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Abstract
We investigate the list packing number of a graph, the least k such that there are always k disjoint proper
list-colourings whenever we have lists all of size k associated to the vertices. We are curious how the
behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the
context of bounded degree graphs. The main question we pursue is whether every graph with maximum
degree � has list packing number at most � + 1. Our results highlight the subtleties of list packing and
the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.

Keywords: Packing of list colourings; list packing number; list colouring; correspondence colouring; maximum degree;
transversals
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1. Introduction
List colouring is a well-known generalisation of graph colouring in which we wish to find a proper
colouring of a graph, but an adversary supplies a list of colours for each vertex and wemust choose
a colour for each vertex from its list. The importance of this notion is its flexible role in inductive
approaches, such as, for example, iterative random colouring procedures [23]. Although there is
already a rich collection of prominent challenges in list colouring (which relate well to algebraic,
probabilistic, extremal, structural topics in graph theory), here we have set ourselves an even more
difficult task of juggling multiple list-colourings simultaneously. We initiated the study of this
topic in [5].

Formally, a list-assignment L of a graph G is a function L :V(G)→ 2N, and an L-colouring
of G is a colouring c : V(G)→N such that for every vertex v, c(v) ∈ L(v). As is standard, the L-
colourings we consider in this work are usually assumed to be proper, that is, c(v) �= c(v′) for any
edge vv′. We call a list-assignment with |L(v)| = k for all v a k-list-assignment. Recall that the list
chromatic number of G, denoted χ�(G), is the smallest k such that for every k-list-assignment
L, G admits an L-colouring. Our work is motivated by the idea to look for multiple, disjoint list-
colourings. In particular, given a k-list-assignment L ofGwe call a collection of k pairwise-disjoint
L-colourings an L-packing of size k, or less specifically a list-packing. The list packing number
χ�

� (G) of G is the least k such that G admits an L-packing of size k for any k-list-assignment L of
G. Clearly, χ�

� (G)≥ χ�(G) always, and note how this implies the existence of a list-packing for any
k-list-assignment L where k≥ χ�

� (G) (by iteratively extracting L-colourings).
The definitions above can easily be extended to a more general setup known as correspondence

colouring. We defer the details of this more technical concept, as here it suffices to understand
C© The Author(s), 2024. Published by Cambridge University Press.
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2 S. Cambie et al.

that replacing the notion of list colouring with correspondence colouring in the definitions above
yields correspondence packing and the correspondence packing number we denote χ�

c (G). It holds
that χ�

c (G)≥ χ�
� (G) always.

The list packing number is in a natural progression from the list chromatic number, in a similar
way to how the chromatic number relates to the independence number; we remark more on this
in Subsection 1.1. Indeed, list and correspondence packing were anticipated in earlier works—see,
e.g. [2,8,19,21,27] – and it is thus surprising that our earlier work [5] was the first to systemati-
cally explore the notion, pointing to its potential throughout the landscape of (chromatic) graph
theory. In our previous paper [5], we pursued amongst other things packing versions of list and
correspondence chromatic number bounds in terms of the number of vertices or degeneracy of
the underlying graph.

Considering the often deep relationship between the chromatic number and the independence
number, the question directly comes to mind: truly how much “worse” is list packing in compar-
ison to list colouring? In one interpretation of this question, what we audaciously named the List
Packing Conjecture in [5], we proposed the list packing number might always be within some fixed
constant factor of the list chromatic number. This mystery continues to fascinate us.

Although there are many tempting directions, more of which we mention further on, here we
have restricted our attention to two of the most basic settings. We characterised graphs of list
or correspondence packing number 2. And we have made progress for bounded degree graphs,
especially for those of small degree. In this study, an approximate form of the packing numbers
has naturally arisen. These settings have helped us uncover some interesting differences between
finding a single list-colouring and a full packing of them and have served as proving ground for
more general intuition.

The early, essential work of Erdős, Rubin and Taylor on list colouring [10] gives compass for
results we may pursue for list and correspondence packing. In particular, Erdős, Rubin and Taylor
characterised the graphs of list chromatic number 2 using the so-called theta graphs. Here we
obtain a characterisation for packing and find that the corresponding graph class is naturally,
smaller and simpler.

Proposition 1. A graph G has list packing number 2 if and only if it is a forest with at least one edge.
The same holds for correspondence packing number.

Based on this, the next graphs to consider are of course cycles.We denote byCn a cycle on n ver-
tices. Here we find that there is no dependence on parity of n, unlike for the respective colouring
definitions.

Proposition 2. χ�
� (Cn)= 3 and χ�

c (Cn)= 4.

These results give basis for the more difficult problem of list and correspondence packing in
graphs of bounded maximum degree. Before discussing our results in this setting, we present
a conjecture which should serve as a focal point for future study. These are prospective upper
bounds for the list and correspondence packing numbers in terms of the maximum degree �(G)
of a graph G.

Conjecture 3. For any graph G,

(i) χ�
� (G)≤ �(G)+ 1; and

(ii) χ�
c (G)≤ 2

⌈
�(G)+1

2

⌉
.

Either bound would be sharp for every choice of �(G)≥ 2 by considering the complete graph.
For this, note that χ�

c (Kn)≥ χ�
� (Kn)= n= �(Kn)+ 1 (the first equality was proved in [5]) and a

construction of Catlin [8] (see e.g. [27]) shows that χ�
c (Kn)= n+ 1= �(Kn)+ 2 if n≥ 3 is odd.

In [5], we showed bounds within about a factor 2 of the conjectured bounds (though we slightly
improve on that earlier result below). In the special case of Kn, Yuster [27] proved a bound within
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a factor 1.78 for all sufficiently large n. We note that Conjecture 3 is a broad generalisation of
Conjecture 1.1 in [27], which in turn is related to the so-called “modified Fischer’s conjecture”
(see [19]).

As evidence towards our conjecture, we have completely resolved a few of the first cases.

Theorem 4.

(i) Conjecture 3(i) holds for �(G)≤ 3.
(ii) Conjecture 3(ii) holds for �(G)≤ 4.

We remark that this last case implies that χ�
c (K5)= 6, which is a small step towards

Conjecture 1.1 in [27]. It also implies some natural subcases for the so-called Strong Colouring
Conjecture (see [1]). Partly with computer assistance, we establish Theorem 4 in separate pieces;
namely, it follows by combining Theorems 13–15, and 6 below.

As alluded to, we previously [5] established a bound about twice the conjectured optimal. In
fact, we proved the following upper bound in terms of the degeneracy δ�(G) of G.

Theorem 5 ([5, Thms. 3 and 9, Prop. 24]). For any graph G, χ�
� (G)≤ χ�

c (G)≤ 2δ�(G). The second
inequality can be tight.

This implies an upper bound of 2�(G). It has proven frustratingly difficult to significantly
improve on this in general. While the following result gives an improvement that is modest, par-
ticularly for large�(G), we note the bound is best possible for�(G)= 4 (see Theorem 4(ii) above)
in the case of correspondence packing.

Theorem 6. For any graph G with �(G)≥ 4, χ�
� (G)≤ χ�

c (G)≤ 2�(G)− 2.

For larger �(G), although the above bound is still around a factor 2 larger than we conjec-
tured, it turns out that we can still find reasonable support for Conjecture 3 when we consider
a mild relaxation of the list and correspondence packing numbers. We later give more formal
definitions of the fractional list packing number χ•

� (G) and the fractional correspondence packing
number χ•

c (G) of G. They are derived naturally from the idea that instead of integral packing, we
could allow fractional weightings of the list- or correspondence-colourings of G. The following
thus constitutes the confirmation of a fractional relaxation of Conjecture 3.

Theorem 7. For any graph G, χ•
� (G)≤ χ•

c (G)≤ �(G)+ 1.

These fractional parameters may be of interest in their own right. Here and in Subsection 1.1 we
discuss some of their basic properties in comparison to their integral counterparts. The following
fractional form of our List Packing Conjecture as well as its correspondence analogue are worth
further study.

Conjecture 8.

(i) There exists C > 0 such that χ•
� (G)≤ C · χ�(G) for any graph G.

(ii) There exists C > 0 such that χ•
c (G)≤ C · χc(G) for any graph G.

A challenge of dealing with list packing is how we must confront our usual intuition from
colouring. In treating the fractional relaxation, we hoped to claw back some of that intuition,
which we succeeded in doing in part in Theorem 7. Here are some obstacles and subtleties we
must further account for.

Theorem 9.

(i) For each d ≥ 2, there is a graph G satisfying δ�(G)= d and χ•
� (G)≥ d + 2.

(ii) For each k≥ 2, there is a graph G satisfying χ•
c (G)= k+ 1 and χ�

c (G)= 2k.
(iii) There is a connected 3-regular graph G �=K4 such that χ•

� (G)= 4.
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Theorem 9(i) shows it impossible to improve Theorem 7 by replacing maximum degree by
degeneracy, while Theorem 9(iii) shows how even a fractional relaxation of a list packing analogue
must differ from the usual Brooks’ theorem.We prove items (i) and (ii) in Section 5, and item (iii)
in Subsection 6.2.

