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Abstract

We show Lp-estimates for square roots of second order complex elliptic systems L in divergence form on 
open sets in Rd subject to mixed boundary conditions. The underlying set is supposed to be locally uniform 
near the Neumann boundary part, and the Dirichlet boundary part is Ahlfors–David regular. The lower 
endpoint for the interval where such estimates are available is characterized by p-boundedness properties 
of the semigroup generated by −L, and the upper endpoint by extrapolation properties of the Lax–Milgram 
isomorphism. Also, we show that the extrapolation range is relatively open in (1, ∞).
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

MSC: primary 35J47, 47A60; secondary 42B20, 26D10
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1. Introduction and main results

Let L be a second order complex elliptic system in divergence form on an open set O ⊆ Rd , 
d ≥ 2, formally given by

Lu = −
d∑

i,j=1

∂i(aij ∂ju) −
d∑

i=1

∂i(biu) +
d∑

j=1

cj ∂ju + du.
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The function u takes its values in Cm, where m ≥ 1 is the size of the system, and the coefficients 
aij , bi, cj , d are valued in L(Cm) and are only supposed to be bounded, measurable, and elliptic 
in the sense of (2). We refer to d and m as dimensions, and to the implied constants in bounded-
ness and ellipticity as coefficient bounds. The system L is subject to mixed boundary conditions 
in the following sense: We fix some closed subset D ⊆ ∂O , on which we impose homogeneous 
Dirichlet boundary conditions, and in the complementary boundary part N := ∂O \D we impose 
natural boundary conditions.

To make this more precise, denote by W1,2
D (O) the first-order Sobolev space on O with a ho-

mogeneous Dirichlet boundary condition on D. A proper definition will be given in Section 2.2. 
Put W 1,2

D (O) := W1,2
D (O)m and define the sesquilinear form a : W 1,2

D (O) ×W 1,2
D (O) → C by

a(u, v) =
∫
O

d∑
i,j=1

aij ∂ju · ∂iv +
d∑

i=1

biu · ∂iv +
d∑

j=1

cj ∂ju · v + du · v dx.

Define L as the operator in L2(O)m associated with a. Then L is invertible, maximal accre-
tive, and sectorial. We take a closer look on the properties of L in Section 2.3. In particular, L
possesses a square root L

1
2 . The question if D(L

1
2 ) = W 1,2

D (O) with equivalent norms became 
famous as Kato’s square root problem, and could be answered in the affirmative, first on the 
whole space [4], and later under suitable geometric requirements on open sets [5,7,12].

Phrased differently, Kato’s square root property asserts that L
1
2 is an isomorphism W 1,2

D (O) →
L2(O)m. It is then a natural question if L

1
2 also extrapolates in a suitable range of p to an isomor-

phism W 1,p
D (O) → Lp(O)m, where W 1,p

D (O) := W1,p
D (O)m. In the case O = Rd and m = 1, an 

optimal range of such p was given by Auscher [1]. When O is a bounded and interior thick do-
main, D is Ahlfors–David regular (see Assumption D), O satisfies the so-called weak Lipschitz 
condition around N , and the coefficients are real and scalar, then a first result for mixed boundary 
conditions was given by Auscher, Badr, Haller-Dintelmann, and Rehberg [2]. Under the same ge-
ometric assumptions, but with complex and matrix-valued coefficients, Egert showed in [11] that 
L

1
2 extrapolates to an isomorphism W 1,p

D (O) → Lp(O)m if p ∈ (p−(L), 2 + ε). Here, p−(L) is 
the infimum of I(L), where

I(L) := {p ∈ (1,∞) : {e−tL}t>0 is Lp-bounded},

and ε > 0 depends on geometry, dimensions, and coefficient bounds. We will write �p� :=
supt>0 ‖e−tL‖Lp→Lp whenever p ∈ I(L). In the situation of [2] one has, for instance, p−(L) =
1, see [2, Prop. 4.6 (i)]. The notion of Lp-bounded families of operators is made precise 
in Definition 3.1. Under extrapolation we understand that L

1
2 and L− 1

2 , initially defined on 
W 1,p

D (O) ∩ W 1,2
D (O) and Lp(O)m ∩ L2(O)m, respectively, extend by continuity to bounded 

operators W 1,p
D (O) → Lp(O)m and Lp(O)m → W 1,p

D (O). In this case, we say that L
1
2 is a 

p-isomorphism. Similarly, we say that L
1
2 and L− 1

2 are p-bounded and so on.
The geometric constellation in [2,11] was primarily dictated by the available L2-theory for 

the Kato square root problem from [12,13]. Meanwhile, by a recent result of the author together 
with Egert and Haller-Dintelmann [7], Kato’s square root problem could be solved in the affir-
mative if O is a possibly unbounded, non-connected, not interior thick open set which is locally 
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uniform near N (see Assumption N), and whose Dirichlet part D is Ahlfors–David regular (see 
Assumption D). It is one aim of this article to extend the results of [11] to this setting.

Also, it was shown in [11] that if p < p−(L), then L
1
2 is not a p-isomorphism, but sharpness 

for the endpoint p = p−(L) was not treated. Moreover, it was left as an open question in [11, 
p. 5] to characterize the optimal range of p > 2 in the case of mixed boundary conditions.

In summary, it is the goal of this paper to establish the following improvements of the state of 
the art presented in [11]. In fact our article should be seen as a part II to [11], which is also the 
motivation for our title.

(i) The square root isomorphism L
1
2 :W 1,2

D (O) → L2(O)m can be extrapolated away from 2
even if O is only supposed to be open, locally uniform near N , and with Ahlfors–David 
regular Dirichlet part D,

(ii) the interior of the optimal range in which L
1
2 is a p-isomorphism is (p−(L), q̃+(L)),

(iii) if p−(L) > 1, then L
1
2 is not a p−(L)-isomorphism, similarly for q̃+(L) < ∞.

Here, q̃+(L) is defined as follows: We know from the Lax–Milgram lemma that L :
W 1,2

D (O) → W −1,2
D (O) is an isomorphism, where we put W −1,p

D (O) := (W 1,p′
D (O))∗ for 

p ∈ (1, ∞). Here, p′ is the Hölder-conjugate exponent to p. Similarly to the case of L
1
2 , we 

say that L is a p-isomorphism if L−1 extends from W−1,p
D (O) ∩W −1,2

D (O) to a bounded oper-

ator W −1,p
D (O) → W 1,p

D (O). Then define the set

J (L) := {p ∈ (1,∞) : L is a p-isomorphism},

and put q̃+(L) := supJ (L). Moreover, for q ∈ J (L), put � q � := ‖L−1‖
W−1,p

D (O)→W 1,p
D (O)

. The 

quantities �p� and � q � will be useful to quantify dependence of implicit constants in Theo-
rem 1.2.

Remark 1.1. Clearly, L always extends from W 1,p
D (O) ∩ W 1,2

D (O) to a bounded operator 

W 1,p
D (O) → W −1,p

D (O), and the operator norm of this extension is controlled by the coeffi-
cient bounds. If p ∈ J (L), then this extension is one-to-one and onto, and its inverse coincides 
on W −1,p

D (O) ∩W −1,2
D (O) with the inverse provided by the Lax–Milgram lemma. The compat-

ibility with the inverse operator in the case p = 2 is the main advantage of our definition, as it 
enables us to invoke interpolation arguments.

On Rd , a characterization of the upper endpoint using q̃+(L) already appeared in [1, 
Cor. 4.24]. However, the version back then contained a flaw that originates from compatibil-
ity issues (confer with Remark 1.1) due to the unbounded geometry. This was pointed out by the 
author of [1] and Egert in their recent monograph [3, p. 135]. They also resolve the issue using 
compatible Hodge decompositions. Our characterization does not use this detour and works on 
domains with mixed boundary conditions.

