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Regret-Based Sampling of Pareto Fronts for
Multiobjective Robot Planning Problems

Alexander Botros , Member, IEEE, Nils Wilde , Member, IEEE, Armin Sadeghi , Member, IEEE,
Javier Alonso-Mora , Senior Member, IEEE, and Stephen L. Smith , Senior Member, IEEE

Abstract—Many problems in robotics seek to simultaneously
optimize several competing objectives. A conventional approach
is to create a single cost function comprised of the weighted sum of
the individual objectives. Solutions to this scalarized optimization
problem are Pareto optimal solutions to the original multiobjective
problem. However, finding an accurate representation of a Pareto
front remains an important challenge. Uniformly spaced weights
are often inefficient and do not provide error bounds. We address
the problem of computing a finite set of weights whose optimal
solutions closely approximate the solution of any other weight
vector. To this end, we prove fundamental properties of the optimal
cost as a function of the weight vector. We propose an algorithm that
greedily adds the weight vector least-represented by the current
set, and provide bounds on the regret. We extend our method
to include suboptimal solvers for the scalarized optimization, and
handle stochastic inputs to the planning problem. Finally, we illus-
trate that the proposed approach significantly outperforms baseline
approaches for different robot planning problems with varying
numbers of objective functions.

Index Terms—Motion and path planning, multi-objective
optimization, optimization and optimal control, robust/adaptive
control of robotic systems.

I. INTRODUCTION

IN MANY robotic planning problems, one seeks to opti-
mize several competing objectives. Examples include mo-

tion planning and trajectory generation for autonomous vehi-
cles [1], [2], [3], [4], [5], human–robot cooperation for task
completion [6], warehouse robotics [7], mobility-on-demand
servicing [8], and neural networks [9] to name a few.

In Multiobjective Optimization (MOO) [10], one seeks solu-
tions that achieve an appropriate trade-off between objectives.
These problems are often solved through scalarization, which
combines multiple objectives into a single cost function. An
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example is linear scalarization, where the cost function is a
weighted sum of objectives. Linear scalarization leads to solu-
tions that are Pareto optimal for the MOO problem [11]. That
is, the solution to the scalarized single-objective problem cannot
be changed to improve the value of one of its objectives without
degrading the value of another. However, a challenge in linear
scalarization is how to appropriately choose weights on each
objective to achieve a desired tradeoff.

This work is motivated by two classes of robotics problems:
1) obtaining online near-optimal solutions to a linearly scalar-
ized multiobjective optimization problem (LSMOP) for any
given weight vectors; and 2) learning the preferred solution be-
havior of a human user. Applications of the first class include [8]
where an adjustable tradeoff between the service quality and
operating costs for autonomous mobility-on-demand systems
are optimized. Conversely, the second class of problems seeks
to compute a weight vector representing the relative importance
of each objective to a user given some knowledge of that users’
preferred solutions [7], [12], [13], [14], [15], [16].

In either class, it is often beneficial to precompute solutions
to the LSMOP for a set of weight vectors. If the LSMOP is
computationally intensive to solve, requiring online solutions
may be impractical. This motivates the problem of finding a
set of weight vectors and their corresponding optimal solutions
such that for any possible weight vector, there exists an element
of the set whose solution is close to optimal. A naive approach
would involve densely sampling the set of all possible weight
vectors. However, the sensitivity of some objectives to changes
in solution may result in a skewed sampling of Pareto optimal
solutions. This is illustrated in Fig. 1 where we seek to compute
a Dubins trajectory between fixed start and goal configurations
that minimizes a tradeoff between trajectory length and dis-
comfort (measured as the integral of the squared jerk over the
trajectory [17]). In the top figure, a set of weight vectors is
selected uniformly and the resulting solution trajectories (right)
and Pareto front (bottom left) is shown. We observe that uni-
formly sampling weights generates multiple similar trajectories
and does not approximate well all different tradeoffs, as shown
by the large gap in the Pareto Front.

In this article, we propose a greedy algorithm that constructs a
set of weight vectorsΩ by recursively adding weight vectors that
are least represented by the current set. Only assuming that the
given objective functions are bounded the corresponding optimal
solutions for weights inΩ provide homogeneous coverage of the
Pareto front, as illustrated in Fig. 1(b).
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Fig. 1. Optimal tradeoffs between trajectory length and jerk for a Dubins
vehicle, comparing solutions computed for uniformly sampled weights (a) and
solutions found with the proposed method (b). (a) Uniformly sampled weights.
(b) Proposed min-regret sampling of weights.

A. Contributions

The contributions of this work are as follows.
1) Assuming that an exact solver for an LSMOP is available,

we propose an algorithm to compute a set of weight vectors
Ω whose corresponding solutions provide homogeneous
sampling of the Pareto front.

2) We provide a bound on the error incurred from approxi-
mating the optimal solution to an LSMOP for any arbitrary
weight with a solution corresponding to a weight vector
from Ω.

3) We relax the requirement that an exact solver be available
and extend the first contribution to include a suboptimal
solver. We extend the second contribution if an approxi-
mation factor for this solver is known.

4) If a probability density function over the set of all weights
is known (e.g., representing the likelihood that a desired
weight lies in a subregion), we extend the first and second
results to reflect the expected error.

5) Finally, we showcase the advantages of our sampling
algorithm in different robotics applications, namely robot
trajectory planning, multivehicle traveling salesman prob-
lem (mTSP), and learning user preferences.

Our earlier work [18] established the first and second con-
tributions listed above. This article extends that work by incor-
porating suboptimal solvers (third contribution) and stochastic

settings (fourth contribution) into the proposed approach. Fi-
nally, we extend the simulations to showcase our third and fourth
contributions and include the work of [19] as a baseline.

B. Related Work

We review three areas of related work: 1) the use of weighted
sums to tackle multiobjective planning problems in robotic
applications; 2) the use of weighted sums to describe user
preferences in HRI; and 3) techniques for approximating Pareto
Fronts.

1) Linear Scalarization in Robotics: The simplicity of linear
scalarization has made it one of the most widely used tools
in robotics for considering different objectives in a cost or
reward function. Though the technique is not able to capture all
Pareto-optimal solutions for nonconvex fronts, it does guarantee
that all LSMOP solutions are Pareto-optimal. For instance,
cost functions in autonomous driving often consider objectives
such as trajectory length, comfort (measured via jerk), or clear-
ance [1], [2], [3], [4], [5], [17], [20]. Other examples for motion
planners that use weighted sums to balance between objectives
include local planners for mobile robots navigating in cluttered
environments [21] or social spaces [22], [23], trajectory planners
for manipulators [24], [25], and multirobot planning [26].

In [27], a trajectory smoothing algorithm was proposed based
on the weighted sum of competing objectives, namely trajectory
length, smoothness, and obstacle distances. The authors of [28]
minimized the weighted tradeoff between mission completion
time and communication outage duration in the navigation of
cellular-connected UAVs, while in [29], linear scalarization was
used to optimize robotic limitations and observation rewards
for use in autonomous human activity tracking. The authors
of [30] considered biobjective path planning. In particular, the
goal is to simultaneously optimize for path length and clearance
to obstacles in the plane for which they propose a complete
and efficient algorithm. Our work does not consider specific
objectives as the abovementioned papers. Instead, we focus on
Pareto-optimal tradeoffs for any multiobjective planning prob-
lem that is formulated as a weighted sum.

2) Weighted Sums Describing User Preferences: In human–
robot interaction (HRI), weight vectors are used to represent a
user’s preference for robot behavior, i.e., the relative importance
of objectives [12], [15], [16], [31], [32], [33]. In reward learning
the objective is to learn a user’s weight vector using interactions
such as demonstrations, corrections, or choice feedback. In
order to expedite the learning process, feasible solutions for the
multiobjective optimization problem are often precomputed and
shown to the user who then provides feedback. In [12], [16],
and [34], each precomputed solution was generated with ran-
dom action sequences. Thus, the solutions used in the learning
process are usually not optimal for any weight. In [15] and [35],
the authors precomputed Pareto-optimal solutions enabling an
active learning method based on regret leading to significant
improvement over randomly generated solutions. However, the
work in [15] and [35] relied on uniformly sampled weight
vectors. Though this approach asymptotically covers the set of
all LSMOP-optimal solutions, it can be inefficient as different
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weight vectors can have very similar, or even identical solutions.
The counter intuitive relationship between weights and collected
reward was further studied in [36]. Moreover, the authors of [37]
observed that the presence of similar solution strongly influences
the Boltzmann decision model which is commonly used in
HRI. They propose a decision model where a similarity metric
corrects the bias induced by a high number of similar trajectories.
Similarly, in our work we are interested in finding solutions with
dissimilar features. While [37] handled the overrepresentation of
similar solutions in the ground set with their proposed decision
model, we instead address the problem at an earlier stage: Our
algorithm can be used to generate a ground set where similarities
are minimized.