Let us remark as an aside that, for many of the results we pursued with respect to Brooks’ the-
orem in the context of (fractional) list and correspondence packing numbers, they could also be
pursued in the considerably more general setting of bounded maximum degree in the so-called
cover graph, also referred to as bounded colour-degree. We have indeed already made a conjec-
ture to this end [5, Conj. 13]; however, the problem without the extra complication of packing is
already not so easily amenable to a Brooks’-type characterisation, which is why we have left this
to future investigation.

We conclude this introductory section by confronting yet another tempting intuition. Isn’t it
easy to construct a list-packing once we have sufficiently many list-colourings? In Subsection 6.1,
we show how this line of thought needs something extra. For every integer n≥ 2, we exhibit a
graph G on n2 vertices together with an n-list-assignment L such that G has

• list chromatic number n,
• nn2 not-necessarily-proper L-colourings, and
• nn2(1+o(1)) proper L-colourings,

and yet it does not admit an L-packing.

1.1 Notation, definitions, preliminaries
The reader will have noticed that we use a variety of standard graph theoretic notation including
�(G) for the maximum degree, ω(G) for the clique number, δ�(G) for the degeneracy, and χ(G)
for the chromatic number of a graph G.

Here now are some of the more formal notation and definitions most directly related to our
list packing parameters. Let G and H be graphs. A pair H = (L,H) is a correspondence-cover of a
graph G if the graph H and mapping L :V(G)→ 2V(H) satisfy that

(i) L induces a partition of V(H),
(ii) the bipartite subgraph of H induced between L(u) and L(v) is empty whenever uv /∈ E(G),
(iii) the bipartite subgraph of H induced between L(u) and L(v) is a matching whenever uv ∈

E(G),
(iv) the subgraph of H induced by L(v) is a clique for each v ∈V(G).

It can be convenient to dropH and L from the notation, saying for example that some property
of the correspondence-cover holds if it holds for H as a graph. A correspondence-cover is k-fold
if |L(v)| = k for each vertex v of G.

Note that a list-assignment L of G naturally gives rise to a correspondence-cover (L̃,H) of G
by setting L̃(v)= xv for each x ∈ L(v), and forming H on these vertices by putting in the neces-
sary cliques and adding edges of the form xuxv for each colour x ∈ ⋃

v∈V(G) L(v) and edge uv ∈
E(G). We call a correspondence-cover that arises from a list-assignment in this way a list-cover
of G.

We remark that in the literature, the concept of a cover is more general than a correspondence-
cover, namely by the omission of condition 3. Moreover, it can be defined in various ways, where
in particular the cliques on the lists can be omitted. In this paper, we embrace the inclusion of
these cliques for convenience. In this way, the definition of list packing number χ�

� (G) given above
is equivalent to the least k such that for every k-list-assignment L, the associated cover (L̃,H) has

https://doi.org/10.1017/S0963548324000191 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000191


Combinatorics, Probability and Computing 5

chromatic number k. Under this equivalence, each colour class in a proper k-colouring of H is
precisely an L-colouring of G.

It is now straightforward to define correspondence colouring and packing. Given a
correspondence-cover H = (L,H) of a graph G, we say that an H-colouring of G is an inde-
pendent set of size |V(G)| in H and an H-packing of G of size k is a partition of H into k
H-colourings of G. The correspondence chromatic number χc(G) of G is the least k such that every
k-fold correspondence-cover H of G has an independent set of size |V(G)|. Similarly, the corre-
spondence packing number χ�

c (G) is the least k such that every k-fold correspondence-cover H of
G has chromatic number k (i.e. every k-fold correspondence-cover H of G admits an H-packing).

One can interpret a list- or correspondence-packing of G (of size k) as an assignment of {0, 1}-
weights to every possible independent set of size |V(G)| in the corresponding cover of G such
that each cover vertex is assigned weight exactly once by some independent set containing it (and
exactly k independent sets are assigned nonzero weight). Then, as is common in combinatorics
and optimisation, one can naturally “fractionally” relax the constraint that the weights be integral
(so they may take values in the interval [0, 1]), while demanding that the total weight assigned
to a cover vertex is 1 (and that the sum of the weights of the independent sets is exactly k). We
find it particularly interesting to consider fractional relaxations of the packing numbers in our
investigation of whether known results for χ� and χc extend to the packing variants χ�

� and χ�
c .

The fractional list packing number ofG, denoted χ•
� (G), is the least integer k such that every k-fold

list-cover of G has fractional chromatic number k. Similarly, the fractional correspondence packing
number of G, denoted χ•

c (G), is the least integer k such that every k-fold correspondence-cover of
G has fractional chromatic number k.

Note that the fractional packing numbers can only take on integer values; their fractional char-
acter lies in the manner in which weights may be distributed over the independent sets, but is not
reflected in the sum of the weights. We remark that there are other viable notions of fractional
packing numbers, but we found it most natural to introduce the above.

Since every list-cover is a correspondence-cover we have

χ�(G)≤ χc(G), χ•
� (G)≤ χ•

c (G), χ�
� (G)≤ χ�

c (G);

and since the fractional chromatic number is a lower bound for chromatic number, the following
inequalities also immediately follow from the above definitions:

χ�(G)≤ χ•
� (G)≤ χ�

� (G), χc(G)≤ χ•
c (G)≤ χ�

c (G).

We prove at the end of Section 5 that these last inequalities can be strict.

Proposition 10. For each of the following four inequalities, there is some graph G satisfying it:

χ�(G)< χ•
� (G), χ•

� (G)< χ�
� (G), χc(G)< χ•

c (G), χ•
c (G)< χ�

c (G).

The next result shows that a fractional packing is a stronger notion than the existence of a
colouring extending every possible assignment of a colour to a vertex, and that fractional packings
must be probability distributions over full list-colourings of the graph, i.e. they cannot assign
positive weight to non-maximum independent sets in the cover graph.

Proposition 11. Let G be a graph and k≥ χ•
� (G). Then for any k-list-assignment L of G, for any

v ∈V(G) and x ∈ L(v), there is a proper L-colouring c of G with c(v)= x.
Similarly, for any k-fold list-cover H of G and fractional colouring c of H of weight k, c assigns

positive weight only to maximum independent sets of H, which are of size |V(G)|.
These statements also hold, mutatis mutandis for χ•

c and correspondence-covers.

Proof. The first statement follows from the second; the existence of a fractional colouring sup-
ported only on maximum independent sets implies that every vertex is contained in a maximum
independent set.

https://doi.org/10.1017/S0963548324000191 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000191


6 S. Cambie et al.

The second statement is a simple consequence of the bound χf (H)≥N/α that holds for any
N-vertex graph H with independence number α. Every k-fold list-cover H of G has |V(H)| =
k|V(G)| and α(H)≤ |V(G)|, with equality when k≥ χ�(G). So if χf (H)= k= |V(H)|/α(H), we
have equality. Now, if c is a fractional colouring ofH of weight k, which we interpret as a probabil-
ity distribution on independent sets I ofH such that Pc (x ∈ I)≥ 1/k for each x ∈V(H), we have

|V(G)| = α(H)≥Ec |I| =
∑

v∈V(H)
Pc (v ∈ I)≥ |V(H)|/k= |V(G)|,

and hence every I with positive probability has size |V(G)|.
The same proofs work in exactly the same way for correspondence packing. �
By the previous, it is not hard to see that the following is an alternative, equivalent definition

for the fractional list packing number.

Definition. Given a k-list-assignment L of G, a fractional L-packing of G is (for some m ∈Z
+) a

collection of mk (not necessarily distinct) proper L-colourings c1, . . . , cmk of G, such that for every
v ∈V and c ∈ L(v) there are m values i ∈ [mk] for which ci(v)= c. The smallest value of k for which
a fractional L-packing of G exists for every k-list-assignment L of G, is the fractional list packing
number χ•

� (G).

When working with explicit covers, we will often consider permutations of sets such as
{1, 2, 3, 4} and {1x, 2x, 3x} endowed with a natural order that we assume is clear. It can be conve-
nient to omit the subscripts, and usually we write a permutation of the set as an ordered sequence
of comma-separated values, such as f = (2, 1, 3) for the permutation f with f (1)= 2, f (2)= 1,
f (3)= 3. We do use standard cycle notation for transpositions, e.g. (1 2) is a permutation of any
ground set containing {1, 2} that swaps 1 and 2. The ground set will be clear from context.

We will use the following formulation of Hall’s marriage theorem [16].

Hall’s marriage theorem ([16]). Given a family F of finite subsets of some ground set X, where the
subsets are counted with multiplicity, supposeF satisfies the marriage condition, that is that for each
subfamily F ′ ⊆F

|F ′| ≤
∣∣∣∣∣
⋃
A∈F ′

A

∣∣∣∣∣.

Then there is an injective function f :F → X such that f (A) is an element of the set A for every
A ∈F , that is, the image f (F) is a system of distinct representatives of F .

This can also be stated in the terminology of matchings in bipartite graphs.

