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a U-Net based convolutional neural network

trained on synthetic data

(November 6, 2021)

Running head: U-Net based microseismic localization

ABSTRACT

Hydraulic fracturing plays an important role when it comes to the extraction of

resources in unconventional reservoirs. The microseismic activity arising during hy-

draulic fracturing operations needs to be monitored to both improve productivity

and to make decisions about mitigation measures. Recently, deep learning methods

have been investigated to localize earthquakes given field-data waveforms as input.

For optimal results, these methods require large field data sets that cover the entire

region of interest. In practice, such data sets are often scarce. To overcome this short-

coming, we propose initially to use a (large) synthetic data set with full waveforms

to train a U-Net that reconstructs the source location as a 3D Gaussian distribution.

As field data set for our study we use data recorded during hydraulic fracturing op-

erations in Texas. Synthetic waveforms were modelled using a velocity model from

the site that was also used for a conventional diffraction-stacking (DS) approach. To

increase the U-Nets’ ability to localize seismic events, we augmented the synthetic

data with different techniques, including the addition of field noise. We select the

1
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best performing U-Net using 22 events that have previously been identified to be

confidently localized by DS and apply that U-Net to all 1245 events. We compare our

predicted locations to DS and the DS locations refined by a relative location (DSRL)

method. The U-Net based locations are better constrained in depth compared to DS

and the mean hypocenter difference with respect to DSRL locations is 163 meters.

This shows potential for the use of synthetic data to complement or replace field data

for training. Furthermore, after training, the method returns the source locations in

near real-time given the full waveforms, alleviating the need to pick arrival times.

2
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INTRODUCTION

Many of our society’s energy requirements are provided by oil and gas that are ex-

tracted from conventional and unconventional reservoirs in the subsurface. In certain

unconventional reservoirs, hydraulic fracturing (HF) is a prerequisite step for the ex-

traction of the resources. During HF operations fluids are injected into the subsurface

at high pressures to fracture the surrounding rocks (Li et al., 2020). Naturally, this

leads to seismicity that is generally weak with moment magnitudes (Mw) around 0,

typically referred to as microseismicity (Van Der Baan et al., 2013).

Microseismic monitoring has been around for many decades and finds applications

in different industries such as the mining industry to gain insights about the rock-

mass response to mining activities (Mendecki, 1993), the hydroelectric power industry

to monitor the seismicity induced by water reservoirs (Simpson et al., 1988) and

the geothermal industry (Pearson, 1981). However, herein we focus on hydraulic

fracturing.

Continuous microseismic monitoring in a hydraulic fracturing setting provides im-

portant information to both optimize production (Maxwell et al., 2002) and to decide

about mitigation measures to prevent larger events (Kao et al., 2018). Some key

tasks of microseismic monitoring include event detection, source-location identifica-

tion, event-magnitude evaluation and source-mechanism inversion (Li et al., 2019).

The location of events is important for several reasons. First, it helps to differenti-

ate between events linked to the current anthropogenic activity and other types of

events. Second, the event locations provide a map of the created fractures. Finally,

3
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the locations provide a starting point for understanding the source mechanism.

In some situations HF is carried out in multiple stages lasting over extended time

periods. For example the operations within the Duvernay Formation in Canada were

carried out over 153 stages in two time periods, the first one lasting 17 and the second

one 16 days (McKean et al., 2019; Rodŕıguez-Pradilla and Eaton, 2020). In another

example 19 stages each lasting about 3 hours were performed between the 28 October

and 10 November 2014 in the southern Sichuan Basin, China (Chen et al., 2018).

Similarly, the microseismic data used in this study, monitored HF activities over a

period of 3 weeks in the Barnett Shale in Texas, USA, using a near-surface permanent

installation consisting of vertical component geophones (Kratz et al., 2012). In such

situations, where a lot of data needs to be processed, it may be desirable to have a

method that retrieves the event locations in near real-time either while the operations

are ongoing or in a post-processing step.

Waveform-based source-localization methods are commonly used in the field of

microseismic monitoring (Li et al., 2020). One such method involves stacking the

wavefields at different stations along expected travel-time functions to improve the

signal-to-noise ratio (S/N) (Anikiev et al., 2014; Trojanowski and Eisner, 2017). Since

the source location and origin time are unknown, a grid search over these variables is

required to correctly stack the waveforms. Due to the source mechanism of the events,

different polarities can be observed at different stations. Therefore, an additional grid

search to align the polarities at the different stations can be used, which can improve

detection (Chambers et al., 2014; Anikiev et al., 2014).

4
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Machine learning and in particular deep-learning techniques have been widely ap-

plied in seismology for a wide number of tasks such as seismic phase detection and

picking (Zhu et al., 2019; Zhu and Beroza, 2019; Ross et al., 2018b; Zhang et al.,

2020a), P-wave picking and first-motion polarity determination (Ross et al., 2018a),

microseismic monitoring in mining (Mousavi et al., 2016; Huang et al., 2018; Johnson

et al., 2021), earthquake early warning (Jozinović et al., 2020; Münchmeyer et al.,

2021), earthquake signal detection (Perol et al., 2018; Mousavi et al., 2019) and

earthquake magnitude estimation (Lomax et al., 2019; Mousavi and Beroza, 2020a).