3) Approximating Pareto Fronts: Our work is motivated
from the following observation: a uniform sampling of weights
does not generally provide a uniform sampling of solutions
as illustrated in Fig. 1. These shortcomings of weighted sum
methods are well studied within the optimization literature [38],
[39], yet have received less attention in the robotics commu-
nity despite the wide usage of weighted sums as objective
functions. Researchers in optimization developed many tech-
niques for approximating Pareto-fronts, including more complex
scalarization methods such as Chebyshev scalarization [38].
Unfortunately, these methods are often not directly applicable to
robot planning since they require solving more complex scalar
optimization problems. As a consequence, many multiobjective
robot planning problems still rely on the simple weighted sum
formulation. Finding a set of representative scalarization weights
requires solving a series of optimization problems, e.g., solving
path or motion planning instances, which can be computation-
ally burdensome. Thus, efficient computation of such a set is of
particular interest.

Closely related to our work is the Adapted Weighted Sum
(AWS) method [19], [40]. The AWS iteratively places Pareto
samples by partitioning existing samples into subsets and plac-
ing new samples into the subset that has the largest gap. This
requires solving an optimization problem with an additional
linear constraint on the objective value, which can result in a
harder problem then the original weighted sum optimization. In
contrast, our method identifies the most promising weights for
additional samples and then solves the weighted sum optimiza-
tion problem. Further, our method minimizes the regret of the
weighted samples and returns an error bound.

The authors of [41] presented a Pareto front approximation
for trajectory planning using Markov chain random walks. Their
goal is to uniformly place samples on the Pareto front, while
our goal is to minimize error in the space of Pareto-optimal
costs. Moreover, the random walk technique does not rely on a
weighted sum objective, but does not generalize to an arbitrary
choice of objective functions. Similar to our work, the authors
of [42] offered a technique of Pareto-uniform sampling based
on equispacing constraints. However, they only consider the
case of two competing objectives. Further, they accomplish
their goal by solving a nested optimization with the original
LSMOP as the inner-most problem, which can be significantly
harder. The work in [43] proposed a set of weight vectors that
approximately uniformly cover a Pareto front specifically for

use in the design of robots. The authors designed the set that
minimizes the total squared error between the value of the
objectives in the set and heuristic objectives. It therefore relies on
the approximate optimality of these objectives. The work in [44]
proposed a method to cover the set of Pareto-optimal solutions
specifically for use in reinforcement learning applications. The
authors seek to compute policies that maximize expected returns
by computing, storing, and updating a set of samples. In [45], the
authors provided a means of exploring a (possibly nonconvex)
Pareto front in order to obtain a solution that is near-optimal
for a user. That work starts with an initial guess solution which
moves in a direction according to a user’s preference. While the
convexity of the Pareto front (a requirement for linear scalar-
ization to obtain all Pareto-optimal solutions) is not assumed,
their technique requires solving the LSMOP online as the Pareto
front is explored. Moreover, the requirement of a user-preferred
direction is not assumed in our work.

In summary, most state-of-the-art methods either address spe-
cific problem setups and thus do not generalize across different
robot planning problems, or address the problem of finding
scalarization weights more generally but pose a complex op-
timization problem to compute a set of weights. Our work
considers the weighted sum formulation for an arbitrary choice
of objective functions. We iteratively compute a set of weights,
only requiring solving a linear program and the weighted sum
objective for different weights, and return a bound on the ap-
proximation error for the computed set.

II. PROBLEM STATEMENT

For n ∈ N, a general multiobjective optimization problem
(MOP) is of the form

min
s∈S

{
f1(s), f2(s), . . . , fn(s)

}
. (1)

Here, the set of feasible solutions given constraints is denoted S ,
and it is desired to simultaneously minimize n objectives fi(s),
for i ∈ {1, . . . , n}. However, such a solution typically does not
exist. As a result, multiobjective optimization often seeks Pareto-
optimal solutions: solutions s ∈ S such that there does not exist
another solution s̄ ∈ S where fi(s̄) ≤ fi(s) for all i, and with
strict inequality for at least one i. The linear scalarization of the
MOP above involves the creation of a single cost function by
introducing a vector of weights w = [w1, w2, . . . , wn] ∈ Rn

≥0.
Let c(s,w) denote the cost of the solution s evaluated by the
weights w, i.e.,

c(s,w) =
n∑

i=1

wi · fi(s) = w · f(s) (2)

where f(s) = [f1(s), . . . , fn(s)], ∀s ∈ S . The resulting
LSMOP is to solve

u(w) = min
s∈S

c(s,w). (3)

For any weight w ∈ Rn
≥0, solution s ∈ S , and λ ∈ R>0, it holds

that c(s, λw) = λc(s,w) implying that a minimizer of c(s,w)
also minimizes c(s, λw). Further, if w = [0, 0, . . . , 0], then
u(w) is trivially 0. Thus, given w = [w1, . . . , wn] where not

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2024 at 12:52:32 UTC from IEEE Xplore.  Restrictions apply. 



BOTROS et al.: REGRET-BASED SAMPLING OF PARETO FRONTS FOR MULTIOBJECTIVE ROBOT PLANNING PROBLEMS 3781

all elements are identically 0, and letting λ = (
∑n

i=1 wi)
−1, we

can obtain all nontrivial optimal solutions u(w) for allw ∈ Rn
≥0

using weights w ∈ W where

W =

{
w ∈ Rn

≥0,
n∑

i=1

wi = 1

}
. (4)

We refer to the set W as the weight space, and define

s∗(w) = arg mins∈Sw · f(s), ∀w ∈ W (5)

as an optimal solution given weights w, implying that u(w) =
c(s∗(w),w) by (3). We start with the following assumptions:

Assumption 1 (Exact Solution): An exact solver exists for the
optimization problem (3).

Assumption 2 (Bounded Objectives): For any weight w ∈
Rn

≥0, and any optimal solution s∗(w) in (5), the objectives
f(s∗(w)) are bounded.

While Assumption 2 persists throughout this article,
Assumption 1 is relaxed for suboptimal solvers (Section V).

In this work, we propose a method to compute a finite set
of weights Ω ⊂ W that will, for any w∗ ∈ W , allow us to
approximate u(w∗) with u(w′) for an appropriately chosen
w′ ∈ Ω. To evaluate the quality of a candidate set Ω, we use
the notion of regret from [15] and [46], defined formally here

Definition 1 (Regret): Given two weights w′,w∗ ∈ W , the
regret of w′ under w∗ is defined as

r(w′|w∗) = w∗ · f (s∗(w′))− u(w∗). (6)

Intuitively, r(w′|w∗) represents the error in cost incurred by
using an optimal solution given weight w′ (given by s∗(w′)) to
approximate a solution given weight w∗. We now formally state
the main problem addressed in this work.

Problem 1 (Min-Max Regret Sampling): For the LSMOP (3)
and an integer K > 0, find a set of weights Ω that solves

min
Ω

max
w∗∈W

min
w′∈Ω

r(w′|w∗)

s.t. |Ω| ≤ K. (7)

Given a weight w∗ ∈ W and a set Ω ⊂ W , the first mini-
mization in (7),minw′∈Ω r(w′|w∗) represents the suboptimality
of approximating a solution s∗(w∗) with a solution s∗(w′)
where w′ is the weight in Ω that minimizes this suboptimality,
i.e., w′ is a best representative of w∗ in Ω. The maximization
maxw∗∈W minw′∈Ω r(w′|w∗), represents the regret of the worst
represented weight w∗ ∈ W by elements in Ω. We refer to the
solution of this maximization as the maximum regret given Ω.
In total, (7) seeks a set Ω such that the regret of the worst
represented element in W is minimized.

In this article, we offer an approximate solution to the opti-
mization in (7) by way of an algorithm that computes a feasible
solution Ω such that the maximum regret given Ω is bounded.
In the next section, we provide the theoretical groundwork that
makes this solution possible.

III. PROBLEM ANALYSIS

We begin with a structural analysis of the cost function u(w)
from (3) to derive an efficient algorithm for solving Problem 1.
First, we make two critical observations.

Observation 1: Given any two weightsw∗,w′ ∈ W , we have

u (w∗) ≤ w∗ · f (s∗ (w′)) . (8)

That is an optimal solution given weightsw∗ will incur no higher
cost than a solution that is optimal for some different weight
vectorw′. Here, s∗(w′) is optimal given weightsw′ (see (5)) but
not necessarily optimal given weights w∗. By (6), the inequality
in (8) implies that r(w′|w∗) ≥ 0.

Observation 2 (Optimal Cost Concavity): The optimal cost
function u(w) is a concave function of w. Indeed, for each
s ∈ S , the cost c(s,w) = w · f(s) is an affine function of w
(and is therefore, concave). Therefore, u(w) = mins∈S c(s,w)
is concave [47, Sec. 3.2.3].

Observation 2 motivates the following Lemma:
Lemma 1 (Optimal Cost Continuity): Under Assumptions 1

and 2, given any two weights in W , u(w) is continuous on the
line segment connecting those weights.