Theorem 12 (Hall’s marriage theorem, graph theoretic formulation). If G= (A∪ B, E) is a bipar-
tite graph for which |N(A1)| ≥ |A1| for every A1 ⊆A, then G has a (maximum) matching of size
|A|.

1.2 Outline of the paper
The proofs for the upper bounds of the packing numbers of maximum degree 2, 3, and 4 are given
in the corresponding Sections 2, 3, and 4. In Section 5, we give some results on fractional packing
numbers. Finally, in Section 6, we conclude with observations on list packing of edge-colourings,
possible variants of Brooks’ theorem, and comments on algorithmic aspects.

2. Paths and cycles
In this section, we determine the list and correspondence packing numbers for graphs with max-
imum degree 2, the connected examples of which are paths and cycles. The main work is for
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cycles. For the list packing number, we prove that for a particular edge uv, a partial list-packing of
Cn \ uv can be extended simultaneously to both u and v. For the correspondence packing number,
we prove that it is strictly larger than 3 by giving a construction.

Theorem 13. For n≥ 2, the list packing number of the n-vertex path Pn is 2. For n≥ 3, the list
packing number of the cycle Cn is 3.

Proof. The first statement follows from Theorem 5 since 2= χ(Pn)≤ χ�
� (Pn)≤ 2δ�(Pn)= 2.

For cycles, we first prove χ�
� (Cn)≥ 3. When n is odd we have χ�

� (Cn)≥ χ(Cn)= 3. When n is
even, we give a 2-list-assignment L of Cn which does not admit an L-packing. Let the lists of the
consecutive vertices v1 up to vn of the cycle be L1, L2, . . . , Ln with Li = {1, 2} for 1≤ i≤ n− 2,
Ln−1 = {1, 3} and Ln = {2, 3}. To rule out an L-packing, it is sufficient to observe that no proper
L-colouring c can satisfy c(v1)= 2. An L-colouring c with c(v1)= 2 must have c(vi)= 2 for every
odd i such that 1≤ i≤ n− 3, and c(vi)= 1 for every even i with 1≤ i≤ n− 2. Continuing the
colouring, c(vn−1) must be 3, and going backwards from v1 we see that c(vn) must also be 3,
so c cannot be proper. As there does not exist a list-packing in this case, we have χ�

� (Cn)≥ 3.
Alternatively, one can construct the cover (L̂,H) ofCn using these lists and observe that it contains
an odd cycle. Thus, the 2-fold list-cover has chromatic number strictly greater than 2.

Now we prove the upper bound, that for every list-assignment L of Cn with lists of size 3 there
exists an L-packing. If all lists are the same, this is clear since we can pick an arbitrary proper
colouring and take two translates of that one. Then the remaining case involves adjacent vertices
u and v such that L(u) �= L(v), and hence |L(u)∩ L(v)| ≤ 2. The hardest case to prove is when
the intersection has size exactly 2. Without loss of generality, in this case we can take L(u)=
{1, 2, 3} and L(v)= {1, 2, 4}. First, take an arbitrary L-packing �c= (c1, c2, c3) of Cn \ {u, v} (which
is isomorphic to a path Pn−2), The worst case is that the neighbour w of u in Cn \ {u, v} has the
same list L(w)= {1, 2, 3} as u, because if this is not the case there will simply be more options
for extending the L-packing to u. Then without loss of generality we can assume that c gives w
the colours (c1(w), c2(w), c3(w))= (1, 2, 3) in order, and hence �c(u)= (3, 1, 2) and �c(u)= (2, 3, 1)
are both valid extensions of c to u. Similarly, there will be at least two possible choices for the
extension of c to v. We are done if out of the (at least) four possible extensions of c to both u and v,
one of them is valid on the edge uv. It is easy to see that among all permutations of {1, 2, 4}, only
the choice �c(v)= (2, 1, 4) would yield a situation in which case the extension to u is impossible. So
there is always a choice for �c(v) such that the L-packing can be completed. �
Theorem 14. For n≥ 2, the correspondence packing number of the n-vertex path Pn is 2. For n≥ 3,
the correspondence packing number of the cycle Cn is 4.

Proof. The first statement is true since 2= χ(Pn)≤ χ�
c (Pn)≤ 2δ�(Pn)= 2. The upper bound

χ�
c (Cn)≤ 2δ�(Cn)= 4 follows from Theorem 5 as well. It remains to give, for every n≥ 3, a 3-fold

correspondence-cover H = (L,H) of Cn for which no H-packing exists.
Let xy be an arbitrary edge of Cn, and for each v ∈ Cn, let L(v)= {1v, 2v, 3v}. Form the cover H

by connecting iu and iv for every edge uv ∈ E(Cn) \ {xy}. Between L(x) and L(y), we connect 2x
to 3y and 3x to 2y, as well as 1x to 1y. This is presented for C4 and C5 in Fig. 1. Assume there is
an H-packing, i.e. there is a vector �c= (c1, c2, c3) such that ci is an independent transversal with
ci(v) ∈ L(v), and such that ci(v) �= cj(v) for i �= j. For every v, we have that �c(v)= (c1(v), c2(v), c3(v))
is a permutation of (1v, 2v, 3v). Furthermore, for any edge uv other than xy, when we drop the sub-
scripts and consider �c(u) and �c(v) as permutations of {1, 2, 3}, they do not have an indexmapped to
the same value. That is, �c(v)�c(u)−1 is a derangement. In particular, �c(v)�c(u)−1 is an even permuta-
tion because the only derangements of {1, 2, 3} are the even permutations (2, 3, 1) and (3, 1, 2). On
the other hand, for the edge xywemust have that �c(x)�c(y)−1 is an odd permutation. This leads to a
contradiction as follows. Permuting the labels if necessary, we may assume that �c(x)= (1x, 2x, 3x)
is the identity permutation. The above argument shows that going around the cycle in order,
starting at x and going away from y, each �c(v) must be an even permutation, including �c(y).
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(a) (b)

Figure 1. Correspondence-covers of cycles used in the proof of Theorem 14. For clarity, we omit the cliques on the sets L(v).

We now have a contradiction as to prevent the packing from containing colourings that make
xymonochromatic, we must have that �c(y) is an odd permutation. �

Proposition 2 on the packing numbers of cycles is a direct consequence of Theorems 13
and 14. Using this we can also characterise the graphs with packing numbers 2.

Proof of Proposition 1. A forest with at least one edge is 1-degenerate, so by Theorem 5 it has
correspondence packing number at most 2. Since χ(K2)= 2, the list and correspondence packing
number must in fact be exactly 2. Conversely, if a graph is not a forest then it contains a cycle
which via Proposition 2 forces the list packing number to exceed 2. �

We note in passing that Proposition 1 and Proposition 2 imply that no graph G exists for
which χ�

c (G)= 3. In [7], it is proved that 3 is the only positive integer that cannot be attained by
the correspondence packing number.

3. Subcubic graphs
In this section, we prove that both the list and correspondence packing numbers of subcubic
graphs are at most 4. Here, it is sufficient to consider cubic graphs because a connected subcubic
graph which is not 3-regular has degeneracy at most 2, in which case the result follows from
Theorem 5. The idea of extending an L-packing of G \ {u, v}, as done in Section 2, does not always
work in 3-regular graphs. As such, we need to do substantially more work. First, we verify the case
K4 separately, by a computer search over all 4-fold correspondence-covers of K4. In a 3-regular
graph that is not K4, we can take an edge uv which does not belong to any triangle, and then
consider partial packings of an even smaller subgraph than G \ {u, v}, as we must also take some
care when packing certain neighbours of u and v. Finishing the proof requires an argument similar
to the proof of Theorem 13, where we show that there must be a valid extension to both u and v
that is also valid for the edge uv, but there are so many cases to check that it is convenient to verify
them with computer assistance.

Theorem 15. For every graph G with maximum degree �(G)≤ 3, we have χ�
� (G)≤ χ�

c (G)≤ 4.

Proof. It suffices to prove, for every graph G with maximum degree 3 and any 4-fold
correspondence-cover H = (L,H) of G, there exists a correspondence-packing. Clearly, it is suf-
ficient to check all 4-fold correspondence-covers in which full matchings are taken between
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Figure 2. The local structure ofG. Note that there could be edges amongst {u1, u2, v1, v2}whichwedonot attempt to picture.

L(u) and L(v) for each edge uv ofG. One only has to check connected graphs G, and by Theorem 5
we only have to consider cubic graphs. Briefly, in the case thatG has a vertex v with degree at most
2, one can extend a correspondence-packing on G \ {v} by Hall’s marriage theorem as shown in
the proof of Theorem 5 given as [5, Thm. 9].

For the complete graph K4, it is known that χ�
c (K4)= 4. This can be checked by brute force, as

we have done with Sage,1 and Yuster did in [27, App. A].
Let G= (V , E) be an arbitrary connected cubic graph on n vertices such that G is not K4. By the

following claim, G has an edge uv which is not part of a triangle.

Claim 16. Every connected cubic graph G which is not equal to K4, has an edge uv which is not part
of a triangle.

