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Summary

Automated driving has immense potential for improving road safety. Over the past decades,
extensive research has been conducted in this field. Although the technological capability
for highly automated driving exists today, its widespread application is not yet present.
One major limiting factor of current automated driving solutions is that vehicle localization
heavily relies on high-definition maps (HD maps), which are highly expensive to construct
and maintain.

This dissertation focuses on developing a more scalable solution for vehicle localiza-
tion. It explores a novel technique that estimates the ego vehicle’s pose (location and
orientation) by matching ground-level images captured by the vehicle’s onboard camera
to publicly available geo-referenced aerial imagery. Specifically, Chapter 1 begins with
a brief motivation for this ground-to-aerial cross-view visual localization task. Then it
defines the main and sub-research questions of this dissertation. Following this, Chapter 2
reviews the literature relevant to cross-view visual localization. Then, subsequent chapters
comprehensively address cross-view visual localization from various perspectives and
answer the research questions at the end.

Chapter 3 identifies a limitation in existing image retrieval-based cross-view localization
methods: these models are trained for large-scale coarse localization rather than accurate
localization in geographical local areas. This formulation is not suitable for automated
driving, as the coarse location of the vehicle is often known from GNSS or temporal
information, while the accurate location within a small local area is more crucial. Therefore,
Chapter 3 proposes to incorporate the coarse localization prior from other sensors, such as
GNSS, into the training of the image retrieval model to force the model to learn locally
discriminative features. It achieves this by introducing a novel loss function, the Geo-
local Triplet Loss, and demonstrates the effectiveness and generality of this loss with two
baseline models on two datasets. Furthermore, a commonly used temporal filtering pipeline
is implemented to validate that fusing the model, trained with the proposed loss, with
GNSS positioning yields better localization accuracy than either combining the baseline
with GNSS or using GNSS alone.

Next, Chapter 4 identifies the limitations of using image retrieval for accurate vehicle
localization, that better localization requires increased computation and storage as reference
aerial image patches must densely cover the target area. Therefore, instead of formulating
the localization problem as image retrieval, Chapter 4 proposes to directly match the
ground-level image to a known aerial image covering the local surroundings for vehicle
pose estimation (localization plus orientation estimation). It introduces a novel method
called Convolutional Cross-View Pose Estimation (CCVPE), which constructs orientation-
aware ground and aerial image descriptors for the joint estimation of the location and
orientation of the ground-level camera. Experiments show that CCVPE achieves state-of-
the-art accuracy in localization and orientation estimation on three cross-view localization
benchmarks.
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Afterward, Chapter 5 focuses on improving the runtime efficiency of cross-view localiza-
tion. It proposes SliceMatch, a generative-testing method that constructs orientation-aware
ground and aerial image descriptors by explicitly utilizing the geometric relationship be-
tween ground and aerial views. SliceMatch uses pre-computed ground and aerial slice
masks to guide the feature aggregation when constructing the ground and aerial descriptors.
Since the slice masks can be computed in advance, and the feature masking and descriptor
comparison can be implemented as matrix multiplication, a highly parallelizable process,
SliceMatch achieves a fast runtime, of over 167 FPS on the VIGOR dataset.

The scalability of cross-view localization is studied in Chapter 6. In the envisioned
application, a cross-view localization model would be trained in areas where ground truth
data is available, and then deployed in other areas where there is no ground truth. Due to
the domain gap between the training and test regions, such direct generalization always
leads to a performance drop. In practice, even though acquiring accurate ground truth
location data is expensive, requiring mobile mapping vehicles with expensive sensor kits,
collecting ground-level images with coarse ground truth, which may have errors of tens of
meters, is easier, such as using mobile phones and their built-in GNSS. Hence, Chapter 6
proposes to leverage the easy-to-collect coarse ground truth data for weakly-supervised
fine-tuning of pre-trained cross-view localization models. The coarse ground truth data is
used to pair the ground image in the target area with an aerial image covering its local
surroundings. Chapter 6 introduces a knowledge self-distillation framework that uses a
pre-trained model as a teacher to generate pseudo ground truth for each ground-aerial
image pair. The noise in the pseudo ground truth is suppressed, and the large outliers are
removed using the proposed techniques. Subsequently, a student model is trained using
the improved pseudo ground truth. Experiments with two baselines on two benchmarks
demonstrate that the proposed weakly-supervised knowledge self-distillation can lead up
to 20% accuracy gain.

Finally, the findings from the proposed methods and conducted experiments are utilized
to answer each sub-research question in Chapter 7. This dissertation demonstrates that
ground-to-aerial cross-view visual localization can become a scalable and accurate method
for vehicle pose estimation. For automated driving, cross-view visual localization should not
be considered a standalone task but rather a component within the vehicle localization stack.
Therefore, the development of cross-view visual localization methods should account for
the presence of other localization sensors. Additionally, both the accuracy and efficiency of
cross-view localization can be enhanced by considering the geometric relationship between
ground and aerial views. The scalability of cross-view localizationmethods to new areas can
be improved using easily collectable noisy positioning data from the target area. Currently,
although the accuracy of cross-view visual localization does not yet meet the requirements
of fully autonomous driving, it can be useful for lower-level driving automation, such as
Advanced Driver Assistance Systems (ADAS). Future work in cross-view visual localization
should aim to further improve algorithm accuracy while considering broader uses of aerial
images for automated driving.
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Samenvatting

Geautomatiseerd rijden heeft een enorm potentieel om de verkeersveiligheid te verbeteren.
In de afgelopen decennia is er uitgebreid onderzoek gedaan op dit gebied. Hoewel de
technologische capaciteit voor sterk geautomatiseerd rijden tegenwoordig bestaat, is de
grootschalige toepassing ervan nog niet aanwezig. Een belangrijke beperkende factor
van de huidige oplossingen voor geautomatiseerd rijden is dat voertuiglokalisatie sterk
afhankelijk is van high-definition kaarten (HD-kaarten), die zeer duur zijn om te maken en
te onderhouden.

Dit proefschrift richt zich op het ontwikkelen van een meer schaalbare oplossing voor
voertuiglokalisatie. Het onderzoekt een nieuwe techniek die de positie van het voertuig
(locatie en oriëntatie) schat door grondniveaubeelden, vastgelegd door de onboard camera
van het voertuig, te matchen met publiek beschikbare georeferentieerde luchtbeelden.
Hoofdstuk 1 begint specifiek met een korte motivatie voor deze grond-tot-lucht cross-view
visuele lokalisatietaak. Vervolgens definieert het de hoofd- en subonderzoeksvragen van dit
proefschrift. Hierna bespreekt Hoofdstuk 2 de relevante literatuur over cross-view visuele
lokalisatie. De daaropvolgende hoofdstukken behandelen cross-view visuele lokalisatie
vanuit verschillende perspectieven en beantwoorden aan het eind de onderzoeksvragen.

Hoofdstuk 3 identificeert een beperking in bestaande op beeldherkenning gebaseerde
cross-view lokalisatiemethoden: deze modellen zijn getraind voor grootschalige grove
lokalisatie in plaats van nauwkeurige lokalisatie in geografische lokale gebieden. Deze
formulering is niet geschikt voor geautomatiseerd rijden, aangezien de grove locatie van het
voertuig vaak bekend is door GNSS of temporele informatie, terwijl de nauwkeurige locatie
binnen een klein lokaal gebied crucialer is. Daarom stelt Hoofdstuk 3 voor om de grove
lokalisatievoorkennis van andere sensoren, zoals GNSS, te integreren in de training van het
beeldherkenningsmodel om het model te dwingen lokaal onderscheidende kenmerken te
leren. Dit wordt bereikt door het introduceren van een nieuwe verliesfunctie, de Geo-local
Triplet Loss, en de effectiviteit en algemeenheid van dit verlies wordt aangetoond met twee
basismodellen op twee datasets. Bovendien wordt een veelgebruikte temporele filterpijplijn
geïmplementeerd om te valideren dat het combineren van het model, getraind met het
voorgestelde verlies, met GNSS-positionering betere lokalisatienauwkeurigheid oplevert
dan het combineren van de basislijn met GNSS of het alleen gebruik van GNSS.

Vervolgens identificeert Hoofdstuk 4 de beperkingen van het gebruik van beeldherken-
ning voor nauwkeurige voertuiglokalisatie, namelijk dat betere lokalisatie meer rekenkracht
en opslag vereist, omdat referentieluchtbeeldpatches dicht het doelgebied moeten bedekken.
Daarom stelt het in plaats van de lokalisatie als beeldherkenningsprobleem te formuleren,
voor om het grondniveaubeeld direct te matchen met een bekend luchtbeeld dat de lokale
omgeving bedekt voor voertuigpositie schatting (lokalisatie plus oriënteringss schatting).
Het introduceert een nieuwe methode genaamd Convolutional Cross-View Pose Estimation
(CCVPE), die oriëntatiebewuste grond- en luchtbeeldbeschrijvingen construeert voor de
gezamenlijke schatting van de locatie en oriëntatie van de grondniveau camera. Experi-
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menten tonen aan dat CCVPE state-of-the-art nauwkeurigheid behaalt in lokalisatie- en
oriënteringss schatting op drie cross-view lokalisatie benchmarks.

Daarna richt Hoofdstuk 5 zich op het verbeteren van de runtime-efficiëntie van cross-
view lokalisatie. Het stelt SliceMatch voor, een generatieve testmethode die oriëntatiebe-
wuste grond- en luchtbeeldbeschrijvingen construeert door expliciet gebruik te maken
van de geometrische relatie tussen grond- en luchtbeelden. SliceMatch gebruikt vooraf
berekende grond- en luchtsegmentmaskers om de functie-aggregatie te begeleiden bij het
construeren van de grond- en luchtbeschrijvingen. Omdat de segmentmaskers vooraf kun-
nen worden berekend en de functiemaskering en descriptorvergelijking kunnen worden
geïmplementeerd als matrixvermenigvuldiging, een sterk paralleliseerbaar proces, bereikt
SliceMatch een snelle runtime van meer dan 167 FPS op de VIGOR-dataset.

De schaalbaarheid van cross-view lokalisatie wordt bestudeerd in Hoofdstuk 6. In
de beoogde toepassing zou een cross-view lokalisatiemodel worden getraind in gebieden
waar grondwaarheidsgegevens beschikbaar zijn en vervolgens worden ingezet in andere
gebieden waar geen grondwaarheid is. Vanwege de domeinkloof tussen de trainings-
en testregio’s leidt een dergelijke directe generalisatie altijd tot een prestatieverlies. In
de praktijk is het verkrijgen van nauwkeurige grondwaarheidslocatiegegevens duur en
vereist het mobiele mapping-voertuigen met dure sensorkits. Het verzamelen van grondni-
veaubeelden met grove grondwaarheid, die fouten van tientallen meters kunnen hebben,
is echter eenvoudiger, bijvoorbeeld met mobiele telefoons en hun ingebouwde GNSS.
Daarom stelt Hoofdstuk 6 voor om gebruik te maken van gemakkelijk te verzamelen grove
grondwaarheidsgegevens voor zwak-supervised fine-tuning van voorgetrainde cross-view
lokalisatiemodellen. De grove grondwaarheidsgegevens worden gebruikt om het grond-
beeld in het doelgebied te koppelen aan een luchtbeeld dat de lokale omgeving bedekt.
Hoofdstuk 6 introduceert een kennis-zelfdistillatiekader dat een voorgetraind model ge-
bruikt als leraar om pseudo-grondwaarheid te genereren voor elk grond-luchtbeeldpaar.
Ruis in de pseudo-grondwaarheid wordt onderdrukt en grote uitschieters worden verwij-
derd met de voorgestelde technieken. Vervolgens wordt een studentmodel getraind met
de verbeterde pseudo-grondwaarheid. Experimenten met twee basismodellen op twee
benchmarks tonen aan dat de voorgestelde zwak-supervised kennis-zelfdistillatie tot 20%
nauwkeurigheidswinst kan leiden.

Ten slotte worden de bevindingen van de voorgestelde methoden en uitgevoerde ex-
perimenten gebruikt om elke sub-onderzoeksvraag te beantwoorden in Hoofdstuk 7. Dit
proefschrift toont aan dat grond-tot-lucht cross-view visuele lokalisatie een schaalbare en
nauwkeurige methode kan worden voor voertuigpositie schatting. Voor geautomatiseerd
rijden moet cross-view visuele lokalisatie niet als een op zichzelf staande taak worden
beschouwd, maar als een onderdeel binnen de voertuiglokalisatiestack. Daarom moet bij
de ontwikkeling van cross-view visuele lokalisatiemethoden rekening worden gehouden
met de aanwezigheid van andere lokalisatiesensoren. Daarnaast kunnen zowel de nauw-
keurigheid als de efficiëntie van cross-view lokalisatie worden verbeterd door rekening te
houden met de geometrische relatie tussen grond- en luchtbeelden. De schaalbaarheid van
cross-view lokalisatiemethoden naar nieuwe gebieden kan worden verbeterd met behulp
van gemakkelijk te verzamelen ruwe positioneringsgegevens uit het doelgebied. Momen-
teel voldoet de nauwkeurigheid van cross-view visuele lokalisatie weliswaar nog niet aan
de eisen van volledig autonoom rijden, maar kan het nuttig zijn voor lagere niveaus van
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rijautomatisering, zoals Advanced Driver Assistance Systems (ADAS). Toekomstig werk
in cross-view visuele lokalisatie zou zich moeten richten op het verder verbeteren van
de nauwkeurigheid van algoritmen, terwijl bredere toepassingen van luchtbeelden voor
geautomatiseerd rijden in overweging worden genomen.
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U nderstanding one’s geographical location is fundamental for driving. For instance,
navigating from a starting point to a destination requires awareness of positions.

Before the wide adoption of modern automotive navigation technologies, drivers often
utilized paper maps to find their global position, i.e. their location relative to an external
frame of reference. This process is depicted in Figure 1.1, where a driver typically identifies
his/her precise location by matching visible landmarks, such as roads and intersections,
seen through the vehicle’s windows, with the information presented on the map.

Figure 1.1: Humans localize themselves by comparing the surrounding environment to a paper map.

Later, the development of the Global Navigation Satellite System (GNSS), which includes
the well-known Global Positioning System (GPS) and other satellite navigation systems,
transferred the task of localization from the driver to the vehicle or a mobile device.
GNSS provides the vehicle’s global position in terms of latitude and longitude, which
is then displayed on a globally registered, pre-constructed digital map. Although GNSS
positioning contains errors, it generally suffices for navigation purposes for human drivers,
since humans can easily determine the route using the approximate location.

However, when it comes to autonomous vehicles, the location estimate is not only used
for navigation but also for driving and interacting safely with other road users, including
pedestrians, cyclists, and other vehicles. In this case, GNSS alone is not sufficient. As
shown in Figure 1.2, in the Oxford RobotCar dataset [1], the trajectories measured by GNSS
(in red), or even more accurate Real-Time Kinematic (RTK) positioning (in green), are
often noisy or miss measurements, even though the vehicle used for data collection in the
Oxford RobotCar dataset is equipped with high-end GNSS receivers that consumer-level
vehicles do not have. Therefore, additional localization methods that can further refine the
localization accuracy on top of the noisy GNSS measurements are required.

Commonly, autonomous vehicles match measurements from their perception sensors,
such as cameras and Light Detection And Ranging sensors (LiDARs), to a pre-constructed
High-Definition map (HD map) for accurate localization [2–5]. HD maps contain detailed
road information, such as lane boundaries, road types, and traffic lights. However, most
consumer-level vehicles are not equipped with costly LiDAR sensors. Moreover, creating
and maintaining an HD map is a highly laborious and expensive process [6–8]. According
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to [8], HD map providers charge approximately 5000 US dollars per kilometer for mapping
services in the United States. Additionally, to keep the HD maps up-to-date with urban
development, frequent updates and remapping are necessary, further escalating the costs.
Therefore, exploring scalable map sources for vehicle localization is crucial.

Figure 1.2: Measured trajectories in the Oxford RobotCar dataset [1]. Green: RTK measurements. Red: GNSS
measurements. Note that, the selected trajectories are not labeled with “poor GPS” in the original dataset.

Ground-level image

Localize
Input Aerial image

Neural Network

Figure 1.3: Overview of ground-to-aerial cross-view visual localization. The ground-level image captured by the
vehicle’s onboard camera shows that the vehicle is approaching an interaction and the surrounding four buildings
have different colors and styles. The aerial image depicts the vehicle’s local surroundings from a Bird’s Eye View
(BEV). A deep neural network then compares the information in the ground-level image to that in the aerial
image to estimate the planar location and yaw orientation of the vehicle.

Aerial images contain rich information about the environment from a Bird’s Eye View
(BEV), making them a promising map source. Given a rough GNSS location estimate, one
can retrieve an aerial image covering the local area from various sources, including web
map platforms, such as Google Maps1 and Bing Maps2, or national government-owned
geo-information web services, such as PDOK3. This dissertation addresses the localization
of autonomous vehicles by leveraging ground-level images taken by the onboard camera
and the aerial image covering the vehicle’s local surroundings. As illustrated in Figure 1.3,
a ground-level image, in this case, a panoramic image, shows the vehicle approaching an
1https://www.google.com/maps
2https://www.bing.com/maps
3https://www.pdok.nl/

https://www.google.com/maps
https://www.bing.com/maps
https://www.pdok.nl/
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intersection and is currently located on a zebra crossing. The surrounding buildings assist
in determining on which side of the intersection the vehicle is located. A deep neural
network gathers the information from the ground-level image and then compares it to
the aerial image to localize the vehicle within the aerial image. This process is called
ground-to-aerial cross-view visual localization. The question is then can ground-to-
aerial cross-view visual localization become a scalable and accurate method for
estimating the vehicle’s pose.

Before answering this question, subsequent sections of this chapter will first highlight
themotivation behind the use of autonomous vehicles, formalize the task of localization, and
discuss the localization requirements for autonomous driving. Then, current techniques
used for vehicle localization are introduced. Following this, the research focus of this
dissertation will be presented. Finally, this chapter dissects the main question into sub-
questions, outlines the remainder of this dissertation, which addresses these sub-questions,
and summarizes the main contributions of this dissertation.

1.1 Why develop automated driving?
According to World Health Organization [9], in 2018, road traffic injury became the 8th
leading cause of death for all age groups, and the number of annual road traffic deaths
reached 1.35 million. Importantly, several leading factors of road traffic accidents are driver-
related, including speeding, drunk driving, and distracted driving. These factors raise a
wish: Computers shall help human drivers to increase road traffic safety. To achieve this,
extensive research and engineering work has been done in automated driving, including
advanced driver-assistance systems (ADAS) and autonomous driving.

The first autonomous vehicle appeared in the 1980s [10, 11]. Since then, numerous com-
panies and research organizations have been developing and testing autonomous vehicles
for various scenarios, including highway driving, dense urban driving, and challenging
weather conditions. Society of Automotive Engineers (SAE) developed a classification
system that defines the degree of driving automation a car and its equipment may offer [12].
From no driving automation to full driving automation, there are 6 levels:

• Level 0: no driving automation.
• Level 1: driver assistance, such as lane centering or adaptive cruise control.
• Level 2: partial driving automation, such as lane centering and adaptive cruise
control.

• Level 3: conditional driving automation, i.e. the vehicle can drive by itself under
limited conditions, but the driver needs to take over driving when the conditions are
not met.

• Level 4: high driving automation, i.e. the vehicle can drive by itself under limited
conditions, driver is not required to take over driving. For example, local driverless
taxis.

• Level 5: full driving automation, i.e. the vehicle can drive by itself under all conditions.

As of 2024, several prominent companies, including Waymo, Cruise, Zoox, and Baidu,
have made significant strides in deploying vehicles equipped with SAE Level 4 automation
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capabilities. For example, robotaxis are operating in cities such as Seattle, Atlanta, Los
Angeles, Beijing, and Wuhan.

Despite the importance of autonomous vehicles and the progress made, the market
trajectory of autonomous driving has not quite matched the initial expectations of the
public. Notably, the autonomous driving industry has experienced several setbacks in
the past few years: Argo AI, a once-leading autonomous driving technology company
supported by Ford and Volkswagen, faced bankruptcy in 2022. Ridesharing enterprises
Uber and Lyft parted ways with their autonomous driving research divisions in 2020 and
2021, respectively. Automobile manufacturers, including Ford and Mercedes-Benz, have
redirected their efforts from pursuing Level 4 autonomous driving to the more immediately
profitable Level 2 and Level 3.

Although the technological capability for Level 4 autonomous driving exists, the
widespread application and scaling of this technology present persistent challenges. One
major limiting factor for its scalability is the reliance on HD Maps. HD map-based au-
tonomous driving has been one of the most dominating autonomous driving solutions
in the market, as the information possessed by HD maps largely reduces the burden for
autonomous vehicles’ online perception stack to sense the environment. For example, the
vehicle can compare its observed landmarks to the ones labeled on the HD map to infer its
location on the map. Once the ego vehicle’s location is known, it also knows its relative
location to other objects on the map, including the ones it cannot perceive, such as objects
outside its field of view (FoV) or unobservable information like house numbers. However,
creating and maintaining HD Maps on a large scale is resource-intensive, necessitating not
only the use of specialized mapping vehicles equipped with costly LiDAR, high-precision
GNSS, and IMU sensors but also extensive human effort in labeling data.

In general, HD maps benefit automated driving in many aspects, such as localization,
trajectory prediction, and planning. This dissertation will focus on the localization of
autonomous vehicles, with the goal of developing a more scalable localization solution that
does not rely on HD maps. Firstly, the localization task and requirements are introduced.

1.2 Localization task and reqirements
As defined in [13], mobile robot localization is the problem of determining the pose of a
robot relative to a given map of the environment. Maps serve as a fixed global reference,
with coordinates set independently of the robot’s pose, and the process of localizing the
robot in this globally registered map is also called global localization. The goal of global
localization is then to establish correspondence between the map coordinate system and the
robot’s local coordinate system. Since vehicles drive on the ground, this dissertation focuses
on the planar environment. Then the localization task simplifies to determining a three
degrees of freedom (3-DoF) transformation between the ego-vehicle and an external planar
map. The 3-DoF transformation includes the planar translation across two dimensions and
its heading orientation, which is also known as yaw.

Local localization, also known as position tracking, is a sub-question in localization.
Local localization focuses on estimating themotion of the robot, such as the vehicle’s relative
pose between consecutive timestamps. Without an already established transformation
between the local motion and an external global map, the estimated trajectory of the vehicle
cannot be registered globally.



1

6 1 Introduction

To enable automated vehicles to utilize external maps, they must understand their
position on the map. Thus, accurate global localization is needed, with the localization
requirements varying based on factors such as road types, vehicle speeds, and vehicle
dimensions.

Requirements on localization accuracy: This dissertation follows the requirements
outlined in [14], where the needs for longitudinal and lateral positioning, as well as
orientation estimation, are based on US road geometry standards, including lane width,
curvature, etc. For passenger vehicles operating on freeway roads, the requirements are a
maximum lateral error of 0.57 m, a longitudinal error of 1.40 m, and an orientation error of
up to 1.50◦. On local streets, due to tighter road geometry, the requirements become more
stringent: lateral and longitudinal error bounds of 0.29 m and orientation accuracy of 0.50◦
are necessary.

Requirements on localization latency: The frequency of localization updates plays
a critical role in vehicle safety. Due to sensors, algorithms, and data transfer latencies,
continuous localization measurements are not feasible. At high speeds, the vehicle’s
location can significantly change between successive localization measurements, especially
in the longitudinal direction. For instance, at 100 km/h, a 10 Hz update frequency results in
localization updates every 2.8 meters, equivalent to the lane width on some local streets. At
130 km/h, 10 Hz provides updates every 3.6 meters, approximately the width of a freeway
lane. According to [14], driving at 100 km/h necessitates an update rate of 150 Hz.

This dissertation aims to develop accurate and fast localization methods, with a focus
on 3-DoF global localization. To avoid confusion, the remainder of this dissertation uses
the term “localization” for estimating only the 2D position of the vehicle, and the term
“pose estimation” is used when both the 2D position and the yaw orientation are estimated.
First, the next section will discuss the commonly used sensors and techniques for vehicle
localization or pose estimation as well as their shortcomings.

1.3 Current vehicle localization techniqes
A variety of specialized sensors and techniques are available for vehicle localization. This
section first categorizes them based on their uses for local localization or global localization.
Then, the limitations of existing techniques will be discussed.

1.3.1 Local localization techniqes
Local localization techniques are commonly employed in two scenarios: First, when only
the vehicle’s motion is needed, regardless of its global location, such as calculating the
local trajectory traveled. Second, they can be combined with global localization techniques
to enhance overall localization accuracy. The commonly used local localization techniques
are the following:

• Inertial measurement unit: The Inertial Measurement Unit (IMU) integrates ac-
celerometers, gyroscopes, and occasionallymagnetometers to provide comprehensive
motion data. It delivers three-dimensional rotation (yaw, pitch, roll) and translation
information through the measurement of angular velocities and accelerations. Due
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to its reliance on the double integration of these measurements over time, the IMU is
prone to accumulating errors, also known as drifting. While high-precision IMUs are
available and commonly used in military and aviation applications, their commercial
counterparts for vehicles tend to be more affordable and less accurate.

• Wheel odometry: Vehicles employ wheel odometry to gauge the rotation of their
wheels. Given that the dimensions of the wheels are predetermined, the distance
traveled by each wheel can be accurately determined from their rotation measure-
ments. While wheel odometry by itself does not measure the vehicle’s exact location,
the motion data it provides can be fused with other positioning sensors, such as
GNSS, to enhance overall localization accuracy.

• Visual or LiDAR odometry: Visual or LiDAR odometry aims to replicate the func-
tion of wheel odometry, using only images or LiDAR scans as inputs. Typically,
correspondences between image pixels or LiDAR points in consecutive measure-
ments are established to estimate the camera’s or LiDAR’s relative pose at successive
timestamps.

Limitations: Autonomous vehicles’ perception systems are unable to capture all en-
vironmental information due to factors such as limited or blocked fields of view, sensor
failure, and the inability to detect certain details like house numbers or road names. To
compensate, maps are frequently employed to provide supplementary environmental in-
formation. To use these maps, the vehicle must know its global position to accurately place
itself on a geo-referenced map. Local localization methods alone cannot determine this
global position. Therefore, local localization techniques are typically used in combination
with global localization methods to improve overall localization accuracy.

1.3.2 Global localization with satellites (GNSS)
Global Navigation Satellite System, or GNSS, is extensively utilized in various vehicle
localization systems [15–17]. GNSS includes the American GPS, the Russian GLONASS, the
European GALILEO, and the Chinese BeiDou. It provides geolocation and time information
to a receiver anywhere on or near the Earth, when there is an unobstructed line of sight to
at least four satellites.

GNSS reports the receiver’s locations in the World Geodetic System 1984 (WGS84)
coordinate system [18], providing longitude, latitude, and height. This information can be
utilized to pinpoint the location on a globally registered reference map. In practice, various
GNSS positioning solutions exist and the most prevalently applied ones are:

• The standard position service of GNSS: Accessible to all users, this service is com-
monly utilized by most mobile phones and consumer vehicles for GNSS positioning.
It provides location accuracy ranging from several meters to tens of meters. Vertical
accuracy is generally less reliable than horizontal accuracy, with precision largely
depending on the number of observed satellites and environmental conditions.

• Precise Point Positioning (PPP): PPP enables high-accuracy position estimation from
a single receiver without the need for proximity to a reference station. Unlike code-
based standard positioning, PPP utilizes carrier-based ranging (phase measurement
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of the carrier wave) to achieve location accuracy of up to 3 centimeters. However,
this technique requires post-processing with precise satellite orbit and clock data.
Hence it is unsuitable for real-time applications such as vehicle localization.

• Differential GNSS (DGNSS): This method can be used when there is a ground-based
reference station available to broadcast the difference between the positions indicated
by GNSS and the station’s known fixed position. By utilizing this differential data,
positioning errors can be significantly reduced, enhancing accuracy to within several
centimeters.

• Real-Time Kinematic (RTK): RTK, similar to PPP, employs carrier-based ranging to
achieve enhanced accuracy but also necessitates a base station with a known location,
akin to DGNSS. Corrections are broadcast via radio, which requires a separate
antenna to receive these signals. RTK can deliver centimeter-level accuracy [19] and
is commonly utilized in mobile mapping vehicles for precise location collection, such
as the reference location data in the KITTI dataset [20].

Although various GNSS positioning solutions are available, their reliability and accuracy
can be compromised by several factors. The primary sources of errors in GNSS localization
include [21]:

• Multipath effects: This occurs when the receiver captures GNSS signals through
multiple paths, a common phenomenon in urban areas where signals are reflected off
tall buildings. Areas surrounded by tall buildings are often called “urban canyons”.

• Atmospheric refraction: Errors may occur due to signal refraction in the ionosphere
and troposphere, which can be mitigated by modeling the atmospheric conditions or
using DGNSS and RTK.

• Satellite clock drifts and orbit errors: These can lead to inaccuracies in positioning or
localization, which can be corrected through the use of DGNSS and RTK techniques.

• GNSS-denied areas: In locations where satellite signals are obstructed, such as
tunnels or indoor environments, GNSS cannot provide a solution. In these scenarios,
localization often relies on alternative sensing technologies.

• Number of observed satellites: The accuracy of GNSS positioning depends on the
number of satellites observed. Determining the location requires measurements
from at least four satellites. Observing additional satellites introduces redundant
measurements, thereby enhancing accuracy.

• Satellite geometry: The accuracy of positioning is influenced by the geometry of the
observed satellites. If the satellites are closely clustered, resulting in small intersection
angles between the lines from the receiver to the satellites, the uncertainty in planar
positioning increases.

• Availability of DGNSS and RTK: The effectiveness of these high-accuracy positioning
techniques depends on the presence of a GNSS base station, which may not be
available in all locations.
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Limitations: Even though the advanced GNSS positioning solution, RTK, can provide
accurate localization for mobile mapping vehicles, consumer-level vehicles cannot use
RTK due to two main reasons: first, the signal from GNSS reference stations has limited
coverage; and second, the high cost prevents the inclusion of high-end GNSS receivers in
consumer-level vehicles. Additionally, all GNSS positioning solutions are susceptible to
the multipath effect, which is common in urban environments. Therefore, for autonomous
vehicles, GNSS positioning is often complemented by other localization techniques, such
as map-based localization, to ensure reliability and accuracy.

1.3.3 Global localization with maps
Map-based localization involves aligning online sensormeasurementswith a pre-constructed
reference map. Typically, these reference maps are globally registered, which makes identi-
fying a specific location on the map a form of global localization. For autonomous vehicles,
camera images and LiDAR scans are commonly used for map matching due to their rich
appearance and geometric information. The reference map can be represented in various
forms. The commonly utilized ones are:

• Road maps: Road maps, such as Google Maps and OpenStreetMap, are widely used in
daily life. They are primarily designed for navigation purposes that do not demand
precise localization, making them less suitable for autonomous driving applications.
These maps are not created with high precision and lack detailed environmental
information. For instance, although roads are labeled, individual lanes are not labeled.

• Images with known pose: For large-scale coarse localization, images with known
poses are also used as reference maps. During inference, a newly observed query
image is compared with the reference images. The pose of the best-matched reference
image is then used as the pose of the query.

• 3D point clouds: 3D point clouds accurately capture the scene’s structure. When
reconstructed from camera images, these point clouds can incorporate additional
color information; similarly, point clouds derived from LiDAR scans may include
reflectivity data. 3D point cloud maps are often collected by mobile mapping vehi-
cles equipped with cameras, LiDAR, GNSS, and IMU. In practice, dense 3D point
clouds require substantial storage, particularly for large-scale applications such as
autonomous driving. Additionally, the construction of a reference point cloud map
typically involves removing dynamic objects, a process that often requires human
effort.

• High-definition maps (HD maps): HD maps, a concept first introduced by Mercedes-
Benz in 2010 [7], aim to create a precise and informative 3D road map to support the
localization, perception, and motion planning of autonomous vehicles. HD maps pro-
vide detailed representations of the environment, including roads, buildings, traffic
lights, and lane markings. Typically, information in HDmaps is organized into layers;
for instance, the first layer may store basic road layouts, while subsequent layers
contain more detailed information like lane markings and attributes. Different com-
panies, such as TomTom and HERE, have developed different map layer structures [3].
The industry also developed a variety of HD map data formats and standards, e.g.
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OpenDRIVE4 and Navigation Data Standard (NDS) Open Lane Model5. OpenDRIVE
defines road using a reference line and offsets from the reference line, while NDS
Open Lane Model uses lane center line and boundaries. Conceptually, HD maps
can be viewed as a lane graph with detailed attributes, including connectivity, lane
types, and driving directions. A common method for constructing HD maps involves
extracting information from multi-sensor measurements, such as camera images
and LiDAR point clouds [7]. Alternatively, road networks and lane information can
also be derived from aerial images [7, 22, 23]. Given the high localization accuracy
requirement for autonomous driving, HD map-based localization has become the
standard solution.

Limitations: Although HD map-based localization is accurate, its scalability is limited
by the costs associated with constructing and maintaining an HD map. Firstly, the data
collection requires operating a fleet of mobile mapping vehicles equipped with expensive
sensors. Furthermore, labeling road lanes and traffic components demands human effort,
which becomes costly in practice for large mapped areas. These factors make the HD
map-based solution challenging to scale to less developed areas or rapidly developing
regions, which require frequent map updates. In practice, a more scalable solution for
vehicle localization is required.

1.3.4 Simultaneous localization and mapping
Simultaneous Localization and Mapping (SLAM) [24–27] can be used for both local and
global localization. It is a technique that constructs or updates a map of an unknown
environment while simultaneously keeping track of the robot’s location within the con-
structed map. SLAM typically utilizes camera images or LiDAR scans, with the map being
represented as a point cloud. In use cases where the global location of the robot is not
crucial, such as with vacuum cleaning robots, SLAM is used solely for local localization.
For vehicle localization, the constructed map often needs to be globally registered, and
then SLAM integrates also global positioning estimates such as those from GNSS.

Usually, SLAM consists of a front end and a back end. The front end focuses on
estimating motion, similar to visual or LiDAR odometry. This results in a graph of poses.
The back end concentrates on optimizing and registering this pose graph. It requires loop
closure, i.e. revisiting the same locationmultiple times to generate redundant measurements
for error correction, and global localization.

Limitations: In autonomous driving, SLAM is typically utilized in constructing the
reference map [28], but it is less common for the online operation of autonomous vehicles
due to its high computational cost and storage requirements. Commonly, map construction
relies on data collected by specialized mapping vehicles equipped with high-end sensors.
Consumer-level vehicles outfitted with standard sensor kits may not achieve the required
accuracy for mapping.

