

Delft University of Technology

The Cross-evaluation of Machine Learning-based Network Intrusion Detection Systems

Apruzzese, Giovanni; Pajola, Luca; Conti, Mauro

DOI
10.1109/TNSM.2022.3157344
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Network and Service Management

Citation (APA)
Apruzzese, G., Pajola, L., & Conti, M. (2022). The Cross-evaluation of Machine Learning-based Network
Intrusion Detection Systems. IEEE Transactions on Network and Service Management, 19(4), 5152 - 5169.
https://doi.org/10.1109/TNSM.2022.3157344

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNSM.2022.3157344
https://doi.org/10.1109/TNSM.2022.3157344

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

5152 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

The Cross-Evaluation of Machine Learning-Based
Network Intrusion Detection Systems

Giovanni Apruzzese , Luca Pajola, and Mauro Conti , Fellow, IEEE

Abstract—Enhancing Network Intrusion Detection Systems
(NIDS) with supervised Machine Learning (ML) is tough. ML-
NIDS must be trained and evaluated, operations requiring data
where benign and malicious samples are clearly labeled. Such
labels demand costly expert knowledge, resulting in a lack of real
deployments, as well as on papers always relying on the same
outdated data. The situation improved recently, as some efforts
disclosed their labeled datasets. However, most past works used
such datasets just as a ‘yet another’ testbed, overlooking the
added potential provided by such availability.

In contrast, we promote using such existing labeled data to
cross-evaluate ML-NIDS. Such approach received only limited
attention and, due to its complexity, requires a dedicated treat-
ment. We hence propose the first cross-evaluation model. Our
model highlights the broader range of realistic use-cases that
can be assessed via cross-evaluations, allowing the discovery of
still unknown qualities of state-of-the-art ML-NIDS. For instance,
their detection surface can be extended—at no additional labeling
cost. However, conducting such cross-evaluations is challenging.
Hence, we propose the first framework, XeNIDS, for reliable
cross-evaluations based on Network Flows. By using XeNIDS on
six well-known datasets, we demonstrate the concealed potential,
but also the risks, of cross-evaluations of ML-NIDS.

Index Terms—Machine learning, intrusion detection systems,
network security, evaluation.

I. INTRODUCTION

MACHINE Learning (ML) is advancing at a rapid pace
(e.g., [1], [2]), and the cybersecurity domain is also

looking at ML with great interest [3]. ML methods can auto-
matically learn to make decisions by using existing data,
representing a valuable asset to monitor the increasingly
mutating IT environments.

Although ML is already deployed to counter some threats
(e.g., malware or phishing [4], [5], [6]), ML methods are still
at an early stage for Network Intrusion Detection (NID). In

Manuscript received 8 October 2021; revised 4 January 2022; accepted
1 March 2022. Date of publication 8 March 2022; date of current version
31 January 2023. This work was supported by the European Commission
under the Horizon 2020 Programme (H2020), as part of the LOCARD Project
under Grant 832735. The associate editor coordinating the review of this
article and approving it for publication was J.-H. Cho. (Corresponding author:
Giovanni Apruzzese.)

Giovanni Apruzzese is with the Institute of Information Systems,
University of Liechtenstein, 9490 Vaduz, Liechtenstein (e-mail:
giovanni.apruzzese@uni.li).

Luca Pajola is with the Department of Mathematics, University of Padua,
35122 Padova, Italy (e-mail: pajola@math.unipd.it).

Mauro Conti is with the Department of Mathematics, University of Padua,
35122 Padova, Italy, and also with the Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, 2628 CD
Delft, The Netherlands (e-mail: conti@math.unipd.it).

Digital Object Identifier 10.1109/TNSM.2022.3157344

particular, some Network Intrusion Detection Systems (NIDS)
integrate commercial products that use unsupervised ML
(e.g., [7], [8]). Such solutions can be useful to perform corre-
lation analyses or to ‘detect anomalies,’ which are ancillary to
true intrusion detection tasks (an anomaly is not necessarily an
intrusion). The full potential of ML can be appreciated only
via supervised methods, which assume the existence of labels
that associate each sample to its ground truth [9]. Specifically
in NID, by creating a training dataset where the samples are
distinguished between benign and malicious, it is possible to
develop a fully autonomous Machine Learning-based Network
Intrusion Detection System (ML-NIDS).

Deployment of ML-NIDS involves two stages: the system
must first be developed (i.e., trained), and it must then be eval-
uated, because any security system that has not been tested is
dangerous [10]. Both of these stages require large amounts
of labeled data, which can only be collected via the supervi-
sion of a human that associates (and verifies) each sample to
its ground truth [11]. While such verifications are simple in
some applications (e.g., any layman can distinguish a legiti-
mate from a phishing website), the inspection of network data
requires expert knowledge–which is expensive [12]. To aggra-
vate the problem, a network can be targeted by many attacks,
each of which must be labeled to assess the detection capabil-
ities of a ML-NIDS. As a result, the inevitable and costly
necessity of comprehensive labeled datasets (usually num-
bering millions of samples [13]) discourages deployment of
ML-NIDS. We note that this problem also extends to research.
For more than a decade, the only publicly available dataset
for ML-NIDS was the KDD99, leading to a plethora of works
always trained and evaluated on such dataset—usually with
perfect performance (e.g., [14]).

To address the lack of labeled data, recent researches on
ML-NIDS openly released their datasets (e.g., [13], [15], [16]),
an effort appreciated by related literature (e.g., [14], [17],
[18]). However, most prior works used such datasets as an
additional testbed for their proposals. As a result, such works
only confirmed what was already known: that by training a ML-
NIDS on a (large) dataset, such ML-NIDS will detect the attacks
contained in such dataset. This is because the primary objective
was to ‘outperform’ the state-of-the-art, resulting in incremental
contributions that do not foster realistic deployments. In this
paper, we aim to broaden such limited scope.

Inspired by a recent paper by Pontes et al. [19], we observe
that the current availability of labeled datasets could be better
exploited by ML-NIDS researches. Specifically, we endorse
the idea of cross-evaluating ML-NIDS by using malicious

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6890-9611
https://orcid.org/0000-0002-3612-1934

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5153

samples captured in different network datasets.1 By perform-
ing such cross-evaluations, it is possible to gauge additional
properties of ML-NIDS, allowing a better understanding of
the state-of-the-art at no extra labeling cost.

To the best of our knowledge, this is the first effort that
focuses on the opportunity provided by cross-evaluations of
ML-NIDS. As such, our primary goal is the definition of
a data-agnostic model that allows to represent such cross-
evaluations. Indeed, using samples from different networks
is not straightforward: as stated by Sommer and Paxson [9],
each network has “immense variability”, suggesting that cross-
evaluations have intrinsic risks that must be known to avoid
deployments of unreliable ML-NIDS. Our model acknowl-
edges such risks, but also highlights the benefits that can
be brought by cross-evaluations of ML-NIDS. Such benefits
come in the form of additional types of ‘contexts’ that can
be reproduced in research environments, each representing
a distinct realistic use-case. Specifically, our model high-
lights the limited scope of the state-of-the-art, whose fixed
evaluation methodology can only cover 2 contexts, whereas
cross-evaluations can span over up to 10 different contexts.
Such broad range evidences the concealed potential of the core
idea at the base of our paper.

As stated by Biggio et al. [10], ML systems for cyber-
security must be assessed in advance. Therefore, proactive
cross-evaluations must take into account all the pitfalls high-
lighted by our model. To further promote our proposal, we
develop the first framework for cross-evaluations of ML-NIDS,
XeNIDS. Our framework aims to overcome the intrinsic chal-
lenges of cross-evaluations, while allowing the reproduction
of all contexts enabled by our model. Specifically, XeNIDS
focuses on NetFlow data, which is popular in the ML-NIDS
community (e.g., [13], [19], [21]). However, using NetFlows
from different environments is tough: such data can be gen-
erated in many ways, resulting in heterogeneous formats that
may lead to unreliable ML-NIDS. We address this issue via
an original interpretation of NetFlows w.r.t. ML. Using this
interpretation, we provide the guidelines that can increase the
reliability of the results provided by XeNIDS.

