD clutter
filtering. It can be used as an automated way for clutter filtering. Overall, for a general
application, SVD clutter filtering is more suitable as there will only be one threshold
to decide. Robust PCA clutter filtering needs to have two parameters to decide and
ICA clutter filtering needs sorting or clustering on independent components. If only

Clutter filtering techniques

Name Estimator Description

SVD
Arbitrary thresholding Based on singular value energy (dB)

Spatial singular vector
Based on the correlation matrix of U;

based on clustering on U
Temporal singular vector Based on the PSD of V

Robust PCA

Entire ensemble size The signal matrix is modeled as
a sum of a low-rank component,

a sparse component and
the additive noise

Small window
SVD+RobustPCA on entire ensemble size

SVD+RobustPCA on small window

ICA

Entire ensemble size
ICA seeks to transform the data
onto a basis with statistically

independent vectors

Small window
SVD+RobustICA on entire ensemble size

SVD+RobustICA on small window

Table 6.1: Overview of clutter filtering techniques
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a specific stack of frames is needed to apply clutter filtering, then Robust PCA and
ICA could provide more perspectives in decomposing signal matrices as they do not
take the arbitrary assumption that tissue and blood flow have orthogonal subspaces.
Future work could involve improving the blood flow extraction accuracy for ICA clutter
filtering combined with clustering, working on better ways to evaluate Robust PCA
filtered images with different parameter values, and fair comparison metrics.
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Appendix A
A.1 Image visualization from singular components

(a) 1st singular compo-
nent visualization.

(b) 50th singular compo-
nent visualization.

(c) 100th singular com-
ponent visualization.

(d) 150th singular com-
ponent visualization.

(e) 200th singular com-
ponent visualization.

(f) 400th singular com-
ponent visualization.

(g) 600th singular com-
ponent visualization.

(h) 800th singular com-
ponent visualization.

Figure A.1: Image visualization of singular components for a moving dataset with an ensemble
length of 800. The 1st singular component visualization contains most tissue clutter. From
1st to 150th, there is more pronounced blood flow. After 200th, more noise appears.
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