Convolutional neural networks (CNNs) have also been applied in recent years to iden-

tify the location of seismic events. Kriegerowski et al. (2019) formulate the source

localization problem as a regression task returning a (x,y,z)-location for the event.

Furthermore, they used the waveforms from multiple three-component stations as in-

put data to their CNN. Mousavi and Beroza (2020b) present a Bayesian deep learning

approach to identify the location of global earthquakes from single-station observa-

tions. van den Ende and Ampuero (2020) propose a location algorithm that includes

the information of the receiver locations using a graph-based deep learning approach.

Zhang et al. (2020b) use a fully convolutional network (FCN) (Long et al., 2015) with

multiple up-sampling layers to retrieve the source location of induced events in Okla-

homa. They used the FCN to return the source location as a 3D probability density

function where the peak is defined at the correct source location. In all these recent

works (Kriegerowski et al., 2019; Zhang et al., 2020b; Mousavi and Beroza, 2020b;

van den Ende and Ampuero, 2020), the models were trained and applied to field data.

In some of those publications it was suggested that synthetic data could be used to

5
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augment their data sets, especially to fill existing gaps in the field data. Synthetic

waveforms have been used in the past to train neural networks to invert for source

parameters of natural earthquakes (Käufl et al., 2016a,b). The neural networks used

in these works were trained to return the posterior probability density functions for

the focal depth, longitude and latitude of the earthquakes as well as other source pa-

rameters given the seismic waveforms as input. This was achieved by using Mixture

Density Networks (Bishop, 1994, 1995).

In this work we model synthetic seismic data given a reasonable velocity model of

the area of interest to generate a large labeled data set. The label associated to each

synthetic waveform is represented as a 3D Gaussian distribution where the peak of

the distribution is defined at the source location, as proposed by Zhang et al. (2020b).

The data consist of seismic waveforms from multiple stations, where only the vertical

component is used. This synthetic data set is used to train a slightly modified version

of a U-Net, a supervised deep learning algorithm originally developed for biomedical

image segmentation (Ronneberger et al., 2015). After training we apply the U-Net

to microseismic field data recorded during hydraulic-fracturing operations in Texas,

USA. During training we apply different types of data augmentations including the

addition of field noise. To validate the U-Net we first apply it to a smaller number

of events, so-called master events, that were defined by Alexandrov et al. (2020).

The U-Net that performs best on these 22 master events is then applied to all 1245

events with moment magnitude ranges between 1.7 to -0.6. We compare our predicted

locations to locations computed using a diffraction stacking (DS) method (Anikiev

6
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et al., 2014) and DS locations that were refined in a second step using a relative

location (RL) method (Grechka et al., 2015). The event locations obtained by DS and

RL are much better constrained in depth, i.e. around the injection depth, compared

to the DS locations (Alexandrov et al., 2020).

Our results show a good localization accuracy for the events with moment magni-

tudes above 0.2 and potential for localizing weaker Mw events, therefore suggesting

that: (1) synthetic data can be used to train CNNs to localize events given field data,

(2) synthetic data can be used to augment field data sets, and (3) the 3D Gaussian

distribution output could be used to restrict the search space for grid-search-based

source-localization methods. Additionally, since after training an output is generated

within milliseconds, we believe this to be an initial step towards real-time source lo-

calization either as a post-processing step or during the actual operations in situations

where these last over several weeks.

The paper is structured as follows. First, we describe how our deep learning (DL)

model is trained and discuss some of the basic operations performed in convolutional

neural networks. Here we also introduce the modified U-Net architecture that we use

to reconstruct the source locations in terms of 3D Gaussian distributions. In the next

section we introduce the field as well as the synthetic data used to train the network.

This is followed by the localization results obtained using different types of learning

strategies as well as data augmentations. Additionally, we show how the locations

are affected by the value of Mw. Finally, we discuss the results of previous analyses

and summarize our results.

7
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METHODS

In this section we introduce U-Nets that are based on convolutional neural networks

(CNNs). This is followed by the U-Net architecture used for this study. Finally, we

briefly describe the training process.

U-Nets

U-Nets have a down-sampling path (encoder) and an up-sampling path (decoder)

where the number of layers in both these paths are approximately the same. Fur-

thermore, U-Nets contain skip connections between each encoder and decoder layer,

which are used to pass information from the encoder to the decoder.