As an instructive demonstration, we use XeNIDS to perform
a large cross-evaluation of ML-NIDS spanning over 6 well-
known and recent datasets. We aim to reproduce realistic use
cases, which can be assessed via three different context types
enabled by our model. Specifically, we first consider the ‘base-
line’ context commonly adopted by prior work, and show that
XeNIDS yields the same performance as the state-of-the-art.
Then, we assess the context where a ML-NIDS is tested on
malicious samples originating from different networks; such
use-case was also investigated in [19], and XeNIDS matches
their performance. Finally, we assess the context where the
ML-NIDS is trained and tested on malicious samples from
different networks, showing a dramatic performance increase.
As a final contribution of this paper, we provide an in-depth
analysis of these results, where we investigate their reliability
for practical deployments.

1We stress that our term ‘cross-evaluation’ denotes a different concept than
the term ‘cross-validation’ commonly used in ML researches [20].

Fig. 1. Typical NIDS scenario. The network of the organization can be
composed of multiple subnetworks. The outgoing traffic passes through a
border router which forwards such traffic to the internet, but also to a NIDS.
The NIDS analyzes the traffic and, if necessary, raises some alerts.

Contribution and Organization. This is the first paper that
addresses the problem of cross-evaluations of ML-NIDS. As
such, the specific contributions are as follows.

• We present the first data-agnostic model that conceptual-
izes the problem of cross-evaluation of ML-NIDS.

• We use our model to showcase the benefits and challenges
of such cross-evaluations.

• We propose XeNIDS, the first framework for reliable
cross-evaluations focused on NetFlow data.

• We demonstrate all of the above by cross-evaluating ML-
NIDS over 6 distinct well-known datasets, and analyzing
the results’ reliability.

The remainder of the paper has the following structure.
We motivate our paper in Section II. We define our cross-
evaluation model in Section III. We describe our XeNIDS
framework in Section IV. We explain the application of
XeNIDS in Section V. We present our demonstration in
Section VI. We discuss the results in Section VII. We conclude
our paper in Section VIII.

II. BACKGROUND

This work lies at the intersection of Machine Learning and
Network Intrusion Detection. We first provide some prelimi-
nary information on these two areas (Section II-A). Then, we
explain the motivation (Section II-B) of our paper. Finally, we
compare this effort with related work (Section II-C).

A. Network Intrusion Detection and Machine Learning

The so-called security lifecycle spans over three activities:
prevention, detection, reaction [22]. However, the prevention
of any cyber-attack is an impossible task, while the reaction
phase assumes that most of the damage has already taken
place. For this reason, proposals focusing on the detection
step have received much more attention, as timely and accu-
rate identifications of cyber threats can significantly mitigate
the effects of an offensive campaign [23].

In the specific domain of network security (which is of
interest to this paper), the detection of such malicious events
is devoted to Network Intrusion Detection Systems (NIDS).
We provide a schematic representation of the typical NIDS
deployment in Fig. 1, where a NIDS inspects the traffic gen-
erated by the monitored network (and all of its subnetworks).
A NIDS can leverage two distinct detection paradigms, which
are based either on fixed rules or on data-driven methods [24].
The former requires human operators that write specific rules

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5154 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

(or signatures) that denote a specific threat, and exhibit high
performance against known and static threats whose behavior
is captured by the hardcoded rules. On the other hand, the
latter leverage automatic data analyses and can detect even
unknown and mutating threats if they present similarities with
previously known samples–potentially at the expense of higher
false-positive rates.

The increased growth of data alongside improvements in
collaborative computing resulted in a huge interest in data-
driven NIDS, specifically employing machine learning meth-
ods [3], [11]. Such methods involve a training phase where
the ML model learns to make decisions from existing data.
However, without some reference information, it is not possi-
ble to control what the ML model is actually ‘learning’ [25].
To specifically address detection (i.e., classification) problems,
the training data must be separated into benign and mali-
cious samples. In such circumstances, it is possible to develop
autonomous ML-NIDS exploiting supervised ML methods.
Such ‘supervision’ comes in the form of a human that must
associate each sample in the training data to its ground truth,
i.e., a label [9].

In some domains, labeling is simple (e.g., the popular
captchas [26]) or labeled data can be used for a long period of
time (e.g., ImageNet was collected in 2009 and is still widely
used today [27]). However, the Cybersecurity domain is dif-
ferent: according to Miller et al. [12], a company can only
label 80 malware samples per day. Specifically in NID, ground
truth verification of network data is complex [28], and the
concept drift problem requires any ML-NIDS to be continu-
ously updated with new–labeled–data [29]. To aggravate this
problem, deployment of any security system requires proac-
tive evaluations conducted in advance, to avoid introducing a
weak link in the security chain [10]. Hence, in the case of
ML-NIDS, labeled data must be obtained both for the initial
training, as well as for such evaluation.

The scarcity of labeled data for NID affected both research
and practice [30], with an overall lack of ML-NIDS deploy-
ments, as well as a plethora of papers always based on the
only publicly available dataset—the KDD99 [14].

B. Motivation: Mixing Network Data

The successes of ML renewed the interest of the NID com-
munity in these methods, and in recent years, many labeled
datasets were made openly accessible (a survey is in [13]).
However, most related work simply used such data as an ‘addi-
tional’ setting to perform their experiments. In contrast, in
this paper we promote a different approach, based on mix-
ing different network data to cross-evaluate ML-NIDS. Such
opportunity, fostered by the recent availability of NID datasets,
is of interest both for research and practice. Let us explain how
mixing network data can assist ML-NIDS deployment. We first
by present some high level applications (Section II-B1), and
then provide a more specific use-case (Section II-B2).

1) Applications and Advantages: Mixing data from dif-
ferent networks is useful to augment pre-existing datasets
that contain an insufficient amount of labeled samples to
develop ML-NIDS. It is also useful to assess the generalization
capabilities of a ML-NIDS against ‘novel’ attacks not included

in the training set (as very recently done by [19]). Such ‘novel’
samples can also be used extend the detection surface of the
ML-NIDS by injecting them in the training set of the ML-
NIDS. Similar strategies are particularly relevant to protect
against the so-called ‘adversarial attacks’ which can evade
traditional ML-NIDS [31]: the (new) training data can be
leveraged for adversarial training, therefore realizing robust
ML systems that can detect even subtle perturbations [32].
In this context, mixing diverse datasets facilitates the applica-
tion of ensemble techniques (e.g., [33]), further increasing the
resilience of ML-NIDS.

As stated by Biggio and Roli, empirical evaluations are
always necessary for real deployments [34]. In this context,
cross-evaluations are advantageous due to their low oppor-
tunity cost—especially when using publicly available data.
Indeed, we observe that great attention has been given to
data sharing platforms (e.g., [35]), and cross-evaluations could
greatly benefit from dedicated ‘banks’ of NID data (e.g., [36]):
it is true that the cybersecurity domain has high confiden-
tiality, but anonymization techniques exists [37], and some
recent solutions in federated learning overcame privacy issues
(e.g., [38]). Finally, cross-evaluations can involve even unsu-
pervised ML methods (e.g., anomaly detectors [39]), which
represent the majority of currently deployed ML techniques
for NIDS. Although unsupervised methods would not benefit
from the ‘cheap’ labeling, they can still take advantage of the
data diversity of different networks to assess (or improve) their
generalization capabilities.

