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Abstract: In vehicle control, control allocation is often used to abstract control variables from
actuators, simplifying controller design and enhancing performance. Surveying available literature
reveals that explicit solutions are restricted to strong assumptions on the actuators, or otherwise
fail to exploit the capabilities of the actuator constellation. A remedy is to formulate hierarchical
minimization problems that take into account the limits of the actuators at the expense of a longer
computing time. In this paper, we compared the most common norms of the objective functions for
linear or linearized plants, and show available numeric solver types. Such a comparison has not been
found in the literature before and indicates that some combinations of linear and quadratic norms are
not sufficiently researched. While the bulk of the review is restricted to control-affine plant models,
some extensions to dynamic and nonlinear allocation problems are shown. For aerial vehicles, a
trend toward linearized incremental control schemes is visible, which forms a compromise between
real-time capabilities and the ability to resolve some nonlinearities common in these vehicles.

Keywords: control allocation; optimal control; hierarchical optimization; allocation schemes; flight
control systems

1. Introduction

In many control applications, each of the plant’s actuators may not directly affect
a single state variable or derivative. In vehicle motion control, adding actuators can
increase reliability through redundancy, enhance performance, or enable control over
additional degrees of freedom. In novel high-performance aircraft configurations such as
the Innovative Control Effectors demonstrator [1], but also in multirotor eVTOL aircraft [2],
there are typically far more actuators than controlled degrees of freedom. Many of these
actuators are axis-coupled, meaning that they affect the motion of more than one degree
of freedom.

The design of feedback controllers for such plants can be simplified by choosing
suitable controller outputs called ‘pseudo-controls’ ν, which are more closely related to
the plant’s state. This abstracted required control effort νre f is then allocated over the
available actuators in a separate step, resulting in the ‘actuator commands’ u. Therefore, the
controller itself does not need detailed information on the platform actuators. Depending
on assumptions about the actuator suite and requirements on the solution, a number of
control allocation techniques and applications are described in the literature.

Control allocation is relevant to many vehicles and has been applied to naval vessels
for station keeping [3] and maneuvering [4], underwater vehicle control [5], the electronic
stability control of road vehicles [6,7], high-performance aircraft [8,9], and unmanned air
vehicles (UAVs) [10,11]. This work aims to provide motivation, derivation, capabilities, and
limitations of several commonly used methods, focusing on aircraft. In particular, methods
based on linear optimization programs are described with an extensive comparison of the
possible distance norms in the objective function.

In Section 2 of this paper, the general plant models, some simplifying assumptions,
and quality measures of control allocation methods are introduced. The body of the paper,
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Section 3, gives the results of the survey with a description and analysis of available
methods, while Section 4 concludes the findings from these discussions.

2. Formulation, Assumptions, and Requirements

Pseudo-controls are often chosen as the lowest derivative of the state or output of a
system, which contains the plant’s input directly. Due to the algebraic relation between
actuator states and pseudo-controls, this makes nonlinear inversion control laws (also
known as feedback linearization) possible [12,13]. As an example of this, actuators in
vehicle control commonly give rise to forces and moments on the vehicle, which makes for
a natural choice of ν =

(
aT , ω̇T)T , where a is the linear acceleration and ω̇ is the angular

acceleration required for the desired vehicle trajectory.
A model of the pseudo-controls ν ∈ Rd for d degrees of freedom is given below [8],

which depends on the plant’s state x and the state of the actuators δ only (and not, for
instance, their rates):

ν = g(x, δ)
dkδ
dtk = f

(
δ, δ̇, . . . , dk−1δ

dtk−1 , u
)

u ∈ U .
(1)

The actuator state δ is described as a dynamical system of order k, with the target
actuator state u ∈ U ⊂ Rn. The control allocation problem consists of finding an admissible
u∗ ∈ U such that ν = νre f for every pseudo-control reference input νre f ∈ Ω ⊂ Rd. Here,
Ω is known as the attainable moment set (‘AMS’) [14], which is a direct consequence of the
restriction of u. In case the desired νre f is not in Ω (‘infeasible’), then a command u∗ should
be returned that results in a ν that is close to the reference in some sense. In these cases, it
is desirable to be able to prioritize some pseudo-controls in case they are more relevant to
vehicle stability.

