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ABSTRACT 

 

Both the Material Point Method (MPM) and meshfree schemes based on optimal transport theory have been developed for 

efficient and robust integration of the weak form equations originating from computational mechanics. Although the methods 

are derived in a different fashion, their algorithms share many similarities. In this paper, we outline the close resemblance of 

MPM and Optimal Transportation Meshfree (OTM) schemes. Aside from a theoretical analysis, the methods are compared 

numerically using a one-dimensional benchmark. 

 

KEY WORDS:  Material Point Method; Optimal Transportation Theory; Meshfree Methods. 

 

INTRODUCTION 

 

The Material Point Method (MPM) [Sulsky et al., 1994; Sulsky et. al., 1995] is a numerical technique suited to 

model large deformations in continuum mechanics. It originates from the fluid-dynamics-oriented Particle-In-Cell 

(PIC) method [Harlow,1964] and has been applied successfully in the numerical simulation of complex 

engineering problems [Sulsky et al., 2007; Zhang et al.,2008].   

Optimal Transportation Meshfree (OTM) methods have been developed to simulate general solid and fluid flows 

and have been applied to a wide range of problems [Li et al., 2010; Fedeli et al., 2017; Navas et al., 2018]. OTM 

methods try to minimise the total action over a time interval, while using the conservation of mass as a constraint.  

Although MPM and OTM methods have different origin, many similarities can be found between them. In this 

paper, both methods are compared and analysed in detail. Since the methods have been developed and studied 

independently from each other, an in-depth comparison may lead to a further improvement of MPM based on the 

knowledge about the OTM method and vice versa. Numerical results obtained for a one-dimensional benchmark 

are presented before and after grid crossing occurs in MPM.   

The paper is structured as follows: Both MPM and OTM are presented and each step of both algorithms is 

compared in Section 2. Numerical results obtained for one-dimensional benchmarks are presented in Section 3. 

Finally, conclusions are drawn in Section 4.       

 

METHODS 

 

The first part of this section provides OTM and MPM algorithms, whereas the second part outlines the similarities 

and explains the differences between them. The provided schemes are suitable for elastic solids and assume 

constant body forces.  

 

Algorithms 

The OTM scheme based on [Li et al., 2010] is presented in Algorithm 1, while the MPM algorithm [Sulsky et al., 

1994] is shown in Algorithm 2. Algorithm 1 considers a general interpolation of the incremental transport map 

𝜑𝑘→𝑘+1: 

 

𝜑ℎ,𝑘→𝑘+1(𝑥) = ∑𝑎=1
𝑁 𝑥𝑎,𝑘+1𝑁𝑎,𝑘(𝑥),                                                          (1) 
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where 𝑎 indexes a nodal point, {𝑁𝑎,𝑘 , 𝑎 = 1,… , 𝑁} are the corresponding first-order consistent nodal basis functions 

at time 𝑡𝑘, and {𝑥𝑎,𝑘 , 𝑎 = 1,… , 𝑁} ≡ 𝑥𝑘 is the array of nodal coordinates at time 𝑡𝑘. The shape functions are said to be 

consistent, when they satisfy the following conditions [Li et al., 2010]: 

                                                                                          ∑𝑎=1
𝑁 𝑁𝑎,𝑘(𝑥) = 1                                                                                          (2) 

∑𝑎=1
𝑁 𝑥𝑎,𝑘𝑁𝑎,𝑘(𝑥) = 𝑥.                                                                                  (3) 

___________________________________________________________________________________________________________   

Algorithm 1 OTM                                                                                                                                                        

(1) Initialisation: Set k = 0, initialise nodal coordinates 𝑥𝑎,−1, 𝑥𝑎,0, material point coordinates 𝑥𝑝,−1, 𝑥𝑝,0, volumes 

𝑉𝑝,0, densities 𝜌𝑝,0, masses 𝑚𝑝, stresses 𝜎𝑝,0, and body forces 𝑏𝑝. 