2) Exemplary Use-Case: Suppose an organization, O,
wants to protect their network, o, with a (supervised) ML-
NIDS. Hence, O collects and verifies some benign traffic data,
N, from their network o. However, ML-NIDS also require
malicious data, M. The following can happen w.r.t. such M:

• O may not have any M generated in their network o.
Hence, O can ‘use’ some M generated in a different
network than o – potentially of another organization.

• O may have some M generated in o, obtained, e.g., by
monitoring the behavior of ‘known’ infected machines.

Therefore, O can use such N and M to develop any ML model
which, if it obtains appreciable performance, will be integrated
in their security system as a ML-NIDS that can detect the
attacks in M. Having an operational ML-NIDS, O may be
willing to assess whether such system can detect attacks not
included in their M, which can potentially target the network
o monitored by the ML-NIDS. To this end, O can use a small
set of malicious data originating from a network different than
o, and containing different attacks than the ones ‘learned’ by
their ML-NIDS. By using such malicious data to evaluate the
ML-NIDS, O can assess the generalization capabilities of their
solution. If the assessment shows a weakness of the ML-NIDS,
O may acquire a larger set of such malicious data to extend
the detection capabilities of their ML-NIDS, by using such
data in the training stage. We will use the abovementioned
example as basis for our demonstration in Section VI.

C. Related Work

The idea of cross-evaluating ML-NIDS on different datasets
is not new. For instance, the authors of [40] propose a novel

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5155

IDS dataset that can be used to evaluate the ‘transferability’ of
ML-NIDS, but they do not provide any detailed analysis nor
original experiment. Similarly, Pontes et al. [19] use a ML-
NIDS trained on IDS18 against DDoS19. However, [19]
simply limit to test a novel method on a different dataset, and
do not analyze the problem of ‘cross-evaluations’ as a whole,
hence not allowing to highlight the benefits and limitations
of such opportunity. For instance, cross-evaluations can also
involve modifications of the training data, which is not covered
by [19] and which is a case included in our demonstration.

Most prior works on ML-NIDS only assess their propos-
als in a single ‘context’, that is, the training and evaluation
use the same dataset. For instance, the authors of [41] pro-
pose botnet detectors trained and tested on CTU13. In [42]
a ML-NIDS focusing on different attacks is assessed on the
IDS18 dataset. To give a practical explanation, such method-
ology only allows determining that “the approach in [42] is
effective on the network captured by the IDS18 dataset,
against the attacks contained in the IDS18 dataset”. Other
works may consider more datasets (e.g., [18], [21], [43],
[44]), but the problem remains because the assessments are
carried out independently on each dataset. Furthermore, all
these works highlight that ML-NIDS require large (labeled)
datasets–further motivating the need to explore novel solu-
tions that mitigate the lack of labeled data. Among these,
we mention semisupervised ML approaches (e.g., [28], [45]),
which combine unlabeled with labelled data, and are hence
orthogonal to our work.

A closely related research effort is [46], proposing a low-
level software toolkit for analyzing NID datasets, forcing the
user to abide to its constrained logic. For instance, it only
works with data in the form of packet captures (PCAP), which
require huge amounts of storage space and whose payload is
often encrypted, making such data impractical to share (and,
also, to analyze). In contrast, our proposed model is agnostic
of the source data format (as long as there is some compatibil-
ity); moreover, our proposed framework operates on Network
Flows (NetFlows), which represent a higher level than PCAP,
making it flexible and extendible also to PCAP data—while
not sacrificing performance [17], [41], [47].

We conclude that the idea of cross-evaluating ML-NIDS
received only limited attention so far, and its opportunities
and risks are still unknown. This is because no past research
truly addressed such a problem—representing the core of this
paper. Our intention is to provide a complete understanding of
all the pros and cons related to cross-evaluations of ML-NIDS.

III. MODELING THE CROSS-EVALUATION OF ML-NIDS

The intuition at the base of our work is to leverage exist-
ing NID datasets, with the goal of cross-evaluating ML-NIDS
using samples from mixed networks. Such idea is grounded
on the following observation (also implicitly adopted by [19]),
which extends the takeaways by Sommer et Paxson [9]:
although every network is unique, the malicious behavior of
network attacks is independent of the target network. For
instance, Denial of Service (DoS) attacks always involve either
a large amount of communications with minimal entity, or a

smaller set of communications but with a larger entity – both
happening in a short time frame [48]. Similarly, a machine
infected by Botnet malware will periodically contact the CnC
server, irrespective of what is happening in the ‘compromised’
network [49]. Hence, such malicious behaviors can be used by
a ML-NIDS to distinguish benign from malicious activities,
regardless of the target network.

As the first effort to investigate this opportunity, we must
design a model (Section III-A) that allows to highlight its ben-
efits (Section III-B) as well as its intrinsic challenges and risks
(Section III-C).

A. Proposed Model Design

We now introduce all the prerequisites to describe our cross-
evaluation model.

Let D be a set of NID datasets which we denote as follows:

D = (D1,D2, . . . ,Dn),n ≥ 2,

where n represents the cardinality of D, and Di represents
a dataset collected in a given network i. Without loss of
generality, we assume that each Di ∈ D originates from
a unique network environment—potentially, D can include
datasets representing distinct sub-networks within a larger
network. Hence, in the remainder we use Di and Dj (i �= j)
to denote two datasets of D originating from two distinct
networks (i.e., i and j). The information captured by each
dataset in D must allow one to use any subset of D and derive
a set of common features from such subset.2

Because our focus is on supervised ML for detection prob-
lems, each Di ∈ D must be provided with ground truth
distinguishing benign from malicious data. Hence, each dataset
Di can be seen as a composition of Ni , denoting the benign
data of network i, and Mi , denoting the malicious data of
network i. A dataset Di can contain only malicious (or only
benign) data; however, across all D there must be at least a
pair Di , Dj for which Ni �= ∅ and Mj �= ∅. We denote with
μ the number of all malicious classes contained in the entire
D. This is because any Di can have a Mi with a variable
number of attacks (i.e., Botnet, DoS, etc), which may overlap
(or not) with those in a different Mj . Therefore, every Mi can
be seen as an array of μ elements Mi = (M 1

i ,M
2
i , . . . ,M

μ
i),

some of which can be empty if another dataset Dj has mali-
cious classes not contained in Di . Let N denote the set of all
benign samples, and M denote the set of all malicious samples.

We can visualize our model with the schematic in Fig. 2,
which shows the relationship between D, N and M.

From Fig. 2, we observe that all sets have n rows, each
denoting a distinct source network dataset. However, while
N has only one column because all benign samples are
treated equally, M has μ columns representing all the attacks
contained in D. We provide an example in the caption of Fig. 2.

Such design makes our model suitable for 1 + μ classifica-
tion ML problems, where a sample is either benign, or belongs

2For instance, it is possible that Di comes as PCAP traces, and Dj comes
as NetFlows: in this case, the PCAP of Di can be processed to derive the
NetFlows features of Dj . Similarly, two datasets Di and Dj can contain
NetFlows generated with different software: in this case, the features shared
by Di and Dj can represent the common set.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5156 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Fig. 2. Proposed cross-evaluation model, representing D, N and M. Example:
assume that D has three datasets: D1,D2,D3 (hence n = 3). Assume that:
D1 has some benign samples but no malicious samples; D2 has no benign
samples, but malicious samples of a botnet attack, and also some malicious
samples of a portscan attack; D3 has some benign samples, alongside some
malicious samples of the same botnet attack as D2, but also some malicious
samples of a DoS attack. In this case, N will contain three elements: N1,
N2, N3, with N2 being empty. On the other hand, there are three malicious
classes (μ = 3) hence M will have nine elements: M 1

2 and M 1
3 (the botnet

attack shared by D2 and D3) as well as M 2
2 (the portscan attack in D2)

and M 3
3 (the DoS attack in D3) will contain some samples; whereas the

remaining will be empty (i.e., all those with M1, as well as M 3
2 and M 2

3).

to one among μ malicious classes. This automatically covers
binary classification ML problems if all malicious classes are
treated as a single malicious class (hence, μ = 1).

