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a b s t r a c t   

Natural gas leakage can impose significant danger on a facility and its surrounding communities. Methods 
for early detection and diagnosis of such leakages have been developed and widely used for gas pipelines 
and storage tanks. Most techniques include inspection of sensor-aided mathematical models. Application of 
machine learning techniques to gas leakage detection has been rarely explored. In the present work, con
volutional network (to model spatial likelihood of leak) is combined with bi-directional long short-term 
memory layer network, or BiLSTM (to model temporal dependence of leak likelihood) to perform leak 
detection and diagnosis. The developed model was trained and tested using sequence of concentration 
profiles generated using open-source simulated data. The model learned successfully to predict gas leakage 
and classify its size. The study also explores the flexibility of this network to perform quick detection and 
diagnose with the limited data. While the networks did not require parameter adjustments to achieve high 
prediction accuracy, further optimization is possible through data selection and pre-processing. The model 
needs to be further tested for wide range of leak scenarios. At its present condition, the combined appli
cation of convolutional network and BiLSTM shows promising results for early and accurate leak detection 
in natural gas facilities. Experimental results are needed to confirm the effectiveness of the model and data 
uncertainty. 

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.    

1. Introduction 

Natural gas has become an integral part of society. It is widely 
used for residential and industrial purposes. Many systems were 
built to sustain the demand, such as pipeline networks, loading and 
receiving terminals, storage vessels. All these systems are prone to 
deterioration due to corrosion or aging, and this will become more 
prevalent as time goes on. This is associated with one of the primary 
issues in the chemical industry – gas leakage (Eckerman, 2005). The 
leakage of natural gas can result in severe environmental impact as it 
is a significant greenhouse gas. In addition, it can result in in
toxication, suffocation, or explosion, which results in damage to 
human health, property, reputation, and finances (Bonvicini et al., 
2015). To avoid these consequences, the safety of these systems must 
be developed. While inspection and maintenance can improve the 
reliability of pipelines and storage vessels, it is practically impossible 
to avoid gas leaks. Therefore, an early response plan needs to be put 

in place to reveal the leak and prevent escalation (Datta and Sarkar, 
2016). The first and crucial step is the detection of gas leakage, which 
has attracted a lot of attention from industry and research lately. 

Commonly used gas leakage detection methods rely on the 
manual inspection of pipelines and vessels. These methods require 
significant investments, time and labor but are not efficient in 
nature. With increasing pipeline distance and plant structure com
plexity, the effectiveness of these manual techniques is further re
duced. Other methods include monitoring process parameters, such 
as pressure, temperature, and flowrate (Xiao et al., 2018). These 
methods heavily rely on proper data acquisition and the accuracy of 
the mathematical models used (Doshmanziari et al., 2020). Specia
lized sensors are used for this purpose, such as acoustic, optical, 
electrochemical, and so on (Meribout et al., 2020). Use of image 
processing methods for gas leakage monitoring via infrared cameras 
have been suggested. This can detect methane molecules on the 
infrared spectrum (Fahimipirehgalin et al., 2021; Vollmer and 
Möllmann, 2017). 

In recent years, with the rapid development of machine learning 
techniques, neural networks have become popular in outlier detec
tion. Much work has been published in regards to the application of 

https://doi.org/10.1016/j.psep.2022.03.002 
0957-5820/© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.   

]]]] 
]]]]]] 

⁎ Corresponding author. 
E-mail address: fikhan@tamu.edu (F. Khan). 

Process Safety and Environmental Protection 160 (2022) 968–975 

http://www.sciencedirect.com/science/journal/09575820
www.elsevier.com/locate/psep
https://doi.org/10.1016/j.psep.2022.03.002
https://doi.org/10.1016/j.psep.2022.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2022.03.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2022.03.002&domain=pdf
mailto:fikhan@tamu.edu
https://doi.org/10.1016/j.psep.2022.03.002