Appropriate balancing between the individual actuators is another important quality
of a solution u∗ [15], although sometimes the opposite may be preferred (usage of only
the most efficient actuators [16]). In any case, small changes in νre f should not result in
large changes in ν or u∗. Lastly, a suitable allocation scheme should return u∗ within a
reasonable amount of computational time in order to be real-time capable.

2.1. Simplifying Assumptions on the Plant

Allocation can be significantly simplified by restricting the plant to control-affine
models of the form

ν = gx(x) + gδ(x)δ . (2)

If the plant dynamics gx(x) are known, then this can be rewritten with ν̃ = ν− gx(x),
as common in nonlinear dynamic inversion control laws [12]. Similarly, gx(x) can be
seen as a disturbance signal to be taken up by integral action in a PID controller for νre f ,
or eliminated using incremental control schemes [9,13]. Both terms in Equation (2) are
potentially subject to knowledge of the state x, which may require the use of estimators.
This introduces additional sources of inaccuracies, next to modeling errors in the model(s)
gx(x) and gδ(x). For brevity, we will write B , gδ(x), remembering that this ‘effectiveness
matrix’ may depend on the plant state x.

This generally excludes a large group of actuator constellations with nonlinearities in
their effect on ν, or couplings between the actuators for which the second term has to be
written gδ(x, δ). An exception is nonlinear actuators of the form ν = gx(x) + gδ(x)ξ(δ),
where ξi are invertible mappings R1 7→ R1 that are applied to the components of δ
separately. In these cases, linearity can be recovered by solving in terms of ξi(δi) and
then applying ξ−1

i . The bulk of the methods described in this work are restricted to
these systems.

The thrust from rotors is often modeled as second-order polynomials that are strictly
increasing between the actuator limits, and thus invertible. However, the effect of aerody-
namic control surfaces is not strictly increasing when flow separates. Similarly, the friction



Actuators 2023, 12, 282 3 of 12

generated at the tire–road interface will decrease when the slip angles or longitudinal slip
ratio states are large. In these cases, no inverse mapping exists.

While most of the schemes presented in the following depend on this assumption, non-
linear control allocation is discussed in Section 3.5 along with the implications of linearization.

2.2. Assumptions on the Actuator Dynamical System

For the actuators themselves, one may assume that they can be modeled as a first-
order lag for all actuators. This enables frequency-divided methods that prioritize actuators
by their bandwidths. If these bandwidths are all negligibly fast compared to the plant
dynamics such that δ ≈ u, then (together with a control-affine plant model) this results in
a special case of Equation (1). Inverting this equation can be seen as the essence of static
linear control allocation:

ν = Bu u ∈ U . (3)

Finally, actuators can often be seen as uncoupled from each other, and so it is common
to define U as a box in Rn with lower and upper bounds u and u:

U = {ui | ui ≤ ui ≤ ui} for all components i = {1, 2, . . . , n} . (4)

3. Evaluation of Methods
3.1. Ganging and Daisy Chaining

In the earliest flight control applications, the plant consisted mainly of linear axis-
decoupled actuators (each δi only influences one νi). This allows for the construction of a
simple ganging matrix G with one non-zero entry in each row, such that the unconstrained
solution would be u∗unc = Gν [15]. This can exploit the entire (box-shaped) AMS and
at least provides the optimal choice u∗i = min(max(u∗unc,i, ui), ui) ∀i whenever νre f is
infeasible, since each direction can be ‘optimized’ separately. Of course, the very restrictive
assumptions on the actuators do not make this approach practical.