Let us now use our proposed model to explain the benefits
brought by cross-evaluations of ML-NIDS.

B. Benefits: Additional Contexts

Deployment of ML components requires a training set T,
used to develop a ML model, and an evaluation set E, used
to assess the performance of such model. Hence, our idea is
composing T and E by drawing from N and M: depending on
the draw, a specific ‘context’ is created that can be used to
cross-evaluate a ML-NIDS. The main benefits provided cross-
evaluations of ML-NIDS are due to the increased types of
contexts that can be assessed, which can be highlighted with
our proposed model.

Because our model is rooted on Sommer and Paxson state-
ment (Section III), it is crucial that both T and E use benign
samples from the same network3, which should represent the
environment where the ML-NIDS is to be deployed; hence, let
o (standing for ‘origin’) denote such network, and No be the
corresponding benign samples. Then, we observe that there are
many ways to compose T and E by choosing the malicious
element from M. Such variability can be modeled through the
‘matrix’ M in Fig. 2, by pinpointing which rows and columns
are included in T and E. The following can occur:

• T (or E) can contain malicious samples either from the
same or different o (i.e., same or different row than No);

• the malicious samples in T and E can come either from
the same or different networks (regardless of No);

• the malicious class(es) in T can be either the same or
different than those in E (i.e., same or different columns).

3This also serves to reduce false alarms after potential deployments,
because the benign samples always have the same source.

In particular, let t and e denote two rows of M; and let τ and
ε denote two columns of M; we use such notation to identify
two elements of M, i.e., M τ

t and M ε
e .

Let �t , �e, �τ , �ε be four ordered arrays4, each denoting
multiple columns or rows (e.g.,�t contains multiple t, i.e., rows)
of M. Let �o be an unary array including only o (representing
the benign ‘origin’ network from N).

By following such notation, we can represent the training
and evaluation sets, T and E, as the functions in Expression 1:

T (�o,�t ,�τ), E (�o,�e,�ε). (Exp. 1)

Simply put, T and E are denoted by a single row of N (i.e.,
�o), and the rows and columns of all the elements of M that
they include (i.e., �t and �τ for T, while �e and �ε for E).

We can see a context as a function of T and E. Specifically,
a context C is denoted as the following tuple:

C(T ,E) ⇒ C(�o,�t ,�e,�τ ,�ε). (Exp. 2)

Depending on the elements from N and M included in T and
E, many contexts can be reproduced, which can be of differ-
ent type. In particular, let ō, h̄, ē , τ̄ , ε̄ denote the sets of the
corresponding arrays (each element of a given set is unique).
By cross-evaluating ML-NIDS, it is possible to assess 10 dif-
ferent context types, which are denoted by the relationships
between ō, h̄, ē, τ̄ , ε̄.

We provide the full list of such context types in Table I;
we also include a practical example in the caption of Table I.
Specifically, for each context type (denoted with a number
after the letter C), we report the four conditions denoting the
relationships among all the involved components; on the same
line of each condition, we describe the consequences on T
and E; we also provide a concrete use case that explains the
application of such type of context. We note that all cases
where two sets are not equal can be further split in two:
when one set is a superset of the other; and when they are
disjointed.

Past works (e.g., [17], [50]) only considered cases where
the ‘row’ was fixed, i.e., where ō = h̄ = k̄ , correspond-
ing to the contexts of type C1 and C2. Pontes et al. [19]
investigated C4. In contrast, it is evident from Table I that
our cross-evaluation model enables the assessment of 7 addi-
tional context types, allowing to discern additional qualities
of MLe-NIDS and corresponding NID datasets. For instance,
all the scenarios envisioned in our motivational example (cf.
Section II-B) can be represented by the context types listed in
Table I.

In our demonstration (Section VI), we first assess C1 as
‘baseline’ comparison with the state-of-the-art; and then we
consider C4 (as done by [19]), and C7 (the latter both in its
‘disjointed’ and ‘extended’ variants).

C. Challenges and Risks

The cross-evaluation of ML-NIDS has high poten-
tial, but a superficial application can lead to dangerous
consequences—spanning from underwhelming performance to

4Such arrays can be of variable length, as long as |�t |=|�τ | and |�e|=|�ε|.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5157

TABLE I
THE 10 TYPES OF CONTEXTS ENABLED BY THE PROPOSED CROSS-EVALUATION MODEL. THE TABLE REPRESENTS THE RELATIONSHIP AMONG THE

UNIQUE ELEMENTS OF N AND M INCLUDED IN THE TRAINING AND EVALUATION SETS, T AND E (CF. EXPR. 1), WHICH DENOTE A CONTEXT (CF.
EXPR. 2). THE ORIGIN OF BENIGN SAMPLES IS ALWAYS THE SAME IN T AND E, HENCE ō IS SHARED. CONTEXTS OF TYPE C1, C2 ARE THOSE

CONSIDERED BY MOST PRIOR WORKS; C4 HAS BEEN CONSIDERED IN [19]. A GRAY BACKGROUND DENOTES THE TYPES OF CONTEXT ASSESSED IN

OUR DEMONSTRATION. EXAMPLE: CONSIDER THE SETTING DESCRIBED IN THE EXAMPLE OF FIG. 2, WHERE n = 3 AND μ = 3. SUPPOSE A CONTEXT

DENOTED BY: �o = (3),�t = (2, 3),�e = (3), �τ = (1, 1),�ε = (1). SUCH CONTEXT IMPLIES THAT T CONTAINS BENIGN SAMPLES FROM N3 , AND

MALICIOUS SAMPLES FROM M 1
2 AND M 1

3 ; WHEREAS E CONTAINS BENIGN SAMPLES FROM N3 BUT MALICIOUS SAMPLES FROM M 1
3 . THE

RESULTING CONTEXT WILL BE OF TYPE C5, BECAUSE ō = (3), t̄ = (2, 3), ē = (3), τ̄ = (1), ε̄ = (1). HENCE, (ō = ē) �= t̄ AND τ̄ = ε̄

additional security risks. Indeed, mixing data from differ-
ent networks presents several fundamental issues, which must
be known when real ML-NIDS deployments are considered.
We stress that our paper lies at the intersection of diverse
research fields (i.e., network traffic analysis, machine learn-
ing, cybersecurity) and some of the following issues may be
well-known within each field. Considered the scope of our
paper, it is meaningful to make the entire community aware
of such issues.

We identify the following three performance-related imple-
mentation challenges:

1) Removing Network Artifacts: Depending on the con-
sidered set of features, some samples may contain
‘artifacts’ that are unrelated to their benign/malicious

nature.5 If not sanitized, such artifacts may be learned
by the ML model to perform its decisions, leading to
overfitting and, hence, useless ML-NIDS.

2) Preserving Performance: When a given context involves
modifications of T, it is important not to degrade the
baseline False Positive Rate (FPR). Modifications of T
must always be assessed.

3) Maximizing Performance: Assuming that simply adding
malicious samples to T results in a ML-NIDS capa-
ble of detecting such attacks is misleading: it has been

5The most blatant example is when a dataset has all its malicious samples
originating from the same IP address. If the IP address is considered as a
feature, the ML model will only look for the ‘malicious’ IP address, meaning
that any attack involving other machines will never be detected.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5158 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

shown that ML models for NIDS may yield under-
whelming detection performance in multi-classification
settings [11]. It is hence crucial to consider a ML-NIDS
architecture that optimizes the usage of such additional
samples.

Finally, we highlight three intrinsic risks that involve security
aspects of cross-evaluations of ML-NIDS.

• Labeling quality: Cross-evaluations are significant only
if the samples in N and in M all report the correct label
(i.e., benign or malicious). If, e.g., N contains malicious
samples because the authors of the source dataset did
not perform proper verifications, then the final results
may be unreliable. Unless the cross-evaluation involves
unsupervised ML, real deployments should ensure that
all samples are associated to the correct ground truth.

