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Abstract

The increasing computational costs of training deep
learning models have drawn more and more at-
tention towards more power-efficient alternatives
such as spiking neural networks (SNNs). SNNs
are an artificial neural network that mimics the
brain’s way of processing information. These mod-
els can be even more power-efficient when run
on specialized hardware like digital neuromorphic
chips. These chips are designed to handle the
unique processing needs of SNNs like sparse and
event-driven computations. A lot of the state-of-
the-art performance of SNNs in recent research has
been achieved through supervised learning models
that leverage intricate error backpropagation tech-
niques. These models impose specific constraints
on the network and rely on continuous time to
facilitate the backpropagation process. However,
this fix imposes a new challenge when converting
these mechanisms on a neuromorphic chip. Be-
cause time is discrete on hardware numerical er-
rors can be introduced as we can not calculate the
infinitely precise value of variables depending on
time. This work proposes a time discretization
technique that allows for fast and stable backprop-
agation and analyses the effects of it on the effi-
ciency of the SNN. Specifically, we look at spar-
sity, latency, and accuracy as the main factors that
explain the power efficiency of the model. The ex-
periments show that choosing a suitable time step
size can improve sparsity while maintaining a high
level of accuracy. However, too large values affect
the network’s ability to learn.

1 Introduction
In recent years, tremendous technological achievements have
been seen in deep learning, with advancements in large lan-
guage models such as GPT-4 [1] providing state-of-the-art
results. On the other hand, with such fast advancement of
technology in deep learning, the computational costs also in-
creased to alarming levels. Consequently, it becomes increas-
ingly important to make accurate models power efficient. For
example, GPT-3 is estimated to consume roughly 190.000
kWh to train [2]. In contrast, the human brain operates within
12-20W of power. This is why a good place to look when it
comes to efficiency is the human brain.

Spiking neural networks(SNNs) are artificial neural net-
works that more closely mimic natural neural networks. They
incorporate into their model not only neuronal and synaptic
states but also the concept of time. Spiking neurons han-
dle information using distinct spatiotemporal events known as
spikes, rather than continuous real-number values [3]. While
SNNs lag on accuracy when compared to deep neural net-
works, they have proven to be more energy-efficient [4] espe-
cially when implemented on digital neuromorphic hardware
such as Intel Loihi [5], IBM TrueNorth [6], BrainscaleS-2 [7]
etc.

On neuromorphic hardware, energy is consumed when a
signal is generated [8]. Therefore, the power consumption
of neuromorphic devices is closely related to the number of
spikes produced. This addresses the energy burden as the
need for fewer spikes reduces the frequency of memory ac-
cesses [8] making sparsity of activations an important fac-
tor in analyzing the efficiency of an SNN model. However,
sparse networks that only fire a small number of spikes also
transmit less information creating a trade-off between energy
consumption and accuracy that needs to be examined.

One approach to encoding information in a spiking neural
network that allows for sparse networks is Time-to-first-spike
(TTFS). Inspired by the human visual system it is based on
the idea that the first spikes of neurons must carry most of
the information about input stimuli. In the Time-To-First-
Spike (TTFS) coding scheme, a neuron’s response to a stim-
ulus is represented by the time it takes to emit its first spike
after being stimulated. Recent research has shown that time-
to-first-spike can achieve competitive results with great effi-
ciency [9]. TTFS emphasizes the significance of individual
spikes compared to rate-coded inputs, suggesting that fewer
spikes are needed to achieve similar results.

Using inputs that encode information based on spike tim-
ing (latency-coded inputs) introduces another metric that
helps assess the efficiency of spiking neural networks: pre-
diction latency. Prediction latency refers to the ability of the
SNN to make a fast prediction. This metric is crucial because
low latency is highly desirable in various SNN applications
and has been thoroughly studied in recent research [10] [11].
Minimizing the latency of an SNN can enhance its perfor-
mance in real-time processing tasks. An SNN can achieve
faster decision-making with earlier spikes, reducing energy
consumption.

The standard TTFS encoding has one fundamental limi-
tation. It does not allow multiple spikes per neuron. An
increase in information gain and performance would be ex-
pected by relaxing this constraint, which has been proven in
recent research [12] [13].