Proof: By Observation 2, u(w) is concave in W . Noting
in addition that W ⊂ Rn is convex, it must hold that u(w)
is continuous on the interior of W . This is because concave
functions are continuous on the interior of convex sets. There-
fore, it suffices to prove the result for the case that at least
one weight lies on the boundary of W . Consider two weights
w′,w′′ ∈ W at least one of which lies on the boundary of W .
Suppose that ||w′ −w′′|| ≤ δ for some δ > 0 arbitrarily small,
and–without loss of generality–that u(w′) > u(w′′). Because
it is assumed that u(w) is bounded on W , if it experiences a
discontinuity on the line connecting w′,w′′, it must hold that
u(w) experiences a jump between w′,w′′. That is, there must
exist a M ∈ R>0 independent of δ such that u(w′′) +M ≤
u(w′). Since ||w′′ −w′|| ≤ δ, and f(s∗(w′′)) is bounded by
Assumption 2, there must exist a value of δ sufficiently small so
as to guarantee that (w′ −w′′) · f(s∗(w′′)) < M/2. Therefore,
by construction

w′ · f(s∗(w′′)) <
M

2
+w′′ · f(s∗(w′′)) =

M

2
+ u(w′′)

≤ M

2
+ u(w′)−M = u(w′)− M

2
< u(w′).

Therefore, r(w′′|w′) = w′ · f(s(w′′))− u(w′) < 0 which is a
contradiction by Observation 1. �

Critically, the previous results do not require unique solu-
tions s∗(w) or continuous objectivesf (s∗(w)). Extending these
results:

Theorem 1 (Convexity of Regret): For a fixed weightw′ ∈ W ,
the regret r(w′|w) is a convex function of w.

Proof: By (6), r(w′|w) = w · f(s∗(w′))− u(w) where w ·
f(s∗(w′)) is linear in w and u(w) is concave (Observation 2).
Thus, r(w′|w) is the difference of linear and concave functions
of w which is convex. �

Because u(w) is continuous and concave, it must hold that
the function lies below any subgradient. This motivates the
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Fig. 2. (a) Regret as the error of a first order approximation. (b) Maximum
regret given a set Ω = {w′,w′′} at the intersection of their tangent lines.

following Corollary which follows directly from the definition
of u(w) and the concavity of c(s,w) for each fixed s ∈ S [47,
Sec. 6.5.5].

Corollary 1.1 (Subgradient Optimal Cost): For any w ∈ W
and any minimizing solution s∗(w) ∈ S , the vector of objectives
f(s∗(w)) is a subgradient, ∂u(w), of u at w.

Observe that subgradients are defined even for nondifferen-
tiable continuous functions. Further, the results above imply
that given two weightsw′,w∗ ∈ W , the regret r(w′|w∗)–which
coincides with the error incurred by approximating a solution
s∗(w∗) with the solution s∗(w′)–is exactly the error of ap-
proximating a concave function via linear interpolation. In-
deed, the first order approximation of u(w∗) given u(w′) is
given by u(w∗) ≈ u(w′) +∇u(w′) · (w∗ −w′) assuming u
is differentiable at w′. However, by Corollary 1.1, ∇u(w) =
∂u(w) = f(s∗(w)). This together with the definition u(w′) =
f(s∗(w′)) ·w′ allows us to conclude that u(w∗) ≈ u(w′) +
f(s∗(w′)) ·w∗ − f(s∗(w′)) ·w′ = f(s∗(w′)) ·w∗. The error
of this first order approximation is f(s∗(w′)) ·w∗ − u(w∗)
which is exactly the regret r(w′|w∗).

This is illustrated in Fig. 2(a). Further, given any two weights
w′,w′′ ∈ W , the maximum regret on the line segment L be-
tween w′,w′′ given Ω = {w′,w′′} occurs at the weight on L
coinciding with the intersection of the tangent lines to u(w)
at w′ and w′′ along L [Fig. 2(b)]. In light of this analysis, the
objective in (7) is solved by a set Ω that provides the best linear
interpolation of the concave function u(w). These insights are
leveraged in the following section.

IV. ALGORITHM

In this section, we present our solution to Problem 1. The
algorithm we propose recursively adds weights to a solution
set Ω. A strong candidate weight to add is one that is least
represented by the current iteration of Ω. The basic framework
for such an approach could be described recursively

Ωk+1 = Ωk ∪
{

arg maxw∗∈W min
w′∈Ωk

r (w′|w∗)

}
(9)

where Ωk is the solution after k iterations from an initial set.
Here, (9) recursively adds the weight with the maximum regret
given Ωk. Obtaining the maximizer w∗ is nontrivial due to its
nested structure. Instead, our approach replaces r(w′|w∗) in (9)

Algorithm 1: MINIMUM-REGRET PARETO SAMPLING

(MRPS).

with an upper boundR(w′|w∗)whose maximizerw∗ is obtained
from a linear program (LP).

Given a set of weights Ω ⊆ W , we define N as a set of n
(recall that n is the number of objectives) linearly independent
weights w1, . . . ,wn ∈ Ω, and we let C(N) ⊂ Rn denote the
convex hull of N . We loosely refer to N as a neighborhood,
and define a linear lower bound of the objective value u(w)
from (3) inside a neighbourhood N . Let P : W → R≥0 be the
linear function taking values P (wi) = u(wi) for all wi ∈ N
[Fig. 3(a)]. We denote the difference between the tangent plane at
w′ and theP evaluated atw∗ withR(w′|w∗) = f(s∗(w′))w∗ −
P (w∗), ∀w′ ∈ N,w∗ ∈ C(N). Further, let

R̄(N) = max
w∗∈C(N)

min
w′∈N

R(w′|w∗),

w̄(N) = arg maxw∗∈C(N) min
w′∈N

R(w′|w∗). (10)

Finally, we let F(N) represent the set of objective vectors of the
neighborhood

F(N) =
{
f
(
s∗

(
wi

))
,wi ∈ N

}
. (11)

Thus, R(w′|w∗) is similar to r(w′|w∗) from (6), but with
u(w∗) replaced with P (w∗). These definitions, illustrated in
Fig. 3, motivate the Theorem.
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Fig. 3. Illustrative example of a neighborhood and its properties.
(a) P (w), C(N) for N = {w1,w2,w3} (b) Regret r and regret bound R

Theorem 2 (Upper Bound of Maximum Regret in a Neighbor-
hood): Given a neighborhood N of weights, it holds that

max
w∗∈C(N)

min
w′∈N

r(w′|w∗) ≤ R̄(N).

Proof: For w∗ ∈ C(N), let w′
1 = arg minw′∈Nr(w′|w∗),

w′
2 = arg minw′∈NR(w′|w∗). Note that w′

1 = w′
2. Indeed,

we have R(w′
2|w∗) ≤ R(ŵ|w∗) for all ŵ ∈ N if and only

if w∗ · f(s∗(w′
2)) ≤ w∗ · f(s∗(ŵ)) which is equivalent to

r(w′
2|w∗) ≤ r(ŵ|w∗).

By Observation 2, u(w) is concave on C(N) implying
that for w ∈ C(N), u(w) ≥ P (w) (see Fig. 3). Thus, by (6),
r(w′|w∗) ≤ R(w′|w∗) for w∗ ∈ C(N). The result follows.

�
The value of R̄(N) with corresponding weight w̄(N) from

(10) can be obtained by solving the following LP:

max
x∈R,w∈Rn

x− P (w)

s.t.

⎡
⎢⎢⎣
f1(s

∗(w1)) . . . fn(s
∗(w1)) −1

...
. . .

...
...

f1(s
∗(wn)) . . . fn(s

∗(wn)) −1

⎤
⎥⎥⎦
[
w

x

]
� 0,

w ∈ C(N). (12)

If (x∗,w∗) solves (12), the optimal cost is given by x∗ −
P (w∗) = R̄(N), and w∗ = w̄(N). Indeed, for any feasible

x,w, it holds that x ≤ minwi∈N f(s(wi)) ·w. Since x is max-
imized, this will hold with equality for x∗,w∗. Therefore, the
cost of (12) is equivalent to maxw∈C(N) minwi∈N R(wi|w) =
R̄(N). A detailed explanation of the implementation for (12) is
provided in the supplementary materials.

In (12), if P (w) is replaced with u(w), then the resulting
problem is solved by x∗,w∗ if and only if w∗ maximizes the
regret in C(N) given the neighborhood N . This problem is not
linear and would require solving the LSMOP in (3) potentially
many times. Using the LP in (12) our method is summarized
in Algorithm 1 described in the next section. We iteratively
partition W into smaller neighborhoods, adding weights that
result in the largest upper bound of regret.