4https://www.asam.net/standards/detail/opendrive/
5https://nds-association.org/

https://www.asam.net/standards/detail/opendrive/
https://nds-association.org/
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1.4 Cross-view localization, an alternative?
Ground-to-aerial visual cross-view localization, or cross-view localization for short, aims
to localize the ground-level camera by matching the image it captures with a georeferenced
aerial image. Hence, cross-view localization is a form of map-based global localization. In
practice, the size of the aerial image varies depending on different use cases. When there
is no prior knowledge of the ground-level camera’s location, the aerial image needs to
cover the entire Earth. However, for vehicle localization, a rough estimate of the vehicle’s
location is often available, resulting in a smaller reference aerial image size. Besides, since
the relative pose between the vehicle center and the onboard camera is fixed, the estimated
camera pose can be converted into the vehicle pose. Usually, the output of cross-view
localization is the 2D planar location of the ground camera in the aerial image, along with
its yaw orientation, see Figure 1.3.

One major advantage of cross-view localization lies in the widespread availability of
aerial images.

Aerial images: Aerial images are images captured from an airborne platform, including
fixed-wing aircraft, helicopters, unmanned aerial vehicles (UAVs or “drones”), etc. Aerial
images taken at an angle are called oblique aerial images, and those taken straight down
are vertical aerial images. Vertical aerial images are often used for landscape monitoring
and mapping, such as in photogrammetry and cartography. High-resolution aerial images
can have spatial resolution of up to 1-5 centimeters per pixel. Nowadays, relatively low-
resolution (around 10 centimeters per pixel) aerial images are publicly available from
various sources, including web map platforms, such as Google Maps1 and Bing Maps2,
or government-owned geo-information web services, such as PDOK3. Depending on the
sources, the update frequency of their aerial images differs, for example, PDOK updates
its aerial images every year, while Google Maps updates its aerial images every 1-3 years.
This dissertation will use those publicly available aerial images.

Because of perspective projection, vertical aerial images still capture a small part of
building facades and the scale is not uniform inside the image, i.e. the ground distance of
each pixel is not equaled. Orthographic rectification corrects it and turns aerial images into
aerial maps, that have uniform scale. However, since a digital elevation model (DEM) is
required to create an accurate aerial map, aerial maps are not widely available. In practice,
the scale difference in the aerial image is small, and hence this dissertation will directly
use aerial images as the reference map.

Potential benefits: Compared to HD maps, which are expensive to construct, aerial
images already provide global coverage, making them a more scalable map source. Addi-
tionally, the information in HD maps is extracted by humans. For instance, lane boundaries
and traffic signs are crucial for humans to perform driving tasks, and hence these objects are
extracted and labeled. However, these manually extracted features might be sub-optimal for
training a deep neural network for localization. On the other hand, aerial images are direct
projections of the 3D scene. Despite lacking explicit human annotations, aerial images
contain more information about the environment and might enable better localization.

Cross-view localization and GNSS positioning are complementary techniques. Com-
pared to GNSS-based localization, which often suffers from large errors in urban areas due
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to the multipath effect, urban environments offer rich visual cues for matching ground-
level and aerial images, such as buildings, intersections, and lane markings. Consequently,
cross-view localization may achieve higher accuracy in urban areas compared to highways,
where surroundings often feature repetitive patterns, and GNSS tends to be more reliable
due to the open sky. On the other hand, consumer-grade vehicles are mostly equipped
with GNSS receivers. Although GNSS may have a positioning error of tens of meters, it
still provides a rough localization estimate that narrows down the search area in the aerial
image. This dissertation will assume the existence of such a rough GNSS localization prior.

Challenges: Cross-view localization involves matching the ground-level image with the
aerial image. The drastic differences in viewpoint and scale between ground-level and aerial
images introduce challenges to this matching process. Additionally, since ground-level
and aerial images are not collected simultaneously, rather, aerial images are captured at
an earlier time, only static objects visible in both views are matchable, while dynamic
objects are not. Hence, the achievable accuracy of cross-view localization remains unclear.
Moreover, the learned features of cross-view localization models should be generalizable
across different regions, despite potential differences in scenes between training and test
regions. Despite the strong capability of deep learning models in learning to extract
relevant features from data, only a limited amount of literature on cross-view localization
has studied the aforementioned challenges, as it is a relatively new field of research. This
dissertation aims to bridge this gap.

1.5 Researchqestions and chapter outline
First, this section will define the main research question of this dissertation and then break
it down into sub-questions. Subsequently, an outline of the following chapters will be
presented.

1.5.1 Researchqestions
Given the challenges involved in matching ground-level and aerial images, the main
research question of this dissertation is defined as:
MQ: Can ground-to-aerial cross-view visual localization become a scalable and
accurate method for estimating a vehicle’s pose by comparing its captured ground-
level image with an aerial image (the “map”) covering its local surroundings?

To address this main research question, this dissertation will develop a deep neural
network for ground-to-aerial cross-view visual localization. Previously, cross-view local-
ization has primarily been approached by matching ground-level and aerial images using
image retrieval methods. Therefore, the first emerging sub-question is:
SQ1: Is the common image retrieval formulation in ground-to-aerial cross-view
image matching well-suited for vehicle localization?

Once a suitable formulation for cross-view image matching is identified, the focus will
shift to estimating the vehicle’s pose (location plus orientation). Consequently, the next
sub-question is:
SQ2: How can the location and orientation of the ground-level camera be jointly
estimated?
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Additionally, as outlined in the localization requirements in Section 1.2, localization
latency is an important factor in autonomous driving. Thus, the next sub-question focuses
on the efficiency aspect of cross-view localization methods, namely:
SQ3: What strategies can be employed to create an efficient ground-to-aerial cross-
view visual localization method?

After addressing the previous sub-questions, this dissertation will delve into one of the
two key aspects of the main research question: the scalability of cross-view localization
methods. The focus here is the methods’ scalability to new regions. Firstly, this disserta-
tion will investigate whether ground-to-aerial cross-view visual localization methods can
generalize to new regions without being trained on any data collected in the target regions.
Given that modern deep learning methods often experience a performance drop when
directly generalizing to distributions different from the distribution of training data, this
dissertation will also study how to mitigate this performance drop caused by the domain
gap. Then, the next sub-research question is:
SQ4: Do ground-to-aerial cross-view visual localization methods generalize to new
regions, and how can their scalability be enhanced with easily collectable data?

Following the previous sub-question, the final sub-question focuses on the other key
aspect of the main research question: the pose estimation accuracy of cross-view localiza-
tion.
SQ5: What level of accuracy is achievable with ground-to-aerial cross-view visual
localization?

1.5.2 Chapter outline
To answer the research questions of this dissertation, the following chapters are structured
as follows. First, Chapter 2 on related work categorizes visual localization methods and
reviews relevant approaches for ground-to-aerial cross-view localization. Following this,
the Chapter 3 to 6 address the sub-questions.

Chapter 3 follows the common image retrieval formulation for ground-to-aerial cross-
view image matching-based localization. Additionally, it also considers the rough local-
ization prior from GNSS. It proposes a method where the local region of a continuous
aerial image is densely sampled into patches and matched with ground-level images for
localization. Besides, this chapter develops a temporal filtering pipeline to fuse cross-view
image retrieval and GNSS positioning over time. Chapter 4 follows the idea of considering
the GNSS localization prior but formulates cross-view localization differently to address the
computational and storage demands of image retrieval for precise localization. It develops
a method that directly correlates the representation of a ground-level image with that
of a local aerial image patch to jointly estimate the vehicle’s location and orientation.
Chapter 5 focuses on the efficiency aspect of cross-view localization and develops a novel
generative-testing cross-view localization approach. Chapter 6 addresses the scalability
problem. Given the high cost of obtaining accurate ground truth data for training cross-
view localization models in a supervised manner, Chapter 6 proposes a weakly supervised
learning approach to scale the cross-view localization methods to new areas without accu-
rate ground truth. The effectiveness of the proposed framework is demonstrated using the
algorithm developed in Chapter 4.
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Finally, Chapter 7 concludes the dissertation by summarizing key findings and an-
swering the research questions. It reflects on the progress made, highlights remaining
challenges, and discusses the derived insights. Furthermore, it suggests directions for
future research to bridge the gap between current cross-view localization techniques and
the demanding localization requirements of autonomous vehicles.

1.6 Contributions
The core achievement of this dissertation lies in advancing ground-to-aerial cross-view
image matching for vehicle localization. The key contributions are outlined as follows:

Integration of noisy localization priors in cross-view image retrieval: The rough
location of the vehicle can be estimated by many means, such as specialized sensors and
temporal filtering. Typically, errors in such location estimates can reach tens of meters,
for example, GNSS positioning in urban canyons. Previously, cross-view image retrieval
localization was often treated as a substitute for GNSS for global rough localization, but
it has limited localization accuracy in smaller local areas. Chapter 3 argues that, instead
of training cross-view image retrieval models as an alternative to GNSS, rough location
estimates should be incorporated into the training of these models to enhance accuracy in
locally ambiguous areas.

Specifically, a novel Geo-local Triplet Loss is proposed to enforce cross-view image
retrieval models to learn image representations that are specifically discriminative between
images from geographically nearby locations, rather than for distant areas, which was the
main objective in previous works. To test generalization across recording days, Chapter 3
also augments the well-known Oxford RobotCar dataset with a map composed of aerial
image patches to serve as a new dense cross-view image retrieval benchmark. The real-
world utility of the proposed method is demonstrated through a scenario where cross-view
image retrieval localization is fused with actual GPS measurements in a particle filter
pipeline. Chapter 3 shows that the proposed method significantly enhances localization
accuracy and robustness compared to the baselines.

The content in Chapter 3 is published in the European Conference on Computer Vision
2020 Workshop on Map-based Localization for Autonomous Driving [29] and in IEEE Robotics
and Automation Letters, 2021 [30].

Joint fine-grained localization and orientation estimation: Formulating localization
as a retrieval problem introduces a trade-off between the localization accuracy and the
density of the reference aerial patches sampled from the target area. Therefore, Chapter 4
moves one step further by addressing the task of fine-grained cross-view localization, i.e.
identifying the precise location of the ground image inside a known aerial image that covers
the local surroundings. This chapter proposes a novel method, Convolutional Cross-View
Pose Estimation (CCVPE), for this task.

CCVPE surpasses the previous state-of-the-art baselines by a largemargin in localization
and achieves comparable orientation estimation accuracy on VIGOR and KITTI datasets.
It constructs a multi-modal distribution for localization and uniquely associates each
location with its most probable orientation. It avoids a dense search over all 3-DoF poses
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(localization plus orientation) by discretizing the orientation sparsely and performing
additional regression. This formulation is efficient for fine-grained pose estimation. It is
also shown that the predicted probability can be used to filter out predictions that potentially
have large localization or orientation errors. The proposed architecture exploits the strength
of a translational equivariant feature encoder and contrastive learning. Its ground image
encoder maintains the spatial scene layout information relative to the camera’s viewing
direction in the ground image descriptor and the contrastive loss enforces aerial descriptors
to encode global orientation information. These descriptors enable joint localization and
orientation estimation with negligible extra computational cost.

The content in Chapter 4 is published in the European Conference on Computer Vision
2022 [31] and in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024 [32].

Enhancing the efficiency of fine-grained cross-view localization: Previous state-
of-the-art fine-grained cross-view localization methods have slow inference time. To
improve the runtime efficiency of fine-grained cross-view localization, Chapter 5 proposes
a generative-testing approach, SliceMatch. It has a novel aerial feature aggregation step
that uses a cross-view attention module for ground-view guided aerial feature selection,
and the geometric relationship between the ground camera’s viewing frustum and the
aerial image to construct pose-dependent aerial descriptors. SliceMatch’s design allows
for efficient implementation, which runs significantly faster than previous state-of-the-art
methods. Namely, for an input ground-aerial image pair, SliceMatch extracts dense features
only once, aggregates aerial descriptors at a set of poses without extra computation, and
compares the aerial descriptor of each pose with the ground descriptor.

The content in Chapter 5 is published in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023 [33].

Scaling cross-view localization models to new areas without ground truth: Fine-
grained cross-view localization methods typically rely on accurate ground truth data to
train a deep neural network. In practice, acquiring accurate ground truth is a laborious and
expensive process. To tackle this, Chapter 6 proposes a knowledge self-distillation-based
weakly-supervised learning approach that considerably improves models’ localization
performance in a new area by only leveraging the ground-aerial image pairs without
ground truth locations. For methods with coarse-to-fine outputs, this chapter investigates
how to reduce the uncertainty and suppress the noise in the teacher model’s predictions.
Using the proposed single-modal pseudo ground truth leads to a better student model
than using the multi-modal heat maps from the teacher model. This chapter also designs
a simple but effective method for filtering outliers in the pseudo ground truth. Training
with filtered pseudo ground truth further improves the localization accuracy of the student
model.

This content in Chapter 6 is published in the European Conference on Computer Vision
2024 [34].





2

17

2
Related work



2

18 2 Related work

2.1 Visual localization
Visual localization is the problem of estimating the pose of a camera relative to a reference
scene representation, based on an image captured by the camera. This field has been
explored through various methodologies, broadly categorized into absolute pose regression,
image retrieval-based localization, structure-based localization, relative pose estimation,
and foundation models, see an overview in Figure 2.1. The task of ground-to-aerial cross-
view localization has been approached through both image retrieval and relative pose
estimation methods. This section introduces the basics of different formulations, and the
subsequent section will provide a detailed review of the relevant literature in cross-view
localization.

Visual Localization

Absolute  
pose  

regression

Image 
retrieval

Structured-based 
localization

Relative 
pose 

estimation

Foundation 
models

Fast Large-scale

Scene-specific 
training

Coarse  
localization

Cons:

Pros:
Accurate

Compute  
Intensive; 

Needs a map

Accurate

Coarse  
localization

Large-scale

Needs a map

Figure 2.1: Overview of visual localization categories and their pros and cons.

2.1.1 Absolute pose regression
Absolute pose regression refers to directly regressing a pose of a given query image relative
to a pre-defined coordinate frame.

PoseNet [35] pioneered this research by taking a single RGB image as input and out-
putting the 6 DoF camera pose of the input image. During training, the network implicitly
encodes the external reference coordinate frame of the training images into its learned
parameters. The predicted pose is defined on this external reference coordinate frame. Sub-
sequent research has studied developing more complicated network architectures [36, 37],
advanced loss functions [38], gathering temporal information [39], as well as jointly esti-
mating auxiliary tasks [40–43].

Absolute pose regression shares common insights with recent advances in Neural
Radiance Fields (NeRF) [44], as both rely on the model parameters to represent the scene.
The main difference is that NeRF explicitly leverages the projection geometry and maps
coordinates to the appearance of 3D points, while absolute pose regression focuses on
mapping on the image level and maps image appearance to camera pose.

Compared to other visual localization techniques, absolute pose regression methods
usually have fast runtime, since only one network forward pass on a single image is
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required. In recent developments, absolute pose regression is also used for vehicle localiza-
tion [45, 46]. However, the main downside of absolute pose regression is its generalization
capability across different areas [47]. The necessity for the model to encode the scene
and its coordinates means that deploying the model in a new location demands retraining
specific to that area.

2.1.2 Image retrieval-based localization
Image retrieval-based localization aims to identify the most similar image in a reference
database to a given query image, and then uses the camera pose of the most closely matched
reference image as the pose of the query image. The similarity between the query and
reference images is measured based on their image descriptors.

Before the advent of deep learning, these descriptors were typically composed of
aggregated hand-crafted features, such as Bag-of-Visual-Words [48, 49], Vector of Locally
Aggregated Descriptors (VLAD) [50–52] and Fisher vector [53, 54].

With the introduction of NetVLAD [55], the focus shifted towards learning-based
approaches, which have proven superior in extracting and identifying relevant features
due to their ability to adapt and generalize across variations in viewpoint, lighting, weather
conditions, and the presence of dynamic objects.

Learning-based methods branch into two directions: one [55–58] focuses on extracting
holistic features from the whole image. A deep network is used to embed the full image
into a single image descriptor, usually a 1-D vector, without explicitly enforcing the locality
of features. Those descriptors can be more robust against dynamic objects since the model
might learn to ignore those objects by reasoning from the full image content. Another
branch [59–65] tries to learn representative local features, such as landmarks and key
points, as they can be more robust against changes in viewpoints.

Since the query image pose is approximated by the pose of the retrieved reference
image or an interpolation of poses of several top retrieved images, the density of the
reference images directly influences the localization accuracy. Therefore, image retrieval-
based localization is often used for large-scale coarse localization to provide an initial pose
estimate that is then refined by a more accurate localization method.

2.1.3 Structure-based localization
Structure-based localization methods match the query image to the structure of the scene
to estimate the camera pose using projection geometry.

Typically, the scene is represented by images with poses or 3D point clouds. Then,
solving structure-based localization can be done by registering the query image into a
local Structure-from-Motion (SfM) pipeline [66] or establishing query image pixel-to-3D
point matches and solving the Perspective-n-Points problem inside RANSAC [67]. The key
to structure-based localization comes down to an accurate feature-matching method that
establishes correspondences between pixels across images, or pixels to 3D points.

Establishing pixel correspondences involves two phases: detection and description.
In [68], SIFT [69] is used for key points detection, and then semantic information is
embedded into the learned descriptor. SuperPoint [70] and D2-Net [71] use a CNN to detect
key points and generate for them feature descriptor simultaneously. SuperGlue [72] trains
a graph neural network to match the local features from two images. LoFTR [73] makes
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use of the self and cross-attention layers in Transformer to obtain feature descriptors from
two images and perform the matching.

For matching pixels to 3D points, [74] converts the extracted features from the query
image into visual vocabularies and directly matches them to the pre-constructed visual
vocabularies of 3D point clouds. In [74], a fast 2D-to-3D matching scheme is developed for
fast structure-based localization.

While local feature matching stands as a fundamental and continually evolving field
of research, this summary does not encompass the full breadth of existing methodologies.
Empowered by advanced local feature matching technologies, structure-based localization
is capable of achieving centimeter-level accuracy in position estimation and sub-degree
precision in orientation. However, these methods are often constrained by their computa-
tional intensity and the necessity for pre-existing 3D models or densely captured reference
images with accurate poses. The difficulty of capturing and updating the accurate 3D model
at a large scale as well as the storage overhead limits the application of structure-based
localization methods to large-scale applications, such as autonomous driving.

2.1.4 Relative pose estimation
Relative pose estimation techniques focus on determining the positional and orientational
relationship between a query image and a reference map. The form of the reference map
is diverse. Structure-based localization can be seen as a form of relative pose estimation
with the 3D structure of the scene used as the map. One can also use an image with a
known pose as the reference map [75, 76]. Ground-to-aerial cross-view localization can
also be formulated as relative pose estimation, with the aerial image as the reference map.
Since this topic will be covered later, this section mainly discusses relative pose estimation
methods using other BEV maps than aerial images.

OpenStreetMap contains nodes, edges, and polygons with semantic labels describing
the topological structure of the environment including buildings, road networks, etc. It has
been used as a map source for vehicle localization with both camera [77–79] and LiDAR
sensors [80, 81]. Recent advance [77] maps the camera image into a BEV representation
and compares it to the deep features extracted from the map at all possible 3 DoF poses.

HD maps are commonly utilized for both visual [82, 83] and LiDAR-based [84, 85]
localization. Similar to visual localization based on OpenStreetMap, localization with HD
maps also involves comparing objects observed in camera images to those annotated in
the HD map. Given that HD maps are constructed with high precision and contain a range
of semantic labels, localization based on HD maps can obtain high accuracy.

Floor map-based localization tries to localize the camera inside a building’s BEV floor
map of walls and rooms. LaLaLoc [86] renders ground-view floor layouts from a BEV
floor map and learns a shared descriptor space for query images and rendered layouts
for end-to-end retrieval and pose refinement. LaLaLoc++ [87] removes the need for the
rendering step in LaLaLoc [86] and uses a UNet-like architecture [88] to build a descriptor at
each candidate location. Localization is achieved by looking for locations whose local map
descriptor is similar to the descriptor of the query. Laser [89] renders ground descriptors
from a floor plan in an efficient way and formulates localization as metric learning.

The accuracy of relative pose estimation depends greatly on the form of the maps.
Maps with detailed geometry and semantic information about the environment, such as
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HD maps, can enable high localization accuracy. However, constructing these maps can be
expensive and laborious.

2.1.5 Foundation models
Foundation models [90–94] have demonstrated remarkable capabilities across a broad
spectrum of language and vision tasks. Recently, foundation models for image geo-
localization [95–97] have also emerged. They follow the formulation of PlaNet [98] and
CPlaNet [99] by dividing the World into cells and classifying the images across “geographi-
cal cells”. So far, the focus of geo-localization foundation models is to identify the rough
location of the image over the world and have limited localization accuracy, e.g. a few
kilometers, making them less relevant for vehicle localization. Still, as evidenced in other
vision tasks [92], with the increase in model size and amount of data, those models can
potentially be useful for vehicle localization.

2.2 Ground-to-aerial cross-view localization
Before the widespread application of deep learning, ground-to-aerial cross-view localization
was addressed by detecting hand-crafted local features, such as SIFT features [69], or local
image patches like building facades [100], from both views and matching them [101].
However, the large perspective difference between ground-level and aerial views makes
hand-crafted features perform poorly.

With deep learning, the domain gap between ground-level and aerial views can be
minimized in the learned feature space. Depending on the use case, cross-view localization
has been addressed by either image retrieval or relative pose estimation. The subsequent
subsections will discuss these approaches individually.

2.2.1 Cross-view image retrieval
Cross-view image retrieval has shown great progress in the past years. It enjoys the
advantage of the widely available geo-referenced aerial images and aims for rough geo-
localization by retrieving the aerial image patch that covers the location of the ground-level
query image. The first deep networks for this task date back to 2015 [102–104]. Since then,
the common practice of using Siamese-like architecture was established. The ground and
aerial images are encoded into image descriptors by two network branches. Usually, these
branches do not share weights [105–107], because the two input images are from different
domains. This domain gap is also one of the main challenges in the cross-view setting.
Subsequent works seek to bridge the domain gap between the learned ground and aerial
representations via various approaches.

An effective way for minimizing the domain gap is to construct visually similar in-
puts [106, 108–111]. SAFA [106] observes that the polar rays in the aerial image correspond
to the vertical lines in the ground image, and proposes to use a polar transformation on
the aerial image to build an image that is visually similar to the ground view. In [111],
an inverse polar transformation is used on ground-level panoramas to generate synthetic
aerial images. In [108], the authors bridge the domain gap between the ground and aerial
images by generating synthetic aerial images using GANs [112]. In [109], ground-level
images are generated from aerial images using GANs, and the features for image generation
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are shared for cross-view image retrieval.
Besides constructing visually similar inputs, several works try to optimize the learned

image feature for retrieval in different ways. CVM-Net [105] adopts the powerful image
descriptor, NetVLAD [55], to learn how to gather local image features for building global
image descriptors. In [107], the authors propose to use the orientation information of both
views to guide the model to find more discriminative features across views. CVFT [113]
considers Optimal Transport theory to facilitate the feature alignment between ground
and aerial images. Global-assists-local [114] addresses the case of retrieving a ground-level
query with a limited horizontal FoV and proposes to embed the aerial feature outside the
query’s FoV into the aerial descriptor to aid the retrieval. In [115], the feature locality is
explicitly enforced when building global image descriptors by partitioning the encoded
features. CVLNet [116] gathers temporal information into the ground descriptor by making
use of a ground-level query video. Recently, transformers are also used. L2LTR [117] intro-
duces self-cross attention to flow effective information into the descriptors. TransGeo [118]
proposes an attention-guided non-uniform cropping method to attend to and zoom in the
informative local image patches. Apart from retrieval, several works also estimate the
orientation of the ground camera [119–122].

However, the major limitation of cross-view image retrieval is that the ground query
is assumed to be located at the center of the matched aerial image patch. In practice, it
is not possible to have aerial image patches centered at unknown test locations. Densi-
fying reference aerial patches reduces the influence of this assumption but increases the
computation cost. In [110], the authors propose to zoom into the initial retrieved aerial
image and crop smaller aerial patches at a set of candidate locations in the initial retrieved
image for second-stage retrieval. A few works [123–125] fuse the image retrieval results
with temporal filters for more accurate localization. Still, estimating an accurate location
and orientation of a single ground-level query image within a reference aerial image patch
remains an open yet important task.

A recent survey [126] on image geo-localization provides an in-depth analysis of cross-
view image retrieval-based localization on their methodologies and performance. For
readers seeking detailed insights in this area, this dissertation recommends referring to the
findings and discussions presented in the survey [126].

2.2.2 Cross-view camera pose estimation
Cross-view camera pose estimation can be seen as a follow-up task after image retrieval or
other coarse localization techniques. Given a ground-level query and an aerial image that
covers the local surroundings of the query, the objective is to estimate the exact location
and the orientation of the query within the given aerial image. In [127], a large-scale dataset
for this task is introduced, and the authors propose a model that first retrieves an aerial
image given the ground query with a known orientation and then regresses the location
offset between them. Later, [128] also formulates the localization as a regression problem
and includes an additional road extraction training objective. In [129], the orientation of
the ground camera is estimated by assuming the location of the ground camera in the
aerial image is known. Instead of regression, [130] solves the query ground camera pose
by iterative optimization. It first warps the feature from the aerial image to a ground
view using a homography and then uses a multi-level Levenberg-Marquardt algorithm
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to estimate the 3-DoF ground camera pose using the warped aerial feature and extracted
ground-level feature. In [131], a Recurrent Homography Estimation module is used for
estimating the relative pose between the projected ground-level feature and aerial feature.
SNAP [132] fuses the information from ground-level and aerial images to construct a neural
map for localizing other ground-level images. Vision Transformers [133] are used in [134]
to map the features of the ground-level surrounding views to BEV, and the mapped BEV
feature maps are densely compared to feature maps extracted from the aerial image for pose
estimation. In [135], LiDAR measurements are fused with camera images for cross-view
pose estimation.

However, there are several limitations in the above methods. Some methods only
estimate the location [127, 128] or orientation [129] of the ground camera. Current re-
gression [127, 128] or optimization [130, 135] formulation for localization restricts the
output to a single mode without uncertainty estimation. When there are several visually
similar locations in the aerial view, regression-based methods [127, 128] might regress
to the midpoint between those locations, and optimization-based methods [130] might
converge to a wrong local optimum. More importantly, these methods lack uncertainty
estimation to reflect the quality of the outputs. Besides, the runtime is also a bottleneck in
many existing methods, e.g. 2 to 3 FPS in [130, 134, 135].

2.3 Localize other modalities on aerial images
Range sensing sensors-to-aerial image localization received a lot of attention. RSL-Net [136]
localizes Radar scans on a known aerial image patch. This task is formulated as generating
a top-down synthetic Radar scan conditioned on the aerial image using [137] and then
comparing the online scan to the generated synthetic scan for pose estimation. Later, this
idea is extended to self-supervised learning [138]. In [139], the top-down representation
of a LiDAR scan is compared to UNet [88] encoded aerial features for localization. The
range information is crucial in representing the measurement in a top-down view and thus
making the measurement comparable to aerial images.

Despite aerial images can be used to localize different modalities, this dissertation will
focus on using ground-level images.
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for vehicle localization by
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local representations

This chapter is based on Z. Xia, O. Booij, M. Manfredi, and J. F. P. Kooij, “Geographically Local Representation
Learning with a Spatial Prior for Visual Localization,” European Conference on Computer Vision Workshops, pp. 557-
573, 2020 [29], and  Z. Xia, O. Booij, M. Manfredi, and J. F. P. Kooij, “Cross-View Matching for Vehicle Localization
by Learning Geographically Local Representations,” IEEE Robotics and Automation Letters, vol. 6, no.3, pp.5921-5928,
2021 [30].
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3.1 Overview
With the rise of camera-equipped vehicles, visual localization has become a key research
topic in autonomous driving. No matter how the map is presented, most visual localization
methods explicitly or implicitly match an input image to a representation of the map. For
instance, image retrieval-based methods localize the query image by matching it to the
geo-referenced images in a shared representation space. An increasingly popular variant
is cross-view image retrieval-based localization [102, 103, 105–107, 119], where the query
ground-view image is compared to aerial or satellite imagery. This setting enjoys the
reliable representation and dense coverage of the environment from the overhead view.
Plus, large databases are nowadays readily available [103, 107].

In the robotics domain, localization is traditionally addressed using specialized sensors,
e.g. Global Navigation Satellite Systems (GNSS). Unfortunately, the horizontal positioning
error of stand-alone GNSS can reach tens of meters [140, 141] near high-rising buildings
or under trees, due to the multipath effect. In practice, the GNSS localization is often fused
with measurements from other sensors, e.g. wheel odometry or camera, and combined
with temporal filtering.

All recent cross-view image retrieval-based localization methods [105–107, 113, 121]
target large-scale global localization and have demonstrated decent performance [123] on
a mobile mapping vehicle. However, substantial gaps still exist in how the localization task
is addressed in mobile robotics and autonomous driving, and the state-of-the-art image
retrieval-based localization techniques.

First, image retrieval-based localization is often treated as a substitute for GNSS for
global place recognition [123, 142], though in practice GNSS and temporal filtering can
provide a complementary coarse location estimate [143]. Second, existing cross-view image
retrieval benchmarks [107, 120] measure how the model generalizes to new areas, as they
split the data according to its geographic region. However, in practice, aerial images of
the test region are often available during training, especially for a navigation task with
geo-localized road information, which already presupposes that the target region is known.
Therefore, an equally relevant question is how the learned representation generalizes to
new ground-level observations on different days in the same area. Third, many cross-view
image retrieval-based localization methods [106, 107, 113, 121] are evaluated solely using
metrics designed for retrieval, such as recall@K. Such metrics do not measure the actual
localization capability, and do not reflect that a ground image’s view does not necessarily
correspond to any reference aerial image patch’s center location, or could even coincide
with multiple overlapping aerial image patches.

To address the observed gaps, this dissertation exploits the context of cross-view image
retrieval within a localization system. Since other components, e.g. GNSS and temporal
filtering, will already provide a coarse location estimate, this dissertation proposes to
train cross-view image retrieval to be especially discriminative within this local region of
uncertainty, rather than differentiating far-away areas that the prior would already discard,
see Figure 3.1.

The main contributions of this chapter include: (i) A novel Geo-local Triplet Loss
that enforces cross-view image retrieval models to learn image representations that are
specifically discriminative between images from geographically nearby locations, rather
than for distant areas. The effectiveness of the proposed loss function is validated with
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Figure 3.1: Vehicles can use cross-view image retrieval between camera images and aerial image patches for
self-localization, resulting in a geo-global localization estimate (red dashed curve). However, a coarse localization
prior (blue curve) is often already available from other sensors or temporal integration. This prior can be exploited
during training to obtain a more discriminative model within the local area (red solid curve).

two state-of-the-art methods (ii) This chapter augments the well-known Oxford RobotCar
dataset with a map composed of aerial image patches to serve as a new dense cross-view
image retrieval benchmark to test generalization across recording days. Experiments
are also conducted on data from the existing CVACT benchmark, for which this chapter
proposes new splits, to test generalization across regions. On both benchmarks, quantitative
improvements over the state-of-the-art are demonstrated. Qualitatively, the difference
between encoded geo-local and geo-global features can be observed. (iii) The proposed
approach is tested in a real-world scenario where query images are matched against aerial
image patches distributed evenly in the target area, and the cross-view image retrieval-based
localization is fused in a particle filter with priors from actual GPS measurements. This
chapter demonstrates superior localization accuracy and robustness against the baseline
cross-view image retrieval fused with GPS.

3.2 Methodology
This section starts by reviewing the task of cross-view image retrieval and the triplet loss
used in the baseline and related work. After this, the proposed geo-local loss is explained.
Finally, a particle filter is introduced for combining cross-view image retrieval scores and
GNSS measurements for online vehicle localization.

3.2.1 Cross-view image retrieval task
Given a ground-level query image 𝐺𝑞 , the objective of cross-view image retrieval is to
select the closest aerial image patch from the target dataset 𝔸 = (𝐴1,𝐴2,⋯). Each aerial
image patch 𝐴𝑖 here covers a fixed-sized square area of the Earth’s surface, and the 2D
geographic location 𝜉(𝐴𝑖) ∈ℝ2 of the center of the square is known. The retrieval is done by
matching images in a representation space, where the aerial images and query are mapped
into normalized image descriptors using mapping function 𝑓 (⋅) and 𝑔(⋅) respectively. The
descriptor of the best-matched aerial image should have the smallest squared Euclidean
distance to the descriptor of the query.
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3.2.2 Baseline architecture and geo-global triplet loss
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Figure 3.2: The architecture of the baseline cross-view image retrieval method, SAFA [106].

While the proposed approach is generic, the state-of-the-art SAFA method [106] is
used as the main baseline. As shown in Figure 3.2, the mapping functions 𝑓 (⋅) and 𝑔(⋅)
in SAFA are implemented as a 16-layer VGG feature extractor and 8 separate spatial-
aware feature aggregation modules [106]. They map input images to 4096-dimensional
descriptors. Two network branches without weight-sharing are trained on image pairs
𝕏train = {(𝐴1,𝐺1), (𝐴2,𝐺2),⋯} using a soft-margin triplet loss for two related matching
objectives,

1(𝑖, 𝑗) = log(1+ 𝑒𝛾(𝑑
2
𝑖,𝑖−𝑑

2
𝑖,𝑗 )), (aerial-to-ground) (3.1)

2(𝑖, 𝑗) = log(1+ 𝑒𝛾(𝑑
2
𝑖,𝑖−𝑑

2
𝑗 ,𝑖)). (ground-to-aerial) (3.2)

Here 𝑑𝑖,𝑗 = ||𝑓 (𝐴𝑖)−𝑔(𝐺𝑗 )||2 is the Euclidean distance between the descriptors, and 𝛾 is a
hyperparameter to adjust the gradient of the loss. The final loss is the average of 1(𝑖, 𝑗)
and2(𝑖, 𝑗). For a minibatch𝔹 ⊆𝕏train of 𝐵 pairs, the loss terms can be efficiently computed
by performing the forward passes 𝑓 (𝐴𝑖) and 𝑔(𝐺𝑖) only once for all 𝐵 samples, and then
just computing 𝐵2 Euclidean distances 𝑑𝑖,𝑗 of all combinations 𝑖, 𝑗 .

An important aspect of the baseline is that it selects minibatches from the training data
by randomly shuffling all samples in each epoch, thus any two pairs are equally likely to
co-occur in the batches, independently from their geographic proximity. This triplet loss
thus learns a globally discriminative representation.