When examining various Spiking Neural Network models,
it becomes apparent that unsupervised learning rules, such as
Spike Time Dependent Plasticity[14], can be directly imple-
mented on neuromorphic hardware. This allows for biologi-
cally plausible and energy-efficient training. However, unsu-
pervised learning algorithms tend to underperform compared
to the results obtained through supervised learning meth-
ods. State-of-the-art performance with SNNs is currently
achieved by employing various error backpropagation tech-
niques adapted from deep learning such as error backprop-
agation through spikes, backpropagation through time, [15]
[9] [13] [12] etc.

Models such as BATS [12] or Fast&Deep [9] rely on spe-
cific assumptions that allow them to find exact values for the
timing of spikes. They introduce a novel approach to back-
propagating errors that achieves state-of-the-art results. How-
ever, since these systems depend on precise time calculations
in a continuous space, it is unclear how easily they can be
translated to digital neuromorphic hardware to enhance their
power efficiency. This is because digital neuromorphic chips
manage internal communication by leveraging the discrete



property of time, which conflicts with the nature of SNN
models as BATS. As a result, we are interested in analyzing
the effects of time discretization on these models.

In this research, we discretize the simulation time of a con-
tinuous time SNN model from the literature that leverages
backpropagation through spikes. This creates a hardware-
aware training process that can be used in the future to es-
timate the inference performance on neuromorphic hardware
of different software-trained SNN models. More specifically
we will answer the question ”What is the impact of time dis-
cretization on the efficiency of an unconstrained SNN?” with
the sub-questions:

• What is the impact of changing the time step on the ac-
curacy of the SNN?

• What is the impact of changing the time step on the spar-
sity of the SNN?

• What is the impact of changing the time step on the la-
tency of the SNN?

The rest of the report is structured as follows: Chapter 2
describes the BATS model and key equations that explain
the training or inference process. Chapter 3 presents our ap-
proach to time discretization, plus the approach to backprop-
agation and the evaluation metrics. Chapter 4 explains the
experimental setup and the results obtained for each dataset.
In Chapter 5 an extensive analysis of the results is conducted
and some conclusions are drawn regarding the behaviour of
the network. Chapter 6 concludes the report and some direc-
tions for future work on this topic. Chapter 7 discusses ethical
and societal concerns regarding the research conducted.

2 Methodology
In this section, we will outline the background required for
the topic including the model used, some terminology, nota-
tions, and specifically, key equations that will be important to
understanding the underlying mechanics of this SNN.

2.1 BATS model
This research continues over the BATS model[12]. This
model has been chosen for two key reasons: its underlying
ideology and its technical advantages. Firstly, BATS is a re-
cent SNN model that calculates a closed-form solution for the
timing of spikes, which is the main challenge of this research.
Secondly, the implementation of this model has been written
from scratch using CuPy[16] which allows for flexibility in
the implementation, quick access to the memory and implicit
parallelization due to CUDA kernels, making it an already
efficient model.

2.2 Neuron mechanism
In BATS a CuBa (Current-Based) LIF (Leaky-Integrate-and-
Fire) neuron with a soft reset of the membrane potential is
used. The membrane potential represents the neuron’s current
state that changes over time based on incoming signals. The
value of the membrane potential follows a system of linear
ordinary differential equations :

du(l,j)

dt
= −1

τ
u(l,j)(t) + g(l,j)(t)− ϑδ

(
u(l,j)(t)− ϑ

)
(1)
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δ(x) =

{
+∞ if x = 0

0 otherwise
(3)

We denote u(l,j) as the membrane potential of the j-th neu-
ron in the layer. n(l,j) represents the number of spikes from
the j-th neuron in layer l and N l represents the number of
neurons in the l-th layer. g(l,j) represents the post-synaptic
effect. Each spike received by the neuron n(l,j) implies an
increase in g(l,j) by a value w(l)

i,j . δ(x) is the Dirac delta func-

tion that satisfies
∫ +∞
−∞ δ(x) dx = 1. Throughout this paper,

we will refer to post-synaptic and pre-synaptic which refer to
connections to the adjacent layers. We denote by τ and τs the
membrane and synaptic time constants that control the decay
over time of the membrane potential and the post-synaptic
current respectively.