neural networks for the detection of gas leaks (Ning et al., 2021; 
Pérez-Pérez et al., 2021; S. J. Song and Jang, 2018; Y. Song and Li, 
2021; Travis et al., 2020; Wang et al., 2021). These focus mainly on 
pipeline leak detection and involve various types of neural networks, 
such as convolutional neural networks, recurrent neural networks, 
hybrid networks, etc. For example, Wang et al. used artificial neural 
network to enhance the precision of frequency analysis in pipeline 
leak detection (Wang et al., 2021). The trained model achieved high 
accuracy but required a series of filters and signal transformation 
techniques. In another work, artificial neural network was used to 
predict near real-time gas leakage at a testing site using both si
mulated and field data (Travis et al., 2020). However, as in many 
cases with machine learning, this model was highly dependent on 
sensor data, and interference of unexpected winds caused the model 
to overestimate the leak rates by a significant factor. A separate work 
that investigated the application of artificial neural network in pipe 
leak detection achieved high accuracy in the detection of leakages 
and their locations (Pérez-Pérez et al., 2021). However, such accu
racy was achieved only under pressurized flow and was highly de
pendent on network configuration. 

A combined network of convolutional layer and convolutional 
long short-term memory (LSTM) layer was employed to predict 
leakage locations in an enclosed space (D. Song et al., 2021). In this 
work, the convolutional layer extracted spatial representations, 
while the LSTM layer extracted temporal representations. The model 
successfully adapted to the building layout but did not account for 
the leakage size and used input data not verified by an experiment. 
The authors did not utilize a “healthy” state where no leakage oc
curred, and misclassifications were not explored. In another work, 
convolutional network was used as a primary detection mechanism 
for gas leakages in galvanized steel pipes (Song and Li, 2021). The 
authors investigated many network architectures to see the effec
tiveness in separating leak detection from internal flow noise in the 
frequency domain. The difficulty of this model lied in the necessity 
of substantial data denoising and preprocessing, and it required 
input produced by a specific sensor. Another work used convolu
tional network as both feature extractor and classifier in a gas pi
peline setting (Ning et al., 2021). The network was aided by 
spectrum enhancement, which improved prediction accuracy and 
reduced training times. It also uses sound signals which may not be 
available for every pipe/vessel in an industrial setting and covers a 
limited number of leakage types. 

Given that leak of natural gas, as in an LNG terminal, can be a 
time-critical issue, its early detection and classification of the release 
size becomes very important from an accident escalation and miti
gation perspective. While detection of the gas leak is a primary 
objective in risk mitigation, classifying the leak can provide insight 
into the severity of the accident. Hence, if the leak cannot be brought 
to a stop in a short time, knowing the size of the leak may help in 
developing further measures, such as emergency plant shutdown or 
evacuation of nearby cities. In some scenarios, the classification of a 
leak may indicate whether the leak can be managed quickly or not. 

Leak classification can also be used in models that estimate risk. 
Since risk consists of accident probability and severity, leak classi
fication can be used for severity assessment. Visual data, for ex
ample, from infrared camera, can be utilized through machine 
learning to serve this purpose. However, only limited work has been 
done to analyze visual data with neural networks and its application 
to a leak scenario in a plant setting. While studies by Song et al. and 
Ning et al. achieved significant leak detection accuracy, the visual 
input data was not used in any of their works. 

This work proposes a combined model that primarily focuses on 
leakage detection and classification in case of a receiving terminal. It 
uses a pretrained GoogLeNet convolutional network as a feature 
extraction tool and LSTM as a classification tool. Training and testing 
data were generated using a CFD software that was previously va
lidated by field tests. This model employs visual input data and tries 
to optimize the speed of leak detection to reduce escalation and 
damage. The next part of this paper will explain the data generation 
procedure, the role of neural networks. Classification results will be 
presented in the following section, and different setups will be 
evaluated to optimize leak detection speed. Limitations of the pro
posed model will be discussed, and suggestions for future work will 
be given. 

2. Methodology 

2.1. Process overview 

Fig. 1 shows a four-step process for leak detection and classifi
cation: data generation using OpenFOAM, data processing and 
transformation, feature extraction using GoogLeNet, and gas leakage 
classification using the LSTM neural network. OpenFOAM software 
was used to generate a gas leak scenario in a receiving terminal and 
allowed for tracking the changes that happen within the first 50 s of 
the accident. It generated a series of images that were then trans
formed into videoclips via MATLAB functions. The major limitation 
of this study is that it is based on the generated data, which is dif
ficult to obtain in a live receiving terminal. However, it is possible to 
link real plant data (Wu et al., 2021) to the generated profiles for 
further analysis. Another area of application may lie in digital twin 
technology, where digital twins can generate such profiles, and the 
hybrid model can be used for leak detection and classification. 