A. Algorithm Description

Algorithm 1 creates and maintains a set N of neighborhoods
N ⊂ W . Each N ∈ N is a set of weights N = {w1, . . . ,wn}
where wi ∈ Ω, i = 1, . . . , n. We compute R̄(N) and w̄(N)
with the LP in (12) for N using the set of objective vectors
F(N). The algorithm begins with a single neighborhood whose
weights are the n canonical basis elements of Rn (Line 1).
The solutions for these basis weights correspond to the single-
objective solutions for all n objective functions. We assume that
the budget K is at least the number of objective functions n.
The algorithm then iteratively selects the neighborhood N in
N with the largest upper bound of regret (Line 5), and adds its
regret weight w̄(N) to Ω (Line 8). It then splits and replaces
N with at most n smaller neighborhoods (Lines 11–15) formed
by iteratively replacing elements in N with w̄(N) (Line 12).
Finally, the algorithm returns the setΩ as well as an upper bound
on the regret given Ω (Line 16). Two steps of the algorithm are
illustrated in Fig. 4, starting with a single neighborhood N1

in (a) which is then split around w3 = w̄(N1) into two new
neighborhoods N = {N2, N3} in (b). Since R̄(N3) > R̄(N2),
N3 is split around w5 = w̄(N3) in (c). Finally, in (d), the red
area shows the regret given Ω.

Observe that Algorithm 1 may be modified to compute a
set Ω given a desired maximum regret rmax > 0. This could
be accomplished by replacing the input K with rmax, and the
stopping criteria in Line 4 with a while loop that runs until
R̄ ≤ rmax. Here, R̄ represents the maximum regret over all
neighborhoods R̄ = maxN∈N R̄(N) and can be maintained in
the body of the loop. Since N forms a partition of W , we are
guaranteed that the regret of any weight given Ω is no more than
R̄ by Theorem 2. Therefore, if Algorithm 1 terminates when
R̄ ≤ rmax, the desired maximum regret is achieved.

B. Algorithm Properties

We observe several beneficial properties to the approach
outlined above.

Observation 3 (Runtime): For a budget of K, Algorithm 1
will require that the LSMOP in (3) be solved at most K times,
once per element of Ω. Let tLSMOP be the runtime to solve
(3). Using the interior-point method allows for solving LPs in
O(a2b3/2) time with a being the number of variables, and b
the number of constraints. The LP in (12) has 2n variables and
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Fig. 4. Illustration of the first two iterations of Algorithm 1. (a) First iteration.
(b) Second iteration. (c) Third iteration. (d) Regret after three iterations.

2n constraints with n being the number of objective functions
(see (21) in the Appendix for details). Thus, the runtime of
Algorithm 1 is O(K(tLSMOP + n3)).

Observation 4 (Regret bound): The value of R̄(N) returned
by the algorithm is an upper-bound on the value of regret in the
original problem (7). Indeed, initially N = {Ω} and C(Ω) =
W . At every iteration, a neighborhood N ∈ N is split into at

most n subneighborhoods such whose convex hulls are disjoint
and collectively form C(N). Then, by Theorem 2, it holds that
maxw∗∈W minw′∈Ω r(w′|w∗) ≤ maxN∈N R̄(N).

Lemma 2 (Algorithm Completeness): The set Ω(K) returned
by Algorithm 1 on input K asymptotically and monotonically
approaches a set with zero regret as K → ∞.

Proof: The proof follows by contradiction: If the result did
not hold, then a neighborhood N ∈ N would fail to decrease in
size when split (Lines 11–15). This in turn requires that there
is a wi ∈ N ⊆ Ω(K) such that ||w̄(N)−wi||2 decreases to 0.
Since w̄(N) is chosen to maximize R̄(N), this can only occur
if R̄(N) is unbounded at wi implying that the objectives are
unbounded at wi in violation of Assumption 2. �

Observation 5 (Optimality for Discrete Solution Spaces): In
the case where the solution space S of the LSMOP in (3)
is discrete, the function u(w) will be piece-wise linear by
Lemma 1. IfK is at least the number of linear pieces ofu(w), the
solution set Ω(K) has zero maximum regret and is the smallest
set that accomplishes this. Indeed Ω(K) is comprised of exactly
one weight in each linear piece of u(w). Since the regret is
defined by the error of a first order approximation, this value is
exactly zero on each linear piece.

In the next section, we extend Algorithm 1 to the case where
Assumption 1 does not hold. That is, where no exact solver for
the optimization Problem 3. This is followed by an extension to
Algorithm 1 for the case when a prior belief about the optimal
weights of a user are known (See Section VI). It should be noted
that both extensions reduce to Algorithm 1 when the suboptimal
solver is optimal, or the prior belief is uniform (respectively).
Moreover, these extensions can be used in tandem for the case
where Assumption 1 is violated and a prior belief about the
optimal user weights is known. This last is not formally stated,
but is trivially obtained from the descriptions of each extension
to follow.

V. EXTENSION TO SUBOPTIMAL SOLVERS

In this section, we illustrate how Algorithm 1 can be adapted
to accept suboptimal solvers for the underlying LSMOP. Instead
of s∗(w), an optimal solution to an LSMOP for weights w
(see (5)), consider a feasible solution ŝ(w) ∈ S obtained from
a suboptimal solver. Following Section II and given any weight
vector w ∈ W , we let û(w) = c(ŝ(w),w) (see (2)) be the cost
of the solution ŝ(w) given weightsw. Observe that û is identical
to the functionu (see (3)) except that a suboptimal solution ŝ(w)
is now in place of s∗(w).

A. Look-Up Table Solutions

Algorithm 1 relies heavily on the concavity of u(w) as a
function ofw, which is guaranteed from the optimality of s∗(w).
Therefore, the function û(w)–the cost of a solution computed
using a suboptimal solver–is not guaranteed to be concave. In this
section, we begin with a technique to replace û(w) with a con-
cave function. The high level idea is to maintain a look-up table,
i.e., a set of discovered solutions T . Given any weight w ∈ W ,
we define a new solver sT to select the best solution in T . In
detail, given a set of sampled weights Ω = {w1, . . . ,wr} ⊂
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W, r ≥ 1, we denote by T (Ω) = {ŝ(w),w ∈ Ω} the set of
all solutions to weights w ∈ Ω obtained via the suboptimal
solver ŝ.

For any subset of weights Ω ⊂ W and its associated set
of discovered solutions T (Ω), we define the best discovered
solution to any weight w ∈ W as

sT (w) = argmin
s∈T (Ω)

c(s,w). (13)

Further, we define a best discovered cost function uT (w) =
c(sT (w),w). Finally, we define the best discovered regret func-
tion for any weights w′,w∗ ∈ W

rT (w
′|w∗) = w∗ · f(sT (w′))− uT (w

∗).

We now prove that for any subset Ω, the best discovered cost
function uT (w) has the same properties as the optimal cost
function u(w) from (3) that are leveraged by Algorithm 1. For
the remainder of this section, we assume that Ω is a nonempty
countable subset of W , and we let T (Ω) denote the associated
set of discovered solutions.

Lemma 3 (Best Discovered Cost Properties): For any set
of weights Ω, it holds that uT (w) is a concave continuous
function of w ∈ W for which ∂uT (w) is a subgradient given
by f(sT (w)) for all w ∈ W . Further, for all w ∈ Ω, uT (w) ≤
û(w).

Proof: Begin by observing that for any weights w1,w2 ∈
W , it must hold that uT (w1) ≤ c(sT (w2),w1). Indeed, by the
definition of uT , if the observation does not hold, then

uT (w1) = c(sT (w1),w1) > c(sT (w2),w1)

implying that sT (w1) is not a minimizer of c(s,w1) over
T (Ω) (since sT (w2) ∈ T (Ω) by (13)), which is a contradiction
of the definition of sT (w1) from (13). Therefore, uT (w1) ≤
c(sT (w2),w1) for all w1,w2 ∈ W . Next, we establish the
concavity of uT (w).

For any w1,w2 ∈ W and λ1 ∈ [0, 1], λ2 = 1− λ1, let w =
λ1w1 + λ2w2. From (13), and the definition of uT

uT (w) = c(sT (w),w) = w · f(sT (w))

= λ1w1 · f(sT (w)) + λ2w2 · f(sT (w))

= λ1c(sT (w),w1) + λ2c(sT (w),w2)

≥ λ1uT (w1) + λ2uT (w2)

where the inequality holds by the observation made at the top of
the proof. This establishes the concavity of uT (w). The continu-
ity ofuT (w) therefore follows from the proof of Lemma 1. Next,
we show∂uT (w

∗) = f(sT (w
∗)), ∀w∗ ∈ W . Letw′,w∗ ∈ W ,

then from our first observation

uT (w
′)− uT (w

∗) = w′ · f(sT (w′))−w∗ · f(sT (w∗))

≤ w′ · f(sT (w∗))−w∗ · f(sT (w∗))

= f(sT (w
∗)) · (w′ −w∗)

which establishes f(sT (w
∗)) as a subgradient of uT (w) at

w∗. Finally, we show that for all w′ ∈ T (Ω), uT (w
′) ≤ û(w′).

Since w′ ∈ Ω, it must hold that ŝ(w′) ∈ T (Ω) by the definition

Algorithm 2: MRPS WITH HEURISTIC SOLVER.

of T (Ω). Therefore, from (13) and the definition of uT (w),
it must hold that uT (w

′) = c(sT (w
′),w′) ≤ c(ŝ(w′),w′) =

û(w′) which completes the proof. �
Lemma 3 implies that the cost function uT (w) has the same

properties as the optimal cost function u(w) (established in
Section III) that made Algorithm 1 possible.