An expansion on ganging is daisy chaining, in which the columns of B are separated
into different matrices of descending actuator priorities B1, B2, . . ., Bk, with their ganging
matrices Gk. If the solution to the most preferred actuators does not reach the desired
pseudo-control (νre f 6= B1u∗1), then the next actuator set is used for the remainder of νre f as
u∗2,unc = G2(νre f − B1u∗1) 6= 0. An example of this is the use of spoilers for roll control on
traditional transport aircraft, which are only actuated for high acceleration demands, since
their usage implies high lift and drag penalties. The simplicity of this scheme allows for
stability analysis even in the case of actuator saturation [17].

3.2. Weighted Generalized Inverse

If we relax the axis-decoupling assumption, then G will not be sparse and cannot be
derived by inspection. In addition, in most cases, there are more actuators n than controlled
degrees of freedom d, such that there may be multiple solutions u that result in νre f . In
those cases, a constrained minimization problem can be derived using a weighing matrix
Wu and the p-norm, which minimizes a norm of the control effort while still maintaining
the reference ν:

min
u

||W
1
p

u u||p

s.t. νre f = Bu .
(5)

The choice of p = 2 results in a convex optimization problem and well-balanced
solutions u∗ [18]. Furthermore, the solution can be solved explicitly as u∗unc = Gνre f ,
with the weighted generalized inverse G = B+

Wu
, W−1

u BT(BW−1
u BT)−1 [19]. This is

especially useful if B is constant over various flight conditions, as the inverse can then be
computed offline.
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There may be cases where we wish to minimize the difference to some preferred

input ud, changing the objective function to ||W
1
p

u (u− ud)||p. However, by introducing
the variable z = u− ud and minimizing over z, it can be seen that the explicit solution
only slightly changes to u∗unc = ud + B+

Wu
(νre f − Bud), if p = 2 is maintained. As a final

step, u∗i = min(max(u∗unc,i, ui), ui) ∀i as for ganging, but now there are no optimality
guarantees that Bu∗ is close to νre f in any sense, which makes it unsuitable in the saturation
regime. For example, it causes severe problems when the plant’s control authority for one
pseudo-control is much lower than for others (as shown for quadrotor yaw control in [11]).

3.3. Constrained Optimization

Since the turn of the century, control allocation methods became popular in research
that incorporates the actuator limits as an inequality constraint in the optimization problem.
A general way of formulating the problem is a sequential problem, which computes the set
of all controls u that minimize the pseudo-control error νre f − Bu. If this set includes more
than one element (for instance, because n > d, such that rank(B) < n), then a second step
balances the actuator effort by minimizing the distance to the preferred command ud:

min
u∈S

||W
1
p

u (u− ud)||p

S = arg min
u∈U

||W
1
p

v

(
vre f − Bu

)
||p

U = u s.t. ui ≤ ui ≤ ūi ∀i.

(6)

This problem, found, for instance, in [20], is guaranteed to find a solution that sat-
isfies νre f = Bu if νre f is within the capabilities of the platform, and it finds the closest
approximation if it is not. The solution returned is always the most ‘balanced’ out of
the available minimizers of the pseudo-control error. The desired vector ud need not be
static, but may be chosen to meet application needs: in aircraft control, minimal radar
cross-section [21], most efficient trimmed flight command [20], or most efficient steady-state
command uud = B+

Wss
νre f [8] is possible.

For the quadratic case, p = 2, and there are positive definite weighing matrices
Wu, Wv; this is a convex optimization problem with one unique solution. A solution
algorithm was presented in [20] that turns the problem into two equality-constrained and
bound-constrained least-squares problems, but it was found to converge slower than other
alternatives. However, research in optimization with lexicographic problems such as (6)
seems to have intensified in recent years, especially in the field of robot simulation and
control, so potentially improved algorithms are available; see, for instance, [22–24].