The spike response model(SRM) [3] is a generalization of
the LIF neuron that defines the membrane potential as a lin-
ear sum of postsynaptic potentials caused by spike arrivals.
The membrane potential is defined as a function of time as
follows:
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By integrating we find the following post-synaptic poten-
tial (PSP) and refractory kernels (ϵ(t) respectively η(t)). PSP
defines the response of a neuron to a stimulus and the refrac-
tory kernel defines the reset behaviour.
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(
−t

τ

)
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Where theta is the Heavyside step function.

Θ(x) :=

{
1 if x > 0

0 otherwise
(7)

By taking τ = 2τs the BATS model shows that the spike
time of the neurons must satisfy the following polynomial :

0 = −a
(l,j)
k exp

(
−
t
(l,j)
k

τ

)2

+b
(l,j)
k exp

(
−
t
(l,j)
k

τ

)
−c

(l,j)
k

Where:

a
(l,j)
k =

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)

z

)
exp

(
t
(l−1,i)
z

τs

)



b
(l,j)
k =

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)

z

)

exp

(
t
(l−1,i)
z

τ

)
− ϑ

τ

n(l,j)∑
z=1

Θ
(
t
(l,j)
k − t(l,j)z

)
exp

(
t
(l,j)
z

τ

)

c
(l,j)
k =

ϑ

τ

Which solves to:

t
(l,j)
k = τ ln

[
2a

(l,j)
k

b
(l,j)
k + x

(l,j)
k

]
(8)

Where

x
(l,j)
k =

√(
b
(l,j)
k

)2
− 4a

(l,j)
k c

(l,j)
k (9)

2.3 Backpropagation Derivations
To calculate the loss we define the following function:

L :=
1

2

N(o)∑
j=1

(
yj − n(o,j)

)2
(10)

Where yj is the spike count target. The goal is to mini-
mize the difference between the output spikes and their cor-
responding targets.

Having the closed-form solution for a spike time allows
us to calculate all the partial derivatives necessary for proper
backpropagation through spikes. First, we look at the total
weight change between two neurons. We define δ

(l,j)
k as the

error received by spike k of the neuron j in layer l. The
change of weight between the pre-synaptic neuron i and the
post-synaptic neuron j of the layer l is defined as a sum of all
errors applied to their corresponding spike derivatives:
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Is obtained by calculating the partial derivative of equation 8
with respect to the weight w(l)

i,j and:
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Therefore the weight w(l)
i,j can be updated using the gradi-

ent descent algorithm : w(l)
i,j = w

(l)
i,j − λ∆w

(l)
i,j

To derive the spike error δ
(l,j)
k BATS splits it into two

different error sources: inter-neuron and intra-neuron errors.
Inter-neuron errors are generated from the dependencies be-
tween post-synaptic and pre-synaptic spikes because of the
synaptic connections. Intra-neuron errors are generated due
to the membrane potential reset mechanism after firing.
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Where ϕ((l,j))
k is inter-neuron error and µ

(l,j)
k represents intra-

neuron error.
The rest of the derivation of the closed form error has

been omitted for conciseness. For more information on the
specifics of the derivations consult the BATS paper [12].
However, note that the inter-neuron error is different for the
output layer. More specifically:

ϕ
(o,j)
k :=

∂L
∂n(o,j)

= yj − n(o,j)

3 Adapting BATS to discrete time
This section describes our contribution to the model includ-
ing the approach to time discretization, the changes to the
backpropagation method and the evaluation metrics.

3.1 Time discretization
As shown in Equation 8 the spiking time has a closed-form
solution which allows us to calculate the precise spike timing.
Because of that in the implementation of the model, an event-
driven mechanism is used: computations happen only when a
spike is generated from a neuron. This allows the network to
have low latency and improves its power efficiency. However,
due to the requirement to derive the precise spike timing mov-
ing this model to a neuromorphic chip can present increased
numerical errors. We will maintain the event-driven approach
to adapt the model to discrete-time and delay the spike tim-
ings to match the discrete times based on a set step size. We
choose this approach for two reasons. Firstly, adhering to the
event-driven approach facilitates efficient training of diverse
networks with adaptable step sizes. Secondly, modifying the
fundamental methodology of the model can result in network
instability and the introduction of errors, which complicate
the traceability of time discretization effects. This consis-
tency with the original model allows isolating the impact of
time discretization.