The convolutional layers take the output from the previous layer as input and

compute convolutions of the input with a set of filters. The coefficients of these filters

are optimized during the training stage. The input can be down-sampled by writing

the crosscorrelation operation with an additional parameter that determines by how

many samples the filter, k, skips over the input, y, to produce the output, x. This

parameter is known as stride and the operation is called strided convolution,

xi,j =

KH∑
n=1

KW∑
m=1

kn,myish+n−1,jsw+m−1, (1)

where sh and sw define the stride along the height and width of the input and KH

and KW denote the height and width of the filter, respectively.

In the decoder the down-sampled input is gradually up-sampled using transposed

convolutions. The filters used in the transposed convolutions are also optimized in

8
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the training phase.

Training

As mentioned in the introduction, the network returns a 3D Gaussian distribution

whose peak location is defined at the source location. To optimize the weights we

used the sigmoid cross-entropy loss function, similar to Zhang et al. (2020b). The

sigmoid cross-entropy loss, L is defined as,

L = − 1

NM

N∑
i=1

M∑
j=1

[
t
(i)
j log(t̂

(i)
j ) + (1− t(i)j )log(1− t̂(i)j )

]
, (2)

where tj is the target value i.e. the true 3D Gaussian distribution for the input j and

t̂ is the predicted output generated by the network. We take the sum of the sigmoid

cross-entropy loss over the number of training examples, N , and the number of voxels,

M . Due to the large size of the training set a stochastic gradient-descent algorithm is

used. With stochastic gradient-descent, in each epoch (iteration) the entire training

set is processed in smaller subsets, called a mini-batch. In each training step, a mini-

batch of N training examples is used to compute the loss and update the weights

of the network. At the beginning of every epoch the entire training set is randomly

shuffled.

We used the ADAM algorithm (Kingma and Ba, 2015) to optimize the parameters

in the network and the entire optimization process was implemented in Tensorflow

(Abadi et al., 2015). We used the default values as proposed by Kingma and Ba

9
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(2015), but adjusted the learning rate (or step size) to 0.001. Finally, N=20 was used

as batch size.

U-Net architecture

The U-Net used in this work receives 3D tensors of seismic waveforms as input, the

exact input shape being (1024× 96× 1) referring to the time, seismic trace and com-

ponents, respectively, the number of components being 1 here since we only have the

vertical component. For each convolutional layer a specific number of filters are used,

which determine the number of feature maps in that layer. In these convolutional

layers the 3D tensors are described by height, width and feature maps as (height ×

width × feature maps). We used 32 filters in the first five convolutional layers and 64

filters in the remaining convolutional and transposed-convolutional layers. The height

and width (KH and KW ) of all filters was set to 3. In the encoder, we gradually shrink

the height and width of the previous input by computing strided convolutions. With

respect to our seismic input, height corresponds to time and width to seismic traces.

The shapes, i.e. the height, width and number of feature maps in each layer of the

network are shown in Figure 1. In the first layer following the seismic input the num-

ber of feature maps is 32 whereas the height and width stay the same as in the input.

In the next layer this input of shape (1024× 96× 32) is down-sampled using strided

convolutions with strides of (sh = 2, sw = 1) to a shape of (512 × 96 × 32). We can

see that the original input is down-sampled to a final size of (8× 6× 64) before being

up-sampled in the decoder to the final output size of (128 × 96 × 64) representing a

10
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3D Gaussian distribution.

As just described, the input and output of all convolutional layers are 3D tensors.

We represent the output of the previous convolutional layer, (l − 1), as z(l−1) ∈

RZH×ZW×Ci with height ZH , width ZW , and feature maps Ci, where the subscript i

stands for input. Similarly, we let the output layer, l, be zl ∈ RZH×ZW×Co with feature

maps Co, where the subscript o stands for output. Finally, the filter wl ∈ RKH ,KW ,Co,Ci

has four dimensions. A single activation unit in the l-th convolutional layer can be

computed as,

z
(l)
h,w,o = φ

(
Ci∑
i=1

KH∑
n=1

KW∑
m=1

{
w

(l)
n,m,i,oz

(l−1)
hsh+n−1,wsw+m−1,i

})
. (3)

Equation 3 computes the sum of the strided convolution of the filter, W
(l)
i,o, and the

feature map of the previous layer, z
(l−1)
i , and applies a nonlinear activation function

φ(·).

We used the (non-linear) rectified linear unit, ReLU, (Nair and Hinton, 2010) as

the activation function in both the encoder and decoder, φ(x) = max(x, 0). We then

apply batch normalization (Ioffe and Szegedy, 2015), which normalizes the output

feature maps over the training batch by subtracting the mean and dividing by the

standard deviation of the batch. In contrary to the classical U-Net architecture, which

contains skip connections between each encoder and decoder layer, we only added skip

connections in the deeper layers of the U-Net as represented by the horizontal arrows

in Figure 1. The skip connections concatenate the feature maps from a layer of the

encoder to the feature maps in one of the decoder layers (Ronneberger et al., 2015)

and speed up convergence during training (Li et al., 2017). In the last layer we used
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the sigmoid activation function, S(x) = ex/(ex + 1), to map every voxel of the input,

x, into a range of values between 0 and 1.