• Exposure to adversarial ML attacks: Although mixing
data from different networks can result in more resilient
ML-NIDS (cf. Section II-B), relying on public datasets
exposes to ‘poisoning’ attacks [51]. In these circum-
stances, training a ML-NIDS on such data would have
the opposite effect of adversarial training. For instance,
in [52] the FPR increases by 5 times when only 5%
of the data is polluted. More subtle poisoning strategies
exploit ‘backdoors’ which make ML-NIDS prone to eva-
sion, as evidenced in [53]—and also in [54] for federated
learning scenarios. Countermeasures include verifying the
checksum of each dataset as provided by the authors; or
applying some modifications that can remove or mitigate
the effects of such poisoned samples (e.g., [55]).

• Incompatible Networks: Regardless of the resulting
performance, mixing samples from different networks
may not be possible a-priori. If the goal is using an
N from a different network, it is necessary to conduct
preliminary analyses ensuring that the two networks are
indeed similar. On the other hand, when using M from
different networks it is necessary to perform follow-up
analyses that question the validity of the cross-evaluation
results. This is because high detection rates at test-
time may lead to a ‘false sense’ of security if the
malicious activities depend on the underlying network’s
behavior. Such analyses may include comparing the fea-
ture importance between different models; or complete
sanity checks by deploying the ML-NIDS against true
attacks–in real time. Regardless, using the same source
of benign samples both in T and E ensures that the
FPR after deployment will not deviate from the one at
test-time.

We make a crucial remark. Our cross-evaluation idea assumes
that T and E always use benign data originating from the
same network (i.e., o), which is in stark contrast with the
practice of ‘transferring ML models’ (common in Computer
Vision [56]). Indeed, we advise against using such prac-
tice for ML-NIDS, due to the immense variability of each
network [9].

We can conclude that the additional context types enabled
by cross-evaluations of ML-NIDS are intriguing, but practi-
cal applications are not simple and require the adoption of a
rigorous workflow.

Fig. 3. Overview of XeNIDS. The input D is a set of labelled NetFlow
datasets of n distinct networks. The output results should be further analyzed.

IV. PROPOSED FRAMEWORK: XENIDS

We showed that cross-evaluations of ML-NIDS are enticing
but challenging, and we are not aware of efforts that tackled
this problem in an exhaustive way. As a first step, we propose
XeNIDS, a framework for the Cross-evaluation of Network
Intrusion Detection Systems based on machine learning, with
a focus on NetFlow data. Our proposed framework is rooted
in the same design principles described in Section III-A, and
has a threefold goal:

• allowing the simulation of all contexts in Table I;
• facilitating assessments of multiple contexts;
• addressing the challenges discussed in Section III-C.

Of course, we do not claim that XeNIDS is the only way
to do all of the above. Our intention is to further promote
the diffusion of cross-evaluations in research, as well as to
increase their realistic value for proactive assessments.

We provide an overview of XeNIDS in Section IV-A, which
consists in four stages: standardize (Section IV-B), isolate
(Section IV-C), contextualize (Section IV-D), cross-evaluate
(Section IV-E).

A. Overview

The focus of XeNIDS is on NetFlows (Section II-C),
enabling inter-compatibility with PCAP data. NetFlows are
metadata generated from packet captures, and summarize
the communications between two endpoints. A NetFlow is
defined as:

NetFlow = (srcIP , dstIP , srcPort , dstPort , t , proto, d , . . . ,),

(Exp. 3)

where srcIP (srcPort) and dstIP (dstPort) are the source and
destination IP addresses (network ports) of the two involved
hosts, t is the timestamp of the first connection, d is the
duration of the communication session, proto is the network
protocol of the communication. Depending on the NetFlow
software and its configuration, additional metrics can be com-
puted: the most typical fields include the number of packets
and bytes exchanged during the communication [57].

We present a schematic representation of XeNIDS in Fig. 3.
XeNIDS requires a set of n datasets containing NetFlows,

representing D and totalling μ distinct attack classes.
These datasets must be provided with the ground truth.

XeNIDS assumes that all data in D is verified, trusted
and appropriate for the considered deployment scenario
(Section III-C).

The framework includes four stages (cf. Fig. 3):
1) Standardize: the input datasets in D are first cleaned and

sanitized, and then brought into a common ‘language’.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5159

Fig. 4. First stage: Standardize. The initial NetFlows in D are all standardized
to derive a common feature set, and cleaned of any possible artifact that may
lead to overfitting and impractical ML-NIDS.

2) Isolate: every standardized dataset is partitioned in its
benign and malicious sets (N and M).

3) Contextualize: M and N are used to compose a context
(by generating the corresponding T and V).

4) Cross-evaluate: T and V are used to develop and cross-
evaluate a ML-NIDS.

The results provided as output by XeNIDS should be further
analyzed for practical deployments (cf. Section III-C).

B. Standardize

In the first stage, schematically depicted in Fig. 4, XeNIDS
brings all the datasets Di ∈ D into a common NetFlow format,
accounting for potential obfuscations as a result of anonymiza-
tion techniques. Essential operations involve data sanitization
(e.g., handling missing values) and filtering: for example, if
the goal is the detection of attacks involving TCP traffic, then
all non-TCP traffic can be safely removed. Then, the focus is
on establishing a common feature set6 while simultaneously
removing network artifacts that may lead to overfitting. Such
procedures are tough, especially when considering NetFlow
records, but necessary. To explain the reasons of such difficul-
ties and our proposed workarounds, we provide an original
interpretation of NetFlows with respect to machine learning.

In simple terms, a NetFlow is the result of two contributors:
the communications (Comm) performed by the involved hosts,
and the effects of the environment (Env) where the NetFlow
is generated. This latter factor (Env) is, in turn, influenced
by two elements: the network identity (NetId), denoting the
intrinsic characteristics of the network where Comm (such
as allocated bandwidth, protocols used, common open ports,
periodic services) are captured; and the configuration of the
appliance (Conf) used to generate the NetFlows. Hence, the
information captured by a NetFlow is a function7 F of three
components: Comm, NetId, Conf. Formally:

F(Comm,Env) ⇒ F(Comm,NetId ,Conf) = NetFlow

(Exp. 4)

The ultimate goal of the standardize stage is to mitigate the
effects of Env (represented by NetId and Conf) across all the
input datasets in D. Indeed, if one dataset Di has an Env that
is significantly stronger than Dj , then a ML model trained on
data from Di and Dj may only learn on the basis of such
‘signature’ Env. These circumstances lead to overfitting on

6Taken from the intersection of the features across all D.
7The definition of F is software dependent [57], and outside our scope.

Fig. 5. Second stage: isolate. The standardized D is used to extract the n
individual benign N and malicious M sets. The latter are then split in μ sets
on the basis of their attack class. Depending on the user-provided granularity,
it is possible to aggregate sets of different attack classes into a bigger class,
therefore changing the initial μ. The outputs are the full sets N and M.

Env, resulting in impractical detectors that neglect to search
for malicious behaviors.

Let us explain Exp. 4 with two practical use-cases on the
contribution of Env.

• Different NetId. Consider two different networks where a
host downloads the same file from the same remote server
via SSH: if these two networks use different listening
ports for the SSH server (e.g., 22 and 4022), then the
NetFlows of the first network will differ from those of
the second network (they will have different ports).

• Different Conf. Using different NetFlow software and/or
settings yields different NetFlows even when the origi-
nal PCAP traces are identical. For instance, measurement
units can differ, resulting in datasets that are not compati-
ble: a dataset Di with d expressed in milliseconds cannot
be used alongside a dataset Dj that uses seconds.

We report in Appendix A an exhaustive explanation of the
effects brought by Env on NetFlows.