3.2.3 Training with a geo-local triplet loss
Vehicle localization provides at every time step a coarse localization estimate from fusing
and filtering past sensor measurements. This chapter therefore seeks to exploit knowledge
of a coarse prior already during training, and will consider two adaptations to the baseline
loss, namely geo-distance weighted loss terms and local minibatches [29].
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Geo-distance weighted loss terms This chapter proposes to multiply the triplet losses
in Equation (3.1) and (3.2) with a weight 𝑤𝑔𝑒𝑜(𝑖, 𝑗) that scales their contribution based on
the Euclidean distance in meters 𝛿𝑖,𝑗 = ||𝜉(𝑆𝑖)− 𝜉(𝑆𝑗 )||2 between their geographic positions
𝜉(𝑆𝑖) and 𝜉(𝑆𝑗 ),

𝑤𝑔𝑒𝑜(𝑖, 𝑗) = 𝑝𝑟 (𝛿𝑖,𝑗 ) ⋅ (1− 𝑒−𝛿𝑖,𝑗
2/(2𝜎2geo)). (3.3)

The first term 𝑝𝑟 (𝛿𝑖,𝑗 ) models a prior on the coarse localization error, which is assumed
to be maximally 𝑟 meters. Importantly, it should force training to ignore triplets with
𝛿𝑖,𝑗 > 𝑟 and in favor of nearby ones. Two options are considered for 𝑝𝑟 . Option 1 uses a
step function to weigh all triplets 1 if 𝛿𝑖,𝑗 ≤ 𝑟 , and 0 otherwise [29], see the green dotted
line in Figure 3.3. Option 2 uses instead a Gaussian function with a standard deviation 𝑟/3
such that the weight smoothly drops to (nearly) zero at 𝑟 meters, see red dotted line in
Figure 3.3. The second term is added to down-weight the loss on geographically nearby
samples to prevent the model from treating two nearly identical aerial images, e.g. with a
distance of 1 meter, one as positive and the other one as negative. The hyperparameter
𝜎geo controls the smoothness of this weight reduction.

The full weight function 𝑤𝑔𝑒𝑜(𝑖, 𝑗) is thus the product of both terms, and scaled such
that the weight at its maximum is 1, see the green/red solid lines in Figure 3.3 for the final
weight function with a step/Gaussian decay.

Figure 3.3: The weight decay options (dashed) and resulting weight functions 𝑤𝑔𝑒𝑜(𝑖, 𝑗) (solid), here shown as an
example of 𝑟 = 50m and 𝜎geo = 10m.

Local minibatches Using the geo-distance weighted loss term, most randomly picked
pairs from the training data would have zero weight as they are likely to be at distant
geographic locations, especially when the mapped area is large. This chapter therefore
proposes to construct local minibatches that only contain pairs from nearby geographic
locations, using the following procedure:

1. pre-compute before training for each pair 𝑃𝑖 = (𝑆𝑖,𝐺𝑖) the local neighborhood of pairs
within a geographic radius of 𝑟 meters, i.e.

ℕ𝑟 (𝑖) = {(𝑆𝑗 ,𝐺𝑗 ) | 𝑖 ≠ 𝑗 ∧𝛿𝑖,𝑗 ≤ 𝑟} ⊂𝕏train. (3.4)

2. At the start of an epoch, create a fresh set �̃� containing all training samples, �̃�←
𝕏train, representing the still unused samples in this epoch.
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3. To create a new minibatch 𝔹 of size 𝐵, first randomly pick a pair 𝑃𝑖 from pool �̃�,
and then uniformly pick without replacement the remaining 𝐵−1 samples from
the neighborhood set ℕ𝑟 (𝑖). All picked samples are removed from the epoch’s pool,
�̃�← �̃�/𝔹. Once �̃� is empty, a new epoch is started.

Since all pairs 𝑗 in the batch are by definition within distance 𝑟 from the first sampled
pair 𝑖, two samples 𝑗 and 𝑗 ′ in the minibatch can be at most a distance of 2𝑟 meters apart.
This local minibatch formulation greatly increases the chance that many pairs in the
minibatch are also within each other’s 𝑟-meter radius, and thus largely reduces the chance
of near-zero geo-distance weighted loss terms. Note that overall each pair occurs in at
most one minibatch per epoch. Pairs without enough neighbors will not be used.

Importantly, 𝑟 is a measure of the coarse prior’s maximum uncertainty, thus it is not an
optimizable hyperparameter but is given by the targeted localization use case. To avoid
minibatches with too few samples, the selected training data should contain at least 𝐵−1
neighbors within a radius of 𝑟 of each sample.

3.2.4 Particle filter-based localization
This section then describes how online vehicle localization could use cross-view image
retrieval at test time, and fuse it with real-world GNSS measurements in a temporal filter, as
opposed to replacing the GNSS (e.g. [123, 142]). The distribution of the localization results,
which will be multi-modal, is captured by constructing a particle filter-based localization
pipeline [13] that combines the cross-view image retrieval and GPS positioning. It is
assumed that aerial images 𝔸𝑔𝑟𝑖𝑑 , which cover the target area centered around points on a
dense regular grid, are available.

Each particle𝑚 has a 4D state vector 𝑥[𝑚] containing Easting, Northing, forward velocity,
and yaw in the map’s coordinate frame. Let 𝜒𝑡 denote the set of𝑀 = 2000 particles at step 𝑡.
At 𝑡 = 0, all particles are initialized at the GPS-measured location with random yaw between
−180° and 180° and a random velocity between 0 and 5m/𝑠. For 𝑡 > 0, a prediction is made
for each particle 𝜒𝑡−1 using a fixed velocity motion model with Gaussian acceleration and
steering noise. The particles are then weighted by the measurement model, and finally
resampled proportional to weight to obtain 𝜒𝑡 . As filter output, the median of each element
in the state vector over all particles in 𝜒𝑡 is taken.

The measurement model weighs each particle 𝑥𝑡 [𝑚] according to the query image
𝐺𝑞,𝑡 and the raw GNSS positioning 𝜉(𝐺𝑞,𝑡). Assuming that the GPS uncertainty follows a
Gaussian distribution with known standard deviation 𝜎gps, a confidence threshold of this
distribution is set to 3𝜎gps. Then the aerial image 𝔸𝑙𝑜𝑐𝑎𝑙 ⊆𝔸𝑔𝑟𝑖𝑑 within the threshold, i.e.
a 2D circle centered at 𝜉(𝐺𝑞,𝑡) with a radius of 3𝜎gps meters, are select from the database.
Particles outside this circle are directly discarded, and only aerial images 𝐴𝑗 ∈𝔸𝑙𝑜𝑐𝑎𝑙 are
compared to 𝐺𝑞,𝑡 to compute their cross-view image matching score 𝑒−𝑑

2
𝑗 ,𝑞 . Given 𝜉(𝑚),

the Easting and Northing location of 𝑥𝑡 [𝑚], let 𝑒−𝑑
2
𝑚,𝑞 be the geo-distance-based bi-linear

interpolation of the matching scores for the 4 aerial images at the grid points around 𝜉(𝑚).
The particle’s weight is then,
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𝑤𝑡
[𝑚] =

𝑒−𝑑
2
𝑚,𝑞

∑𝑗∈𝔸𝑙𝑜𝑐𝑎𝑙
𝑒−𝑑

2
𝑗 ,𝑞

⋅ 𝑒−||𝜉(𝑚)−𝜉(𝐺𝑞,𝑡 )||22/(2𝜎gps
2). (3.5)

Here the first term computes the probability of the query being located at 𝜉(𝑚) as
given by cross-view image retrieval. This probability equals the matching score at 𝜉(𝑚)
over the sum of scores between the query and all aerial images in 𝔸𝑙𝑜𝑐𝑎𝑙 . The second term
in the equation measures the likelihood of 𝜉(𝑚) being the correct location according to
the raw GPS measurement. Equation (3.5) thus presents a straightforward sensor fusion
of the visual cross-view retrieval and GNSS localization measurements, and is applicable
irrespective if the matching network is trained geo-local or geo-global.

Unfortunately, GPS measurements inevitably carry huge errors in extreme cases, for
example when no satellites are in sight. Motivated by the outlier rejection found in [13, 144],
such situations are handled by not using the GPS-measured location at step 𝑡 when this
is over 𝑟𝑜𝑢𝑡𝑙𝑖𝑒𝑟 meters apart from the GPS measured location at step 𝑡 −1 or if there is no
valid GPS measurement at this step. Instead of the raw GPS, the estimated location at step
𝑡−1 as 𝜉(𝐺𝑞,𝑡) is then used. The 𝑟𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is set to 3 ⋅𝜎gps+ 𝑣𝑡−1 ⋅Δ𝑡, where 𝑣𝑡−1 is the estimated
velocity at previous step and Δ𝑡 is the time interval.

3.3 Experiments
The proposed geo-local representation learning is compared to the standard geo-global
representation learning [106] in two scenarios, namely, generalization across regions and
generalization across time. Besides quantitative results on two retrieval benchmarks, this
section also provides a qualitative view of the uncertainty of the localization and extracted
features. Lastly, this section will show that the benefits of the proposed cross-viewmatching
approach on the retrieval benchmarks also translates to a realistic localization task using
the particle filter and real GPS measurement data.

3.3.1 Datasets
Here, two image retrieval benchmarks are discussed. While ideally the training data is
collected according to the application-specific 𝑟 (see Section 3.2.3), to reuse existing datasets
in the following experiments, a suitable target 𝑟 value is assumed by considering each
dataset’s sample density.

CVACT Dataset: CVACT [107] is a large cross-view dataset with GPS footprint for
image retrieval. It contains 35532 ground panorama and aerial image pairs, denoted as
CVACT_train, and 92802 pairs as CVACT_test. Notably, the validation set CVACT_val
of 8884 pairs is a subset of CVACT_test, and [106] reported their quantitative results on
the CVACT_val rather than CVACT_test. This chapter will not follow the data split in
[107],[106], because CVACT_val is rather sparse, and it trivializes the task formulation of
localization using a prior too much as it discarded all negative samples. Furthermore, this
chapter follows the target use case where all aerial images are available during training
and split only the ground images into training, validation, and test set.

Oxford RobotCar Dataset: Oxford RobotCar [1],[145] is a dataset targeted at au-
tonomous driving and contains images, raw GPS recordings, RTK measurements, etc.,
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under different lighting and weather conditions collected in different times of the day and
over a year in multiple traversals in the Oxford region.

The dataset has not been used for cross-view image matching-based localization, as
it does not contain aerial images. To construct a novel benchmark, this chapter collected
aerial images at zoom level 20 (∼ 0.0924 m/pixel) with the Google Maps Static API for each
ground-level front-camera image. The aerial images were cropped into 600 pixel×600 pixel,
which corresponds to a 55.44 m×55.44 m ground area, and the ground-level images are
cropped to exclude visible parts of the ego-vehicle.

(a) (b) (c)

Figure 3.4: Three sample pairs in the proposed Oxford RobotCar cross-view localization benchmark highlight
some local and global differences. (a) and (b) are 5 m apart, (b) and (c) are 20 m apart. Ground images are from
different traversals and recording days, resulting in variations in cars, vegetation, and lighting conditions.

This chapter does not target the most extreme lighting and weather conditions and
hence selects the traversals recorded at different daytime and days with the label “sun”,
“overcast” or “clouds” and which contain both raw GPS and accurate RTK localization
measurements. In the dataset, the front-viewing images are taken at 16 Hz. To make
sure the consecutive ground images do not look too similar in appearance, the images
are sub-sampled to guarantee that there is at least 5 m between two consecutive frames
in each traversal. Finally, the corresponding aerial images centered at the ground truth
locations are collected to build the ground-to-aerial pairs. In total, there are obtain 23854
pairs from 15 traversals. The training (17067), validation (1698), and test (5089) sets contain
ground images from 11, 1, and 3 traversals. All aerial images are used during training,
validation, and testing. The chosen test traversals are collected in Summer (Test 1,2) and
Winter (Test 3) with labels “overcast, roadworks” (Test 1), “sun” (Test 2), and “overcast”
(Test 3) to include variations in season, weather, and road conditions from the training set.
For the same season and weather conditions, the test traversals are collected at a later time
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of day than the training recordings. In this dense dataset, almost all images have more than
200 pairs in a 𝑟 = 50 m neighborhood. Some example ground and aerial pairs are shown in
Figure 3.4.

In addition, this chapter also collected aerial images to cover the Oxford region at a
grid with 5 m interval, similar to [123]. This data will be used as the database 𝔸𝑔𝑟𝑖𝑑 for the
particle filter of Section 3.2.4 to simulate a real-world localization task with the dataset’s
raw GPS and front-camera video stream.

3.3.2 Network architecture and implementation details
The baseline SAFA method [106] is implemented based on the code released by its authors.
To implement the proposed method, the same network architecture is used. Only the loss is
replaced by the proposed geo-distance weighted loss, and the model is trained using local
minibatches1. Both the baseline model and the proposed model are trained on introduced
data splits following the same procedure as in [106]: The VGG part is pre-trained on
Imagenet [146], Adam [147] is used as optimizer with a learning rate of 1 × 10−5 on the
CVACT dataset and 5×10−5 on the Oxford RobotCar dataset. In the triplet losses, 𝛾 = 10,
and the dropout keep rate is set to 0.8. On the traversal-based split Oxford RobotCar dataset,
an additional dropblock [148] with a block size of 11 and keep probability of 0.8 is used to
reduce overfitting.

On the CVACT dataset where the ground images are 360◦ panoramic views, polar
transformed aerial images are used, as done in [106]. Due to its sparseness, the only correct
match for a query ground image is the aerial image patch centered the exact same location.
On the dense Oxford RobotCar dataset, it is observed that defining the training objective as
matching the query to the aerial image at the exact location is too strict and the validation
loss struggles to decrease. Therefore for a query ground image this chapter selects a random
aerial image at a small geospatial offset of a maximum of 5 m, which is the same distance
used to subsample camera frames (see Chapter 3.3.1) As additional data augmentation, the
aerial image patches are also rotated by a random multiple of 90°.

3.3.3 Evaluation metrics
This chapter will consider two aspects in evaluation, namely image retrieval performance
on the benchmarks, and localization performance for the particle filter.

For the retrieval task, this chapter assumes at test time a known (worst-case) prior
localization error of radius 𝑟 , and thus directly discards for both the baseline method and
the proposed method any false negatives beyond 𝑟 meters of the true location. Still, for
reference, the case when no such prior would be available (i.e. an infinite test radius) is also
reported. The recall@1 and recall@𝑥 meters are the quantitative metrics. They measure
how often the top-1 retrieved aerial image is located at the exact location of, or less than
𝑥 meters away from, the ground truth location. Although a maximal 5 m geospatial offset
is introduced in selecting matched aerial images for each query during training, the recall
with 𝑥 < 5 m will still be reported to give an overview of how top-1 retrieved aerial images
distribute during testing.

1The data (with an overview of time, season, label of chosen traversals) and code is available at https:
//github.com/tudelft-iv/Visual-Localization-with-Spatial-Prior

https://github.com/tudelft-iv/Visual-Localization-with-Spatial-Prior
https://github.com/tudelft-iv/Visual-Localization-with-Spatial-Prior
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As motivated in Section 3.1, recall does not fully reflect a model’s localization per-
formance. In the particle filter experiments, this chapter instead measures the Euclidean
localization error in meters between the true location and the median particle location
during each traversal, and report the mean, median, 90%-quantile, 95%-quantile, and 99%-
quantile error.

3.3.4 Effect of key hyperparameters
In this section, the impact of three key hyperparameters: batch size 𝑁 , weight decay 𝑑𝑟 ,
and smoothness 𝜎geo are tested.

This chapter experimented with batch sizes 𝑁 = 4,16,64. The batch size directly in-
fluences the training stability as it defines how many negative pairs are used when one
positive pair is presented. On the Oxford RobotCar dataset [1],[145], the training “collapsed”
(i.e. descriptors are filled with only zeros) with small batches 𝑁 = 4 / 16, around epoch 4 /
421 for our model, and around epoch 20 / 712 for the baseline. It is found that this behavior
is due to values in the image descriptor (before normalization) exceeding numerical limits.
Adding extra regularization does not prevent this. However, when 𝑁 = 64, those values
are kept under a much smaller magnitude. It is reckoned by this chapter that when the
batch size is too small with limited diversity in the aerial images, there is a risk that only
maximizing the similarity between positive pairs is enough to push negative samples away
in representation space, and the network will put very large weights on such similarities.
Indeed, on the sparse but diverse CVACT dataset training does not collapse with 𝑁 = 4 or
𝑁 = 16 for either model. Unfortunately for 𝑁 = 64 many locations will not have sufficient
neighbors to fill the batch. This chapter therefore keeps 𝑁 = 16 for CVACT, and 𝑁 = 64 for
Oxford RobotCar. In general, since 𝑟 upper-bounds 𝑁 , a small 𝑟 requires dense training
data to avoid potential training instability.

To choose between step decay and Gaussian decay for 𝑝𝑟 , other hyperparameters are
kept the same and the model is trained with different decay options for the proposed loss
on the Oxford RobotCar dataset. The model trained with step decay surpasses the model
trained with Gaussian decay by a large margin of 16.9% in recall@5m. It is notable that, for
the same 𝑟 , the Gaussian decay heavily down-weights far away samples, however, these
contribute greatly to the validation performance. This chapter will therefore use 𝑤𝑔𝑒𝑜(𝑖, 𝑗)
with the step decay in the later experiments.

This chapter tests 𝜎geo = 0, 5, 10, 15 meters, and finds validation recall@5m is 75.5,
79.9, 82.5, 81.2 percent respectively on the Oxford RobotCar dataset (𝜎geo = 0m indicates
no down-weighting of nearby negative samples). Clearly, in this dataset where images are
densely distributed, down-weighting the nearby negatives samples is important to learn
a good representation. On the sparse CVACT dataset, it is observed that 𝜎geo does not
influence performance much. For the remainder, 𝜎geo = 10m is used for both datasets.

3.3.5 Generalization across regions
The experiment on the CVACT dataset shows how well the learned representation general-
izes to unseen ground images in new areas. Since locations are more sparsely distributed,
here 𝑟 = 100m is used as a weak hypothetical localization prior to train the model. To
test the generality of geo-local training, this chapter directly applies it to another baseline
method, DSM [121], in addition to the regular SAFA baseline without further geo-local loss
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hyperparameter-tuning.
All models are trained for 100 epochs, and the best ones are kept according to validation

split performance.
It is observed that geo-local models converge faster than the baselines even though the

geo-distance weighted loss assigns zero weights to some triplets in the local minibatches.
Evaluation results are reported on the test split in Table 3.1. Providing the same localization
prior to testing, models trained with the proposed loss improved the recall@1 by around
12.3% (74.0 vs 65.9 percent) for SAFA, and around 3.2% (70.4 vs 68.2 percent) for DSM.
Meanwhile, they also beat baselines by a considerable margin in terms of the recall@5m
and recall@10m. Importantly, these results confirm that the proposed geo-local represen-
tation does not capture features that identify the local training region, which would not
generalize, but captures features that discriminate nearby locations, which does generalize.
Furthermore, the improvements of geo-local method generalize over different baselines,
without the need for any baseline-specific hyperparameter tuning. As expected, globally
(i.e. with ∞ test radius) the models trained with the proposed loss perform worse than
the baselines, as it violates the prior assumption. Still, in real-world applications, a coarse
localization estimate is often available to benefit from geo-local features.

Table 3.1: Evaluation on CVACT Test Set (best in bold). The term “local” means the model trained with the
proposed geo-local loss.

Recall@ 1 1 5 m 10 m
Test Radius 100 m ∞ 100 m 100 m
SAFA[106] (%) 65.9 59.9 68.8 78.2
SAFA-local (%) 74.0 55.8 77.5 85.4
DSM[121] (%) 68.2 64.0 71.5 80.4
DSM-local (%) 70.4 56.6 73.9 82.0

3.3.6 Generalization across time
On the Oxford RobotCar dataset, this chapter tests how well the learned representation
generalizes to new ground images collected on other dates and at different times of the day
in the same region. Since the images are distributed much denser here, a more realistic
hypothetical localization prior, 𝑟 = 50 m, is used. The best model is kept according to the
validation performance in 1000 epochs of training.

The quantitative test results of the selected model are summarized in Table 3.2. When
the localization prior is available, the geo-local representation learned by training with
the proposed loss consistently outperforms the baseline on all test traversals. Overall, the
proposed approach generalizes well across time-of-day and different days, and it does not
overfit on the training ground images or specific time and weather conditions, which is
important as in practice localization in the target region will be done on different days.

3.3.7Qualitative results
This section illustrates how the proposed model performs differently from the baseline. To
provide a qualitative view of the model behavior, the localization heat map is visualized
using the similarity measurement between a test query and all nearby aerial images. On
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Table 3.2: Evaluation on Oxford RobotCar Test Sets (best results in bold). T.N stands for the N-th testing traversal,
and the mean recall over 3 traversals is in the bottom row.

Recall@ 1 1 m 3 m 5 m 5 m
Test Radius 50 m 50 m 50 m 50 m ∞
T.1 baseline[106] (%) 7.1 26.3 75.5 92.3 90.6
T.1 proposed model (%) 9.7 38.4 84.5 96.0 64.3
T.2 baseline[106] (%) 5.3 19.5 59.4 81.9 76.1
T.2 proposed model (%) 8.3 29.6 71.8 85.9 43.0
T.3 baseline[106] (%) 5.7 21.4 62.0 83.4 79.5
T.3 proposed model (%) 8.4 28.9 77.2 88.9 53.0
Mean baseline[106] (%) 6.0 22.4 65.6 85.9 82.1
Mean proposed model (%) 8.8 32.3 77.8 90.3 53.4

both CVACT, Figure 3.5a, and Oxford RobotCar, Figure 3.5b, the proposed model outputs a
sharper localization result inside the prior area, while the baseline has more uncertainty
about the exact location along the road. Unlike the baseline, the proposed model also
produces other high-probability peaks outside the circle. This is because it does not
distinguish distinct areas, and similar local spatial layouts may reoccur elsewhere. This
trade-off comes from the geographically local representation the proposed model uses.

This is verified by comparing the encoded image features of both approaches. Similar to
[106], the spatial embedding maps are back-propagated to the input image to show where
the model extracts features [149], see Figure 3.6. On the CVACT dataset, the proposed
model pays attention to vegetation and streetlights. The baseline model, on the other hand,
ignores these objects and focuses on the road structure. On the Oxford RobotCar dataset,
the proposed model looks for traffic lights and building facades, while the baseline mostly
looks at the canopies and building roofs. The objects the proposed model pays attention
to are repeated at many different places, nevertheless, they are useful in disambiguating
other images along this road. The baseline focuses on fewer environmental details, which
are sufficiently discriminative globally but not locally.

3.3.8 Temporal filtering
Finally, this section validates that the better performance of the proposed model in the
discussed benchmarks also translates to actual gains in a real-world localization task using
actual GPS measurements and temporal filtering priors, as opposed to hypothetical priors.
The localization pipeline is tested on the Oxford RobotCar dataset with an update rate of
1.6 Hz, where every 10th image from the unsampled test traversals is used as the ground-
level query and is matched to regularly distributed aerial images. No additional sensors
are included in the temporal filter, such as wheel odometry and IMU, to keep the amount
of tuneable system configurations and parameters to a minimum.

The quality of the GPS measurements controls the hyperparameter 𝜎gps. Unfortunately,
the GPS error is often unpredictable and can vary significantly. For example, the mean
error of the raw GPS positioning on Oxford RobotCar test traversals is around 3.7 m, but
reaches 13 m on the validation traversal. In conducted experiments, the 𝜎gps is set to 10 m.

The quantitative results over 3 test traversals are summarized in Table 3.3. Temporal
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(a) Zoomed out/in views of localization heat map on CVACT dataset (left: proposed model, right:
baseline [106])

(b) Zoomed out/in views of localization heat map on Oxford RobotCar dataset (left: proposed model,
right: baseline [106])

Figure 3.5: Examples of localization heat maps on (a) CVACT and (b) Oxford RobotCar dataset. Each dot represents
an aerial image with the darkness proportional to the similarity to the query image. The ground truth location
of the query is indicated by the cross. The circle indicates the local neighborhood with radius 𝑟 = 100m in (a)
and 𝑟 = 50m in (b). The zoomed-out image shows the surrounding 1km×1km area in (a) and 400m×400m area in
(b). On both datasets, the proposed approach results in a single peak within the local neighborhood, while the
baseline has more uncertainty.

filtering of raw GPS alone in the particle filter achieves an average error of ∼ 5 m. In-
corporating the cross-view matching improves localization significantly, especially when
GPS produces spurious large outliers, as seen from the 99%-quantile error. An example is
shown in Figure 3.7. Importantly, the proposed model delivers overall the best accuracy
and robustness, and reduces mean (2.77 m vs 3.32 m) by 17% and 99%-quantile error (9.97 m
vs 13.83 m) by 28% compared to the baseline.

The superiority of the proposed method together with GPS and particle filter comes
from the sharp cross-view matching result. Most of the time, using GPS is enough for
global coarse localization, and adding another coarse estimate from global cross-view
matching does not gain much in localization accuracy. In contrast, the proposed method
effectively refines the GPS positioning within GPS-uncertain areas. Extreme erroneous
GPS measurements are filtered out by the outlier rejection module in the temporal filter,
ensuring a reasonable prior is obtained from previous time instances.

Note that, in other regions where there are many high-rising buildings, a larger 𝜎gps
could give better localization results. However, it is observed on the validation traversal
that also for different 𝜎gps values in the range from 5 m to 30 m the proposed model still
outperforms the baseline, and does not influence the conclusion here.
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(a) Input (b) Proposed model (c) Baseline

Figure 3.6: Visualized back-propagated encoded feature attention maps for a ground image in CVACT dataset
(first row) and Oxford RobotCar dataset (second row).

Table 3.3: Particle filter localization error (mean and error at x%-quantile) on Oxford RobotCar test traversals.
Best results in bold. “baseline+GPS” and “proposed model+GPS” use both the cross-view matching module and
GPS. “GPS” is without any cross-view matching.

Localization error (m) mean 50% 90% 95% 99%
T.1 GPS 4.66 3.93 8.24 10.73 20.89
T.1 baseline[106]+GPS 3.23 2.63 5.71 7.27 14.91
T.1 proposed model+GPS 2.65 2.12 4.70 5.91 11.00
T.2 GPS 4.50 4.00 7.48 9.28 19.19
T.2 baseline[106]+GPS 3.19 2.71 5.58 7.02 11.90
T.2 proposed model+GPS 2.73 2.46 4.71 5.73 8.12
T.3 GPS 4.64 3.92 8.76 10.64 20.51
T.3 baseline[106]+GPS 3.53 2.72 6.69 8.30 14.69
T.3 proposed model+GPS 2.94 2.49 5.46 6.92 10.80
Mean GPS 4.60 3.95 8.16 10.22 20.20
Mean baseline[106]+GPS 3.32 2.69 5.99 7.53 13.83
Mean proposed model+GPS 2.77 2.36 4.96 6.19 9.97
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(a) Localization result (proposed) (b) Localization result (baseline [106])

Figure 3.7: Particle filter-based localization. Each purple dot (particle) has a darkness (re-sampling weight). The
cyan cross and black circles show the raw GPS positioning and its 95% confidence interval. The black triangle
marks the ground truth location on the full trajectory (blue line). The green (or red) star is the localization result
of using the proposed model (or the baseline) in the pipeline.
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3.4 Conclusion of the chapter
In this chapter, the cross-view image retrieval method is embedded into a workable real-
world localization system by considering the prior from other localization components in
the training. It was quantitatively and qualitatively showed that the advantage of geo-local
training over geo-global training on state-of-the-art methods. A 12.3% improvement of
the recall@1 was achieved on the CVACT dataset. On the Oxford RobotCar dataset, the
recall@5m was improved from 85.9% to 90.3%. Besides, it was also demonstrated that the
increase in cross-viewmatching capability translates to 17% lower mean and 28% lower 99%-
quantile localization error when real GPS measurements and cross-view matching scores
are fused in a particle filter-based localization pipeline. More importantly, all noticeable
quantitative benefits come from a simple-to-implement and generic adaptation.
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This chapter is based on Z. Xia, O. Booij, M. Manfredi, and J. F. P. Kooij, “Visual cross-view metric localization
with dense uncertainty estimates,” European Conference on Computer Vision, pp. 90-106, 2022 [31], and Z. Xia,
O. Booij, and J. F. P. Kooij, “Convolutional Cross-View Pose Estimation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 46, no. 5, pp. 3813-3831, 2024 [32].
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4.1 Overview
Cross-view image matching has shown notable performance in large-scale geo-localization
[102, 103, 105–107, 119] by formulating the problem as image retrieval. However, the
assumption that query ground images correspond to the center of aerial patches in the
database does not hold during test time. Besides, formulating the problem as a retrieval
problem introduces a trade-off between the localization accuracy and the density of the
aerial patches of the target area. In practice, global localization can also be obtained by other
means in outdoor robotics, such as temporal filtering or coarse GPS/GNSS [29, 30, 136],
but can still have errors of tens of meters [29, 30, 140]. This chapter follows [29, 30, 136] by
exploiting a coarse location estimate, and zooms into fine-grained camera pose estimation
within a known aerial image, i.e. to identify which image coordinates in the aerial patch
correspond to the location of the ground camera and the orientation of the ground camera.

However, several gaps must be filled before large-scale real-world deployment of cross-
view camera pose estimation methods is a realistic possibility for self-driving. So far, the
localization accuracy of existing methods is not yet good enough for autonomous driving
requirements, e.g. the lateral and longitudinal error should be below 0.29 m [14]. Besides,
many methods cannot be run at sufficiently low latency, i.e. ∼15 frames per second (FPS),
on datasets for self-driving[1, 20, 150]. For example, [130] relies on iterative optimization
to estimate the ground camera’s pose. In [134], computationally heavy Transformers
are used to construct Birds Eye View (BEV) feature representations, and then the BEV
representations from ground and aerial views are compared densely at each of the location-
orientation combinations (i.e. 3-DoF poses). Both methods [130, 134] run at a low frame
rate, e.g. 2 to 3 FPS. It is also observed that when the aerial view contains a symmetric scene
layout, e.g. at crossroads, single-mode regression-based methods [127, 128] might regress
to a midpoint between visually similar locations, and optimization-based methods [130]
might get stuck at a wrong local optimum.

To improve the pose estimation accuracy over prior works and meanwhile achieve fast
runtime, This dissertation proposes a novel method that predicts a multi-modal distribution
for localization and jointly considers the orientation of the ground camera. As shown in
Figure 4.1, the translational equivariance property of convolutional networks is exploited
to construct orientation-aware image descriptors that represent visual information in both
ground and aerial views at different locations with a particular viewing direction. Joint
localization and orientation estimation are achieved by convolving the ground descriptor
on the aerial descriptors with circular padding, i.e. matching the ground descriptor to
different rolled/shifted versions of the aerial descriptor. Then, the proposed model regresses
the fine-grained orientation based on discrete orientation matching scores and follows a
coarse-to-fine formulation to gradually refine a sparse location map into dense output. The
final output orientation is conditioned on the predicted location.

The main contributions of this chapter are: (i) This chapter proposes a novel method
for end-to-end cross-view camera pose estimation, Convolutional Cross-View Pose Esti-
mation (CCVPE)1. It surpasses the previous state-of-the-art baselines by a large margin
in localization and achieves comparable orientation estimation accuracy on VIGOR and

1Code is available at https://github.com/tudelft-iv/CCVPE

https://github.com/tudelft-iv/CCVPE
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Figure 4.1: In Convolutional Cross-View Pose Estimation (CCVPE), ground and aerial images are encoded
into orientation-aware image descriptors. For the aerial image, a grid of descriptors are created. Efficient joint
localization and orientation prediction are enabled bymatching rolled aerial descriptors with the ground descriptor.
Sparse location and orientation maps are up-sampled into dense maps using decoders with coarse-to-fine matching.
To predict the most probable location considering different orientations, the descriptor matching scores are
max-pooled over orientation channels. The matching scores from different orientations are concatenated to gather
information for accurate orientation prediction. The final orientation prediction is conditioned on localization, i.e.
it is selected at the predicted location in the dense orientation map.

KITTI datasets when testing generalization to new measurements within the same area
and across different areas. (ii) CCVPE constructs a multi-modal distribution for localiza-
tion and uniquely associates each location with its most probable orientation. It avoids a
dense search over all 3-DoF poses (localization+orientation) by discretizing the orientation
sparsely and performing additional regression. This formulation is efficient for fine-grained
pose estimation. It is also shown that the predicted probability can be used to filter out
predictions that potentially have large localization or orientation errors. (iii) The proposed
architecture exploits the strength of a translational equivariant feature encoder and con-
trastive learning. Its ground image encoder maintains the spatial scene layout information
relative to camera’s viewing direction in the ground image descriptor and the contrastive
loss enforces aerial descriptors to encode global orientation information. These descriptors
enable jointly localization and orientation estimation with negligible extra computational
cost. Without re-training, the proposed model can infer the camera pose on images with
different horizontal Field of Views (FoVs). In addition, it can utilize a coarse orientation
prior, if available, to improve the localization without re-training.

4.2 Methodology
Given a ground-level color image 𝐺 of size 𝐻 ×𝑊 ×3 and an aerial color image 𝐴 of size
𝐿×𝐿×3 that covers the local surroundings of 𝐺, this chapter aims to estimate the 3 Degrees-
of-Freedom (DoF) pose, P̂ ∈ ℝ2 ×𝕊𝕆(2), of the camera that took 𝐺. Specifically, P̂ = [�̂� , �̂�].
�̂� = (�̂�, �̂�) denotes the image coordinates of the location of the camera of 𝐺 in the aerial
image 𝐴. �̂� ∈ [0◦,360◦) denotes the orientation of the camera in the 2D aerial image plane:
0◦ means heading North, i.e. the up direction in the aerial image, and the orientation angle
increases in the clockwise direction. Similar to other cross-view camera pose estimation



4

44 4 Convolutional cross-view pose estimation

Split into
𝑁𝑁1 × 𝑁𝑁1

𝑔𝑔𝑒𝑒(𝐺𝐺)

𝑓𝑓𝑒𝑒(𝐴𝐴)

𝑔𝑔𝑝𝑝,𝐾𝐾(�) 𝒢𝒢𝐾𝐾

𝑓𝑓𝑝𝑝(�)

…
𝑔𝑔𝑝𝑝,1(�)

…

𝐺𝐺

𝐴𝐴

𝒢𝒢1

Orientation Decoder

OMU

Localization Decoder

LMU …

𝑌𝑌

𝐷𝐷

𝒜𝒜1

LMU

𝒜𝒜𝐾𝐾𝒜𝒜2

Figure 4.2: An overview of the proposed Convolutional Cross-View Pose Estimation method, CCVPE. The output
localization distribution (in red) and orientation vector field (black arrows) are overlaid on top of the input aerial
image for intuition.

methods [33, 130], it is assumed that the pitch and roll angle of the ground camera are
small, which is often the case for a vehicle-mounted camera.