The precise formulation of our main theorem then reads as follows.

Theorem 1.2. Let O ⊆ Rd be open, and D ⊆ ∂O be closed. Assume that (O, D) satisfies As-
sumption N and Assumption D. Then the system L satisfies the following:
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(i) If p−(L) < r < p < 2, then L
1
2 is a p-isomorphism and implicit constants depend on p, 

r , �r�, dimensions, geometry, and coefficient bounds. If 2 < q < r < q̃+(L), then L
1
2 is 

a q-isomorphism, and implicit constants depend on q , r , � r �, dimensions, geometry, and 
coefficient bounds,

(ii) if p ∈ (1, ∞) and L
1
2 is a p-isomorphism, then p−(L) ≤ p ≤ q̃+(L),

(iii) if p−(L) > 1, then L
1
2 is not a p−(L)-isomorphism, and if q̃+(L) < ∞, then L

1
2 is not a 

q̃+(L)-isomorphism.

Remark 1.3. The number p−(L) is at most 2∗, see [11, Thm. 1.6], and the number q̃+(L) is at 
least 2 by the Lax–Milgram lemma. If d ≥ 3, p−(L) can be improved to 2∗ − ε, see again [11, 
Thm. 1.6], and q̃+(L) can be improved to 2 + ε in any dimension, see Proposition 7.1.

In the next section, we will introduce all necessary definitions and make precise our geometric 
assumptions. Section 3 provides preliminary results, including some p-bounds for L− 1

2 and the 
H∞ calculus, most of them taken from [11] without proof. Therefore, we advise the reader to 
keep a copy of that article handy. In Section 4, we review results on the p-bound for L

1
2 when p <

2. They rely on a weak-type argument which is based on a Calderón–Zygmund decomposition 
for Sobolev functions. Its proof relies on a new Hardy’s inequality related to mixed boundary 
conditions presented in Section 4.1. Finally, we prove Theorem 1.2 in the Sections 5-7. The 
respective sections correspond to items (i)-(iii) in the theorem.

Notation. Write diam(·) for the diameter of a set and d(·, ·) for the distance between two sets. We 
employ the shorthand notation dE(x) := d(E, {x}). The (d − 1)-dimensional Hausdorff measure 
is denoted by Hd−1. If ϕ ∈ (0, π), then write Sϕ for the (open) sector {z ∈ C \{0} : | arg(z)| < ϕ}, 
and put S0 := (0, ∞). Also, write Sϕ := Sϕ for the closed sector. For � ⊆ C open, denote the 
space of bounded and holomorphic functions on � by H∞(�) and equip it with the supremum 
norm. Inductively, we introduce the shorthand notation 2[0] := 2 and 2[j+1] := (2[j ])∗ for iterated 
Sobolev exponents.

2. Elliptic systems & function spaces

We properly introduce the (m × m)-elliptic system L on O ⊆ Rd , d ≥ 2, from the introduc-
tion. To this end, we also need to define Sobolev spaces subject to mixed boundary conditions, 
and we discuss geometric properties of the pair (O, D).

2.1. Geometry

Let O ⊆ Rd be open and D ⊆ ∂O be closed. Fix the pair (O, D) for the rest of this article. In 
particular, implicit constants might depend on this choice of geometry, as well as on dimensions. 
Introduce the following set of geometric assumptions.

Assumption N. There are ε ∈ (0, 1] and δ ∈ (0, ∞] such that with Nδ := {z ∈ Rd : d(z, N) < δ}
one has the following properties.

(i) All points x, y ∈ O ∩ Nδ with |x − y| < δ can be joined in O by an ε-cigar with respect 
to ∂O ∩ Nδ , that is to say, a rectifiable curve γ ⊆ O of length 	(γ ) ≤ ε−1|x − y| such that
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d(z, ∂O ∩ Nδ) ≥ ε|z − x| |z − y|
|x − y| (z ∈ γ ).

(ii) O has positive radius near N , that is, there exists λ > 0 such that all connected components 
O ′ of O with ∂O ′ ∩ N �= ∅ satisfy diam(O ′) ≥ λδ.

Assumption D. There are constants C, c > 0 such that

∀x ∈ D,r ∈ (0,diam(D)] : crd−1 ≤ Hd−1(B(x, r) ∩ D) ≤ Crd−1.

Assumption D′. There are constants C, c > 0 such that

∀x ∈ D,r ∈ (0,1] : crd−1 ≤ Hd−1(B(x, r) ∩ D) ≤ Crd−1.

Assumption N means that O is locally uniform near N , see [7, Sec. 2.1] for further in-
formation and a comparison with other geometric frameworks, including that used in [2,11]. 
Assumption D means that D is Ahlfors–David regular and Assumption D′ that D is (d − 1)-
regular. If D is bounded, then Assumption D and Assumption D′ are equivalent, and in the 
unbounded case, Assumption D implies Assumption D′, but the converse might be false.

Throughout, assume that Assumption N is in place.

2.2. Sobolev spaces

Let p ∈ [1, ∞). Write W1,p(O) for the usual first-order Sobolev space of Lp-functions on O
whose distributional gradient is in Lp(O)d . Also, introduce the set of test functions

C∞
D (O) := {u|O : u ∈ C∞

0 (Rd) & d(supp(u),D) > 0}, (1)

where C∞
0 (Rd) denotes the set of smooth and compactly supported functions on Rd . Then the 

closed subspace W1,p
D (O) of W1,p(O) corresponding to mixed boundary conditions on D is 

given as the closure of C∞
D (O) in W1,p(O). See [6, Sec. 2.2] for an alternative set of test func-

tions that leads to the same closure. Moreover, define the space W−1,p
D (O) by W1,p′

D (O)∗. Here, 

X∗ denotes the space of antilinear functionals on X, and the W−1,p
D (O)–W1,p′

D (O) duality ex-
tends the L2(O)-duality. Replacing W by W , we extend all definitions to m-fold product spaces 
as before. All definitions can be extended to the more general case that � ⊆ Rd is open and 
E ⊆ �; Then we obtain for instance W1,p

E (�).

Often, we will need that the space W1,p
D (O) has the following (inhomogeneous) extension 

property. This is the main result in [6].

Proposition 2.1. Suppose Assumption N. Then there exists a linear extension operator E on 
L1

loc(O) that restricts for any p ∈ (1, ∞) to a bounded operator E : W1,p
D (O) → W1,p

D (Rd).

Here, extension operator refers to the property that (Eu)|O = u for any u ∈ L1
loc(O). A conse-

quence of Proposition 2.1 is that classical inequalities like the Sobolev embedding W1,p(Rd) ⊆
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Lp∗
(Rd) valid for p < d translate to W1,p

D (O). Here, p∗ := pd
d−p

is the (upper) Sobolev expo-
nent to p if p < d , otherwise put p∗ = ∞. Similarly, define the lower Sobolev exponent by 
p∗ := pd

d+p
.

2.3. The elliptic system

We give a precise definition for the elliptic system L from the introduction. Consider the 
coefficients aij , bi, cj , d : O → L(Cm). Here, i and j refer to row and column notation and 
m ≥ 1 is the size of the system. Put A = (aij )ij , b = (bi)i , c = (cj )j . We assume the upper 
bound

∥∥∥∥
[
d c

b A

]∥∥∥∥
L∞(O;L(Cdm+m))

≤ �

for the coefficients. Using the spaces from Section 2.2, define the sesquilinear form

a : W 1,2
D (O) ×W 1,2

D (O) → C, a(u, v) =
∫
O

[
d c

b A

][
u

∇u

]
·
[

v

∇v

]
dx.