By referring to the official NetFlow v9 documentation,8 we
observe that there are several fields that can contribute to Env
(influenced both by NetId and Conf), which require particular
care at this stage. We provide in Appendix B some recommen-
dations for reducing the generation of the above-mentioned
artifacts, with a focus on three fields: the IP address, the
network ports, and the flow duration.

Nonetheless, depending on the considered use-cases, many
low-level implementations are viable to minimize the impact
of Env and derive a common feature set. After this stage, the
initial set of datasets D is standardized and ready for the ‘core’
functionalities of XeNIDS.

C. Isolate

In this stage, XeNIDS isolates the benign from malicious
samples of each (standardized) dataset in D to derive N and
M (cf. Fig. 2 in Section III-A). We provide a schematic in
Fig. 5.

Specifically, XeNIDS first partitions the benign from mali-
cious samples in each Di , resulting in two distinct sets, Ni

and Mi . Then, XeNIDS further partitions the specific attack

8www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5160 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Fig. 6. Third stage: contextualize. XeNIDS uses N and M to create multiple
T and E, according to the context-related parameters (�o, �t , �e , �τ , �ε)) and
the splits s(N) and s(M). All the composed T and E are inserted in T and
E. Example. Assume that the following user-provided parameters: �o = (1),
�t = (2), �e = (3), �τ = (1), �ε = (1); s(N) = (80 : 20), s(M) = (70 : 30).
XeNIDS chooses N1, and puts 80% of N1 in T and the remaining 20% in
V. XeNIDS then selects M 1

2 and puts 70% of its samples in T; then XeNIDS
selects M 1

3 and puts 30% of its samples in V. Such T (and V) is then inserted
in T (and V). The operation is repeated if the user provides additional lists
as input.

samples in Mi according to the individual attack that they
represent9 (assuming that μ > 1).

Such design choice enables the development of collabora-
tive ensembles (e.g., [19], [58]) of ML classifiers, each devoted
to a specific threat, therefore addressing the third challenge
(cf. Section III-C)—while also allowing to use XeNIDS for
multi-classification ML problems.

We note that the separation can also account for a specific
level of granularity. In this case, the original μ will be changed
by ‘aggregating’ attacks of different classes, potentially even
treating all malicious samples as belonging to a single mali-
cious class. Depending on the use-case, such granularity can
vary: it could either be performed at a high-level (e.g., Botnet
or DoS attacks) or go at a deeper level (e.g., a specific Botnet
variant). The final choice depends on the actual use-case (e.g.,
when there are not enough samples available, they can be
aggregated into a macro-class, or simply discarded).

This stage produces two outputs: N, containing all the
benign network samples (partitioned in n subsets according to
their source dataset); and M, containing all malicious samples
isolated in n×μ subsets of samples according to their specific
attack and source dataset. We recall that some elements of M
can be empty, i.e., if a Di does not contain malicious samples
of the same classes as Dj .

D. Contextualize

In the third stage, XeNIDS creates all the sets correspond-
ing to the contexts to simulate during the cross-evaluation.
This is done by using N and M (provided by the previous
stage), alongside some external input, to compose training T
and evaluation E sets; all such T and E will be put in two
dedicated collections, T and E. We provide a schematic of
this stage in Fig. 6.

Two user-provided input lists regulate this stage:
a 5-dimensional tuple of context-related parameters
(�o,�t ,�e,�τ ,�ε); and a pair of splits, s(N) and s(M), used

9The attack is denoted by the ground-truth labels provided in the input D.

to partition (e.g., 80:20) any N and M that will be included in
a given T and E. The idea is to facilitate cross-evaluations that
consider multiple contexts, by composing all the necessary T
and E before using them for any assessment. Hence, XeNIDS
iterates over all the elements in the two input lists: at each
iteration, XeNIDS composes a training and evaluation set
according to the user-specified parameters.

Specifically, for each tuple (�o,�t ,�e,�τ ,�ε), and for each pair
of splits, s(N) and s(M), XeNIDS proceeds as follows.

• XeNIDS uses o to select a specific set of benign samples
No from N. XeNIDS splits No according to s(N), and
puts the corresponding partitions in T and E.

• For each (t , τ) ∈ (�t ,�τ), XeNIDS extracts from M the
element M τ

t , which is split with s(M) and put in T.
• For each (e, ε) ∈ (�e,�ε), XeNIDS extracts from M the

element M ε
e , which is split with s(M) and put in E.

• Altogether, these operations result in two sets, T(�o,�t ,�τ)
and E(�o,�e,�ε), which are put in T and E.

An example of such workflow is in the caption of Fig. 6.
In cases where t=e and τ = ε, XeNIDS performs the parti-

tioning simultaneously, to avoid overlaps that can result in the
same malicious samples being included in both T and E.

The selection of s(N) and s(M), which can differ for T and
E, must be done to achieve a twofold goal: (i) realize an E that
is comprehensive enough to cover the real data distribution,
and hence produce insightful results; and (ii) realize a T that
allows to develop proficient ML-NIDS. For instance, if E does
not contain many benign samples, then the resulting FPR may
not correspond to the real FPR after the ML-NIDS is deployed,
At the same time, if T contains only a small number of samples
for a given attack, the resulting ML-NIDS will not be able to
capture all the possible variations of such attack.10

After this stage, we obtain two collections of training and
evaluation sets, T and E.

E. Cross-Evaluate

In the last stage, XeNIDS performs the cross-evaluation by
using the sets in T and E to reproduce any user-specified con-
text. Hence, the input parameters are a list of contexts C (cf.
Exp. 2); as well as a learning ML algorithm to develop the
detectors of the ML-NIDS.

Specifically, for each context C(�o, �t , �e, �τ provided as input,
XeNIDS draws the corresponding T(�o, �t , �τ) and E(�o, �e, �ε)
from T and E. Then, depending on the architecture of the
ML-NIDS, XeNIDS operates as follows.

• If the ML-NIDS leverages a single classifier, XeNIDS
uses T(�o, �t , �τ) to train a single (multi-class) ML-model
with a given ML algorithm; such ML-model is then tested
against E(�o, �e , �ε).

• If the ML-NIDS leverages ensembles of classifiers,
XeNIDS splits T(�o, �t , �τ) into smaller sets, (e.g., by
composing T(o, t, τ) focusing on the specific attack τ
contained in t); each of these sets is used to train a dedi-
cated ML-model of the ensemble. Such procedure can be

10We refer the reader to [45] for a study on how the size of the training
set can impact the performance of ML-NIDS.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5161

Fig. 7. Final stage: cross-evaluate. XeNIDS reproduces the user-specified
context(s) and performs the cross-evaluation. Example: assume the following
input context: C((1), (1,2), (1,2), (1,1), (2,2)) and a ML-NIDS that leverages
ensembles of binary detectors. XeNIDS first extracts T((1),(1,2),(1,1)) from
T, which is split in two smaller sets, T(1,1,1) and T(1,2,1). Such sets are used
to train two ML-models that will compose the ML-NIDS. The ML-NIDS can
then be tested either against E((1),(1,2),(2,2)), or against its subsets E(1,1,2)
and E(1,2,2), all of which obtained from E. Any previously trained model
(e.g., the one using T(1,1,1)) can be reused to assess different contexts.

repeated for E(�o, �e , �ε), i.e., the ML-NIDS can be tested
against the entire E, or against subsets.

The design of XeNIDS enables the assessment of multiple
contexts without the need of training additional ML models.
If two contexts require the same T, it is only necessary to draw
a different E from E, and use such E to assess the previously
trained ML-NIDS.

We illustrate this stage in Fig. 6, where we also provide
a complete example of an ensemble use-case. We anticipate
that, in our demonstration, we will always use ensembles of
specialized classifiers.

The results produced as output of this stage should be
subject to subsequent analyses and considerations.