Video footage is then fed into GoogLeNet convolutional network 
to extract sequences of feature vectors. These sequences of features 
are used in bidirectional long short-term memory layer neural net
work (BiLSTM) training to learn the classification of those sequences 
into gas leak categories. This model utilized the suitability of con
volutional networks for feature extraction from visual data, making 
the network training to produce more accurate results. Since data 
generated from OpenFOAM was proven reliable based on previous 
studies (Fiates and Vianna, 2016; Wu et al., 2021), the combined 
model showed promise for producing accurate results. 

Fig. 1. Methodology for gas leak detection using a combination of ConvNet and LSTM.  

A. Kopbayev, F. Khan, M. Yang et al. Process Safety and Environmental Protection 160 (2022) 968–975 

969 



2.2. Generation of training data 

Prior to building the model, available data on gas leaks were 
sought for use in network training and testing. It appeared there 
were not enough resources freely available online that could satisfy 
the neural network training requirements. Although Convolutional 
Network can generate additional data for proper training (Jain, 
2017), a bare minimum could not be met. Therefore, a validated 
mathematical simulation of a gas leak using OpenFOAM that had 
been published recently by (Wu et al., 2021) was adopted for the 
current purpose This generated sufficient data for network training. 
The upside of using this established model was that it was ready for 
immediate use following installation, and some key parameters 
were easily configured. The downside was that the result generation 
speed was limited by the virtual machine characteristics and could 
not be accelerated using a more computationally powerful engine. 
Another downside was the inability to change the geometry of the 
simulation since it was built and validated for that specific geome
trical setup. Changing the setup could potentially lead to inaccurate 
results. 

The work published by Wu et al. extensively describes the model 
developed. In short, the three-dimensional model combines com
putational fluid dynamics (CFD) with the ensemble Kalman filter 
(EnKF) to simulate leaked LNG vapor propagation in a typical re
ceiving terminal setting. The CFD module simulates the dispersion 
process through calculation of governing equations and turbulence 
models while the EnKF module allows assimilation of the data. The 
results of the model have been compared to the field test (the Burro 
8 spill test) conducted by the Lawrence Livermore National 
Laboratory (LLNL) at the Naval Weapons Center (Koopman et al., 
1981). In addition, CFD simulations were compared to an ANSYS 
FLUENT simulation. These tests have verified that CFD and EnKF 
coupling reproduced accurate results, and rhoReactingBuoyantFoam 
solver can be used as an alternative to simulate LNG vapor dis
persion. 

Data generation was performed using a receiving terminal setup 
with a complex layout, obstacles, buoyancy forces, etc., taken from 
Wu et al., Fig. 2 shows the layout of the receiving terminal and the 
location of the leakage (Wu et al., 2021). More details regarding 
geometrical setup, input parameters, and boundary conditions can 
be found in their work. The output of this simulation is the con
centration profiles of the plant, which is difficult to attain in real life. 
However, if some leakage data can be extracted, for example, in a 
controlled experiment, then it would be possible to generate a suf
ficient dataset for network training. Since leakage and non-leakage 

have substantial differences, the network should be tuned with little 
data. In this case, background noise should be taken into account 
depending on the specifics of the process. If the data is not sufficient, 
the available data can be used to tune the CFD model, which can 
then generate leakage profiles for network training and testing. 

To train a neural network, it is required to provide data of dif
ferent scenarios, such as different leakage locations or sizes. Since 
there was no provision to change the geometry of the simulation, the 
leakage velocity was set as the variable parameter. For our simula
tions, five scenarios were chosen: no leak; 10 m/s, 20 m/s, 30 m/s 
and 50 m/s leakage velocity. Because the leak size can be directly 
tied to the severity level, these scenarios reflect different states of 
the terminal: safe state, unsafe state with variable danger level. All 
scenarios were simulated within the first 50 s of the leak, which 
would allow for a quick response to the accident. 

The results of each simulation contained 51 PNG files where the 
1st PNG was the state of the system at t = 0, where the leak starts, 
and the following 50 files show the concentration profile at every 
second following the 1st leak at an elevation of 20 m from ground 
level. Fig. 3 shows an example of the concentration profile for 30 m/s 
scenario at t = 35 s; the axes and color description were removed for 
clarity. For each leakage velocity, the simulations were repeated 25 
times with the leakage velocity being altered slightly at each run (for 
example, simulations for 30 m/s contained simulations from 29 m/s 

Fig. 2. The layout of the receiving terminal used for gas leak detection tests 
(with permission from Wu et al., 2021). 