(2) Compute basis functions 𝑁𝑎,𝑘(𝑥𝑝,𝑘) and derivatives 𝛻𝑁𝑎,𝑘(𝑥𝑝,𝑘) from advected nodal and material-point sets. 

(3) Determine the mass matrix 𝑀𝑘, linear momentum 𝑙𝑘, and force vector 𝑓𝑘: 

 

 𝑀𝑎𝑏,𝑘 = ∑𝑝=1
𝑀 𝑚𝑝𝑁𝑎,𝑘(𝑥𝑝,𝑘)𝑁𝑏,𝑘(𝑥𝑝,𝑘),                                                         (4) 

 

    𝑙𝑎,𝑘 = ∑𝑝=1
𝑀 𝑚𝑝

𝑥𝑝,𝑘−𝑥𝑝,𝑘−1

𝑡𝑘−𝑡𝑘−1
𝑁𝑎,𝑘(𝑥𝑝,𝑘),                                                                  (5) 

    𝑓𝑎,𝑘 = ∑𝑝=1
𝑀 (𝜎𝑝,𝑘𝛻𝑁𝑎,𝑘(𝑥𝑝,𝑘) + 𝜌𝑝,𝑘𝑏𝑝)𝑉𝑝,𝑘.                                                           (6) 

 

(4) Update the nodal coordinates: 

 

  𝑥𝑘+1 = 𝑥𝑘 + (𝑡𝑘+1 − 𝑡𝑘)𝑀𝑘
−1 (𝑙𝑘 +

𝑡𝑘+1−𝑡𝑘−1

2
𝑓𝑘).                                                     (7) 

 

(5) Update material point coordinates: 

 

    𝑥𝑝,𝑘+1 = 𝜑ℎ,𝑘→𝑘+1(𝑥𝑝, 𝑘).                                                                    (8) 
 

(6) Update material point volumes: 

 

𝑉𝑝,𝑘+1 = 𝑑𝑒𝑡 (𝛻𝜑ℎ,𝑘→𝑘+1(𝑥𝑝,𝑘))𝑉𝑝,𝑘.                                                         (9) 

 

(7) Update material point density: 

 

   𝜌𝑝,𝑘+1 =
𝑚𝑝

𝑉𝑝,𝑘+1
.                                                                       (10) 

 

(8) Compute incremental strains at material point positions: 

 

    𝛥𝜀𝑝,𝑘+1 = ∑𝑎=1
𝑁 𝛻𝑁𝑎,𝑘(𝑥𝑝,𝑘)(𝑥𝑎,𝑘+1 − 𝑥𝑎,𝑘).                                                      (11) 

 

(9) Update material point stresses using the constitutive equation: 

 

     𝜎𝑝,𝑘+1 ← {𝜎𝑝,𝑘 , 𝛥𝜀𝑝,𝑘+1}.                                                                  (12) 

 

(10) Reset 𝑘 ← 𝑘 + 1. If 𝑚𝑎𝑥(𝑘) is reached, exit. Otherwise, go to (2). 
___________________________________________________________________________________________________________ 

 

Algorithm 2 illustrates the original MPM scheme that can cause numerical-stability issues when the number of 

empty elements changes during the computation [Sulsky et. al., 1995]. Therefore, this is not the most commonly 

used version of MPM, but can serve as a basis for the comparison with meshfree schemes derived from optimal 

transportation theory. 
___________________________________________________________________________________________________________ 

Algorithm 2 MPM                                                                                                                                                         

(1) Initialisation: Set k = 0, initialise nodal coordinates 𝑥𝑎,0, material point coordinates 𝑥𝑝,0, velocities 𝑣𝑝,0, volumes 

𝑉𝑝,0, densities 𝜌𝑝,0, masses 𝑚𝑝, stresses 𝜎𝑝,0, and body forces 𝑏𝑝. 