3.3.1. Weighted Minimization

The sequential problem (6) can be approximated well by forming a linear combination
of the two objectives (reducing error and reducing actuator cost) as a single objective. The
allocation error is then prioritized using a small scalar multiplier γ, establishing a hierarchy
similar to the ‘Big M’ method for equality constraints in linear programming. This method
is also known for solving equality-constrained least-squares problems, such as (5) with
p = 2 [sec. 5.1.5.] in [25]. The author warns of ill-conditioning with too small values
of γ, which has to be chosen as a trade-off between numerical errors and approximation
errors when the scalar chosen is too low. This is especially relevant since most embedded
hardware on smaller UAV support only 32-bit floats.

The weighted minimization formulation is given by

min
u

||W
1

pν
ν (Bu− ν)||pν + ||γ

1
pν W

1
pu

u (u− ud)||pu

s.t. ui ≤ ui ≤ ui ∀i ;
(7)

compared with [20].



Actuators 2023, 12, 282 5 of 12

In the literature, different norms have been proposed in the context of control allo-
cation since inception, with the most common ones being `1, `2, and `∞ [26,27]. Physical
consideration and the selection of actuator state variables may motivate other norms for
the actuator penalty: the power consumption of ship propellers is generally cubic in their
speed [3], while the fuel-flow required in turbojet engines can be near-linear to the thrust
demanded [28].

In general, `2 has the advantage that it provides a strictly convex objective function
with a single optimal solution. The load is also naturally balanced between the actuators
since large deviations in the distribution are avoided, even if the sum of the absolute errors
of two possible distributions is equal (i.e., their `1 norms are equal). However, quadratic
solvers generally require more operations to find the unique solutions, whereas `1 and `∞
have the advantage that they can be formulated as a linear program that can be solved with
fast methods such as the simplex algorithm.

It is also possible to use a different norm for each of the two terms (actuator usage
penalty Wu(u− ud) and pseudo-control error Wν(νre f − Bu)), resulting in nine different
possible combinations. Their possible advantages and disadvantages along with possible
solution algorithms are listed:

Pseudo-Control Error: `1—Actuator Penalty: `1

Used frequently in the literature (e.g., [16,29]) and favored for the availability of fast
solution methods, but the problem does not have a unique optimum, especially when the
allocation problem is feasible. This may lead to problems with certain solvers that first
fully load some actuators while keeping others at their preferred state. According to [16],
this may be regarded as an advantage; however, for UAVs with many similar or even
identical actuators, it is highly undesirable to not use those similar actuators in similar
ways. Solving relies on reformulating the `1-norms into a standard linear programming
problem of the form

min
x

cTx

s.t. Ax = b

0 ≤ x ≤ h ,

(8)

which requires treating the positive and negative parts of the two `1-norms separately. The
decision vector x is of dimension 2n + 2d [16] and there are d constraints:

x =
(
u+ u− e+ e−

)T

h =
(
u− ud ud − u Bud − νre f Bud − νre f

)T

c =
(
γdiag(Wu) γdiag(Wu) diag(Wν) diag(Wν)

)T

A =
(
−B +B +Id −Id

)
b = Bud − νre f

(9)

This problem can be solved with, for instance, simplex [16] or interior point meth-
ods [18], and u∗ can be recovered as u∗ = ud + u+ − u−. In terms of computational
performance, the authors of [29] expected good scalability for larger platforms, but mea-
sured interior-point as around 2.5 times slower than Simplex for n = 16, and 3 times
slower for n = 11. Additionally, IP also does not rely on jumping from corner to corner
of the constraint region but rather takes a relatively smooth path from inside the feasible
region, which may result in some more even balancing of the elements in u and may allow
close-to-optimal premature termination [29].

If a solution to the similar problem is available (i.e., from the solution of a previous
sample), then simplex methods can be ‘warm-started’ with that solution, potentially yield-
ing much lower computational times. With interior point methods, it is harder to make
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use of that information [29], since a choice of an initial point too close to the boundary of
the feasible region may result in slow convergence [30]. Some approaches exist [30,31], but
have never been applied in control allocation research.