Fig. 3. LNG vapor dispersion at t = 35 s with leak velocity of v = 30 m/s.  
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to 31 m/s). Of these 25 simulations, 20 were for network training and 
5 for network testing. This allowed generalization of the dataset to 
ensure proper learning at each epoch. In addition, turbulence-re
lated coefficients were changed accordingly for each velocity to 
imitate the LNG dispersion closely. 

2.3. Data Transformation 

The generated data consisted of several thousands of images that 
were 759 by 610 pixels (the default setting for the simulation in 
OpenFOAM software). This format and amount of data is not con
venient to use for network training, as the images are not in
dependent and are sequences of different case scenarios. The data 
was first transformed into video format to simplify the input pro
cess, generating only 100 files for training and 25 for testing. 

In order to ensure homogeneity and integrity of the data, quality 
check was performed following each simulation run to ensure all 
files were of the same format and dimensions and were not cor
rupted in the process of transfer from the virtual machine to a local 
disk. For files that were altered or damaged, the simulation was 
repeated, and the new results replaced the corrupted ones. Finally, 
the sets of images were transformed into videos using MATLAB 
writeVideo function at 17 frames per second to produce 3-second 
clips for each simulation. 

Finally, the videoclips were resized to fit the input resolution of 
the GoogLeNet network using additional function that would 
transform 759 by 610-pixel frames into 224 by 224-pixel frames. The 
void space of each image was cropped from each frame to con
centrate attention to the important information. An example of the 
initial and resized frame is shown in Fig. 4. This process was con
ducted twice: 100 cases for network training and 25 cases for net
work testing. 

2.4. GoogLeNet Feature Extraction 

Gas leak detection is an integral part of accident mitigation and 
escalation prevention. In this paper, a Convolutional Neural Network 
(ConvNet) was trained to detect gas leaks and leak size. Labeled data 
was gathered to assist the training process as an example of su
pervised learning. Gas detection has been treated similar to a clas
sification problem that artificial neural networks have been widely 
used for. Since our input data consisted of visual content, ConvNet 
was chosen accordingly, as it is well suited for such input type. 

A typical neural network consists of an input layer, output layer, 
and a hidden layer (one or more). Input data entering the input layer, 
goes through hidden layer(s), and is then passed on to the output 
layer. Hidden layers transform data into sets of higher feature 

vectors through nonlinear operations; in the case of ConvNets, 
hidden layers perform convolution operations that generate feature 
maps that become the input of the next layer. In some cases, hidden 
layers may contain pooling layers, fully connected layers, and nor
malization layers. 

Convolutional networks can be used for classification tasks or 
just feature extraction; and they can be built from scratch or adapted 
from existing networks. As such, this work took advantage of the 
existing GoogLeNet convolutional neural network that is primarily 
used for image classification developed by researchers at Google 
(Szegedy et al., 2015). It is a complex network that consists of 27 
layers and includes convolution layers, pooling layers, inception 
modules, dropout layers, output layer and a SoftMax layer. The input 
layer accepts images of 224 by 224 pixels, while the output layer was 
initially designed to classify 1000 different images, and hence has an 
output layer of 1000 cells. In the proposed model, GoogLeNet was 
used as a feature extraction tool; extracted features are then sent to 
long short-term memory (LSTM) neural network for classification. 

To extract features out of frames in each video, GoogLeNet’s last 
pooling layer “pool5–7 × 7_s1″ and activations function was used to 
generate sequences of feature vectors. Each sequence is 51 cells long, 
corresponding to 51 frames of each video. Each sequence has 1024 
features that are used as input to the LSTM network. 

2.5. BiLSTM Network Training 

The next step is to build an LSTM network to classify gas lea
kages. The sequences of feature vectors are passed to the Sequence 
Input Layer with 1024 nodes. The input layer is connected to a bi
directional long short-term memory layer (BiLSTM) with 2000 units 
and a 50% dropout layer. BiLSTM is the learning mechanism for 
classifying sequential data that can account for the complete time 
series at each time step. It is achieved by passing the input data in 
both forward and backward direction to allow for more information 
to be readily available for the neural network, which preserves the 
context of input data. A dropout layer removes a portion of hidden 
layer units after each repetition during training and prevents the 
overfitting of the model (Srivastava et al., 2014). This allows gen
eralization of the model and prevents excess reliance on only a few 
of its input. 