4.2.1 Methodological design considerations
Existing cross-view camera pose estimation methods [31, 127, 128] use a Siamese network
with two image encoders without weight-sharing, fuse the encoder’s descriptors at the
bottleneck, and finally, have a decoder provide the output. The proposed model follows a
similar approach with a few novel modifications.

1. Multi-modal prediction: Instead of treating localization as a uni-modal estimation
problem [127, 128], this chapter proposes to predict location with a discrete probability
distribution 𝐷 over the pixels in the 𝐿×𝐿 aerial image 𝐴, and formulate the learning as
multi-class classification. This way, the output can capture the potential multi-modal
localization ambiguity, and assign high probability to multiple distinct aerial locations
that match the observed ground image 𝐺. The probabilistic output could be provided to
a downstream robot localization stack for fusion with other sensors, or the Maximum
A-Posteriori (MAP) location can be taken as a single localization estimate. Furthermore, the
probability provides a confidence estimate suitable to reject unreliable predictions, as the
experiments will demonstrate.

2. Coarse-to-fine descriptor matching: To obtain a high-resolution localization
distribution, this chapter proposes to match a single ground descriptor to local regions in
the aerial feature map, e.g. using the cosine similarity. The concept of learning a shared
feature space where descriptors from different views are compared is also encountered in
cross-view image retrieval [105, 106, 118], but this chapter applies it for dense localization
prediction. The proposed approach can therefore benefit from the contrastive learning loss
to learn discriminative feature spaces for matching.

Furthermore, it is observed that the discriminative visual information that distinguishes
one aerial region from another depends on the aerial resolution and scale. This chapter
therefore proposes to apply this descriptor matching approach in a coarse-to-fine manner,
starting at the low-resolution bottleneck, doubling the feature map resolution each time
until the full target resolution is reached. At each subsequent level, the proposed approach
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will match the ground and aerial information and use the resulting matching score to guide
the upsampling of the aerial feature to a higher spatial resolution. Experiments will show
that this improves localization accuracy.

3. Joint location and orientation matching: Location and orientation should be
considered jointly. Estimating one, while ignoring the other could lead to sub-optimal
estimation since the observed layout of the scene in the ground image 𝐺 only relates to
the BEV layout when both location and orientation of the ground camera are correct.
Meanwhile, exploring a prior in one, e.g. orientation, should also benefit the estimation of
the other, e.g. localization. This leads us to two considerations:

First, the image descriptors should not be invariant to different orientations. Instead,
the proposed method constructs ground descriptors where the elements correspond to
information for specific viewing directions relative to the camera’s unknown orientation,
and aerial descriptors where dimensions capture information in specific global viewing
directions (see Figure 4.1 left). An aerial descriptor should only match the ground descriptor
if the locations are similar, and if the viewing directions are aligned. By constructing ground
descriptors that are equivariant with the camera’s viewing direction (i.e. the horizontal
image direction), the correct global orientation of the ground camera can be found by
reordering its descriptor’s feature dimensions (‘rolling’ the descriptors, see Figure 4.1
middle) to match the local aerial descriptor.

Second, in addition to the Localization Decoder, the proposedmodel adds an Orientation
Decoder that predicts orientation as a function of the predicted location, i.e. it predicts a
2D vector field 𝑌 over the aerial view that maps each aerial location to the ground camera’s
most probable orientation if it would be located there. For instance, if the ground image
shows the camera oriented towards a crossing, the localization uncertainty in the aerial
view could be spread across the streets approaching the crossing, and each location would
suggest a different global orientation (see Figure 4.1 right). Uncertainty in the localization
output thus also captures uncertainty over the global orientation.

4. Generalize to different horizontal FoVs: This chapter aims for a model that can
be used to match panoramic ground images, as well as images with a limited horizontal FoV
without re-training, and can be trained with images of different FoVs for data augmentation.
Therefore, other than constructing descriptors with a fixed length, the proposed ground
descriptors have a flexible length that depends on the horizontal FoV of the ground image 𝐺.

4.2.2 Architecture overview
The design considerations from Section 4.2.1 motivate the proposed Convolutional Cross-
View Pose Estimation (CCVPE ) architecture, shown in Figure 4.2. One branch of the
network, 𝑔(⋅), encodes the ground image 𝐺, and another branch, 𝑓 (⋅), encodes the aerial
image 𝐴. The descriptors from both encoders are matched in two specialized decoder
branches: the Localization Decoder predicts the 2D spatial distribution 𝐷, the Orientation
Decoder outputs the dense orientation vector field 𝑌 .

To match descriptors in a coarse-to-fine manner at 𝐾 levels, the ground image 𝐺 will
be encoded into 𝐾 ground descriptors 𝑘 , 𝑘 ∈ {1,⋯ ,𝐾 }, each of a different length 𝐶𝐺

𝑘 and
capturing the relevant information to distinguish poses at that level’s spatial resolution.
Similarly, 𝐾 aerial descriptor maps 𝑘 are constructed to represent the relevant matching
information of each local aerial region at level 𝑘. Each aerial descriptor 𝑖,𝑗

𝑘 at spatial
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Figure 4.3: The proposed Localization Decoder.

location (𝑖, 𝑗) in the descriptor map𝑘 has a length of 𝐶𝐴
𝑘 , which represents all 360◦ viewing

directions at that local region. When the ground descriptor 𝑘 is encoded from a 360◦
panoramic ground image, it similarly has 𝐶𝐺

𝑘 = 𝐶𝐴
𝑘 . If the ground image instead has a

limited horizontal FoV, then 𝐶𝐺
𝑘 < 𝐶𝐴

𝑘 and its descriptors will later be matched to only 𝐶𝐺
𝑘 of

the 𝐶𝐴
𝑘 aerial descriptor dimensions. The spatial resolution of the aerial descriptor map at

level 𝑘 is 𝑁𝑘 ×𝑁𝑘 = 2𝑁𝑘−1 ×2𝑁𝑘−1, where 𝑁1 ×𝑁1 is the lowest resolution at the bottleneck,
and 𝑁𝐾 ×𝑁𝐾 = 𝐿/2 × 𝐿/2 is the last matching level 𝐾 before the final output. The first
aerial descriptor map, 1, is shared between the Localization Decoder and the Orientation
Decoder.

In the Localization Decoder, see Figure 4.3, the ground and aerial descriptors are
compared at multiple resolution levels in a coarse-to-fine manner with the proposed novel
Localization Matching Upsampling (LMU) module. In the Orientation Decoder, a similar
Orientation Matching Upsampling (OMU) module is employed, though only once after the
bottleneck (experiments will demonstrate this decoder does not benefit from coarse-to-fine
matching). Similar to UNet [88] and other models for dense prediction tasks [151–153], this
chapter furthermore adds skip connections from the aerial encoder to the two decoders
between feature maps of same spatial resolution.

In the following, details on the proposed descriptor construction, descriptor matching
modules, localization and orientation decoders, and used loss functions are provided.

4.2.3 Descriptors construction
Both ground and aerial encoders 𝑔(⋅) and 𝑓 (⋅) first apply their own feature extractor,
𝑔𝑒(⋅) and 𝑓𝑒(⋅), respectively. For the ground branch, the proposed model then uses 𝐾
ground feature projectors 𝑔𝑝,𝑘(⋅), 𝑘 ∈ {1,⋯ ,𝐾 } to extract from the encoder’s feature map
the descriptors for the different coarse-to-fine levels, i.e. 𝑘 = 𝑔𝑝,𝑘(𝑔𝑒(𝐺)). For the aerial
branch, the proposed model splits the aerial feature volume 𝑓𝑒(𝐴) into 𝑁1 ×𝑁1 sub-volumes
and uses a shared aerial feature projector 𝑓𝑝(⋅) on each sub-volume 𝑓𝑒(𝐴)𝑖,𝑗 to generate the
𝑁1 ×𝑁1 aerial descriptor map at level 1,𝑖,𝑗

1 = 𝑓𝑝(𝑓𝑒(𝐴)𝑖,𝑗 ). The aerial descriptor maps𝑘
for 𝑘 > 1 will be constructed within the Localization Decoder.

This chapter will assume that ground images follow a cylindrical projection, namely
that each column of pixels in the image represents the same number of degrees in the
horizontal FoV. While cylindrical projections are commonly used for panoramic images,
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Figure 4.4: The proposed Localization Matching Upsampling (LMU) and Orientation Matching Upsampling (OMU)
modules. Both generate an aerial feature map at a higher resolution than its input by matching the input aerial
features to the ground features.

regular images with a limited horizontal FoV typically do not use this projection. This
chapter still models all ground images as such, since it is found that this approximation
still works well in practice. The proposed model uses a translational equivariant ground
encoder 𝑔(⋅), therefore the length 𝐶𝐺

𝑘 = 𝐶𝐴
𝑘 × 𝐹

360 of the ground descriptors 𝑘 reflects the 𝐹
degrees horizontal FoV of the ground image 𝐺.

Feature extractors: A regular convolutional network backbone is used as the ground
and aerial feature extractors 𝑔𝑒(⋅) and 𝑓𝑒(⋅) on the input 𝐻 ×𝑊 ×3 ground image 𝐺 and input
𝐿×𝐿× 3 aerial image 𝐴, without sharing weights between these branches. This chapter
denotes the shape of the encoded ground feature maps as 𝐻 ′ ×𝑊 ′ ×𝐶′, and of the aerial
feature maps as 𝐿′ ×𝐿′ ×𝐶′.

Ground feature projector: A projector 𝑔𝑝,𝑘(⋅) produces a single ground descriptor of
length 𝐶𝐺

𝑘 . To reduce the computational cost of matching at increasingly higher spatial
resolutions, the length of the ground descriptor at the next level is half of that of the ground
descriptor at the current level, i.e. 𝐶𝐺

𝑘 = 2𝐶𝐺
𝑘+1.

Each projector consists of a 1×1 convolution to reduce the 𝐶′ feature channels of the
extracted ground feature 𝑔𝑒(𝐺) to 𝐶′

𝑘 < 𝐶′. To summarize the information along the vertical
(height) direction in the scene while keeping it equivariant with the horizontal direction
(relative viewing direction), the proposed model applies a fully-connected operation along
the columns and squeezes the column dimension from𝐻 ′ to 1, resulting a 1×𝑊 ′×𝐶′

𝑘 feature
map. Finally, the ground descriptor 𝑘 is created by reshaping this feature map into a 1D
vector of length 𝐶𝐺

𝑘 =𝑊 ′𝐶′
𝑘 . These ground descriptors 𝑘 are explicitly orientation-aware,

as every block of 𝐶′
𝑘 elements captures the semantic content in a specific horizontal viewing

direction relative to the camera’s orientation.
Aerial feature projector: The proposed model creates spatial granularity for local-

ization by splitting the 𝐿′ ×𝐿′ ×𝐶′ aerial feature volume into 𝑁1 ×𝑁1 feature sub-volumes.
Then, a shared fully connected layer is used as the aerial feature projector 𝑓𝑝(⋅) to map each
of the sub-volumes into an aerial descriptor𝑖,𝑗

1 . The orientation awareness of the proposed
aerial descriptors is encouraged by the proposed loss function, which will align the aerial
descriptors with the orientation-aware ground descriptors, see details in Section 4.2.6.

4.2.4 Descriptor matching modules
To jointly consider location and orientation, the proposed model matches ground descrip-
tors at different locations in the aerial image and considers 𝑅 different global orientations.
In particular, the matching is done inside the proposed descriptor matching modules, the
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Localization Matching Upsampling (LMU) module, and the Orientation Matching Upsam-
pling (OMU) module. As seen in Figure 4.4, both modules rely on a Rolling & Matching
strategy to compute descriptor matching scores.

Rolling & Matching: Both LMU and OMU use the ground descriptor 𝑘 to ‘match’
the aerial descriptors 𝑘 at each candidate location (𝑖, 𝑗) with a defined global orientation
𝑟
𝑅360

◦, 𝑟 ∈ {1,⋯ ,𝑅}, and output a feature volume with the higher spatial resolution of the
next level 𝑘+1. To create 𝑅 global orientations, [0◦, 1𝑅360

◦,⋯ , 𝑅−1𝑅 360◦], the proposed model
‘rolls’ the orientation-aware aerial descriptor𝑖,𝑗

𝑘 at each candidate location (𝑖, 𝑗) 𝑅 times.
Specifically, each ‘rolling’ is achieved by shifting all elements in𝑖,𝑗

𝑘 by a step length of 𝐶𝐴
𝑘
𝑅

to the front, and moving the 𝐶′
𝑘 front-most elements to the back. Note that 𝑅 is selected

such that the rolling step length 𝐶𝐴
𝑘
𝑅 is a multiple of 𝐶′

𝑘 . The resulting aerial descriptors
𝑖,𝑗 ,𝑟

𝑘 each represents ‘what the ground descriptor at level 𝑘 should contain’ at a particular
location and global orientation combination (𝑖, 𝑗 , 𝑟𝑅360

◦).
Matching each aerial descriptor 𝑖,𝑗 ,𝑟

𝑘 to the ground descriptor 𝑘 is then done by the
cosine similarity. Whereas each 𝑖,𝑗 ,𝑟

𝑘 captures the environment’s appearance in all global
directions with a 𝐶𝐴

𝑘 -dimensional vector, the 𝐶𝐺
𝑘 -dimensional ground descriptor 𝑘 may

represent images with a limited horizontal FoV, i.e. 𝐶𝐺
𝑘 < 𝐶𝐴

𝑘 . Therefore, the proposed
model crops the middle 𝐶𝐺

𝑘 elements from 𝑖,𝑗 ,𝑟
𝑘 , denoted as 𝑖,𝑗 ,𝑟

𝑘 , to match the same-sized
descriptors of the same FoV using,

𝑖,𝑗 ,𝑟
𝑘 = 𝑠𝑖𝑚(𝑘 ,𝑖,𝑗 ,𝑟

𝑘 ) =
𝑘 ⋅

𝑖,𝑗 ,𝑟
𝑘

‖𝑘‖2 × ‖
𝑖,𝑗 ,𝑟
𝑘 ‖2

. (4.1)

The Rolling & Matching can be seen as convolving a kernel 𝑘 over𝑖,𝑗
𝑘 with a stride of

𝐶𝐴
𝑘
𝑅 , circular padding, and extra normalization. The resulting 𝑁𝑘 ×𝑁𝑘 ×𝑅 matching score
volume 𝑘 expresses how similar the ground descriptor is to the aerial descriptor at each
candidate location and orientation.

LMU: The LMU summarizes the localization cues from 𝑘 in an invariant manner
to the different global orientations. The proposed model therefore takes for each location
the maximum matching score over the 𝑅 orientations. These 𝑁𝑘 ×𝑁𝑘 ×1 max scores are
concatenated to the L2-normalized 𝑁𝑘 ×𝑁𝑘 aerial descriptors to guide the upsampling of
the aerial feature through a deconvolution. It will be shown in the ablation study that
the L2-normalization before feature concatenation is crucial for good pose estimation
performance.

Notably, a prior in the ground camera’s orientation is often available for vehicle local-
ization, e.g. indicated by the driving direction. Incorporating such an orientation prior is
straightforward in the LMU by removing the non-corresponding orientation channels in
the matching score volume 𝑘 . This does not require any retraining.

OMU: Instead of extracting features that are orientation-invariant, OMU explicitly
maintains the orientation information in𝑘 . It has a similar design as LMU other than
that the 𝑘 is directly concatenated to the L2-normalized aerial descriptors. Thus the
deconvolution layer can make use of information on how the ground descriptor 𝑘 matches
aerial descriptors 𝑘 at all 𝑅 orientations. The proposed method applies OMU only to
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matching level 1 in the Orientation Decoder (other settings are also explored, but no clear
benefit was observed).

4.2.5 Decoders
The proposed model has two separate decoders for localization and orientation estimation.

Localization Decoder: The proposed Localization Decoder contains 𝐾 LMU modules
to gradually increase the spatial resolution of ground and aerial descriptor matching
and finally generates a discrete distribution 𝐷 over the pixels of 𝐿×𝐿 aerial image 𝐴 for
localization, see Figure 4.3.

At each level 𝑘, the output feature from LMU is concatenated with the skip-connected
aerial feature 𝑓𝑒(𝐴)𝑘+1 of the same spatial resolution from the aerial feature extractor 𝑓𝑒(⋅)
to access the scene layout information. Then, 2D convolution is applied to generate the
aerial descriptors 𝑘+1 for level 𝑘+1. After the LMU at level 𝐾 , the output feature volume
would have a spatial resolution 𝐿×𝐿, where 𝐿 = 2𝑁𝐾 . Next, 2D convolution with a softmax
activation is applied to convert the feature volume into a 𝐿 × 𝐿 × 1 discrete distribution
𝐷, in which the values denote how probable the ground camera is located at each pixel
location (𝑖, 𝑗). The Maximum A-Posteriori (MAP) pixel location (𝑖, 𝑗) in 𝐷 is taken as the
final localization estimation, and the image coordinate of its center is the final prediction,
(�̂�, �̂�) = (𝑢𝑖, 𝑣𝑗 ).

Orientation Decoder: The proposed Orientation Decoder up-samples the coarse
orientation information into a dense orientation vector field. It contains an OMU module
at the beginning to match the ground descriptor 1 and aerial descriptors 𝑖,𝑗

1 at level 1
and upsamples the resulting matching score volume together with the L2-normalized aerial
descriptors to spatial resolution 𝑁2 ×𝑁2. The remainder of the Orientation Decoder uses
a series of deconvolutions and convolutions to further upsample the feature volume to
the target resolution 𝐿×𝐿. Similar to the proposed Localization Decoder, there is a skip
connection that passes aerial feature 𝑓𝑒(𝐴)𝑘 from the aerial encoder to the Orientation
Decoder. The final output of the Orientation Decoder is an 𝐿×𝐿×2 vector field 𝑌 denoting
the predicted orientation at each pixel location (𝑖, 𝑗) in the aerial image 𝐴. The feature
channel is L2-normalized and the first and second channels are used to represent the cosine
and sine of the predicted orientation angle. The final orientation prediction �̂� is selected in
𝑌 at the predicted pixel location (𝑖, 𝑗), i.e. �̂� = 𝑌 (𝑖,𝑗).

4.2.6 Loss functions
The proposed loss  consists of three parts: a contrastive learning loss , a classification
loss 𝐷 for localization, and a regression loss 𝑌 for orientation estimation. The ground
truth location is represented by a discrete distribution 𝐷𝑔𝑡 of size 𝐿×𝐿. In practice, a 2D
Gaussian distribution is placed at the ground truth pixel coordinates (𝑖𝑔𝑡 , 𝑗𝑔𝑡) to form a
smooth ground truth distribution 𝐷𝑔𝑡 .

The contrastive learning loss:  is an average over contrastive learning losses
𝑘 , at 𝐾 levels, i.e.  = 1

𝐾 ∑𝑘=𝐾
𝑘=1 𝑘 . At each level 𝑘, 𝑘 is applied on the matching

score volume𝑘 to encourage the aerial descriptors for locations and orientations close
to the ground truth poses to match the ground descriptor 𝑘 . Since the proposed ground
descriptors are orientation equivariant, training with 𝑘 enforces the aerial descriptors
at the correct locations to be orientation equivariant as well.
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The location and orientation space of𝑘 is discretized into 𝑁𝑘 ×𝑁𝑘 ×𝑅, and the ground
truth location and orientation would never exactly be centered at a grid point. This chapter
therefore expresses the closeness of indices (𝑖, 𝑗 , 𝑟) at level 𝑘 to the true pose with weights
𝑤𝑖,𝑗 ,𝑟
𝑘 =𝑤𝑖,𝑗

𝑘 ×𝑤𝑟
𝑘 . To obtain spatial weights𝑤

𝑖,𝑗
𝑘 , the spatial dimensions of𝐷𝑔𝑡 is reduced from

𝐿×𝐿 to 𝑁𝑘 ×𝑁𝑘 by max pooling. To compute weights 𝑤𝑟
𝑘 over the 𝑅 orientation channels,

the orientation indices 𝑟1 and 𝑟2 of the discrete angles closest to the true orientation are
found, 360◦ × (𝑟1/𝑅) < 𝑜𝑔𝑡 < 360◦ × (𝑟2/𝑅). The model only assigns non-zero weight to 𝑟1
and 𝑟2, where their weight is inversely proportional to their relative angular distance to 𝑜𝑔𝑡 ,
and 𝑤𝑟1

𝑘 +𝑤𝑟2
𝑘 = 1. Finally, 𝑘 is defined as a weighted sum 𝑘 =∑𝑖,𝑗 ,𝑟 𝑤

𝑖,𝑗 ,𝑟
𝑘 ′

𝑘(𝑖, 𝑗 , 𝑟)
of infoNCE losses [154] on the cosine similarity of Equation (4.1),

′
𝑘(𝑖, 𝑗 , 𝑟) = −log

exp(𝑠𝑖𝑚(𝑘 ,𝑖,𝑗 ,𝑟
𝑘 )/𝜏)

∑𝑖′ ,𝑗′ ,𝑟′ exp(𝑠𝑖𝑚(𝑘 ,
𝑖′ ,𝑗′ ,𝑟′
𝑘 )/𝜏)

. (4.2)

The localization loss: This chapter formulates the localization problem as amulti-class
classification. In the main setting, the localization loss 𝐷 is a cross-entropy loss,

𝐷 = −
𝐿
∑
𝑖=1

𝐿
∑
𝑗=1

𝐷𝑖,𝑗
𝑔𝑡 log𝐷

𝑖,𝑗 , (4.3)

where (𝑖, 𝑗) are pixel coordinates.
As an alternative, it is also considered to train the localization distribution 𝐷 by min-

imizing the transported mass from 𝐷 to 𝐷𝑔𝑡 based on Optimal Transport theory [155].
For this, a Wasserstein distance-based loss [156] is used as the 𝐷. Unlike cross-entropy,
Wasserstein distance considers the distance between the mass in the source and target
distributions. To compute the Wasserstein distance loss 𝐷 between 𝐷 and 𝐷𝑔𝑡 efficiently,
𝐷𝑔𝑡 is defined as a one-hot distribution. This loss then becomes,

𝐷 = −
𝐿
∑
𝑖=1

𝐿
∑
𝑗=1

𝑑(𝑖, 𝑗) ⋅𝐷𝑖,𝑗 . (4.4)

In Equation (4.4), 𝑑(𝑖, 𝑗) denotes the L2-distance in pixels between the pixel location
(𝑖, 𝑗) in 𝐷 to the ground truth pixel location (𝑖𝑔𝑡 , 𝑗𝑔𝑡), i.e. 𝑑(𝑖, 𝑗) =

√
(𝑖− 𝑖𝑔𝑡)2+(𝑗 − 𝑗𝑔𝑡)2. The

cross-entropy loss and Wasserstein distance-based loss are compared in the ablation study,
but the cross-entropy loss will be used as 𝐷 in the main experiments.

The orientation loss: Instead of treating the orientation prediction as a discrete
classification problem, which would result in a large number of classes for joint localization
and orientation supervision, this chapter formulates this problem as regression. Since this
chapter uses a Gaussian smoothed ground truth 𝐷𝑔𝑡 , the contributions from smoothed
ground truth locations are summed and the proposed orientation loss 𝑌 is defined as,

𝑌 =
𝐿
∑
𝑖=1

𝐿
∑
𝑗=1

𝐷𝑖,𝑗
𝑔𝑡 ((cos(𝑜𝑔𝑡)− 𝑌 𝑖,𝑗1 )

2+(sin(𝑜𝑔𝑡)− 𝑌 𝑖,𝑗2 )
2
) . (4.5)
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In Equation (4.5), 𝑜𝑔𝑡 is the ground truth orientation, 𝑌 is the 𝐿×𝐿×2 predicted orienta-
tion vector field. 𝑌1 and 𝑌2 denote the first and second channel of 𝑌 . Multiplying with 𝐷𝑔𝑡
removes the contribution to the orientation loss 𝑌 at wrong locations.

The total loss:  is a weighted combination of the localization loss 𝐷, orientation
loss 𝑌 , and contrastive learning loss 𝑀 :

 = 𝐷 +𝛼𝑌 +𝛽𝑀 , (4.6)

where the 𝛼 and 𝛽 are hyperparameters that weigh the importance of 𝑌 and 𝑀
during training.

4.3 Experiments
This section will first introduce the three used datasets, followed by the evaluation metrics.
After this, the implementation details are provided. Then, the proposed CCVPE method is
compared to previous state-of-the-art baselines w.r.t. generalization to new measurements
within the same areas and across different areas. Next, this section studies how the proposed
method works with an orientation prior and on images with different horizontal FoVs.
Then, the proposed method is used to estimate the pose of the ego-vehicle along test
traversals using sequences of ground images. Finally, an extensive ablation study and an
analysis of runtime are provided.

4.3.1 Datasets
This section tests the generalization of all models to new measurements within the same
areas and across different areas on the VIGOR [127] and KITTI [20] datasets. On the
Oxford RobotCar dataset [1, 145], the proposed method is used to estimate the ego-vehicle
pose frame-by-frame using the ground image sequence collected in test traversals. The
original KITTI and Oxford RobotCar datasets do not contain any aerial images, therefore
this chapter makes use of the collected aerial images from [110] for KITTI, and [30, 31] for
Oxford RobotCar.

The VIGOR dataset [127] contains ground-level panoramic images and aerial patches
collected in four cities in the US. The aerial patches are distributed regularly as a grid,
providing seamless coverage of the 4 target cities. Each aerial patch covers a ∼70 m ×
70 m ground region. The orientation of the panorama and aerial patch is aligned such
that the center vertical line in the panorama corresponds to the up direction (North) in
the aerial patch. In our experiments, changing the orientation of the ground panorama is
achieved by shifting the image along the horizontal axis. Reducing the horizontal FoV is
achieved by dropping the image columns at the left and right borders. Since the ground
truth labels are improved by [33], this dissertation uses those more accurate labels. The
VIGOR dataset defines the aerial patches as either positive or semi-positive for each ground
image. An aerial patch is positive if its center 1/4 region contains the ground camera’s
location, otherwise, it is semi-positive. In the following experiments, positive aerial images
are used for training and testing all models. The experiments adopt the Same-Area and
Cross-Area split from [127]. On the Same-Area split, models are trained on images from
all four cities and tested on images from the same cities. Training and test sets do not
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share any ground images but may share aerial patches. On the Cross-Area split, models are
trained on image pairs from New York and Seattle and tested on pairs from Chicago and
San Francisco. For validation and hyperparameter tuning, this chapter randomly selects
20% of the data from the training set.

The KITTI dataset [20] is collected by a vehicle platform in Karlsruhe, Germany,
covering city, rural area, and highway scenarios. The stereo camera faces the driving
direction and has a horizontal FoV of 90◦. In [130], the authors make use of the images from
the left camera of the stereo camera and collected aerial images with ground resolution
∼0.20 m/pixel to enable cross-view pose estimation. Each aerial patch covers a ∼100 m
× 100 m ground area. The data is split into Training, Test 1, and Test 2 sets. Images in
Training and Test 1 sets are from the same regions. Images in Test 2 set are from different
areas than those in the Training set. In the experiments, Test 1 and Test 2 sets are named
as Same-Area and Cross-Area. As assumed in [130], ground images are located within a
40 m × 40 m area in the corresponding aerial patches’ center, and there is an orientation
prior with noise between −10◦ and 10◦. In this case, a random rotation between −10◦ and
10◦ is applied on each aerial image whose ‘East’ orientation was aligned with the ground
image. In the experiments, this chapter adopts the same setting, and also provides extra
results for unknown orientations where a random rotation from the 360◦ circular domain
is applied on each orientation-aligned aerial image.

The Oxford RobotCar dataset [1, 145] contains videos with a limited horizontal
FoV collected over multiple traversals at different times, seasons, and weather conditions,
along the same route in Oxford, UK. In [29, 30], the authors collected aerial patches for
retrieval, and later [31] stitched those aerial patches with their collected extra ones into a
continuous aerial image that covers the Oxford area. This chapter follows the same setting
as in [30, 31] that the training, validation, and test data are from different traversals to test
our model’s generalization to different dynamic objects, weather, and lighting conditions
across time. Instead of directly using the sparse test images used in [30, 31], test ground
images are sampled from the original Oxford RobotCar dataset [1, 145] at a higher frame
rate, ∼ 1.6 FPS, for our experiment of ego-vehicle following. In total, there are three test
traversals, enabling testing in Summer and Winter. During training, aerial patches that
cover ∼74 m × 74 m ground area are randomly cropped from the continuous map around
a location that is less than ∼26 m away from the vehicle’s location. For validation and
testing, the same set of aerial patches as in [31] are used. In the experiment, the orientation
of the ground camera is always assumed unknown, so this chapter simply uses the ground
images and north-aligned aerial images as input pairs.

4.3.2 Baselines methods
The proposed CCVPE is compared to two types of baselines.

First, the state-of-the-art (SOTA) cross-view pose estimation baselines are included:
the cross-view regression method (CVR) [127], iterative optimization method LM [130],
and SliceMatch [33]. CVR [127] is originally designed for joint image retrieval and location
regression. For a fair comparison, this chapter trains it for localization within a given aerial
image (it is found that it achieves better localization error than training it for retrieval +
localization). This chapter also trained a CVR model using the same EfficientNet-B0 [157]
as its feature extractor, denoted as Eff-CVR. LM [130] uses an iterative method to estimate
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the location and orientation of the ground camera on the aerial image. This dissertation
uses the provided model by its author and the same setting on its prior [130] on KITTI
dataset, namely, the ground images are located in a 40𝑚 × 40𝑚 area in the input aerial
image center, and a rough orientation prior with noise between −10◦ and 10◦ is available
during training and test time. For completeness, the model trained and tested without any
orientation prior is also included.

On the KITTI dataset, [110] evaluated several image retrieval or retrieval with orienta-
tion estimation baselines by limiting their searching area to a region of 40𝑚×40𝑚. This
chapter includes the same fine-grained cross-view image retrieval baselines from [110].

4.3.3 Evaluation metrics
The mean and median error over all test samples are used as the main evaluation metrics
for both localization and orientation prediction. For localization, the error is the distance
in meters between the predicted location and the ground truth location. For orientation,
the error is the angular difference (◦) between the predicted camera orientation at the
predicted location and ground truth camera orientation. In addition, this chapter reports
the percentage of test samples that have an error below certain thresholds, namely 1 m, 3
m, and 5 m for localization, and 1◦, 3◦, and 5◦ for orientation. For localization, longitudinal
and lateral error w.r.t. the vehicle’s driving direction are given separately [130]. For image
retrieval methods, the localization error is calculated by measuring the distance between
the center of the retrieved aerial image patch and the ground truth location.

To measure if the true location receives probability mass, and thus would not be
discarded if used in a probabilistic temporal filter, the predicted probability at the ground
truth pixel is also measured. For the baseline method that regresses [127] to a single
location without uncertainty estimates, it is assumed that their prediction is the peak of
an isotropic Gaussian distribution, and estimate the standard deviation of this Gaussian
distribution on the validation set. SliceMatch [33] measures descriptors’ similarity scores
on their candidate poses. This chapter uses the scores at the candidate location that is
closest to the ground truth location to derive the predicted probability at the ground truth
pixel. Finally, we measure our model’s runtime on a Tesla V100 GPU.

4.3.4 Implementation details
EfficientNet-B0 [157] is used as our ground and aerial feature extractors, 𝑔𝑒(⋅) and 𝑓𝑒(⋅).
There is no weight-sharing between them. When the ground image 𝐺 is panoramic, circular
padding in the horizontal direction is used inside the ground encoder 𝑔(⋅), and zero padding
otherwise. For other model components, and the vertical direction padding in 𝑔(⋅), zero
padding is used. During training, the feature extractor is initialized from ImageNet [146]
pre-trained weights, and other components are initialized randomly. The proposed model
is trained using the Adam optimizer [147] with a learning rate of 0.0001. This chapter
uses the default drop connect [158] rate, 0.2, from EfficientNet [157], and the default
𝜏 = 0.1 in Eq. (4.2), from infoNCE loss [154]. Different weights 𝛼 = 1 × 10−2,⋯ ,1 × 102
and 𝛽 = 10,⋯ ,1 × 105 were tested for weighing the orientation loss 𝑌 and contrastive
learning loss 𝑀 , and 𝛼 = 10 and 𝛽 = 1×104 are selected since they provide best validation
performance. The model bottleneck size 𝑁1 ×𝑁1 is set to 8×8, and consequently there are
𝐾 = 6 levels in our coarse-to-fine descriptor matching.
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Note that, even though the proposed method assumes ground images follow cylindrical
projection, for KITTI and Oxford RobotCar datasets this chapter directly inputs their
perspective images. The experiment shows that both projections work equally well in
practice.

4.3.5 Generalization to new measurements in same area
First, this chapter compares the proposed method, CCVPE, to baselines for generalizing to
new measurements (i.e. ground images) in the same area. This corresponds to use cases
that target operation in a predetermined area, such as driving in one city, so models can be
trained on data from that specific area. For this task, this chapter reports the evaluation
results on VIGOR Same-Area test set and KITTI Same-Area (Test 1) set.

Table 4.1: Evaluation on VIGOR Same-Area and Cross-Area test set. Best in bold. This chapter reports mean
and median localization and orientation error, as well as the probability at the ground truth pixel in the aerial
image, denoted as ‘P@GT’. The left-most column indicates orientation uncertainty: ‘0◦’ means testing with
known orientation, such that the center vertical line in the panorama corresponds to the North direction in the
aerial image, and the known orientation is used to remove the non-corresponding orientation channels in the
matching score volume; ‘360◦’ means the test orientation is unknown and then the panoramic ground image was
horizontally shifted corresponding to a random angle in the 360◦ circular domain.