[Figure 1 about here.]

FIELD DATA AND TRAINING DATA SET

In this section we introduce the field data used to evaluate the networks that were

trained with the synthetics. The field data are accompanied by an earthquake catalog

and a P-wave velocity model.

Field data

The data set contains microseismic events caused by hydraulic fracturing operations

from 2010 in the Barnett Shale Formation in the Fort Worth Basin in Texas, USA

(Kratz et al., 2012; Alexandrov et al., 2020). The data were acquired by 543 vertical

component geophones that were placed in shallow boreholes spanning an area of

approximately 144 square kilometers. Each borehole was equipped with 3 geophones

at 30, 45 and 60 meters below the surface. To limit the amount of data (in order to

reduce memory and computational costs), we only kept the deepest geophones, which

amounts to 181 geophones. From these, 85 receivers at large offsets had strongly

attenuated signal and poor S/N. They have also been removed. This left us with 96

receivers covering the source region (Figure 2).
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[Figure 2 about here.]

The field data set consists of 1245 detected events saved in fixed time windows

of roughly 2.8 seconds each. The events were previously detected and located by

Alexandrov et al. (2020) using a migration-type diffraction-stacking (DS) technique

(Anikiev et al., 2014) and some locations were further refined in a second step using

a relative location (RL) method (Grechka et al., 2015). We will refer to this method

as DSRL. The relative locations were computed with respect to 27 master events

(Alexandrov et al., 2020). 22 of those 27 master events are present in our data set

and those have moment magnitudes between 0.3 and 1.6. We use those 22 master

events as a validation set to chose the best performing U-Net that will be used to

predict the locations of all 1245 events in the field data set. Before the data enter the

network we apply a band-pass filter of 5-50 Hz and normalize the data by dividing

them by their maximum amplitude value. Three examples of the field data after

band-pass filtering are shown in Figure 3.

[Figure 3 about here.]

Generating synthetic data

We used the reflectivity method (Kennett and Kerry, 1979) to generate the synthetics

using the open source software ERZSOL3 (Kennett, 2005), because it is fast and

accurate for the situation of modeling 3D data given a 1D velocity model. The

reflectivity method computes the response of layered media from a point source,
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represented by the moment tensor. We defined the source region of interest within

the 3D space shown in Figure 2 by the blue-shaded cuboid (it ranges from 5700 to

8300 meters in Easting, from 3700 to 5900 meters in Northing and from 1200 to

3000 meters in depth). We simulated 51200 earthquakes at random locations within

the region of interest. For each event we defined a random moment tensor in terms

of rake, dip and strike and therefore only consider pure double-couple sources. We

limited the degrees for strike, dip and rake in the intervals [0, 360], [15, 85] and ±[15,

150], respectively. We checked that including a wider range of angles did not improve

the quality of the results. The source center frequency was also randomly selected in

the frequency range [20, 24] Hz.

Training data set

Supervised machine learning requires an input-output pair during the learning phase.

As described above, the U-Net takes a 3D tensor of seismic waveforms as input. The

output is represented as a 3D Gaussian distribution with the peak at the source

location defined as,

t(x, y, z) = exp

(
−(x− xs)2

2σ2
X

+
(y − ys)2

2σ2
Y

+
(z − zs)2

2σ2
Z

)
, (4)

where (xs, ys, zs) represent the source coordinates, (x, y, z) represent all coordinates

within the 3D space of interest and σX , σY , and σZ represent the spread of the

Gaussian distribution in each dimension. The spread of the distribution needs to be

selected prior to training. There is a trade-off between the resolution and the rate

of convergence during training: The smaller the spread the sparser the 3D output
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will be with most values being nearly zero with a few higher values around the true

source location. This will lead to poor convergence as the loss function compares the

voxel-wise difference between the output and the true distribution. On the contrary

a large spread decreases resolution but increases convergence. We tested different

spreads and found a spread of 200 m to yield best results. The 3D output space

extends from 5500 to 8500 meters in Easting, from 3500 to 6100 meters in Northing

and from 1000 to 3200 meters in depth. Thus, the size of a voxel is 23 m in Easting,

27 m in Northing and 34 m in depth.

Data augmentations

To simulate more realistic data, we applied a few data augmentations to the synthetic

data during training. In addition to fixed time windows containing detected events, we

have an additional 4 hours of continuous data, from which we selected noise windows

where no events were detected according to the catalog. This selected field noise can

be used to augment the training set during training. Since undetected events could

be present within the selected field noise windows we randomly perturb the noise

windows by flipping, permutating and time-shifting the individual field-noise traces.

