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Abstract

When acquiring information using imaging techniques, one wants to achieve the best possible
resolution in order to obtain valuable results. In the ideal scenario the size of the smallest
resolved object features is limited by the wave properties of light, with a number of techniques
developed to overcome this limit. In real life measurements the image quality is additionally
deteriorated by the non-uniformities in refractive index along the beam propagation path,
called aberrations. Adaptive Optics, introduced in 1950’s independently by Horace Babcock
and Vladimir Linnik is a set of methods used to overcome the effect of aberrations and thus
improve the image quality. Initially used in military applications for tracking satellites, it
later found civilian applications as advances in computing made it practical.

Adaptive Optics use principles of feedback control to correct aberrations, and thus a mea-
surement of controlled variable is required. The most commonly measured quantity is first
derivative of wavefront provided by the Shack-Hartmann sensor. Another possibility is to mea-
sure wavefront Laplacian, i.e. curvature, using the sensor proposed by Roddier in 1988. With
the correct use of this sensor the deformable mirror actuators are decoupled from each other,
enabling fast and accurate control of high order systems and potentially analog feedback loop.

In this thesis, the Roddier curvature wavefront sensor is studied. A number of modifications
in the original sensor geometry and operating principles are made in order to make the system
more robust and easy to implement in laboratory environment. Performance of the modified
curvature wavefront sensor is evaluated in both simulation environment and physical setup.
Finally, application of the curvature sensor to measure wind velocity is demonstrated.
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Chapter 1

Introduction

1-1 General Introduction

Imaging is a commonly used technique to extract information about object of interest. A
huge benefit is that data is presented in form of an image, a very natural way for human
beings. Since relatively big features can be easily perceived by the eye without using any
additional instruments, a natural desire is to resolve objects as small as possible. In optical
imaging in ideal conditions the size of the smallest resolvable features is determined by the
wave properties of light, and is given by the diffraction limit. However, real life experiments
are usually far from the theoretical limit of resolving power. Even if the imaging system is
perfectly engineered, image resolution is additionally deteriorated by the inhomogeneities of
optical refraction index along the beam path, which result in aberrations. Effectively, the
aberrations deform surface of constant phase, Wavefront (WF) of incoming light wave, from
ideal shape (sphere or plane).

In order to improve the imaging techniques, effect of aberrations must be corrected. Adaptive
Optics (AO) presents a set of techniques to improve the image quality by pushing the WF
shape as close as possible to the ideal one. The device that is used to manipulate WF shape is
usually a Deformable Mirror (DM) or a Spatial Light Modulator (SLM). AO was introduced
in 1950’s by Horace Babcock [1] and later independently by Vladimir Linnik [2]. The original
application was to monitor enemy satellites during the cold war. When high computational
power became widely available, AO found other applications in civilian science and engineer-
ing, including biology, astronomy, and others.

Being essentially a feedback control technique, AO relies on measurements or estimates of
controllable quantity. Most widely used is the first derivative of incoming WF, and the
sensor that provides this measurement is Shack-Hartmann (SH) Wavefront Sensor (WFS).
Although easy to implement and robust, the DM actuators usually produce nonlocal and
coupled response with this type of sensor. The computational complexity of such setup grows
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2 Introduction

quadratically with the number of actuators, and soon becomes an issue in high order systems.
Additionally, for efficient control the minimal number of sensor outputs must be at least the
number of controlled actuators, and in practice should be much larger, which is another prob-
lem for SH WFS.

An alternative is the Curvature Sensor (CS), proposed in 1988 by Roddier. It consists of two
CCD cameras measuring intensity in slightly displaced planes, from which it is possible to
derive Laplacian of WF. The response of mirror actuators with this type of sensor becomes
local, and only one sensor output is needed to control each actuator. It additionally pro-
vides high resolution sampling of phase Laplacian, since the number of samples is effectively
equivalent to the number of camera pixels inside the area of interest. As a result, CS can be
coupled with high order mirrors, where SH WFS becomes hard to use.

This thesis is focused on studying Curvature Sensor (CS), implementing it in simulations and
laboratory setup for a 96-channel DM and for a high order 952-channel DM.

1-2 Objectives

The main motivation of the thesis is to evaluate the performance and feasibility of using
Curvature Sensor in adaptive optics with high order DM. The objectives therefore are:

1. Understand theoretical background of Wavefront curvature measurement. A number
of papers was published on this type of WFS and on phase retrieval from curvature
measurements, and some results from these sources are adapted and reported.

2. Perform modifications of the given sensor type in order to increase its robustness and
make it easy to implement in laboratory setup.

3. Perform simulations of the CS-based adaptive optics in order to observe the expected
properties of the system.

4. Implement CS-based adaptive optics setup in laboratory environment and test the per-
formance.

1-3 Report structure

This report is structured as follows:

• Chapter 2: This is the first chapter from the main part of the report. Relevant
theoretical preliminaries of light propagation in medium are given. Basic principles of
optical image formation are explained. Adaptive optics as a tool to correct aberrations
is introduced. Finally, a section is devoted to the studied Curvature Sensor.
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1-3 Report structure 3

• Chapter 3: In this chapter details about performed simulations are given, such as
calculations of mirror influence functions, simulation of Shack-Hartmann sensor, sim-
ulation of atmospheric turbulence phase screen with Zernike statistics. Information
about the experimental setup used to validate the method is given. A modification of
the original Curvature Sensor is proposed and explained and a number of simulations
and experiments is performed to test its behavior. Finally, an application of CS to
measure wind velocity is shown.

• Chapter 4: In this final chapter the work done during the Master thesis is summarized
and the results are discussed.
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Chapter 2

Theoretical background

In this chapter necessary theoretical background is given. Propagation of optical fields in
media is characterized using Helmholtz equation. From it Intensity Transport Equation (ITE)
is derived. The basic ideas of image formation are given, and the principles of Adaptive Optics
(AO) are explained.

2-1 Propagation equations

2-1-1 Helmholtz equation for scalar fields

In simulations of optical setups incoming field amplitude and phase is commonly assumed
to be known, and the quantity of interest is field amplitude and phase at some other plane.
To evaluate that, one needs to know how field propagates in the given environment. This
is a well-studied problem. In a linear homogeneous isotropic media any complex component
U(x, y, z) of electromagnetic field satisfies the scalar Helmholtz equation [3]:

∇2U(x, y, z) + |k|2U(x, y, z) = 0, (2-1)

where k = 2π
λ is the wave number in the media, ∇2 is Laplace operator,

∇2 =
3∑
i=1

∂2

∂x2
i

.

The media is assumed to be non-absorbing and the wave number is thus real. Given completely
defined U(x, y, 0) in plane z = 0, Equation (2-1) expresses U(x, y, z) at arbitrary z as a
function of U(x, y, 0). Let the field at plane z = 0 be U(x, y, 0) and its 2-dimensional Fourier
transform be denoted by A(fx, fy, 0). By definition of Fourier transform [4],

Master of Science Thesis I. Coroli



6 Theoretical background

U(x, y, 0) =
∫ ∫

A(fx, fy, 0)ei2π(fxx+fyy)dfxdfy, (2-2)

where fx, fy are spatial frequencies. By direct comparison to the plane wave decomposition it
follows that kx = 2πfx, ky = 2πfy. Substitution of Equation (2-2) into Equation (2-1) yields
the propagation equation for Fourier components of the field:

∂2A

∂z2 = −(k2 − (2πfx)2 − (2πfy)2)A. (2-3)

The solution to this equation takes form

A(fx, fy, z) = A(fx, fy, 0)ei
√
k2−k2

x−k2
yz. (2-4)

In a linear homogeneous isotropic media, the propagation of field component over a distance z
corresponds to multiplication of Fourier transform of the field by ei

√
k2−k2

x−k2
yz. In this report

only propagation in free space is relevant, for which k = 2π
λ0
, where λ0 is the wavelength in

vacuum. The complex exponent in Equation (2-4) is free space transfer function:

H(kx, ky) = ei
√
k2

0−k2
x−k2

yz, (2-5)

In order to simulate propagation of a given field U(x, y, 0) from plane z = 0 to z = z0, the
following steps are taken:

1. Calculate the Fourier transform of the field, A(fx, fy, 0) = F{U(x, y, 0)},

2. Use Equation (2-4) to obtain A(fx, fy, z0),

3. Calculate the inverse Fourier transform to obtain the field U(x, y, z0) = F−1{A(fx, fy, z0)}.

Assume now that paraxial approximation holds and the field propagates mostly in the positive
z-direction. Then the solution takes the form U(x, y, z) = u(x, y, z)eikz [5], where u(x, y, z) is
called reduced amplitude. Substitution of this form into Equation (2-1) yields

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 + 2ik∂u
∂z

= 0. (2-6)

For the fields that mainly propagate in the z-direction, the z-variations of u are mainly due
to diffraction and are much slower compared to the variations in x- and y-directions, that
are due to the finite size of the aperture. Thus the term ∂2u

∂z2 � ∂2u
∂x2 ,

∂2u
∂y2 , 2k ∂u∂z is neglected.
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2-1 Propagation equations 7

Substituting u(x, y, z) = U(x, y, z)e−ikz into the resulting paraxial Helmholtz equation leads
to:

( ∂
2

∂x2 + ∂2

∂y2 + 2ik ∂
∂z

+ 2k2)U(x, y, z) = 0. (2-7)

This form of paraxial Helmholtz equation is further used to derive Intensity Transport Equa-
tion (ITE).

2-1-2 Intensity Transport Equation

Optics deals with visible part of electromagnetic spectrum, for which typical frequencies are
approximately in the range between 4 ·1014 s−1 and 7.5 ·1014 s−1. The response times of most
of modern detectors is not small enough to measure phase of optical fields [6], and the mea-
sured quantity is energy averaged over many periods of light wave oscillations, i.e. intensity.
This is a motivation for deriving a propagation equation for field intensity, similarly to how
Equation (2-1) describes propagation of complex field amplitude.

Let complex field U(r) be denoted by

U(r) = (I(r))1/2 eiφ(r), (2-8)

where I(r) ∈ R≥0 is the intensity of the field, and φ(r) ∈ R is phase of the field. Begin with
paraxial Helmholtz equation (2-7),

(
i
∂

∂z
+ ∇

2
⊥

2k + k

)
U(r) = 0, (2-9)

where ∇⊥ denotes Laplace operator over transverse coordinates, ∇⊥ = ∂2

∂x2 + ∂2

∂y2 . Since
the intensity is defined as I(r) = U∗(r)U(r), the idea is to substitute Equation (2-8) into
Equation (2-9), and left-multiply Equation (2-9) with complex conjugate of Equation (2-8):

U∗(r)
(
i
∂

∂z
+ ∇

2
⊥

2k + k

)
U(r) = (I(r))1/2e−iφ(r)

(
i
∂

∂z
+ ∇

2
⊥

2k + k

)
(I(r))1/2eiφ(r)

= i
1
2Iz − Iφz + 1

2k [12Ixx −
1
4I
−1I2

x + iIxφx − Iφ2
x + iIφxx]

+ 1
2k [12Iyy −

1
4I
−1I2

y + iIyφy − Iφ2
y + iIφyy] + kI = 0.

(2-10)

Equation (2-10) consists of two equations, one for real and one for imaginary part. Taking
imaginary part results in the Intensity Transport Equation (ITE):
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8 Theoretical background

I∇2
⊥φ = −k∂I

∂z
−∇⊥I · ∇⊥φ. (2-11)

Since the intensity can be measured (for instance, by a CCD camera), I(r) is known and the
ITE becomes a linear equation and can be solved for φ(r). The equation can be further sim-
plified under assumption of known constant intensity within the sharp round beam footprint
in one plane,

I(r) = I0H(r − r0), (2-12)

where H(r−a) is the Heaviside step function, r0 is the aperture radius and I0 > 0. Constant
intensity within the beam footprint is an oversimplification, but a common assumption made
in adaptive optics. Upon substitution of Equation (2-12) into Equation (2-11), the equation
becomes

I0H(r − r0)∇2φ = −k∂I
∂z
− I0δ(r − r0)∂φ

∂r
,

where δ(r − r0) is the Dirac delta-function. It was assumed that the intensity gradient has
only radial component:

∇I(r) = ∂I

∂r
r̂

= I0
∂H(r − r0)

∂r
r̂

= I0δ(r − r0)r̂.

The ITE therefore becomes Poisson equation with Neumann boundary condition:

{
∇2φ = − k

I0
∂I
∂z , r < r0

∂φ
∂r = − k

I0
∂I
∂z , r = r0.

(2-13)

While the derivation process is lengthy, the physical meaning is simple and represented in
Figure 2-1. Positive curvature of the wavefront results in negative z-derivative of the intensity
profile, i.e. locally divergent beam, and thus produces spot of lower intensity after propa-
gation by positive distance z0. Similarly, negative curvature yields positive z-derivative of
intensity, and produces local bright spot.

Information about phase Laplacian inside beam footprint can therefore be obtained by mea-
suring z-derivative of intensity distribution. Based on that, Teague [7] proposed a scheme of
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2-1 Propagation equations 9

Figure 2-1: Physical interpretation of the Transport of Intensity Equation.

phase retrieval using Equation (2-13). Following the previous notation, the intensity I(r) = I0
is assumed to be uniform in plane z = 0. Phase in this plane is recovered from measurement
of intensity I(r) in plane z = z0. The z-derivative of intensity distribution is approximated
by measurements in two planes,

∂I

∂z
≈ Iz0 − I0

z0
, (2-14)

where Iz0 is the intensity distribution in the plane z = z0. The schema of this method is
represented in Figure 2-2.