A fully connected layer with an output size of 5 cells corre
sponding to gas leak size is used as an output layer. SoftMax layer 
and classification layer are used to assign probabilities of each class 
and subsequently make a decision (Goodfellow et al., 2016). In this 
work, we classify video footage into 5 categories:  

• No leak, 0 m/s 

Fig. 4. Initial and resized versions of the frame, v = 20 m/s and t = 35 s.  
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• Leak, 10 m/s  

• Leak, 20 m/s  

• Leak, 30 m/s  

• Leak, 50 m/s 

Although Wu et al. used leakage velocity of 15 m/s, for this work 
the leakage velocity was varied to showcase different accident sce
narios. 

Additional networks settings included: minibatch size of 16; 
adaptive moment estimation (Adam) solver; learning rate increasing 
from 0.0001 to 2.0; validation as well as data shuffling after each 
epoch. Minibatch size affects the number of times the network is 
updated in an epoch. Minibatch size and learning rate can be ad
justed if needed for convergence purposes. Minibatch size also re
duces memory requirements since the algorithm must perform 
calculations only over a fraction of the dataset at a time. 

The accuracy of classification is then measured by counting the 
number of correct predictions and dividing by the total number of 
cases: 

= = =
Accuracy

pred true
true

X
#( )

#
100%

A confusion matrix is then constructed to provide a visual re
presentation of the results. It compares the number of predicted and 
true samples of all categories in a single figure (Ting, 2017). The 
network was then trained and tested for different combinations of 
time durations to see the flexibility of the model in a context of 
limited data. 

3. Results 

3.1. Data generation and preparation 

As mentioned before, concentration profiles of LNG were gener
ated over 50 s of a gas leak scenario in a receiving terminal. The 
parameter settings for the simulation provided by Wu et al. were 
kept mostly unchanged. Thus, ambient temperature, wind velocity, 
direction, and vessel pressure were not altered. The only variable 
part was leakage velocity, and turbulence parameters, accordingly. 
Another choice was regarding elevation selection. Wu et al. docu
mented concentration profiles at three heights: 20 m, 32 m, and 
40 m. All elevations were shown to produce results in accordance 
with test data. Therefore, any of the three could be chosen in this 
work. The decision to choose 20 m was made to allow inclusion of as 
many obstacles as possible, as going higher would leave only tall 
vessels in the dispersion pathway. Other elevations can be con
sidered in future for comparing the results of gas leak detection and 
possibly combining the data from different heights for further ana
lysis for a relatively complete picture. 

Simulations were run 25 times for each leakage velocity, gen
erating a total of 125 runs. The computational capacity of OpenFOAM 
was limited to the computational capacity of the Virtual Machine 
used. A standard laptop with Ubuntu 18.04 operating system has 
been used in this case. With this setting, a single simulation of a gas 
leak had a runtime of approximately 25–40 min. An additional 
3–5 min were required to format and save the results using a se
parate software (ParaView), according to a template that mitigates 

noise during training. Running the simulations was the lengthiest 
part of the project. 

As mentioned, each of the five different leak velocities were 
slightly altered to avoid the same results being produced multiple 
times. For example, in the case of 30 m/s leak velocity, random ve
locities in a range from 29.0 to 31.0 were chosen for both training 
and testing purposes. Only the 0 m/s velocity was not changed (no 
leak case). The values of turbulence parameters were chosen ac
cording to an online calculator. (IChrome, 2016). These values are 
shown in Table 1. The k-Omega model was utilized instead of other 
options since it was verified by Wu et al., the reference length was 
chosen as 8 m, and kinematic viscosity v of the natural gas taken as 
1.70e-5 m2/s. 

The data was checked for integrity and saved in folders as sets of 
images (.png) with 51 images for each simulation. Using MATLAB 
writeVideo function, the dataset of images was transformed into a 
dataset of videos, producing one video per set (folder). Since there 
were 51 frames per simulation, a frame rate of 17 was chosen to 
make 3 second clips. The videos were in the same format as the 
images (759 by 610 pixels) and were resized to match the GoogLeNet 
neural network input specifications of 224 by 224 pixels. 
Alternatively, one could resize the images first and then compile 
them into videos. 

It should also be noted that all videos were 3 ss long, which 
simplified the data preparation process significantly. Using videos 
with large variations in time sequence may reduce the classification 
accuracy significantly. In such cases, an additional step may be ne
cessary to either remove or trim down the longer sequences. 