Proof. Assume not. Let a ∈G be a vertex with 3 neighbours b, c and d. The edges ab, ac and ad all
belong to a triangle. This implies that there are at least 2 triangles containing a and there cannot
be 3 triangles containing a as otherwise G[{a, b, c, d}] would be isomorphic to K4. Without loss
of generality, assume that abc and acd are triangles, and the edge bd is the only edge missing. Let
e be the third neighbour of d. Since a and c already have degree 3, they are not neighbours of e.
As such, d and e have no common neighbours, implying that de is an edge not belonging to a
triangle. �

Using the claim, let uv be an edge ofG not contained in a triangle, and letH = (L,H) be a 4-fold
correspondence-cover of G. We let u1, u2 and v1, v2 be the two neighbours of u and v respectively,
different from u and v themselves. The vertices X = {u1, u2, v1, v2} are distinct by the choice of the
edge uv. Since the edges F = {uu1, uu2, uv, vv1, vv2} form a tree on X, we can ‘untwist’ the (full)
matchings in H covering F without loss of generality. That is, we can label L(x)= {1x, 2x, 3x, 4x}
for each x ∈ X such that for each xy ∈ F, the matching in H between L(x) and L(y) is the “iden-
tity” connecting ix to iy for 1≤ i≤ 4. Let �c= (c1, c2, c3, c4) be a correspondence-packing for
G \ {u, v, u2, v1, v2}, which exists by Theorem 5. We can assume without loss of generality that
�c(u1)= (c1(u1), c2(u1), c3(u1), c4(u1))= (1u1 , 2u1 , 3u1 , 4u1 ), and it is sufficient to prove that this
packing �c can be extended to a correspondence-packing for G. We can drop the subscripts and
consider the vectors �c(x), which we must define for x ∈ X \ {u1}, as permutations of {1, 2, 3, 4}.

Starting from �c (the partial packing for G \ {u, v, u2, v1, v2}), we now do the following.

1. Choose a permutation �c(u2) different from (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2) and (4, 1, 2, 3)
such that �c is a proper packing of G \ {u, v, v1, v2}. Using a computer, we show that this can
be done for any possible placement of the edges of G \ {u, v, v1, v2} and choices of match-
ings covering the edges incident to u2, using the fact that u2 has at most two neighbours in
V \ {u, v, v1, v2}.

2. Given the four special exclusions, there are 20 remaining permutations which �c(u2) could
be. We show that these 20 choices can be partitioned as follows.

1https://github.com/StijnCambie/ListPackII, document chic(K4).py

https://doi.org/10.1017/S0963548324000191 Published online by Cambridge University Press

https://github.com/StijnCambie/ListPackII
https://doi.org/10.1017/S0963548324000191


10 S. Cambie et al.

(i) There are 10 ‘excellent’ choices, for which the packing can be greedily extended to v1,
and then v2 such that a valid choice of (�c(u), �c(v)) remains.

(ii) There are 8 ‘good’ choices such that, provided exactly one problematic set {�c(v1), �c(v2)}
is avoided, a valid (at least one) choice of (�c(u), �c(v)) remains. Avoiding one problematic
set is always possible, since there are at least two available permutations when extend-
ing the partial packing to a vertex which has at most 2 neighbours which are already
coloured/packed.

(iii) There are 2 ‘bad’ choices such that there are 8 further problematic sets {�c(v1), �c(v2)} that
must be avoided. In this case it is not immediate that choices avoiding these problematic
sets are possible, but we verify that the packing can be completed nonetheless.

Having given the idea of the steps to extend the partial list-packing, we now give the details
why it works. Using a computer program2 we can list all possible choices (there are 112 of them)
for (�c(u2), �c(v1), �c(v2)) for which the list-packing cannot be extended to both u and v, i.e. to a full
proper list-packing of G. In the code, this is marked by the comment “In [1]”. Intuitively, since
112 (4!)3, there are only few problematic choices for (�c(u2), �c(v1), �c(v2)) and we can avoid these,
as we show next.

Nomatter the colourings of the neighbours of u2 different from u, we can choose �c(u2) different
from (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2) and (4, 1, 2, 3). For this, we note that at most two neighbours
of u2 can be packed by �c thus far. This is done at the comment “In [4]” in the code. Going through
the 112 bad triples at “In [3]”, one concludes that there are 6 “bad” choices for �c(u2) belonging
to 16 non-extendable triples, and 8 “good” possibilities for �c(u2) to 2 non-extendable triples. In
the latter case, there is only one set {�c(v1), �c(v2)} for which the extension was impossible (since
switching the two gives the same obstruction). In those cases one can always choose �c(v1) and �c(v2)
such that they are not equal to such a bad set, since once the derangements of two neighbours of
v2 are chosen, there are at least two possible extensions for v2 (see “In [2]”). That is, in the good
cases one can indeed complete the packing.

We can afford to reduce the 6 “bad” cases to 2, as there is enough flexibility to take �c(u2) differ-
ent from 4 of the 6 bad choices. That is, up front we choose �c(u2) different from the bad choices
(2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2) and (4, 1, 2, 3). The remaining bad cases are when �c(u2) is equal
to either (3, 4, 2, 1) or (4, 3, 1, 2). But in these two last cases, one can extend the partial (corre-
spondence) colourings to v1 and v2, in such a way that �c(v1) and �c(v2) are not taken from the
set {(1, 3, 2, 4), (3, 2, 1, 4), (4, 2, 3, 1), (1, 4, 3, 2)} (see “In [5]”). For the latter, we verify at “In [6]”
that the triple of choices (�c(u2), �c(v1), �c(v2)) does permit an extension of �c to both u and v as
required. As such, we conclude that we always can choose {�c(x) | x ∈ {u1, u2, v1, v2}} such that the
correspondence-packing can be extended to u and v as well, i.e. we have a correspondence-packing
for G. �

4. Larger maximum degree
In this section, we improve the upper bound χ�

c (G)≤ 2�(G) (which follows from Theorem 5)
whenever �(G)≥ 4. The method is a more careful analysis of Hall’s marriage theorem, the main
technique for proving Theorem 5. For �(G)= 4, this results in a sharp upper bound for the
correspondence packing number.

We start by stating some specific corollaries of Hall’s marriage theorem. The first version is just
for completeness, but also indicates the nice structure of the counterexamples in the case when
the conditions in Hall’s marriage theorem are almost met.

Lemma 17. Let G= (A∪ B, E) be a bipartite graph with |A| = |B| = 2m+ 1 and minimum degree
m≥ 1. Then for every A1 ⊆A, we have that |N(A1)| ≥ |A1| except possibly if G has two disjoint

2https://github.com/StijnCambie/ListPackII, document chic(Delta= 3).py
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Figure 3. A bipartite graph G⊂ K5,5 with minimum degree two and without a perfect matching.

Figure 4. Examples of bipartite graphs G⊂ K6,6 with δ(G)= 2=m− 1 and without a perfect matching. Red edges present
some potential missing edges in a Km,m+1. Blue edges present potential edges that can be added.

induced subgraphs Km,m+1 as subgraphs in the following way. There are sets A1,A2, B1, B2 such that
A=A1 ∪A2, B= B1 ∪ B2 and |A1| = |B2| =m+ 1 and |A2| = |B1| =m such that G[A1, B1] and
G[A2, B2] are both isomorphic to Km,m+1 and G[A1, B2] is an empty graph.

Proof. Since the minimum degree is m, every A1 ⊆A with |A1| ≤m satisfies |N(A1)| ≥ |A1|. On
the other hand, since all vertices in B also have minimum degree m, whenever |A1| ≥m+ 2 and
thus |A \A1| <m, every vertex in B has a neighbour in A1 and thus N(A1)= B again has size
≥ |A1|. As such, the only exception is when |A1| =m+ 1 and |N(A1)| =m. In that case, denote
A2 =A \A1, B1 =N(A1), and B2 = B \ B1. By the minimum degree condition and the definitions,
we conclude thatG[A1, B2] is the empty graph andG[A1, B1] andG[A2, B2] are complete bipartite
graphs. Examples are presented in Fig. 3, where blue dashed edges can be present or not. �

Next, we consider the case where the minimum degree is m− 1 and the partition classes have
size 2m.

Lemma 18. Let G= (A∪ B, E) be a bipartite graph with |A| = |B| = 2m and minimum degree
m− 1 for some m≥ 2. Then for every A1 ⊆A, we have that |N(A1)| ≥ |A1| except possibly for

1. |A1| =m and |N(A1)| =m− 1
2. |A1| =m+ 1 and |N(A1)| =m− 1
3. |A1| =m+ 1 and |N(A1)| =m

Let A2 =A \A1, B1 =N(A1), and B2 = B \ B1. Then we have that G[A1, B2] is the empty graph,
and respectively the following hold:

1. G[A1, B1]∼=Km,m−1,
2. G[A1, B1]∼=Km+1,m−1 and G[A2, B2]∼=Km−1,m+1,
3. G[A2, B2]∼=Km−1,m

Proof. Take an arbitrary subset A1 ⊆A. If |A1| ≤m− 1, then due to the minimum degree
condition δ(G)≥m− 1, it is immediate that |N(A1)| ≥m− 1≥ |A1|. In the case |A1| ≥
m+ 2, and thus |A \A1| <m− 1= δ(G), every vertex in B has a neighbour in A1 and thus
N(A1)= B, so the condition in Theorem 12 again holds. As such, the condition can only not
hold when |A1| ∈ {m,m+ 1} and m− 1≤ |N(A1)| ≤ |A1| − 1. The partial characterisation of the
extremal graphs is true by the minimum degree condition applied to A1, A1 and B2, and B2
respectively. �
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We are now ready to prove Theorem 6, which we recall states that for � ≥ 4, if G is a graph of
maximum degree � then χ�

c (G)≤ 2�(G)− 2.