Assume t(l,j)k the time of the k-th spike of neuron j-th from
layer l. The discretized time spike equivalent to t

(l,j)
k has the

following property :

0 ≡ t̃
(l,j)
k (mod ∆t)



Where ∆t is the discrete time step.
In a discrete environment, spikes cannot occur before their

corresponding continuous events. While a neuron might miss
a spike at the exact continuous time, it can fire it after a delay
that aligns with the discrete spike timing. Because of that
t̃
(l,j)
k ≥ t

(l,j)
k . More explicitly:

t̃
(l,j)
k = t

(l,j)
k +∆t−mod

(
t
(l,j)
k ,∆t

)
Consider the spike time discretizing function

d(t
(l,j)
k ) = t

(l,j)
k +∆t−mod

(
t
(l,j)
k ,∆t

)
= t̃

(l,j)
k (14)

This function is non-differentiable with respect to t
(l,j)
k which

means the derivatives with respect to the spike timing in
the original BATS model should be recalculated for the dis-
crete spike times. To avoid recalculation we can use meth-
ods from deep learning that allow backpropagation on a non-
differentiable function.

3.2 Straight-Through-Estimator
In deep learning there has been a lot of research done on dif-
ferent ways to counter the non-derivability of activation func-
tions when doing backpropagation either through surrogate
gradients or different biased estimators [17] [18]. For our ex-
periments, which utilize a network with one hidden layer, a
straightforward and effective method is to employ a straight-
through estimator[18]. The straight-through estimator is a bi-
ased estimator that has been shown to work extremely effi-
ciently on networks with a small number of layers [18]. We
will use it to approximate the non-differentiable time spike
discretizing function, Equation 14, as an identity function
during backpropagation.

∂t̃
(l,j)
k

∂t
(l,j)
k

≈ 1 (15)
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k

Equation 15 simplifies this to :

∂L
∂t

(l,j)
k

≈ ∂L
∂t̃

(l,j)
k

(16)

The estimator will be applied as follows. First, the dis-
crete spike times are used in the forward pass to calculate the
output and propagate the post-synaptic effects. During the
backwards pass, the non-discretized spike times are utilized
to compute the gradients.

3.3 Evaluation Metrics
As stated in the introduction the main focus of this research is
to analyse the effects of time discretization on the efficiency
of the model presented in 2.

The first metric is accuracy. While we look at the power
efficiency of a model we can not overlook the change in ac-
curacy as we want to preserve state-of-the-art performance as
we want the resulting SNNs to be usable. Accuracy will be

measured using a test dataset that will be separate from the
training dataset since we want to avoid overfitting on a spe-
cific set and we want to test the inference power of the model
on data that it has not processed before.

The second metric is sparsity. Sparsity in the context of a
neural network directly correlates to how many inactive neu-
rons are in the network. When it comes to efficiency in an
SNN we know computations happen when spikes happen.
Because of that by achieving high sparsity and maintaining
a high level of accuracy, we can perform fewer calculations
while having similar performance. For our research, we will
look at the average spike count per neuron in the hidden and
output layers as a measure of sparsity, with a lower spike
count being more beneficial. Average spike count is calcu-
lated as spikes per neuron

number of neurons in layer .
The last metric is prediction latency. Prediction latency

refers to the network’s ability to make predictions quickly.
Latency is important for power efficiency for several rea-
sons. Firstly, resolving a task more quickly allows the net-
work to enter an idle state sooner conserving power. Sec-
ondly, since the model used for this research relies on tem-
poral coding, low latency allows for transmitting important
information through earlier spikes. This can reduce the need
for continued spiking to reinforce the signal and will increase
sparsity. We calculate the prediction latency for the true class
as number of spikes for the output label

target count of spikes

4 Experimental Setup and Results
The following section outlines the experimental setup, the
metrics, and how the results were gathered. After each
dataset, there will be a discussion on the results.

4.1 Experimental Setup
Several experiments have been conducted to evaluate the er-
rors introduced by time discretization, focusing on the train-
ing process. The specific hyperparameters have been tuned
in the BATS paper [12] and have not been altered for two
reasons. Firstly this approach can provide a fair compari-
son between the discrete time model and the original. Sec-
ondly, it was observed through experiments that the network
is extremely sensible to hyperparameter changes specifically
in the target spike count, the distribution of the weight initial-
ization and the output thresholds for each layer.

The ∆t choices for the experiment have been selected con-
sidering the simulation time of MNIST datasets which in our
case is 0.2 seconds, with all input spikes being in range [0,
0.1](s). For every metric, the results will be averaged over
the batches.