VIGOR test
Same-Area

↓ Localization (m) ↓ Orientation (◦) ↑ P@GT (1×10−3)
mean median mean median mean median

0◦

CVR [127] 8.82 7.68 - - 0.02 0.02
Eff-CVR 7.89 6.25 - - 0.02 0.03
SliceMatch [33] 5.18 2.58 - - 0.06 0.05
CCVPE (proposed) 3.60 1.36 - - 1.60 1.12

36
0◦ SliceMatch [33] 8.41 5.07 28.43 5.15 0.02 0.02

CCVPE (proposed) 3.74 1.42 12.83 6.62 1.47 1.00

VIGOR test
Cross-Area

↓ Localization (m) ↓ Orientation (◦) ↑ P@GT (1×10−3)
mean median mean median mean median

0◦

CVR [127] 9.45 8.33 - - 0.02 0.02
Eff-CVR 8.27 6.60 - - 0.02 0.03
SliceMatch [33] 5.53 2.55 - - 0.06 0.06
CCVPE (proposed) 4.97 1.68 - - 1.08 0.71

36
0◦ SliceMatch [33] 8.48 5.64 26.20 5.18 0.02 0.02

CCVPE (proposed) 5.41 1.89 27.78 13.58 0.93 0.58

Pose estimation on VIGOR Same-Area: As shown in Table 4.1 Same-Area, when
testing with images with known orientation, our method surpasses all baselines, CVR [127],
Eff-CVR, and SliceMatch [33], w.r.t. mean and median localization errors. Replacing the
VGG [159] backbone with EfficientNet-B0 [157] for CVR improves localization performance,
but Eff-CVR still has significantly higher localization errors than ours. When the orientation
of test images is unknown, our method beats the previous SOTA SliceMatch by a large
margin in localization, i.e. 56% in the mean error and 72% in the median error. Regarding
orientation estimation, CVR could not infer the orientation of the ground camera, and
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GT
CVR
Ours

Figure 4.5: Qualitative results on VIGOR. First two samples are from the Same-Area test set, and the last two
samples are from the Cross-Area test set. The first three samples are success cases, the fourth shows a failure case.
CVR (blue cross) receives orientation-aligned ground and aerial images and does not estimate the orientation.
CCVPE (ours) selects the orientation (yellow arrow) from the prediction location (yellow star) and dense orientation
map 𝑌 (black arrows). The red color shows the localization probability distribution, and the darker the color the
higher the probability. The center of the ground image is always the forward direction (green vertical line), which
aligns with the true orientation in the aerial view (green arrow).

thus it is not included in the comparison. SliceMatch and our method address orientation
prediction differently. SliceMatch divides the 360◦ orientation space into 64 bins and
selects the most probable one based on descriptors matching, while our method creates
𝑅 = 20 orientation scores and regress the true orientation after the grid-based matching.
Quantitatively, our method has a lower mean orientation error but a slightly higher median
orientation error than SliceMatch. Because of the regression formulation, the proposed
method can smoothly track the change in the orientation of the ground camera. Grid-based
solutions, such as SliceMatch, would need to densify their grid, resulting in more memory
and computation needs.

Pose estimation on KITTI Same-Area: As shown in Table 4.2 Same-Area, cam-
era pose estimation methods, LM [130], SliceMatch [33], and ours, outperform image
retrieval-based methods in terms of percentages of test samples with lateral and longitudi-
nal errors within the given thresholds. When a ±10◦ orientation prior is considered in both
training and testing, as assumed in [130], our method has a lower mean/median error for
both localization (1.22 m / 0.62 m) and orientation estimation (0.67◦/0.54◦) than LM and
SliceMatch.

LM needs an orientation prior to guarantee there is an overlap in the scene between
its projected aerial view and the ground view for iterative optimization. As a result, LM
does not work when such an orientation prior is absent, see Table 4.2. Under this more
challenging setting, the performance of both SliceMatch and our method degenerates. Our
model still surpasses SliceMatch in localization performance but our model has higher
errors in orientation estimation.

Qualitative results: Compared to single-mode estimators, e.g. regression-based
CVR [127] and iterative optimization-based LM [130], our model shows its advantage
especially when the scene contains a symmetric layout. As shown in the first two samples
in Figure 4.5, when there are multiple visually similar locations, e.g. zebra crossings or
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GT
LM
Ours

Figure 4.6: Qualitative results on KITTI. First two samples are from the Same-Area test set, and the last two
samples are from the Cross-Area test set. The first three samples are success cases, the fourth one shows a failure
case. An orientation prior with ±10◦ noise is provided to LM model, and the proposed model does not use an
orientation prior.

junctions, CVR regresses to a location between them. The iterative method LM sometimes
converges to a wrong local optimum, e.g. another road, see Figure 4.6. Our model expresses
its uncertainty with its multi-modal distribution to capture all probable modes, usually
identifying the correct location in all datasets.

Benefiting from our joint consideration of localization and orientation, when there
are multiple probable locations in our prediction, our model predicts for each of these
locations the most likely orientation. As shown in the first image pair in Figure 4.5, the
orientation of the camera (the green line in the ground image) roughly points to the end of
a zebra crossing. Our prediction suggests multiple locations, and each location predicts an
orientation pointing to an end of a different zebra crossing.

At locations with a low localization probability, the ground-aerial descriptor matching
has low similarity scores in all orientation channels. In this case, the orientation prediction
is influenced less by the descriptor matching score but appears to follow a learned prior
from the aerial view. Importantly, it will be shown in the ablation study that explicitly
providing the descriptor matching scores is still key to good orientation prediction.

Probabilistic prediction: This section evaluates the probability estimation of the
baselines and the proposed model on the VIGOR dataset. CVR [127] and Eff-CVR regress
to a single location without any probability estimation. This dissertation fits a zero-mean
Gaussian distribution on their predicted errors. The standard deviation of this Gauss is
calculated based on their localization error on the validation set.

As shown in Table 4.1, our model has considerably higher mean and median probability
at the ground truth location than CVR [127], Eff-CVR, and SliceMatch [33]. During training,
SliceMatch is optimized for discriminative descriptors, while our model is directly optimized
for high probability at the ground truth location by our cross-entropy loss. In general, our
model is less likely to miss the ground truth location, which is an important aspect when
the outputs are temporal filtered or fused with other sensor measurements.

Importantly, our probabilistic output can be used to identify predictions that potentially
have large localization and orientation errors. Because the proposed method constructs
orientation-aware descriptors, the better an aerial descriptor matches the ground descriptor,
the more likely both the location and orientation of that aerial descriptor are correct. There-
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Table 4.2: Evaluation on KITTI dataset. Best in bold. This chapter reports mean and median localization
and orientation error, as well as the percentage of test samples that have lateral/longitudinal localization or
orientation error less than a threshold. The evaluation of image retrieval methods (noted with ‘retrieval’) is
collected from [110]. In the leftmost column, ±10◦ denotes training and testing with an orientation prior with
noise in the range [−10◦,10◦], and 360◦ means no orientation prior by using noise from the 360◦ circular domain.

Same-Area ↓ Loc. (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Ori. (◦) ↑ Ori. (%)
mean med. 1m 3m 5m 1m 3m 5m mean med. 1◦ 3◦ 5◦

re
tri
ev
al

CVM-Net [105] - - 5.83 17.41 28.78 3.47 11.18 18.42 - - - - -
CVFT [113] - - 7.71 22.37 36.28 3.82 11.48 18.63 - - - - -
SAFA [106] - - 9.49 29.31 46.44 4.35 12.46 21.10 - - - - -
Polar-SAFA [106] - - 9.57 30.08 45.83 4.56 13.01 21.12 - - - - -
DSM [121] - - 10.12 30.67 48.24 4.08 12.01 20.14 - - 3.58 13.81 24.44

±
10

◦ LM [110] 12.08 11.42 35.54 70.77 80.36 5.22 15.88 26.13 3.72 2.83 19.64 51.76 71.72
SliceMatch [33] 7.96 4.39 49.09 91.76 98.52 15.19 49.99 57.35 4.12 3.65 13.41 42.62 64.17
CCVPE (proposed) 1.22 0.62 97.35 98.65 99.71 77.13 96.08 97.16 0.67 0.54 77.39 99.47 99.95

36
0◦

LM [110] 15.51 15.97 5.17 15.13 25.44 4.66 15.00 25.39 89.91 90.75 0.61 1.88 2.89
SliceMatch [33] 9.39 5.41 39.73 80.56 87.92 13.63 40.75 49.22 8.71 4.42 11.35 36.23 55.82
CCVPE (proposed) 6.88 3.47 53.30 77.63 85.13 25.84 55.05 68.49 15.01 6.12 8.96 26.48 42.75

Cross-Area ↓ Loc. (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Ori. (◦) ↑ Ori. (%)
mean med. 1m 3m 5m 1m 3m 5m mean med. 1◦ 3◦ 5◦

re
tri
ev
al

CVM-Net [105] - - 6.96 21.55 35.24 3.58 10.45 17.53 - - - - -
CVFT [113] - - 7.20 22.05 36.21 3.63 11.11 18.46 - - - - -
SAFA [106] - - 9.15 27.83 44.27 4.22 11.93 19.65 - - - - -
Polar-SAFA [106] - - 10.02 29.09 46.19 3.82 11.87 19.84 - - - - -
DSM [121] - - 10.77 31.37 48.24 3.87 11.73 19.50 - - 3.53 14.09 23.95

±
10

◦ LM [110] 12.58 12.11 27.82 59.79 72.89 5.75 16.36 26.48 3.95 3.03 18.42 49.72 71.00
SliceMatch [33] 13.50 9.77 32.43 78.98 86.44 8.30 24.48 35.57 4.20 6.61 46.82 46.82 46.82
CCVPE (proposed) 9.16 3.33 44.06 81.72 90.23 23.08 52.85 64.31 1.55 0.84 57.72 92.34 96.19

36
0◦

LM [110] 15.50 16.02 5.60 16.02 25.60 5.64 15.86 25.76 89.84 89.85 0.60 1.60 2.65
SliceMatch [33] 14.85 11.85 24.00 62.52 72.89 7.17 26.11 33.12 23.64 7.96 31.69 31.69 31.69
CCVPE (proposed) 13.94 10.98 23.42 49.15 60.46 11.81 29.85 42.12 77.84 63.84 3.14 9.24 14.56

fore, the localization probability can be used to filter the orientation error as well. As shown
in Figure 4.7, when this chapter ranks the predictions based on their predicted probabilities,
the more confident predictions have in general lower localization and orientation errors.
This property is important in safety-crucial applications such as autonomous driving.

4.3.6 Generalization to new measurements across areas
Here, this section considers use cases that target operations in areas that were not covered
specifically by the training data, such as driving in different cities or suburban areas.

Overall, it has been seen a similar trend in model comparison in the Cross-Area setting
as in the Same-Area setting. On VIGOR Cross-Area test set, see Table 4.1, our model
surpasses the previous SOTA SliceMatch [33] in localization by a large margin. When
orientation is unknown, our median error is 66% lower than that of SliceMatch. However,
our orientation error is higher than that of SliceMatch. On KITTI Cross-Area test set,
see Table 4.2, when an orientation prior with ±10◦ noise presents during training and
testing, our model surpasses both LM [130] and SliceMatch [33] in both localization and
orientation. Without this prior, our model has lower mean and median localization error
than SliceMatch, but our orientation error is higher.

Unsurprisingly, compared to the performance on the Same-Area test set, there is a
performance degradation for all models. Our model could learn priors from the scene
layout in the aerial image to guide its predictions. It becomes more challenging when the
test aerial images are unseen. Since our predicted orientation is selected at the predicted
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Figure 4.7: Ranking CCVPE’s predictions based on their estimated probabilities (tested with unknown orientation).
The more confident the prediction, the lower the localization and orientation error.

unknown ±72 ±36 ±18 known
orientation prior

1.4

1.5

1.6

1.7

1.8

1.9

m
ed

ia
n 

lo
ca

liz
at

io
n 

er
ro

r (
m

)

Same-Area
Cross-Area

Figure 4.8: Localization with different orientation priors on VIGOR Same-Area and Cross-Area test set.

location, the orientation error is also likely to be large when localization is wrong, see
Figure 4.6 last sample. It is also observed that there are more samples that have predicted
orientation in the opposite direction on the Cross-Area test set than the Same-Area test set
on both VIGOR and KITTI datasets. See the last sample of Figure 4.5 for an example. In
practice, when there is a prior in orientation, e.g. identified by the driving direction, our
model can make use of the prior to improve its prediction without retraining. This will be
demonstrated in the next sub-section.

4.3.7 Effects on orientation prior and image’s FoV
Next, this section studies the proposed model’s behavior on both VIGOR Same-Area and
Cross-Area test sets for inference with an orientation prior and ground images with different
horizontal FoV.

Inference with an orientation prior: As described in Section 4.2.4, our model can
make use of an orientation prior without retraining. Figure 4.8 shows that when a more
accurate orientation prior is present, the localization performance increases accordingly.
When there are multiple locations in the aerial image that match the ground image with
different orientations, for example, at a crossroad, providing such an orientation prior
effectively reduces the wrong matchings in our LMU and OMU modules, see examples in
Figure 4.9.

Inference on images with different FoVs: Moreover, the proposed CCVPEmodel can
infer on test ground images with other horizontal FoVs than in the training data. Figure 4.10
shows the results of our models trained with ground images with various horizontal FoVs
being tested on ground images with different horizontal FoVs. In general, when the FoV of
the ground image increases, the information contained in the image also increases. As a
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Figure 4.9: An orientation prior improves our localization performance on VIGOR, Same-Area (first two image
pairs) and Cross-Area (last two image pairs). The first and third image: inference without an orientation prior.
The second and fourth image: inference with an orientation prior containing noise between −36◦ and 36◦. With
the prior, locations that expect a different orientation become improbable.

result, it is seen a monotonic decrease in localization error when the test FoV increases for
all models in Figure 4.10.

An example of the predictions from the proposed model trained with panoramic images
is shown in Figure 4.11. When the FoV of the test ground image is 108◦ or 180◦, the
proposed model cannot distinguish different roads based on the limited content captured
by the ground image, and thus predicts a multi-modal distribution to capture the probable
locations. However, the peak of the distribution is in the wrong mode and consequently,
the selected orientation is also wrong. When the test FoV increases to 252◦, the peak of
the output distribution is close to the ground truth location. Further increasing the FoV
reduces the localization uncertainty and improves the localization. Notably, the proposed
model can always access the full scene layout information from the aerial view no matter
what the FoV of the ground view is. This example shows that the learned prior from the
BEV layout solely is not enough for pose estimation, and our ground-aerial descriptor
matching is crucial.

Because of the domain shift, the model trained with panoramas performs worse on
images with small FoVs, compared to the model trained with images with a small FoV, see
Figure 4.10. Besides, it is also observed that a steeper decrease in localization performance
when the test FoV reduces for the model trained with panoramas than the model trained
with images of a horizontal FoV of 108◦. Training with images with a large FoV allows
the model to use features that span widely in the ground image. When those features are
absent, e.g. testing with a small FoV, the performance degenerates. On the other hand, if
the training images only have a small FoV, the model would not learn to use features that
span wider than the FoV of the training images. Consequently, increasing the test FoV
brings less benefit. To tackle this trade-off, one can train the model with images whose
FoVs are randomly sampled by cropping the panorama, e.g. sampled from 108◦,⋯ ,360◦.
Consequently, the resulting model performs well for all tested FoVs. Interestingly, this
model also has slightly better localization performance than the model trained with images
with FoV of 108◦ when inference on images with FoV of 108◦. Note that this model is not
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Figure 4.10: Localization on images with varying horizontal FoVs on VIGOR same-area and cross-area test sets.
Green/blue/yellow curves represent the proposed model trained with horizontal FoV of 108◦/360◦/between 108◦
and 360◦.

GT
Ours

Figure 4.11: CCVPE model (ours) trained with panoramic image and inference on ground images with different
FoVs (from left to right: 108◦,180◦,252◦,360◦) from VIGOR samearea test set. Its dense orientation prediction is
shown by black arrows. The final predicted orientation of the ground image (green vertical line) is shown by the
yellow arrow.

used in our earlier comparison to other baselines for fairness since the baselines cannot
include a similar data augmentation.

4.3.8 Ego-vehicle pose estimation across time
On the Oxford RobotCar dataset, the proposed model is deployed to follow the ego-vehicle
over a sequence of ground-level images taken by the vehicle-mounted camera. To process
a pair of input ground and aerial images on Oxford RobotCar, CCVPE takes 0.07 seconds,
i.e. 14 FPS. It is assumed that there is a rough GNSS prior that identifies which aerial patch
contains the location of the ground-level image. As shown in Figure 4.12, on all three test
traversals, our model achieves median lateral and longitudinal localization error below 1
meter and median orientation error around 1◦. Notably, even though the ground images in
the Oxford RobotCar dataset have a small horizontal FoV compared to the panoramas in
the VIGOR dataset, our model generalizes better to new ground images along the same
route across time on the former dataset than to new panoramas on the latter dataset. On
the Oxford RobotCar dataset, the aerial view can provide a strong prior as the vehicle
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Figure 4.12: Median lateral and longitudinal localization error and median orientation error on Oxford RobotCar
Test 1, 2, and 3 traversals.

always drives along the same route and the test area is seen during training. In contrast,
the panoramas in the VIGOR dataset are not always captured on the road, plus its scenes
are more diverse because of its broad coverage.

On the Oxford RobotCar sequences, it can be observed that how the predicted orien-
tation map adapts to ground images at different nearby locations within the same aerial
view, as seen in Figure 4.13. While the model learned a prior from the aerial view on the
driving direction of the roads, the orientation predictions do respond to the ground image
content at the high-probability locations. E.g. when the vehicle is in area A, the local
orientation field points towards the junction seen in the ground view. The orientations in
area A reflect a different orientation (a prior) once the vehicle moved on to area B.

4.3.9 Ablation study
Next, this section presents an ablation study on the VIGOR Same-Area validation set.

Number of LMU modules: As mentioned in Section 4.3.4, our model has 𝐾 = 6 LMU
modules for coarse-to-fine descriptor matching for localization. Here, this section studies
the effect of LMU modules on localization performance by removing them at low or high
levels. When removing an LMU module, the corresponding convolutional layer in the
Localization Decoder is modified such that it directly processes the aerial feature without
any matching scores.

Table 4.3: Effect of LMU modules on mean localization error on VIGOR same-area validation set. Best in bold.

VIGOR Same-Area, validation set
K = 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 6 5,6 4,5,6 3,4,5,6 2,3,4,5,6 1,2,3,4,5,6
median error (m) 2.58 1.89 1.58 1.45 1.44 2.68 1.99 1.58 1.47 1.42 1.42

As shown in Table 4.3, the model with LMU modules at all 6 levels outperforms other
variants in terms of the median localization error. When excluding the LMUmodules at low
or high levels, it is seen a consistent decrease in localization performance. Importantly, using
LMU modules only at high levels, e.g. 𝐾 = 6, does not provide equally good localization
performance as the models that also have LMUmodules at lower levels. Directly contrasting
aerial descriptors at a fine resolution is a difficult learning task. Using LMU modules at
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Figure 4.13: Localization and orientation estimation on two frames in a sequence on Oxford RobotCar Test 1
traversal. Right frame: ∼13 seconds after the left frame. Because the two ground-level images capture a different
scene, the output orientation field in the same region A (or B) in the identical aerial images is different.

lower levels can provide a better starting point for descriptor matching at higher levels,
leading to better localization performance.

Qualitatively, it is seen in Figure 4.14 that the max matching score map inside the
LMU module becomes sharper when the level 𝑘 increases, but does not improve noticeably
anymore after level 4, i.e. resolution 64 × 64, on the selected example. Quantitatively,
the increase in localization performance is also less when 𝑘 increases. For the main
experiments, the proposed model includes LMU modules at all levels, i.e. 𝐾 = 6. This
setting also aligns with the commonly used coarse-to-fine formulation in other computer
vision tasks [151, 152].

Other architectural variations: This section first compares the proposed model
to [31]. Then, it studies the effect of the backbone, the OMU module, the number of
orientation channels 𝑅, and the L2-normalization before feature concatenation in the LMU
and OMU modules. Finally, this section tests replacing the Rolling & Matching with a
simple concatenation of ground and aerial features, as well as removing the contrastive
learning loss .

In our conference work [31], VGG [159] and SAFA modules [106] are used as feature
extractors and feature projectors, and the ground-to-aerial matching is only conducted at
the bottleneck. Thus, for a fair comparison, a CCVPE model with VGG [159] backbone is
included and it uses the LMU module only at the bottleneck, i.e. ‘𝐾 = 1, VGG’. In [31], pose
estimation is achieved by comparing the model’s probability estimations on differently
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Figure 4.14: Visualization of the max matching score map in LMU at levels 1 to 6.

rotated samples, while this chapter constructs orientation-aware descriptors and estimates
the pose in a single forward pass. Validation results of models with different settings
are summarized in Table 4.4. Our model with VGG [159] backbone and 𝐾 = 1 beats the
approach in [31] in both localization and orientation accuracy.

The comparison between the row ‘𝐾 = 1, VGG’ and the row ‘𝐾 = 1’ in Table 4.4,
shows that using EfficientNet-B0 [157] as the default backbone improves both localization
and orientation estimation. Interestingly, it is found that if the aerial descriptors are
not normalized before the feature concatenation in the LMU and OMU modules, both
localization and orientation estimation performance decrease significantly. In particular,
the orientation estimation becomes no better than a random guess. The magnitude of cosine
similarity matching score 𝑘 is between −1 and 1. Normalizing the aerial descriptors
makes the magnitude of their elements stay in a similar range as 𝑘 . If the concatenated
aerial descriptors are not normalized, the model might not effectively use the information
in matching score𝑘 and treat 𝑀𝑘 as noise.

Similar to concatenating aerial descriptors without normalization, excluding the OMU
module and only processing the aerial descriptors also makes the orientation prediction
fail. Since the ground images’ orientation is randomly changed during training, there is no
useful prior on the orientation when only considering the aerial image. Next, this section
studies the effect of different numbers of orientation channels 𝑅. When increasing the
granularity in the orientation space, i.e. using a larger 𝑅 when rolling aerial descriptors
in the LMU and OMU modules, both localization and orientation estimation performance
increases. Constructing aerial descriptors for more global orientation intervals not only
provides more fine-grained orientation matching scores but also improves the orientation-
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aware features for localization. Limited by the width 𝑊 ′ of encoded ground feature 𝑔𝑒(𝐺),
the maximum 𝑅 the proposed model can use is 20 on the VIGOR dataset. It is observed a
small increase in mean orientation error when increasing 𝑅 from 10 to 20. Overall, 𝑅 = 20
provides the best localization result, and therefore it is used in the main experiments
(𝑅 = 16 is used on KITTI because the input image has a different resolution). Similar to the
Localization Decoder, this section tested including 6 OMU modules for all 6 levels in the
Orientation Decoder. Although this setting reduces the median orientation error, there
is an increase in the localization error and mean orientation error. LMU at higher levels
has finer spatial resolutions, while the granularity in orientation space is fixed, e.g. 𝑅 = 20,
in all OMU modules. Thus, the same benefit is not expected here as in the Localization
Decoder, and the OMU module is only used at the first level.

When replacing the proposed Rolling & Matching by straightforward ground-aerial
feature concatenation, there is a large drop in both localization and orientation estimation
performance, see the comparison between ‘𝐾 = 1’ and ‘Concat@1’ and the comparison
between ‘𝐾 = 6,𝑅 = 20’ and ‘Concat@6’ in Table 4.4. When directly concatenating the
ground feature with the aerial feature, the model has the additional challenge of learning
that different rotated versions of the same panoramic image should be located at the
same place. In contrast, our Rolling & Matching design injects inductive biases into the
model by using the translational equivariant ground encoder, and by forcing corresponding
ground and aerial descriptors to be similar. Specifically, the model ensures this rotational
equivariance is kept by the OMU for orientation estimation. Therefore, when inputting
different rotated versions of the same panorama, the same matching score pattern would
re-occur in different orientation channels. Our Orientation Decoder still needs to learn
how different permutations of matching scores translate to the orientation vector field, but
this matching volume has a relatively low number of channels compared to concatenated
ground and aerial features. The LMU’s inductive bias is to be invariant to different ground
camera’s orientations, which is achieved by taking the maximum over orientation channels.
None of these orientation and localization-specific inductive biases are present in the
concatenation approach, which explains the large difference in performance.

Importantly, our Rolling &Matching is empowered by the orientation-aware ground and
aerial descriptors. If the orientation awareness for the aerial descriptor is not enforced, i.e.
by removing the infoNCE losses, both localization and orientation prediction performance
of the model decreases significantly, see rows with ‘No infoNCE’ in Table 4.4.

Loss on localization heat map: Using the best model architecture, here compares
the cross-entropy loss and Wasserstein distance-based loss for localization and uncertainty
estimation. Table 4.5 shows the mean and median localization error and the predicted
probability at the ground truth pixel of models trained with different losses.

The model trained with cross-entropy loss has a lower mean localization error than
the model trained with Wasserstein distance-based loss. Notably, the model trained with
Wasserstein distance-based loss outputs localization distributions that are very sharp.
Biased by a few accurate predictions, the mean probability at the ground truth pixel of this
model is higher than that of the model trained with cross-entropy. However, the median
probability at the ground truth pixel is near zero, indicating many of the ground truth
locations receive little probability mass. In temporal filtering or multi-sensor fusion, fusing
such predictions might make the system miss the ground truth location. Besides, it is also
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Table 4.4: CCVPE architecture comparisons on VIGOR Same-Area validation set. Best in bold. ‘No norm’ means
the aerial descriptors are not normalized before feature concatenation in the LMU and OMU modules. ‘6 OMUs’
means the OMU module at all levels is included.‘Concat’ denotes direct concatenating of the ground and aerial
features instead of conducting Rolling & Matching.

VIGOR, val. ↓ Localization (m) ↓ Orientation (◦)
mean median mean median

[31] 9.76 6.15 55.91 15.66
K=1, VGG 7.06 3.90 18.12 7.91
K=1, No norm 5.44 2.95 89.72 89.17
K=1, No infoNCE 9.37 6.04 90.59 90.53
K=1 4.93 2.61 14.68 7.50
Concat@1 13.57 11.87 89.29 89.17
K=6, No OMU 3.73 1.40 89.92 89.86
K=6, No infoNCE 9.11 5.67 90.22 90.17
K=6, R=2 5.35 2.40 36.74 25.39
K=6, R=4 4.51 1.80 16.06 8.57
K=6, R=5 4.21 1.74 15.11 8.42
K=6, R=10 3.85 1.51 13.06 6.88
K=6, R=20 (default) 3.63 1.42 13.11 6.61
K=6, 6 OMUs 3.78 1.43 15.34 3.81
Concat@6 9.66 6.63 89.60 89.03

Table 4.5: Evaluation of CCVPE with different localization losses on VIGOR Same-Area validation set. Best in
bold.

VIGOR, val. ↓ Localization (m) ↑ P@GT (1×10−3)
mean median mean median

Cross-entropy 3.63 1.42 1.48 1.00
Wasserstein 3.75 1.41 3.97 0.00

observed that training with Wasserstein distance-based loss makes the output distribution
less indicative of localization and orientation errors. This reduces its practicality in safety
crucial applications where the outliers in prediction should be filtered out. Thus, the
cross-entropy loss is used as the localization loss 𝐷.

4.3.10 Runtime analysis
First, this section studies how the proposed Rolling & Matching influences the runtime
of our method. On the VIGOR dataset, when increasing the number of orientation bins
(𝑅 = 2,4,5,10,20) for Rolling &Matching in all LMU and OMUmodules, the inference speed
of our method decreases slightly (18, 17, 17, 17, 15 FPS). Since the Rolling & Matching is a
convolution process between ground and aerial descriptors, it can be done efficiently.

Next, this section compares the runtime of our method to that of previous state-of-the-
art methods. To include more baselines, the comparison is done on the KITTI dataset. On
the same device (a single V100 GPU), our method takes 0.042s to process a pair of input
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images (24 FPS) on the KITTI dataset, which is slower than SliceMatch’s 156 FPS [33] but
faster than LM’s 0.59 FPS [130]. Importantly, even though SliceMatch runs faster, CCVPE
is considerably more accurate in localization. Note that the authors of [134] evaluated the
runtime of their method on the KITTI-360 dataset with a more advanced GPU (RTX6000),
and their method runs at approximately 2-3 Hz [134], which is slower than CCVPE.

4.3.11 Perspective or eqirectangular projected images
As discussed in Section 4.2.3, the proposed CCVPE model assumes that ground images
follow a cylindrical projection, namely that each column of pixels in the image represents
the same number of degrees in the horizontal FoV. In practice, regular (non-panoramic)
camera images with a small horizontal FoV, e.g. FoV < 90◦, are rectified using a perspective
projection rather than a cylindrical one. In Section 4.2.3, it is claimed that using perspective
images as input to our CCVPE model still works well, even though it somewhat violates
the cylindrical assumption. In this section, detailed experimental results are provided to
support the claim.

This section compares training and testing the proposed CCVPE model using the
regular perspective images in KITTI [20] and Oxford RobotCar datasets [1] to using the
same image after converting them from perspective to cylindrical, or more specifically,
equirectangular, projected images. As the detailed results for both datasets in Table 4.6
and 4.7 show, it can be observed that there is little performance difference between models
using the different types of projections. Thus, it is proposed to directly input perspective
images into the model instead of including extra image pre-processing.

Note that the ground encoder is trained end-to-end, hence the ground descriptors
can be optimized for robustness against slight violations of the assumption that a certain
number of horizontal pixels correspond to a certain number of degrees in the horizontal
FoV. Plus, when the horizontal FoV of the perspective image is relatively small, as is the case
for images in the KITTI [20] and Oxford RobotCar [1] datasets, the difference between the
perspective image and the equirectangular projected images is also small, see an example
from Oxford RobotCar in Figure 4.15.

Figure 4.15: An example ground image from Oxford RobotCar dataset. Left: perspective projection (no image
processing was applied). Right: equirectangular projection (pre-processed image).
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Table 4.6: Comparison between using original perspective images (no image processing was applied) and
equirectangular projected images (pre-processed images) for training and testing on the KITTI dataset. Best in
bold. In the leftmost column, ±10◦ denotes training and testing with an orientation prior with noise in the range
[−10◦,10◦], and 360◦ means no orientation prior by using noise from the 360◦ circular domain.

Same-Area ↓ Loc. (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Ori. (◦) ↑ Ori. (%)
mean med. 1m 3m 5m 1m 3m 5m mean med. 1◦ 3◦ 5◦

±10◦
Perspective 1.22 0.62 97.35 98.65 99.71 77.13 96.08 97.16 0.67 0.54 77.39 99.47 99.95
Equirectangular 1.11 0.62 97.67 98.67 99.84 81.13 96.34 97.51 0.69 0.56 76.23 99.44 99.92

360◦
Perspective 6.88 3.47 53.30 77.63 85.13 25.84 55.05 68.49 15.01 6.12 8.96 26.48 42.75
Equirectangular 6.79 3.33 55.00 78.74 85.98 26.85 55.63 68.70 13.64 5.62 9.73 29.47 45.16

Cross-Area ↓ Loc. (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Ori. (◦) ↑ Ori. (%)
mean med. 1m 3m 5m 1m 3m 5m mean med. 1◦ 3◦ 5◦

±10◦
Perspective 9.16 3.33 44.06 81.72 90.23 23.08 52.85 64.31 1.55 0.84 57.72 92.34 96.19
Equirectangular 10.91 3.35 43.79 79.85 87.30 24.26 52.13 63.30 2.78 0.92 53.54 89.02 92.84

360◦
Perspective 13.94 10.98 23.42 49.15 60.46 11.81 29.85 42.12 77.84 63.84 3.14 9.24 14.56
Equirectangular 13.96 10.93 23.89 50.28 61.81 12.00 29.75 41.81 77.73 65.44 2.72 8.29 13.94

Table 4.7: Comparison between using original perspective images (no image processing was applied) and
equirectangular projected images (pre-processed images) for training and testing on the Oxford RobotCar
dataset. Best in bold.

Projection
Test set 1 Test set 2 Test set 3

↓ Loc. (m) ↓ Ori. (◦) ↓ Loc. (m) ↓ Ori. (◦) ↓ Loc. (m) ↓ Ori. (◦)
mean median mean median mean median mean median mean median mean median

Perspective 1.24 1.02 1.70 1.32 1.56 1.16 1.91 1.10 1.55 0.92 2.50 1.13
Equirectangular 1.23 0.97 2.74 2.06 1.63 1.19 2.88 2.07 1.65 1.10 3.05 1.85

4.4 Conclusion of the chapter
In this chapter, the novel Convolutional Cross-View Pose Estimation method (CCVPE) was
proposed. CCVPE exploits the strength of a translational equivariant feature encoder and
of contrastive learning to learn orientation-aware descriptors for joint localization and
orientation estimation. Instead of estimating a single location, its Localization Decoder
outputs a multi-modal distribution to capture the underlying localization uncertainty.
The Localization Matching Upsampling (LMU) and Orientation Matching Upsampling
(OMU) modules were devised to summarize orientation invariant localization cues and
orientation-dependent information from the descriptor matching result when upsampling
the aerial feature maps inside two separate decoders. The Orientation Decoder outputs a
dense orientation vector field that is conditioned on the localization distribution. Thus,
CCVPE’s orientation prediction becomes multi-modal when there are multiple modes in
the localization distribution.

CCVPE achieves 72% and 36% lower median localization errors (1.42 m and 3.47 m)
than the previous SOTA (5.07 m and 5.41 m) on the VIGOR and KITTI datasets, and it has
comparable orientation estimation accuracy. Importantly, CCVPE can work with ground
images with different horizontal FoVs and incorporate an orientation prior to improve the
localization without re-training. Its probabilistic output can be used to filter out predictions
that potentially have large localization and orientation errors, yielding better practicality
than the baselines that do not have a probability estimate. It is demonstrated on traversals
collected at different times in the Oxford RobotCar dataset that CCVPE can estimate the
pose of ego-vehicle at 14 FPS with a median lateral and longitudinal error below 1meter and
a median orientation error around 1◦, bringing cross-view pose estimation methods closer
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to the requirement of autonomous driving of < 0.3 m lateral and longitudinal localization
accuracy.
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This chapter is based on  T. Lentsch*, Z. Xia*, H. Caesar, and J. F. P. Kooij, “SliceMatch: Geometry-guided
Aggregation for Cross-View Pose Estimation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17225–17234, 2023 [33], *:equal contribution.
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5.1 Overview
Recently, several works have addressed cross-view camera localization [127] or 3-DoF
pose estimation [31, 110, 130, 135]. Roughly, those methods can be categorized into global
image descriptor-based [31, 127] and dense pixel-level feature-based [110, 130, 135] meth-
ods. Global descriptor-based methods take advantage of the compactness of the image
representation and often have relatively fast inference time [31, 127]. Dense pixel-level
feature-based methods [110, 130, 135] are potentially more accurate as they preserve more
details in the image representation. They use the geometric relationship between the
ground and aerial view to project features across views and estimate the camera pose via
computationally expensive iterations. Aiming for both accurate and efficient camera pose
estimation, this dissertation improves the global descriptor-based approach and enforces
feature locality in the descriptor.