Pseudo-Control Error: `1—Actuator Penalty: `2

This combination was not found in any research so far. Since `2 is used for the rank(n)
actuator penalty, the convexity of the objective function is still maintained, and a single
unique solution is returned from an accurate solver. It is unclear whether the use of `1
significantly reduces the quality of the solution in the context of control allocation, for
instance, because of scaling issues between the dissimilar norms of the terms.

Interior-point algorithms can be expected to solve this problem efficiently, since the
matrix in the quadratic part of the objective function is diagonal and keeps solving the
linear system for the step direction in the interior-point iterations efficiently, which may
make it an interesting topic for future research.

Pseudo-Control Error: `1—Actuator Penalty: `∞

The authors of [15] used this combination of norms to address the issue that a simple
`1 norm for the actuators does not incentivize balancing between similar actuators. By
minimizing the maximum deflection (also called min-max), a load-balancing action is
achieved, at least between the heavily loaded actuators.

The resulting system has 4n + 2d + 1 variables and 2n + d constraints, which makes it
slightly smaller than the resulting `∞-`∞ system. In [15], the scalar upper bound ũ on the
`∞-norm of the actuator balancing term and the slack variables (s+, s−) > 0, such that
ũ = u+ + s+ and ũ = u− + s−, were introduced:

x =
(

u+ u− s+ s− ũ e+ e−
)T

emax , Bud − νre f

h =
(

u− ud ud −u u− ud ud −u max (|u− ud|, |ud −u|) emax emax

)T

c =
(

0 0 0 0 1 γdiag(Wu) γdiag(Wu)
)T

A =

−B +B 0 0 0 +Id −Id

0 0 In 0 −1 In 0
0 0 0 In −1 0 In


b =

(
emax 0 0

)T

(10)

Pseudo-Control Error: `2—Actuator Penalty: `1

This combination was not found in the literature. The solution is not unique, as with
`1 − `1, but solvers are expected to be much slower since the problem is quadratic as
opposed to linear. The same problems with unbalanced actuator values as with `1 − `1
are likely to occur. These two arguments combined lead to the conclusion to not further
investigate this choice of norms.

Pseudo-Control Error: `2—Actuator Penalty: `2

This is the classic bound-constrained least-squares problem. It has been used with
success in many works on control allocation dating back to 1994 [9,11,16,20,32]. It is a good
candidate since its unconstrained version, Equation (5) (with the weighted generalized
inverse as its analytical solution), has been shown to provide satisfactory solutions when
actuator limits are not exceeded and it is widely used in commercial and academic aircraft
and UAV control packages (PX4, The Paparazzi Autopilot, QCAT [33]). A comparison of
solvers and approximations follows.

To approximate the solution of (7), a redistributed generalized inverse may be used,
which can be seen as a variation on daisy chaining with an online partitioning of B: when the
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unconstrained solution u∗unc (computed via a generalized inverse) is not in U , then the vio-
lating actuators are fixed at their minimum or maximum values, yielding u1. Those columns
are removed from B and the remaining pseudo-control νre f − Bu1 is re-allocated over the
remaining columns B2. The generalized inverses of Bk resulting from dropping columns
can be efficiently computed from the full B+

Wu
using the Sherman–Morrison–Woodbury

formula [34]. Despite being used in works as recently as 2023 [35], it has been shown to
provide unsatisfactory solutions that are sometimes far away from the optimum [20] or
jump to very different allocation solutions with just small changes in νre f .

A fixed-point iteration scheme has been proven to converge to the solution [36], but
has been found to be slow in practice [18,20].

Accurately solving this allocation problem online has only been considered computa-
tionally tractable with active-set algorithms since the early 2000s [20]. Contrary to [37], it
has been used successfully in embedded UAV systems (e.g., [11]), albeit not for platforms
with many actuators.