To ensure ellipticity of a, assume for some λ > 0 the (inhomogeneous) Gårding inequality

Rea(u,u) ≥ λ(‖u‖2
2 + ‖∇u‖2

2) (u ∈ W 1,2
D (O)). (2)

Associate with a the operator

L : W 1,2
D (O) → W −1,2

D (O), 〈Lu,v〉 = a(u, v).

In virtue of (2) and the Lax–Milgram lemma, L is invertible. Define L to be the maximal re-
striction of L in L2(O)m in virtue of the inclusion L2(O)m ⊆ W −1,2

D (O). Clearly, L is again 
invertible. By ellipticity it follows that L is densely defined. Moreover, for some ω′ ∈ [0, π/2)

that depends on coefficient bounds, the numerical range 
(L) is contained in the closed sector 
Sω′ . This is a consequence of 
(L) ⊆ 
(a) together with ellipticity of a. Define ω as the in-
fimum over all such ω′. In particular, L is sectorial and maximal accretive, hence generates a 
contraction semigroup on L2(O)m.

We will freely use the sectorial functional calculus of L and assume that the reader is familiar 
with this concept. The reader can consult the monograph [14] for further information on this 
topic.

The following theorem is the main result from [7] and establishes Kato’s square root property 
for L.

Theorem 2.2 (Kato’s square root property). Assume that the pair (O, D) satisfies Assumption N

and Assumption D. Then D(L
1
2 ) = W 1,2

D (O) holds with equivalence of norms

‖u‖2 + ‖∇u‖2 ≈ ‖L 1
2 u‖2 (u ∈W 1,2

D (O)),

where the implicit constants depend only on geometry, dimensions, λ, and �.
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2.4. Decomposition of L−1

We use a representation formula for L−1. A similar formula, but for L itself, was also used 
in [11]. In fact, the lemma below follows from the result in [11] and Theorem 2.2. For conve-
nience of the reader, we include the short and direct proof. The reason why we need a formula 
for L−1 is that in unbounded sets the question of compatibility becomes a non-trivial task.

Lemma 2.3. One has the identity

(L
1
2 L−1u |f )2 = 〈u, (L∗)−

1
2 f 〉 (u ∈W −1,2

D (O),f ∈ L2(O)m).

Proof. First, let u ∈ L2(O)m and v ∈W 1,2
D (O). Then L−1u ∈ D(L), hence, taking Theorem 2.2

into account, deduce

(u |v)2 = a(L−1u,v) = (LL−1u |v) = (L
1
2 L−1u | (L∗)

1
2 v).

We specialize to v := (L∗)− 1
2 f to conclude

〈u, (L∗)−
1
2 f 〉 = (u | (L∗)−

1
2 f )2 = (L

1
2 L−1u |f ).

Owing to Theorem 2.2 (applied with L and L∗) and the Lax–Milgram lemma, both sides are 
continuous in u with respect to the W−1,2

D (O) topology. Hence, the claim follows by density. �
3. Review on off-diagonal estimates and Lp extrapolation

3.1. Off-diagonal estimates

We review decay properties in Lp of operator families related to L. Definition 3.1 also clarifies 
the notion that the family {e−tL}t>0 is Lp-bounded, which was used in the definition of p−(L)

in the introduction. The results obtained in this section will be used frequently in the course of 
this article.

Definition 3.1. Let � ⊆ Rd be measurable, m1, m2 natural numbers and let U ⊆ C \ {0} and 
T = {T (z)}z∈U be a family of bounded operators L2(�)m1 → L2(�)m2 . Given 1 ≤ p ≤ q ≤ ∞, 
say that T is Lp → Lq bounded if there exists a constant C > 0 such that for all u ∈ Lp(�)m1 ∩
L2(�)m1 and z ∈ U one has

‖T (z)u‖Lq (�)m2 ≤ C|z|− d
2
( 1
p

− 1
q

)
‖u‖Lp(�)m1 .

If in addition there is c ∈ (0, ∞) such that, whenever E, F ⊆ � and supp(u) ⊆ E, the more 
restrictive estimate

‖T (z)u‖Lq (F )m2 ≤ C|z|− d
2
( 1
p

− 1
q

)
e−c

d(E,F )2
|z| ‖u‖Lp(E)m1

holds, then say that T satisfies Lp → Lq off-diagonal estimates. Finally, if p = q in the above 
situations, we simply talk about Lp-boundedness and Lp off-diagonal estimates.
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If T = {e−tL}t>0 and T is Lp → Lq bounded for some values 1 ≤ p < q ≤ ∞, then we say 
that the semigroup is hypercontractive.

Using Davies’ trick one can show L2 off-diagonal estimates without any geometrical require-
ments.1 The general argument is well-known, see [1] for a version on Rd and [11] for a version 
on open sets. The following formulation follows with the proof presented in [11] when using 
Young’s inequality also for the term of order zero (this also eliminates the dependence of the im-
plicit constants on diam(O) that appeared in [11]) and when replacing the function ϕ appearing 
in the proof by functions ϕn := dE(x) ∧ n and taking the limit n → ∞ in the end.

Proposition 3.2. For ψ ∈ [0, π/2 − ω), the operator families {e−zL}z∈Sψ , {z∇e−z2L}z∈Sψ , and 
{zLe−zL}z∈Sψ satisfy L2 off-diagonal estimates, and the implied constants depend on L only via 
its coefficient bounds.

We continue with estimates in Lp. The following result allows to translate Lp-boundedness 
into Lq → L2 off-diagonal estimates up to a slight loss in the integrability parameter. Its proof 
can be obtained by concatenating the relevant parts in [11, Prop. 4.4]. Note that geometry in 
that result is only needed to have an extension operator at ones disposal. This is ensured by 
Proposition 2.1 in our case.

Proposition 3.3 (Off-diagonal estimates from boundedness). Let q ∈ (p−(L), 2), p ∈ (q, 2), and 
let ψ ∈ [0, π/2 − ω). Then {e−zL}z∈Sψ satisfies Lp → L2 off-diagonal estimates, and the implicit 
constants depend on p, q , �q�, ψ , and coefficient bounds.

To the contrary, the following result yields Lp-boundedness from hypercontractivity. The ar-
gument is similar to that in [11, Prop. 4.4] and we only present the necessary changes.

Proposition 3.4 (Boundedness from hypercontractivity). Let 1 ≤ q < p < r ≤ ∞ be such that 
{e−tL}t>0 is Lq → Lr bounded. Then {e−tL}t>0 is Lp-bounded, and �p� depends only on p, q , 
r , coefficient bounds, and the implicit constant in the assumption.

Proof. Let θ ∈ (0, 1) be such that 1
p

= 1−θ
2 + θ

r
and define [q, 2]θ ∈ (q, 2) by 1

[q,2]θ := 1−θ
q

+ θ
2 . 

Interpolate the Lq → Lr bounds from the assumption with the L2 off-diagonal bounds from 
Proposition 3.2 to see that {e−tL}t>0 satisfies L[q,2]θ → Lp off-diagonal estimates, where the 
implicit constants depend on p, r , and implied constants in the hypothesis. Then the claim fol-
lows from [11, Lem. 4.5] with the same choices of s and g as in the proof [11, Prop. 4.4 (v)]. �

As an application [11, Thm. 1.6] one can derive upper bounds for p−(L) and lower bounds 
for p+(L). Geometry is only used to have an extension operator in hand.

Corollary 3.5. One has p−(L) = 1 and p+(L) = ∞ if d = 2 and p−(L) ≤ 2∗ and p+(L) ≥ 2∗
if d ≥ 3.