Proof of Theorem 6. We may assume that G is connected. If G is not �-regular, then δ�(G)≤
� − 1, and the theorem is true by [5, Thm. 9]. So we may assume that G is �-regular, for
a fixed � ≥ 4. Let m= � − 1≥ 3, and k= 2m= 2� − 2. Let H be a k-fold correspondence-
cover of G, via some correspondence-assignment L :V(G)→ 2V(H). To be concrete, we label
L(v)= {1v, 2v, . . . , kv} for each v ∈V(G) and we drop the subscripts where convenient. Take an
arbitrary edge uv of G. Without loss of generality (one can rename the colours if necessary), we
assume that the matching in H between L(u) and L(v) is the “identity” connecting iu to iv for
1≤ i≤ k.

Let �c be a correspondence-packing of G \ {u, v} for the cover graph H \ (L(u)∪ L(v)), which
exists by the non-regular case of the theorem. It suffices to extend �c to both u and v. We will do so
by first choosing �c(u) by imposing at most two additional constraints on the choice, and then �c(v).
For every 1≤ i≤ k, letUi = L(u) \ (⋃w∈NG(u)\{v} NH(ci(w)), and defineVi similarly. Note that the
set Ui collects all possible elements of L(u) that can be used for ci(u) in a proper extension of �c to
u and the same is true for Vi. However, some choices of pairs ci(u) ∈Ui and ci(v) ∈Vi may still be
in conflict so cannot be used simultaneously for an extension of �c.

We first prove the following claim, that will be useful to show that a proper extension is possible.

Claim 19. Let G= (A∪ B, E) be a bipartite graph with |A| = |B| = 2m and minimum degree m
for some m≥ 3. Let A=A1 ∪A2 and B= B1 ∪ B2 be partitions such that |A1| =m, |B1| =m− 1,
G[A1, B1]∼=Km,m−1, and G[A1, B2]∼=mK2 +K1. Then for a matching M that contains at most
m− 2 edges of G([A1, B2]), G \M satisfies the conditions of Theorem 12.

Proof. In this proof, every neighbourhood will be a neighbourhood in the graph G \M, i.e., with
N we refer here to NG\M . Let b be the only vertex in B which has no neighbour in G belonging
to A1.

Take B′ ⊆ B. Since G \M has minimum degree ≥m− 1, we have |B′| ≤ |N(B′)| if |B′| �∈
{m,m+ 1}, as explained before in the proof of Lemma 18. So now assume that |B′| ∈ {m,m+ 1}.
We consider three cases.

If |B′ ∩ B1| ≥ 2, then A1 ⊆N(B′) and every vertex in B′ ∩ B2 has at least m− 2≥ 1 neighbours
in A2. Thus

∣∣N(B′)
∣∣ ≥ |A1| + 1=m+ 1≥ ∣∣B′∣∣.

If b ∈ B′ ⊆ B2, then
∣∣N(b)∩A2

∣∣ ≥m− 1 and
∣∣N(B′)∩A1

∣∣ ≥ ∣∣B′∣∣ − 1− (m− 2) (by choice of
M). So we conclude that

∣∣N(B′)
∣∣ ≥ ∣∣N(b)∩A2

∣∣ + ∣∣N(B′)∩A1
∣∣ ≥ ∣∣B′∣∣.

If b �∈ B′ ⊆ B2 (so B′ = B2 \ b), then ∣∣N(B′)∩A2
∣∣ ≥m− 2 and

∣∣N(B′)∩A1
∣∣ ≥m− (m− 2)= 2

(at mostm− 2 edges of the matching between A1 and B′ are removed) and the conclusion follows
again.

In the remaining case, |B′ ∩ B1| = 1. The vertex B′ ∩ B1 has at least m− 1 neighbours in A1.
The vertices in B′ ∩ B2 have at least m− 2 neighbours in A2. If

∣∣B′∣∣ =m, we conclude since∣∣N(B′)
∣∣ ≥ (m− 1)+ (m− 2)≥ ∣∣B′∣∣. So we are left with

∣∣B′∣∣ =m+ 1 and thus either B′ ∩ B2 =
B2 \ b which implies that A1 ⊆N(B′), or b ∈ B′ and

∣∣N(b)∩A2
∣∣ ≥m− 1. In either case, we have∣∣N(B′)

∣∣ ≥ 2m− 2≥m+ 1= ∣∣B′∣∣. �
Construct the bipartite graph Gv whose bipartition is A= (Vi)1≤i≤2m and B= [k] and an edge

between Vi and j ∈ [k] if and only jv ∈Vi. Define the bipartite graph Gu analogously. Since only
� − 1 neighbours of u are already packed, Gu has minimum degree at least 2m− (� − 1)=m, so
Gu satisfies Hall’s marriage theorem, meaning that Gu contains a perfect matching. This matching
corresponds to a choice of �c(u) which extends the packing �c to u. However, we want to make this
choice in a slightly more intricate way, since afterwards we also need to extend �c to v. That is, we
do not merely want to find a perfect matching in Gv, but rather a perfect matching in Gv \M, for
some matchingM determined by the choice of �u.
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Figure 5. Sketch of claim 19, possible edges of G.

If there does not exist a matchingM such that Gv \M does not satisfy Hall’s marriage theorem,
then one can choose �c(u) and then �c(v) by assumption, since the latter corresponds to finding a
matching in Gv \M for some matchingM that is determined by �c(u).

If there exists a matching M such that Gv \M does not satisfy Hall’s marriage theorem, then
Gv \M is a bipartite graph with minimum degree m− 1 for which one of the three cases in
Lemma 18 is satisfied. Up to renaming A and B, in all three cases there are partitions A=A1 ∪A2
and B= B1 ∪ B2 satisfying the conditions of Claim 19. Choose two specific edges of Gv[A1, B2]
(which is a matching mK2 +K1), which correspond with pairs (Vi, xv), (Vj, yv). We can impose
two additional constraints on the choice for �c(u); ci(u) �= xu and cj(u) �= yu for some xu, yu ∈
[k] and indices 1≤ i< j≤ k. These constraints can be implemented by taking U ′

i =Ui \ x and
U ′
j =Uj \ y and U ′

� =U� for the remaining indices in [k]. Equivalently, we have deleted the edges
e1 = (Ui, x) and e2 = (Uj, y) of Gu. This implies that in both partition classes of Gu, at most 2 ver-
tices have degree equal tom− 1. Since in each of the three bad cases in Lemma 18 there are at least
m≥ 3 vertices in one partition class whose degree is m− 1, we conclude that Gu always contains
a perfect matching. That is, one can choose �c(u) with ci(u) ∈U ′

i being distinct for every 1≤ i≤ k.
By definition of the Ui, this is an extension of the partial packing. Once �c(u) has been chosen like
this, one can apply Hall’s theorem again on V ′

i =Vi\N(ci(u)), 1≤ i≤ k to find �c(v). The edges
(Vi,N(ci(u))∩ L(v)) for i ∈ [k] form a matching M for which Gv\M has a perfect matching by
Claim 19. The latter perfect matching corresponds with a choice of �c(v) that extends the partial
packing to a correspondence-packing �c on G. �

Yuster [27] investigated factors of independent transversals in graphs, and stated a conjecture
[27, Conj. 1.1] equivalent to the case of complete graphs in our Conjecture 3(ii). Yuster proved that
χ�
c (K4)= 4 by computer verification, and stated that the general case of establishing tight upper

bounds on χ�
c (Kn) is wide open. Theorem 6 immediately gives a tight upper bound for n= 5. That

is, we now know that χ�
c (K5)= 6 by a proof that does not involve computer verification.

At this point, we have completed the proofs of all the parts of Theorem 4. Combined with our
previous results we can verify Conjectures 3 for small maximum degree.

Proof of Theorem 4. For � = 1, the bounds follow from Theorem 5. For � ∈ {2, 3} we need
Theorems 13, 14, and 15. Finally, Theorem 6 gives the upper bound of χ�

c (G)≤ 6 when � = 4. All
of these bounds are sharp due to the complete graph K�+1. �

5. Fractional results
We now prove Theorem 7, establishing fractional versions of Conjecture 3, where we find in part
(ii) the rounding unnecessary. Theorem 7 is an immediate corollary of the following generalisation
in terms of fractional colouring with local demands, a concept introduced in [18]. We do not
require a careful discussion of fractional colouring with local demands here, but we point out that
a fractional colouring of weight k is equivalent to a probability distribution on independent sets
of a graph such that for every vertex, the marginal probability of inclusion in the independent set
is at least 1/k. Imposing local demands is a generalisation of this concept equivalent to allowing
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the required lower bound on the marginal probability to vary according to the vertex, as in the
statement below. We remark that the inductive proof really requires this stronger hypothesis, and
note that the argument will not work with degeneracy instead of maximum degree. Indeed we
observe in Proposition 21 that the statement with maximum degree replaced by degeneracy is
false.