Alternatively, interior-point (IP) algorithms can be used to solve this allocation prob-
lem, which may have benefits for larger platforms, as their iterations scale better than linear
with the number of variables [38]. When no prior knowledge on the solution is available
(the solvers are ‘cold-started’), then the cross-over point where IP starts to be faster than
active-set seems to be around n = 15 [18]. When the solution to a similar problem is known
(for instance, from an earlier sample), then active-set can be readily warm-started, which
may improve the convergence speed drastically. Warm-starting interior-point methods is
difficult, as explained in the `1-`1 case.

The authors recommend more research on suboptimal control allocation, where only
a few iterations of active-set are performed at every discrete sample. This may have an
effect similar to a low-pass filter, as every iteration guarantees a more optimal iterate. If
the rate of change in the pseudo-control references νre f remains small, then this delay may
be negligible for some choice of iteration limit, thereby drastically improving the solution
time upper bound.

Pseudo-Control Error: `2—Actuator Penalty: `∞

Not found in the literature. Load-balancing can be achieved with the `∞ norm as seen
above, but also with the `2 norm. Combining the two does not seem beneficial over `2 − `2,
as quadratic solvers need to be used regardless of the `∞ norm, which does not help to
improve the speed of the algorithm.

Pseudo-Control Error: `∞—Actuator Penalty: `1

Not found in the literature. The same problems as `2 − `1 are expected, as it will lead
to a larger system than `1− `1. Therefore, it was chosen to not further investigate the choice
of norms.

Pseudo-Control Error: `∞—Actuator Penalty: `2

Also not found in the literature, with equally uncertain advantages over `1 − `2. Ad-
ditionally, reformulating `∞ norms to be solved with conventional optimization solvers
always results in larger problems [15]. These two arguments combined lead to the conclu-
sion to not further investigate the choice of norms.

Pseudo-Control Error: `∞—Actuator Penalty: `∞

Minimizing the supremum norm `∞ to balance control effort has been theorized in
the literature for use in control [39] and, more specifically, also control allocation [15],
where it was reformulated as a linear program in 4n + 4d + 2 variables and 2n + 3d linear
equality constraints. The reader is referred to that work for the definitions of the linear
program variables.
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This problem is thus larger, and solving it is slower than `1 − `∞, whereas the authors
of [15] note “no significant differences” when comparing the quality of the solutions `1− `∞
and `∞ − `∞; however, they did not provide quantitative analysis.

3.4. Dynamic Control Allocation

If all actuators have similar dynamics (for instance, in a multi-rotor UAV), then the
outer loop controller can simply take these into account when computing the pseudo-
controls, and we can maintain the algebraic nature of the control allocation as shown above.
An example of this for a quadrotor is the incremental scheme proposed in [11]. Sometimes,
it may be preferred to use different actuators for different parts of the pseudo-control
frequency spectrum: fast or effective actuators to respond quickly to transients, and slower
but more energy-efficient actuators during steady-state.

This may be achieved by adding a derivative penalty term to the objective of (7), with a
lower penalty for actuators to be used in higher-frequency transients. Conversely, the desired
ud can be chosen as some (unconstrained) command that is optimal in steady-state (i.e., when
νre f has been reached by the actuators). For instance, [8] recommends us = B+

Wus
νre f , with a

steady-state weighing matrix Wus that deprioritizes inefficient actuators.
If no saturation occurs, then νre f is always achieved, and [8] shows that the allocation

solution is given by a first-order lag u∗(tk) = Fu(tk−1) + Gνre f (tk). If the actuators possess
different bandwidths, then the above methods can be used together with lead-lag compen-
sation to match their bandwidths while still ensuring saturation is handled correctly [8].
The authors of [40] show how first-order actuator dynamics can be directly included in
inversion-based controllers by choosing a higher-order derivative of the plant output as
the definition of ν. While this explicitly compensates for the actuator dynamics, how this
may interplay with control allocation methods or actuator saturation was not investigated.