4.2 MNIST
The first set of experiments has been performed on the
MNIST[19] dataset as it is one of the most commonly used
image classification tasks for benchmarking machine learning
models. The MNIST dataset contains 60000 training sam-
ples and 10000 test samples. All the experiments consisted
of a fully connected SNN with a layer configuration of 784-
800-10 neurons. A mini-batch gradient descent approach was
used with a training batch size of 50 and a test batch size of



100. The learning rate for the gradient descent has been set to
0.003, and the Adam optimizer has been used to perform the
gradient descent. The target spike count for the true class has
been set to 15, and for the false class, 3. τs has been set to
0.13 for both hidden and output layers and the threshold to 0.2
and 1.3 for the output layer and the hidden layer respectively.
The weight distribution is U(-1, 1) as in the original paper.
Five experiments were conducted over 10 epochs to evaluate
sparsity and accuracy. Three experiments with 2 epochs were
performed to measure latency, given the stability of the net-
work. The average and standard deviation of the results are
presented in Figures 1 - 4.

Figure 1: Accuracy% on training data for different ∆t on the
MNIST dataset

Figure 2: Accuracy% on test data for different ∆t on the MNIST
dataset

For a time step (∆t) size value larger or equal to 0.009 the
network is not learning, and accuracy constantly decreases
over epochs. On the contrary, for a ∆t value below 0.008, ac-
curacy remains stable for training and test batches, but spar-
sity is affected. This result hints that choosing a suitable
timestep size can increase sparsity while maintaining a high
accuracy. Regarding latency, the prediction confidence for
the network trained using ∆t = 0.0005 is dominant, implying
that the latency is higher with a larger timestep.

Figure 3: Spike count in hidden layer for different ∆t on the MNIST
dataset

Figure 4: Prediction confidence over time for different ∆t on the
MNIST dataset

4.3 EMNIST

Introduced in 2017 EMNIST[20] is an extension of MNIST
that includes a broader range of handwritten characters
adding letters totalling 62 different classes. We will be using
Balanced EMNIST which contains around 131000 samples.

To train a network for EMNIST, we will use the same hy-
perparameter values as for MNIST, as both datasets have been
similarly used in BATS. This is logical given their similari-
ties, with the primary difference being the input processing
and the samples available in each dataset. The network ar-
chitectures differ in the number of output layer neurons as
EMNIST has more classes than MNIST. For the following ex-
periments, we have also integrated the time continuous BATS
model tagged as ’DT = 0’ in the Figures.

Figure 6 shows that the continuous time network has the
highest accuracy on training and test datasets. The differ-
ence between the best-performing and worst-performing ∆t
that converges is of ≈ 2% accuracy. However, it is not the
most sparse network as shown in Figures 7. For ∆t values
larger than 0.008 the network starts losing in accuracy but
does learn, in contrast to the previous dataset. Prediction la-
tency does not seem to be affected by the time step size.



Figure 5: Accuracy% on training data for different ∆t on the EM-
NIST dataset

Figure 6: Accuracy% on test data for different ∆t on the EMNIST
dataset

Figure 7: Spike count in hidden layer for different ∆t on the EM-
NIST dataset

4.4 Fashion MNIST
The last dataset used is Fashion MNIST[21], a dataset that
contains 28x28 grayscale images of 70,000 fashion products
from 10 categories. Since this dataset represents a more dif-
ficult image recognition task, a more complex network ar-

Figure 8: Prediction confidence over time for different ∆t on the
EMNIST dataset

chitecture has been proposed in BATS. We will be using a
784x400x400x10 network. The training batch size is 5 and
the test batch size is 100. The learning rate has been set to
0.005, with a decay factor of 0.5 every 10 epochs. The target
spike count for the true class has been set to 15, and for the
false class, 3. τs has been set to 0.13 for both the hidden lay-
ers and output layer. The threshold has been set to 0.13 and
0.45 for the hidden layers and 0.7 for the output layer. The
weight distribution is U(-1, 1) as in the original paper. Two
experiments were conducted over 10 epochs to evaluate accu-
racy, sparsity and latency. The average and standard deviation
of the results are presented in Figures 9 - 12.