B. Adapted Algorithm

Leveraging Lemma 3, we now propose minor modifications
to Algorithm 1 that will allow it to accept suboptimal solvers.
The procedure is outlined in Algorithm 2 and closely follows
Algorithm 1. The primary modifications are as follows: In Line
2 of Algorithm 2, we initialize the set of discovered solutions
T (Ω). In Line 5, we replace the definition of R̄(N) for a
neighborhood N ∈ N that is given in (10) with a version where
s∗(w) is replaced with sT (w) given in (13) for any weight
w ∈ W . Following the definitions in Section IV, recall that
given a set of weights Ω ⊆ W and a neighborhood N associated
with weights in Ω, the function R̄(N), and its associated weight
vector w̄(N) are defined in (10) relative to a functionR(w′|w∗)
for weights w′,w∗ ∈ W . This latter function is defined as
R(w′|w∗) = w∗ · f(s∗(w′))− P (w∗) for a specific plane P
defined in that section. It was shown in Theorem 2 that R̄(N) is
an upper bound for the maximum regret in the neighborhood N
given Ω. In Algorithm 2, we simply replace s∗(w) with sT (w)
in all preceding function definitions. In a manner identical to
the proof of Theorem 2, it is easily verified from the results of
Lemma 3 that the modified function R̄(N) is an upper bound
on the maximum best known regret rT in the neighborhood N .
Further, the values R̄(N), w̄(N)may still be obtained by solving
the linear program (12) with s∗ replaced with sT .

Next, Lines 6–8 replace the conditional stopping criteria in
Lines 6–7 of Algorithm 1. In practice, we have noticed that if the
suboptimal solver ŝ is a poor estimate of the optimal solution s∗,
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then using a conditional stopping criteria R̄(N) = 0 for all N ∈
N tends to cause the Algorithm to terminate prematurely. This
is because there may exist neighborhoods N and weights w in
the convex hull of N such that c(ŝ(w),w) < minw′∈N uT (w

′)
which cannot happen when using an optimal solver. Finally,
in Line 10, when a weight w̄ is added to Ω, its corresponding
suboptimal solution ŝ(w̄) is added to T (Ω). The remainder of
the Algorithm is unchanged from Algorithm 1. Observe that if
ŝ(w) = s∗(w) for allw ∈ W , that is, if the “suboptimal” solver
is in fact optimal, then Algorithm 2 reduces to Algorithm 1 by
construction.

C. Extended Error Bound

We conclude with an error bound guarantee in the case that
solutions ŝ(w) are derived from a suboptimal solver with a
known approximation factor. Let Ω be a set of weight vectors
computed by Algorithm 2, and let N be the set of partitioning
neighborhoods associated with Ω. Finally, let

β = max
N∈N

max
w∈N

R̄(N)

uT (w)
. (14)

Intuitively, β represents the maximum relative regret over all
neighborhoods N ∈ N . We write β as a ratio opposed to a
difference as in (6) to derive an approximation factor. Observe
that the value of β is easily computed since each neighborhood
N is a discrete set of weights in Ω. Thus, for each w ∈ N and
each N ∈ N , uT (w) = w · f(sT (w)). We offer the following
result.

Theorem 3 (Approximation factor): Let Ω be the set of
weights computed by Algorithm 2 with input solutions ŝ(w)
and β be given by (14). If the solutions ŝ(w) are derived from
a solver with known approximation factor α, then, for every
w∗ ∈ W , there exists a w′ ∈ Ω such that

c(sT (w
′),w∗) ≤ α(β + 1)u(w∗).

Proof: For any w∗ ∈ W , there must exist a neighborhood
N such that w∗ ∈ C(N) since C(N), N ∈ N forms a parti-
tion of W . Since N ⊆ Ω it must hold by Lemma 3 and the
assumption that ŝ(w) is derived from a solver that approx-
imates s∗(w) to within a factor of α of the resulting cost,
that for all w ∈ N , uT (w) ≤ û(w) ≤ αu(w). Let P denote
the hyperplane passing through {u(w),w ∈ N} and PT the
hyperplane passing through {uT (w),w ∈ N}. Observe that
since u(w) ≥ α−1uT (w) for all w ∈ N and P, PT are planes,
it must hold that αP (w) ≥ PT (w), ∀w ∈ C(N). From the
definition of R̄(N), there must exist a weight w′ ∈ N with
w∗ · f(sT (w′))− PT (w

∗) ≤ R̄(N) implying that

w∗ · f(sT (w′)) ≤ R̄(N) + PT (w
∗)

≤ R̄(N) + αP (w∗)

≤ R̄(N) + αu(w∗) (15)

where the final inequality holds from the concavity of u(w)
(see Observation 2) implying that u(w) lies below the plane
P (w) for w ∈ C(N). Letting w′′ = arg minw∈Nu(w), we ob-
serve by the concavity of u(w), uT (w) (see Lemma 3) that

u(w) ≥ u(w′′) and uT (w) ≥ minw∈N uT (w). Since uT (w)
is within a factor of α of u(w) for all w ∈ N and w′′ ∈ N by
definition, it must hold that u(w∗) ≥ u(w′′) ≥ α−1uT (w

′′) ≥
α−1 minw∈N uT (w). Thus

R̄(N)

u(w∗)
≤ α

R̄(N)

min
w∈N

uT (w)
= αmax

w∈N

R̄(N)

uT (w)
≤ αβ. (16)

Thus, from (15) and (16)

w∗ · f(sT (w′))

u(w∗)
≤ α(β + 1).

Finally, noting that c(sT (w
′),w∗) = w∗ · f(sT (w∗)) com-

pletes the proof. �
In this section, we extended the algorithm introduced in

Section IV to include suboptimal solvers. Moreover, when the
suboptimal solver is an approximation algorithm we retain a
bound on the error of a solution set. In the following section, we
consider another extension to include stochastic settings.

VI. EXTENSION TO STOCHASTIC SETTINGS

In this section, we consider two cases of stochastic inputs
to the problem: First, there is a bias representing the likely
relevance of some weights over others. Second, the constraints
defining the planning problem are random, i.e., different in-
stances have to be considered.

A. Weights as a Random Variable

In practice, some regions of the weight space W may cor-
respond to Pareto-optimal solutions that are less relevant, e.g.,
there is prior information available on what weights may be
likely to represent of a user’s preference. In the example in Fig. 1,
feasible solutions were trajectories between fixed start and goal
configurations, while the objectives were trajectory length and
comfort. It may be very unlikely for any user to only care about
comfort.

In this section we consider that a probability density function
(PDF) g(w) over W is given. The problem then becomes one
of computing a set of weights Ω that approximates solutions
corresponding to probable weights, i.e., that minimizes the
maximum regret discounted by the prior g(w).

First, we introduce a notation shorthand: Given a set of
sampled weights Ω and a weight w in W , we define the regret
of w using Ω as

rΩ(w) = min
w′∈Ω

r(w′|w). (17)

The goal of this section is to compute a set of weights that address
Problem 1 while considering the prior belief expressed by g(w).
To this end, consider two optimization problems

min
Ω

|Ω|≤K

∫
W
rΩ(w∗)g(w∗)dw∗, (18a)

min
Ω

|Ω|≤K

ess supw∗∈WrΩ(w∗)g(w∗). (18b)
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We refer to the term rΩ(w∗)g(w∗) as the discounted regret.
The problem in (18a) seeks to compute a setΩ that minimizes the
expected regret E[rΩ(w∗)], while the second (18b) minimizes
the essential supremum (supremum up to a set of measure zero)
of the discounted regret.

While both problems have their applications, we focus on
solving (18b). The main shortcoming of (18a) is that it can
lead to placing samples to reduce the regret for a large set of
weights with low probability. However, as we have seen in Fig. 1,
there can be a large subset of samples that yields similar–or
even identical–corresponding optimal solutions. Minimizing the
expected regret can then overly favour minimizing the regret for
a large subset of weights, regardless of the incurred regret.

B. Probabilistic Sampling Algorithm

We now adapt Algorithm 1 to solve the probabilistic problem
posed in (18b). To this end, for any neighborhood N of weights
with convex hull C(N), let

p(N) =

∫
C(N)

g(w)dw

denote the probability that the random variable w∗ lies in C(N).
We propose a simple, yet effective change to Algorithm 1 in
order to handle probabilities over weights, and denote the new
algorithm as MRPS− P. To solve for the objective in (18b), we
replace R̄(N) in Lines 5 and 16 of Algorithm 1 with R̄p(N) =
p(N)R̄(N). That is, the neighborhood N we select to place
an additional sampled weight is the one with the largest regret
bound R̄(N), discounted by the probability p(N) that C(N)
contains w∗. In this way, we avoid adding weights to Ω that lie
in regions that are unlikely to contain w∗ unless the regret of
not including such a weight is sufficiently large. Letting Ω, R̄p

denote the outputs of the modified version of Algorithm 1, we
offer the following results with regard to the objective (18b):

Lemma 4 (Worst Case Discounted Regret): The maximum
discounted regret R̄p returned by Algorithm MRPS− P is an
upper bound on the objective in (18b)

ess supw∗∈WrΩ (w∗) g (w∗) ≤ R̄p. (19)

Proof: Since N forms a partition of W (Section IV-B), there
exists a neighborhood N ∈ N with w∗ ∈ C(N). Therefore

rΩ(w∗)g(w∗) ≤
∫
C(N)

rΩ(w)g(w)dw

≤ R̄(N)

∫
C(N)

g(w)dw = R̄p(N) ≤ R̄p. (20)

The first inequality holds by Theorem 2, while the final inequal-
ity holds since modified Algorithm 1 returns the maximum value
R̄p over all neighborhoods in N . �

In addition to providing a bound on the objective of (18b), we
observe that R̄p also provides a bound on the objective of (18a).
Indeed, by Lemma 4

E
[
rΩ (w∗)

]
=

∫
W
rΩ(w)g(w)dw ≤ R̄p

∫
W
dw = R̄p.