For more complex actuator dynamics, it is an option to use model predictive control
allocation [41], but it requires far more computational resources.

3.5. Nonlinear Control Allocation

If there are nonlinearities in the effect of the actuators on the plant, or even couplings
between the actuators, then a control-affine form cannot be used. The system to be solved
for δ is then νre f = g(x, δ). Of course, a direct nonlinear solution of the system is possible,
whereas second-order solvers such as sequential quadratic programming or the Levenberg–
Marquardt algorithm are preferred if `2 norms are used, and the Hessian of g(x, δ) is
cheap to compute [42]. This direct approach is also used in the continued work on the
dual-axis thrust vectoring rotor platform of [43]. However, the resulting program may
be nonconvex and therefore susceptible to local minima and generally slow to solve [4].
Offline nonlinear optimization has been used to approximate the allocation problem with a
piecewise-linear function. Nevertheless, when applied to vehicle yaw control in [44], the
piecewise-linear function required an order of 106 bytes for storage, even when allowing for
a ≈ 20% approximation error and only considering four actuators and four state variables.

Linearized Control Allocation

Modeling g(x, δ) as a piecewise-linear function in δ has gained some popularity in
recent years, as it can be solved exactly via mixed-integer linear or quadratic programs
(MILP/MIQP). The introduced integer variables allow the branch-and-bound solver to
select which segment of the piecewise-linear function governs g(x, δ) at the solution.
It has been applied to re-entry vehicles and UAVs, yielding more accurate control in
simulation, but without meeting real-time constraints [45], or without mentioning them [10].
Application to autonomous underwater vehicles, at a low update rate of 10 Hz, has been
successful [5].
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If the derivatives of the nonlinear model can be evaluated cheaply, then a similar
on-line approach exists, using a local affine model of the actuators [46] to return to the
control-affine form discussed in Section 2.1:

v = g(x, δ0) +

(
∂g
∂δ

)
x,δ0

· (δ− δ0) (11)

Here,
(

∂g
∂δ

)
x,δ0

denotes the Jacobian of the control effectiveness g(x, δ0) in δ at the

current operating point (x, δ0), which also captures coupling between the actuators (i.e.,
if the deflection of one actuator influences the effectiveness of another). However, if the
solution is far from the operating point or the nonlinearities are large, linearization errors
may become significant. The authors of [42] show that linearization errors can dominate
other errors in the allocation by a factor of five, when controlling pitch maneuvers near the
stall region of a high-performance aircraft with elevator and leading-edge slats. In addition,
for the yaw stabilization of road vehicles, large errors were shown in [47].

Larger allocation errors seem to occur when the effect of an actuator on a pseudo-
control is non-monotonous, as the derivative term may vanish or switch sign. An example
of such actuators are tires [48], or aerodynamic surfaces that can stall. Indeed, in road
vehicle control, linear(ized) control allocation seems widely rejected [44,47] and most
research focuses on nonlinear optimization using nonlinear tire models.

Nevertheless, the linearized approach is especially useful in incremental control sys-
tems, where a command increment ∆δ = δ− δ0 is sought in response to a pseudo-control
delta ∆νre f , eliminating the dependency on g(x, δ0). An early approach was presented for
a marine vessel in [4], where finite differences were used to generate the gradients/Hessian
and the result was identified as a sequential quadratic program of the original nonlinear
problem, where each iteration is performed at one sample. The authors of [9] used an
onboard spline model to rapidly compute accurate derivatives to incrementally control
the challenging Lockheed ICE research object. However, motion restrictions and priority-
scheduling had to be placed on the most nonlinear actuators to achieve global convergence
with the linearized solver. A nearly identical scheme was presented in [35], where the
authors instead used piecewise-linear functions as an approximation of g(x, δ), but avoided
the MILP by not enabling switching to different pieces during the solution.

3.6. Summary Table

Table 1 shows a brief overview of the capabilities and limitations of the above listed methods.