The following data augmentations were applied to the synthetic input data: First,

we randomly bulk time-shift the data. Second, we added random band-pass filtered

Gaussian noise of varying intensity in each trace. Gaussian noise does not represent

field noise and is of limited use if strong field noise is present in the data. However, it

is a good way to avoid zero-valued entries before and after the event in the synthetics
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and to artificially augment the size of the data set. Third, we add continuous field

noise to the data. As a final augmentation we applied station-dropout as proposed

by Kriegerowski et al. (2019), which means that we randomly mute between 5 and 20

traces. A few training examples with applied data augmentations are shown in Figure

4. After applying all data augmentations the data is normalized by its maximum

absolute value before it is passed to the network.

[Figure 4 about here.]

Training and validation set and evaluation metrics

We use the 51200 synthetic waveforms and their known locations as a training set

and the 22 master events as validation set. The purpose of the validation set is to

ensure that the network is not overfitting to the training data and to select the best

performing U-Net. To this end we evaluate the performance of the trained model on

the validation set. If the discrepancy in performance between the two is high, with

much better performance for the training set, the network is said to be overfitting.

We used the Dice-similarity coefficient (Dice, 1945) (DSC) as evaluation metric,

DSC(t, t̂) = 2
t ∩ t̂
t+ t̂

, (5)

where again t is the target (true 3D Gaussian distribution), t̂ is the 3D output distri-

bution predicted by the model and ∩ is the symbol for intersection. Before computing

the DSC we clip all values in the target and network output distribution with values

above a threshold of 0.1 to 1 and the rest to 0.
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RESULTS

In this section, we present the results of the trained U-Nets applied to the field data.

We start by showing the results for the U-Net described earlier, which was trained on

synthetic data using all data augmentation steps described before, applied to the 22

master events selected as validation set. We will refer to this model, trained with all

data augmentation steps (including field noise) and with skip connections, as U-Net

A. Next, we show and discuss the results for (1) a U-Net trained without field noise,

U-Net B and (2) a model trained without skip connections, i.e., an FCN. U-Net A is

our baseline model, to which we compare the results of the other models.

Since the optimization method is stochastic and therefore gives slightly different

results each time, we trained each deep neural network (DNN) ten times for 20 epochs.

We evaluate the DNNs using the validation set by computing the DSC-coefficient

between the predicted output and the desired 3D Gaussian distribution, which is

constructed using the location given by the diffraction-stacking method.

U-Net A: Baseline model

We apply the synthetic-data trained model to the 22 master events and compute

the DSC value between the predicted and desired output, using the master locations

computed by diffraction stacking to construct the desired output. The DSC-value over

those 22 master events is 0.78, which is close to the DSC-value reached at the last

epoch of training, being 0.81. To visualize the results, we take cross-sections along the
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horizontal and vertical planes of the 3D output at the maximum value of the Gaussian

distribution. The predicted Gaussian distributions are shown in Figure 5. The black

dots denote the DS-locations and the white stars mark the peaks of the predicted

Gaussian distributions. We can observe that all 22 events are well localized within

the Gaussian distribution. Larger differences are observed in depth compared to the

epicenter locations, which could be due to the surface acquisition and/or differences

between the synthetic and real waveforms. We estimate the hypocenter from the peak

of the Gaussian distribution and compare with the hypocenter computed by DS. The

results of the mean peak value of the predicted output and the mean hypocenter,

epicenter and focal depth differences are summarized in Table 1. The mean depth,

epicenter and hypocenter differences using the baseline model are 96, 82 and 135

meters, respectively.

[Figure 5 about here.]

U-Net B: no field noise

U-Net B is trained with the same U-Net architecture as U-Net A, however without

the addition of field noise in the data augmentation steps. The strength of the added

gaussian noise was augmented by a factor of 4 for U-Net B compared to the other

U-Nets since otherwise the noise level would be too low and, therefore, the model

would do poorly on most of the master events. The DSC-value on the training set is

0.90 whereas on the 22 master events it is only 0.48. The high DSC-value observed
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over the training set comes from the fact that the data are less complex (no added

field noise) and therefore the learning process is simpler. This also explains the low

DSC-value on the master events, which is due to the training set not representing

the field data set well enough. The mean peak value over the master events is also

low and the hypocenter and focal depth distances are significantly higher compared

to U-Net A, see Table 1.

[Table 1 about here.]

FCN: no skip connections

We trained the FCN with the same architecture as the U-Net and with all data

augmentation steps but without skip connections. The DSC-value at the end of

training on the training set is 0.83 whereas on the master events it is quite a bit

lower, i.e. 0.70. The mean depth, epicenter and hypocenter differences are 177,

54 and 163 meters, respectively. The epicenter locations are closer to the catalog

locations compared to all other models, however, the mean depth as well as hypocenter

differences are larger compared to U-Net A.

U-Net A applied to all detected field data events

From the above results we see that the peak value can change depending on the

input data. For the model trained without field noise some of the predictions had

peak values around 0.1 and the predicted output did not resemble a 3D Gaussian
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distribution. Thus the peak value could be used as an indicator of how reliably

the model recognizes waveforms in the input data. Since we train the deep learning

algorithm on synthetic data we do expect more difficulties for the models to recognize

and therefore accurately predict locations of lower magnitude events with lower S/Ns.