Figure 2-2: Schematic representation of the phase retrieval using ITE [7]

The intensity distributions are measured in two planes separated by the distance z0. Plane of
unknown phase is conjugated to the plane of first measurement, z = 0, via Keplerian telescope

Master of Science Thesis I. Coroli



10 Theoretical background

formed by the two lenses of focal lengths F and f , f < F . Here the uniform intensity I0
is measured. The plane of second measurement Iz0 is separated from the first plane by
distance z0. Here the intensity distribution is modulated by unknown phase curvature. The
magnificationm = f

F is needed to enhance intensity variations induced by the phase curvature
for small displacement distances z0.

Equation (2-13) is an equation based on certain approximations, which limit its region of
validity, for instance Equation (2-13) does not hold near lens focal. In order to have an
approximation on propagation distance over which the equation remains valid, intensity Iδz
in the plane z = δz near the plane z = 0 is expanded as [7]

Iδz = I0[1 + b1δz + b2(δz)2] + ∆I0,

where

b1 = −2( λ4π ) ∇2φ

∣∣∣∣
z=0

, (2-15)

b2 = 4( λ4π )2 [(φxx)2 + φxφxxx + φxxφyy + φyφyyy + (φyy)2]
∣∣∣∣
z=0

, (2-16)

and ∆I0 is the noise term. Ignoring the latter, for a given phase aberration the ITE is valid
if

b2δz � b1, (2-17)

and this allows to choose δz for a known or expected phase aberration. If the incoming
aberration is stochastic, but the upper boundary is known, as in case when it is created by
random voltages on Deformable Mirror (DM) actuators, all terms in Equation (2-15) can
be calculated for largest actuator displacement, allowing to select δz such that the sensor
readings are linear during the mirror operation.

The above derivations explain how a simple curvature sensor built from two CCD cameras
works. It will be used later in this thesis in combination with a DM to build closed loop
adaptive optics system.

2-2 Imaging theory

As mentioned before, aberrations reduce image quality significantly. Prior to diving into
Adaptive Optics, theory of image formation is explained. This knowledge helps to understand
better the effect of aberrations on image quality, as well as certain notions and metrics useful
for Adaptive Optics (AO). In this section basic theory of image formation is given. The
notation and derivations are adapted from [5].

Assume the object is located in x− y plane at distance do in front of the positive diffraction-
limited lens with focal distance f . The object is illuminated and the object field is Uo(ξ, η),

I. Coroli Master of Science Thesis



2-2 Imaging theory 11

where (ξ, η) are the coordinates in the object plane. Geometrical optics predicts image for-
mation at distance di from the lens, where di can be calculated from the thin lens formula:

1
f

= 1
do

+ 1
di
. (2-18)

The magnification M of this simple imaging system is given by

M = hi
ho

= di
do
, (2-19)

where ho and hi are image and object heights, respectively. Assume the illumination field is
coherent and let the image field be Ui(u, v), where (u, v) are the coordinates in image plane.
Because of the linear nature of the propagation phenomenon, the image field can be related
to the object field by the following integral:

Ui(u, v) =
∫ ∫

Uo(ξ, η)h(u, v; ξ, η)dξdη, (2-20)

where h(u, v; ξ, η) is the image field amplitude produced at coordinates (u, v) in the image
plane by a point disturbance at coordinates (ξ, η) in the object plane with unit amplitude,
i.e. the impulse response of the imaging system. The integral can be reduced to convolution
integral, and the image field becomes [5]:

Ui(u, v) =
∫ ∫

h(u− ξ̃, v − η̃)Ug(ξ̃, η̃)dξ̃dη̃. (2-21)

This integral expresses convolution operation, which defines image field in terms of geometrical
optics prediction of the image, Ug:

Ui(u, v) = h(u, v) ∗ Ug(u, v). (2-22)

Here, ξ̃ = Mξ, η̃ = Mη, Ug(u, v) is the geometrical optics prediction of the image,

Ug(u, v) = 1
|M |

Uo

(
u

M
,
v

M

)
, (2-23)

and h(u, v) is the Point Spread Function (PSF) of the imaging system:

h(u, v) =
∫ ∫

P (x, y)e−i
2π
λdi

(ux+vy)
dxdy. (2-24)
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12 Theoretical background

The PSF of an optical system is the image field distribution when the object is point distur-
bance. From Equation (2-24) it follows that the PSF of a system is the Fourier transform
of the (complex) transmittance function P (x, y) of the exit pupil, also called pupil function,
evaluated at spatial frequencies

fx = u

λdi
, fy = v

λdi
,

i.e. the Fraunhoffer diffraction pattern of the exit pupil. Thus it has been shown that the
image is obtained as the result of convolution of the image predicted by geometrical optics,
which is infinitely sharp scaled object, convolved with the PSF of the imaging system. The
effect of the convolution is to smoothen the image, and kernel is PSF of the imaging system
used. For a system which consists of one lens with radius Rlens and focal F the pupil function
is given by

P (x, y) = circ
(√

x2 + y2

Rlens

)
,

such that P (x, y) = 1 for (x, y) inside the aperture and P (x, y) = 0 for (x, y) outside the
aperture. The PSF in this case is given by

I(u, v) = I0
π2R4

lens

F 2λ2

(2J1(ρ)
ρ

)
, (2-25)

where I0 is incident field intensity, λ is wavelength of illumination, J1(ρ) is Bessel function of
the first order, and ρ is given by

ρ = 2πRlens
Fλ

√
u2 + v2. (2-26)

The width w of this PSF is given by the position of first minimum of the Bessel function:

w = 0.61 λ

NA
, (2-27)

where NA = Rlens
F is the numerical aperture. This defines the Rayleigh resolution for a

diffraction limited system, the fundamental upper limit on resolution of a usual imaging sys-
tem: in far field two points of an object are resolved if the PSFs produced by these points are
separated by w.

In case of incoherent imaging, the same relations hold for intensities of the object and image
fields:

I. Coroli Master of Science Thesis



2-2 Imaging theory 13

Ii(u, v) = hinc(u, v) ∗ Ig(u, v), (2-28)

where hinc is the incoherent PSF of the system, and Ii(u, v) is the image intensity, Ii(u, v) =
|Ui(u, v)|2. The relation between incoherent and coherent PSF is

hinc = |hcoh|2. (2-29)

In the framework of Fourier optics, the image is smoothened, scaled and rotated version of
the object field. A system, where the point source at the input yields a perfect spherical
wavefront converging to the ideal geometrical image point, is called diffraction limited. For
such systems the transmittance function is purely real, or complex with constant phase factor,
and the resulting PSF is narrow and bright. Aberrations in general result in wider and darker
PSFs. An example of effect of aberrations on incoherent imaging is represented in Figure 2-3.

1

2 4

3 5

Figure 2-3: Example effect of aberrations on image formation. The imaged object is repre-
sented in (1). The diffraction-limited PSF of the simulated system is represented in (2), and the
diffraction-limited image is represented in (3). The PSF of the system with aberrations present
is represented in (4), and the image formed in this condition is in (5).

The imaged object is represented Figure 2-3, (1). The simulated optical system is a simple
lens. In the diffraction-limited case, the pupil function is

P (x, y) = circ
(√

x2 + y2

Rlens

)
,

Master of Science Thesis I. Coroli



14 Theoretical background

s.t. P (x, y) = 1 for (x, y) inside the aperture, and P (x, y) = 0 for (x, y) outside the aperture.
The PSF of the simulated system is represented in Figure 2-3 (2), and the resulting diffraction-
limited image is in (3). The aberrated PSF (4) is clearly wider than in the diffraction-limited
case, and results into blurred aberrated image (5), and a lot of details are lost. One of the
several possible ways to quantify the quality of an imaging system is Strehl ratio, defined as
the ratio of maximal intensities of aberrated and diffraction limited PSFs:

S = Iab,max
Idl,max

. (2-30)

Strehl ratio is related to RMS value σ or variance σ2 of phase. For relatively small aberrations
with σ / 2 rad, Strehl ratio can be calculated by Marechal approximation:

S = e−σ
2
, (2-31)

where σ is wavefront RMS value in radians. For an ideal diffraction limited optical system
S = 1, and in general S ∈ (0, 1]. Later in this work S = 0.8 is considered to provide good
image quality.

In this section it was explained how aberrations affect image quality. One usually wants
to resolve the smallest possible details of the object of interest, and therefore the incoming
wavefront must be as flat as possible, which is equivalent of maximizing Strehl ratio of the
imaging system. Wavefront aberrations contribute partly from the imaging system itself, and
this contribution can be compensated easily. However, a significant effect comes from external
aberrations depending on media between the resolved object and imaging system, and cannot
be accounted for by simply improving optics quality. Adaptive Optics (AO) provides solution
to this problem and allows to compensate for changing external aberrations and improve the
image quality.

2-3 Adaptive Optics

Adaptive Optics (AO) is a set of techniques that allow to correct static and dynamic wave-
front aberrations and improve image quality. In this section basic structure and principles
of AO optical system are explained, namely general structure of AO loop, a basis for aber-
ration reconstruction called Zernike polynomials, basic principles of operation of membrane
Deformable Mirror (DM) and its relevance to the subject, Shack-Hartmann (SH) Wavefront
Sensor (WFS), and finally the Curvature Sensor (CS).

2-3-1 Basic principles

Adaptive Optics (AO) is a scientific and engineering discipline whereby the performance of
an optical signal is improved by using information about the environment through which
it passes [8]. Usually the adaptive optical system deals with control of light in a real-time

I. Coroli Master of Science Thesis



2-3 Adaptive Optics 15

Figure 2-4: A basic structure of AO loop. The aberrated wavefront is incident onto the imaging
system. The deformable mirror in the exit pupil of the imaging system is driven by a controller
and applies the correction such that the reflected wavefront is as flat as possible. The residual
aberration of the wavefront is measured by a wavefront sensor. The image of the object is formed
at the science camera.

closed-loop fashion. A basic structure of astronomical adaptive optics loop is represented in
Figure 2-4.

The object located at infinity emits light. Before passing through turbulent layers of air,
the wavefront can be considered flat. Turbulence induces aberrations φ(r, t) to the wavefront
incident onto imaging system (telescope in this case) [9]. The Deformable Mirror (DM),
located in the plane conjugated to turbulence layer, applies the phase correction φc(r, t) by
changing profile of its surface, and upon reflection from the DM [10] the wavefront phase is
ε = φ − φc. The residual wavefront phase is often assumed to be zero-mean signal, since
constant phase offset across the aperture is of no physical significance and does not affect
image quality. Input voltages to the DM are calculated on-line by control algorithm based
on data provided by Wavefront Sensor (WFS), such that ε → 0. Since detectors are able to
measure only the intensity I(x, y) = UU∗, where U is the complex field amplitude, the phase
cannot be measured directly. Therefore, the WFS does not measure the residual aberration
ε = φ − φc, but some other function of the residual phase, for instance first derivative or
Laplacian. WFS is usually assumed to be a linear system, therefore the output signal is
modeled as s = Gε + η, where G is determined by the sensor type and geometry and η is
additive noise. The measurement is input to the controller, and the output is the actuator
signals u applied to the deformable mirror such that the variance of residual aberration
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16 Theoretical background

σ2 = εT ε is minimized. The image is finally formed at science camera.

It is often useful to expand a function defined over 2-D circular pupil as a weighted sum of
certain basis functions. There is an infinite number of possible basis, but in AO the most
widely used is basis of Zernike polynomials, discussed in the next section.

2-3-2 Zernike Polynomials

Within the framework of Adaptive Optics, the phase inside a circular aperture is usually
decomposed into the basis of Zernike polynomials [11], defined as

Zmn =
√
n+ 1Rmn (ρ)


√

2 cos(mφ), m > 0,√
2 sin(mφ), m < 0,

1, m = 0
(2-32)

Rmn (ρ) =
n−m

2∑
k=0

(−1)k(n− k)!
k!(n+m

2 − k)!(n−m2 − k)!
ρn−2k, (2-33)

where n ∈ Z≥0,m ∈ Z, m ≤ n, n −m = even, and (ρ, φ) are normalized polar coordinates
inside aperture, ρ ≤ 1. The first few Zernike polynomials are represented in Figure 2-5.

Zernike polynomials present orthogonal basis over a unit circle of unit radius:

1
π

∫
d2rZmn (r)Zm′n′ (r) = δn,n′δm,m′ ,

where δi,j is Kronecker symbol, δi,j = 1 if i = j and δi,j = 0 otherwise. Given a wavefront
phase φ(r) defined over unit circle, it can be represented as

φ(r) =
∑
j

ajZj(r),

where j is just some ordering number used for convenience of representation. Expansion
coefficients are given by

aj = 1
π

∫
d2rZj(r)φ(r),

where the sum is over infinite number of coefficients in general. This way, wavefront can be
represented in two equivalent ways: defining phase across the whole aperture or specifying
expansion coefficients of Zernike polynomials.