This dissertation observes several limitations in existing global descriptor-based cross-
view camera pose estimation methods [31, 127]. First, they rely on the aerial encoder
to encode all spatial context and the aerial encoder has to learn how to aggregate local
information, e.g., via the SAFA module [106], into the global descriptor, without accessing
the information in the ground view or exploiting geometric constraints between the ground-
camera viewing frustum and the aerial image. Second, existing global descriptor-based
methods for cross-view localization [31, 127] do not explicitly consider the orientation of
the ground camera in their descriptor construction. As a result, they either do not estimate
the orientation [127] or require multiple forward passes on different rotated samples to
infer the orientation [31]. Third, existing global descriptors-based methods [31, 127] are
not trained discriminatively against different orientations. Therefore, the learned features
may be less discriminative for orientation prediction.

To address the observed gaps, this chapter devises a novel, accurate, and efficient
method for cross-view camera pose estimation called SliceMatch (see Figure 5.1). Its novel
aerial feature aggregation explicitly encodes directional information and pools features
using known camera geometry to aggregate the extracted aerial features into an aerial
global descriptor. The proposed aggregation step ‘slices’ the ground Horizontal Field-of-
View (HFoV) into orientation-specific descriptors. For each pose in a set of candidates, it
aggregates the extracted aerial features into corresponding aerial slice descriptors. The
aggregation uses cross-view attention to weigh aerial features w.r.t. to the ground descrip-
tor, and exploits the geometric constraint that every vertical slice in the ground image
corresponds to an azimuth range extruding from the projected ground camera position in
the aerial image. The feature extraction is done only once for constructing the descriptors
for all pose candidates, resulting in fast training and inference speed. The model is trained
contrastively by pairing the ground image descriptor with aerial descriptors at different
locations and orientations. Hence, the model learns to extract discriminative features for
both localization and orientation estimation.

The main contributions of this chapter include: i) A novel aerial feature aggregation
step that uses a cross-view attention module for ground-view guided aerial feature selection,
and the geometric relationship between the ground camera’s viewing frustum and the
aerial image to construct pose-dependent aerial descriptors. ii) SliceMatch’s design allows
for efficient implementation, which runs significantly faster than previous state-of-the-art
methods. Namely, for an input ground-aerial image pair, SliceMatch extracts dense features
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Figure 5.1: SliceMatch identifies for a ground-level image (a) its camera’s 3-DoF pose within a corre-
sponding aerial image (b). It divides the camera’s Horizontal Field-of-View (HFoV) into ‘slices’, i.e., vertical
regions in (a). After self-attention, our novel aggregation step (c) applies cross-view attention to create ground
slice-specific aerial feature maps. To efficiently test many candidate poses, the slice features are aggregated using
pose-dependent aerial slice masks that represent the camera’s sliced HFoV at that pose. The slice masks for each
pose are precomputed. All aerial pose descriptors are compared to the ground descriptor, resulting in a dense
scoring map (d). Our output is the best-scoring pose.

only once, aggregates aerial descriptors at a set of poses without extra computation, and
compares the aerial descriptor of each pose with the ground descriptor. iii) Compared to
the previous state-of-the-art global descriptor-based cross-view camera pose estimation
method, SliceMatch constructs orientation-aware descriptors and adopts contrastive learn-
ing for both locations and orientations. Powered by the above designs, SliceMatch sets the
new state-of-the-art for cross-view pose estimation on two commonly used benchmarks.

5.2 Methodology
This section explains the cross-view camera pose estimation task, the proposed SliceMatch
method, and its novel aggregation step.

5.2.1 Cross-view camera pose estimation
Given a ground-level image 𝐺 and a square overhead aerial image 𝐴 that contains the
local surroundings of 𝐺, this chapter aims to determine the 3-DoF pose, 𝜉 = (𝑢,𝑣,𝜃), of the
ground camera that captured 𝐺. Here, (𝑢,𝑣) ∈ [0,1]2 are the image coordinates in 𝐴, and
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Figure 5.2: The SliceMatch pipeline. The input to SliceMatch is a pair of ground-aerial images and a set of K
candidate ground camera poses. SliceMatch consists of ground and aerial feature extractors, feature aggregators,
and a pose predictor. In the shown output image, the matching scores for all poses are overlayed on the input
aerial image. The predicted pose is the one with the highest score.

𝜃 ∈ [0,360◦) is the camera orientation, i.e., the angle from the North direction clockwise
to the center line (the ‘front’ direction) of the ground camera projected onto the aerial
view. Ground images can either be panoramic or have a limited HFoV. Similar to [130], it is
assumed that the ground camera’s pitch and roll are small.

5.2.2 SliceMatch overview
SliceMatch explicitly separates feature extraction and aggregation, where the latter exploits
geometric knowledge on how the ground camera’s viewing frustum projects on the aerial
image. In SliceMatch, pose estimation is formulated as an efficient process that compares
aerial descriptors for a set Ξ = {𝜉1,⋯ , 𝜉𝐾 } of 𝐾 candidate poses to the ground image de-
scriptor. During training, the set consists of 𝐾𝑡𝑟𝑎𝑖𝑛 poses at a fixed uniform grid in 3-DoF
pose space. During inference, SliceMatch uses 𝐾𝑡𝑒𝑠𝑡 poses (𝐾𝑡𝑒𝑠𝑡 > 𝐾𝑡𝑟𝑎𝑖𝑛), and the predicted
pose is the candidate for which its aerial descriptor is most similar to the ground descriptor.
See Figure 5.2 for an overview of the method. The next paragraphs discuss each step.

Feature extractor: Input images 𝐺 and𝐴 are first mapped to feature maps, 𝑧𝑔 = 𝑓𝑔 (𝐺) ∈
ℝ𝐻×𝑊×𝐶 and 𝑧𝑎 = 𝑓𝑎(𝐴) ∈ ℝ𝐿×𝐿×𝐶 , where 𝑓𝑔 and 𝑓𝑎 can be any convolutional backbone (e.g.
VGG [159] or ResNet [160]). SliceMatch adopts the commonly used setup that 𝑓𝑔 and
𝑓𝑎 have the same architecture without weight-sharing [31, 127]. It seeks translational
equivariance in its encoders and thus does not focus on Vision Transformers [133].

Feature aggregator: The proposed novel aggregator step efficiently constructs a single
ground and multiple pose-dependent aerial descriptors from the extracted image features
through the use of ‘slices’. In this chapter, each slice represents a non-overlapping range in
the azimuth viewing direction, and is used to aggregate the local image features within
that azimuth range. In the ground view, a slice thus corresponds to a vertical rectangular
region in the image/feature map, and in the aerial view, it is a triangle-shaped region
extending from a candidate pose (see Figure 5.1). This will be explained in more detail in
Section 5.2.3. This chapter refers to an aggregated feature in a single slice as a ground/aerial
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slice descriptor, containing the visual information for that viewing direction. Likewise,
this chapter refers to a ground/aerial global descriptor as the concatenation of the slice
descriptors of all pose-relative orientations, representing the full HFoV of the ground
camera.

Concretely, the extracted featuremaps 𝑧𝑔 and 𝑧𝑎 are fed into the proposed heterogeneous
feature aggregators, as shown in Figure 5.2. The ground aggregator agg𝑔 (𝑧𝑔 ) generates
a set1 Δ̂𝑔 = {�̂�1𝑔 ,⋯ , �̂�𝑁𝑔 } of 𝐶-dimensional slice descriptors �̂�𝑛𝑔 for 𝑁 azimuth directions,
where 𝑁 is a hyperparameter for the number of slices. The ground global descriptor 𝑑𝑔 =
Concat(�̂�1𝑔 ,⋯ , �̂�𝑁𝑔 ) is thus a vector of length 𝐷 = 𝑁 ⋅𝐶. The aerial aggregator agg𝑎(𝑧𝑎, Δ̂𝑔 ,Ξ)
receives the aerial features 𝑧𝑎, the ground slice descriptors Δ̂𝑔 , and the set of 𝐾 poses Ξ. It
generates Δ𝑎 = {𝑑1𝑎 ,⋯ , 𝑑𝐾𝑎 }, the set of 𝐾 pose-dependent aerial global descriptors 𝑑𝑘𝑎 ∈ ℝ𝐷.
Section 5.2.3 will discuss both aggregators in detail.

Pose predictor: The pose predictor receives the ground global descriptor 𝑑𝑔 , and the
set Δ𝑎 that contains the 𝐾 aerial global descriptors corresponding to the candidate poses in
set Ξ. SliceMatch computes the cosine similarity 𝑐𝑘 between 𝑑𝑔 and all 𝑑𝑘𝑎 ∈ Δ𝑎 and, during
inference, uses 𝜉𝑘 corresponding to the highest similarity value 𝑐𝑘𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑐1,⋯ , 𝑐𝐾 ) as
the predicted pose. Note that similar to [31], SliceMatch obtains a heatmap that can express
multimodal pose estimation ambiguity, which can be beneficial for downstream fusion.

Loss Function: This chapter modifies the infoNCE loss [154] from contrastive repre-
sentation learning [161] to train SliceMatch. Using 𝐾 = 𝐾𝑡𝑟𝑎𝑖𝑛 training poses, our loss  is
defined as,

 = −log
(

exp(𝑐𝐺𝑇/𝜏)
𝛼
𝐾 ∑𝐾

𝑘=1 exp(𝑐𝑘/𝜏)+exp(𝑐𝐺𝑇/𝜏))
. (5.1)

In Equation (5.1), 𝛼 is the introduced hyperparameter that weighs the contribution
of 𝐾 poses to the learning. Variable 𝑐𝐺𝑇 is the cosine similarity between 𝑑𝑔 and 𝑑𝐺𝑇𝑎 at
𝜉𝐺𝑇 , and 𝑐𝑘 is that between 𝑑𝑔 and 𝑑𝑘𝑎 at 𝜉𝑘 . Hyperparameter 𝜏 is proposed in [154]. The
original infoNCE loss in [154] can be acquired using 𝛼 = 𝐾 . With , the ground truth pose
is contrasted with 𝐾𝑡𝑟𝑎𝑖𝑛 other poses at different locations and orientations, thus the model
learns to extract discriminative features for both location and orientation prediction.

5.2.3 Geometry-guided cross-view aggregation
Here, this section describes the novel aggregation step in more detail. Unlike the SAFA
module [106] used in [31, 127], the proposed aggregation uses geometric knowledge on
how the views should spatially relate. Ground-to-aerial attention further improves quality,
as the visual information in each ground slice informs what aerial features are relevant to
produce the corresponding aerial slice descriptors, thus promoting shared features specific
to each viewing direction.

Ground Feature Aggregator:
To summarize the important features in each vertical slice in the ground camera’s

viewing frustum, SliceMatch constructs its ground feature aggregator agg𝑔 (𝑧𝑔 ) with a
self-attention module and a feature slicer. Since not all information in ground image 𝐺 will

1Note that �̂� and Δ̂ (with hat) are used to indicate slice descriptors/sets, and 𝑑 and Δ (without hat) are used to
indicate global descriptors/sets.
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be present in the aerial image 𝐴 (e.g. sky and transient objects), the self-attention module
re-weighs 𝑧𝑔 along the spatial dimensions 𝐻 and 𝑊 ,

𝑧′𝑔 =𝑔 ⊙𝑧𝑔 , 𝑔 = Sigmoid(Conv1×1(𝑧𝑔 )). (5.2)

Here, 𝑔 is a learned mask with shape 𝐻 ×𝑊 ×1 that re-weighs the ground feature
map 𝑧𝑔 into 𝑧′𝑔 . The Sigmoid operation enforces the weights in𝑔 are between 0 and 1.
The ⊙ denotes element-wise multiplication, with the ability to broadcast the mask 𝑔
over all channels of 𝑧𝑔 .

The ground slicer then divides 𝑧′𝑔 into 𝑁 vertical slices, cutting the feature map along
the horizontal (azimuth) direction. For each slice, a normalized slice descriptor is computed
by averaging all features within the slice and applying L2 normalization. This results
in the set Δ̂𝑔 = {�̂�1𝑔 ,⋯ , �̂�𝑁𝑔 } of N ground slice descriptors. Each slice local descriptor thus
represents the model’s attended feature in the corresponding vertical slice (i.e. an azimuth
range) in the ground camera’s viewing frustum. The ground global descriptor is obtained
by concatenating all 𝑁 ground slice descriptors, i.e. 𝑑𝑔 = Concat(�̂�1𝑔 ,⋯ , �̂�𝑁𝑔 ).

Aerial Feature Aggregator:
The aerial aggregator agg𝑎(𝑧𝑎, Δ̂𝑔 ,Ξ) has a similar role as the ground aggregator, but its

feature selection is also conditioned on the ground slice descriptors Δ̂𝑔 using a cross-view
attention module and the set of poses Ξ for geometry-guided feature aggregation.

Cross-view attention: Since in the ground view most content that is seen in the aerial
view will be occluded, SliceMatch proposes a cross-view attention module to specifically
extract the aerial features that should match the visible content of each ground slice. In
detail, SliceMatch matches the 𝐶-dimensional aerial feature 𝑧𝑖,𝑗𝑎 at each spatial location (𝑖, 𝑗)
with 1 ≤ 𝑖 ≤ 𝐿,1 ≤ 𝑗 ≤ 𝐿 in the aerial feature map 𝑧𝑎 to each ground slice descriptor �̂�𝑛𝑔 ∈ Δ̂𝑔

to acquire a similarity score map 𝑆𝑛 of size 𝐿×𝐿, where 𝑆𝑛,𝑖,𝑗 = Sim(�̂�𝑛𝑔 , 𝑧
𝑖,𝑗
𝑎 ). In total, there

are 𝑁 similarity score maps, i.e. one for each ground slice descriptor. Then, SliceMatch
treats each 𝑆𝑛 as extra features and concatenates it along the feature dimension with aerial
feature map 𝑧𝑎 [31], and uses these extended features to produce a cross-view attention
mask,

𝑛
𝑎 = Sigmoid(Conv1×1(Concat(𝑧𝑎, 𝑆𝑛))). (5.3)

Thus, there are in total 𝑁 cross-view masks𝑛
𝑎 . Each of these denotes the importance

of the aerial features w.r.t. the 𝑛-th ground slice descriptor �̂�𝑛𝑔 . Finally, SliceMatch re-weighs
𝑧𝑎 for each ground slice descriptor, giving us 𝑁 re-weighted aerial feature maps 𝑧′𝑛𝑎 of size
𝐿×𝐿×𝐶, i.e. 𝑧′𝑛𝑎 =𝑛

𝑎⊙𝑧𝑎.
Geometry-guided feature aggregation: Finally, the 𝐾 pose-dependent aerial descrip-

tors 𝑑𝑘𝑎 can be constructed for the candidate poses in Ξ. For each pose 𝜉𝑘 , 𝑁 aerial slice
masks 𝑘,𝑛 ∈ [0,1]𝐿×𝐿, 1 ≤ 𝑛 ≤ 𝑁 , can be precomputed. The slice mask 𝑘,𝑛 expresses the
geometry of the ground camera’s viewing frustum in the aerial feature map for the 𝑛-th
orientation slice, assuming that the camera would have the 𝑘-th pose. Each cell in the slice
mask contains a value in the range [0,1] proportional to how much of that cell intersects
this frustum, so 1.0 for fully contained cells, 0.0 for cells fully outside the frustum, and an
intermediate value for cells that partially overlap.
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With the slice masks, the 𝑛-th aerial slice descriptor at pose 𝑘 can be computed efficiently.
For each of the 𝐶 channels, SliceMatch computes a weighted average over all of the 𝐿×𝐿
spatial locations (𝑖, 𝑗) in the feature map 𝑧′𝑛𝑎 , using the elements of slice mask 𝑘,𝑛 as
weights. After L2 normalization, It obtains aerial slice descriptor �̂�𝑘,𝑛𝑎 ,

�̂�𝑘,𝑛𝑎 = Norm(
1

∑𝑖,𝑗 
𝑘,𝑛
𝑖,𝑗

∑
𝑖,𝑗

(𝑘,𝑛⊙𝑧′𝑛𝑎 )𝑖,𝑗). (5.4)

Analogous to the ground view, the 𝑘-th pose’s global descriptor is obtained using
𝑑𝑘𝑎 = Concat(�̂�𝑘,1𝑎 ,⋯ , �̂�𝑘,𝑁𝑎 ).

Efficient implementation: A benefit of the proposed architecture is that the compu-
tational complexity of most operations is independent of the number of candidate poses
𝐾 . The main cost to increase 𝐾 , and therefore improve accuracy by testing more diverse
poses at inference time, is to add more precomputed slice masks, and perform the addi-
tional multiplications and normalizations for Equation (5.4) and the final cosine similarity
comparison. These are simple operations that can be highly optimized and parallelized
in the implementation, and it will be shown that testing more candidate poses does not
increase our runtime.

5.3 Experiments
This section first introduces the used datasets and the evaluation metrics. After that,
the implementation details and ablation studies are presented. Finally, SliceMatch is
quantitatively and qualitatively compared to state-of-the-art baselines.

5.3.1 Datasets
VIGOR dataset [127] contains geo-tagged ground-level panoramas and aerial images
collected in 4 cities in the US. As defined in [127], each ground panorama has 1 positive and
3 semi-positive aerial images. An aerial image is positive if the ground camera’s location is
within the aerial image’s center quarter area, otherwise, it is semi-positive. Importantly,
this dissertation found that the original ground truth locations in [127] can contain errors
up to 3 meters due to the use of wrong ground resolutions (0.114m/pixel) of the aerial
images, thus this dissertation created and uses here corrected labels. For training and
testing the proposed method and baselines, experiments use positive aerial images and
corrected ground truth (this dissertation reran all baselines since quantitative results with
the new labels differ slightly from those reported in the literature). Experiments adopt
the same-area and cross-area splits from [127] to test the model’s generalization to new
measurements in the same cities and across different cities. Besides, the same-area training
dataset of New York is used as a tuning split for the ablation study.

KITTI dataset [20] contains ground-level images with a limited HFoV taken by a
moving vehicle from different trajectories at different times and [130] augmented the
dataset with aerial images. This dissertation uses their split. The Training and Test1 sets
are different measurements from the same region, while the Test2 set has been captured in
a different region.
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(a) VIGOR example 1 (b) VIGOR example 2 (c) VIGOR example 3 (d) KITTI example 1 (e) KITTI example 2

Figure 5.3: Qualitative evaluation of SliceMatch on VIGOR [127] and KITTI [130, 162]. Top row: input
ground image. Bottom row: GT and pose estimation results overlayed on input aerial image. Red shading indicates
highest similarity score between the ground descriptor and the aerial descriptors among all orientations at that
location. (c) shows a SliceMatch failure: the best match is in the wrong mode.

5.3.2 Evaluation metrics
This chapter follows the convention of [31] and reports the mean and median error in
meters between the predicted and ground truth location over all test image pairs. Similarly,
for orientation prediction, this chapter reports the mean and median absolute angular
difference between the predicted and ground truth orientation in degrees. Following [130],
for the KITTI dataset, this chapter additionally includes the recall under a certain threshold
for longitudinal (driving direction) and lateral localization error, and orientation estimation
error. The thresholds are set to 1m and 5m for localization and to 1° and 5° for orientation
estimation.

5.3.3 Implementation details
As in [31, 127], the proposed SliceMatch uses VGG16 [159] up to stage 5 for the feature
extractors 𝑓𝑔 and 𝑓𝑎. The pooling operation of the last layer is removed. The spatial size
of 𝐼𝑔 is 320 × 640 on VIGOR dataset and 256 × 1024 on KITTI dataset, and that of 𝐼𝑎 is
512×512 on both datasets. This results in feature maps with 𝐻 ×𝑊 = 20×40 / 16×64 on
VIGOR / KITTI, 𝐿 × 𝐿 = 32 × 32, and 𝐶 = 512. The feature extractors do not share their
weights and are pre-trained on ImageNet [146]. In Equation (5.2) and (5.3), Conv1×1 consists
of two sequential convolution layers with a kernel size of 1 and a ReLU activation in
between. During training, SliceMatch is trained end-to-end using Adam optimizer [147]
with a learning rate of 1 × 10−5, and this chapter uses a batch size of 4. To get a set of
candidate camera poses Ξ, the default setting of SliceMatch uses poses at a uniform grid of
7×7 locations × 16 orientations on VIGOR, and 5×5 locations × 16 orientations on KITTI
during training. For inference, the default setting uses 21×21×64 and 15×15×64 poses,
respectively. This results in 𝐾𝑡𝑟𝑎𝑖𝑛 = 784 and 𝐾𝑡𝑒𝑠𝑡 = 28224 on VIGOR, and 𝐾𝑡𝑟𝑎𝑖𝑛 = 400 and
𝐾𝑡𝑒𝑠𝑡 = 14400 on KITTI.

5.3.4 Baselines
Experiments compare SliceMatch to state-of-the-art global descriptor-based methods Cross-
View Regression (CVR) [127] and Multi-Class Classification (MCC) [31] on the VIGOR
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dataset2. Since CVR does localization with known orientation and, in [31], MCC mainly
focuses on localization, this chapter compares SliceMatch to baselines for localization with
known orientation and also for 3-DoF pose estimation. Following [31], this chapter trains
CVR [127] for localization only (not retrieval) as it gives better localization results. On the
KITTI dataset, SliceMatch is compared to dense local feature-based fine-grained image
retrieval method DSM [121], and to iterative camera pose estimation method LM [130].
In [130], the LM method is trained and tested with a 20° prior on the ground camera’s
orientation. Experiments adopt the same setting and additionally provide the results
with LM and SliceMatch trained and tested with unknown orientation. On both datasets,
baselines are trained with inputs with the same size as used for SliceMatch.

5.3.5 Ablation study

Before other experiments, this section tests on the VIGOR tuning set using 𝛼 ∈ {2,4,8,16,𝐾 }
for the loss of Equation (5.1), and tune the number of slices 𝑁 . it is found that 𝛼 = 4
gives the best result, yielding 0.48m improvement on the mean localization error for our
model compared to 𝛼 = 𝐾 in the original infoNCE loss [154]. If the number of slices 𝑁 is
small, the mean and median localization and orientation estimation errors increase (see
Table 5.1). The model with 𝑁 = 1 cannot infer orientation. When the width of the ground
feature map 𝑊 is not a multiple of 𝑁 , SliceMatch interpolates the ground feature map 𝑧𝑔
to acquire �̂�𝑛𝑔 . However, it can be seen that the performance saturates above 16 slices. Next,
this section tested SliceMatch without cross-view attention by dropping the concatenated
𝑆𝑛 in Equation (5.3). Table 5.1 shows that including our proposed cross-view attention
module brings a boost to both localization and orientation estimation performance. Thus,
SliceMatch includes cross-view attention and uses 𝛼 = 4 and 𝑁 = 16 in the following main
experiments.

Cross-View ↓ Location (m) ↓ Orientation (°)
N Attention Mean Median Mean Median

1 X 12.73 11.51 - -

4 ✔ 9.47 7.47 51.49 32.96
8 ✔ 9.16 6.81 37.68 15.58
16 ✔ 7.60 5.23 29.27 9.22
32 ✔ 8.14 5.31 32.01 10.31

16‡ ✔ 8.08 5.44 31.05 11.02

16 X 7.93 5.81 29.50 12.32

Table 5.1: Location and orientation error for different slice number 𝑁 values on the VIGOR tuning split.
‡ indicates model trained with original infoNCE loss [154]. Best performance in bold.
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Same-Area Cross-Area
Aligned ↓ Location (m) ↓ Orientation (°) ↓ Location (m) ↓ Orientation (°)

Model Backbone Images Mean Median Mean Median Mean Median Mean Median

CVR [127] VGG16 ✔ 8.99 7.81 - - 8.89 7.73 - -
MCC [31] VGG16 ✔ 6.94 3.64 - - 9.05 5.14 - -
SliceMatch
(ours)

VGG16 ✔ 5.18 2.58 - - 5.53 2.55 - -

MCC [31] VGG16 X 9.87 6.25 56.86 16.02 12.66 9.55 72.13 29.97
SliceMatch
(ours)

VGG16 X 8.41 5.07 28.43 5.15 8.48 5.64 26.20 5.18

SliceMatch
(ours)

ResNet50 X 6.49 3.13 25.46 4.71 7.22 3.31 25.97 4.51

Table 5.2: Location and orientation estimation errors on VIGOR [127]. Aligned Images means the ground
image orientation is known. For unaligned images, the models estimate the 3-DoF ground camera pose. Best
performance in bold.

↓ Location (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Orientation (°) ↑ Orientation (%)
Samearea Prior Mean Med. r@1m r@5m r@1m r@5m Mean Med. r@1° r@5°

DSM [121] 20° - - 10.12 48.24 4.08 20.14 - - 3.58 24.44
LM [130] 20° 12.08 11.42 35.54 80.36 5.22 26.13 3.72 2.83 19.64 71.72
SliceMatch
(ours)

20° 7.96 4.39 49.09 98.52 15.19 57.35 4.12 3.65 13.41 64.17

LM [130] X 15.51 15.97 5.17 25.44 4.66 25.39 89.91 90.75 0.61 2.89
SliceMatch
(ours)

X 9.39 5.41 39.73 87.92 13.63 49.22 8.71 4.42 11.35 55.82

Table 5.3: Location and orientation estimation error and recall on KITTI [130, 162]. Prior means the
orientation is known with a certain amount of noise. Long. and Orien. are abbreviations for Longitudinal and
Orientation, respectively. Best performance in bold. The results for DSM [121] are taken from [130] and the
trained LM model provided by [130] is used for its evaluation.

5.3.6 Same-area generalization
Experiments test model generalization to new panoramic and limited HFoV ground images
within the same area on VIGOR and KITTI. As shown in Table 5.2 Same-Area, SliceMatch
surpasses CVR [127] and MCC [31] in terms of both localization with known orientation
and 3-DoF camera pose estimation. Compared to MCC, in which location-wise discrimina-
tive features are learned, SliceMatch contrasts the learned global descriptors with aerial
descriptors at different locations and orientations. Hence, it is more discriminative espe-
cially w.r.t. orientations, and has a 19% and 68% reduction in the median localization and
median orientation error when the orientation of test ground images is unknown. This
chapter uses VGG16 as our main backbone for a fair comparison to the baselines, though
this chapter notes that SliceMatch’s localization and orientation error decreases even fur-
ther when using ResNet50 as backbone. Figure 5.3b shows that SliceMatch can express
its multimodal uncertainty when the observed scene has a symmetric layout. However, it
sometimes picks candidate poses at a wrong mode, resulting in large errors (see Figure 5.3c).
Over all test samples, SliceMatch has a substantially lower median error than its mean

2This chapter re-trained and evaluated the existing baselines on our corrected ground truth locations (see
Section 5.3.1). The improved ground truth and code for our model are available at https://github.com/
tudelft-iv/SliceMatch.

https://github.com/tudelft-iv/SliceMatch
https://github.com/tudelft-iv/SliceMatch
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↓ Location (m) ↑ Lateral (%) ↑ Longitudinal (%) ↓ Orientation (°) ↑ Orientation (%)
Crossarea Prior Mean Med. r@1m r@5m r@1m r@5m Mean Med. r@1° r@5°

DSM [121] 20° - - 10.77 48.24 3.87 19.50 - - 3.53 23.95
LM [130] 20° 12.58 12.11 27.82 72.89 5.75 26.48 3.95 3.03 18.42 71.00
SliceMatch
(ours)

20° 13.50 9.77 32.43 86.44 8.30 35.57 4.20 6.61 46.82 46.82

LM [130] X 15.50 16.02 5.60 25.60 5.64 25.76 89.84 89.85 0.60 2.65
SliceMatch
(ours)

X 14.85 11.85 24.00 72.89 7.17 33.12 23.64 7.96 31.69 31.69

Table 5.4: Location and orientation estimation error and recall on KITTI [130, 162]. Prior means the
orientation is known with a certain amount of noise. Long. and Orien. are abbreviations for Longitudinal and
Orientation, respectively. Best performance in bold. The results for DSM [121] are taken from [130] and the
trained LM model provided by [130] is used for its evaluation.

error for both localization and orientation estimation, indicating that the mean is skewed
by such outliers. In practice, SliceMatch’s multimodal uncertainty could be resolved by
applying downstream a probabilistic temporal filter on its output [31].

As shown in Table 5.3, on the KITTI dataset, both camera pose estimation methods,
LM [130] and SliceMatch, surpass the fine-grained image retrieval-based method DSM [121].
When the orientation prior is present, SliceMatch has 34% and 62% lower mean and median
localization error than LM [130], and its recall@1m and recall@5m is higher than that
of LM [130] for localization in both lateral and longitudinal directions. Notably, since
the ground images in KITTI view in the driving direction with a limited HFoV, finding
the location along the longitudinal direction is more challenging than that for the lateral
direction. Thus, recall for longitudinal direction is considerably lower than that for lateral
direction, and this trend applies to all compared methods. The iterative refinement LM
method [130] shows its advantage in orientation prediction when the strong orientation
prior is present. This chapter highlights that SliceMatch can work without this prior. In
contrast, LM [130] relies on the projection of dense local features from the aerial view
to ground view [130] and does not work when there is no same scene captured in the
projected view and the ground view (see Table 5.3).

5.3.7 Cross-area generalization
Generalization to new ground images in different areas is a more difficult task than that
in the same area since the test area can look very different from the training area (e.g.
different cities in the VIGOR dataset). As shown in Table 5.2 Cross-Area, SliceMatch
generalizes well under this challenging setting in terms of both localization and orientation
estimation, while there observes more degeneration in the cross-area test performance of
MCC [31]. MCC’s feature decoder receives the full scene information from its encoder,
while SliceMatch divides the observed scene into slices and seeks per-slice discriminative
features, resulting in more robustness against the change of the scene. Again, using a
ResNet50 backbone further improves our results.

On KITTI Test2 set (Table 5.4), SliceMatch achieves a lower median localization error
than LM [130] when the 20° orientation prior is present in both training and testing. But
our mean error is higher than LM [130] by 0.92m and LM [130] surpasses SliceMatch in
orientation prediction when a strong prior is available. SliceMatch performs considerably
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better when no orientation prior is available as LM [130] gets stuck in local optima.

5.3.8 Runtime analysis
This section compares the runtime of SliceMatch to that of baselines on the same hardware,
a single NVIDIA Tesla V100 GPU. For all baselines, the released code from their authors
is used. CVR [127] and MCC [31] are implemented in TensorFlow, LM [130] and our
SliceMatch in PyTorch. The frames per second (FPS) are calculated by taking the average
inference time per input pair over all test samples. On VIGOR, SliceMatch achieves an
FPS of 167, which is considerably faster than global descriptor-based baselines: 50 FPS
for CVR [127] for localization only, 29 FPS / 3 FPS for MCC [31] for localization only /
pose estimation. On KITTI, SliceMatch runs at 156 FPS, while the local feature-based
iterative method, LM [130] has 0.59 FPS. Importantly, the runtime of SliceMatch remains
nearly constant as the number of used candidate poses 𝐾 increases (experiment tested 𝐾
up to1×106).

5.4 Conclusion of the chapter
This chapter has introduced SliceMatch, a novel, accurate, and efficient method for cross-
view 3-DoF camera pose estimation. By splitting the HFoV into slices, the proposed
architecture can learn discriminative features in terms of both localization and orientation
estimation. The proposed aggregation can select the relevant aerial image features for each
ground view slice through cross-view attention, and it is observed that there are further
accuracy gains by reweighing the terms in the infoNCE loss. With the same VGG backbone,
SliceMatch achieves 19% and 62% lower median localization error than the previous state-
of-the-art on the VIGOR and KITTI datasets. A better backbone improves SliceMatch’s
performance even further, e.g. with ResNet50 its 50% lower median error on VIGOR sets
a new state-of-the-art. To construct the global descriptor for a candidate pose, only an
efficient weighted averaging over the aerial features is needed using precomputed masks
(which represent the ground camera’s frustum geometry in the aerial view), achieving
inference at more than 150 FPS. SliceMatch can include available priors in its candidate
poses, e.g. for an initial orientation estimate, but does not require it.
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6
Adapting fine-grained

cross-view localization to
areas without fine ground

truth

This chapter is based on  Z. Xia, Y. Shi, H. Li, and J. F. P. Kooij, “Adapting Fine-grained Cross-view Localization to
Areas without Fine Ground Truth,” European Conference on Computer Vision, 2024 [34].
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6.1 Overview

Mα

New York Chicago

Mα

Domain Gap

Mβ
Knowledge
Distillation

Ground view
Aerial  view

{image pairs, 
ground truth 

positions}

{image pairs}

Direct generalization

No fine ground 
truth for training

Figure 6.1: Learning-based cross-view localization models often perform well when test images are from the same
area used in training, as shown in the green box. When inference in a new target area where no ground truth is
available, the standard practice (in purple) directly deploys a model trained in a different area, leaving an obvious
domain gap. Due to this domain gap, the direct generalization often results in a performance drop, causing
uncertain or erroneous predictions. This chapter proposes a knowledge self-distillation-based weakly-supervised
learning approach (in cyan) to adapt the model to the target area using only ground-aerial image pairs without
ground truth locations, and this leads to better localization performance.

The key underlying assumption of fine-grained cross-view visual localization [31–
33, 130, 131, 134, 163] is that although the accurate fine-grained location of the ground
camera is not known, a coarse localization prior is available at inference time to identify
the aerial image that coves the ground camera’s location.

As shown in Figure 6.1, there are twomain scenarios in cross-view localization. (1) Same-
area testing (Figure 6.1, green box): When the fine ground truth, i.e. the accurate location
of the ground camera, is available in the target area, a cross-view localization model can be
trained on this data and then deployed for inference on new test images. (2) Cross-area
testing (Figure 6.1, yellow box, left): When there is no fine ground truth in the target area,
it is common to train the model on images from a different area for which fine ground truth
is available, and then the trained model is directly deployed in the target area. Because
of the domain gap between the two areas, the predicted location becomes less reliable.
Although many works [31–33, 127, 130, 134, 163] have been proposed for fine-grained
cross-view localization, they all suffer from this performance drop when directly deploying
in a new target area. Nevertheless, this cross-area scenario is more realistic for real-world
use cases, since collecting fine ground truth of every region is expensive and sometimes
infeasible. Recent works [33, 130, 134] even found errors in ground truth locations in
popular datasets [20, 127, 164, 165]. Therefore, an alternative to fully-supervised training
on fine ground truth is needed to scale cross-view localization models to larger areas.