Thus, with a simple modification, we can adapt the MRPS al-
gorithm to incorporate prior beliefs over weights. The algorithm
then greedily minimizes an upper bound of the discounted regret.
Observe that if the PDF is uniform, i.e., if all weights are equally
likely to represent a user, then the proposed extension to theMRPS
algorithm, reduces to the original MRPS algorithm. In the next
section, we extend Algorithm 1 to account for multiple problem
instances.

C. Constraints as a Random Variable

As a final extension of Algorithm 1, we treat the constraints
S in (1) as random variables. This encompasses the case where
multiple instances of (3) are possible. Consider, e.g., the problem
detailed in Fig. 1. Here, we compute trajectories between a
fixed start and goal to minimize a tradeoff between travel time
and discomfort. However, changing the positions of the start
and goal would result in a different instance of problem (3)
with a (potentially) different set of weights Ω computed by
Algorithm 1.

This may seem to limit the applicability of the approach
presented here. However, there is a simple extension. We define a
random variable I existing in a sample space I which represents
a possible instance of the constraints S . Defining s∗I(w) as an
optimal solution (5) with S = I given fixed weights w, we
may define a vector of hyperobjectivesfE(w) = EI [f(s

∗
I(w))].

Similarly, we define uE(w) = w · fE(w). It is easily verified
using an identical strategy to the proofs presented in Section III
that uE(w) possesses all of the properties (continuity, concav-
ity, ∂u(w) = fE(w) for all w ∈ W) that make Algorithm 1
possible. Further, the function uE(w) is precisely the expected
optimal cost EI [uI(w)] for uI(w) = w · f(s∗I(w)). Indeed for
any weight w ∈ W

EI [uI(w)] = w · EI [f(s
∗
I(w))] = w · fE(w) = uE(w).

This implies that if rE(w′|w∗) = w∗ · fE(w′)− uE(w∗) for
w′,w∗ ∈ W then rE(w′|w∗) is precisely the expected regret
EI [w

∗ · f(s∗I(w′))− uI(w
∗)]. Thus, by replacing f(s∗(w))

with fE(w) in Algorithm 1, we can obtain a set Ω with bounded
maximum expected regret over all constraints I.

VII. NUMERICAL RESULTS

We demonstrate our algorithm in simulations for two different
applications: 1) trajectory planning; and 2) multirobot coordi-
nation. We consider three variations of our problem: 1) optimal
solvers are available (Section IV); 2) only a suboptimal solver is
available (Section V); and 3) a prior belief over relevant weights
is given (Section VI). These experiments illustrate how the pro-
posed methods allow for computing presampled sets of weights
and their solutions that closely approximate solutions to any
weight requested online. In particular, we report the worst-case
approximation error. In an additional experiment, we investigate
how the proposed method can be used for presampling solution
in order to learn user preferences.
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Fig. 5. Example results for the Dubins planning problem with two objectives. Shown are the approximations of u(w) and resulting regret with Uniform, adaptive
sampling (AWS), and the proposed approach MRPS.

A. Simulation Setup

1) Planning Problems: The first planning problem involves
computing Dubins trajectories for different objectives, similar to
the example shown in Fig. 1. In the two-objective case we con-
sider the competing objectives of trajectory length and integral
square jerk (a common metric of comfort [2], [17]). For higher
dimensions we additionally consider the maximum jerk, as well
as avoiding high-risk areas of the environment. Given a weight
vector, we compute the Dubins’ trajectory that optimizes the
resulting cost function numerically. In detail, because Dubins’
trajectories are easily computed for a fixed minimum turning
radius, we iterate over small increments in turning radius within
given bounds selecting the one with minimum cost. Though the
result is suboptimal, it can be made arbitrarily close to optimal
by increasing the resolution; our experiments used 10 000 steps.
Thus, we consider this approach to satisfy Assumption 1. The
second planning problem is the mTSP with deadlines [48]. We
consider two objectives: 1) the number of vertices visited before
their deadline; and 2) the total distance travelled by all robots.
Since the problem is NP-hard, we use it to highlight the extension
of our work to suboptimal solvers in Section V.

2) Evaluation Measures: For evaluation we rely on a large
(1000) set of uniformly randomly sampled weights. We evaluate
algorithm performance using the regret as defined in (6), as well
as the relative regret where the difference in (6) is replaced with a
ratio. For the experiments with prior distributions over weights,
we consider the essential supremum of the discounted regret and
the expected regret from (18b) and (18a), respectively.

3) Baseline Algorithms: We compare our proposed algo-
rithm against three baselines: 1) Uniform sampling in the weight
space [15], [49], [50], denoted by Uniform; 2) sampling weights
from a prior distribution for the stochastic problem settings,
denoted by Prior; and 3) the adaptive weight sampling [19],
[40], denoted as AWS. We refer to our proposed approach from
Algorithm 1 as MRPS, and its modification to suboptimal solvers
as MRPS− S and considering probabilistic weights as MRPS− P.

4) Sampling Budgets: We test the different algorithms with
different budgetsK for the number of weight samples. Since our
algorithm initially computes then single-objective solutions, we
only consider K ≥ n.

B. Experiments With Optimal Solvers

We begin with planning Dubins trajectories as shown in Fig. 1.
To find solutions s∗(w), the motion planner can sample a large
set of Dubins trajectories using different turn radia and pick the
optimum among these.

1) Illustrative Example: First, we present more insight into
the example from Fig. 1 with K = n+ 5 = 7 samples. We
notice that MRPS produces a larger variety of sample trajectories,
especially those with shorter length. This is also visualized
in the approximations of the Pareto front: Uniform exhibits
a large gap, while the proposed method places samples more
homogeneously. In Fig. 5 we show the optimal cost u(w)
(ground truth computed with 10 000 uniform weights), together
with the tangent planes of the approximating samples of both
baselines Uniform and AWS and our proposed approach. Here,
Uniform places weights – and thus tangents – in an equal
distance along the x-axis from one another. This results in
numerous samples with similar tangents on the left side of
the plot where the function u(w) is almost linear. At the right
end where u(w) changes more rapidly, uniform does not have
sufficient samples for a tight approximation. In contrast, MRPS
places more samples at the right end resulting in a smaller gap
between the best approximating tangent and the u(w), such that
the maximum regret is ≈ 1/10 compared to Uniform. While
AWS improves over Uniform, the approximation is not as tight
as MRPS, resulting in a maximum regret that is still twice as
large.

2) Quantitative Analysis: We repeat the above Dubins plan-
ning experiment with randomized goal locations and various
sampling budgets K. Results are shown in Fig. 6. When K = n
only the basis solutions e1, . . . , en, i.e., the single objective
solutions, are available. We observe that MRPS achieves substan-
tially smaller absolute and relative regret values for all K > n
compared to Uniform. With just 3 samples, MRPS achieves a
performance comparable to Uniform using 10 samples, and
for 20 samples MRPS provides approximations with effectively
no regret. The AWS approach performs similar to MRPS for few
samples (K = n+ 1 andK = n+ 3), yet makes only very little
progress for largerK. In summary, the experiment shows that the
proposed MRPS method is able to efficiently place samples that
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Fig. 6. Results for the Dubins experiment with n = 2 objectives.

TABLE I
MEAN AND 95TH PERCENTILE OF THE MAXIMUM REGRET FOR THE DUBINS

PLANNING PROBLEM WITH AN OPTIMAL SOLVER

allow for minimum regret approximations for any scalarization
weight.

3) Varying Number of Objectives: We also considered prob-
lem variances with 3 or 4 objectives with detailed results shown
in Table I. As expected, with increasing number of objectives
the regret increases (with exception of MRPS for K = n+ 1).
Nonetheless, MRPS achieves the best performance under all
settings. In particular, MRPS continues to decrease the regret
for larger K almost converging to an optimal set of samples
with zero regret. In contrast, Uniform and AWS make only little
progress for K > n+ 5 in the three objective setup.

In summary, this experiment showed that, given an optimal
solver, Algorithm 1 solves Problem 1 for varying number of
objectives, strongly outperforming baseline methods.