Several ways to label Zernike polynomials exist. Noll’s sequential indexing is also further used
in this thesis [11].
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Figure 2-5: Zernike polynomials up to order n = 5

2-3-3 Curvature mirrors

An important element of AO loop is wavefront corrector, since it defines the best achievable
correction quality. It can be either Deformable Mirror, or Spatial Light Modulator (SLM). In
this thesis only a Deformable Mirror is used. Physically, a DM is a reflective surface with shape
changed by actuators. The DM deformation resulting from action of each actuator separately
defines mirror response functions. The type of the surface, edge actuation and clamping mode
and actuator type affect the exact shape of response functions. Mathematically speaking, a
DM is a device that provides a set of usually non-orthogonal basis functions in which the
residual wavefront phase is decomposed.

The principles of phase curvature sensing were introduced in Section 2-1-2. Curvature mirrors
are able to change local curvature of the reflecting surface, as the name suggests, and therefore
can be efficiently used with Curvature Sensor (CS). An example of curvature mirror is
membrane mirror ([12], [13]), which is used in experimental validation of the studied correction
method. It is therefore useful to understand the basic physical principles of how the surface
deforms in response to actuation, since the results are used to simulate the device.

A membrane mirror consists of a reflective membrane located between a continuous transpar-
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Figure 2-6: Micromachined membrane deformable mirror produced by OKOtech

ent electrode and a grid of individual electrodes. The reflective surface is deformed by means
of electrostatic interaction between the electrodes and the membrane. The mirror profile
z(x, y) in equilibrium is the solution to Poisson equation [12],

∇2z(x, y) = −P (x, y)
T

, (2-34)

where P (x, y) is the pressure due to the electrostatic interaction, and T is tension in the
membrane. Given a known electrode shape, Equation (2-34) can be solved with electrostatic
pressure constant across the electrode area, and the solution is then normalized to mirror
actuator stroke, which is a known parameter. The wavefront phase profile induced by the
mirror is given by:

φDM (x, y) = 22π
λ
z(x, y), (2-35)

where λ is the wavelength of light, z(x, y) is the mirror surface profile, and the factor of 2
in front is because upon reflection light passes the same path twice. Assume a membrane
configuration z(x, y) in which all actuators are at 0 V, ui = 0∀i 6= n, except for nth actuator
which is active, un 6= 0. Due to the nature of electrostatic interaction, the resulting pressure
distribution P (x, y) will be nonzero only across the surface on nth actuator, and thus both
∇2z(x, y) and ∇2φDM (x, y) are negligibly small away from the actuator surface. This means
that curvature of the membrane and the induced wavefront is localized to the surface of active
actuator. The same does not hold for the first derivatives of the mirror influence function.
This convenient property of the Laplacian of the DM response allows for efficient coupling
with CS, as it is demonstrated further.
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2-3-4 Shack-Hartmann Wavefront Sensor

In a typical AO system information about the wavefront after reflection from the DM is
obtained using a Wavefront Sensor (WFS). One of the most commonly used WFS, the
Shack-Hartmann (SH) WFS [14], is used to measure first derivative in x and y-directions.
It consists of a 2-dimensional array of microlenses of the same focal length and a detector,
usually CCD camera or a quad-cell. The operating principle is represented in Figure 2-7.

Figure 2-7: A simple single-lens system: tilted incoming beam results in focal spot, displaced in
plane orthogonal to optical axis.

Figure 2-8: Operating principle of the Shack-Hartmann wavefront sensor. Two-dimensional array
of microlenses focuses incoming light into a grid a focal spots. Displacements of the foci from
a reference position provides information about average tilt of the incoming wavefront across
corresponding microlens. Figure adapted from [15]

Wavefront across each microlens aperture is approximated by a plane wave traveling at certain
angles with respect to x and y axis. Consider a 1-D case represented in Figure 2-7. An incident
wavefront with zero slope forms focal spot in the focal plane of the microlens at the optical
axis. An incident wavefront which makes angle α with the x-axis results in the focal spot
centered around ∆x = fα in the small angle approximation. The local wavefront tilt angle
is given by α = ∂W

∂x , or α = 2π
λ
∂φ
∂x . Therefore, the focal spot displacement from the reference
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position is related to the local first derivative of the wavefront:

∂φ

∂x
= λ

2π
∆x
f
.

A Shack-Hartmann wavefront sensor consists of a 2-D array of such microlenses (Figure 2-8),
therefore it measures local first x and y derivatives sampled at the positions of the microlenses.
The focal spot displacements (xi, yi) are calculated by the centroid algorithm as the center of
mass position of the intensity distribution in the detector plane:

∆xi =
∑
x,y xI(x, y)∑
x,y I(x, y) ,

∆yi =
∑
x,y yI(x, y)∑
x,y I(x, y) .

A Shack-Hartmann wavefront sensor outputs the vector of centroid displacements in each
subaperture:

sx(i, j) = f
2π
λ

∂φ(xi, yj)
∂x

+ ηx(i, j),

sy(i, j) = f
2π
λ

∂φ(xi, yj)
∂y

+ ηy(i, j),

where ηx, ηy are additive noise terms. To summarize, Shack-Hartmann Wavefront Sensor mea-
sures gradient of incident wavefront sampled at the positions of its microlenses. The output is
displacement of the measured focal spot center of mass with respect to some reference position.

In adaptive optics with SH WFS the vector of centroid displacements s is assumed to be
linearly related to the vector of linearized inputs of the deformable mirror actuators, u,
through the influence matrix H:

s = Hu. (2-36)

In order to close the loop, influence matrix H needs to be measured, so one needs to under-
stand what are the entries of H. Assume the input vector u ∈ RN , where N is the total
number of actuators, takes the form ui = 0∀i 6= n, un = 1. Equation (2-36) takes the form

s =
[
h1 h2 . . . hN

]
u (2-37)

= hn, (2-38)
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where hi are the columns of the influence matrix H. But on the left of Equation (2-37) there
is vector of centroid displacements measured with nth actuator signal set to 1. It becomes
evident that columns of the influence matrix contain vectors of centroid displacements in
response to corresponding actuator set to ui = 1. This model discards the dynamic response
of the deformable mirror, but for the purpose of this thesis the model is accurate enough, and
it is commonly used in AO.

By performing adaptive optics correction of the wavefront, the algorithm attempts to best
approximate the wavefront aberration φ(x, y) with a linear combination of influence functions
of the corrector, φDM (x, y). This problem can be formulated in least squares formalism
[16]. Given the vector of SH measurements with aberrated incoming beam, s, the set of
basis vectors as columns of the intensity matrix H, and the unknown vector of coefficients u
(actuator voltages), the model is

s = Hu + ε,

where ε is the fitting residual. The goal is to minimize the variance of ε, var(ε) = εT ε, and
the problem reads as

min
u
εTε,

s.t. ε = s−Hu.

The solution to this least squares problem is given by

û = H†s,

where H† = (HTH)−1HT is the pseudo-inverse of the influence matrix H. If the matrix HTH
is invertible, then the solution is readily obtained. Given incoming aberrated wavefront and
corresponding SH measurement s, the set of actuator voltages given by u = (HTH)−1HT s is
the best approximation of the incident wavefront with the mirror influence functions.

In practice, the matrix HTH often has singularities, and is thus not invertible. In this case,
the pseudo-inverse of the influence matrix is calculated using Singular Value Decomposition
(SVD) [16]. For a m× n matrix H, m > n, the SVD of H is defined as

H = USV T ,

where S ism×nmatrix of ordered singular values, σ1 > σ2 > ... > σn, with the singular values
along its main diagonal, U and V T are orthonormal m×m and n×n matrices containing left
and right singular vectors respectively. In the absence of noise in case of singular matrices
of rank r < m, r < n, the smallest singular values σr . . . σn = 0. However for the matrices
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derived from noisy data this will not be the case, and these singular values will have some
small but nonzero value. The pseudo-inverse of the influence matrix is then defined as

H† = V S−1UT ,

where the matrix S−1 has the terms σ−1
1 . . . σ−1

r along the main diagonal, and zeros everywhere
else. The choice of number of singular values r to include in the inversion is somewhat
arbitrary, and can be made based on the desired condition number.

Given AO closed loop with SH sensor and a DM with N actuators, the smallest number of
microlenses required to reconstruct actuator inputs u is Nmin = N

2 , since each microlens pro-
vides two measurement, one along each axis. In real systems this number usually is increased
to Nmin ≥ N to avoid singularities. With recent technological advances in micromachining
there is a trend to increase number of DM actuators to get as close as possible to diffraction
limit. Increased actuator number N poses several challenges to SH-based AO systems, such
as the necessity to increase microlens density, and the computational burden, which scales as
N2 for a typical SH influence matrix. A Curvature Sensor avoids these particular issues, and
is presented in the next section.

2-3-5 Curvature sensor

Shack-Hartmann wavefront sensor is based on measuring the first derivative of the wavefronts.
As explained in Section 2-1-2, it is also possible to measure Laplacian of the phase, ∇2φ(x, y),
by measuring the z-derivative of intensity distribution. Curvature Sensor (CS) is based ex-
actly on this principle. Recall Intensity Transport equation Equation (2-13) inside the beam
footprint of radius r0:

∇2φ = − k
I0

Iz0 − I0
z0

, r < r0, (2-39)

where z-derivative of intensity distribution is approximated as finite difference of two measure-
ments. Roddier proposed [17] to close the Adaptive Optics loop based on the measurement
of z-derivative of intensity. Since Laplacian is a linear operator, the measurement is expected
to be linear with respect to control signals. The method is of particular interest when applied
in combination with deformable mirrors capable of adjusting their curvature. By comparing
Equation (2-39) and Equation (2-34) the relation between the pressure distribution P (x, y)
and approximated z-derivative of intensity becomes evident:

P (x, y) ∝ Iz0 − I0
I0

. (2-40)

The quantity Iz0−I0
I0

is further referred to as the intensity distribution. Since, as mentioned
before, the pressure distribution is localized to the actuator footprint and is linear with respect
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to the control input u, the control signals can be reconstructed from the local intensity signal
withing the corresponding actuator surface. This leads to the influence matrix with dominant
diagonal terms and small condition number [18]. Thus applying control signal proportional
to local intensity distribution corrects local curvature.

In his paper, Roddier proposed to use two defocused images of pupil to obtain the curvature
information. The setup is represented in Figure 2-9.

Figure 2-9: Roddier curvature sensing principle: incoming wavefront W with surface profile
z(x, y) is imaged in two planes, P1 and P2. The curvature information is reconstructed from the
difference of the two images.

The incoming wavefront W with surface profile z(x, y) is focused by the lens L1 with focal
length f . The two planes of intensity measurements, P1 and P2 are located symmetrically at
distance L with respect to focal point f . In this way, the proposed method is insensitive to
non-uniformities of illumination pattern.

In order to obtain the boundary condition for Equation (2-13) Roddier proposes to use in-
tensity information at the boundary of the aperture. In principle radial tilts indeed produce
variations in intensity at the beam boundary, however the signal is produced in narrow region
where diffraction from the aperture boundary is significant, and is hard to be used in experi-
mental environment. A possible way is to perform curvature correction inside beam footprint
only. However, this method leaves Zernike modes Zmn with ±m = n uncorrected ( [19], [20]):

∇2Z±nn = 0.

In particular this means that closed loop system based only on curvature sensing inside the
beam footprint is not capable of correcting astigmatism, which is typically a high magnitude
mode. Therefore, an alternative way to extract correct boundary conditions is proposed fur-
ther in this thesis.

Curvature-based Adaptive Optics has been developed and used extensively in the University
of Hawaii ([21], [22], [23]). Curvature-based AO has been shown [24] to yield 30 times Strehl
ratio improvement with 36-channel bimorph DM at Gemini 8-meters telescope.

In this thesis the setup proposed by Teague [7] is used, since it gives exactly similar curvature
information and is easier to align correctly. The schematic representation of the setup is
in Figure 2-2. The setup must be correctly paired with the deformable mirror in use by
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choosing displacement distance between the measurement planes z0 correctly. Physically it
means that it is necessary to ensure that ITE is valid at largest actuator displacements. Recall
the condition of validity of ITE is [7]:

b2z0 � b1, (2-41)

where

b1 = −2( λ4π )∇2φ, (2-42)

b2 = 4( λ4π )2 [(φxx)2 + φxφxxx + φxxφyy + φyφyyy + (φyy)2]
∣∣∣∣
z=0

. (2-43)

Consider a membrane deformable mirror with aperture radius a. When all actuators are
active, the mirror surface has parabolic profile

z(x, y) = A(x2 + y2), (2-44)

where the proportionality constant A is defined by the total stroke of the mirror. Assume the
peak-to-valley displacement of the mirror surface is nλ, where λ is the wavelength of light.
When used in biased mode, membrane mirrors are capable of generating only half of this
stroke. Then

z(x, y) = nλ

2a2 (x2 + y2). (2-45)

The phase induced by the mirror is

φDM (x, y) = 2πn
a2 (x2 + y2). (2-46)

For this phase aberration, the coefficients are

b1 = −4λn
a2 , (2-47)

b2 = 12λ2n2

a4 , (2-48)

therefore the condition on the defocus distance reads
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z0 <
a2

3nλ. (2-49)

This factor is not exactly instructive and it is possible to rewrite it. The phase profile induced
by the lens with focal length f is

φlens(x, y) = π

λf
(x2 + y2). (2-50)

By comparing Equation (2-50) and Equation (2-46) it can be seen that the focal length of
the mirror is

fDM = a2

2λn,

and the condition on defocus distance reads

z0 <
2
3fDM . (2-51)

When the telescopic system with magnification m is used to reimage the mirror surface, the
condition becomes

z0 < m2 2
3fDM . (2-52)

In practice the method was observed to converge for z0 comparable to f .