Lemma 20. Let G be a graph. Consider a correspondence-cover (L,H) of G, such that |L(v)| ≥
deg (v)+ 1 for each vertex v of G. Then there exists a probability distribution on independent sets I
of H such that for every vertex v of G and every vertex x ∈ L(v) of H, we have P (x ∈ I)≥ 1/|L(v)|.
Proof. By adding edges to the cover H if necessary, we may assume that for every edge uv of G,
the matching between L(u) and L(v) is maximum, i.e. of size min{|L(u)|, |L(v)|}. We proceed by
induction on the number of vertices of G. The base case G=∅ holds vacuously.

For the induction step, we take a vertex v of G whose list L(v) has maximum size among all
vertices of G. Pick a uniformly random vertex x ∈ L(v). By induction, there exists a random inde-
pendent set Ix in H −N[x] which satisfies the lemma with respect to the reduced lists (L(w)−
N[x])w∈V(G) obtained after removing N[x]. Note that H −N[x] is a valid correspondence-cover
for G− v via the map L such that the list of each vertex is large enough, as any list which
decreased in size decreased in size by exactly 1, but the vertices whose lists decreased in size lost the
neighbour v. That is, the conditions are satisfied because |L(w)−N[x]| ≥ |L(w)| − 1≥ deg (w)=
degG−v (w)+ 1 for every neighbour w of v, while still |L(w)−N[x]| = |L(w)| ≥ deg (w)+ 1=
degG−v (w)+ 1 for every non-neighbour w of v.

The union of x and Ix is the claimed random independent set I. Let us confirm this for three
types of vertices:

• For every y ∈ L(v), we have P (y ∈ I)= P (y= x)= 1/|L(v)|, by definition.
• If u ∈V(G)−N[v] and y ∈ L(u), then P (y ∈ I)≥ 1/|L(u)| is immediate, as this inequality
holds conditioned on any choice of x.

• Finally, let u ∈N(v) and let y ∈ L(u). Note that then |L(u)| ≥ deg (u)+ 1≥ 2. We consider
three cases for x: either it is adjacent to y itself, it is adjacent to a colour in L(u) \ {y}, or
it has no neighbours in L(u). If x∼ y then y cannot be in I. If x is adjacent to a colour in
L(u) \ {y} then y is in Ix and hence I with probability at least 1/(|L(u)| − 1), and in the case
that x has no neighbours in L(u), the probability that y is in I is 1/|L(u)|. Since thematching
between L(u) and L(v) is maximum by assumption, and L(v) is a list of maximum size, we
have |L(v)−N(L(u))| = |L(v)| − |L(u)|. This means that the probability of the third case
satisfies

P (x /∈N(L(u)))= |L(v)| − |L(u)|
|L(v)| ,

which is not too big. Putting the conditional probabilities together, we conclude that

P (y ∈ I)= 1
|L(u)| − 1 P (x ∈N(L(u)− y))+ 1

|L(u)| P (x /∈N(L(u)))

≥ 1
|L(u)| − 1

· |L(u)| − 1
|L(v)| + 1

|L(u)| · |L(v)| − |L(u)|
|L(v)|

= 1
|L(u)| .

As such, we have proved the required lower bound on P (y ∈ I) for every vertex of H, as
required.

We remark that after submission of this manuscript, the proof method of Lemma 20 has been
further developed in [6, Lemma 7.3] and its applications. �
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Figure 6. The construction of Proposition 21 for d= 2.

In [5, Prop. 24], we gave a construction of a (complete) bipartite graph G with degeneracy d
but with χ�

c (G)= 2d. Proposition 22 shows that for this same graph G, χ•
c (G)≤ d + 1, implying

Theorem 9(ii). The latter result raises the question of whether the fractional correspondence
packing number can exceed d + 1 in d-degenerate graphs. We give an example showing even
the fractional list packing number can. The construction is the one we gave in [5, Thm. 25],
but we strengthen the analysis to show that in fact for the same graph χ•

� (G)≥ d + 2 and thus
Theorem 9(i) holds. For convenience, we repeat the construction here.

Proposition 21. For every d ≥ 2, there exists a graph G with degeneracy d for which χ•
� (G)≥ d + 2.

Proof. We will iteratively construct a graph G with δ�(G)= d and a (d + 1)-list-assignment L
such that the covergraph H satisfies χf (H)> d + 1, implying χ•

� (G)≥ d + 2. We will do so by
constructing a sequence of subgraphs G1,G2, . . . ,G such that V(G1)⊂V(G2)⊂ . . . ⊂V(G).

We start by choosingG1 = (V1, E1)=Kd+1 and the associated lists being equal to [d + 1] for all
vertices. We now construct G2 by adding a copy v′ for every v ∈V1 that is connected to all vertices
in V1 \ v. Let V2 =V(G2) \V1 and L(v′)= ([d + 1] \ {1})∪ {d + 2} for every v′ ∈V2. Repeating
this procedure, in stepmwe add copies v′ for every v ∈Vm and connect it to all vertices inVm \ {v}
and call the set of added vertices Vm+1. For v′ ∈Vm+1, we let L(v′)= sij(L(v))= (L(v) \ {i})∪ {j}
for some i, j ∈ [d + 2], i.e. an (i, j)-shift is applied to the lists. Here we set Vm = {vm1 , . . . , vmd+1},
where vm+1

i denotes the copy of vmi . We choose the shifts to be s1,d+2, s2,1, sd+2,2 in the first three
steps. In general, with a transposition (i j) we associate the shifts si,d+2, sj,i, sd+2,j.

We repeat the procedure and form the permutation (d, 1, 2, 3, . . . , d − 1) by applying the asso-
ciated transpositions corresponding to (1 2), (1 3), . . . , (1 d) in order. Now continue doing the
exact same 3(d − 1) transpositions another d − 2 times. Finally, add a vertex w and connect it to
v3p(d−1)+1
1 for every 0≤ p≤ d − 1, and let L(w)= [d + 1] as well. In all steps, we connected new
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vertices to exactly d existing vertices and so the degeneracy of the construction satisfies δ�(G)= d.
Fig. 6 gives the construction for d = 2.

We now analyse the construction, proving the claimed lower bound on the fractional chromatic
number. The plausible L-colourings of G[V1] give a permutation of [d + 1]. Fix such a colouring
of V1 and consider it a partial L-colouring of G. There is one vertex in V2 whose neighbours in V1
are coloured with [d + 1] \ {1} and hence has to be coloured with d + 2. The other vertices in V2
have two possible colours, d + 2 and some i ∈ [d + 1] \ {1}.

A fractional L-packing of G is a fractional colouring of weight d + 1 of the cover graph of G
associated with L, which corresponds to a random L-colouring c of G such that for each vertex v
of G and every x ∈ L(v), P (c(v)= x)= 1/(d + 1). Since L gives each vertex in V2 the same list, for
each colour x �= d + 2, the expected number of vertices in V2 with c(v)= x is at least 1, and hence
the expected number of vertices in V2 which do not get colour d + 2 is at least d. This means that
the expected number of vertices in V2 which get colour d + 2 is at most 1. Since every L-colouring
of G has at least one vertex in V2 coloured with d + 2, we conclude that in fact every L-colouring
in the fractional packing (i.e. which occurs with positive probability) gives exactly one vertex in
V2 the colour d + 2. This implies that for every colouring in the fractional packing, the colour-
ing restricted to V1 implies the colouring of V2. More specifically, c(v2i )= c(v1i ) if c(v1i ) �= 1 and
c(v2i )= d + 2 if c(v1i )= 1, or equivalently c(v2i )= s1,d+2c(v1i ) for every i ∈ [d + 1]. Furthermore,
this observation goes through when comparing partial L-colourings of Vm and Vm−1. As such,
for any colouring c in the fractional packing, c

(
v3p(d−1)+1
i

)
for 0≤ p≤ d − 1 either contains all

colours in [d] or all of them are equal to d + 1. From this, we can conclude that c(w)= d + 1 or
c(w) ∈ [d], respectively, i.e. c(v11)= d + 1⇔ c(w) �= d + 1. The latter implies that the colour d + 1
appears once on {v11,w}, while on average it should appear 2

d+1 times on these two vertices. Since
d� 2, this is a contradiction. Hence no fractional L-packing exists and thus χ•

� (G)> d + 1. �
Our next positive result is a version of the greedy bound for bipartite graphs where one is

permitted to take the smaller of the maximum degrees over vertices in each part of a biparti-
tion. In [5, Lem. 33], we showed the analogous upper bound for χ�

� . Here, our bound applies
to the fractional variant of correspondence packing as well, though the analogue for correspon-
dence packing is false. In [5, Cor. 34], we showed that for every complete bipartite graph Ka,b
with a> bb, we have χ�

� (Ka,b)= b+ 1 while χ�
c (Ka,b)= 2b. This demonstrates a constant fac-

tor gap between list and correspondence packing numbers. The proposition below implies that
χ•

� (Ka,b)= χ•
c (Ka,b)= b+ 1 for such a and b, demonstrating that the striking factor 2 difference

between list packing and correspondence packing in that construction disappears in the fractional
relaxation.