Fig. 7. Results for the mTSP experiment with n = 2 objectives, 20 vertices,
and 20 robots with different suboptimal LNS heuristics. (a) Cheap heuristic (10
iterations). (b) Strong heuristic (1000 iterations).

C. Experiments With Suboptimal Solvers

Next we conduct experiments when no optimal solver is
available, as discussed in Section V. The planning problem is a
mTSP with deadlines. Suboptimal solutions are computed using
a Large Neighbourhood Search (LNS) heuristic [51] running
for with varying computation budget, i.e., number of iterations.
We randomly generate 10 different problem instances with 20
vertices and 20 robots, all starting at a central depot. Due to the
poor scalability of exact solvers for the problem, we do not have
access to the ground truth u(w). Instead, we compute the regret
with respect to solutions found by the LNS heuristic with 10 000
iterations.

Fig. 7 shows the results, comparing Uniform with MRPS and
the modification MRPS− S proposed in Section V. Given the
suboptimal solver for mTSP, the assumption made in MRPS

are not satisfied. The algorithm can still be executed, yet it
may prematurely determine that it is unable to make further
progress and thus terminate. This experiment thus highlights the
benefit of MRPS− S when no exact solver is available. The AWS
approach cannot be directly incorporated into the LNS solver
since it poses an equality constraint on the solution vector. Such
a constraint raises issues of feasibility particularly in discrete
optimization problems like mTSP. Thus, AWS is omitted from
this experiment. Further, we compare algorithm performance
when different solvers for the mTSP are available: We consider
a strong heuristic, where we run LNS with 1000 iterations, and
a cheap heuristic, using LNS with only 10 iterations.

First, we notice that the different version of the heuristic di-
rectly influence the solutions: The regret is substantially smaller
for the stronger heuristic using 1000 iterations. Yet, under
both settings we observe that MRPS does not make any more
progress after three iterations. Since Algorithm 1 depends on
having access to an optimal solver, it terminates prematurely. For
both variants of the heuristic, Uniform eventually outperforms
MRPS. However, we observe that MRPS− S avoids the pitfalls
of MRPS and strongly outperforms both, MRPS and Uniform.
We notice that due to the suboptimal solver, none of the meth-
ods converge to a regret of zero. While Uniform eventually
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Fig. 8. Pareto sampling with prior distributions over weights. We compare the original algorithm MRPS with the adaptation MRPS− P proposed in Section VI-A.
Top row: Objective function u(w) and the sample points placed by the respective algorithms. Middle row: Prior belief. Bottom row: Regret and discounted regret
incurred by the solutions.

ties with MRPS− S, our methods remains much more efficient:
For the strong heuristic, Uniform requires n+ 20 samples to
achieve the same regret as MRPS− S already has with n+ 5
samples. Lastly, the performance gap of MRPS− S (and MRPS)
compared to Uniform is larger for the stronger heuristic. Since
our method relies on the solution vectors of previous solutions,
it is misguided when the solver returns poor solutions. Thus, for
unreliable solvers, Uniform can be more robust.

Overall, the experiment has shown that: 1) the original ap-
proach MRPS is challenged when a suboptimal solver is used,
eventually performing poorer than uniform sampling. This is
particularly apparent when the solver is a cheap heuristic;
2) The extension MRPS− S addresses this shortcoming and is
able to find strong solutions within few iterations, strongly
outperforming greedy for cheap and strong heuristics.

D. Experiments With Stochastic Problem Inputs

We now consider the setup from Section VI-A where a prior
belief over weights is available. The objective is to minimize the
essential supremum of the discounted regret formulated in (18b).
We consider priors g(w) in the form of a normal distribution,
with uniformly random mean from the weight space W , and
uniformly random variance within [.01, .1]n.

1) Illustrative Example: Fig. 8 showcases the difference be-
tween the different approaches when planning Dubins trajecto-
ries with two objectives. We observe that for all approaches, the
maximum regret and the maximum discounted regret occurs at
different weights. While MRPS achieves the lowest regret, its dis-
counted regret is largest since it neglect to sample around weights
with a high prior belief. In contrast, the modified approach
MRPS− P places fewer samples at the right end, trading-off a
higher regret for a smaller discounted regret. In comparison,
directly sampling from the prior belief (labelled Prior) does
not yield the desired result: Here samples are too concentrated

Fig. 9. Results for the Dubins experiment with n = 3 objectives and prior
distributions over weights.

around the distribution mean and does incur a higher maximum
discounted regret.

2) Quantitative Results: Fig. 9 shows detailed results for
varying numbers of samples K for Dubins trajectories with
three objectives. We include the maximum discounted regret
and expected regret corresponding to the problems formulated
in (18a) and (18b), respectively. Table II additionally contains
the discounted regret for 2 and 4 objectives.

In Fig. 9, we observe that MRPS− P does not perform well
with only K = n+ 1 sample. Indeed, in the first iteration it is
equivalent to MRPS and does not consider the prior belief since
there is only one neighbourhood to explore. Yet, for K = n+ 3
MRPS− P shows already the lowest essential supremum of the
discounted regret, and approaches 0 for K = n+ 10. The origi-
nal method MRPS achieves a similarly strong performance for
only K = n+ 20. Thus, when the sampling budget is lim-
ited, MRPS− P performs better. Among the baselines Uniform
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TABLE II
MEAN AND 95TH PERCENTILE OF THE MAXIMUM DISCOUNTED REGRET FOR

THE DUBINS PLANNING PROBLEM WITH AN OPTIMAL SOLVER AND PRIOR

DISTRIBUTIONS OVER WEIGHTS

performs best. As highlighted in the example in Fig. 8, only
sampling from the prior belief (Prior) does not explore dif-
ferent weights efficiently and thus only makes little progress
after the first few iterations. In the right plot, we illustrate the
expected regret. Overall, we observe a similar trend as for the
maximum discounted regret, yet Uniform, MRPS also approach
0 forK = n+ 20. Yet, MRPS− P shows the strongest benefit for
K = n+ 3 and K = n+ 5, highlighting that while MRPS− P

is designed to solve (18a), it also bounds the error for (18b) and
thus is suitable for tackling both problems. For completeness,
we include results for AWS. Since this approach does not take the
prior into account, it is unable to effectively progress after a few
iterations and thus not suitable for this problem without further
adaptation.

Overall, the third experiment showed that MRPS− P effec-
tively adapts the original algorithm to the setting where a
prior belief over weights is given. For the two objectives–the
maximum discounted regret and the expected regret–MRPS− P

proved to be more sample efficient than the baseline methods
and the original MRPS algorithm. In summary, throughout the
three different experiments we demonstrated that our proposed
algorithm and its two extensions provide are able to approximate
the set of Pareto-optimal solutions for different problem variants.

E. Computation Times

We briefly report the practical computation time for a Python
implementation run on a I7-10750 H 2.6 GHz with 32-GB RAM.

ComputingK = n+ 10 samples with MRPS or MRPS− P for the
Dubins problem runs within≈ .4s for two objectives, and within
≈ .5s for four objectives, on average. For the mTSP problem
the computation time of MRPS− S for K = n+ 10 samples is
≈ 1.1s for the cheap heuristic, and≈ 17s for the strong heuristic.

F. Reward Learning

To illustrate the practical impact of the proposed method, we
consider the problem of learning user preferences, i.e., learning
a user specific, but hidden weight vector w∗. Our algorithm
serves a preprocessing step to generate a ground set of potential
robot behaviors, from which we then elicit the solution that
best fits a user’s preferences. As mode of user interaction, we
consider learning from choice [7], [12], [15], [16], [50] where the
user is iteratively queried with two potential robot trajectories
and indicates the preferred one. Repeating this over multiple
iterations allows the robot infer about the user weights w∗.
Most algorithms for this problem require a set of presampled
trajectories from which the best query is selected using some
heuristic [12], [15], [16], [50]. These presamples are either
random trajectories [12], [16], or optimal solutions for uniformly
random weights for the LSMOP [15], [35], [50].

Our proposed algorithm MRPS can be used to generate pre-
samples for these learning problems. Thus, we compare the
learning progress over 10 iterations when either using Uniform

or MRPS samples. For a clear comparison, we use a simple,
deterministic user model: Presented with trajectories A and
B, they choose A if and only if f(A)w∗ ≤ f(B)w∗. Similar
to [7] and [46], the trajectory preferred in the previous iteration
constitutes one of the two trajectories presented in the next.
The robot can actively choose the second trajectory to be pre-
sented in the next iteration. We employ a random selection from
the presampled set (Random), or the minmax regret approach
from [15] (Regret). Finally, generating random user weights
w∗ is not trivial: When w∗ is drawn uniformly random, the
sample set Uniform comes from the same distribution, biasing
the experiment. Thus, we randomly select users from the union
of two sample sets Ω(Uniform) and Ω(MRPS) each of size
K = 20. We evaluate learning performance using the relative
error f(S∗(w′))·w∗/u(w∗), where w′ is the expected user weight.
This measure is widely used in reward learning problems [36]
and captures how well the learned cost function approximates
the unknown user cost function (parameterized by w∗) in terms
of the quality of the corresponding solutions.