1 In fact, using test functions as in (1) that are restrictions from Rd constitutes a form of “geometry”. To see that one 
can use test function classes that only use information on O one has to impose restrictions on the geometry, see the 
discussion in Section 2.2.
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3.2. Boundedness of the H∞-calculus and Riesz transforms

In this section, we recall results from [1,11] on Lp-boundedness of the H∞-calculus and the 
Riesz transform associated with L. They are consequences of Proposition 3.3 and an extrapola-
tion result due to Blunck and Kunstmann [9]. The use of geometry is completely hidden in the 
results providing off-diagonal estimates.

The following result is taken from [11, Thm. 1.3]. Observe that the operator f (L) is well-
defined on L2(O)m owing to the Crouzeix–Delyon theorem for m-ω-accretive operators [14, 
Cor. 7.1.17]. Note that in the last line of [11, Thm. 1.3], the argument using the inclusion L2(�) ⊆
Lp(�) has to be substituted by a standard argument using Fatou’s lemma.

Proposition 3.6 (H∞-calculus). Let p−(L) < q < p+(L), p ∈ (q, 2) ∪ (2, q), and ϕ ∈ (ω, π). 
Then for every f ∈ H∞(Sϕ) one has

‖f (L)u‖p � ‖f ‖∞‖u‖p (u ∈ Lp(O)m ∩ L2(O)m),

where the implicit constant depends on p, q , �q�, ϕ, and coefficient bounds.

In the same spirit, we obtain Lp-boundedness of the Riesz transform, which upgrades to a p-

bound for L− 1
2 . The result is taken from [11, Lem. 6.1 & Cor. 6.2]. As above, geometry is only 

used to provide off-diagonal estimates for {t∇e−t2L}t>0. For this it is crucial that p < 2. Indeed, 
in this case the decomposition 

√
2t∇e−2tL = √

2(
√

t∇e−tL)e−tL lets us conclude Lp → L2 off-
diagonal estimates for {t∇e−t2L}t>0 from Lq -boundedness of {e−tL}t>0 and L2 off-diagonal 
bounds for {t∇e−t2L}t>0 using composition, Proposition 3.3 and Proposition 3.2.

Proposition 3.7 (Riesz transform). Let p−(L) < q < p < 2. Then the Riesz transform ∇L− 1
2 is 

Lp-bounded. Moreover, this bound can be upgraded to the p-bound

‖L− 1
2 u‖W 1,p(O) � ‖u‖p (u ∈ Lp(O)m ∩ L2(O)m),

where implicit constant depends on p, q , �q�, and coefficient bounds.

4. Survey on the p-bound for L
1
2 when p < 2

In Proposition 3.7 we have seen the p-bound for L− 1
2 when p < 2. The goal of this section is 

to investigate the complementing p-bound for L
1
2 . The argument is in large parts already known 

in the literature. Therefore, we will mainly review these known results here. Of course we will 
indicate all necessary modifications to adapt these results to our setting. There is, however, one 
ingredient needed in this section that is really novel: the global Hardy inequality adapted to an 
unbounded Dirichlet part in Theorem 4.1. We will start with this result.

4.1. Hardy’s inequality

The main result of this subsection is the following Hardy’s inequality.
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Theorem 4.1 (Hardy’s inequality). Assume that the pair (O, D) satisfies Assumption N and that 
D satisfies Assumption D′, and let p ∈ (1, ∞). Then Hardy’s inequality holds true for W1,p

D (O), 

that is, for all f ∈ W1,p
D (O) one has

∫
O

∣∣∣∣ f

dD

∣∣∣∣
p

dx � ‖f ‖p

W1,p(O)
.

Using the extension operator from Proposition 2.1, Theorem 4.1 is a direct consequence of 
the following whole-space version.

Lemma 4.2. Assume Assumption D′, and let p ∈ (1, ∞). Then Hardy’s inequality holds for 
W1,p

D (Rd), that is, for all f ∈ W1,p
D (Rd) holds

∫

Rd

∣∣∣∣ f

dD

∣∣∣∣
p

dx � ‖f ‖p

W1,p(Rd )
.

The proof of Lemma 4.2 relies on the following Hardy’s inequality with pure Dirichlet bound-
ary conditions, which is essentially contained in [16], see also [15]. Dependence of the implicit 
constants becomes apparent from an inspection of the proof.

Proposition 4.3. Let � ⊆Rd be open. Assume that ∂� is Ahlfors–David regular, where either �
is bounded or ∂� is unbounded. Then one gets the estimate

∫
�

∣∣∣∣ f

d∂�

∣∣∣∣
p

dx �
∫
�

|∇f |p dx (f ∈ C∞
∂�(�)).

The implicit constant depends on geometry only via the implied constants from Ahlfors–David 
regularity of ∂�. The inequality extends to W1,p

∂� (�) owing to Fatou’s lemma.

Let us come back to the proof of Lemma 4.2.

Proof of Lemma 4.2. Let (Qk)k be a grid of open cubes of diameter 1/4. We consider the sets 
Ok := 2Qk \ D. Each Ok has an Ahlfors–David regular boundary where the implicit constants 
depend only on the implied constants in Assumption D′ and dimension.

To see this, take a ball B centered in ∂Ok with radius r at most 1/2 (which equals the diameter 
of Ok). One has ∂Ok = ∂(2Qk) ∪ (D ∩ 2Qk), which follows from porosity of D (see [7, discus-
sion before Cor. 2.11]) and closedness of D by elementary geometric arguments. Consequently, 
the lower bound follows from the (d − 1)-regularity of ∂(2Qk) or the (d − 1)-regularity of D, 
depending on the location of the center of B . The upper bound follows similarly if B doesn’t 
intersect either ∂(2Qk) or D. Otherwise, say B is centered in ∂(2Qk) and intersects D in x. Then 
we estimate Hd−1(B ∩ ∂Ok) ≤ Hd−1(B ∩ ∂(2Qk)) +Hd−1(B(x, 2r) ∩ D) and the estimate fol-
lows again from the (d −1)-regularity of the two portions of the boundary. Note that all constants 
are uniform in k.
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Now pick cutoff function χk which are supported in 2Qk and equal 1 on Qk . Up to trans-
lation, we can use the same cut-off function for each k. Let f ∈ W1,p

D (Rd) and estimate using 
Proposition 4.3 and the bounded overlap of (Ok)k that

∫

Rd\D

∣∣∣∣ f

dD

∣∣∣∣
p

dx ≤
∑

k

∫
Ok

∣∣∣∣ χkf

d∂Ok

∣∣∣∣
p

dx �
∑

k

‖χkf ‖p

W1,p(2Qk)
� ‖f ‖p

W1,p(Rd )
.

Note that at the first “�” we crucially use the control of implicit constants in the Dirichlet Hardy 
inequality. �
4.2. Calderón–Zygmund decomposition

The goal of this subsection is to investigate a Calderón–Zygmund decomposition for functions 
in the Sobolev space W 1,p

D (O). The reason for this is that the p-bound for L
1
2 in Corollary 4.10

will follow from a weak-type estimate. Such a decomposition was first shown by Auscher on the 
whole space [1, Appendix A]. This idea was refined in [2,11] to work on domains, including the 
idea to use Hardy’s inequality to include (partial) Dirichlet boundary conditions (and this is the 
reason why we have investigated Hardy’s inequality in the previous subsection). To formulate the 
precise result, we introduce Cm-valued Sobolev spaces subject to different boundary conditions 
in the individual components.