Proposition 22. Let G= (A∪ B, E) be a bipartite graph with parts A and B having maximum
degrees �A and �B, respectively, where �A ≤ �B. Then χ•

� (G)≤ χ•
c (G)≤ �A + 1.

Proof. Consider a correspondence-cover (L,H) of G such that for all vertices v of G, |L(v)| =
�A + 1. It is sufficient to prove the statement under the assumption that every matching in the
correspondence-cover is a perfect matching. To bound the fractional chromatic number of H,
we construct a random (maximum) independent set I = IB ∪ IA of H as follows. Let IB contain
for each vertex b ∈ B a uniform random colour xb ∈ L(b), chosen independently. Having fixed a
choice of IB, we now choose IA. Each vertex a ∈A has at most �A = k− 1 neighbours in B, so at
least one colour in L(a) is non-adjacent to IB. Then we may choose a uniformly random colour xa
from L(a) \N(Ib), and include it in IA.

Note that for any a ∈A, the subgraph of H induced by L(a) and
⋃

b∈N(a) L(b) is isomorphic to
the cartesian product of a complete graph Kk and a star with |N(a)| leaves. By the symmetry of
this graph and how Ib is chosen at random, for each a ∈A every xa ∈ L(a) is in I with the same
probability. Since the size of the intersection |IA ∩ L(a)| is always exactly 1, taking expectations we
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have P (xa ∈ I)= 1/k for all a ∈A and xa ∈ L(a). We conclude that each vertex of H is in I with
probability exactly 1

k , so χf (H)≤ k= �A + 1. �
We conclude this section by noting that the two fractional packing numbers can be different

from both the chromatic and integral packing numbers.

Proof of Proposition 10. We give examples for each case that the quantities can be different.

• Every even cycle C2n satisfies
χ�(C2n)= 2< 3= χ•

� (C2n)= χ�
� (C2n).

The list chromatic number of even cycles has been known since the initial study [10]. By
Theorem 13, χ�

� (C2n)= 3. Moreover, the 2-fold cover of C2n via the list-assignment given
in the proof of Theorem 13 contains an odd cycle and hence has fractional chromatic
number strictly greater than 2; this proves 3≤ χ•

� (C2n).
• The fan F7 (formed by adding a universal vertex to a path on 6 vertices) satisfies

χ�(F7)= χ•
� (F7)= 3< 4= χ�

� (F7).
Note that K3 is a subgraph of F7 to conclude that 3≤ χ�(F7)≤ χ•

� (F7). A brute-force
verification3 shows that χ•

c (F7)= 3, which gives the upper bound χ•
� (F7)≤ 3.

A list-assignment and verification indicating that χ�
� (F7)≥ 4 is presented in [4, Fig. 11.1,

Tab. 11.1].
• The complete bipartite graph K3,3 is an example for which

χc(K3,3)= 3< 4= χ•
c (K3,3)= χ�

c (K3,3).
Note that 3= χc(C4)≤ χc(K3,3)≤ 3, where the last inequality is true since at most
3 · 3! = 18 out of 27 possible colourings of one partition class cannot be extended to the
other partition class (it also follows from Brooks’ theorem for correspondence colour-
ing). The inequality 3< χ•

c (K3,3) is proved by computer verification4 and the upper bound
χ�
c (K3,3)≤ 4 is given in Theorem 15.

• Any cycle Cn satisfies
χc(Cn)= χ•

c (Cn)= 3< 4= χ�
c (Cn).

The equality χc(Cn)= 3 was observed by Dvořák and Postle in [9]. The equality
χ•
c (Cn)= 3 follows from Theorem 7. The equality χ�

c (Cn)= 4 is from Theorem 14. �

6. Concluding remarks
Amain objective in this paper was to more closely analyse the list packing number in fundamental
settings, as a way to gain more intuition into the List Packing Conjecture; this led us naturally to
the proposal of Conjecture 3. We put some evidence towards Conjecture 3 first by confirming it
for graphs with small maximum degree. Restricted to complete graphs, Conjecture 3(ii) coincides
with Conjecture 1.1 in [27], which remains generally open but was previously verified for up to
4 vertices. Here we confirmed it for the complete graph on 5 vertices via the more general result
that χ�

c (G)≤ 2� − 2 for any graph G with maximum degree � ≥ 4.
We also proved an approximate version of Conjecture 3 via Theorem 7 and the introduc-

tion of fractional versions of the list and correspondence packing numbers. More generally in
combinatorics, fractional packing often serves as a critical component in proving an asymptoti-
cally matching bound for the respective integral packing problem. Here though, in the context of

3https://github.com/StijnCambie/ListPackII, document F7.py
4https://github.com/StijnCambie/ListPackII, document K3-3.py
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Table 1. Lists on K4 � K4 without a packing of
colourings

[5] \ 1 [5] \ 2 [5] \ 2 [5] \ 2

[5] \ 1 [4] [4] [4]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[5] \ 1 [4] [4] [4]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[5] \ 1 [4] [4] [4]

correspondence packing, we noticed (see the remarks above and below Proposition 22) that the
fractional and integral value actually can differ by a factor 2, an intriguing barrier to this approach.

We contend that the determination of χ•
c (G) may be an interesting problem in its own right.

Just as for the original, integral form of list packing, several problems come to mind, espe-
cially the fractional versions of our main conjectures from [5], which we made explicit above
in Conjecture 8. A resolution to such fractional questions could yield interesting insights into the
List Packing Conjecture. An especially appealing problem is to determine an optimal upper bound
on the fractional list packing number for planar graphs.

Conjecture 23. χ•
� (G)≤ 5 for any planar graph G.

While we have shown examples of graphsG for which χ�
c (G)∼ 2χc(G) [5, Prop. 24], we actually

do not know any graph for which the list packing number is two larger than the list chromatic
number. As such, the following is a natural challenge.

Problem 24. Find examples of graphs G for which χ�
� (G)> χ�(G)+ 1.

In the following three subsections, we give some remarks related to some interesting further
directions one could take to understand the list packing number better.

6.1 Many list-colourings but no list-packing, even for line graphs
By a theorem of Hall [15], for a k-list-assignment L of Kk, there are at least k! proper L-colourings
ofKk. Because there are somany L-colourings ofKk, the fact that there exists a packing of k disjoint
L-colourings might not seem especially surprising. Nevertheless, a packing of colourings does not
necessarily follow from a large number of colourings.

Consider the Latin square Kn �Kn as the graph with the cells of a n× n grid as its vertices,
where two vertices are adjacent if they are in the same row or column. Denote the n2 vertices
of Kn �Kn by pairs in [n]2, where [n]= {1, 2, . . . , n}. Let the list-assignment L of Kn �Kn be
given by L((1, i))= [n+ 1] \ {1} for every i ∈ [n], L((j, 1))= [n+ 1] \ {2} for every 2≤ j≤ n and
L((j, i))= [n] for every 2≤ i, j≤ n. This assignment for K4 �K4 is presented in Table 1, while an
example for n= 3 and the general case is also presented in [20, Fig. 4.9, Fig 5.1].

Extending an observation by Levit [20, Lem. 42], we prove the following.

Proposition 25. There are nn2(1−o(1)) L-colourings of Kn � Kn for the n-list-assignment L from
above. Nevertheless, for every n≥ 2,Kn �Kn is not fractionally L-packable and thus χ�

� (Kn �Kn)≥
χ•

� (Kn �Kn)> n.

Proof. Wefirst prove that there are at least n−1
n N(n) many proper L-colourings ofKn �Kn, where

N(n)= nn2(1−o(1)) denotes the number of Latin squares of order n (see [26, Thm. 17.2]). A Latin
square corresponds to a proper n-colouring of Kn �Kn. Take any such proper n-colouring for
which (1, 1) has not been coloured with 1. The vertex coloured by 1 in the first column and the
vertex coloured by 2 in the first row (if it is not equal to (1, 1)) are recoloured with n+ 1. Then
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Figure 7. The K−
4 -necklace and a list-assignment for which no (fractional) list-packing is possible.

by definition, we have a proper L-colouring of Kn �Kn and the lower bound follows because this
recolouring gives an injection from the set of Latin squares which do not have a 1 in the top-left
cell to the collection of proper L-colourings of Kn � Kn.