V. APPLICATION

As a final contribution of this paper, we showcase11 a
practical application of XeNIDS. We do so via a large set
of experiments where we cross-evaluate ML-NIDS by using
a total of 6 well-known NID datasets. We describe our
testbed (Section V-A) and explain the preprocessing opera-
tions (Section V-B). Then, we present the common assessment
procedure (Section V-C).

A. Testbed

The aim of our demonstration is reproducing and assess-
ing the use-cases described in Section II-B2. To this purpose,
we assess three different context types (cf. Table I), namely
C1, C4 and C7. However, we differentiate our experiments
depending on the format of the NetFlow data used as input
to XeNIDS: specifically, such data can be either in a uniform
or heterogeneous format. Let us explain our rationale and the
differences between these two distinct scenarios.

We recall that XeNIDS operates on existing data in the form
of NetFlows. Such NetFlows can be provided either (a) as
PCAP traces, and then exported to NetFlows using dedicated
software; or (b) directly as NetFlows, processed according
to the creators’ specifications. These two scenarios must be

11Our implementation of XeNIDS: https://github.com/pajola/XeNIDS.

TABLE II
STATISTICS OF THE ANALYZED NID DATASETS

treated separately, due to the different effects that they can
have on the results. In the first scenario, the raw PCAP traces
(collected in diverse network environments) can be used to
generate uniform NetFlows by using the same appliance for
all PCAP traces; because the NetFlows share the same for-
mat, the results are more reliable due to a lower chance of
network artifacts (the contribution of Conf is the same—cf.
Exp. 4). However, such scenario requires all source data to
be fully provided as PCAP, which is a requirement that is
hard to meet.12 Therefore, it is insightful to consider also the
scenario where the source datasets are provided directly as het-
erogeneous NetFlows (due to being generated with different
software). Such scenario requires a more careful application of
XeNIDS’s standardize stage (Section IV-B), but also a more
detailed analysis of the results because the effects of different
initial Conf can only be seen after the ML-NIDS is evaluated.

We hence apply XeNIDS differently for both scenarios, each
considering 4 well-known datasets (n = 4 for both scenarios).

• Heterogeneous scenario: here, we use the CTU13 [16],
NB15 [60], IDS18 [15], DDOS19 [59]. These are all
provided as NetFlows, but using different appliances.

• Uniform scenario: here, we use the UF-BotIoT,
UF-NB15, UF-IDS18, UF-ToNIoT. These datasets
are created in [21] by the PCAP version of exist-
ing datasets and generating the corresponding (labelled)
NetFlows using a unified appliance.

For comparison purposes, two datasets are shared,13 whereas
two are unique for each scenario.

We provide in Table II an overview of these datasets. For
each dataset, we report the amount of NetFlows, the over-
all number of malicious classes, the size of the provided
feature-set, and the performance (as F1-score) achieved by the
state-of-the-art. From this table, we can already observe the
effects of Conf on the corresponding NetFlows: two datasets
(i.e., the NB15 and the IDS18) are used by both scenario,
but the amount of samples and features differ. For example,
the NB15 has 2.5M samples in the heterogeneous scenario,
and 1.6M in the uniform scenario. Moreover, let us focus on
the performance achieved by past works. We can see that the
state-of-the-art reaches very high F1-scores, which can raise
the question of whether there is any point in improving such
values. Nevertheless, we stress that cross-evaluations have a
different objective (cf. Section II-B): assessing the effective-
ness of ML-NIDS against different attacks (not included in the

12e.g., PCAP data can be truncated [16] or not fully labelled [59].
13UF-NB15 and UF-IDS18 are generated from NB15 and IDS18.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5162 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

TABLE III
DISTRIBUTION OF ATTACKS IN EACH DATASET. IN OUR

IMPLEMENTATION OF XENIDS, WE Always USE THE SPECIFIC

ATTACK CLASSES, AND PERFORM NO MERGING

respective datasets), and – if necessary – improving such ML-
NIDS against these attacks. As our results will show, most of
these ML-NIDS will perform poorly against different attacks,
but can be strengthened; such achievements, however, could
only be obtained by cross-evaluations.

Overall, these datasets contain traffic captured in large
networks and the included malicious samples belong to a broad
range of attacks14 Table III shows the attack distribution of
the input D for both scenarios. For simplicity, we organize
Table III on the basis of three ‘families’ of attacks:

• DoS, for Denial of Service attacks (e.g., DoS-Hulk);
• Botnet, for Botnet attacks (e.g., Rbot);
• Other, for remaining attacks (e.g., shellcode, scanning).

We remark that, in our implementation of XeNIDS, we always
use the specific attack classes, i.e., we do not ‘aggregate’
multiple attacks into a single class. The differentiation pro-
vided in Table III is for comprehensiveness, because the
amount of specific attacks of our testbed is very broad. As
an example, NB15 (and, hence, UF-NB15) has samples
for all families, i.e., 2 different types of Botnet attacks, 1 type
of DoS, and 6 types of Other attacks; whereas CTU13 only
has samples for 5 different attacks of the Botnet family. From
Table III we also determine that μ = 46 in the heterogeneous
scenario, and that μ = 36 in the uniform scenario—this is
because all the specific attack types are distinct across the
input D datasets.

B. Preprocessing

We now describe the preprocessing computed on each
considered NID dataset Di ∈ D for both scenarios. Such
operations represent the first two stages of XeNIDS: standard-
ize (Section IV-B) and isolate (Section IV-C). Our low-level
implementation of XeNIDS aims to overcome all the residual
challenges in Section III-C—to the extent this is possible with
the current state-of-the-art. The experimental platform is an
Ubuntu 20.04 machine with 64GB RAM and an Intel Xeon
E5-2620 CPU. The development leverages the Scikit-Learn
suite.

Standardize: We first associate each sample to its ground
truth.15 Then, we derive a common feature set based on
the official NetFlow v9 documentation, which we report
in Table IV. These features represent the minimum set of
common features obtainable from the source data for both

14For a precise description of each attack, we refer the reader to the source
material provided by the creators of each dataset.

15We verify the checksum of each dataset, if provided.

TABLE IV
FEATURE SET OF OUR XENIDS IMPLEMENTATION IN BOTH SCENARIOS

scenarios. We note that some datasets are provided with more
features (e.g., IDS18 has 80), which are left out. However,
as we will show in our experiments, the considered features
yield ML-NIDS with state-of-the-art performance.

To sanitize network artifacts, we follow the recommenda-
tions in Appendix B. To avoid overfitting and simulate the
application of anonymisation techniques, we do not use the
plain IP addresses or service-ports as features. Instead, we
differentiate between internal/external hosts of each network
(features 1 and 2 in Table IV); and we categorize the network
ports according to the IANA guidelines (features 3 and 4 in
Table IV). All of these operations are also adopted by recent
works (e.g., [17]). We set the d of all samples in seconds, and
we ensure that most samples fall within the same duration
range (i.e., [0-150]s), discarding the few outliers.

Isolate: For each dataset Di in D, we separate benign from
malicious samples using the ground truth label. We do not
make any aggregation, hence our μ are the original ones (i.e.,
μ = 46 for the heterogeneous scenario, and μ = 36 for the
uniform scenario). We thus obtain the following:

• for the heterogeneous scenario, N containing 4 ele-
ments representing the source networks of the respective
datasets (CTU13, NB15, IDS18, DDOS19), and M

containing 184 elements (because n = 4 and μ = 46);
• for the uniform scenario, N containing 4 elements

representing the source networks of the respective
datasets (UF-BotIoT, UF-NB15, UF-IDS18,
UF-TonIoT), and M containing 144 elements (because
n = 4 and μ = 36).

XeNIDS can now create the contexts to be cross-evaluated.

C. Assessment

In both scenarios we analyse three context types: C1, C4
and C7 (cf. Table I). Let us explain the common assessment
procedures, focusing on the architecture of the ML-NIDS and
the considered performance metrics.