Another useful influence function to investigate is Gaussian response of the mirror surface.
This corresponds to model of influence function of high-order deformable mirrors with circular
aperture, where the surface is thin metal plate. Taranenko [25] found the influence functions
of copper and aluminum plates closely follow either Gaussian or super-Gaussian response.
Let the actuator influence function be

z(x, y) = Ae−
x2+y2

2σ2 , (2-53)

where parameter A is related to actuator stroke, and standard deviation σ is related to
interactuator influence function overlap. If d is the interactuator distance, and γ is the
overlap coefficient, meaning that influence function has γ× stroke at distance d, the standard
deviation is
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σ =
√

d2

2 ln γ−1 . (2-54)

The calculations for Gaussian yield

z0 <
2σ2

3A (2-55)

<
d2

3A ln γ−1 , (2-56)

and if the magnification m is used to image the surface of the mirror, the upper boundary on
z0 becomes

z0 <
m2d2

3A ln γ−1 . (2-57)

The upper bound on the defocus distance z0 defines the applicability of the method. The
quantity that is measured in plane z = z0 is

Iz0 − I0 = −z0kI0∇2φ+ η, (2-58)

where η is the noise term. Noise can be described as the sum of two terms, one dependent
and one independent on I0. Therefore if I0 is small, which is condition of low illumination,
Iz0 − I0 is also small and the signal to noise ratio is decreased. In order to increase it back, z0
must be increased, but only up to the upper limit after which the ITE does not hold anymore.

To summarize, Curvature Sensor is expected to have the following features:

1. Curvature signal generated by the curvature mirrors is mostly confined to the area of
corresponding actuator. This results in nearly diagonal influence matrix and greatly
reduces computational costs.

2. Since linearized actuator input signal is directly proportional to produced curvature
and local increase of intensity, analog high-speed feedback loop with photon counting
avalanche photo diodes can be used [21].

3. Since in this case the phase curvature is essentially sampled by each pixel and not by
each microlens subaperture as in SH case, sampling is much more dense and therefore
the sensor is expected to be less affected by aliasing than SH.
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4. Assume phase φ(r) is given by a single-frequency sinusoid:

φ(r) = sin(k · r).

Its gradient and Laplacian is given by:

∇φ = k cos(k · r),
∇2φ = −|k|2 sin(k · r).

Since ∇φ ∝ |k| and ∇2φ ∝ |k|2, for hight spatial frequency components of phase ∇2φ�
∇φ holds. It is therefore easier to work with Laplacian instead of gradients high-order
phase aberrations, where large spatial frequencies prevail.

5. Since CS is essentially two CCD cameras separated by a variable distance, it is easily
tunable to different seeing conditions and expected aberrations by simply changing the
separation distance. For instance, if expected wavefront is almost flat, large distance can
be selected to sense the remaining small aberration. On contrary if a large aberrations
are expected in the system, displacement between the cameras should be decreased to
maintain validity of ITE. This parameter can as well be tuned in closed-loop during
operation of the AO system: at initialization uncorrected wavefront hits the CS and ∆z
must be small, whereas in the middle of operation every k+ 1-st wavefront has a small
deviation from k-th wavefront, and since only this residual is observed by CS, ∆z can
be increased to increase sensitivity. This idea is not addressed in this thesis.

This concludes the chapter with theoretical background and introduction to Adaptive Optics
and Curvature Sensor. With this information it is easy to understand the contents of the
next chapter, which are simulation and experimental details and results.
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Chapter 3

Experiments

Roddier proposed curvature sensing method, which can be efficiently used with curvature
mirrors. In his original paper he described the way to extract signal for the actuators on the
beam footprint boundary purely from intensity measurements. A problem exists with this
method and is addressed in this chapter. An alternative way of combining Shack-Hartmann
(SH) and Curvature Sensor (CS) is proposed and evaluated in both custom-made simulation
environment and experimental setup. Finally, CS is used to close the loop using high-order
Boston Micromachines Kilo-DM with 952 actuators.

3-1 Correction method using intensity information only

The principle of CS explained in Section 2-3-5 is to measure beam intensity profile in two
planes separated by a certain distance z0 and to manipulate the measurements to yield dis-
tribution of Laplacian of phase, ∇2φ, according to Equation (2-13). The physical structure
of the sensor is different from the one used by Roddier. Instead, Teague’s setup [7] is used,
since it is easier to implement in experimental setup. The configuration is represented in
Figure 3-1.
Plane P ′0 is the location of the deformable mirror surface. Plane P0 is where measurement of
constant intensity I0 is taken, and plane P1 located at distance z0 from plane P0 is where Iz0

is measured, the modulated intensity profile. As mentioned before, the idea is to reconstruct
input signal for every actuator from the measurement of phase Laplacian only across the
surface of that actuator, which effectively means a diagonal sensor-actuator influence matrix.
The calibration procedure is as follows:

1. Calculate D0 = Iz0−I0
I0

corresponding to the reference wavefront, where I0 is nonzero
intensity in plane P0.

2. For every ith mirror actuator, set ui = 1, and record Di,p = Iz0,i−I0
I0

, phase curvature
distribution with positive actuator input. Then, set the same actuator to ui = −1 and
record Di,n, curvature distribution with negative input to the actuator.
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Figure 3-1: Schematic representation of the phase retrieval using ITE [7]

3. Create ith actuator intensity maskMi. CalculateDi,p−D0, Di,n−D0, take the difference
and divide by 2, filter out high spacial frequencies to get rid of noise and non-uniformities
but to keep the structure of actuator intensity response. Finally, set everything not in
the actuator area to 0, and normalize, s.t.

∑
x,yMi ◦ (Di,p −D0) = 1, where ◦ denotes

element-wise multiplication and the sum is over nonzero mask pixels.

For arbitrary aberration of the incident beam, the voltage reconstruction procedure is simply
ui =

∑
x,yMi ◦ (D−D0), where ◦ denotes element-wise multiplication. In other words, given

a set of masks, output signal of the Curvature Sensor is calculated as the element-wise multi-
plication of CS image and corresponding mask, and then summation of all nonzero elements.
Because of the normalization used, this also gives the voltage distribution on actuators that
would generate the same aberration.

The complication in reconstruction of boundary conditions from the intensities comes from
the fact that the intensity signal produced by the boundary actuators is localized to a narrow
region at the edges of beam footprint, where diffraction fringes have large amplitude. Addi-
tionally, as it is shown later, the boundary actuators suffer from cross-talk. Thus the problem
of reconstructing boundary conditions from intensities is experimentally complicated, and
alternatives are explored.

3-2 Description of the simulations

It is beneficial to perform simulations before implementing methods in experimental setups,
since all parameters and variables can be controlled in programming environments. In case
of CS Adaptive Optics (AO), simulations are useful to see how the method performs with
different input aberrations, a parameter that is hard to control in experiments. Finally, it is
useful to make sure the method at least converges in perfect conditions, which are not achieved
in experiments. For these reasons it is decided to write a simulation of studied AO system
with Curvature Sensor and to perform several tests in it. All simulations are performed in a
custom-written Python environment.
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3-2-1 Optical Setup

Optical schematic of the simulated Curvature Sensor is represented in Figure 3-1. Incom-
ing aberrated beam is located in plane P ′0, and is conjugated to plane P0 through Keplerian
telescopic system with magnification M . In the simulation M = 1 is assumed. Phase and
intensity of the beam in plane P0 is assumed to be identical to ones in plane P ′0. First of all,
there is no subwavelength information in the object of interest, i.e. Deformable Mirror (DM),
which would be lost in the process of propagation. Under this condition, field located in
the back focal plane of a lens is Fourier transform of the field in the front focal plane of the
lens. Therefore from the structure of Keplerian telescope it is evident that field in plane P0
is Fourier transform of Fourier transform of the field in plane P ′0, which is just the flipped
field, and flipping is insignificant for this problem. For these reasons Keplerian telescope is
not simulated explicitly, instead it is assumed that DM and SH are located in plane P0.

Amplitude and phase of the field in plane P0 is known. Amplitude is assumed to be free
parameter and is set to |U0| = 10 s.t. I0 = 100 in units of intensity of camera. Phase φ in
plane P0 is the sum of aberration phase φab and phase induced by the DM φDM :

φ = φab + φDM , (3-1)

where dependence on (x, y) position is implied. Given the field in plane P0, it is required to
simulate field in plane P1 to complete the Curvature Sensor. Equation (3-2) is used for this
purpose:

A(fx, fy, z0) = A(fx, fy, 0)ei
√
k2−(2πfx)2−(2πfy)2z0 . (3-2)

The first step is to Fourier transform the 512 × 512 pixels simulation region using Numpy
Fast Fourier Transform library to obtain A(fx, fy, 0). From the simulation grid 220 × 220
pixels correspond to 25 × 25mm physical region, and the rest is zero padding added for
proper numerical Fourier transform calculation. Second, the calculated Fourier transform is
multiplied by the phase factor as in Equation (3-2), with z0 being the propagation distance, to
obtain A(fx, fy, z). Unless specified z0 = 300mm is used. This distance between the cameras
is equal to 0.03fDM , where fDM is effective focal distance of the simulated DM at maximal
defocus. Finally, to obtain field in plane P1, inverse Fourier transform of A(fx, fy, z0) is taken
[26].

3-2-2 Curvature Sensor

Given two fields, U0 in plane P0 and U1 in plane P1, intensity images taken by the CCD
cameras are calculated to finalize simulation of Curvature Sensor. The cameras are assumed
to have pixel values between 0 and 255. As mentioned before, field amplitude |U0| = 10 such
that intensity registered by the first camera is I0 = UU∗ = 100, where ·∗ denotes complex
conjugation.
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Real images registered by the cameras have noise added to the actual useful signal. A de-
tailed and accurate treatment of various sources of noise in cameras is a non-trivial problem,
therefore a simplified approach is chosen. White Gaussian ηw and Poisson ηp noises are added
to I0 to simulate background and shot noise [27] on the image taken by the camera:

I ′0 = I0 + ηw + ηp, (3-3)

where ηw is zero-mean normally distributed random variable with variance σ = 3, ηw ∼
N (0, 3) and ηp is Poisson noise from distribution

f(k, λ) = λke−λ

k! (3-4)

with parameter λ = 3.0pixel value
255 for each pixel. The parameter values were chosen such that

simulation images match observed in experiment. Following the same procedure, the image
Iz0 in plane P1 is calculated, and the output of CS is given by Iz0−I0

I0
. An example of simulated

CS output image is in Figure 3-2.

Figure 3-2: Example of simulated output of Curvature Sensor

The obtained simulation of CS is accurate enough for the goals of this thesis.

3-2-3 Deformable Mirror

An OKOtech membrane deformable mirror was modeled in simulation environment to test
Curvature Sensor. The radius of DM is rDM = 110pixels. For 96-channel OKO DM the
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actuator influence functions are calculated using iterative solver of Poisson equation,

∇2z(x, y) = P (x, y),

where P (x, y) corresponds to known actuator area. Pixels corresponding to the source term
on the right are inside the actuator area and are set to +1, and the solution pixels outside
the mirror aperture are fixed to be 0. An example of calculated response for actuator 16 is
represented in Figure 3-3.

Figure 3-3: left P (x, y) for actuator 16 represented inside the mirror aperture, right Calculated
influence function

The calculated influence functions must be normalized. One can use either known single
actuator stroke, or a known aberration amplitude when all actuators are active. In this case
the influence functions were normalized so that upon summation they result in defocus term
with 15λ amplitude at λ = 550nm. This was done in order to sample phase appropriately on
the simulation grid, i.e. at least 5 samples per 2π change of phase.

The radius of light beam is assumed to be rbeam = 0.82rDM = 90 pixels, so that its location
on the mirror matches the experimental conditions.

3-2-4 Shack-Hartmann Sensor

Complete detailed simulation of Shack-Hartmann sensor can be complicated and requires
simulation of propagation of light after applying a phase pattern corresponding to array of
microlenses. Instead, a simpler way is chosen, since it suffices proof-of-principle goals.

Coordinates of nml microlenses are defined on a square grid inside the beam footprint. Gra-
dient of the phase is calculated numerically and then averaged over each square microlens
aperture, leaving out the unphysical jump at the boundary of aperture coming from the fact
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that there is no requirement that phase is zero at the boundary, but phase outside the aperture
is set to 0. In this way two vectors sx and sy are calculated, corresponding to mean derivatives
of phase in x and y directions respectively. The Shack-Hartmann output is simulated as

s =
[
sx
sy

]
+ η,

where η is zero-mean white Gaussian noise. The variance is tuned such that the degree of cor-
rection approximately matches experimental observations. Two sets of lenslet coordinates are
generated: for high resolution SH number of microlenses inside the beam footprint nml = 109
and for low resolution SH nml = 32. For simulations of combined SH and CS only microlenses
of high-resolution SH located at the boundary are used for which rml ≥ 0.85rbeam, where rml
is radial coordinate of the microlenses.