Definition 4.4. Let p ∈ [1, ∞), � ⊆ Rd open and Ek ⊆ � for k = 1, . . . , m. With the array 
E := (Ek)

m
k=1 define the space

W 1,p

E (�) :=
m⊗

k=1

W1,p
Ek

(�),

equipped with the subspace topology inherited from W 1,p(�). Moreover, introduce the abbrevi-
ation ‖ · ‖W 1,p(�) for the norm on W 1,p

E (�).

Remark 4.5. Here, we stay slightly more general than is necessary for our application. Compared 
to the L2 result used in [11], we cannot deal with different Dirichlet boundary parts in different 
components in Theorem 2.2. This is an artifact of the fact that O might not be a doubling space.

The main result of this subsection reads as follows.

Theorem 4.6 (Sobolev Calderón–Zygmund – open set). Let O ⊆ Rd be open, Dk ⊆ ∂O be closed 
and (d − 1)-regular for k = 1, . . . , m, such that O is a locally uniform domain near ∂O \ Dk for 
all k, and let 1 < p < ∞. Then for every u ∈ W 1,p

D (O) and every α > 0 there exist an (at most) 
countable index set J , a family of cubes (Qj)j∈J , and functions g, bj : O → Cm for j ∈ J such 
that the following holds.

(i) u = g + ∑
j bj holds pointwise almost everywhere,

(ii) the family (Qj )j∈J is locally finite, and every x ∈ O is contained in at most 12d cubes,
(iii)

∑ |Qj | � 1
p ‖u‖p

1,p ,
j∈J α W (O)
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(iv) g ∈ Lip(O)m with ‖g‖Lip(O)m � α,

(v) bj ∈W 1,p

D (O) with ‖bj‖W 1,p(O) � α|Qj |
1
p for every j ∈ J ,

(vi) if p < d , then bj ∈ Lq(O)m for q ∈ [p, p∗] with ‖bj‖q � α|Qj |1/p+(1−θ)/d , where θ ∈
[0, 1] is such that 1/q = (1−θ)/p + θ/p∗,

(vii) ‖g‖W 1,p(O) + ‖ 
∑

j∈J ′ bj‖W 1,p(O) � ‖u‖W 1,p(O) for all J ′ ⊆ J ,
(viii) bj is supported in Qj ∩ O for every j ,

(ix) if 1 < q < ∞, u ∈ W 1,q

D (O), and J ′ ⊆ J , then 
∑

j∈J ′ bj converges unconditionally in 

W 1,q

D (O).

Let us point out the differences with [11, Lem. 7.2]. The most important difference is that 
we allow unbounded constellations in which O is only locally uniform and D does only fulfill a 
local d − 1-dimensionality condition. Property (vi) follows from an additional application of the 
Poincaré inequality and will be used for the case d = 2 in Lemma 4.9 later on. The bound for 
J ′ �= J in (vii) follows from an inspection of the proof, the same is true for the case q �= p in (ix). 
The two last-mentioned properties are useful to circumvent convergence issues. These appear 
since we deal with operators that are a priori only bounded with respect to the L2 topology, and 
we cannot benefit from embedding relations as is the case of bounded domains.

In virtue of Proposition 2.1, Theorem 4.6 is an easy consequence of the following whole-
space version. In particular, this shows that the only geometric ingredients are the availability of 
a Sobolev extension operator and Assumption D′.

Lemma 4.7 (Sobolev Calderón–Zygmund – whole space). Let Dk ⊆ Rd be closed and (d − 1)-
regular for k = 1, . . . , m, and let 1 < p < ∞. For every u ∈ W 1,p

D (Rd) and every α > 0 there 
exist an (at most) countable index set J , a family of cubes (Qj )j∈J and functions g, bj : Rd →
Cm for j ∈ J such that the following holds.

(i) u = g + ∑
j bj holds pointwise almost everywhere,

(ii) the family (Qj )j is locally finite, and every x ∈Rd is contained in at most 12d cubes,
(iii)

∑
j |Qj | � 1

αp ‖u‖p

W 1,p(Rd )
,

(iv) g ∈ W 1,∞(Rd) with ‖g‖W 1,∞(Rd ) � α,

(v) bj ∈W 1,p

D (Rd) with ‖bj‖W 1,p(Rd ) � α|Qj |
1
p for every j ,

(vi) ‖g‖W 1,p(Rd ) + ‖ 
∑

j∈J ′ bj‖W 1,p(Rd ) � ‖u‖W 1,p(Rd ) for all J ′ ⊆ J ,
(vii) bj is compactly supported in Qj for every j ,

(viii) if 1 < q < ∞, u ∈ W 1,q

D (Rd) and J ′ ⊆ J , then 
∑

j∈J ′ bj converges unconditionally in 

W 1,q

D (Rd).

The proof is similar to those in [11, Lem. 7.2] or [2, Lem. 7.1]. Indeed, in [11] they start with 
a function u on � and decompose U := η(Eu), where E is an extension operator for � and η
is a cutoff function that is constantly 1 on a ball B that compactly contains �. This way, they 
construct a global decomposition of U , but can rely on a Hardy’s inequality on B with Dirichlet 
boundary condition on D ∪ ∂B . It is crucial for them that the auxiliary domain and Dirichlet 
boundary part are still bounded. That being said, the central insight to show Lemma 4.7 is to 
follow their lines of argument, but directly work with a global function U and the global Hardy 
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inequality established in Lemma 4.2. We would like to point out that the order in which extension 
operator and Hardy’s inequality are applied is reversed in the approach presented in this article.

Remark 4.8 (boring cubes). We would likewise use the opportunity to mention that the so-called 
boring cubes used in [11] are not needed. Indeed, they were introduced in [11] to treat Hardy-
type estimates for bad functions directly in the construction. However, this bound can be deduced 
a posteriori using Hardy’s inequality. With this in mind, bad functions on boring cubes should be 
defined like bad functions on usual cubes and not like bad functions on special cubes. Gradient 
and non-gradient estimates for bad functions on usual cubes then apply directly to bad functions 
on “boring cubes”. This shortens and conceptually simplifies the proof given in [11].

4.3. Upper bound for the square root when p < 2

In the case p < 2, we prove p-boundedness of the square root. The heart of the matter is 
the weak-type estimate in Lemma 4.9. A crucial observation is that we gain up to one Sobolev 
exponent in comparison to p−(L). We will benefit from this in Section 7 later on.

Lemma 4.9. Let p−(L)∗ ∨ 1 < q < p < 2, then one has for all α > 0 the weak-type bound

∣∣{x ∈ O : |(L 1
2 u)(x)| > α

}∣∣ � 1

αp
‖u‖p

W 1,p(O)
(u ∈W 1,p

D (O) ∩W 1,2
D (O)), (3)

where implicit constants depend on p, coefficient bounds, and, if p∗ < 2, on q and �q∗�.

The proof of Lemma 4.9 is similar to that of [11, Prop. 8.1] and we will only explain the 
necessary changes, so the reader is strongly advised to keep a copy of that article handy. A 
key difference is that the argument in [11] assumes p∗ < 2, which is not feasible in d = 2.2

Property (vi) in our Calderón-Zygmund decomposition lets us circumvent this issue.

Proof. To start with, we claim that there exists r ∈ [p, p∗] satisfying

(a) {e−tL}t>0 satisfies Lr → L2 off-diagonal estimates,
(b) the H∞(Sϕ)-calculus of L is Lr -bounded for all ϕ ∈ (ω, π),
(c) r ≤ 2.

Note that, of course, (c) is necessary for (a) to hold, but we will also need to use (c) in 
conjunction with (b). Indeed, if p∗ ≥ 2, chose r = 2, which is admissible by Proposition 3.2 and 
the Crouzeix–Delyon theorem. Otherwise, when p∗ < 2, let

p−(L)∗ ∨ 1 < q < s∗ < r∗ < p < r.