(2) Compute basis functions 𝑁𝑎,0(𝑥𝑝,𝑘) and derivatives 𝛻𝑁𝑎,0(𝑥𝑝,𝑘) from advected material-point set. 

(3) Determine the mass matrix 𝑀𝑘, linear momentum 𝑙𝑘, and force vector 𝑓𝑘: 
 𝑀𝑎𝑏,𝑘 = ∑𝑝=1

𝑀 𝑚𝑝𝑁𝑎,0(𝑥𝑝,𝑘)𝑁𝑏,0(𝑥𝑝,𝑘),                                                                (13) 
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     𝑙𝑎,𝑘 = ∑𝑝=1
𝑀 𝑚𝑝𝑣𝑝,𝑘𝑁𝑎,0(𝑥𝑝,𝑘),                                                                        (14) 

    𝑓𝑎,𝑘 = ∑𝑝=1
𝑀 (𝜎𝑝,𝑘𝛻𝑁𝑎,0(𝑥𝑝,𝑘) + 𝜌𝑝,𝑘𝑏𝑝)𝑉𝑝,𝑘.                                                          (15) 

 

(4) Determine the nodal accelerations: 

 

     𝑎𝑘 = 𝑀𝑘
−1𝑓𝑘.                                                                           (16) 

 

(5) Update the nodal velocities: 

 

     𝑣𝑘 = 𝑀𝑘
−1𝑙𝑘,                                                                            (17) 

      

𝑣𝑘+1 = 𝑣𝑘 + (𝑡𝑘+1 − 𝑡𝑘)𝑎𝑘.                                                                    (18) 

 

(6) Compute the incremental nodal displacement:  

 

     𝛥𝑥𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘)𝑣𝑘+1.                                                                   (19) 
 

(7) Update material point coordinates: 

 

 𝑥𝑝,𝑘+1 = 𝑥𝑝,𝑘 + ∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                                                         (20) 

 

(8) Update the material point velocities: 
      

 𝑣𝑝,𝑘+1 = 𝑣𝑝,𝑘 + (𝑡𝑘+1 − 𝑡𝑘)∑𝑎=1
𝑁 𝑎𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                                                 (21) 

 

(9) Update material point volumes: 

 

    𝑉𝑝,𝑘+1 = 𝑑𝑒𝑡 (∑𝑎=1
𝑁 𝑥𝑎,𝑘+1𝛻𝑁𝑎,0(𝑥𝑝,𝑘))𝑉𝑝,𝑘.                                                     (22) 

 

(10) Update material point density: 

 

     𝜌𝑝,𝑘+1 =
𝑚𝑝

𝑉𝑝,𝑘+1
.                                                                        (23) 

 

(11) Compute incremental strains at material point positions: 

 

     𝛥𝜀𝑝,𝑘+1 = ∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝛻𝑁𝑎,0(𝑥𝑝,𝑘).                                                                  (24) 

 

(12) Update material point stresses using the constitutive equation: 

 

     𝜎𝑝,𝑘+1 ← {𝜎𝑝,𝑘 , 𝛥𝜀𝑝,𝑘+1}.                                                                  (25) 

  

(13) Reset 𝑘 ← 𝑘 + 1. If 𝑚𝑎𝑥(𝑘) is reached, exit. Otherwise, go to (2). 
___________________________________________________________________________________________________________

  

 

Comparison of the algorithms 

Here, a side by side comparison of the computational steps from algorithm 1 and 2 is provided.  

• In step 1, both algorithms intialise the nodal coordinates and material point properties. 

 

• In step 2, the schemes compute the basis functions and their derivatives. However, in OTM basis 

functions are updated each time step based on the nodal velocities, while in MPM basis functions are 

fixed over time. This is an important difference between the methods. To distinguish between the basis 

functions, we denote OTM basis functions by 𝑁𝑎,𝑘 and MPM basis functions by 𝑁𝑎,0. 