3-2-5 Atmospheric Tubulence

In order to perform tests of the proposed correction method, phase aberration with atmo-
spheric statistics of Zernike polynomials was used. Phase screens are calculated as linear
combination of Zernike polynomials with coefficients aj being zero-mean Gaussian random
variables with covariance matrix defined by Noll [11] and [28]:

〈
aja
′
j

〉
=


2.2698

(
D
r0

) 5
3 (−1)

n+n′−m−m′
2

√
(n+ 1)(n′ + 1)×

× Γ([n+n′− 5
3 ]/2)

Γ([n−n′+ 17
3 ]/2)Γ([n′−n+ 17

3 ]/2)Γ([n+n′+ 23
3 ]/2) , ifm = m′ and (j − j′) even,

0, otherwise.
(3-5)

Here, (n,m) and (n′,m′) are corresponding radial and azimuthal degree of Zernike polynomial,
and Γ(x) is Gamma-function:

Γ(x) =
∫ +∞

0
tx−1e−tdt. (3-6)

The coefficient D
r0

is the ratio between aperture diameter and Fried length and is just a scal-
ing factor, which in simulations is set to D

r0
= 15. Since only static aberrations have been

corrected in this thesis, the tip and tilt terms are of no interest and are removed from the
random phase screens.
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Figure 3-4: Schematic of the experimental setup.

3-3 Experimental setup

The proposed method is tested on the setup schematically represented in Figure 3-4.

The light source (S) is 472 nm LED coupled to a 50 µm multimode fiber. The iris (IR) is
conjugated to the deformable mirror (DM) plane by the telescope formed by lenses L1 (100
mm focal) and L2 (300 mm focal). The magnification of the telescope system is such that
the beam footprint is as represented in Figure 3-5.

The deformable mirror used in this experiment is 96-channel OKOtech membrane mirror [29].
Maximal surface retardation of the mirror is rmax = 19µm which at given wavelength is ±20λ
of defocus amplitude. This results in effective focal length fDM = 8.23m. Since in this case
the linearized signal u ∈ [−1, 1] is used, and electrostatic membrane mirrors are able to create
only convex surface, the mirror is not flat at u = 0. The beam before the mirror must be
slightly divergent so that after reflection at u = 0 it is collimated.

The DM plane is conjugated to the Shack-Hartmann (SH) sensor through the telescope formed
by the lenses L3 (300 mm focal) and L4 (100 mm focal). Microlenses with 300µm pitch are
used for SH sensor. Surface of the mirror is imaged by the two identical cameras C1 and C2
(1280 × 1024 ThorLabs USB camera). C1 is conjugated to the DM plane by the telescope
formed by the lenses L3 (400 mm focal) and L5 (75 mm focal). In the notation used in the
previous chapters, C1 measures uniform intensity distribution I0. The second camera C2
is located at distance z0 = 40mm from the plane conjugated to the DM, and captures the
modulated intensity distribution Iz0 . This distance between the two CS cameras is 0.044fDM ,
where fDM is focal distance of the physical DM at maximal generated defocus, and it ensures
that CS is operated well within the linear region.

A typical output of the curvature sensor is represented in Figure 3-6.
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Figure 3-5: Beam geometry on the mirror.

Figure 3-6: The image D1 − D0 obtained with the central actuator set to +1 (a) and the
corresponding mask obtained from this image (b).

Figure 3-6 (a) represents Di−D0 when the input to the central actuator is u1 = 1. Figure 3-6
(b) represents the mask M1 obtained for this actuator. The selection of the part of the image
corresponding to actuator surface is performed automatically, by first finding brightest pixel
of filtered Di −D0, and then selecting corresponding pixels around it found from the known
actuator geometry. Filtering is performed by computing Fourier transform of the image,
setting pixels corresponding to spacial frequencies |f | > 10 to 0, and computing the absolute
value of inverse Fourier transform. For the boundary actuators useful signal is contained only
in a narrow region at the boundary, as expected. However, it was observed that using full
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actuator area for the mask leads to more stable performance of AO. The signal and mask for
a boundary actuator is represented in Figure 3-7.

Figure 3-7: The image D1−D0 obtained with actuator 86 set to +1 (a) and the corresponding
mask obtained from this image (b).

3-4 Linearity of the method

The first step to be done when testing a new method is to make sure the proposed metric is
indeed linear in actuator signals. For this purpose, at first a simulation is performed. Each
actuator is set to range of voltages between −1 and 1, and every time the actuator voltage is
reconstructed from the intensity distributions using the described method.

The mean and standard deviation of reconstructed signal plotted against the applied signal
is represented in Figure 3-8 (left). The mean and standard deviation of reconstruction error
is represented in Figure 3-8 (right).

It can be observed that the method indeed exhibits linear behavior, with the error due to
nonlinearity not exceeding 12% of the applied voltage. Increasing the displacement distance
z0 increases the observed nonlinearity. The linearity of the reconstruction was also tested in
experimental setup. The results are represented in Figure 3-9.

As it can be seen the method exhibits linear behavior in experimental setup as well, but with
larger deviations. It is observed that in experiment increasing z0 affects the linearity less than
it does in the simulation. Therefore, both experiment and simulation confirm that CS output
signal is linear in mirror actuator voltage, and therefore can be readily used to close the loop
without extra calculations needed. In the experimental setup reconstruction error is within
20% of applied signal, which is a precision good enough for closed loop operation.
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Figure 3-8: Simulation data: (left) Mean and standard deviation of reconstructed voltage
plotted against applied voltage, (right) Mean and standard deviation of voltage reconstruction
error plotted against applied voltage
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Figure 3-9: Experimental data: (left) Mean and standard deviation of reconstructed voltage
plotted against applied voltage, (right) Mean and standard deviation of voltage reconstruction
error plotted against applied voltage

3-5 Influence matrix obtained with membrane mirror and curvature
sensor

As mentioned before, one of the advantages of CS is that to reconstruct the signal of an actu-
ator only one output of CS corresponding to that actuator is needed. In other words, the in-
fluence matrix that maps DM signals to CS outputs is supposed to be diagonal, and actuators
are completely decoupled. If this is indeed the case, no matrix inversion and matrix-vector
multiplication is needed for reconstruction, and the problem that required N2 operations,
where N is order of the DM, now requires only N operations.

To test this hypothesis, the mirror-sensor influence matrix is first calculated in simulation
environment, and then measured in experimental setup. Recall the relation between actuator
inputs u and CS output signals c:
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c = Ru,

where R is the influence matrix of the mirror-sensor pair. By direct analogy with previously
explained SH influence matrix, the ith column ri of the matrix R is simply the output vector
of CS when only ith actuator is active and set to +1. This is precisely how influence matrix
is simulated and measured. Each actuator of the DM is set to +1 one at a time, and output
of CS is recorded and written as corresponding column of the influence matrix. The result of
simulation is represented in Figure 3-10.
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Figure 3-10: (left) Influence matrix of the curvature sensor paired to the membrane mirror,
simulation. (right) Singular values of modes of the curvature sensor

Figure 3-10 (left) represents the simulated influence matrix, and (right) is the plot of its
singular values. Here the resulting influence matrix is the average of matrices obtained in
200 simulations. This is needed in order to distinguish off-diagonal noise terms from true
cross-talk. As it can be observed, the influence matrix has expected structure with dominant
diagonal values. This means that each actuator produces intensity difference locally over its
area, as expected from the theory. However, the boundary actuators suffer from cross-talk
and cause smallest singular values to appear. The influence matrix becomes almost identity
when all the boundary terms are removed. This can be seen from the matrix structure and
its singular values, represented in Figure 3-11.

The cross-talk is even more pronounced in the influence matrix obtained from the experimen-
tal setup (Figure 3-12). Therefore using intensity information only to reconstruct signals on
boundary actuators may lead to instabilities.

This result suggests that it is possible to use intensity-only reconstruction for the actuators
not located on the boundary of aperture. Correction with boundary actuators is a more
challenging problem and may require some modifications made to the sensor in Section 3-7,
but first the method must be tested in closed loop on aberration generated from random
actuator voltages as well as on an arbitrary aberration inserted into the system.

Master of Science Thesis I. Coroli



40 Experiments

0 10 20 30 40 50 60 70
Active Actuator

0

10

20

30

40

50

60

70

Se
ns
or
 O
ut
pu

t

0 10 20 30 40 50 60 70 80
Mode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
ng

ul
ar
 V
al
ue

Figure 3-11: (left) Influence matrix of the curvature sensor paired to the membrane mirror
obtained in simulation excluding terms corresponding to the boundary actuators. (right) Singular
values of modes of the curvature sensor
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Figure 3-12: (left) Influence matrix of the curvature sensor paired to the membrane mirror,
experiment. (right) Singular values of modes of the curvature sensor

3-6 Wavefront correction using only intensity information

In theory, a Curvature Sensor produces enough data to correct wavefront. Boundary actua-
tors however introduce a significant amount of cross-talk into the system, and may lead to
instabilities in reconstruction of actuator input signals. The goal of this section is to examine
the significance of this effect and its influence on correction quality. The tests are performed
in both simulation and experimental setup, with all configurations remaining unchanged.

First, the method is tested in simulation on an aberration defined as a linear combination of
the mirror influence functions. For this the actuator inputs u are set to random values, such
that ui ∈ [−1, 1]. This static aberration is corrected in closed loop with feedback coefficient
kfb = 0.3 for 30 iterations. The simulation is repeated for 50 trials. The result is represented
in Figure 3-13.

The mean value and the variance of ‖u‖2, taken over the 50 random voltage sets (y-axis), is
plotted against closed loop iteration number (x-axis). It can be observed that in simulation
it is possible to correct mirror-generated static aberration, and boundary actuators do not
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Figure 3-13: Correction of static aberration generated by setting mirror actuators to random
voltages, simulation. The x-axis represents iteration number, the y-axis represents 2-norm of the
actuators voltage.

produce any difficulties. In general, good performance in simulation environment does not
guarantee convergence in real setup, and therefore the same tests must be repeated in exper-
iment. The result is represented in Figure 3-14.
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Figure 3-14: (left) Mean and variance of 2-norm of actuator inputs plotted against iteration
number, simulation. (right) Typical actuator signal at the last step of correction, experiment

Figure 3-14 (left) represents mean and variance of ‖u‖2 for the 50 trials. Figure 3-14 repre-
sents typical u at the last step of correction. In Figure 3-15 the image obtained with CS is
shown before (left) and after (right) correction. As it can be observed, the image is highly
non-uniform before the correction with intensity modulations having actuator shapes. From
Figure 3-14 it can be observed that the method works in experimental environment, but the
performance of correction is reduced for the boundary actuators, as expected. The reason is
the cross-talk in this region and diffraction on the aperture boundary. Performance decrease
is within the expected limit, and therefore the method can be tested in correcting arbitrary
wavefront aberration in experimental setup. To do this, a transparent disk with hairspray
layer of varying thickness is placed in the beam path. The correction is performed using
all mirror actuators. In attempt to remove the issues associated with boundary actuators,
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Figure 3-15: Experiment with correction of random voltages on the mirror actuators: a Ini-
tial intensity distribution has clear non-uniformities, b Final intensity distribution is almost flat,
corresponding to wavefront with zero curvature.

another experiment is performed where the aberration is corrected using 80 actuators inside
the footprint away from the boundary. For comparison the aberration is corrected using SH
sensor. In all cases, SH Wavefront Sensor (WFS) is used to measure the residual aberration.
The result of this experiment is represented in Figure 3-16.
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Figure 3-16: Correction of general aberration introduced into the system. The experiment is
performed 3 times: CS using 80 actuators, CS using 96 actuators, and using SH sensor.

The x-axis represents the iteration number and the y-axis represents ‖s‖22, where s is vector
of centroid displacements measured by SH. In this experiment lens L4 has focal length
f = 70mm. In Figure 3-16 divergent behavior is observed for CS correction, both in 96
and 80 actuator setting. The reason is high sensitivity of the intensity-based correction to
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experimental setup imperfections. Therefore the method requires modifications to improve
robustness, and these are introduced in the nest section.

3-7 Combined curvature and gradient correction

Setting correct boundary conditions on the mirror purely from intensity measurement is
experimentally challenging problem. An alternative is to complement the curvature measure-
ments with gradient measurements performed by a Shack-Hartmann sensor. In the proposed
method the control zones are split between curvature and Shack-Hartmann sensor as it is
schematically represented in Figure 3-17.

Figure 3-17: Division of correction zones. Central actuators (red) are controlled by the curvature
sensor, boundary actuators (blue) are controlled by the Shack-Hartmann sensor.

The nc actuators inside the beam footprint are controlled by the curvature sensor as described
before. These actuators are further referred to as central. The nb actuators on the boundary
are controlled separately by the Shack-Hartmann sensor using only annulus of nml centroids
located at the boundary (see Figure 3-18). These actuators are further called boundary
actuators.