A threshold acting on the peak value could be set to only consider predictions passing

the threshold. We apply U-Net A to all 1245 field data events and consider the

location at the peak value of the output as the predicted hypocenter location and

compute its distance from the hypocenter location given in the catalog that is based

on DS and further refined using the master events with the RL method. In Fig. 6 the

peak value with respect to magnitude of all 1245 events is plotted. We observe a trend

between the peak value returned by U-Net A and the Mw. Each data point is colored

according to its distance to the cataloged location (based on DSRL). Most events

predicted at distances smaller than 200 meters show higher peak values and also have

higher magnitudes. A majority of the events with large distances between the catalog

and predicted locations have peak values below 0.3 with moment magnitudes between

-0.6 to 0.3. We thus decide to set the threshold at 0.4.

[Figure 6 about here.]

We compare the predicted locations passing the threshold to the locations deter-

mined by the diffraction stacking method (DS) (Anikiev et al., 2014), catalog DS, and

to the locations determined by the diffraction stacking and relative-location method

(RL), catalog DSRL. The main difference between the locations in catalog DS and

catalog DSRL are the depth locations, which in the latter are much more concen-
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trated along the injection depth level. For a detailed comparison between the two

catalogs applied to the Texas data set we refer to (Alexandrov et al., 2020). To view

the differences in locations between the catalogs and the predicted locations we draw

lines connecting the predicted to both cataloged locations of each event (see Fig. 7).

While some predicted locations still show larger differences to the cataloged loca-

tions most have a close match. A grid pattern is observed in the locations returned

by U-Net A, which is due to the discretized 3D output space. We note that depth

locations given by DSRL are concentrated around 2100 m depth, whereas the focal

depths given by DS as well as U-Net A are scattered around 2100 m depth. Com-

paring the depth distribution of the located events in a histogram (Fig. 8) reveals

that the depth distribution predicted by U-Net A more closely follows the trend of

the DSRL catalog compared to the DS catalog, with most events at depths between

2100 and 2200 meters, which is the injection depth level. This could indicate that

U-Net A is doing better at predicting the depth locations compared to DS for the

events passing the threshold. The mean hypocenter, epicenter and depth distances

of the locations predicted by U-Net A compared to the DSRL catalog are 214, 147

and 130 m, respectively for the 467 events that passed the threshold. The moment

magnitude of those events range between -0.4 and 1.7.

[Figure 7 about here.]

[Figure 8 about here.]
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With the threshold of 0.4 there are still some events that have large location

differences compared to the catalogs. To focus on the predicted locations that more

closely match the DSRL cataloged locations we set the threshold to 0.6 (as can be seen

in Fig. 6). Comparing these predicted event locations to both cataloged locations,

we observe a good match in epicenter locations (Fig. 9). Furthermore, the predicted

depth locations are more concentrated around the expected depth level compared to

DS. A total of 314 events pass that threshold and the mean hypocenter, epicenter and

depth distances compared to the DSRL catalog are 163, 110 and 99 m, respectively,

with moment magnitudes in the range -0.2 to 1.7.

Since the locations from the catalog are captured inside the 3D Gaussian distri-

bution returned by the U-Net, the U-Net’s locations could be used as initial source

locations that can then be further improved with the use of other microseismic source

localization methods such as RL.

[Figure 9 about here.]

DISCUSSION

We did not address the issue of the detection of events in this study since we do not

have continuous field data. For a practical application we would suggest to separate

the detection and localization problem. The detection could for instance be made

by diffraction stacking (Anikiev et al., 2014; Staněk et al., 2015) or other stacking

methods (Loginov et al., 2016). Machine learning methods capable of differentiating
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between signal and noise have also already been proposed and successfully applied

(Perol et al., 2018; Mousavi et al., 2019; Li et al., 2018; Wu et al., 2018) and could also

be used in combination with an event-localization method. If an event is detected,

the information can be passed to the source-localization network. Alternatively, we

could explore whether the U-Net trained in this study could be used as a detection

method, based on the peak value returned by the model. In continuous mode a

possible criterion for a detection could be that the peak value should pass a predefined

threshold in a number of consecutive time windows if an event is present.

One main limitation of the method is the ability to mimic realistic field noise that

can be added to the synthetics - especially to target low-S/N events. Each station

in the field is subjected to local noise. Thus, if longer passive noise recordings were

available for each station, these could easily be added to the corresponding traces

in the synthetics during training. The network would then be able to learn directly

with the noise specific to each station and possibly be able to detect and predict the

hypocenter locations of lower S/N-events. This subject falls outside the scope of this

work.

Contrary to previous works on earthquake source localizations using CNNs (Kriegerowski

et al., 2019; Zhang et al., 2020b; Mousavi and Beroza, 2020b; van den Ende and

Ampuero, 2020) this work only made use of the vertical component of the seismic

wavefield, because this was the only component recorded in the field. It would be

interesting to study the differences of a network trained with both the vertical and

horizontal wavefields and a network trained only with the vertical component. We
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can assume that the network with all three components would perform better since

many source-localization methods make use of both P- and S-waves.