Then, on the one hand, p−(L) < s < r . On the other hand, by assumption of this case, r <

p∗ < 2. Hence, {e−tL}t>0 satisfies Lr → L2 off-diagonal estimates by Proposition 3.3, and the 
H∞(Sϕ)-calculus of L is bounded on Lr for any ϕ ∈ (ω, π) according to Proposition 3.6. Since 

2 After publication, the author of [11] resolved this problem in the arXiv version by a case distinction. We present a 
unified treatment here.
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�s� ≤ �q∗� by interpolation with the contraction semigroup on L2, implied constants depend on 
p, q , �q∗�, ϕ, and coefficient bounds. Eventually, the dependence on ϕ will be replaced by a 
dependence on ω, which in turn is under control using the coefficients bounds. Note also that we 
have r ∈ [p, p∗].

Now let α > 0, u ∈W 1,p
D (O), and let u = g + ∑

j bj be the Calderón–Zygmund decomposi-
tion from Theorem 4.6. Refer with (i)-(viii) to the respective properties of the decomposition. As 
in [11], the proof divides into 4 steps: Estimate of the good part, decomposition of the bad part 
into a local and a global integral, estimate of the local integral, and bound for the global integral.

Step 1: Handling the good part. Decompose with the Calderón–Zygmund decomposition

∣∣{|L 1
2 u| > α

}∣∣ ≤ ∣∣{|L 1
2 g| > α/2

}∣∣ + ∣∣{|L 1
2
∑
j∈J

bj | > α/2
}∣∣.

We refer to the first term as the good part and to the second term as the bad part. With the exact 
same arguments as in [11, Step 1], we conclude

∣∣{|L 1
2 g| > α/2

}∣∣ � 1

αp
‖u‖p

W 1,p(O)
.

Step 2: Decomposition of the bad part. First of all, let us mention that it suffices to assume that 
J is finite, provided we can show a bound that does not depend on the size of J . This allows to 
rearrange terms without worrying about convergence issues. Indeed, put Jn := J ∩ {1, . . . , n}
for n ≥ 1, then 

∑
j∈Jn

bj → b = ∑
j∈J bj in W 1,2

D (O) as n → ∞ by (ix), so we get from 
Tchebychev’s inequality

∣∣{|L 1
2 b| > α/2

}∣∣ ≤ ∣∣{|L 1
2 (b −

∑
j∈Jn

bj )| > α/4
}∣∣ + ∣∣{|L 1

2
∑
j∈Jn

bj | > α/4
}∣∣

≤ 16

α2

∥∥L
1
2
(
b −

∑
j∈Jn

bj

)∥∥2
2 + ∣∣{|L 1

2
∑
j∈Jn

bj | > α/4
}∣∣.

Now, if the second term can be controlled by

∣∣{|L 1
2

∑
j∈Jn

bj | > α/4
}∣∣ � 1

αp
‖u‖p

W 1,2(O)

with an implicit constant independent of n, then, in the light of Theorem 2.2 and by convergence 
of 

∑
j∈Jn

bj to b in W 1,2
D (O), the first term vanishes as n → ∞, which lets us conclude.

Furthermore, to control |{|L 1
2 b| > α/2}|, it suffices as in [11, Step 2] to control the local and 

global integrals

∣∣∣{∣∣∑
j

rj ∨2−n∫
2−n

Le−t2Lbj dt
∣∣ >

√
πα

8

}∣∣∣ +
∣∣∣{∣∣∑

j

∞∫
rj ∨2−n

Le−t2Lbj dt
∣∣ >

√
πα

8

}∣∣∣
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for all n ≥ 1, where rj = 2	 with 	 the unique integer such that 2	 ≤ 	j ≤ 2	+1, and where 	j is 
the sidelength of Qj .

Step 3: Handling the local integral. Put γ := d(1/r − 1/2) + 1 and Ck(Qj ) := 2k+1Qj \ 2kQj

for k ≥ 2. We only show the bound

∥∥∥
rj ∨2−n∫
2−n

Le−tL2
bj dt

∥∥∥
L2(Ck(Qj )∩O)m

� α	
d/2
j 2−kγ e−c4k

(4)

for all k ≥ 2, j ∈ J , and n ≥ 1. Then the bound for the local integral can be concluded as in [11, 
Step 3].

So, let us show (4). Clearly, we can assume rj ≥ 2−n. Note that the off-diagonal bounds 
for {e−tL}t>0 can be upgraded to off-diagonal bounds for {tLe−tL}t>0 by composition (see for 
example [11, Prop. 4.4 (iv)]), and this imports no further dependence for the implied constants. 
With this in hand, and using the support property (vii), we calculate for the integrand of (4) that

‖Le−t2Lbj‖L2(Ck(Qj )∩O)m � t−d
( 1

r
− 1

2
)−2e−c4k−1r2

j /t2‖bj‖r .

Plugging this back into (4) and using (vi) leads to

∥∥∥
rj∫

2−n

Le−t2Lbj dt

∥∥∥
L2(Ck(Qj )∩O)m

≤
rj∫

2−n

‖Le−t2Lbj‖L2(Ck(Qj )∩O)m dt

� α	
d
p

+1−θ

j

rj∫
2−n

t−d
( 1

r
− 1

2
)−1e−c4k−1r2

j /t2 dt

t
.

Using the substitution s = 4k−1r2
j /t2, we obtain

� α	
d
p

+1−θ

j r
−γ

j 2−(k−1)γ

∞∫

4k−1

s
γ
2 e−cs ds

s
.

Keeping in mind 	j ≈ rj and observing θ = d
(

1/p − 1/r
)
, the prefactor reduces to 	

d
2
j . Then we 

split the exponential term and use s ≥ 4k−1 to find

� α	
d
2
j 2−(k−1)γ e−c4k−2

∞∫
0

s
γ
2 e−cs/2 ds

s
.

The integral in s is finite since γ ≥ 1 > 0. This completes the proof of (4).
Step 4: Estimate for the global integral. To this end, put Jk := {j ∈ J : rj ∨ 2−n = 2k} for any 

integer k. Then, as in [11, Step 4], there exists a function f which belongs to H∞(Sϕ) for any 
ϕ ∈ (ω, π/2), with which we can write
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∑
j∈J

∞∫
rj

Le−t2Lbj dt =
∑

k

∑
j∈Jk

1

2k
f (4kL)bj .

Plug this back into the definition of the global integral and use Tchebychev’s inequality (com-
pared to [11], we apply it with r instead of p∗), followed by linearity (here, we use that J is 
supposed to be finite) to derive

∣∣∣{∣∣∑
j

∞∫
rj

Le−t2Lbj dt
∣∣ >

√
πα

8

}∣∣∣ � 1

αr

∥∥∥∑
k

∑
j∈Jk

2−kf (4kL)bj

∥∥∥r

r

= 1

αr

∥∥∥∑
k

f (4kL)
∑
j∈Jk

2−kbj

∥∥∥r

r
.

Now, use the square function estimate from [11, Lem. 8.2] with ϕ ∈ (ω, π/2), which is justified 
by (b), to give

∥∥∥∑
k

f (4kL)
∑
j∈Jk

2−kbj

∥∥∥r

r
�

∥∥∥(∑
k

∣∣∑
j∈Jk

2−kbj

∣∣2
) 1

2
∥∥∥r

r
.

Write out the Lr -norm and employ (c) to give

=
∫
O

(∑
k

∣∣∑
j∈Jk

2−kbj

∣∣2
) r

2
dx ≤

∫
O

∑
k

(∑
j∈Jk

|2−kbj |
)r

dx.