 

 

• On the other hand, step 3 is identical for both schemes, because the material point velocity can be written 

as 
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𝑣𝑝,𝑘 =
𝑥𝑝,𝑘−𝑥𝑝,𝑘−1

𝑡𝑘−𝑡𝑘−1
.                                                                   (26) 

 

A direct substitution of Equation (26) into the expression for the linear momentum in the MPM algorithm 

(i.e. Equation (14)) leads to the linear momentum formula used in OTM, given by Equation (5). 

 

• Furthermore, steps 4, 5, and 6 of Algorithm 2 are implicitly included in the computation of the nodal 

coordinates at time step 𝑘 + 1 in Algorithm 1. To be more precise, from step 4 in the OTM scheme, we 

obtain 

 

𝛥𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 = (𝑡𝑘+1 − 𝑡𝑘)𝑀𝑘
−1 (𝑙𝑘 +

𝑡𝑘+1−𝑡𝑘−1

2
𝑓𝑘).                                               (27) 

 

At the same time, the incremental nodal displacement in MPM can be written as 

 

𝛥𝑥𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘)𝑣𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘)(𝑣𝑘 + (𝑡𝑘+1 − 𝑡𝑘)𝑎𝑘) = (𝑡𝑘+1 − 𝑡𝑘)𝑀𝑘
−1(𝑙𝑘 + (𝑡𝑘+1 − 𝑡𝑘)𝑓𝑘).             (28) 

 

Provided a constant time step, the above equation can be expressed as 

 

𝛥𝑥𝑘+1 = (𝑡𝑘+1 − 𝑡𝑘)𝑀𝑘
−1 (𝑙𝑘 +

𝑡𝑘+1−𝑡𝑘−1

2
𝑓𝑘).                                                      (29) 

 

From Equation (27) and (29) we conclude that, for constant time steps, MPM and OTM compute the 

nodal incremental displacement in the same manner.  

 

• The definition of the incremental transport map implies that, in step 5 of Algorithm 1, material point 

positions are obtained from 

 

𝑥𝑝,𝑘+1 = ∑𝑎=1
𝑁 𝑥𝑎,𝑘+1𝑁𝑎,𝑘(𝑥𝑝,𝑘),                                                             (30) 

 

while step 7 in Algorithm 2 states that 

 

𝑥𝑝,𝑘+1 = 𝑥𝑝,𝑘 + ∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                                                       (31)  

 

However, imposing Equation (3) on MPM, Equation (31) can be rewritten as follows 

 

𝑥𝑝,𝑘+1 = 𝑥𝑝,𝑘 + ∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘) = ∑𝑎=1

𝑁 𝑥𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘) + ∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                    (32) 

 

 Equation (32) can then be rewritten as 

 

∑𝑎=1
𝑁 𝑥𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘) + ∑𝑎=1

𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘) = ∑𝑎=1
𝑁 𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                               (33) 

 

• Moreover, the OTM scheme avoids a direct update of the material point velocity by adopting Equation 

(26), whereas MPM performs the update in step 8. Nevertheless, assuming that  

 

𝑣𝑝,𝑘 = ∑
𝑁

𝑎=1
𝑣𝑎,𝑘𝑁𝑎,𝑘(𝑥𝑝,𝑘),                                                                 (34) 

 

it is possible to relate the methods again. From the OTM algorithm, it follows that 

 

𝑣𝑝,𝑘+1 =
𝑥𝑝,𝑘+1−𝑥𝑝,𝑘

𝑡𝑘+1−𝑡𝑘
,                                                                    (35) 

 

 

while substituting step 7 of Algorithm 2 leads to 

 

𝑣𝑝,𝑘+1 =
𝑥𝑝,𝑘+1−𝑥𝑝,𝑘

𝑡𝑘+1−𝑡𝑘
=

∑𝑎=1
𝑁 𝛥𝑥𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘)

𝑡𝑘+1−𝑡𝑘
= ∑

𝑁

𝑎=1
𝑣𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘).                                 (36) 