Next, we prove that Kn �Kn is not fractionally L-packable (i.e. the associated cover has frac-
tional chromatic number strictly larger than n). It is enough (by Proposition 11) to show that
there does not exist a proper L-colouring that colours (1, 1) with n+ 1. Note that if such a colour-
ing were to exist, the other vertices of the first column would use every colour in [n] \ {1}, and the
other vertices of the first row would use every colour in [n] \ {2}. As such, every colour in [n] can
be used at most n− 2 times on the vertex subset ([n] \ 1)× ([n] \ 1). Since (n− 1)2 > n(n− 2),
this implies that the colouring cannot be extended. �

So even while there are about as many proper L-colourings of the graph as one can hope for,
the graph is not fractionally L-packable.

Note that Kn �Kn is the line graph of the complete bipartite graph Kn,n. It is immediate that
Kn �Kn has chromatic number n. As proposed by Dinitz and proved by Galvin (see [11]), the list
chromatic number of this graph equals n as well. However, Proposition 25 indicates that the pack-
ing version of Dinitz’ problem behaves differently from the colouring version, as the list packing
number of Kn �Kn exceeds n. We ask a question that arises from this observation.

Conjecture 26 (Packing version of Dinitz’s problem). For n≥ 3, χ�
� (Kn �Kn)= n+ 1.

A possible approach, which is similar to that used in [24], is to prove that

χ�(Kn �Kn �Kn+1)= n+ 1.

This would imply the result due to the observation that χ�(G�Km)=m implies that χ�
� (G)≤m.

The latter implication is immediate by choosing the same list for the m copies of a particular
vertex.

6.2 Variants of brooks’ theorem
A natural Brooks’-type theorem for list packing is false. The diamond K−

4 is formed by remov-
ing an edge from the complete graph K4. The K−

4 -necklace G, consisting of two K−
4 s whose

degree 2 vertices are pairwise connected, is a 3-regular graph (that is not K4) for which χ•
� (G)=

χ�
� (G)= 4. See Fig. 7 for a 3-list-assignment L that does not admit a fractional L-packing. This

can easily be verified by a computer,5 though manual verification is feasible. The example proves
Theorem 9(iii). An interesting feature of this example is that an L-colouring extending any single
mapping c(v)= x for x ∈ L(v) exists.

5https://github.com/StijnCambie/ListpackII, document K4-Necklace.py
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While we rule out the statement χ•
� (G)≤max{3,ω(G),�(G)}, which seems an appealing

formulation because cycles have list packing number 3, it is plausible that a Brooks’-type the-
orem holds with a more esoteric set of exceptional cases. For example, we have not ruled out
a bound of the form χ•

� (G)≤max{4,ω(G),�(G)}, or that there exists an easily-describable set
of graphs G (including cycles and the K−

4 -necklace) such that for connected G /∈ G we have
χ�

� (G)≤max{ω(G),�(G)}. We suggest the following question.

Problem 27. Characterise the graphs of maximum degree 3 with list packing number 4.

For correspondence packing, analogues of Brooks’ theorem and Reed’s conjecture need to be
modified markedly. We remark6 that the Petersen graph P5,2 satisfies χ�

c (P5,2)≥ 4, while it is
triangle-free and has maximum degree 3. The even degree case of Conjecture 3 is the upper bound
χ�
c (G)≤ � + 2, and we ask whether K5 the only tight example for �(G)= 4.

Problem 28. Characterise the graphs of maximum degree 4 with correspondence packing
number 6.

Seeking a packing of list-colourings requires a list-assignment with uniform list sizes, but the
fractional variant of list packing naturally generalises to list-assignments with arbitrary list sizes.
For a list-assignment L of G, we can ask for a probability distribution on independent sets I
of the associated list-cover (L̃,H), where L̃(v)= {iv:i ∈ L(v)}, such that for each v ∈V(G) and
i ∈ L(v), P (iv ∈ I)≥ 1/|L(v)| (see [18] for the general theory of fractional colouring with local
demands). With this, it makes sense to study fractional degree-list-packability as a more struc-
tured version of degree-choosability. A graph G is degree-choosable if, for any list-assignment
L such that |L(v)| = deg (v), G admits an L-colouring. Erdős, Rubin and Taylor [10], and inde-
pendently Borodin [3] classified the degree-choosable graphs as those which are not Gallai trees.
Here, we note that fractional degree-list-packability can be defined as above for list-assignments
with |L(v)| = deg (v), but point out that the proof for degree-choosability does not extend to this
notion because of theK−

4 -necklace. It is not too hard to come up with irregular examples too, such
as the graph K−

4 itself with lists {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3}, and K−
5 with lists {1, 2, 3}, {1, 2, 4},

and three copies of {1, 2, 3, 4}. We give a computer verification of the former7 that is easily adapted
to give the latter.

Problem 29. Characterise the graphs that are fractionally degree-list-packable.

6.3 Algorithms and complexity
At the heart of many combinatorial problems sits some inherently difficult algorithmic tasks (and
vice versa). The list packing problem is no exception. Furthermore, many intuitively algorithmic
tactics we could successfully employ for the corresponding graph colouring problems become
blunted in the hunt for list-packings. Most especially, local modifications of the choice applied at
one particular vertex or in its neighbourhood become harder to reason about.We therefore believe
that the algorithmic aspects of list packing are a promising research line, and here we make some
basic comments based on our results. Further study would be interesting; in particular, the nature
of the list packing number makes it natural to explore various classes of graphs, as is common in
algorithmic graph theory.

The decision problem associated to list colouring is ‘graph k-list colouring’, where an instance
is a graph G and we must decide whether χ�(G)≤ k. We can define an analogous problem ‘graph
k-list packing’, and relate its complexity to the list colouring problem. It is well-known that for
k≥ 3, ‘graph k-list colouring’ is complete for the complexity class 	

p
2 = coNPNP (in the second

level of the polynomial hierarchy) of problems for which a Turingmachine with access to an oracle

6https://github.com/StijnCambie/ListpackII, document Petersen.py
7https://github.com/StijnCambie/ListpackII, document K4-Necklace.py
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for NP can verify certificates for ‘no’ instances in polynomial time [10,14]. By the classification of
languages in 	

p
2 according to a description in terms of quantified Boolean formulae, i.e. L ∈ 	

p
2 if

and only if there is a constant c and language R ∈ P such that

L= {x : ∀y∃z : |y|, |z| ≤ |x|c, and (x, y, z) ∈ R},
it is easy to see that graph k-list packing lies in the same complexity class 	

p
2 . That is, although

combinatorially it seems harder to find a packing than a single list-colouring, there is no differ-
ence in computational complexity (at this resolution). We raise the question of completeness,
and the fact that 	p

2-completeness for the closely related ‘strong k-colouring’ decision problem is
open [25].

Question 30. Is there some k0 such that for all k≥ k0, graph k-list packing is complete for the
complexity class 	

p
2 ? Is k0 = 3? �

The classification of graphs of list chromatic number 2 in [10] shows that graph 2-list colouring
is in P. Similarly, Proposition 1 shows that graph 2-list packing is in P. In much the same way, the
fact that for all k, graph k-list packing restricted to instances of maximum degree 2 is in P follows
from Proposition 1 and Proposition 2. The correspondence version of the above question is also
natural.

Algorithms that construct in polynomial time list-colourings, list-packings, and more general
objects such as independent transversals and strong colourings, have been studied for some time
(e.g. [12,13,17]). We first observe that many of our results give linear-time constructions.

Remark 31. The proofs in Sections 2, 3 and 4 give rise to constructions of the desired packings
with algorithms that run in linear time (as a function of the order n of G and supposing that the
maximum degree is fixed). Note that Claim 16 actually implies that there is an edge not belonging
to a triangle near every vertex of a 3-regular graph that is not K4. Knowing that there do exist linear
time algorithms [22] (again, assuming that the maximum degree is fixed) to derive the degeneracy
ordering of G \ v and also finding the greedy packing happens in linear time, we conclude easily.
Completing the packing is something that happens locally.

One of the most general algorithmic results, due to Graf and Haxell [13, Cor. 26], can be used
to construct list- and correspondence-packings of graphs of maximum degree � and when lists
are of size at least 3� + 1 (see [1] for the key method that gives a non-constructive version of this
result). Their result actually applies to strong colouring, which is considerably more general than
correspondence packing, see e.g. [5]. Here, it suffices to note that finding a k-colouring of a k-fold
correspondence-cover (L,H) of a graph G of maximum degree � is a special case of finding a
strong k-colouring of a graph H� of maximum degree �. This is by removing the cliques on the
lists in H and finding a strong colouring with respect to the partition induced by L. We showed
before [5, Thms. 3 and 10] that the method of [1] applied in the context of list and correspondence
packing gives the bounds

χ�
� (G)≤ 1+ �(G)+ χ�(G), χ�

c (G)≤ 1+ �(G)+ χc(G),

though we did not give constructive proofs of these bounds. Somewhat interestingly, we note that
Theorem 5 gives a polynomial-time construction for list- and correspondence-packings with lists
of size 2�. That is, we significantly reduce the required lower bound on the size of the partition
classes (equivalent to list size) in one of the results of [13], at the considerable cost of requiring
that the graph we colour is a cover of some bounded-degree graph.
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