Continuing as in [11], we arrive at

�
∑
j∈J

	−r
j

∫
O

|bj |r dx.

Plug this back in the calculation and use (vi) followed by (iii) to conclude (recall θ = d
(

1/p−1/r
)
)

∣∣∣{∣∣∑
j∈J

∞∫
rj

Le−t2Lbj dt
∣∣ >

√
πα

8

}∣∣∣ �
∑
j∈J

|Qj |−
r
d
+ r

p
+(1−θ) r

d =
∑
j∈J

|Qj | � α−p‖u‖p

W 1,p(O)
.

Combining the bounds for the good part, the local integral and the global integral, this 
gives (3). �

Using interpolation, we conclude a p-bound for L
1
2 . The interpolation theory used in [2,11]

does not apply as O might not be locally doubling.
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Corollary 4.10. Let p−(L)∗ ∨ 1 < q < p < 2, then

‖L 1
2 u‖p � ‖u‖W 1,p(O) (u ∈ W 1,p

D (O) ∩W 1,2
D (O)),

where the implicit constant depends on p, q , ω, coefficient bounds, and, if p∗ < 2, on �q∗�.

Proof. Put r := (p+q)/2. Write Lr,∞(O) for the usual weak Lr -space on O . Recall that Lr,∞(O)

is a complete quasi-normed space. Owing to Lemma 4.9, L
1
2 extrapolates from W 1,r

D (O) ∩
W 1,2

D (O) to a bounded operator

L
1
2 : W 1,r

D (O) → Lr,∞(O)m.

Here, the implied constant depends on p, q , ω, coefficient bounds, and, if p∗ < 2, on �q∗�. 
Moreover, by Theorem 2.2, we have

L
1
2 : W 1,2

D (O) → L2(O)m.

Chose θ ∈ (0, 1) such that 1/p = (1−θ)/r + θ/2. Real interpolation yields an extension

L
1
2 : (

W 1,r
D (O),W 1,2

D (O)
)
θ,2 → (

Lr,∞(O)m,L2(O)m
)
θ,2.

It remains to determine the interpolation spaces. For this, it suffices to argue componentwise [18, 
Sec. 1.18.1]. This being said, the space on the right-hand side then coincides with Lp(O)m ac-
cording to [18, Sec. 1.18.6]. For the left-hand side, this follows from the whole space case in [8, 
Thm. 1.2] (here, we need Assumption D′) together with the retraction-coretraction principle [18, 
Sec. 1.2.4] applied with R the pointwise restriction to O and S the extension operator from 
Proposition 2.1. �
5. Extrapolation of the square root property

In this part, we prove Theorem 1.2 (i). Most of the work in the case p < 2 has already been 
done in Sections 3.2 and 4.3, so we mainly focus on the case p > 2.

Consider Fig. 1. Lemmas 5.1 and 5.2 make precise the following heuristic: If two out of three 
arrows in the diagram correspond to p-isomorphisms, then all arrows are p-isomorphisms.

W 1,2
D

(O)

L2(O)m

W−1,2
D

(O)

L
1
2

L

L
1
2

Fig. 1. Decomposition of L into two square roots.

If L is a p-isomorphism, then Lemma 5.3 and the case p < 2 yield that the lower L
1
2 -arrow 

comes for free. This leads to the proof of Theorem 1.2 (i) in the case p > 2. In the same spirit, 
but using Lemma 6.1, we are going to show necessity in the next section.
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Lemma 5.1. Let p ∈ (1, ∞) be such that L
1
2 is a p-isomorphism and (L∗) 1

2 is a p′-isomorphism. 
Then L is a p-isomorphism, and implicit constants depend only on those in the assumptions.

A similar correspondence appeared in [10, Thm. 6.5]. They work with realizations of L in Lp

that rely on the fact that on bounded domains Lq ⊆ Lp if q ≥ p. In particular, compatibility is 
never an issue. Our simple argument using compatible extensions extends also to the unbounded 
setting.

Proof. To show the p-isomorphism property we only have to show that L−1 is W −1,p
D (O) →

W 1,p
D (O) bounded on W−1,p

D (O) ∩ W −1,2
D (O) in the case of L, compare with Remark 1.1. 

Hence, let u ∈ W −1,p
D (O) ∩ W −1,2

D (O), and also let h ∈ Lp′
(O)m ∩ L2(O)m. Calculate first 

using Lemma 2.3 and the p′-isomorphism property for L∗ that

|(L 1
2 L−1u |h)| = |〈u, (L∗)−

1
2 h〉| ≤ ‖u‖

W−1,p
D (O)

‖(L∗)−
1
2 h‖

W 1,p′
D (O)

� ‖u‖
W−1,p

D (O)
‖h‖p′ .

Taking the supremum over h yields

‖L 1
2 L−1u‖p � ‖u‖

W−1,p
D (O)

. (5)

Implicit constants depend on the implied constants coming from the p′-isomorphism assumption. 
Write L−1 = L− 1

2 L
1
2 L−1 and use the p-isomorphism hypothesis along with (5) to give

‖L−1u‖
W 1,p

D (O)
= ‖L− 1

2 L
1
2 L−1u‖

W 1,p
D (O)

� ‖L 1
2 L−1u‖p � ‖u‖

W−1,p
D (O)

. �
The proof of the following lemma is similar, so we omit its proof.

Lemma 5.2. Let p ∈ (1, ∞) be such that L is a p-isomorphism and (L∗) 1
2 is a p′-isomorphism. 

Then L
1
2 is a p-isomorphism, and implicit constants depend only on those in the assumptions.

To verify in the proof of Theorem 1.2 (i) that Lemma 5.2 is applicable, we will rely on the 
following lemma. Recall the notation 2[j ] for iterated Sobolev exponents.

Lemma 5.3. Let 2 ≤ p < r < q̃+(L)∗. Then p ∈ I(L), and �p� depends only on p, r , � r∗ �, 
coefficient bounds, and dimensions. In particular, p+(L) ≥ q̃+(L)∗.

Proof. First of all, we can assume that p ≥ 2∗ in the light of Corollary 3.5. Let 	 ≥ 1 denote the 
largest integer such that 2[	] ≤ p < 2[	+1]. Moreover, we can assume that r ∈ (p, 2[	+1]), since 
otherwise we can replace r by some exponent s in this interval, and s and � s � depend only on p, 
r , and � r �, in virtue of interpolation.

Let pj and rj , j = 0, . . . , 	, denote the sequences of numbers satisfying p	 = p, r	 = r , and 
pj+1 = p∗

j as well as rj+1 = r∗
j for j = 0, . . . , 	 − 1.

For j = 0, . . . , 	 − 1, we claim the following. Assume that pj ∈ I(L). Then pj+1 ∈ I(L) and 
�pj+1� depends only on pj , rj , r , �pj �, � r �, coefficient bounds, and dimensions.