We test this learning framework using the four feature Dubins
planning problem from earlier, with one fixed goal location.
Fig. 10 shows the result for learning with presampled sets of
various sizes K. We observe that the MRPS samples lead to
a smaller learning error than Uniform samples, regardless of
the query method (Random or Regret). Indeed, the Uniform

sets do not always include a close-to-optimal sample such that
the learning is eventually unable to make progress. That is the
case when w∗ was drawn from the MRPS samples. However, the
opposite effect is negligible: Learning with the MRPS samples
finds close-to-optimal solutions, implying that the error is very
small even when w∗ comes from Uniform.
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Fig. 10. Learning from choice with presampled sets of different size K.

When comparing different sizes K of the sample sets, we
observe that all approaches learn slightly slower for larger K—
the increased number of available trajectories seems to rather
distract the learning algorithm than offering more informative
queries. More surprisingly, when using Uniform samples, the
learning still stops making progress. This indicates that the larger
set still does not contain close-to-optimal solutions. This further
supports our earlier findings that while MRPS only needs small
K to find a close-to-optimal sample for any w∗, while Uniform
is unable to achieve the same even for large K.

In summary, the experiment shows that usingMRPS to generate
presampled solutions in reward learning allows for learning
close-to-optimal solutions with significantly fewer samples than
when relying on randomly generated presamples.

VIII. SUMMARY

In this article, we studied the problem of computing differ-
ent tradeoffs between competing objectives in robot planning
problems. Commonly, such problems are approached via linear
scalarization where multiple objectives are combined into a
single objective taking the form of a weighted sum. Thus, we
focused on computing a finite set of weights and corresponding
solutions such that any other solution can be approximated
with minimal regret. We studied fundamental properties of this
linear objective function and its relation to regret. Assuming
that we have access to an optimal solver for the scalarized
objective, we presented an iterative sampling algorithm that
repeatedly adds weights where the regret of the current set is
largest and return a tight error bound. Next, we extended the
algorithm to accept suboptimal solvers, and retained the error
bound when approximation factors are provided. In a second ex-
tension, we also considered prior beliefs over practically relevant
scalarization weights and adapted our algorithm to minimize
the discounted maximum regret. In a series of simulations, we
showcased the proposed methods for the three different problem
variants, demonstrating their higher sampling efficiency com-
pared to baselines. In a further experiment, we highlighted the
practical effect of well-designed sample sets when learning user
preferences for robot behavior.

IX. DISCUSSION AND FUTURE WORK

We extended our earlier results [2] eliminating the restrictive
assumption that an optimal solver is available and also extended

the framework to stochastic settings. This highly increases the
practical value of the proposed method. However, in this article
we focused on establishing theoretical results and limited the
evaluation to a series of simulation experiments. Future work
should investigate the practical benefits of our method in two dif-
ferent settings: Many planners require careful parameter tuning.
For any objective using a weighted sum, the presented method
can be used to efficiently explore different parameter settings,
especially when the the tuning process is sensitive. The presented
technique may also be adapted to tuning loss functions for
machine learning systems. The other application is learning user
preferences for robot behavior. We have shown that our method
yields samples that allow for learning user preferences more
accurately and more efficiently. The practical benefits should be
further investigate considering different modes of user interac-
tion and need practical verification in user studies. Finally, our
analysis is limited to linear scalarization. If the Pareto front of
the underlying MOP is nonconvex, linear scalarization fails to
capture all Pareto-optimal solutions, i.e., is not Pareto-complete.
However, many of the theoretical results presented here can
be extended to any scalarization technique that is concave
in the weight space. Thus, future work should consider how
our proposed algorithm may be adapted to techniques such as
Chebyshev-scalarization to ensure Pareto-completeness.

APPENDIX

A. Implementation of Max-Min Neighbourhood Regret

We detail the implementation of the linear program in (12).
We formulate the convex hull constraint w ∈ C(N) using a
scalars λ1, . . . , λn ∈ [0, 1] to write w as a convex combination
of the neighboughood weights w = λ1w1 + · · ·+ λnwn. The
equality constraints are given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

−1 0 . . . 0 w1
1 . . . wn

1

0 −1 . . . 0 w1
2 . . . wn

2

...
. . .

...
...

. . .
...

0 . . . −1 w1
n . . . wn

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

...

wn

λ1

...

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(21)
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The first row ensures that w lies in W (i.e., all its components
sum to 1). The second ensures the same for λ1, . . . , λn. The
other rows ensure that the ith element of the vectorw is a convex
combination of the ith component of all neighbourhood vectors
w1, . . . ,wn. In the objective function, we write P (w) using the
same convex combination as

x−
n∑

i=1

λiu
(
wi

)
. (22)

Finally, we require that wi ≥ 0 and λi ≥ 0 for all i =
1, . . . , n.
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[15] N. Wilde, D. Kulić, and S. L. Smith, “Active preference learning using
maximum regret,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 10952–10959.

[16] E. Biyik, M. Palan, N. C. Landolfi, D. P. Losey, and D. Sadigh, “Asking
easy questions: A. user-friendly approach to active reward learning,” in
Proc. Conf. Robot Learn., 2019, pp. 1177–1190.

[17] J. Levinson et al., “Towards fully autonomous driving: Systems and
algorithms,” in Proc. IEEE Intell. Veh. Symp., 2011, pp. 163–168.

[18] A. Botros, A. Sadeghi, N. Wilde, J. Alonso-Mora, and S. L. Smith,
“Error-bounded approximation of pareto fronts in robot planning prob-
lems,” in Proc. 15th Workshop Algorithmic Found. Robot., Springer, 2023,
pp. 506–522.

[19] I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for
multiobjective optimization: A new method for Pareto front generation,”
Struct. Multidisciplinary Optim., vol. 31, no. 2, pp. 105–116, 2006.

[20] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A differen-
tiable and modular control stack for autonomous vehicles,” in Proc. Conf.
Robot Learn., PMLR, 2023, pp. 2170–2180.

[21] Z. Lu, Z. Liu, G. J. Correa, and K. Karydis, “Motion planning for collision-
resilient mobile robots in obstacle-cluttered unknown environments with
risk reward trade-offs,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2020, pp. 7064–7070.

[22] Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social
navigation via explicit and implicit robot–human communication,” IEEE
Trans. Robot., vol. 36, no. 3, pp. 692–707, Jun. 2020.

[23] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic en-
vironments,” IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4459–4466,
Oct. 2019.

[24] M. Zucker et al., “Chomp: Covariant hamiltonian optimization for motion
planning,” Int. J. Robot. Res., vol. 32, no. 9-10, pp. 1164–1193, 2013.

[25] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Sci. Robot., vol.
8, no. 84, 2023, Art. no. eadf7843.

[26] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory genera-
tion with distributed model predictive control for multi-robot motion plan-
ning,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 604–611, Apr. 2020.

[27] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” Int. J.
Robot. Res., vol. 29, no. 5, pp. 485–501, 2010.

[28] Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation and
radio mapping for cellular-connected UAV with deep reinforcement learn-
ing,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4205–4220,
Jul. 2021.

[29] D. Kent and S. Chernova, “Human-centric active perception for au-
tonomous observation,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 1785–1791.

[30] B. Sakcak and S. M. LaValle, “Complete path planning that simultaneously
optimizes length and clearance,” in Proc. IEEE Int. Conf. Robot. Automat.,
2021, pp. 10100–10106.

[31] M. Cakmak, S.S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler, “Hu-
man preferences for robot-human hand-over configurations,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2011, pp. 1986–1993.

[32] E. Biyik, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions from diverse sources of human
feedback: Optimally integrating demonstrations and preferences,” Int. J.
Robot. Res., vol. 41, no. 1, pp. 45–67, 2022.

[33] S. Habibian, A. Jonnavittula, and D. P. Losey, “Here’s what i’ve learned:
Asking questions that reveal reward learning,” ACM Trans. Hum.-Robot
Interaction, vol. 11, no. 4, pp. 1–28, 2022.

[34] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer hu-
man guidance: Augmenting comparison-based learning with feature
queries,” in Proc. ACM/IEEE Int. Conf. Hum.-Robot Interaction, 2018,
pp. 132–140.

[35] N. Wilde, E. Biyik, D. Sadigh, and S. L. Smith, “Learning reward func-
tions from scale feedback,” in Proc. Conf. Robot Learn., PMLR, 2022,
pp. 353–362.

[36] N. Wilde and J. Alonso-Mora, “Do we use the right measure? Challenges
in evaluating reward learning algorithms,” in Proc. Conf. Robot Learn.,
PMLR, 2023, pp. 1553–1562.

[37] A. Bobu, D. R. Scobee, J. F. Fisac, S. S. Sastry, and A. D. Dragan, “Less
is more: Rethinking probabilistic models of human behavior,” in Proc.
ACM/IEEE Int. Conf. Hum.-Robot Interaction, 2020, pp. 429–437.

[38] J. Branke, J. Branke, K. Deb, K. Miettinen, and R. Slowiński, Multiobjec-
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