In this study, a subset of all available stations was used to reduce the amount of

data needed to store the synthetic data and reduce the data input-output bottlenecks

and memory footprint during the training phase of the network. However, the earth-

quake catalog with the source locations is based on all the available stations. Even

though less stations were used the network still returned accurate source locations.

In this study we did not address the problem of localizing multiple events present

in a single time window and only considered the situation where a single event is

present, as this was the case in the field data. To address this issue we would suggest

training a network with input data containing a random number of events, K, and

similarly the target would therefore contain K Gaussian distributions. In that way

the network could possibly learn to recognize whether more than a single event is

present in the input and return source locations for those events.

Generating the synthetic data set for 51200 sources took 7 days running 100 jobs

in parallel on 2.3 GHz Intel Xeon CPUs. Training for 20 epochs took 11 hours on a

NVIDIA GeForce GTX 1080 Ti GPU. Prediction of a single event takes 0.28 seconds

on a 3.1 GHz Dual-Core Intel Core i5 processor.

In this work we extended upon previous works using CNNs (Perol et al., 2018;

Kriegerowski et al., 2019; Zhang et al., 2020b) and specifically addressed the prob-

lem of missing events in the training set by generating synthetics everywhere in the

model space. We wanted to test the possibility of training a network solely with
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synthetic data that can directly be applied to field data. This work shows that this is

indeed possible, however, the ability of localizing weaker magnitude field data events

decreases rapidly. It could be investigated whether augmenting the synthetics using

longer recordings of passive noise from the area under investigation could lead to bet-

ter localizations of weaker events or whether the weights of the network trained with

the synthetic data set can be fine-tuned using field data in order to localize weaker

magnitude events.

In this study we applied the method to single-component data from a hydraulic

fracturing site, however, it can be applied to larger areas by up-scaling the entire

experimental setup.

CONCLUSION

In this paper we showed that synthetic data can be used to train a U-Net to ac-

curately localize microseismic field data. Furthermore, we showed that augmenting

the synthetic data with field noise further increases the U-Net’s accuracy to localize

events. After the network is trained, this method returns the source location within

less than one second given the event waveforms as input. Furthermore, the retrieved

locations are comparable to state-of-the-art localization methods such as diffraction-

stacking and refined diffraction-stacking locations using a relative location method.

In terms of depth locations the deep learning model seems to outperform diffraction-

stacking as the depths are better constrained around the expected depth level for

the events predicted with peak values above a set threshold. The proposed method
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provides locations based on the full waveform without the need for any picking, while

its accuracy was better than that of a conventional diffraction stacking approach.

ACKNOWLEDGMENTS

We would like to thank Dmitry Alexandrov and Leo Eisner from the company Seismik

s.r.o. for providing us with the Texas data set, their earthquake catalog and the

velocity model.

26

Page 27 of 45 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

86
8.

1



REFERENCES

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
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Staněk, F., D. Anikiev, J. Valenta, and L. Eisner, 2015, Semblance for microseismic

event detection: Geophysical Journal International, 201, 1362–1369.

Trojanowski, J., and L. Eisner, 2017, Comparison of migration-based location and

detection methods for microseismic events: Geophysical Prospecting, 65, 47–63.

van den Ende, M. P., and J.-P. Ampuero, 2020, Automated seismic source charac-

terization using deep graph neural networks: Geophysical Research Letters, 47,

e2020GL088690.

Van Der Baan, M., D. Eaton, M. Dusseault, et al., 2013, Microseismic monitoring de-

velopments in hydraulic fracture stimulation: Presented at the ISRM international

conference for effective and sustainable hydraulic fracturing, International Society

32

Page 33 of 45 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

86
8.

1



for Rock Mechanics and Rock Engineering.

Wu, Y., Y. Lin, Z. Zhou, D. C. Bolton, J. Liu, and P. Johnson, 2018, DeepDetect:

A cascaded region-based densely connected network for seismic event detection:

IEEE Transactions on Geoscience and Remote Sensing, 57, 62–75.

Zhang, G., C. Lin, and Y. Chen, 2020a, Convolutional neural networks for microseis-

mic waveform classification and arrival picking: Geophysics, 85, WA227–WA240.

Zhang, X., J. Zhang, C. Yuan, S. Liu, Z. Chen, and W. Li, 2020b, Locating induced

earthquakes with a network of seismic stations in Oklahoma via a deep learning

method: Scientific Reports, 10, 1–14.

Zhu, L., Z. Peng, J. McClellan, C. Li, D. Yao, Z. Li, and L. Fang, 2019, Deep

learning for seismic phase detection and picking in the aftershock zone of 2008

Mw7. 9 Wenchuan Earthquake: Physics of the Earth and Planetary Interiors, 293,

106261.