Indeed, observe first that (rj+1)∗∗ = (rj )∗ < 2[j ] ≤ pj , and that (rj+1)∗∗ ≥ (r1)∗∗ > (p1)∗∗ ≥
2∗. Hence, by Proposition 3.6 (taking Corollary 3.5 into account), for some ϕ ∈ (0, π/2 − ω)
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depending only on coefficient bounds and dimensions, the H∞(Sϕ)-calculus of L is bounded 
on L(rj+1)∗∗ , with implied constant depending only on rj , pj , �pj �, coefficient bounds, and 
dimensions. Second, note that L−1 is (rj+1)∗-bounded due to 2 ≤ (p1)∗ < (rj+1)∗ ≤ r∗, the 
assumption on r , and interpolation. The (rj+1)∗-bound for L−1 only imports r , and � r∗ � as a 
further dependence. With these two ingredients, estimate for t > 0 and u ∈ Lp(O)m ∩ L2(O)m

that

‖e−tLu‖rj+1 � ‖L−1Le−tLu‖
W

1,(rj+1)∗
D (O)

� ‖Le−tLu‖
W

−1,(rj+1)∗
D (O)

� t−1‖tLe−tLu‖(rj+1)∗∗ � t−1‖u‖(rj+1)∗∗ .
(6)

Implicit constants depend only on the aforementioned quantities. Estimate (6) means that the 
family {e−tL}t>0 is L(rj+1)∗∗ → Lrj+1 bounded. Now, Proposition 3.4 yields pj+1 ∈ I(L) with 
the claimed control over �pj+1�. This completes the proof of the claim.

Now, 2 ≤ p0 < 2∗, so according to Corollary 3.5, p0 ∈ I(L) with �p0� depending only on p0, 
coefficient bounds, and dimensions. Hence, by induction over j = 0, . . . , 	 − 1, the claim yields 
p = p	 ∈ I(L). By finiteness of the sequence, and since pj and rj only depend on p, r , and j , 
the quantity �p� depends only on p, r , � r∗ �, coefficient bounds and dimensions, as claimed. �
Proof of Theorem 1.2 (i). The case p−(L) < r < p < 2 is immediate by Corollary 4.10 and 
Proposition 3.7.

Now, let 2 < q < r < q̃+(L). By definition, L is a q-isomorphism. Then Lemma 5.2 lets us 
conclude provided we can ensure that (L∗) 1

2 is a q ′-isomorphism. To this end, we want to appeal 
to the first case above, but applied to L∗ instead of L. By duality, p−(L∗) < q ′ < 2 if, and only 
if, 2 < q < p+(L). But this is true by Lemma 5.3, since L is moreover an r-isomorphism. Hence, 
we can indeed apply the case above. Note that � q � is controlled by � r � in virtue of interpolation, 
which gives the right constant dependencies. �
6. Necessary conditions

We show Theorem 1.2 (ii). For its proof we will need the following lemma, whose proof is 
similar to that of Lemma 5.3.

Lemma 6.1. Let p ∈ (2, ∞) be such that L
1
2 is a p∗-isomorphism. Then p+(L) ≥ p.

Proof. In the light of Corollary 3.5, it suffices to treat the case d ≥ 3. We employ an iterative 
argument. To this end, we make for k ≥ 0 the following

Claim: If p+(L) ≥ 2[k], 2[k] < q < 2[k+1], and L
1
2 is a q∗-isomorphism, then p+(L) ≥ q .

Proof of the claim. We use the expansion e−t2L = L− 1
2 L

1
2 e−t2L. Observe that 2∗ < q∗ < 2[k] ≤

p+(L). Hence, owing to Proposition 3.6 and taking Corollary 3.5 into account, the H∞(Sϕ)-
calculus of L is bounded on Lq∗(O)m for any ϕ ∈ (ω, π/2). Using this in the last step, together 
with the Sobolev embedding and the q∗-isomorphism property of L

1
2 , yields

‖e−t2Lu‖q � ‖L− 1
2 L

1
2 e−t2Lu‖

W 1,q∗
D (O)

� ‖L 1
2 e−t2Lu‖q∗ � t−1‖u‖q∗ .
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This means that {e−tL}t>0 is Lq∗ → Lq bounded. We conclude q ≤ p+(L) with Proposi-
tion 3.4. �

Now, fix 	 ≥ 0 such that 2 < · · · < 2[	] < p ≤ 2[	+1]. Observe that L
1
2 is by interpolation a 

(2[j ])∗-isomorphism for j = 1, . . . , 	. Hence, the claim yields by induction over j that p+(L) ≥
2[	]. In a second step, the claim applied with k = 	 and q = p gives the assertion. �
Proof of Theorem 1.2 (ii). We divide the proof into two cases.

Case 1: p < 2. This part was already shown in [11, Thm. 1.2 (ii)]. Note that geometry in-there 
was only used to ensure the continuous embedding W 1,q

D (O) ⊆ Lq∗
(O)m, which is a conse-

quence of Proposition 2.1 in our situation.

Case 2: p > 2. Assume that L
1
2 is a p-isomorphism. From p = (p∗)∗ and Lemma 6.1 it 

follows that p+(L) ≥ p∗ if p < d and p+(L) = ∞ otherwise. In particular, 2 < p < p+(L), 
which translates to p−(L∗) < p′ < 2 by the duality formula (e−tL)∗ = e−tL∗

. Hence, we obtain 
from the case p < 2 for L∗ in Theorem 1.2 (i) that (L∗) 1

2 is a p′-isomorphism. Then we conclude 
with Lemma 5.1 that L is a p-isomorphism. Consequently, q̃+(L) ≥ p as desired. �
7. Endpoint cases

To conclude this article, we show sharpness at the endpoints, provided they do not fall outside 
the interval (1, ∞). This is Theorem 1.2 (iii).

The following result is an application of S̆neı̆berg’s theorem [17]. Here, we exploit that 
{W 1,p

D (O)}p∈(1,∞), {Lp(O)m}p∈(1,∞), and {W −1,p
D (O)}p∈(1,∞) are complex interpolation 

scales. For the second scale, this is clear. That the first scale is an interpolation scale was dis-
cussed in the proof of Theorem 1.2 (i) (note that the arguments in-there work both for the real 
and complex interpolation method). Finally, use duality to transfer the interpolation properties of 
the first scale to the last scale, see also [8, Prop. 5.2].

Proposition 7.1. Assume that Assumption D′ holds. Let p ∈ (1, ∞) be such that L
1
2 is a p-

isomorphism and suppose that there exists some ε′ > 0 such that L
1
2 is q-bounded for q ∈ [p −

ε′, p + ε′]. Then there is ε′ > ε > 0 such that L
1
2 is a q-isomorphism for all q ∈ (p − ε, p + ε). 

Similarly, if L is a p-isomorphism, then there is again some ε > 0 such that L is a q-isomorphism 
for all q ∈ (p − ε, p + ε).

Remark 7.2. Observe that in Proposition 7.1 we did not assume that L is q-bounded in an in-
terval around p. This is because L is automatically q-bounded for all q ∈ [1, ∞] by Hölder’s 
inequality applied to the definition of L.

Proof of Theorem 1.2 (iii). To begin with, assume that p−(L) > 1 and L
1
2 is a p−(L)-

isomorphism. By Corollary 4.10, L
1
2 is q-bounded for q ∈ (p−(L)∗ ∨ 1, 2). Since p−(L) > 1

and p−(L)∗ < p−(L), we find ε′ > 0 as required by Proposition 7.1. Then, let ε > 0 be pro-
vided by that proposition. It follows from Theorem 1.2 (ii) that p−(L) ≤ p−(L) − ε, which is a 
contradiction.

Now assume that q̃+(L) < ∞ and that L
1
2 is a q̃+(L)-isomorphism. Then p+(L) ≥ q̃+(L)∗ >

q+(L) by Lemma 6.1. Duality reveals p−(L∗) < (q̃+(L))′. It follows from Theorem 1.2 (i) 
123



S. Bechtel Journal of Differential Equations 379 (2024) 104–124
that (L∗) 1
2 is a (q̃+(L))′ isomorphism. Consequently, Lemma 5.1 gives that L is a q̃+(L)-

isomorphism. Then, as above, Proposition 7.1 leads to the contradiction q̃+(L) +ε ≤ q̃+(L). �
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