Let c be the vector of curvature measurements inside the beam footprint, satisfying

c = Ru1,

where R ∈ Rnc×nc is the curvature sensor influence matrix for the central actuators, and
u1 ∈ Rnc×1 is vector of inputs to the actuators in the controlled region. As it was shown
before, R has dominant diagonal terms. Since here only central actuators are controlled by
the curvature sensor, R does not contain the cross-talk terms, and the assumption R = I can
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Microlens Coordinates

Figure 3-18: Example of positions of microlenses in the annular region near the boundary, used
to control the boundary actuators.

be made, where I ∈ Rnc×nc is the identity matrix. Let s be the slope measurements at the
edge of the aperture, then s satisfies

s =
[
X H

] [u1
u2

]
,

whereH ∈ Rnml×nb is the SH influence matrix mapping the voltages on boundary actuators to
movements of boundary centroids, X ∈ Rnml×nc is the SH influence matrix mapping voltages
on central actuators to movements of the boundary centroids, and u2 ∈ Rnb×1 is the vector
of inputs to the boundary actuators. In order to combine readings of the two sensors, the
individual influence matrices are normalized by the largest singular value to satisfy

c
σr

= 1
σr
Ru1, (3-7)

s
σs

= 1
σs

[
X H

] [u1
u2

]
, (3-8)

where σr is the largest singular value of matrix R and σs is the largest singular value of matrix
[X H]. When further referring to c, s and the corresponding matrices, their normalized
versions are meant. Normalized measurements from the two sensors are combined into a
single vector, satisfying:

[
c
s

]
=
[
I 0
X H

]
︸ ︷︷ ︸

B

[
u1
u2

]
, (3-9)
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and used for control. In general, matrix X 6= 0 since central actuators also produce centroid
movements. For now the assumption X = 0 is made, which is realistic for high order de-
formable mirrors with localized actuator influence functions, and the control between the two
zones is therefore split, as it is seen from Equation (3-10).

[
c
s

]
=
[
I 0
0 H

]
︸ ︷︷ ︸

A

[
u1
u2

]
. (3-10)

The implications of this assumption are analyzed later in more details. From the experiment
it was observed that including X 6= 0 into matrix A produces only marginal improvement.
Assumptions R = I is justified by the fact that this substitution leaves singular values of the
resulting influence matrix almost unchanged, as observed in Figure 3-19.
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Figure 3-19: Normalized singular values of combined influence matrix plotted against singular
values of Curvature Sensor and Shack-Hartmann sensor influence matrices.

Here, Combined means combined curvature-gradient WFS, full is matrix A with CS influence
matrix R containing off-diagonal terms, and diagonal is A after substitution R = I is made.
In Figure 3-19 it can also be observed that the singular values of matrix A fall off significantly
slower than for other methods. This means improved matrix condition number, and better
stability and robustness upon inversion with respect to the original CS. The input signals are
calculated as

u = A†
[
c
s

]
,

where ·† denotes pseudo-inverse. The combined matrix is inverted using SVD decomposition
with singular values σ < kσσ0 dropped. The inverse of the influence matrix is represented in
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Figure 3-20.
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Figure 3-20: Inverse influence matrix of combined sensor obtained in simulation - the dominant
diagonal structure for the central actuators suggests that only one curvature signal ci can be used
to calculate the correction voltage ui.

The resulting inverted influence matrix A† exhibits the expected structure. Inner actuators
are controlled by CS only and each requires only one corresponding measurement, while 16
actuators at the boundary are controlled by the SH sensor. Therefore, a combined curvature
and gradient sensing method preserves the diagonal influence matrix structure for inner ac-
tuators, and is expected to be more robust and perform better in reconstructing signals for
boundary actuators, as the singular values of the influence matrix suggest.

3-7-1 Correction with boundary centroids

The proposed method is evaluated in simulations and experimental setup. First, it is necessary
to determine the optimal lower bound for singular value. For this, the following simulation
is performed. Actuators are set to random initial voltages, and the values are calculated
iteratively. This procedure is repeated for 100 times. The optimal singular value lower bound
kσ is the one that minimizes error in reconstructed voltages. The mean and variance of
reconstruction error for kσ = 0.4 (1 mode dropped) and kσ = 0.6 (4 modes dropped) is
represented in Figure 3-21.
It is observed that dropping more than 1 mode increases the reconstruction error for the
boundary actuators. Thus the optimal performance is achieved when 1 mode with smallest
singular value is dropped, which sets kσ = 0.4.

In order to investigate the performance of the proposed method and compare it with pure
CS-based AO and SH-based AO, the following simulation is performed. An aberration rep-
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Figure 3-21: Mean and variance of correction error for each actuator for 100 random voltage
sets, (left) kσ = 0.4, (right) kσ = 0.6

resenting atmospheric turbulence phase screen is generated using Zernike polynomials up to
radial order degree n = 10, with tip, tilt and piston terms removed. The aberration is cor-
rected in 30 steps with feedback coefficient kfb = 0.5 using the compared methods. The
RMS value of residual phase in radians is recorded as a function of iteration number, and
then steady state average value is calculated for the last 20 correction steps. The simula-
tion is repeated for 100 random turbulence phase screens, and the result is represented in
Figure 3-22.
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Figure 3-22: Simulation results of correcting 100 random turbulence realizations with different
methods.

Here, CS, 80 and CS, 96 are corrections with intensity-based Curvature Sensor using 80 and
96 actuators, respectively, Comb is proposed combined curvature and gradient-based method
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and SH is correction with Shack-Hartmann sensor only. It can be observed that correction
with CS converges in simulation, unlike in experimental environment, but this is of little
practical significance since the method was observed to be divergent in experiment before.
The proposed method improves correction compared to the intensity-based CS, and is more
stable in experimental setting, as it is shown later. The performance is comparable with SH
sensor, but the influence matrix and its inverse are diagonal for the inner actuators. Therefore,
the advantage of this method is easy applicability to high-order DM, where the amount of
inner actuators Ni is much larger than boundary actuators Nb. In order to calculate inputs
u ∈ R(Ni+Nb)×1 using SH sensor with nml = (Ni + Nb) microlenses, the number of required
operations is Nop,sh ∝ (Ni +Nb)2. For CS the diagonal structure of inverse influence matrix
reduces the amount of operations to Nop,cs ∝ Ni +N2

b . In the limiting case of high order DM
with Ni � Nb Nop,sh ∝ N2

i , whereas Nop,cs ∝ Ni. Therefore the method increases speed of
computational stage of correction significantly for high order deformable mirrors.

The method is tested in the experimental setup on set of random aberrations. The aberrations
are corrected using CS with 96 and 80 actuators, proposed combined curvature and gradient
sensor and SH WFS for reference, with feedback coefficient kfb = 0.5. The variance of
measured centroid displacements is recorded at every correction step, and plotted against
iteration number. A representative example of correction is in Figure 3-23.
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Figure 3-23: A representative experimental result of random aberration correction. Here, (CS,
80) is curvature sensor using only 80 central actuators, (CS, 96) is curvature sensor using all mirror
actuators, (SH) is Shack-Hartmann sensor, (Comb) is the combined curvature and gradient sensor,
controlling inner actuators and boundary actuators separately, and (Comb, intersection) is the
combined curvature and gradient sensor, where influence matrix includes centroid displacements
for actuators 55-80.

The correction was performed with several methods for comparison. Here, CS, 96 is com-
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pensation using curvature sensor and all mirror actuators, CS, 80 is curvature sensor and 80
central actuators, SH) is Shack-Hartmann sensor, Comb is combined curvature and gradi-
ent sensor (proposed method), and (Comb, intersection) is proposed method with centroid
displacements for actuators 55-80 included into influence matrix, which is one more ring of
actuators before the boundary. It can be observed that controlling additional ring of actua-
tors with Shack-Hartmann sensor improves the correction only slightly.

Therefore, the proposed combined curvature and gradient method shows convergence in ex-
perimental setup, unlike pure CS. The performance of correction is comparable to the one
achieved with SH, and the computational costs are greatly reduced. Increasing the DM
order will increase necessary SH microlenses density and computational costs such that at
some point SH will become impractical to use. Proposed method does not suffer from this
complication, since wavefront sampling is effectively performed by each individual pixel, and
actuator response is decoupled.

3-7-2 Effect of image resolution on performance

The experimental setup used in this thesis is such that every mirror actuator is imaged by
a large amount of camera pixels. In high order deformable mirrors where the presented
method yields best speed improvement, this may not be the case. In order to see how the
number of pixels per actuator influences the correction, the following experiment is conducted.
Mirror voltages are set to initial random values, which are corrected in closed loop with
kfb = 0.5, using full CS influence matrix containing off-diagonal terms, and using sparse
matrix containing diagonal terms only. The intensity distribution used to calculate curvature
signals to close the loop is downsampled by 2m, where m ∈ Z, 0 ≤ m ≤ 5. The variance of the
measured centroid displacements in pixels is calculated and plotted against iteration number
(Figure 3-24, upper figures). Mean and standard deviation of the centroid displacement
variance in steady state is represented in Figure 3-24, bottom figure.

The following observations are made from this experiment. First, decreasing the number of
pixels of CS per mirror actuator does not reduce the correction performance. Areas as small
as 4×4 pixels can be used to calculate required control signal, which confirms the applicability
of proposed method to high-order DM. Second, the quality of closed loop correction using
full CS influence matrix and using only its diagonal terms is the same within experimental
uncertainty. This observation confirms theoretical considerations and simulation results.

3-7-3 Analysis of cross-talk influence of the sensor performance

During the experiments on sensor performance, the effect of central actuators on boundary
centroids was assumed to be zero. While it is possible to minimize it, for instance by oper-
ating high order DM with the localized first derivatives of the actuator influence functions
or selecting centroids on the boundary sufficiently far from central actuators, in general the
cross-talk term in the combined influence matrix is nonzero. In this section the effect of the
assumed approximation is analyzed in more details.

Recall the matrix equation for the combined sensor Equation (3-9):
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Figure 3-24: Results of random voltage correction in closed loop depending on the amount of
pixels per actuator.

[
c
s

]
=
[
I 0
X H

] [
u1
u2

]
, (3-11)

where R = I is the normalized curvature sensor influence matrix for the central actuators,
assumed to be identity, H is normalized SH influence matrix for boundary actuators, and X
is the coupling term representing effect of central actuators on the boundary centroids.
Because of the structure of the combined influence matrix B it is easy to diagonalize it:

[
I 0
−X I

]
︸ ︷︷ ︸

T

[
I 0
X H

]
︸ ︷︷ ︸

B

=
[
I 0
0 H

]
︸ ︷︷ ︸

D

. (3-12)

Therefore, a linear combination of combined sensor output essentially diagonalizes the result-
ing influence matrix:

Bu = b, (3-13)
TBu = Tb, (3-14)
Du = b′, (3-15)

û = D†b′, (3-16)
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and pseudo-inverse of matrix D is

D† =
[
I 0
0 H†.

]
(3-17)

Working with the linear transformation of measurements increases the number of operation
slightly, adding additional ≈ N operations, where N is the number of sensor measurements
and is assumed to be order of actuator number. It still remains interesting to observe how X
affects correction performance and for this the following simulation is performed. Aberration
correction for different number of actuators included in the intersection term X is simulated
for 30 iterations and is repeated for 100 different phase screens. For this, a certain number of
leftmost columns of matrix X are set to 0, meaning that a definite number of inner actuator
rings are assumed to have no effect on centroid movements. The wavefront phase RMS value
in steady state is recorded for every screen and every number of actuators in the coupling
term X. The result is represented in Figure 3-25.
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Figure 3-25: Results of simulation of atmospheric turbulence correction with different amount
of actuators included in the coupling term X.

Here the x-axis is labeled according to number of actuators included in the coupling term X.
It can be observed that using complete influence matrix B improves correction only negligibly.
Mean residual aberration RMS in case of full coupling term is 28.5 % of the initial value, and
34.5 % in case of completely decoupled control, which means 6 % improvement. Therefore, it
is possible to either diagonalize the influence matrix at the cost of computational speed, or
to sacrifice a certain amount of correction quality and simply neglect the terms that couple
inner actuator rings to boundary SH centroids.
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3-8 Application of correction with Curvature Sensor to the high-
order KiloDM

The final experiment to be performed is wavefront correction with Curvature Sensor paired
with high order DM. As mentioned in Section [?], the method yields largest benefit on this
type of device, eliminating the need of lengthy multiplications of full matrix by a vector. For
this purpose experimental setup with CS and 952-actuators Boston Micromachines Kilo-DM
[30] (Figure 3-26) is built.

Figure 3-26: Boston Micromachines 952-atuators Kilo-DM.

The experimental setup is represented in Figure 3-27.

Here, (S) denotes light source, which is λ = 472nm LED coupled to 50µm multimode fiber.
Collimated beam hits transparent plate with aberration (AB), which is conjugated to the
Deformable Mirror plane (DM) through the telescope composed of lenses L1 (100 mm focal)
and L2 (100 mm focal). The mirror plane is conjugated to the Shack-Hartmann (SH) sensor
through the telescope composed of lenses L3 (150 mm focal) and L5 (60 mm focal), and to
the camera C1 through the telescope composed of lenses L3 and L4 (60 mm focal). Camera
C1 captures uniform intensity distribution I0. Camera C2 is located z0 = 3.6mm further
than camera C1 along the optical axis and captures the modulated intensity distribution Iz0 .