Figure 9: Accuracy% on training data for different ∆t on the EM-
NIST dataset

The results indicate that the network accuracy decreases for
∆t = 0.005 contrary to the other two datasets. The highest
test accuracy is achieved for ∆t = 0.003, but the difference
between continuous BATS and this is negligible as seen from
the standard deviation. Prediction latency seems to have a
linear decrease with the time step size.

5 Discussion
The 3 datasets chosen are similar in the preprocessing of data
and the input spikes which allows for a fair comparison be-



Figure 10: Accuracy% on test data for different ∆t on the Fashion
MNIST dataset

Figure 11: Spike count in hidden layer for different ∆t on the Fash-
ion MNIST dataset

Figure 12: Prediction confidence over time for different ∆t on the
Fashion MNIST dataset

tween the performance of our networks on each of them.
EMNIST is a more difficult version of MNIST that is be-
ing solved with the same network architecture and similar
parameters. This allows us to generalize behaviour seen in
the MNIST dataset. Due to its difficulty, Fashion MNIST is
solved using a different network architecture with 2 hidden

layers. This can be useful for our experiments as we would
like to inspect the effects of multiple layers on the STE ap-
proach.

The initial hypothesis that sparsity can be improved by
choosing a suitable timestep while not sacrificing accuracy
has been verified by Figures 2 3 for MNIST, 6 7 for EMNIST
and 10 11 for Fashion MNIST. This result suggests that power
efficiency can be improved by setting a suitable timestep for
the training process.

To further emphasize the sparsity-accuracy trade-off Fig-
ure 13 plots the accuracy of SNNs trained on different ∆t val-
ues on the EMNIST dataset over the total average spike count
in the hidden and output layers. This contains the points that
form the Pareto Frontier, which, are points that do not have
a better solution in both aspects. This plot does not answer
the sparsity-accuracy trade-off as different settings can have
different needs for the required spike count or lower bound
of accepted accuracy. However, it provides a basis for our
hypothesis that choosing a suitable timestep can improve or
decrease this trade-off.

Figure 13: Accuracy % on the test set for EMNIST dataset over the
inverse of the average total(hidden and output layers) spike count.
The red line crosses the points on the Pareto Frontier.

On the other hand, setting the value of ∆t too high, can
lead to a decrease in accuracy making the network unable to
learn, shown in Figures 1, 9. This can happen due to the
following reasons. Firstly, the larger the timestep size the
later the spikes happen and there is an information loss for
spikes close to the end of the simulation time. This informa-
tion loss depends on the behaviour of the network and how
many spikes are close to the end of the time window. How-
ever, it should increase as the timestep is larger, for a highly
populated input with late spikes. Secondly, the Straight-
Through Estimator argues that the difference between con-
tinuous spikes and their corresponding discrete spike times is
small. However, this difference increases on average as the
timestep increases and numerical errors are introduced in the
gradients that do not allow our network to learn. This hap-
pens because the delta of the gradients is inaccurate, leading
to inconsistent weight changes in the network. This hypoth-
esis can be verified by looking at the results for the Fashion
MNIST dataset. The Straight-Through Estimator is biased.



Figure 14: The spiking activity for an SNN trained on the Fashion
MNIST dataset using ∆t = 0.003 inferencing on one input image.
In the output layer, the red horizontal dotted line marks the true label
and the red dots mark continuous spikes while the blue ones mark
discrete spikes.

This suggests that the numerical errors increase as we intro-
duce multiple layers in the network. This explains why for
the Fashion MNIST dataset the upper bound for ∆t where the
network can learn is lower. Even if the spiking times in the in-
put are in the same range as for the other two datasets and the
behaviour in the hidden layers is similar (shown in Figures 14
15), the network is not able to learn for ∆t = 0.005.

In all the experiments latency seems to have a direct corre-
lation to the timestep size, as the bigger the timestep the more
it takes for the network to reach a certain level of accuracy.