Zhu, W., and G. C. Beroza, 2019, PhaseNet: a deep-neural-network-based seismic

arrival-time picking method: Geophysical Journal International, 216.

33

Page 34 of 45GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

86
8.

1



LIST OF FIGURES

1 Illustration of the U-Net architecture used throughout this work: seis-
mic input data go through a set of convolutional and transposed convo-
lutional layers generating a 3D Gaussian distribution as output. Black
down- and up-going arrows indicate standard convolutional layers. Red
down-going arrows denote strided convolutions (down-sampling) and
up-going arrows denote transposed convolutional layers (up-sampling).
Dashed horizontal lines indicate skip connections between encoder and
decoder. The numbers next to the curly brackets indicate the dimen-
sions of each layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Receiver locations (black triangles), source region of interest (shaded
cuboid) and source locations (red stars). . . . . . . . . . . . . . . . . 36

3 Bandpass-filtered examples of three master events with decreasing sig-
nal quality from left to right. Percentile clipping was applied to better
visualize events. Shown entire waveforms are used as input to the
U-Nets (without added percentile clipping). . . . . . . . . . . . . . . 37

4 Three synthetic events augmented with field noise as used during training. 38

5 U-Net A output cross-sections: (a) horizontal cross-section with East-
ing along horizontal and Northing along vertical axis and (b) vertical
cross-section with Easting along horizontal and depth along vertical
axis. Black stars represent DS cataloged locations and white stars are
placed at highest-valued voxel in U-Net A’s output. Each panel cor-
responds to output for one of the 22 master events with Mw between
0.3 and 1.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Peak value of U-Net A output vs Magnitude of 1245 field data events.
Each data point is colored according to its distance to the DSRL cat-
aloged location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Locations given in DS catalog (red), DSRL catalog (black) and lo-
cations predicted by U-Net A passing an amplitude threshold of 0.4
(blue). Lines connect predicted to cataloged locations. . . . . . . . . 41

8 Depth distributions of events in DS catalog (red), DSRL catalog (black)
and locations predicted by U-Net A passing an amplitude threshold of
0.4 (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 Locations given in DS catalog (red), DSRL catalog (black) and loca-
tions predicted by U-Net passing threshold of 0.6 (blue). Lines connect
predicted to both cataloged locations. . . . . . . . . . . . . . . . . . . 43

34

Page 35 of 45 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

86
8.

1



Table 1: Mean peak value of DNNs over 22 master events and their location di↵erences
compared to DS catalog.

Model Peak value Hypocenter di↵erence (m) Epicenter di↵erence (m) Focal depth di↵erence (m)
U-Net A 0.79 135 82 96
U-Net B 0.59 302 175 223
FCN 0.75 177 54 163
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Figure 1: Illustration of the U-Net architecture used throughout this work: seismic input data go through a 
set of convolutional and transposed convolutional layers generating a 3D Gaussian distribution as output. 
Black down- and up-going arrows indicate standard convolutional layers. Red down-going arrows denote 
strided convolutions (down-sampling) and up-going arrows denote transposed convolutional layers (up-

sampling). Dashed horizontal lines indicate skip connections between encoder and decoder. The numbers 
next to the curly brackets indicate the dimensions of each layer. 
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Figure 2: Receiver locations (black triangles), source region of interest (shaded cuboid) and source locations 
(red stars). 
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Figure 3: Bandpass-filtered examples of three master events with decreasing signal quality from left to right. 
Percentile clipping was applied to better visualize events. Shown entire waveforms are used as input to the 

U-Nets (without added percentile clipping). 
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Figure 4: Three synthetic events augmented with field noise as used during training. 
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Figure 5: U-Net A output cross-sections: (a) horizontal cross-section with Easting along horizontal and 
Northing along vertical axis and (b) vertical cross-section with Easting along horizontal and depth along 

vertical axis. Black stars represent DS cataloged locations and white stars are placed at highest-valued voxel 
in U-Net A's output. Each panel corresponds to output for one of the 22 master events with Mw between 0.3 

and 1.6. 
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Figure 6: Peak value of U-Net A output vs Magnitude of 1245 field data events. Each data point is colored 
according to its distance to the DSRL cataloged location. 
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Figure 7: Locations given in DS catalog (red), DSRL catalog (black) and locations predicted by U-Net A 
passing an amplitude threshold of 0.4 (blue). Lines connect predicted to cataloged locations. 
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Figure 8: Depth distributions of events in DS catalog (red), DSRL catalog (black) and locations predicted by 
U-Net A passing an amplitude threshold of 0.4 (blue). 

387x387mm (300 x 300 DPI) 

Page 44 of 45GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

86
8.

1



 

Figure 9: Locations given in DS catalog (red), DSRL catalog (black) and locations predicted by U-Net passing 
threshold of 0.6 (blue). Lines connect predicted to both cataloged locations. 
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