3.2. Extraction of feature vectors and network training 

Once the videos were prepared, they were used to extract se
quences of feature vectors. The activations function of the GoogLeNet 
returns feature vectors of each frame of the video, which were saved 
separately. The output of the activations produced 1024 by 51 cell 
arrays for each video, where 51 was the number of frames and 1024 
was the number of features. 

The sequences of feature vectors were then used as a sequence 
input layer to train the bidirectional long short-term memory 
(BiLSTM) network to classify the sequences into gas leak categories. 
20% of the training dataset was used for validation. The training 
procedure achieved 100% validation accuracy by the 6th epoch. The 
trained network is then used to classify testing samples, and the 
results are shown in the form of a confusion matrix in Fig. 5. 

Table 1 
Turbulence parameters for data generation for different velocities.     

Velocity v, m/s Turbulence kinetic energy 
k, J/kg 

Specific dissipation rate ω, 
1/s  

10 m/s  0.082  0.936 
20 m/s  0.277  1.717 
30 m/s  0.563  2.448 
50 m/s  1.378  3.828 

Fig. 5. Confusion matrix for gas leak size classification at t = 50 s.  
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The trained network correctly classified all 25 videos of gas leaks 
into correct categories. 

Next, the number of frames presented to the network for training 
were limited to see how reduced information affected classification 
accuracy. This was done to measure the prediction accuracy for 
different times since leak to see how the model could correctly 
identify leaks. A minimum time of 5 s was set and train-tested the 
model repeatedly until t = 50 s. Classification accuracy over time is 
shown in Fig. 6. At t = 27 s, the accuracy became 100%, and a steady 
reduction in epochs needed for network training was noted, as ex
pected. However, in this case, the network was trained and tested 
using the same time, which means that in this situation, it would be 
enough to gather data of the first 27 s only. 

Further investigation was conducted to check whether a model 
trained on a complete 50-second data could be applied to a limited 
time testing data. In other words, how well would a complete model 
be able to predict incomplete data. Fig. 7 shows the accuracies from 
10 s to 50 s. The data suggest that applying the incomplete data up 
till the first 26 s produces low accuracy results; the accuracy only 
starts to increase at t = 27 s. However, the results do not get sig
nificantly better until t = 39 s, where classification accuracy reaches 
84%, and for t  >  39, it finally reaches 100%. Therefore, applying a 
complete model to an incomplete dataset can be allowed only for 

situations where at least 40 s have elapsed after the leakage. For 
small t (less than 30 s), the model struggled to identify leaks at all. 
With more time available for analysis, the model would identify 
leakage, but had issues differentiating between 10 and 20 m/s, and 
30–50 m/s. 

Analyzing confusion plots for the incomplete data scenarios, it 
was found that for lower times since leak, the model would predict a 
“no leak” result. The model would always underpredict rather than 
overpredict, meaning that there were no false positives generated by 
the network. As time increased, the model started to detect leaks but 
would often misclassify their magnitudes. 

4. Discussion 

The results of the initial test run are shown in Fig. 5. The model 
successfully classified leakage sizes based on provided sequences of 
concentration profiles over a period of 50 s since leak initiation. This 
accuracy was achieved partly due to the homogenous nature of the 
data: it was generated via CFD simulation, which did not account for 
numerous sources of noise. If real data were used, it is possible the 
prediction accuracy would decline. However, since the model was 
proven to be in accordance with testing on a real receiving terminal 
site, it can be concluded that the model’s performance is relevant. It 

Fig. 6. Accuracy of gas leak classification using the same duration of training and testing data.  

Fig. 7. Accuracy of gas leak classification using a 50 second-trained model on limited duration testing data.  
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is also important to note that only 100 sets of data were used to train 
the model, which only accounted for one factor of the gas leak 
phenomenon – gas leak velocity. It is essential to test the model’s 
flexibility in other factors, such as leak location, vessel pressure, 
wind velocity and direction, ambient conditions, etc. The model was 
able to isolate one parameter and make accurate predictions suc
cessfully. The leak velocity is proportional to the size of the formed 
gas cloud, which plays an important role in the extent of potential 
damage that can arise from dispersion. If the model can identify the 
severity of the accident, it can result in a more educated response to 
avoid further escalation and loss. In addition, this model can be in
corporated into a risk assessment framework, which would use the 
leak size to determine the severity of an accident. 