Table 1. Summary of the features of the investigated methods.

Method System Model Features and Limitations

Ganging Control-affine Every δi may affect one axis only, but for those systems guaranteed to find optimal solution.
Very limited application. Redundant actuators move together.

Daisy Chaining Control-affine Allows for setting a static hierarchy of redundant actuators.
Generalized Inverse Control-affine and equal bandwidth actuators Allows for prioritization of actuators. Cannot deal with saturation. Single inverse operation,

so fast computation. Unable to find a solution that satisfies vre f = Bu in cases where actuator
saturation takes place.

Linear Optimal CA Control-affine and equal bandwidth actuators Allows for prioritization of actuators, and of control objectives when vre f = Bu has no so-
lution due to actuator limits. If a solution vre f = Bu exists, it is found even in cases with
saturating actuators. On embedded microprocessors, generally only real-time capable for
smaller actuator counts (n < 15), `1 objective norms, or with suboptimal termination.

Dynamic CA [8] Control-affine Like constrained optimization, but allows for different actuator prioritization for transients.
Model Predictive
CA

Depends on solver (linear or nonlinear) Can deal with more complex models and constraints, but requires more computation time.

Direct Nonlinear
CA

Nonlinear including coupled actuators Generally slow to solve, especially for nonconvex problems.

Piecewise-linear CA Linearized a priori in segments Mixed-integer programming required. Can be faster than direct nonlinear, but still difficult
to meet real-time demands.

Locally Affine CA Linearized online Solvable with the same algorithms as linear optimal CA. Linearization error may be large
depending on the nonlinearities and the rate of change in the pseudo-control input.
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4. Conclusions

Control allocation is required in many control systems, such that a considerable body
of research exists. Closed-form solutions such as ganging and generalized inverses are used
frequently, but require the dynamics of actuators to be fast and their effect on the plant to be
linear, uncoupled, or even axis-separated. Furthermore, any static inversion-based control
allocation scheme is unable to exploit the full capabilities (the AMS) of a set of actuators due
to not considering their limits. Next to exploiting the full capabilities of existing platforms,
some novel actuator design methodologies for VTOL aircraft configurations [49] rely on
matching the AMS with a required moment set. For this, it would be instrumental to be
able to actually achieve that AMS with the allocation strategy used.

For linear and fast actuators, it has been shown that redistributing the remaining
control effort from saturated actuators is possible with iterative methods. Formulating
a quadratic minimization is most common in the literature, and active-set solvers seem
most popular and even real-time capable in some cases with small actuator counts. The
redistributed generalized inverse approximation fails to provide results that are always
close to the true solution, but research in suboptimal active-set solvers is lacking and may be
very effective, especially if using ‘warm-starts’, with information from a previous sample.

Next to the Euclidean norm `2, linear `1 or supremum `∞ norms are also possible. In a
lexicographic minimization problem, where the pseudo-control error is prioritized over
actuator balancing, using the `1 norm for the actuator balancing term is not sufficient for
balancing, especially in conjunction with a simplex solver. Combining `2 for the pseudo-
control error with norms other than `2 is also not recommended since the solver has to be
quadratic and dense anyway, and so using `2 for the actuator balancing term will give the
best results. Using `1 or `∞ for the pseudo-control error term and `2 for the balancing may
result in solvers that can be optimized using the sparsity of the diagonal Hessian of the
balancing term, and have not been researched to the authors’ knowledge.

When the speed of the actuator dynamics is not negligible, then methods are available
that prioritize the faster or more effective actuators in the transient phase and can be solved
with the same algorithms. For mild nonlinearities common in some aerial and undersea
vehicles, incremental methods have been proposed that make use of a local linearization and
are therefore as real-time capable as linear optimization methods. However, these methods
struggle to find accurate solutions when the effect of an actuator is a non-monotonous
function over its range or depends heavily on the state of other actuators. In these cases,
nonlinear solvers may be required, which are often not usable in real-time digital control.
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