This chapter proposes to address this problem of cross-area localization by relying on
the exact same key assumption in the fine-grained cross-view localization task. Namely, it
is straightforward to collect ground images with coarse ground truth, i.e. the rough location
of the ground camera, at a new area to identify the local aerial image patch. For instance,
inaccurate GNSS measurements in urban canyons are unreliable as fine ground truth [140],
but can still be used as coarse localization prior. Then, the goal is to improve a pre-trained
model’s localization performance in the target area by leveraging only the ground-aerial
image pairs in the target area, without associated fine ground truth locations1.
1Recent models need the ground camera’s orientation for training. This chapter assumes the camera orientation
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For this goal, this chapter adopts knowledge self-distillation [166, 167] to finetune a
fine-grained cross-view localization model in a weakly-supervised manner in which only
coarse location is used for pairing the ground and aerial images. A pre-trained model
from another area is used as the teacher model to generate pseudo ground truth for the
target-area images and use it to train a student model, which is initialized as a copy of
the teacher model. Since the teacher’s output can be uncertain in the target area, directly
using it as pseudo ground truth might reinforce incorrect localization estimates and lead
to sub-optimal results. This chapter addresses this by introducing methods to reduce the
uncertainty and filter out the outliers in the pseudo ground truth. Concretely, the main
contributions of this chapter are:

(1) This chapter proposes a knowledge self-distillation-based weakly-supervised learn-
ing approach that considerably improves models’ localization performance in a new area by
only leveraging the ground-aerial image pairs without ground truth locations. The proposed
approach is validated on two state-of-the-art methods on two benchmarks. (2) For methods
with coarse-to-fine outputs, this chapter investigates how to reduce the uncertainty and
suppress the noise in teacher model’s predictions. Using the proposed single-modal pseudo
ground truth leads to a better student model than using the multi-modal heat maps from
the teacher model. (3) This chapter designs a simple but effective method for filtering
outliers in the pseudo ground truth. Training with filtered pseudo ground truth further
improves the localization accuracy of the student model.

6.2 Methodology
This section first formalizes the task of fine-grained cross-view localization. After that, the
proposed approach is introduced.

6.2.1 Task definition
Given a ground-level image 𝐺 and an aerial image 𝐴 that covers the local surroundings of
𝐺, the task of fine-grained cross-view localization is to determine the image coordinates
�̂� = (�̂�, �̂�) of the ground camera within 𝐴, where �̂� ∈ [0,1] and �̂� ∈ [0,1]. Recent methods [31–
33, 134, 163] achieve this task by training a deep model(𝐺,𝐴) which predicts a heat map
𝐻 to capture the underlying localization confidence over spatial locations, and the most
confident location can be used as predicted location 𝑦,

𝐻 =(𝐺,𝐴), 𝑦 = argmax
𝑢,𝑣

(𝐻 (𝑢,𝑣)). (6.1)

To optimize the model’s parameters 𝜃𝛼 with respect to a model specific loss functions
, an annotated dataset of a set of𝑁𝛼 ground-aerial image pairs, 𝕀𝛼 = {{𝐺1,𝐴1}, ..., {𝐺𝑁𝛼 ,𝐴𝑁𝛼 }},
and their corresponding ground truth 𝕐𝛼 = {�̂�1, ..., �̂�𝑁𝛼 } is used,

𝜃𝛼 = argmin
𝜃

𝔼 [((𝐺,𝐴 ∣ 𝜃), �̂�)] , (6.2)

where {𝐺,𝐴} ∈ 𝕀𝛼 and �̂� ∈ 𝕐𝛼 .

is known since it can be acquired easily, e.g. by the digital compass in a mobile phone or a vehicle.
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The training image set 𝕀𝛼 consists of samples drawn from a true distribution 𝛼

representing a specific geographic area 𝛼, i.e. 𝕀𝛼 i.i.d.∼ 𝛼 . When the model is deployed, the
test image set 𝕀𝑡𝑒𝑠𝑡 can either come from the same area 𝛼, or a new environment 𝛽. As
motivated before, this chapter focuses on the cross-area setting, namely 𝕀𝑡𝑒𝑠𝑡 is from the
target area 𝛽, i.e. 𝕀𝑡𝑒𝑠𝑡 i.i.d.∼ 𝛽 . Because of the domain gap, 𝛽 ≠𝛼 , directly deploying the
trained model 𝛼 ∶=(⋅ ∣ 𝜃𝛼) on 𝕀𝑡𝑒𝑠𝑡 as in current practice is sub-optimal.

It is important to note that standard fine-grained cross-view localization [32, 33, 134,
163] assumes the pairing between ground and aerial images is known during inference, as
collecting ground-level images with coarse location estimates in the target area is often easy.
Therefore, this section proposes to consider the easily available pairing information for
weakly-supervised learning by collecting another set of images 𝕀𝛽 = {{𝐺1,𝐴1}, ..., {𝐺𝑁𝛽 ,𝐴𝑁𝛽 }}

from the target area 𝛽, 𝕀𝛽
i.i.d.∼ 𝛽 , without corresponding fine ground truth 𝕐𝛽 . As noted

before, the orientation of the ground camera is assumed known.
The objective is then to adapt a fine-grained cross-view localization model 𝛼 to the

target area 𝛽 by leveraging the image set 𝕀𝛽 without ground truth locations such that the
model performance on 𝕀𝑡𝑒𝑠𝑡 can be improved.

6.2.2 UDA for cross-view localization
So far, no prior work addressed the task of adapting fine-grained cross-view localization to
new areas without labels. To decide on a suitable UDA approach, this section first notes
that heat maps of state-of-the-art models reflect more uncertainty for cross-area samples
than for same-area samples [32, 33, 163]. The higher uncertainty results in more small
positional errors, but also more modes in the heat map, yielding more outliers with large
positional errors.

This section therefore considers UDA techniques that can help reduce the uncertainty.
One option is entropy minimization [168], namely to directly deploy the trained model𝛼

on the image set 𝕀𝛽 and then encourage the final output heat map 𝐻 to be more certain by
minimizing its entropy. However minimizing the entropy does not necessarily encourage
the model to converge towards the correct location for {𝐺,𝐴} ∈ 𝕀𝛽 , as the model may just
as well become more confident about the outliers. Our experiments shall validate entropy
minimization’s shortcomings for our task.

This section instead proposes to pursue knowledge self-distillation [169] for the target
task. The trained model𝛼 from the source area 𝛼 can be used as the teacher model to
generate pseudo ground truth 𝑋 for image set 𝕀𝛽 to train a student model𝛽 . Here, this
section considers 𝑋 as a target heat map with the same spatial resolution as the aerial image
𝐴. The student model has the same architecture as the teacher model and is initialized
using the teacher model’s weights 𝜃𝛼 . Encouraging the outputs of the student model to
mimic 𝑋 can improve the accuracy of the student model on images from 𝛽, especially if the
generation of pseudo ground truth is controlled to suppress unwanted modes and select
for reliable samples.

Finally, this section points out that the recent state-of-the-art methods [32, 163] have
𝐾 coarse-to-fine heat map outputs, i.e. ℍ = (𝐺,𝐴) and ℍ = {𝐻1, ...,𝐻𝐾 }. The spatial
resolution of the next level heat map is higher than that of the previous level, namely
res(𝐻𝑘+1)> res(𝐻𝑘)where 𝑘 is the index for the level and res() returns the spatial resolution.
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Figure 6.2: Overview of the proposed weakly-supervised learning approach. The proposed method first employs
a teacher model trained on data from another area to generate pseudo GT on target-area images, shown in blue.
The pseudo GT is then used to train an auxiliary student model 𝑜. After that, it compares the predictions
from the teacher model and those from the auxiliary student model, and filters out unreliable teacher predictions
(the middle part of this figure). The remaining predictions, shown in green, are used to train the final student
model𝛽 .

The final predicted location then becomes 𝑦 = argmax𝑢,𝑣(𝐻𝐾 (𝑢,𝑣)). For other applications
with coarse-to-finemodels, encouraging shallower layers’ activation tomimic deeper layers’
activation can bootstrap model performance [169]. Similarly, knowledge self-distillation
for cross-view localization may also exploit such coarse-to-fine maps.

6.2.3 Proposed approach
Usually, the deeper layers in the model have access to more information than the shallower
layers, e.g. the fine-grained scene layout information passed by the skipped connections,
as in UNet [88]. Hence, the output from deeper layers can be more precise than that from
shallower layers. This section therefore proposes to follow the “Best Teacher Distillation”
paradigm [169] and generate pseudo ground truth 𝑋 from only the highest-resolution heat
map predicted by the teacher model on the target domain input.

A naive approach is using simply𝑋 ∶=𝐻𝛼
𝐾 from teacher output2 {𝐻𝛼

1 ,⋯ ,𝐻𝛼
𝐾 } =𝛼(𝐺,𝐴)

for any {𝐺,𝐴} ∈ 𝕀𝛽 . Then, this high-resolution pseudo ground truth 𝑋 is down-sampled
to create a set of pseudo ground truth heat maps ℙ = {𝑃1, ..., 𝑃𝐾 } to supervise the student
model at all levels,

𝑃𝑘 = downsample𝑘(𝑋 ) s.t. res(𝑃𝑘) = res(𝐻𝑘). (6.3)

The setP𝛽 = {ℙ1, ...,ℙ𝑁𝛽 } is the complete pseudo ground truth for image set 𝕀𝛽 in the target
area for training the student model, where 𝑁𝛽 is the number of the ground-aerial image
pairs in 𝕀𝛽 .

However, since the pseudo ground truth 𝑋 contains errors, directly following this naive
approach might propagate the errors to the student model𝛽 . Thus, this section presents
several strategies to reduce the teacher’s uncertainty, and deal with noise and large outliers
in 𝑋 . The proposed designs are highlighted in the overview of the approach in Figure 6.2.

2Note that this chapter uses superscript 𝛼 to indicate output from model 𝛼 .
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Coarse-only Supervision: Standard Best Teacher Distillation [169] suggests supervis-
ing heat maps at all levels of the student model using the pseudo ground truth. However,
the spatial accuracy of 𝑋 is limited, and using 𝑋 to supervise the high-resolution outputs
of the student model might propagate this noise. It is noted that the down-sampling in
Equation 6.3 suppresses such positional noise at the lower resolution 𝑃𝑘 . Thus using only
the lower level 𝑃𝑘 might lead to a better student model. This section therefore considers
to only compute the loss on student model’s outputs ℍ𝛽 =𝛽(𝐺,𝐴) up to a certain level
𝐾 ′ ≤ 𝐾 ,

(ℍ𝛽 ,ℙ) =
1
𝐾 ′

𝐾 ′

∑
𝑘=1

𝑘(𝐻
𝛽
𝑘 , 𝑃𝑘). (6.4)

Here 𝐾 ′ is a hyperparameter, and 𝑘(𝐻
𝛽
𝑘 , 𝑃𝑘) is a weighted sum of infoNCE losses [154],

similar to regular training in [31, 32], except this section uses pseudo ground truth 𝑃𝑘 as
weight,

𝑘(𝐻
𝛽
𝑘 , 𝑃𝑘) =

1
∑𝑃𝑘

∑
𝑚,𝑛

𝑃𝑚,𝑛
𝑘 ⋅infoNCE(𝐻

𝛽
𝑘 ∣ (𝑚,𝑛)). (6.5)

infoNCE(𝐻
𝛽
𝑘 ∣ (𝑚,𝑛)) denotes an infoNCE loss interpreting 𝐻𝛽

𝑘 as metric learning scores,
location (𝑚,𝑛) as the positive class, and all other locations as the negative class.

Mode-based Pseudo Ground Truth: Rather than using 𝐻𝛼
𝐾 directly as pseudo ground

truth𝑋 , This section proposes to create a “clean” pseudo ground truth𝑋 that only represents
its mode 𝑦𝛼 = argmax(𝐻𝛼

𝐾 ). This section thus provides the student with a training objective
that represents less uncertainty for the target domain input than its teacher. Still, it is
common when training fine-grained cross-view localization models, to apply Gaussian
label smoothing [31, 134] even with reliable ground truth to aid the learning objective and
increase robustness to remaining errors in the annotation [170]. This section similarly
applies Gaussian label smoothing centered at 𝑦𝛼 ,

𝑋 (𝑢,𝑣) = ((𝑢,𝑣) ∣ 𝑦𝛼 , 𝐼2𝜎2), res(𝑋 ) = res(𝐴). (6.6)

In Equation 6.6, the standard deviation 𝜎 is a hyperparameter and 𝐼2 is a 2D identity matrix.
Outlier Filtering: Recent deep learning advances [171] highlighted the importance

of using curated data. Motivated by this principle, this section prefers having fewer but
more reliable samples of the target domain, over having more samples but with potentially
large errors in the pseudo ground truth. TheMode-based Pseudo Ground Truth could force a
sample’s ground truth to commit to a wrong (outlier) location, therefore this section seeks
to filter out such samples.

This section here makes another observation: samples where the predicted locations
𝑦𝛼 of a teacher and 𝑦𝛽 of a student greatly differ, the teacher’s predictions were more likely
to be outliers compared to samples where the teacher and student’s predicted locations are
more consistent, as it will be demonstrated in the experiments. Thus, this section proposes
to first train another auxiliary student model𝑜 on all data from the target domain, and
compare its prediction to the teacher’s to identify stable predictions with little change in
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the predicted location. Then, only those reliable non-outlier samples are used to train the
final student model𝛽 .

Concretely, this section first optimizes the auxiliary student model𝑜 on all 𝕀𝛽 with
P𝛽 using,

𝜃𝑜 = argmin
𝜃

𝔼 [((𝐺,𝐴 ∣ 𝜃),ℙ)] , (6.7)

where {𝐺,𝐴} ∈ 𝕀𝛽 and 𝕀𝛽 ∈P𝛽 .
Then, this section calculates the L2-distance 𝑑𝛼,𝑜 = ‖𝐲𝛼 −𝐲𝐨‖2 between the image coor-

dinates predicted by 𝛼 and 𝑜 to find the potential unreliable ℙ. The resulting distance
set 𝔻 = {𝑑𝛼,𝑜1 , ..., 𝑑𝛼,𝑜𝑁𝛽

} is used to keep the top-𝑇% samples in 𝕀𝛽 that have the smallest 𝑇%
distance 𝑑𝛼,𝑜. Denoting the filtered image set as 𝕀𝛽 and corresponding pseudo ground truth
as P𝛽 , the final student model 𝛽 is optimized using Equation 6.7 by substituting 𝕀𝛽 with
𝕀𝛽 and P𝛽 with P𝛽 .

6.3 Experiments
This section first introduces the two used datasets and the evaluation metrics. Then, it
discusses two state-of-the-art methods [32, 163], based on which the proposed weakly-
supervised learning is evaluated, followed by implementation details. After this, the test
results and a detailed ablation study are provided.

6.3.1 Datasets
This chapter adopts two cross-view localization datasets, VIGOR [127] and KITTI [20], and
focuses on their cross-area split.

VIGOR dataset contains ground-level panoramic images and their corresponding
aerial images collected in four US cities. In its cross-area split, the training set contains
images from two cities, and the test set is collected from the other two cities. This section
uses the training set to train the teacher model and focuses on the cross-area setting in
the experiments. To compare direct generalization and our proposed weakly-supervised
learning, we conduct a 70%, 10%, and 20% split on the original cross-area test set to create
our weakly-supervised training set (no ground truth locations), validation set, and test set.
This section uses the validation set for finding the stopping epoch during training, as well
as for conducting the ablation study. The test set is used for benchmarking the proposed
method. The improved VIGOR labels provided by [33] are used.

KITTI dataset contains ground-level images with a limited field of view. Experiments
use the aerial images provided by [130] and adopt their cross-area setting, where the
training and test images are from different areas. Similar to the settings on the VIGOR
dataset, this section uses the training set to train the teacher model and then splits the
original cross-area test set into 70%, 10%, and 20% for weakly-supervised training of the
student model, validation, and testing.

6.3.2 Evaluation metrics
THis section measures the displacement error 𝜖 in meters between the predicted location
and the ground truth location, i.e., 𝜖 = 𝑠‖𝑦 − �̂�‖2, where 𝑠 is the scaling factor from image
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coordinates to real-world Euclidean coordinates. Then, mean and median displacement
errors over all samples are reported as our evaluation metrics. Since ground-level images
in the KITTI dataset have a limited field of view, this section further decomposes their
displacement errors into errors in the longitudinal direction (along the camera’s viewing
direction, typically along the road), and errors in the lateral direction (perpendicular to the
viewing direction).

6.3.3 Baseline state-of-the-art methods
Two state-of-the-art methods, Convolutional Cross-View Pose Estimation (CCVPE) [32] and
Geometry-Guided Cross-View Transformer (GGCVT) [163] are used to test our proposed
weakly-supervised learning approach. Both methods were proposed for fine-grained cross-
view localization and orientation estimation, and have a coarse-to-fine architecture. CCVPE
has two separate branches for localization and orientation prediction. GGCVT uses an
orientation estimation block before its location estimator. This section uses them for
localization only. CCVPE has seven levels of heat map outputs, in which the first six heat
maps are 3D, with the first two dimensions for localization and the third dimension for
orientation. The last heat map is 2D. GGCVT has three levels of 2D heat map outputs.

6.3.4 Implementation details
This section uses the code released by the authors of CCVPE [32] and GGCVT [163] for
model implementations. Student and auxiliary models are trained following our proposed
approach. For CCVPE’s 3D heat map output, this section simply lifts the pseudo ground
truth heat map 𝑃𝑘 to 3D using the known orientation as done in [32]. Following the two
model’s default settings, this section uses a batch size of 8 for CCVPE and 4 for GGCVT,
and a learning rate of 1×10−4 with Adam optimizer [147] for both models.

The hyperparameters 𝐾 ′, 𝑇 , and 𝜎 are tuned on the VIGOR validation set. For CCVPE,
it is found that including the first two levels of losses, i.e. 𝐾 ′ = 2, and 𝑇% = 80% gives the
lowest mean localization error. For GGCVT, all three levels of losses are used, i.e. 𝐾 ′ = 3,
and 𝑇% = 70%. This section uses 𝜎 = 4 (pixels) for both methods. The same setting is
directly applied to KITTI.

6.3.5 Results
This section compares the trained student models to teacher models (baselines) on the cross-
area test set of VIGOR and KITTI datasets. Previous state-of-the-art was set by directly
deploying CCVPE and GGCVT teacher models to the target area. On the VIGOR dataset,
Table 6.1 top, the performance of student models trained using proposed weakly-supervised
learning surpasses baselines by a large margin. For CCVPE, the proposed approach reduces
the mean and median error by 20% and 15% when the orientation of test ground images is
unknown. GGCVT only released its code and models for orientation-aligned ground-aerial
image pairs for the VIGOR dataset. Thus, this section follows the same setting. In this case,
the proposed approach reduces 16% and 5% mean and median error for GGCVT. Without
extra hyperparameter tuning, this section directly uses the proposed approach to train
models on the KITTI dataset, and it again improves the overall localization performance
for both models, see Table 6.1 bottom.
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VIGOR, cross-area test Known orientation Unknown orientation
Mean (m) Median (m) Mean (m) Median (m)

CCVPE [32] 4.38 1.76 5.35 1.97
CCVPE student (proposed) 3.85 (↓ 12%) 1.57 (↓ 11%) 4.27 (↓ 20%) 1.67 (↓ 15%)
GGCVT [163] 5.19 1.39 - -
GGCVT student (proposed) 4.34 (↓ 16%) 1.32 (↓ 5%) - -

KITTI, cross-area test Longitudinal error Lateral error
Mean (m) Median (m) Mean (m) Median (m)

CCVPE [32] 6.55 2.55 1.82 0.98
CCVPE student (proposed) 6.18 (↓ 6%) 2.35 (↓ 8%) 1.76 (↓ 3%) 0.98 (↓ 0%)
GGCVT [163] 9.27 4.66 2.19 0.85
GGCVT student (proposed) 8.56 (↓ 8%) 4.35 (↓ 7%) 1.90 (↓ 13%) 0.79 (↓ 7%)

Table 6.1: Evaluation on VIGOR and KITTI test set. Best in bold. Baseline models are teacher models (previous
state-of-the-art). “Student” denotes models trained using our proposed weakly-supervised learning without
ground truth labels. On VIGOR, test results for both known and unknown orientation cases are provided. On
KITTI, models are tested with known orientation.
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Figure 6.3: VIGOR test set errors (vertical axis) of CCVPE models fintuned on noisy ground truth. The horizontal
axis denotes the upper bound for error sampling. Ours: the student model trained with the proposed weakly-
supervised learning.

This section also studies the gap between each student model to an Oracle, i.e. the
same method using supervised finetuning on fine ground truth at the target area. Even
though the Oracles still achieve lower errors (CCVPE: Oracle 2.31 m vs. student 3.85 m;
GGCVT: Oracle 2.91 m vs. student 4.34 m), it is emphasized that, in practice, such reliable
fine ground truth is generally not available. Importantly, this section also finds that when
the ground truth does contain errors, using supervised finetuning leads to large test errors,
see Figure 6.3. Instead, the proposed weakly-supervised learning approach scales well
because it boosts performance at a low cost: First, there are no extra requirements on
the accuracy of localization prior in the target area over previous fine-grained cross-view
localization works [31–33, 131, 134, 163], as only ground-aerial image pairs are needed.
Second, since student models are initialized from their teacher, the training time is short.
For example, on VIGOR, using a single 32GB V100 GPU our weakly-supervised learning
for CCVPE only adds ∼ 6 hours of training time (including pseudo ground truth generation
and outlier filtering) on top of the direct generalization, which has training time of ∼ 16
hours.

Next, two samples where the student model improves over the teacher model are
visualized. A typical case is shown in Figure 6.4 left, in which the teacher model has a
multi-modal prediction, and the peak is located in a wrong mode. The student model
learned to weigh the modes better after adapting to the target environment. As shown
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GT
Teacher

GT
Teacher

GT
Student

GT
Student

Figure 6.4: CCVPE teacher and student model’s predictions on VIGOR test set. The red color denotes the
localization probability (a darker color means a higher probability).

in the example on the right in Figure 6.4, sometimes, even though the teacher model’s
heat map does not capture the correct location, the student model can still identify it. In
this case, the student model might learned discriminative features from other samples
in this area to localize the ground camera. This demonstrates the effectiveness of the
knowledge-distillation process for cross-area inference (more examples are included in
Figure 6.5).

6.3.6 Analysis of prediction errors after KD
Following the visual examples, the overall statistical relation between the model prediction
errors, and the change in predicted locations after knowledge distillation are now analyzed.
Figure 6.6 and 6.7 plot this relation for CCVPE.

First, it is confirmed that potential outliers can indeed be identified by the amount of
difference between the predicted locations of a teacher and its auxiliary student model in
Figure 6.6 left. It can be seen that there is a large portion of samples located around the
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Figure 6.5: Teacher and student models’ predictions on VIGOR test set. The red color denotes the localization
probability (a darker color means a higher probability). First three: success cases. Last: a failure case.

diagonal line, i.e. 𝜖𝛼 = 𝑠 ⋅𝑑𝛼,𝑜. Most samples in 𝕀𝛼 with large change 𝑑𝛼,𝑜 in predicted location
indeed obtained a large error 𝜖𝛼 for the teacher model’s prediction. Next, Figure 6.6 right
shows how the difference in location correlates with the prediction error of the auxiliary
student. There are more samples being scattered at the bottom of the plot, implying many
wrong predictions of the teacher model have already been corrected. Still, our ablation
study will demonstrate that using the auxiliary student model directly as a new teacher for
a final student model does not work as well as using it for outlier detection. Note that the
(less prominent) diagonal line now indicates errors introduced by the auxiliary student
model. Then, this section validates that the final student model reduces the localization
error compared to the teacher model on the target test set 𝕀𝑡𝑒𝑠𝑡 in Figure 6.7. Comparing the
left plot to the right plot, this section observes a similar trend as for the auxiliary student
model before, namely that the many samples with high teacher error in the left plot now
obtain low student error in the right plot. The same trend can be observed for GGCVT
models in Figure 6.8 and 6.9.

Lastly, this section compares the error in predictions of the teacher model and that
of the student model for both CCVPE and GGCVT on the VIGOR test set 𝕀𝑡𝑒𝑠𝑡 . The error
change after weakly-supervised knowledge self-distillation is calculated and its statistics
are visualized in Figure 6.10. The left part of the two histograms (in purple and magenta)
shows the samples that have a smaller error in the student model’s prediction. Similarly,
the right part of the two histograms (in navy and orange) denotes the samples that the
teacher model has a more accurate prediction. Overall, it can be seen that, for both CCVPE
and GGCVT, there are more samples located in the left part. It demonstrates that the
student model reduces the error for the majority of samples.
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𝑠 ⋅ 𝑑𝛼,𝑜

𝜖𝛼

𝑠 ⋅ 𝑑𝛼,𝑜

𝜖𝑜

Figure 6.6: Teacher (left) v.s. Auxiliary student (right) models on 𝕀𝛽 . CCVPE model, relation between error 𝜖
and change 𝑑 in predicted locations from teacher and auxiliary student models on VIGOR. 𝜖𝛼 / 𝜖𝑜: errors (m) of
teacher model’s / auxiliary student model’s predictions. 𝑠 ⋅ 𝑑𝛼,𝑜: the difference (m) between predicted locations of
teacher and auxiliary student.

𝑠 ⋅ 𝑑𝛼,𝛽

𝜖𝛼
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Figure 6.7: Teacher (left) v.s. Final student (right) models on 𝕀𝑡𝑒𝑠𝑡 . CCVPE model, relation between error 𝜖 and
change 𝑑 in predicted locations from teacher and final student models on VIGOR. 𝜖𝛼 / 𝜖𝛽 : errors (m) of teacher
model’s / final student model’s predictions. 𝑠 ⋅ 𝑑𝛼,𝛽 : the difference (m) between predicted locations of teacher and
final student.

6.3.7 Domain adaptation by entropy minimization
This section tests entropy minimization [168] for the CCVPE model on the VIGOR dataset
as an alternative technique to adapt a model from the source domain to the target domain.
Entropy minimization is often used for semi-supervised domain adaptation [172]. In this
setting, the model is trained with a combination of samples with ground truth labels from
the source domain and unlabeled samples from the target domain. When a source domain
sample is presented, the model is trained using its default supervised learning loss .
When the input is from the target domain, the training objective is to minimize the entropy
of the output prediction using an entropy minimization loss 𝐸𝑀 .

This experiement trains a CCVPE model [32] on the VIGOR dataset using loss 𝑓 𝑖𝑛𝑎𝑙 ,

𝑓 𝑖𝑛𝑎𝑙 =

{
((𝐺,𝐴), �̂�), if {𝐺,𝐴} ∈ 𝕀𝛼 , �̂� ∈ 𝕐𝛼 ,
𝜔 ⋅𝐸𝑀 (𝐻𝐾 ), if {𝐺,𝐴} ∈ 𝕀𝛽 .

(6.8)

In Equation 6.8,  is the default loss in [32], 𝐻𝐾 is the final output heat map of the model
 on image pair {𝐺,𝐴}, and 𝜔 is a hyperparameter that weighs the entropy minimiza-
tion loss 𝐸𝑀 . As in [172], the pixel-wise Shannon Entropy [173] in the dense output is
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𝑠 ⋅ 𝑑𝛼,𝑜

𝜖𝛼

𝑠 ⋅ 𝑑𝛼,𝑜

𝜖𝑜

Figure 6.8: Teacher (left) v.s. Auxiliary student (right) models on 𝕀𝛽 . GGCVT model, relation between error 𝜖
and change 𝑑 in predicted locations from teacher and auxiliary student models on VIGOR. 𝜖𝛼 / 𝜖𝑜: errors (m) of
teacher model’s / auxiliary student model’s predictions. 𝑠 ⋅ 𝑑𝛼,𝑜: the difference (m) between predicted locations of
teacher and auxiliary student.
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Figure 6.9: Teacher (left) v.s. Final student (right) models on 𝕀𝑡𝑒𝑠𝑡 . GGCVT model, relation between error 𝜖 and
change 𝑑 in predicted locations from teacher and final student models on VIGOR. 𝜖𝛼 / 𝜖𝛽 : errors (m) of teacher
model’s / final student model’s predictions. 𝑠 ⋅ 𝑑𝛼,𝛽 : the difference (m) between predicted locations of teacher and
final student.

calculated, and then the sum of all pixel-wise entropy is used as the 𝐸𝑀 ,

𝐸𝑀 (𝐻𝐾 ) = −∑
𝑢,𝑣

𝐻𝐾 (𝑢,𝑣) ⋅ log(𝐻𝐾 (𝑢,𝑣)), (6.9)

𝐻𝐾 (𝑢,𝑣) denotes the value at each location in the output heat map 𝐻𝐾 .
This section tuned 𝜔 and found that joint training with entropy minimization always

hurts the model performance. As shown in Figure 6.11, the mean and median error on
the validation set (target area) increases when the model is trained using a larger weight
𝜔, and the best model appears when 𝜔 = 0, equivalent to direct generalization of a model
trained in a supervised manner on only source domain images.

For completeness, this section also tried directly fine-tuning a pre-trained model from
the source domain on images from the target domain using entropy minimization (no joint
supervised training with source domain samples). Since the model failed completely, the
plots are not included.

Entropy minimization simply encourages the heat map to be sharper in the target area.
Therefore, it does not resolve multi-modal uncertainty. As shown in Figure 6.12, compared
to direct generalization, training with entropy minimization makes the red region in the
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Figure 6.10: Change in error between predictions of the teacher 𝛼 and those of the student model 𝛽 on
VIGOR test set 𝕀𝑡𝑒𝑠𝑡 . Purple and Magenta region: The student model has smaller errors. Navy and Orange region:
The teacher has smaller errors. Left: CCVPE model, right: GGCVT model.
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Figure 6.11: Errors of CCVPE models with different entropy minimization weights 𝜔 on VIGOR validation set.

heat map smaller, but the peak of the heat map stays in the same mode in the multi-modal
distribution. Instead, our proposed knowledge self-distillation adapts the model to the
target domain by explicitly encouraging the model to disambiguate multiple modes using
the proposed single-modal pseudo ground truth. As a result, our proposed method can
correct the wrong mode and also reduce uncertainty.

Therefore, simply exposing the model to the images from the target area and enforcing
the confidence of outputs is not sufficient for improving cross-view localization across
areas. The proposed knowledge self-distillation instead reduces uncertainty by filtering
out unreliable samples.

6.3.8 Domain adaptation by other pseudo label approaches
The proposed Coarse-only Supervision uses the model’s high-resolution output to supervise
low-resolution ones. Alternatively, this section also studies fusing the outputs at different
levels to generate supervision signals.

Similar to [174], this section fuses information in both top-down and bottom-up direc-
tions to generate pseudo ground truth at each level for the student model. It is achieved
by up/downsampling teacher’s matching volumes at different levels and fusing them with
averaging. The error of the resulting student (4.49 m) is larger than ours (3.85 m). A hy-
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Figure 6.12: Adapting a CCVPE model to the target domain with different methods. Results on the VIGOR test set.
Comparison between direct generalization (No EM, 𝜔 = 0), different entropy minimization weights (EM, 𝜔 = 0.1
and EM, 𝜔 = 1.0), and the proposed knowledge self-distillation (KD, ours). The red color denotes the localization
probability (a darker color means a higher probability).

pothesize is that, for localization, fine-grained high-resolution heatmaps can help supervise
low-resolution maps, but not vice versa, which may be why [174]’s top-down + bottom-up
approach does not work well for our task.

As an alternative to the proposed outlier filtering, this section also tries an uncertainty-
based outlier filtering approach while keeping other proposed modules unchanged. Similar
to [175–177], the entropy of teacher’s output heat maps is used as a measure of their
uncertainty. The teacher’s heatmaps are ranked based on their entropy and then the most
certain 𝑇% is used for student training. For a fair comparison, CCVPE uses top 80% and
GGCVT uses top 70% (same as in the proposed outlier detection). The resulting models
have higher errors (CCVPE/GGCVT: 4.17/4.52 m) than the proposed ones (3.85/4.34 m).
Entropy-based methods do not consider the spatial order of classes, e.g. a two-mode
heatmap with 1m between two modes will have the same entropy as a two-mode heatmap
with 10m between modes. However, the latter results in larger errors.

6.3.9 Ablation study
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Figure 6.13: Ablation study on the proposed mode-based pseudo ground
truth, outlier filtering, and different levels for coarse-only supervision in
our teacher-student KD using CCVPE.

50% 60% 70% 80% 90% 100%
Top T%

4.1

4.2

4.3

4.4

4.5

4.6

4.7

M
ea

n 
er

ro
r (

m
)

CCVPE
GGCVT

Figure 6.14: Effect of 𝑇 in the pro-
posed outlier filtering. 100% means
no outlier filtering.

An extensive ablation study is conducted to validate the effectiveness of the proposed
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designs. The following is denoted: Teacher (baseline): directly deploy the teacher model
𝛼 in the target area. St-M-OF: student model trained using teacher’s heat maps, no
mode-based pseudo ground truth, no outlier filtering. St+M-OF: student model trained
using mode-based pseudo ground truth, no outlier filtering. St+M+OF (proposed): student
model trained using mode-based pseudo ground truth with outlier filtering, i.e. 𝛽 .

The performance of these ablation variants when supervising different levels of student
predictions of the CCVPE is shown in Figure 6.13. It can be seen that the proposed mode-
based pseudo ground truth (+M) and outlier filtering (+OF) both improve the performance,
and the final version, St+M+OF, achieves the best results, no matter how many prediction
levels of the student model is supervised. For CCVPE student models, supervising the
first 𝐾 ′ = 2 and 𝐾 ′ = 4 levels have similar localization performance overall. Since 𝐾 ′ = 2
gives the lowest mean error, it is used in the final setting. Experiments also tuned 𝐾 ′ for
GGCVT and found that supervising all three levels, i.e. 𝐾 ′ = 3 gives the best results. The
effectiveness of the proposed mode-based pseudo ground truth (+M) and outlier filtering
(+OF) on GGCVT is verified in Table 6.2. Additionally, it is also tried to directly use the
predictions of the auxiliary student as pseudo ground truth to train the final student model
(similar to iterative knowledge self-distillation [166]), denoted as St+M+A in Table 6.2.
However, it does not perform better than using the auxiliary student model for outlier
filtering.

Error (m) Teacher St-M-OF St+M-OF St+M+A St+M+OF
Mean 5.16 5.34 4.67 4.54 4.28
Median 1.40 1.48 1.32 1.55 1.28

Table 6.2: Ablation study for GGCVT. Best in bold.

Figure 6.14 shows the ablation study results on different percentage values 𝑇 in the
proposed outlier detection. The best CCVPE and GGCVT student models appear at 𝑇 = 80%
and 𝑇 = 70%. In general, there is a trade-off between the quality and quantity of data. When
too little data is kept, there is a risk of model overfitting. Filtering out some detected outliers
(20% ∼ 30%) improves the quality of the data and can result in better model performance.
This suggests that, in practice, blindly increasing the data amount without guaranteeing
its quality might negatively influence models’ performance.