Initially each individual actuator displacement depends quadratically on applied voltage [30],

z = aV 2, (3-18)
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Figure 3-27: Experimental setup to evaluate performance of Curvature Sensor paired with high-
order kilo-DM.

where V is applied voltage. To operate the mirror signal u which is linear with actuator
displacements and varying between -1 and 1 must be calculated. Signal u = 0 corresponds
to flat mirror voltage distribution, which is given by the manufacturer and is approximately
equal to

Vflat = Vmax√
2

(3-19)

for every actuator. Given the above listed properties of the linearized signal, it can be found
as

u = 2 V 2

V 2
max

− 1, (3-20)

and it is related linearly to the actuator displacement. In practice it is better not to use the
full scale of allowed voltages and to limit V ≈ 0.7Vmax, mainly because actuator displacements
do not follow Equation (3-18) near Vmax. Figure 3-28 represents sample output image from
the Curvature Sensor when with subtracted flat mirror intensity distribution. Individual
actuators are easily observed.

Using the calibration procedure described in Section 3-1, the mirror influence matrix repre-
sented in Figure 3-29 is measured. The expected dominant diagonal structure can be observed.
However in this case coupling between actuators is stronger than in case of membrane mirror
with large actuators, because of the densely packed actuator geometry in this case. Inactive
mirror actuators or regions with dust particles yield sensor output 1 for every active actuator
and can be easily excluded from operation, although this is not necessary.

An important aspect of operating Kilo-DM with CS must be stressed. For the previously
operated membrane mirror with fixed edges setting all actuators to the same voltage yields a
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Figure 3-28: Example output image from the Curvature Sensor with subtracted image corre-
sponding to flat mirror. Localized actuator response is easily observed.

defocus term, to which CS is sensitive. In the case of Kilo-DM setting actuators to the same
voltage yields piston term in the largest part of the area. Neither SH, nor CS are sensitive to
piston mode, and because of this the sensor output will be as if the mirror was at zero input
level. Due to this the actuators may saturate quickly, and to prevent it the mean value of
actuator voltages is subtracted at every correction iteration.

To evaluate performance of the CS with Kilo-DM the experimental setup represented in Fig-
ure 3-27 is used. A transparent disk with optical aberrations is inserted into the system.
The aberrations are measured by SH sensor as centroid displacements vector s. To evaluate
correction quality, tip and tilt terms are removed from s by subtracting mean value of cen-
troid displacements in each direction, and standard deviation σs is calculated. The feedback
coefficient kfb = 0.5 and the correction is performed for 30 iterations. The experiment is
repeated for 10 different aberrations. Mean and standard deviation of σs is plotted against
iteration number.

The x-axis in Figure 3-30 represents the iteration number of correction, the y-axis represents
the standard deviation of SH output s, σs, with tip and tilt terms removed. As it can be
observed, CS is able to correct the aberrations in this case, as σs decreases over iterations,
unlike in case of membrane mirror. A possible reason is much higher locality of influence
functions of Kilo-DM actuators with only 15% interactuator coupling, which is worse for
OKO membrane mirror. However, the problem of finding exact conditions when the method
performs well is still to be solved, and presents an interesting research topic by itself.
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Figure 3-29: Measured KiloDM influence matrix. The expected dominant diagonal terms are
observed. Broken actuators can be observed as well as the lines where sensor readings are 1 for
every actuator.

From Figure 3-30 it can be observed that the variance of centroid displacements σs decreases,
but does not approach zero with iterations. A possible reason is that this correction quality
is limited by the mirror, and the rest of the modes cannot be corrected. Another possibility
is that the correction quality is given by the fact that curvature sensor is less sensitive to
low-order Zernike modes. As explained in Section Section 2-3-5, for a phase given by a single-
frequency sinusoid with wave number k, Laplacian is proportional to |k|2. Low order Zernike
components contain mostly low spatial frequencies for which k is small, and therefore the
sensor readings are dominated by high-order modes. The response of SH sensor is proportional
to |k| and detects lower order modes better than the CS. Curvature Sensor in the experiment
was tuned by selecting the distance between the cameras z0 to work in the linear region of the
mirror actuators, which produce sharp and localized influence function containing high spatial
frequencies. Therefore, the configuration was sensitive to high order aberration modes and
much less sensitive to low-order modes which remained uncorrected, resulting in the relatively
high residual phase variance.

Comparison with SH correction has not been made in this case, since the scope of this
experiment is to show applicability of the method to high-order DM. In the used experimental
setup each actuator had plenty of corresponding CS pixels. Therefore, it is possible to use it
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Figure 3-30: Results of aberration correction with Kilo-DM and Curvature Sensor. The x-axis
represents number of correction step, the y-axis represents standard deviation of SH output with
tip and tilt terms subtracted.

with even higher order DM. At some point the problem scale will become such that SH is
unusable because necessary lenslet array is too dense to be produced. In this setting CS is
still usable since camera pixels are mush smaller than any possible microlenses.

This section concludes using Curvature Sensor for AO correction. It was demonstrated to work
with high-order 952-actuator DM. The expected properties are observed, namely diagonality
of influence matrix, local actuator responses and fast correction. In the next section another
application of CS is studied.

3-9 Wind velocity measurements

In astronomical observations the main source of time-varying aberrations is the atmospheric
turbulence. Naturally occurring small variations in temperature cause small changes in wind
velocity, which produce fluctuations of air density and hence of optical refractive index. It
has been shown that the turbulence power is concentrated in a number of discrete layers at
certain heights.
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Many mathematical models of atmospheric turbulence use Taylor Frozen Flow Hypothesis
(TFFH). It assumes the turbulence layers to have stationary frozen structure during the
time it takes the layer to travel across telescope aperture. Therefore, statistical properties of
atmospheric turbulence, such as Fried parameter r0 are assumed to be slowly varying, but
depending on the wind velocity in a given layer. In order to use optimal AO control it is
necessary to estimate atmospheric properties and wind speed measurement is used for this
purpose. Wind speed estimate is also used in predictive control techniques, which are used
to compensate delay in the feedback loop.

A number of methods has been developed to measure wind speed in astronomy. Doppler
LIDAR techniques are used during astronomical site testing. For real time measurements
wind sensors based on covariance function of amplitude atmospheric scintillations were sug-
gested, speckle correlation technique has been developed, and a method based on intensity
fluctuations was suggested. An alternative is to use data from a wavefront sensor that al-
ready exists in AO loop. Roopashree et.al. [31] used correlation maps of phase reconstructed
from Shack-Hartmann wavefront sensor measurements. This solution includes unnecessary
step of explicit phase reconstruction from slope measurements. Li [32] reconstructed wind
velocity from gradient of SH slope measurements and analyzed performance of the estimator.
However, the method is limited to measurements of wind velocities w / 1.2 subaperture

frame and
atmospheric conditions r0 > 0.75, subaperture. Schöck and Spillar [33] identified wind veloc-
ity using correlation maps obtained with SH WFS output data and evaluated the method on
measurements obtained from both simulation and real data.

The above discussed curvature wavefront sensor is suitable for wind velocity measurements
as well. A similar technique to [33] is used. Let φ(r, t) be the turbulence-induced aberration
across the telescope aperture, where r is coordinate inside the aperture, and t is time. The
Frozen Flow hypothesis is mathematically stated as

φ(r, t) = φ(r + wτ, t+ τ). (3-21)

Here, w denotes projection of the wind velocity onto the plane of telescope aperture, and τ
is time delay. The same relation holds for wavefront sensor output, in this case Laplacian of
the phase:

∇2φ(r, t) = ∇2φ(r + wτ, t+ τ). (3-22)

Wind velocity is estimated using the method of correlation maps. For an arbitrary discrete
sampled function f(x, y, t) define correlation

A(∆x,∆y, τ) =
∫
f(x, y, t)f(x+ ∆x, y + ∆y, t+ τ)dxdydt

σ1σ2O(∆x,∆y) (3-23)

=
∑N−1
x=0

∑N−1
y=0

∑tmax−1−τ
t=0 f(x, y, t)f(x+ δx, y + δy, t+ τ)

σ1σ2O(∆x,∆y) , (3-24)
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where f(x, y, t) is sampled on a grid N × N pixels for tmax temporal sampling points, σ1 is
the standard deviation of f(x, y, t), σ2 is the standard deviation of f(x + ∆x, y + ∆y, t + τ)
and O(∆x,∆y) is aperture overlap function, O(∆x,∆y) = P (x, y) ? P (x, y), P (x, y) is the
pupil function. Now, let f(x, y, t) be the curvature wavefront sensor output at time t, i.e.
the normalized difference of intensity distributions in two camera planes with reference (flat)
distribution subtracted. Assuming frozen flow hypothesis holds, the correlation function
A(∆x,∆t, τ) has a sharp peak at ∆x = wxτ , ∆y = wyτ , where wx, wy denote projection of
w onto x and y axis of the wavefront sensor respectively. By computing A(∆x,∆y, τ) for
τ ∈ [1, τmax] and tracking the position of correlation peak, the wind velocity is estimated.
The algorithm the reads as follows:

1. Before estimating wind velocities, the time average value of each pixel is subtracted
from the sensor readings to account for diffraction at the boundaries.

2. Compute A(∆x,∆y, τ) for τ ∈ [1, τmax].

3. For each A(∆x,∆y, τ) estimate the position of correlation peak. In order to do so
A(∆x,∆y, τ) is approximated with Gaussian function by means of nonlinear least
squares fit from Python optimization toolbox:

A(∆x,∆y, τ) ∝ e
− (x−µx)2

2σ2
x
− (y−µy)2

2σ2
y . (3-25)

Computed optimal values of µx and µy are then taken as the position of correlation
peak. Given the physics of the problem it is known that correlation peak for τ = 0 is
expected to be at (0, 0), so this information is added to the computed data.

4. Given the position of correlation peak for a range of τ , the problem reads


x0
x1
...
xn


︸ ︷︷ ︸

x

=


τ0 1
τ1 1
...

...
τn 1


︸ ︷︷ ︸

F

[
wx
c

]
+ ε, (3-26)

where ε is the vector of residuals. The problem is in typical least squares form and the
solution is

[
wx
c

]
= F †x, (3-27)

where F † denotes pseudoinverse. From the physics of the problem it is known that c ≈ 0,
since for τ = 0 correlation peak is expected at (0, 0) position, and wx is estimated wind
velocity in x-direction. The same procedure applies for y-direction.
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The method is evaluated in simulation environment. Turbulence phase screen movement
due to wind velocity under frozen flow assumption is simulated by taking phase screen in
a moving subregion of a bigger screen. The large phase distribution is simulated using the
method described in [34]. Phase φ(x, y, t) induced by the atmospheric turbulence across
aperture is assumed to be normally distributed. The covariance function

〈
φφT

〉
is given,

according to von Karman theory, by

Cφ(r) =
(
L0
r0

) 5
3 η

2

(2πr
L0

) 5
6
K5/6

(2πr
L0

)
, (3-28)

where r0 is Fried parameter, L0 is turbulence outer scale, η = 21/6Γ(11/6)
π8/3

24
5 Γ(6/5)5/6 is a

constant, r is the distance between two points where covariance is evaluated, and K5/6 is
modified Bessel function of third type. The phase screen is then generated as

φ(x, y) = F−1
[
eF

[
Cφ(r)1/2

]]
, (3-29)

where e ∼ N (0, 1). The aperture diameter is assumed to be d = 1m sampled on a square
grid with N = 64 pixels on each side. The camera pixels are assumed to be square with side
dp = 5.6µm, hence the magnification of the system isM = 0.0003584. Outer scale L0 = 20m,
Fried parameter is r0 = 20 cm. For curvature sensor simulation the displacement between two
measurement planes is ∆z = 1mm and I0 = 100, such that the intensity I∆z is modulated
between 0 and 200. In general, ∆z is proportional to r0 to obtain maximal sensor output.
The intensity images are simulated with additive white noise ng ∼ N (1, 3) and Poisson noise
with λ = kshot

255 I(x, y), where I(x, y) is the registered intensity and kshot = 3. It was observed
that estimation error in ŵx is independent on wy applied, so wy = 0 during the simulations,
and wx ∈ [1, 8]pixels

frame . Wind velocities were reconstructed from a time series of 48 frames. The
simulation was repeated for 100 phase screens and the RMS estimation error is represented
against applied velocity in Figure 3-31.

Under perfect frozen flow conditions, the curvature WFS is able to produce accurate estimates
with estimation error below 1%. This compares to the result of [31] for single layer turbulence
model, and avoids the unnecessary step of phase reconstruction from the WFS measurements.
Highest wind speed that is possible to estimate with curvature WFS is limited by the pixel
number:

vmax = N − b
2 , (3-30)

where N is wavefront sensor dimension in pixels, and b is the boundary set in order to limit
the region in which correlation is computed.

For perfect frozen flow turbulence the estimation accuracy does not depend on white noise
covariance when enough measurements are made and correlation peaks occur at overlap values
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Figure 3-31: Wind velocity estimation error in [%] plotted against real wind velocity.