Another matter to consider is the type of data used for prediction. 
We used concentration profiles which are generated via CFD soft
ware. While it is a great leak indicator, this type of data may not be 
readily available at any chemical plant. The model needs to be tested 
with other types of input, such as infrared thermal imaging, gas 
sensor data from various locations, and a combination of data types. 
Since ConvNet is used for feature extraction, it is advised to utilize as 
much visual data as possible. 

Although the model performed with absolute accuracy on a 50- 
second simulated experiment, it was further tested to determine 
how quickly it could detect and classify the gas leaks. For this, the 
amount of data fed to the model was reduced by reducing the time 
from leak to detection. The data was reduced by one frame at a time 
and the model was re-trained after each reduction to observe the 
change in performance. As Fig. 6 shows, the model retained its 
performance to a point where only 26 s were used. At times less than 
26 s, the model was still able to identify leaks but struggled to 
classify its size correctly. As the available data kept decreasing, the 
prediction accuracy also decreased, and below 10 s, it produced 
undesirable results. This indicated that it is possible to accurately 
detect and classify leaks within a short time interval, allowing for 
quick response. 

Next, the model was analyzed to see if it could correctly predict 
the leak classification based on a limited amount of data. Fig. 7 
shows the change in performance when a model was trained on a 
full 50 s of data and was forced to make a prediction early. The re
sults suggest that this model does not perform well unless fed at 
least 40 s of data. In comparison to the previous analysis, it would be 
more proficient at setting up a gas leakage detection model that is 
trained only on 30 s available data and let it decide based on full 30 s, 
rather than setting up a 50-seconds trained model which is only able 
to predict after 40 s. This suggests that there is a certain amount of 
optimization that can be done to improve the model. 

Aside from model optimization, the model needs to be validated 
by data acquired from a test site, in addition to the fact that the CFD 
model used to generate data was proven legitimate. A different 
geometrical setup should also be tried, as well as different leak lo
cations need to be tested. The ability of the model to predict leak 
location and its size needs to be examined. Finally, the effect of other 
parameters such as wind velocity and direction, atmospheric stabi
lity etc. should be investigated on the model’s performance. 

5. Conclusions 

This paper presents a neural network model to detect and clas
sify gas leakage based on a series of concentration profiles from 
temporal visual data generated due to a leak scenario in an LNG 
terminal. The model consists of feature extraction and classification 
elements. GoogLeNet pre-trained convolutional network was used to 
extract features from visual data to convert input video files into 
sequences of feature vectors; classification was performed using a 
bidirectional long short-term memory layer neural network. The 
data is analyzed using a hybrid model that incorporated CFD and the 

ensemble Kalman filter and was shown to produce results compar
able to field tests. The significant advantage of the proposed method 
is that it does not require fine-tuning of layer configuration and 
other training parameters to produce satisfying results. 

The model had 100% accuracy when trained and tested on a 50- 
second dataset. The generated input data lacked the presence of 
noise, and it only examined one parameter of leakage – its velocity. 
While the leak velocity can indicate the risk level, other factors can 
also be considered, such as leak location, variation of ambient 
parameters, gas temperature, and pressure. 

The classification accuracy was analyzed further based on a 
shortened dataset. For the receiving terminal used, as few as 27 s of 
footage were enough for the model to accurately classify faults. The 
model’s ability to make predictions based on limited information 
was also analyzed. As such, the model was trained on 50 ss of data 
testing samples that contained shortened datasets. The results show 
that the ability to classify leakage was reduced significantly and the 
model produced acceptable results only when it was fed almost the 
entire dataset (40 + seconds). Under these circumstances, the model 
did not produce false negatives and mostly suffered in its ability to 
classify detected leaks. These findings suggest that optimizations can 
be done in training the neural network. The model can be tuned to 
detect and classify gas leaks in a short period with high accuracy. 
Taking a timely response would stop the escalation and reduce 
damage. 

The model needs further testing through the incorporation of 
actual data. In addition to testing more gas leakage factors, other 
types of visual data need to be considered, such as thermal imaging. 
The incorporation of sensor data and its effect on prediction accu
racy should be investigated to improve the model efficiency. Finally, 
GoogLeNet needs to be compared to other pre-trained convolutional 
networks to determine the most fitting one for this type of 
input data. 
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