 

Steps 5 and 6 of Algorithm 2 imply that 
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𝑣𝑝,𝑘+1 = ∑
𝑁

𝑎=1
𝑣𝑎,𝑘+1𝑁𝑎,0(𝑥𝑝,𝑘) = ∑

𝑁

𝑎=1
𝑣𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘) + ∑

𝑁

𝑎=1
(𝑡𝑘+1 − 𝑡𝑘)𝑎𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘)                     (37) 

 

 and, hence,  

 

∑
𝑁

𝑎=1
𝑣𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘) + ∑

𝑁

𝑎=1
(𝑡𝑘+1 − 𝑡𝑘)𝑎𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘) = 𝑣𝑝,𝑘 + (𝑡𝑘+1 − 𝑡𝑘) ∑

𝑁

𝑎=1
𝑎𝑎,𝑘𝑁𝑎,0(𝑥𝑝,𝑘).               (38) 

 

The final expression in Equation (38) is identical to the velocity update in step 8 in the MPM scheme. 

Although Equation (38) requires an extra assumption to establish a connection between the methods, it 

does not lead to an essential disparity between them.  

 

• It is not difficult to see that the remaining part of the MPM algorithm is identical to that of the OTM. 

 

In the above discussion, we have shown that under certain conditions the OTM and MPM schemes can be related. 

In fact, assuming a constant time step and the validity of Equation (3) and (34), the only difference between the 

methods emerges from the update of the basis functions.  
   

NUMERICAL RESULTS 

 

A one-dimensional linear-elastic vibrating bar is considered to assess the quality of both numerical schemes. The 

bar has fixed ends and its displacement is caused by an initial velocity, which is given by: 

 

𝑣(𝑥, 𝑡) = 0.8sin (
𝜋𝑥

𝐿
).                                                                               (39) 

 

Here, the length of the bar 𝐿equals 1 [m],  the Young’s modulus E is 4 ⋅ 104 [Pa],and the density 𝜌 is 2 ⋅ 103[kg m3⁄ ].  

The domain is discretised using 20 elements and 8 material points per element. The time-step size is equal to 10−4 [s].  

Figure 1  Comparison of numerical and analytical results in stress for OTM and MPM 

 

Although typically OTM adopts meshfree maximum-entropy shape functions [Arroyo & Ortiz, 2006], the scheme 

can also be implemented with piecewise-linear (P1) basis functions commonly used in MPM. To focus on the 

comparison of the algorithms, in this paper, the computations are performed with P1 basis functions.  

 

The analytical solution for the stress under small deformations is given by 

 

𝜎(𝑥, 𝑡) = 0.8√𝐸 𝜌⁄ sin (
𝜋√𝐸 𝜌⁄ 𝑡

𝐿
cos (

𝜋𝑥

𝐿
)).                                                  (40) 

 

In the beginning of the simulation, the results produced by MPM and OTM methods for this problem are very 
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similar. For example, after 20 times steps, the root-mean-square (RMS) error for the stress is equal to 3.8684 for 

OTM and 3.8693 for MPM. After material points start to move from one element to another in MPM, the solution 

quality of both schemes strongly decreases. However, the number of unphysical oscillations is higher for MPM 

and their amplitude in the neighbourhood of the left boundary is larger than that of the oscillations generated by 

OTM. This is illustrated in Figure 1.  

 
 

 

CONCLUSIONS 

 

In this paper, MPM has been compared to a meshfree scheme derived from optimal transportation theory (OTM). 

Assuming a constant time step size and Equation (3) and (34) to be valid, the only difference between the methods 

arises from the evaluation of the basis functions during the computation. To be more precise, within each time 

step, MPM computes the basis functions based only on the advected material-point set, whereas OTM also uses 

the advected nodal values. Numerical experiments performed on a one-dimensional linear-elastic vibrating bar 

have demonstrated that the application of MPM leads to a lower solution quality than OTM.  
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