∆x� N , where N is sensor dimension in pixels. This means that there is a reasonably large
number of pixels in the intersection region of two functions for which correlation is computed.
Let the curvature sensor output be c(x, y), and additive white noise be w(x, y) ∼ N (0, σ2).
At two time instances, t = t0 and t = t0 + τ , the sensor measurements are

cm(x, y, t0) = c(x, y, t0) + w1, (3-31)
cm(x, y, t0 + τ) = c(x, y, t0 + τ) + w2, (3-32)

where c(x, y, t) is the noiseless curvature signal. Under frozen flow assumption,

c(x, y, t+ τ) = c(x−∆x, y −∆y, t), (3-33)
c(x+ ∆x, y + ∆y, t+ τ) = c(x, y, t), (3-34)

where ∆x = wxτ , ∆y = wyτ , and (wx, wy) is the projection of wind velocity vector onto the
x and y-axis of the wavefront sensor. Combining these two equations results in

cm(x, y, t0) = c(x, y, t0) + w1, (3-35)
cm(x+ wxτ, y + wyτ, t0 + τ) = c(x, y, t0) + w2. (3-36)

Therefore,
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〈
cm(x+ ∆x, y + ∆y, t0 + τ)T cm(x, y, t0)

〉
=


〈
cT c

〉
+ σ2, ∆x = wxτ, ∆y = wyτ,

〈c(x+ ∆x, y + ∆y, t0)c(x, y, t0)〉 , otherwise,
(3-37)

and a sharp peak is expected for ∆x = wxτ , ∆y = wyτ . Noise covariance σ only increases
height of the peak and therefore does not affect estimation accuracy. For a real measurement
however there is a finite non-zero probability Pw of having a peak in correlation function at
(∆x,∆y) 6= (wxτ, wyτ) due to the noise. The probability Pw is inversely proportional to SNR
of the measurement and number of measurements made Nm. Therefore, qualitatively for a
certain SNR there is a critical value Nm0 such that for Nm < Nm0 most of the measure-
ments are wrong, and for Nm � Nm0 measurement accuracy is high and does not improve
significantly with increasing Nm. The critical value Nm0 is inversely proportional to SNR.

To illustrate the principle, a simulation is performed. For w = (3, 0) and kshot = 0 number
of sensor measurement is Nfr = [2, 20]. The simulation is repeated for 100 turbulence re-
alizations and SNR = {2.9, 25}. From the previous simulations it was observed that valid
measurements are within 25% from the true wind velocity, and therefore all measurements
outside this limit are considered wrong. For each value of frames taken, the valid measure-
ments are counted and the probability Pvalid of obtaining a valid measurement is plotted
against number of frames taken in Figure 3-32. For settings with Pvalid > 90% the variance
of estimation is computed and represented in Figure 3-33.
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Figure 3-32: Probability of obtaining a correct measurement represented against the number of
frames taken for two values of SNR.
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Figure 3-33: Variance of the measurement of the wind velocity for two SNR in the images taken,
as a function of frames used for calculation.

The predicted behavior is observed: for SNR = 25 the estimator error is below 1% for
all Nm, whereas for SNR = 2.5 only Nm ≥ 13 can be used to obtain valid measurement
with probability Pvalid > 90%. From Figure 3-33 it can be observed that estimator variance
saturates quickly after reaching the critical Nm, and the saturated estimator variance is
bellow 1% for both values of tested SNR. The result means that sensor bandwidth decreases
significantly for lower SNR, but the measurement precision is much less sensitive to the light
intensity.

The proposed method of wind velocity measurement was tested under perfect frozen flow
assumption, which is to a certain extent unrealistic scenario. In real measurements the corre-
lation peak does not only change its position with increasing τ , but its maximum is decreased
and the width is increased. At certain critical τc the correlation peak is not observed any-
more. Largest time delay between the measurements for which correlation is still observed τc
is validity time of frozen flow assumption, which is estimated between τc = 40ms and several
seconds [35]. Assume Nm measurements are made on a telescope of diameter d with a cur-
vature sensor such that each pixel is conjugated to square dpm× dpm. Assume additionally
that wind velocity has only one component, w = (wx, 0). The sampling period Ts is upper
bounded by τc: Ts < τc

Nm
. Upped bound for wind velocity magnitude is given by

wx <
d

2Ts
(3-38)

wx <
dNm

2τc
, (3-39)
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which is a statement that during one sampling period atmospheric layer must shift by ∆x < d
2 .

The peak detection algorithm is able to estimate correlation peak positions ∆x ≥ ∆min pixels,
where ∆min = 0.5, therefore the smallest measurable wind velocity is

wx ≥
∆mindp
Ts

, (3-40)

wx ≥
Nm∆mindp

τc
. (3-41)

For a telescope aperture diameter d = 1m conjugated to a curvature sensor of 256 × 256
pixels, assuming Ts = 10ms and Nm = 10 measurements, the wind velocity can be measured
in interval wx ∈ [0.2, 50) m

s .

A more realistic model of the atmosphere includes several superimposed turbulent layers with
generally different Fried lengths and wind velocities. In this case, as reported by [31], the
correlation maps contain several peaks. It is usually possible to distinguish one from another,
and it is the matter of algorithmic processing of the correlation maps in case the peaks are too
close. Here the use of the Curvature Sensor to obtain the higher resolution correlation maps
is demonstrated. Testing the wind estimation performance of the CS using real astronomical
measurements is of greater interest than the multilayer model. However, such data is not
publicly available and is not easy to produce in the experimental conditions of this thesis.
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Chapter 4

Results and conclusions

In this thesis Wavefront Curvature Sensor was studied and implemented in both simulations
and real experimental setup. Theoretical aspects of Curvature Sensor (CS) were given, like
Intensity Transport Equation and its validity conditions. Correction technique proposed by
Roddier was implemented in optical schema used by Teague to retrieve wavefront curvature
distribution. CS was first used with membrane Deformable Mirror. Measurements of influ-
ence matrix showed expected mainly diagonal structure with significant cross-talk present
for boundary actuators. The sensor was used to correct aberrations with membrane mirror
and the method was observed to diverge for general aberrations imitating a realistic scenario.
CS was modified to include gradient measurements from Shack-Hartmann sensor for bound-
ary actuators, and the method showed convergence. Upper bound for displacement distance
between the CS cameras was derived for two types of mirror influence functions.

Next, the CS was operated with a high-order Deformable Mirror (DM) with 952 actuators. In-
fluence matrix was measured again and the diagonal structure was observed. Adaptive Optics
correction was performed and the method showed convergence without gradient measurements
for boundary actuators, which was different from results of experiment with membrane DM.
The results confirm that CS can potentially be used with very high order DMs when it is an
issue to use Shack-Hartmann sensor.

Finally, an alternative application of CS was studied, namely wind velocity measurements.
The method of correlation maps was used for the measurement, and the sensor demonstrated
a high estimation accuracy and precision, even in case of noisy measurements. The sen-
sor performance was evaluated only in simulations with frozen flow turbulence phase screen.
Evaluating the sensor using real measurements from astronomical sites represents an inter-
esting problem. The wind speed estimation can be more precise than in case of Shack-
Hartmann (SH) again because the number of pixels of CS is much larger than the number of
SH microlenses.

Master of Science Thesis I. Coroli



66 Results and conclusions

I. Coroli Master of Science Thesis



Bibliography

[1] H. W. Babcock, “The possibility of compensating astronomical seeing,” Publications of
the Astronomical Society of the Pacific, vol. 65, no. 386, p. 229, 1953.

[2] V. P. Linnik, “On the Possibility of Reducing the Influence of Atmospheric Seeing on the
Image Quality of Stars,” in European Southern Observatory Conference and Workshop
Proceedings (F. Merkle, ed.), vol. 48 of European Southern Observatory Conference and
Workshop Proceedings, p. 535, Jan. 1994.

[3] M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor,
P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Cambridge University Press, 7 ed.,
1999.

[4] R. Bracewell, The Fourier Transform and its Applications. Tokyo: McGraw-Hill Ko-
gakusha, Ltd., second ed., 1978.

[5] J. Goodman, Introduction to Fourier Optics. McGraw-Hill physical and quantum elec-
tronics series, W. H. Freeman, 2005.

[6] E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi,
T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct
measurement of light waves,” Science, vol. 305, no. 5688, pp. 1267–1269, 2004.

[7] M. R. Teague, “Deterministic phase retrieval: a green’s function solution,” J. Opt. Soc.
Am., vol. 73, pp. 1434–1441, Nov 1983.

[8] R. Tyson, Principles of Adaptive Optics, Third Edition. Series in Optics and Optoelec-
tronics, CRC Press, 2010.

[9] F. Roddier, M. J. Northcott, J. E. Graves, D. L. McKenna, and D. Roddier, “One-
dimensional spectra of turbulence-induced zernike aberrations: time-delay and isoplanic-
ity error in partial adaptive compensation,” J. Opt. Soc. Am. A, vol. 10, pp. 957–965,
May 1993.

Master of Science Thesis I. Coroli



68 Bibliography

[10] R. H. Freeman and J. E. Pearson, “Deformable mirrors for all seasons and reasons,”
Appl. Opt., vol. 21, pp. 580–588, Feb 1982.

[11] R. J. Noll, “Zernike polynomials and atmospheric turbulence∗,” J. Opt. Soc. Am., vol. 66,
pp. 207–211, Mar 1976.

[12] R. P. Grosso and M. Yellin, “The membrane mirror as an adaptive optical element∗,” J.
Opt. Soc. Am., vol. 67, pp. 399–406, Mar 1977.

[13] G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt.,
vol. 34, pp. 2968–2972, Jun 1995.

[14] J. M. Geary, Introduction to wavefront sensors / Joseph M. Geary. SPIE Optical Engi-
neering Press Bellingham, Wash., USA, 1995.

[15] M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko,
“Glass microlens arrays for shack–hartmann wavefront sensors,” Measurement Science
and Technology, vol. 21, no. 5, p. 054010, 2010.

[16] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares
Approach. New York, NY, USA: Cambridge University Press, 1st ed., 2007.

[17] F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,”
Appl. Opt., vol. 27, pp. 1223–1225, Apr 1988.

[18] Q. Yang, C. Ftaclas, and M. Chun, “Wavefront correction with high-order curvature
adaptive optics systems,” J. Opt. Soc. Am. A, vol. 23, pp. 1375–1381, Jun 2006.

[19] C. Campbell, “Wave-front sensing by use of a green’s function solution to the intensity
transport equation: comment,” J. Opt. Soc. Am. A, vol. 24, pp. 2480–2481, Aug 2007.

[20] G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberra-
tions using continuous deformable mirrors,” Opt. Express, vol. 16, pp. 2859–2866, Mar
2008.

[21] C. Ftaclas, A. Kellerer, and M. Chun, “Advanced Curvature Deformable Mirrors,” in
Advanced Maui Optical and Space Surveillance Technologies Conference, p. E52, Sept.
2010.

[22] C. Ftaclas and A. Kostinski, “Curvature sensors, adaptive optics, and neumann boundary
conditions,” Appl. Opt., vol. 40, pp. 435–438, Feb 2001.

[23] F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, “Comparison of curvature-based and
shack–hartmann-based adaptive optics for the gemini telescope,” Appl. Opt., vol. 36,
pp. 2856–2868, May 1997.

[24] J. E. Graves, M. J. Northcott, F. J. Roddier, C. A. Roddier, D. Potter, D. J. O’Connor,
F. J. Rigaut, and M. R. Chun, “First light for hokupa’a 36 on gemini north,” vol. 4007,
pp. 4007 – 4007 – 5, 2000.

[25] V. G. Taranenko, G. P. Koshelev, and N. S. Romaniuk, “Local deformations of solid mir-
rors and their frequency dependence,” Optiko Mekhanicheskaia Promyshlennost, vol. 48,
pp. 11–13, Nov. 1981.

I. Coroli Master of Science Thesis



69

[26] E. A. Sziklas and A. E. Siegman, “Diffraction calculations using fast fourier transform
methods,” Proceedings of the IEEE, vol. 62, pp. 410–412, March 1974.

[27] P. Gravel, G. Beaudoin, and J. A. D. Guise, “A method for modeling noise in medical
images,” IEEE Transactions on Medical Imaging, vol. 23, pp. 1221–1232, Oct 2004.

[28] J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase
distortion∗,” J. Opt. Soc. Am., vol. 68, pp. 78–87, Jan 1978.

[29] OKO Tech, 96-channel deformable mirror with embedded electronics.

[30] Boston Micromachines, Mid-actuator count S-class DMs.

[31] M. B. Roopashree, V. Akondi, and R. P. Budihala, “Real-time wind speed measurement
using wavefront sensor data,” vol. 7588, pp. 7588 – 7588 – 12, 2010.

[32] Z. Li and X. Li, “Fundamental performance of transverse wind estimator from shack-
hartmann wave-front sensor measurements,” Opt. Express, vol. 26, pp. 11859–11876, Apr
2018.

[33] M. Schöck and E. J. Spillar, “Measuring wind speeds and turbulence with a wavefront
sensor,” Opt. Lett., vol. 23, pp. 150–152, Feb 1998.

[34] A. Beghi, A. Cenedese, and A. Masiero, “Multiscale phase screen synthesis based on local
principal component analysis,” Appl. Opt., vol. 52, pp. 7987–8000, Nov 2013.

[35] Kellerer, A. and Tokovinin, A., “Atmospheric coherence times in interferometry: defini-
tion and measurement,” A&A, vol. 461, no. 2, pp. 775–781, 2007.

Master of Science Thesis I. Coroli



70 Bibliography

I. Coroli Master of Science Thesis



Glossary

List of Acronyms

AO Adaptive Optics

WF Wavefront

WFS Wavefront Sensor

SH Shack-Hartmann

CS Curvature Sensor

DM Deformable Mirror

SLM Spatial Light Modulator

ITE Intensity Transport Equation
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