6 Conclusions and Future Work
This report proposes a hardware-aware training process
through time discretization and analyses its effects on the
power efficiency of a continuous time SNN model. More
specifically we look at the BATS model [12] and modify
its spike timings to match a discrete time step size. Us-
ing the Straight-through estimator we present a quick fix for
the nonderivability of the time discretization function to pass
the backpropagation step. An extensive analysis of SNNs
trained with different time step size (∆t) values has been con-
ducted using three image recognition datasets: MNIST, EM-
NIST and Fashion MNIST. The analysis shows that choosing
a suitable time step can lead to more sparse networks that
achieve a similar level of accuracy as the continuous time
model. However, the time step size has an upper bound re-
garding its ability to converge to a high accuracy and choos-

Figure 15: The spiking activity for an SNN trained on the Fashion
MNIST dataset using ∆t = 0.005 inferencing on one input image.

ing a large value can lead to numerical errors. This behaviour
has been explained through issues with the biased estimator.
This study represents a starting step in bridging the gap be-
tween software-implemented models and their counterparts
on hardware devices. Below are some recommendations on
the next steps regarding this topic.

Firstly, the datasets used in this analysis are all static and
do not present a temporal dimension. Inspecting the perfor-
mance of networks trained on different time step sizes for
such a dataset would be useful. The SNN can not perform
the task easily especially as the timestep size increases, be-
cause such datasets have intrinsic temporal patterns that are
hard to detect. Some work has already been done to adapt
the Spiking Heidelberg Digits [22] dataset to the discretized
BATS framework within the project repository. However, a
complex hyperparameter tuning process is required and due
to its increasing difficulty, some data augmentation is recom-
mended. Secondly, as explained in the Discussion section,
some numerical errors are introduced due to the backprop-
agation approach. This implies that to enhance the perfor-
mance of an event-driven discrete time model as the one used
in this paper an extensive analysis on the impact of the back-
propagation method needs to be conducted. Due to the errors
introduced by the backpropagation, the effects of time dis-
cretization can not be fully isolated. Lastly, the spike timing
derivative estimator is biased and relies on the difference be-
tween the discrete and continuous variables to be small. A
surrogate gradient approach can approximate the derivative
between the spike timings more accurately and will lower the
gradient errors.



7 Responsible Research
In this section, we outline the aspects concerning responsi-
bility in research such as the reproducibility of experiments,
privacy and ethical issues regarding the data processed.

In terms of reproducibility, the repository that contains the
implementation of the time discretization, as well as the ex-
periment pipelines, is available on the Gitlab Server1hosted
by TU Delft, with the possibility of uploading the work on
a fully public repository. For each experiment, the cupy and
numpy seeds have been saved allowing the experiments to be
reproduced by running the training process using the same
seeds for the initial weight distribution. The difference in
batch selection should be negligible concerning the average
outcomes. This research has been conducted on publicly
available datasets that do not include any personal informa-
tion. Training a neural network on these datasets does not
present any privacy concerns.

However, this research addresses a significant societal is-
sue. The increased computational costs of deep learning mod-
els pose a serious problem. The training emissions of GPT-3
are estimated to be equivalent to 305% of the carbon emis-
sions of a full passenger jet flying between San Francisco and
New York[23]. Therefore, it is becoming increasingly impor-
tant to assess the energy efficiency of deep learning models
alongside their accuracy.

In terms of writing, certain paragraphs have been aug-
mented using a large language model for different writing
purposes with prompts such as ”Please reword this sentence
[...]” or ”Give me a synonym for [...]”.

A Appendix

Figure 16: Visualization of the discretization function
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[18] Y. Bengio, N. Léonard, and A. C. Courville, “Es-
timating or propagating gradients through stochastic
neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[20] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik,
“Emnist: an extension of mnist to handwritten letters,”
arXiv preprint arXiv:1702.05373, 2017.

[21] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[22] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke,
“The heidelberg spiking data sets for the systematic
evaluation of spiking neural networks,” IEEE Trans-
actions on Neural Networks and Learning Systems,
vol. 33, pp. 2744–2757, 2022.

[23] D. Patterson, J. Gonzalez, Q. V. Le, C. Liang, L.-M.
Munguia, D. Rothchild, D. So, M. Texier, and J. Dean,
“Carbon emissions and large neural network training,”
arXiv preprint arXiv:2104.10350, 2021.


	Introduction
	Methodology
	BATS model
	Neuron mechanism
	Backpropagation Derivations

	Adapting BATS to discrete time
	Time discretization
	Straight-Through-Estimator
	Evaluation Metrics

	Experimental Setup and Results
	Experimental Setup
	MNIST
	EMNIST
	Fashion MNIST

	Discussion
	Conclusions and Future Work
	Responsible Research
	Appendix