6.3.10 t-SNE Feature
To study if the extracted features by the teacher and final student models differ, this section
uses t-SNE [178] to map the features to a two-dimensional space for visualization. The
CCVPE’s ground features and the aerial features at the GT locations at the bottleneck are
used. Figure 6.15 shows their t-SNE plots before (teacher model) and after adaptation (final
student model). For the teacher model, ground and aerial samples are disjoint in the feature
space, complicating matching across views. For the final student model, the plot shows
more overlap between the two views, indicating better alignment. This result supports
that the quantitative improvement of the proposed approach results from adaptation to the
target domain.
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teacher ground feature
teacher aerial feature

student ground feature
student aerial feature

Figure 6.15: t-SNE, VIGOR test set: CCVPE teacher model (left) and final student model(right).

6.3.11 Limitations
In knowledge self-distillation, it is often required that the initial model is at a “good enough”
starting point, otherwise, it will not converge to a better solution. This requirement also
applies to the proposed method. This section conducts experiments where a teacher model,
trained on one dataset such as KITTI [20], was used to generate pseudo ground truth to
train a student model on a different dataset, for instance, the Ford dataset [164]. In this
case, the teacher’s predictions on the target dataset were not much better than random
guesses, making the proposed method not applicable. When the training and test sets are
from different datasets, the teacher fails in the target area since the domain gap comes
not only from different areas, but also from different sensors, and different resolutions
of aerial images. This chapter targets the domain gap between different areas but for the
same sensor setup.

6.4 Conclusion of the chapter
This chapter focuses on improving the localization performance of a pre-trained fine-
grained cross-view localization model in a new target area without accurate ground truth
locations. This chapter has proposed a knowledge self-distillation-based weakly-supervised
learning approach that only requires a set of ground-aerial image pairs from the target
area. Extensive experiments were conducted to study how to generate appropriate pseudo
ground truth for student model training. It is found that selecting the predominant mode
in the teacher model’s predictions is better than directly using the output heat maps.
Furthermore, supervising coarse-level predictions of a student model using the down-
sampled teacher model’s high-resolution predictions can suppress the positional noise
and might lead to a slight boost in the student model’s performance. Last but not least,
this chapter demonstrates that unreliable target domain samples can be filtered out by
comparing predicted locations from teacher and student models, which motivates using
an auxiliary student model to curate the data. Training a final student model on the
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filtered data further improves the localization accuracy. The proposed approach has been
validated on two state-of-the-art methods on two benchmarks. It achieves a consistent
and considerable performance boost over the previous standard that directly deploys the
trained model in the new target area.
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T he preceding chapters of this dissertation have thoroughly explored ground-to-aerial
cross-view visual localization, examining various aspects such as problem formulation,

methodology, efficiency, and the utilization of training data. This chapter first discusses
the key findings from the previous chapters and then answers the research questions.
Following that, it presents the core insights derived from the research conducted in this
dissertation and concludes with suggestions for future research directions.

7.1 Key findings
In order to determine the most suitable approach for ground-to-aerial cross-view visual
localization, Chapters 3 and 4 explored different methodologies. Chapter 3 adopted the
common formulation found in previous studies [105, 106, 121], addressing cross-view
localization through image retrieval. However, this chapter distinguished itself from earlier
works by proposing the integration of localization priors, such as GNSS positioning, into the
training of cross-view image retrieval models, rather than training a globally discriminative
model. An aerial image patch of a geographical local area, identified by the noisy GNSS
localization prior, is densely sampled into smaller, overlapping patches. A model is then
trained to retrieve the most similar aerial patch among these geo-local aerial patches for
a given ground-level query image. This was achieved by the proposed geo-local triplet
loss, which incorporates the geographic distance between samples in a triplet to weigh
the corresponding loss. Experiments conducted with two baseline models across two
datasets demonstrated that training with the proposed loss significantly enhances model
performance in the targeted local area. The proposed loss also encouraged the model to
focus on features from objects that are more locally discriminative, a detail overlooked by
baselines trained with the standard triplet loss.

However, formulating cross-view localization as an image retrieval problem introduces
a trade-off between localization accuracy and computational demand, as achieving high
localization accuracy requires densely sampling the aerial image. Chapter 4 proposed
a different approach by directly matching the ground-level image with a known aerial
image patch, for example, of the size of 70 m2, that covers the query ground-level image.
The CCVPE method, proposed in Chapter 4, significantly reduced the median localization
error on the Oxford RobotCar dataset to approximately 1 m. This performance markedly
surpasses that of the image retrieval-based method, which, even when combined with
temporal filtering and GNSS positioning, resulted in a median localization error of 2.36 m.

To address the challenge of jointly estimating the location and orientation of the
ground camera with cross-view image matching, both CCVPE, introduced in Chapter 4, and
SliceMatch, presented in Chapter 5, utilized the projection geometry between ground and
aerial views. CCVPE uses a fully convolutional ground encoder, leveraging the translational
equivariance property of CNNs to preserve heading information from the ground-level
image within its encoded 1D ground descriptor. Consequently, each block of elements
in the resulting ground descriptor correlates with specific columns of pixels in the input
image. The orientation-aware ground descriptor then encourages the aerial descriptor
at the ground truth location to also encode orientation information through contrastive
learning, meaning that the elements in the aerial descriptor are trained to match those in
the ground descriptor, thus becoming orientation-aware. This approach obviates the need
for the model to independently learn how to encode orientation information from the data
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alone. An ablation study highlighted the benefits of this design choice. Experimental results
demonstrated that the CCVPE method significantly surpasses previous state-of-the-art
baselines. Specifically, on the VIGOR cross-area test set, CCVPE achieved a median error
of 1.89 m and a median orientation error of 13.58◦ when directly generalized to test data
collected in new cities.

Chapter 5 proposed the SliceMatch method, which constructs ground descriptors in a
manner similar to that of CCVPE. However, instead of relying on contrastive learning to
train the aerial descriptor to be orientation-aware, SliceMatch explicitly multiplies its pre-
constructed slice masks with the aerial features to select features for each viewing direction
and build aerial slice descriptors. The complete aerial descriptor is then an aggregation of all
aerial slice descriptors. SliceMatch’s pose estimation is achieved by comparing the ground
descriptor with the aerial descriptor constructed at various poses. Although SliceMatch
has slightly lower localization accuracy than CCVPE, with a median error of 3.31 m on the
VIGOR cross-area test set, it operates significantly faster than CCVPE, achieving 167 FPS
compared to 24 FPS. SliceMatch’s fast runtime is achieved by leveraging pre-constructed
slice masks, allowing operations such as feature selection and aggregation, as well as
pose estimation, to be performed through matrix multiplication. This approach trades off
runtime efficiency against storage requirements, as it necessitates the storage of extra slice
masks. In practice, as outlined in Section 1.2 on localization latency requirements, the
runtime is of critical importance. Delays in localization estimation can result in significant
location discrepancies, especially when the vehicle travels at high speeds.

Ground-to-aerial cross-view localization models can generalize to new regions, but
depending on the domain gap between the training and test regions, there is always a
small or considerable performance drop. Chapter 6 focused on improving the scalability
of cross-view localization methods to new test areas. It highlighted the challenge of
acquiring accurate ground truth locations due to the associated costs, while noting that
collecting ground-level images with coarse locations, for example, containing errors of up
to tens of meters, is relatively easy using devices like a mobile phone and its built-in GNSS.
Consequently, Chapter 6 proposed leveraging noisy ground truth data in the target area
to fine-tune a cross-view localization model initially trained in another area with precise
ground truth. This approach contrasts with the common practice of directly deploying a
model trained in one area to another without fine-tuning. Chapter 6 introduced a knowledge
self-distillation-based weakly-supervised learning framework that relies solely on paired
ground and aerial images to fine-tune a pre-trained model. It utilized the pre-trained model
as a teacher model to generate pseudo ground truth for fine-tuning a student model, which
is initialized as a copy of the teacher model. To address small positional errors and filter out
significant outliers in the teacher’s outputs, Chapter 6 proposed generating single-modal
supervision signals to guide the coarse-level outputs of the student model, along with
an outlier filtering technique that compares the outputs of the teacher and an auxiliary
student model. Experimental results, utilizing two baseline methods across two datasets,
demonstrated that fine-tuning the trained model with the proposed framework results in a
reduction of up to 16% in both mean and median localization errors.
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7.2 Answers to researchqestions
Based on the key findings derived from Chapter 3 to 6, the research questions can be
answered.

7.2.1 Answers to sub-qestions:
SQ1: Is the common image retrieval formulation in ground-to-aerial cross-view
image matching well-suited for vehicle localization?

The common formulation for image retrieval does not incorporate any localization
priors during training. However, consumer-grade vehicles equipped with GNSS receivers
can provide a rough localization estimate. When this prior is incorporated during training,
the accuracy of image retrieval-based cross-view localization improves. Still, localization
for autonomous driving requires methods to be both accurate and efficient (see Section 1.2),
and the accuracy and efficiency trade-off brought by image retrieval formulation makes
it sub-optimal. As demonstrated in Chapter 4 and 5, directly localizing a ground-level
image inside its corresponding local aerial image, identified using the GNSS prior, results
in superior localization accuracy with fast runtime. Furthermore, approaching this task as
a classification problem, thereby allowing for the modeling of multi-modal uncertainty,
produces a more accurate estimate than the single-modal regression approach used in the
baseline methodology [127].
SQ2: How can the location and orientation of the ground-level camera be jointly
estimated?

The joint estimation of location and orientation can be achieved by leveraging the
geometric relationship between ground and aerial views and constructing orientation-
aware ground and aerial image descriptors. By matching an orientation-aware ground
descriptor to the orientation-aware aerial descriptor at each spatial location, one can obtain
a joint distribution for both localization and orientation estimation. The CCVPE and
SliceMatch methods, proposed in Chapters 4 and 5 respectively, were developed based
on this principle. The difference lies in the construction of the orientation-aware aerial
descriptor: CCVPE leverages the power of contrastive learning, while SliceMatch uses
pre-constructed slice masks to control feature aggregation during the descriptor-building
process.
SQ3: What strategies can be employed to create an efficient ground-to-aerial cross-
view visual localization method?

To enhance efficiency, one can consider incorporating the projection geometry between
ground-level and aerial images into the deep learning models. Instead of using a large
model to learn everything from data, a smaller model can be designed to learn only the
information that is not already known. The SliceMatch method, proposed in Chapter 5,
serves as an example. It utilizes the geometric relation between ground and aerial views and
employs pre-constructed slice masks to simplify the learning process for orientation-aware
aerial descriptors. Therefore, no specialized layers are needed for feature aggregation after
the backbone feature extractor. The construction of image descriptors is simplified by
multiplying the extracted features with pre-constructed slice masks and then averaging
the features, a process that can be computed efficiently. As a result, SliceMatch achieved
fast runtime, i.e. 156 FPS on the KITTI dataset.
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SQ4: Do ground-to-aerial cross-view visual localization methods generalize to new
regions, and how can their scalability be enhanced with easily collectable data?

Experiments in Chapter 3 to 5 showed that ground-to-aerial cross-view visual localiza-
tion methods can generalize to new regions, but similar to other deep learning methods,
there is always a performance drop because of the domain gap between training and test
regions. The scalability of ground-to-aerial cross-view localization can be enhanced by
considering noisy data for weakly-supervised learning. Since aerial images have global cov-
erage, one can access the aerial images of the target area already when training the model.
In practice, even though collecting accurate ground truth data is expensive, acquiring noisy
ground truth data with a positioning error of tens of meters is easy, for instance, by using
phone-grade GNSS. Chapter 6 made use of this observation and proposed a knowledge
self-distillation framework that utilizes this noisy data to fine-tune pre-trained cross-view
localization models. The key is to select reliable pseudo ground truth generated from a
teacher model to train a student model. The experiments demonstrated that the student
model trained using the proposed knowledge self-distillation framework had a performance
improvement of up to 20% over the direct generalization of the pre-trained model in the
target area, which was previously the standard practice.
SQ5: What level of accuracy is achievable with ground-to-aerial cross-view visual
localization?

The experiments conducted in Chapters 3 to 6 showed that localization accuracy
significantly depends on its intended generalization, the input data, and the scene layout of
the test area. These experiments explored three types of generalization: generalization to
new ground images collected at different locations within the same area, generalization to
new ground and aerial images from new areas, and generalization to new ground images
collected on the same road but at different times. Given the absence of a single dataset
encompassing all three scenarios, variations in generalization type were also associated
with changes in input data, for example, panoramic images versus images with a limited
FoV. In these experiments, the best-performing model, CCVPE, achieved approximately
0.5 m median lateral localization error, 0.6 m median longitudinal localization error, and a
median orientation error of around 1.2◦ on the Oxford RobotCar dataset, which has images
with a limited FoV, when generalizing to new ground-level images across time. However,
when generalizing across areas on the KITTI dataset, CCVPE had a median localization
error of 10.98 m.

In general, when the domain gap between the training and test sets is small, cross-view
localization can achieve meter-level accuracy for localization, around 1◦ orientation error.
However, when the domain gap is large, for example, testing in a new target area, the
localization error still reaches a few meters, or even around ten meters. Even though the
proposed weakly-supervised learning method in Chapter 6 managed to reduce this error
by up to 20%, there is still a considerable gap when the method can be used in practice for
highly automated driving in this cross-area scenario.

Notably, fine-grained cross-view localization is a new research direction established
around three years ago. The accuracy of fine-grained cross-view localization has improved
dramatically in this time, for example, from a median error of 7.68 m to a median error
of 1.36 m on the VIGOR dataset. The author believes there is still significant room for
performance improvement in this field. Currently, cross-view localization is useful for
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lower-level automated driving systems, such as ADAS and lane-keeping systems, and it is
likely to become highly relevant for more advanced automated driving applications in the
near future.

7.2.2 Answers to the main researchqestion:
After addressing all sub-questions, the main research question can be answered:
MQ: Can ground-to-aerial cross-view visual localization become a scalable and
accurate method for estimating a vehicle’s pose by comparing its captured ground-
level image with an aerial image (the “map”) covering its local surroundings?

Answer: Yes, ground-to-aerial cross-view visual localization can become a
scalable and accurate method for estimating a vehicle’s pose.

Humans are capable of localizing themselves by comparing their observed surroundings
with the scene layout depicted in an aerial image. Similarly, a deep network can mimic this
process when several key aspects are considered.

Firstly, ground-to-aerial cross-view visual localization should utilize the available local-
ization prior to narrow down the search area in the aerial image. Rather than identifying
the coarse location in a global context by image retrieval, cross-view localization should
concentrate on fine-grained pose estimation within an aerial image patch that covers a
specific local area.

Secondly, the information in ground and aerial images should be explicitly compared.
For example, it is common to use a Siamese-like network, i.e., a network with two encoder
branches, to separately encode the ground-level and aerial images into image descriptors,
and then compare them by calculating the similaritymeasure. Importantly, since the content
in the ground view can only be correctly matched to that in the aerial view along the correct
viewing direction, deep models should also leverage the geometric relationship between
ground and aerial views to embed orientation information into the image descriptors.

Thirdly, cross-view localization should consider the easily collectable data to enhance
its scalability. For humans, the ability to localize themselves using an aerial image varies
from person to person, and this ability is not innate. People who frequently perform this
task tend to be better at it than others. Similarly, deep networks designed for this task also
need to be trained with a vast amount of data. The ground truth labels do not need to detail
the exact matching information between objects on the ground and their corresponding
objects in the aerial image. Just as humans discern their true location, the model can learn
to match the corresponding information across views by supervising only the estimated
location. Once a person becomes capable of cross-view localization, their ability improves
with practice. Similarly, a trained model can also enhance its performance by leveraging
its own predictions through weakly- or self-supervised learning.

Although the accuracy of ground-to-aerial cross-view visual localization does not yet
meet the requirements for autonomous driving, given the rapid pace of development in
this field, it can become a scalable and accurate method for estimating a vehicle’s pose.

7.3 Discussion
This section extends the discussion to a wider context, including the role of inductive biases
in the training and designing of cross-view localization models, the use of ground truth
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data as well as the discrepancies between current model capabilities and the requirements
of autonomous driving.

7.3.1 Incorporating expert knowledge into cross-view local-
ization

Recent advances in foundation models [92, 171, 179] try to solve various computer vision
tasks at the same time with large models and broad data. Despite the impressive progress
achieved in this line of research, the findings of this dissertation highlight the effectiveness
of the opposite path, namely, using domain-specific knowledge to improve the learning
of the task-specific deep model. This dissertation achieved this by two means, one is by
learning preference from data, as demonstrated in Chapter 3 and 6, and another is by
leveraging the inductive bias in the model architecture, as done in Chapter 4 and 5.

Learning preference from data: In the computer vision community, cross-view image
retrieval has been considered a stand-alone localization technique, for example, as a replace-
ment for GNSS. However, in robotics, localization is often viewed as a system-level task that
necessitates the fusion of multiple sensors. Chapter 3 adopted this robotics perspective to
enhance the vision task by incorporating the localization prior from GNSS into cross-view
image retrieval. The loss function takes the localization prior into account to guide the
cross-view image retrieval models in extracting features that are more discriminative for
localization in a small local area, such as along a road. Qualitative results showed that
the model trained with the localization prior often focuses on features from streetlights
and poles, whereas the model trained without the prior tends to overlook these objects,
concentrating more on road contours instead. Objects like streetlights and poles, despite
being common in different places, are useful in disambiguating other images along the road.
Road contours, while globally distinctive, lack local discriminative power. Consequently,
the model trained with the localization prior outperforms the model trained without it in
the local target area.

Chapter 6 introduced a knowledge self-distillation framework designed to train a
student model using the predictions of a teacher model as pseudo ground truth. The
framework’s effectiveness relies on its method for suppressing noise and filtering outliers
in the teacher model’s predictions, essentially selecting preferred data for training. The
experiments in Chapter 6 demonstrated that without removing the unreliable predictions
of the teacher, the resulting student model could be worse than the teacher model. By elim-
inating undesirable pseudo ground truth, the student model significantly improves. This
underscores a critical insight: simply increasing the volume of data in a model’s training,
without considering the quality of that data, does not guarantee improved performance on
the target task.

To conclude, both Chapter 3 and Chapter 6 inject human knowledge into data selection
for training a more effective cross-view localization model. Chapter 3 incorporates GNSS
prior to learn a model that is more discriminative within the local target area. Chapter 6
designs methods to retain data more likely to belong to inliers, thereby improving the
performance of a student model in a knowledge self-distillation pipeline. The effectiveness
of the methods in Chapters 3 and 6 suggests that in practice, instead of merely adding more



7

106 7 Conclusion

data, developing methods that keep data closer to the target distribution can lead to better
performance in the target area.

Leveraging inductive bias in the model: Deep models have a strong capability of
learning a solution from data. However, solely learning from data is not the optimal
approach, given the limited amount of labeled data and computational resources. In
practice, embedding expert knowledge as an inductive bias of the model is a commonly
adopted strategy to enhance model learning and generalization with limited data. There
are two types of inductive biases: preference bias and restriction bias [180]. Preference bias
steers the model to favor certain hypotheses over others, for example, preferring smaller
weights at each layer. In contrast, restriction bias narrows down the set of hypotheses
the model considers. Both Chapter 4 and Chapter 5 exploit the projection geometry to
find the relation between the columns in the ground image and the rays originating from
the ground truth pose in the aerial image. This geometry relation between ground and
aerial images is embedded as restriction bias into the proposed methodologies to jointly
consider localization and orientation estimation. As a result, both CCVPE and SliceMatch
utilize the translational equivariance property of CNNs to construct an orientation-aware
ground image descriptor. CCVPE uses the orientation-aware ground descriptor to guide
the learning of orientation aerial descriptors. SliceMatch, on the other hand, uses the
pre-computed slice masks as an additional inductive bias to force the aerial descriptor to
gather orientation information. It is shown in Chapter 4 and Chapter 5 that the proposed
CCVPE and SliceMatch methods achieved state-of-the-art camera pose estimation accuracy,
outperforming methods that estimate location without considering orientation, such as
the CVR method, by a large margin. In SliceMatch, the use of slice masks also enables an
efficient architecture that runs significantly faster than other baselines.

7.3.2 Availability of data
Previous research in cross-view localization [32, 33, 127, 130, 163] often overlooked the
availability and potential use of data with noisy ground truth locations, instead focusing
on developing supervised learning approaches that generalize well across different scenar-
ios. However, deploying a trained model in a new area always results in a performance
drop [32, 33, 127, 130, 163]. Chapter 6 pioneered a new solution to this challenge. It was
among the first to utilize data with noisy ground truth locations to adapt the trained
cross-view localization models to new target areas effectively. The effectiveness of the pro-
posed knowledge self-distillation framework was demonstrated using two state-of-the-art
methods across two datasets.

Due to the challenges associated with gathering precise ground truth data on a large
scale, exploring alternatives such as employing noisy ground truth in weakly-supervised
learning, or adopting self-supervised learning methodologies that do not require ground
truth for the training of cross-view localization models, emerges as a practical research
direction. As the work proposed in Chapter 6 is the first in this direction, the author hopes
that this proposed work will motivate further research aimed at enhancing the scalability
of cross-view localization techniques.
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7.3.3 The gap to autonomous driving reqirements
As summarized in Section 1.2, the localization requirements for autonomous driving on
local streets are no more than 0.29 m for both lateral and longitudinal errors and an
orientation error of up to 0.50◦.

Observations from experiments detailed in Chapters 3, 4, 5, and 6 show that a model’s
localization accuracy significantly depends on its aimed generalization, the input data, and
the scene layout of the test area. The conducted experiments focus on three primary types
of generalizations: generalization to new ground images collected at different locations
within the same area, generalization to new ground and aerial images from new areas,
such as different cities, and generalization to new ground images collected on the same
road but at different times, including variations in the time of day and seasons.

The generalization to the same area and to new areas was tested using the VIGOR
and KITTI datasets. Generalizing within the same area is an easier task than to new
areas, given that the mode is exposed to the test scene layout, such as roads and buildings,
during training. In this case, the best-performing model, CCVPE, achieved a median
localization error of 1.42 m and a median orientation error of 6.62◦ on VIGOR, and a median
localization error of 3.47 m and a median orientation error of 6.12◦ on KITTI. Notably,
despite VIGOR’s dataset being collected in US cities with typically wider roads compared
to those in Karlsruhe, Germany (where KITTI was collected), the localization error on
VIGOR was significantly lower than on KITTI. This discrepancy can be attributed to the
ground images in VIGOR being panoramic, as opposed to KITTI’s limited horizontal field
of view (HFoV), making longitudinal localization more challenging. It was also observed
that lateral localization errors were lower than longitudinal ones across all tested models.

Currently, consumer-level vehicles are equipped solely with front-facing cameras. With
this setting, relying solely on the proposed CCVPE method still leaves a considerable gap to
meeting the localization accuracy requirements for self-driving vehicles. Notably, there is
a trend towards equipping vehicles with additional cameras to cover a 360◦ horizontal FoV.
Despite the 360◦ view being captured by multiple images instead of a single panorama, the
proposed CCVPE and SliceMatch methods can be adapted to this setting. This adaptation
involves constructing a descriptor for each image separately and then concatenating all
descriptors to form the final ground-level descriptor. Even though CCVPE with 360◦
view does not fully close the gap to meeting the localization accuracy requirements, it is
important to note that fine-grained cross-view localization is a relatively new field that
emerged about three years ago. Given the current pace of development and improvements
in accuracy, it remains a highly relevant research direction for self-driving vehicles.

When generalized to new areas, CCVPE achieved a median localization error of 1.89 m
on the VIGOR dataset and 10.98 m on KITTI. Despite the VIGOR training and test data
being collected in different cities, and KITTI’s data spanning different roads within the
same city, the performance gap between same-area testing and cross-area testing on KITTI
(a gap of 7.24 m) was still larger than that on VIGOR (a gap of 0.47 m). This does not
suggest a minor domain gap between different cities in the VIGOR dataset. Instead, it
emphasizes that the KITTI training set, with its densely sampled images from a few roads,
leads to the model overfitting those specific roads and performing poorly in generalizing to
new roads in the test set. In this setting, a significant gap exists between the autonomous
driving requirement of 0.29 m for lateral and longitudinal errors and the performance
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of current models. This discrepancy underscores the importance of further research for
improving model performance in areas where no ground truth is available. It aligns with the
author’s suggestion to explore weakly- or self-supervised learning methods for cross-view
localization.

The generalization to new ground images collected at different times was evaluated
using the Oxford RobotCar dataset. This dissertation excludes extreme lighting condition
changes, such as training with daytime images and testing with nighttime images. The
primary variations considered here are related to weather and seasons, as well as dynamic
objects. In this setting, CCVPE achieved a median lateral localization error of approximately
0.5 m, a median longitudinal localization error of approximately 0.6 m, and a median
orientation error of about 1.2◦. These results showcase the model’s robust ability to adapt
to static and stable objects for localization within a known area. By combining CCVPE
with temporal filtering or local localization methods, such as visual odometry, there is
potential to achieve the required accuracy of a maximum permitted lateral and longitudinal
error of 0.29 m.

7.4 Future work
Although this dissertation has pushed ground-to-aerial cross-view localization a step
forward to its real-world application for autonomous driving, there are still many challenges
that remain for future research. This section first presents the possible future work in
cross-view localization. Then it discusses the potential broader use of aerial images for
more autonomous driving tasks. Finally, it envisions the future of environmental perception
for autonomous driving.

7.4.1 Future work in cross-view localization
Based on the findings and insights derived from this dissertation, this subsection suggests
possible future research in cross-view localization.

Local feature matching: In Chapter 4 and Chapter 5, both the CCVPE and SliceMatch
methods infer the ground camera pose by comparing the image descriptor of the ground
image with descriptors of the aerial image. For both methods, each aerial descriptor
contains information from the entire aerial image.

Motivated by structure-based localization methods, which calculate camera pose based
on matched local structures, e.g., salient points and corners, across different ground views,
this dissertation suggests that future work in cross-view localization should also con-
sider matching local features across ground and aerial views. Given a 3D environment,
ground and aerial images represent two views capturing the scene from vastly different
perspectives. Therefore, instead of matching detailed structure correspondences, cross-
view methods should search for larger corresponding features, such as objects. For each
object in the scene, its side is captured by the ground view, and its top by the aerial view.
Establishing multiple object-level correspondences across ground and aerial views allows
for calculating the camera pose based on projection geometry. Besides improving accuracy,
local feature matching-based cross-view localization could potentially enhance the model’s
generalization to new environments, since local features are likely to be more consistent
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compared to the global appearance of the image. The challenge, then, lies in acquiring
accurate ground truth correspondence data to train such a model.

Pre-training: Current cross-view localization models often initialize with pre-trained
weights from ImageNet or other ground-level naturalistic image datasets. Such initialization
is reasonable for the ground branch in cross-view localization models but might be sub-
optimal for initializing the aerial feature extractor, since the aerial view captures objects
from above, and the scale of these objects is often much smaller. Aerial images are widely
available all over the world, providing the possibility of using them for model pre-training.
In some regions, there are also aerial images collected in different years. Pre-training from
those data can potentially make the model’s feature extractor adapt to the top view of
objects and also potentially learn to identify dynamic objects if temporal data is used.

The main challenge, then, is designing a pre-training pipeline that can benefit the
downstream localization task. Common pre-training objectives, such as self-supervised
contrastive learning and masked autoencoding, might improve cross-view localization
but may not be optimal. This is because cross-view localization models typically have a
Siamese-like architecture, requiring interaction between two branches. Hence, an ideal
pre-training scheme should consider unlabeled data from both ground and aerial domains.

Alternatively, one can leverage foundation models for cross-view localization. Recently,
foundation models have been trained for applications involving satellite images [181].
Since these models are trained on vast amounts of diverse data, they can serve as more
powerful feature extractors for cross-view localization models.

Weakly-supervised learning: As Chapter 6 pointed out, collecting ground-level images
with coarse location estimates is relatively easy, and employing weakly supervised learning
on these data can enhance the localization accuracy of cross-view localization models. The
framework introduced in Chapter 6 represents one of the initial trials in this direction,
utilizing knowledge self-distillation formodel training. Futurework could explore designing
alternative weakly supervised learning objectives for cross-view localization. One example
is enforcing the consistency of the output when changing the input. For instance, modifying
the orientation of a ground-level panoramic image and forcing the model’s orientation
output to change accordingly, or shifting the input aerial image and forcing the model to
output geo-location to be consistent. Training with such objectives could encourage the
model to learn feature matching across ground and aerial views without accurate ground
truth data.

Leveraging more ground images: So far, most cross-view localization methods match
a single ground-level image to an aerial image. However, for vehicle localization, video data
are often available. Therefore, cross-view localization methods should consider such data.
Chapter 3 developed a particle filter-based approach that fuses per-frame outputs over
time. Instead, future work should also consider directly taking temporal data as the input
to the model, such that the model can better disambiguate dynamic and statics objects
during matching.

Moreover, Chapters 4 and 5 found that localization in the longitudinal direction poses
more challenges than in the lateral direction when only front-facing images are used. Incor-
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porating side-facing images could potentially improve longitudinal localization accuracy.
Nowadays, vehicles equipped with sensors for autonomous driving commonly have cam-
eras covering a 360-degree horizontal vicinity. Therefore, future work should increasingly
focus on utilizing the 360-degree surrounding view for cross-view localization. Although
panoramic images are used in Chapters 4 and 5, they remain a less common image format
in autonomous driving. Future work could concentrate more on using multiple ground
images with a limited FoV.

More challenging scenario and corner cases Chapters 3 and 4 studied the model’s
generalization to ground images collected at different times, but extreme lighting or weather
conditions were not included in those experiments. Future work could focus on developing
cross-view matching models that are robust to challenging lighting and weather conditions,
such as nighttime, heavy rain, and fog.

Besides, in self-driving datasets, such as KITTI and Oxford RobotCar, the ego-vehicle
always drives on the road. This raises a concern that cross-view localization models trained
on these datasets might learn a bias, assuming the vehicle’s location is always on the road,
regardless of where the ground-level images were taken. This becomes safety-critical if
the vehicle is not on the road, but the cross-view localization model still predicts a location
on the road. To address these corner cases, it is necessary to collect a dataset covering
such scenarios. Subsequent research should then concentrate on developing methods that
generalize well to these situations.

Variations in aerial images Current research in cross-view localization treats aerial
images as the reference map but does not explore how factors such as the spatial resolution
of aerial images, their size, and the time of collection influence localization accuracy.
Moreover, aerial images used in cross-view localization benchmarks typically have a fixed
spatial resolution. A higher spatial resolution means that each pixel represents a smaller
ground area, which could potentially improve localization accuracy. However, if the size of
the aerial image remains constant while its spatial resolution increases, the ground area
covered by the aerial image decreases. Consequently, objects visible from the ground view
might not be visible in the aerial view, negatively affecting cross-view localization accuracy.
Additionally, it is crucial to acknowledge that aerial images and ground images are not
collected simultaneously. The “freshness” of the aerial images can also impact the accuracy
of cross-view matching.

These subtle factors could significantly influence cross-view localization accuracy.
Therefore, a systematic study on these aspects is highly valuable for future research.

Adversarial attacks Cross-view localization techniques increase the risk of exposing
individuals’ precise location information. For instance, mobile phone images, like those
from iPhones, often include GNSS geo-tags in their metadata. This approximate location can
be used to identify a local aerial image patch, allowing fine-grained cross-view localization
methods to pinpoint the exact location where the image was captured. Consequently,
hackers could exploit this method to track individuals, such as social media influencers, by
accessing the images they share online. This raises significant security and privacy concerns.
To counter these risks, future research should investigate adversarial attacks [182–184] on
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cross-view localization, developing methods that make negligible changes to the image but
can disrupt cross-view localization methods.

7.4.2 The broader use of aerial images for autonomous driving
As introduced in Chapter 1, the information provided by a pre-constructed map can
significantly reduce the dependency on the online self-driving perception stack for mapping
the environment. Similarly, aerial images can offer complementary information to assist the
online perception system in autonomous driving. For instance, recent advances in trajectory
prediction [185–187] often depend onHDmaps to forecast the future trajectories of vehicles.
However, compared to HD maps, aerial images offer richer appearance information beyond
just road lanes and traffic signs. Incorporating aerial images for trajectory prediction can
potentially provide more environmental information to the prediction models, and thus
improve the accuracy. Besides, since aerial images have global coverage, using them as
inputs instead of HD maps could increase the scalability of trajectory prediction methods.

7.4.3 Applying proposedtechniqesonotherapplications than
autonomous driving

Ground-to-aerial cross-view visual localization shares similarities with many other types
of BEV map-based localization. Besides autonomous driving, BEV map-based localization
is used for many applications. A notable example is indoor localization [86, 87, 89], e.g.
localizing a robot in a shopping mall given a floor plan map. Since this task involves
comparing relevant features between ground-level images and the BEV floor plan, the
methods proposed in this dissertation, like CCVPE and SliceMatch can potentially be
applied to this task. Future research could explore the direct application of these proposed
methods for indoor localization.

7.4.4 Author’s wishes
Finally, the author ends this dissertation with his wishes. When the author began his Ph.D.,
ground-to-aerial cross-view visual localization was primarily seen as a technique for replac-
ing GNSS for large-scale coarse localization, rather than as a precise vehicle localization
method for autonomous driving. The ECCV paper [31] covered in Chapter 4 was among the
first works to delve into the fine-grained localization task, demonstrating promising results
in accurate cross-view localization. Since then, the computer vision research community
has shown increasing interest in this research direction, leading to advancements in the
accuracy of cross-view localization at every top computer vision conference. However,
the attention given to this field has not yet met the author’s expectations. One major
reason is the lack of commercial products utilizing this technique for vehicle localization,
despite research efforts that have been made by also leading tech companies such as Google
and Meta [77, 132]. Therefore, the author hopes that ground-to-aerial cross-view visual
localization can lead to the development of commercial products, and that this attention
will, in turn, drive further advancements in academia to push the limits of the cross-view
localization technique.

In broad terms, the author hopes that this dissertation can also contribute to the
development of autonomous vehicles, potentially leading to a decrease in traffic accidents
and an improvement in traffic flow efficiency.
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ADAS Advanced Driver-Assistance Systems.

BEV Bird’s Eye View.

CCVPE Convolutional Cross-View Pose Estimation.

DoF Degrees of Freedom.

FoV Field of View.

FPS Frames Per Second.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

HDmap High-Definition map.

IMU Inertial Measurement Unit.

LiDAR Light Detection And Ranging sensors.

RTK Real-Time Kinematic positioning.

SLAM Simultaneous Localization and Mapping.
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