Parameters and Performance Metrics: We use the same
parameters for our implementation of XeNIDS. Specifically,
the adopted splits s(N) and s(M) are always 80:20 for both
T and E. We use such splits because they are common in
related literature (e.g., [17], [45]), therefore enabling a more
fair comparison of our results with those of past works.
We considered different ML algorithms, but we found that
Random Forests consistently provided the best tradeoff in

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5163

terms of detection performance, rate of false alarms, and train-
ing time—a result that confirms the state-of-the-art on the
same datasets (e.g., [17], [19], [21], [45]). Hence our results
will refer to Random Forest as the learning algorithm for each
classifier. The performance metrics of interest are the F1-score
(F1) and the False Positive Rate (FPR), defined as follows:

F1 =
tp

.5(fp + fn) + tp
, FPR =

fp

tp + fn
, (Exp. 5)

where tp, fp, fn denote true positives, false positives, and false
negatives, respectively; we consider a “true positive” as the
correct detection of a malicious sample. It is desirable that the
application of XeNIDS when considering modifications of the
training set (hence, C7) should preserve the baseline FPR (cf.
Section III-C). Finally, to account for the randomness of each
split, we repeat each experiment 5 times, and in our results,
we will report the average of each repetition.

ML-NIDS Architecture: XeNIDS fosters development of
ensembles of detectors (Section IV-D), each specialized in a
single attack. There are many ways in which such detectors
can be integrated in a ML-NIDS. In our implementation, we
assume that the NIDS uses ML as a final confirmation of
detection. Hence, each sample is forwarded to the ‘most suit-
able’ detector of the ensemble, which must determine whether
such sample is really malicious or not. While such selection
is straightforward for contexts of type C1 and C7 (because
τ̄ = ε̄), this is not the case for C4, where the ML-NIDS is
tested against ‘unknown’ attacks (because τ̄ �= ε̄). Hence, for
C4 we perform a preliminary exploratory operation to identify
the most suitable detector of the ensemble against the unknown
attacks; this is to allow a more fair comparison with [19],
which also investigates C4 by using two datasets considered
in our testbed, IDS18 and DDOS19. Hence, we reserve
a portion of the samples of each unknown malicious class,
and test every detector composing the ML-NIDS against such
portion: the one with the best performance is chosen as the
candidate for analyzing the corresponding attack. This is legit-
imate because the ground truth of such samples is known, and
such samples (i) are never used in E, and (ii) are not added in
T (otherwise it would not be C4). Therefore, when present-
ing the corresponding results, we will report the performance
achieved by the most optimal detector against each specific
attack.

VI. DEMONSTRATION

Our demonstration aims to simulate the exemplary use-cases
described in Section II-B2. Let us discuss how we organize our
demonstration by using the three considered types of contexts
(C1, C4 and C7) enabled by the proposed model (cf. Table I).

Workflow: We follow the same workflow for both the
uniform and heterogeneous scenario.

1) Baseline (Section VI-A): We begin by assessing the case
where the organization O has an N and a M collected
in their own network o. Such setup corresponds to con-
text C1. To simulate C1, we use XeNIDS to devise a
ML-NIDS for each dataset; such ML-NIDS is composed
by an ensemble of detectors, each trained on a single
attack contained in the same dataset. The ML-NIDS is

tested against all the attacks of the ‘origin’ dataset. The
expectation is that the results match the state-of-the-art.

2) Generalization Section VI-B: Having a ML-NIDS, the
organization O wants to assess its effectiveness against
different attacks not included in T and originating from a
different network than o. Such setup corresponds to con-
text C4. We use XeNIDS to test the ‘baseline’ detectors
of C1 against all attacks of all datasets. The expectation
is that the performance will decrease substantially.

3) Extension (Section VI-C): To compensate for the low
performance against unknown attacks, the organization
O borrows more malicious samples to improve the
detection capabilities of their ML-NIDS. This corre-
sponds to context C7 where t̄ extends ō. For each
dataset, XeNIDS trains additional detectors by using
the malicious samples of all the other datasets, and
adds such detectors to the ensemble of the ‘baseline’
ML-NIDS. Such ‘extended’ ML-NIDS is tested against
all attacks of the CS. The expected result is an improved
performance w.r.t. C4.

4) Surrogation (Section VI-D): If the organization O only
has benign samples N from their own network o but
does not have an M, the only option is using an M from
a different network to develop a ‘surrogate’ ML-NIDS.
This is also represented by C7, but in this case �o and
�t are disjointed. Hence, for each dataset, XeNIDS uses
only the additional detectors developed at the previous
step to devise a (new) ‘surrogate’ ML-NIDS. Such sur-
rogate ML-NIDS is then tested only against the ‘attacks
from different networks.

Example: Let us provide a complete example of the work-
flow above. We adopt the viewpoint of an organization that
owns the UF-NB15 network (hence, the uniform scenario).
A total of 9 attacks originate from such network: 2 botnets, 1
DoS, and 6 others (cf. Table III).

1) XeNIDS uses the 9 attacks of UF-NB15 to train 9
detectors, representing the baseline ML-NIDS, which is
tested against these 9 attacks.

2) XeNIDS tests the baseline ML-NIDS (with its 9 detec-
tors) against all the attacks of all datasets. Namely: 4
attacks for UF-BotIoT, 14 attacks for UF-IDS18,
9 attacks for UF-ToNIoT, as well as the 9 in
UF-NB15.

3) XeNIDS trains 27 additional detectors, each using the
benign samples of UF-NB15 alongside the malicious
samples of a specific attack contained in UF-IDS18,
UF-ToNIoT, UF-BotIoT, respectively. Such detec-
tors are combined with the 9 ‘baseline’ detectors of
UF-NB15, to extend the ML-NIDS. Such ‘extended’
ML-NIDS is tested against all the attacks of all datasets
(36 attacks).

4) XeNIDS uses only the 27 detectors trained in the
previous step (representing the ‘surrogate’ ML-NIDS)
and tests them against the attacks contained in the cor-
responding networks, i.e., without taking into account
the attacks (and the detectors) in UF-NB15.

Such workflow is followed 4 times for both scenarios, each
time by considering a different dataset as ‘origin’.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5164 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

TABLE V
Baseline–C1. THE TABLE SHOWS THE F1-SCORE OF THE ML-NIDS

FOR EACH ORIGIN NETWORK. THE PERFORMANCE MATCHES THE

STATE-OF-THE-ART. THE FPR IS LESS THAN 0.001 FOR ALL

NETWORKS ASIDE FROM UF-BOTIOT (FPR = 0.11)

TABLE VI
Generalization–C4. EACH BASELINE ML-NIDS OF C1 IS TESTED

AGAINST THE ATTACKS OF ALL OTHER NETWORKS. MOST ATTACKS

ARE NOT DETECTED, AND THE F1-SCORE DEGRADES. THE FPR IS

THE SAME AS IN C1 BECAUSE THE BENIGN SAMPLES ARE ALWAYS

THE SAME AND THE TRAINING SET IS NOT MODIFIED

A. Baseline

We start by assessing C1, and report the results in Table V.
Specifically, on the left, we present the results for the hetero-
geneous scenario, and on the right, the uniform scenario. For
each dataset, we report the average F1-score obtained against
each family of attacks (cf. Table III). Moreover, we report in
the captions the average FPR achieved by the ML-NIDS of
each dataset. Henceforth, all our results will be reported in the
same format as Table V.

From Table V, we observe that there are only two scores
for UF-BoTIoT and UF-ToNIoT, because there are no
Botnet samples in these ‘origin’ datasets. Similarly, CTU13
and DDOS19 presents only one score.

All our baseline detectors match the performance of past
works (cf. Table V). As an example, for the uniform sce-
nario, the ‘worst’ ML-NIDS is trained (and evaluated) on
UF-NB15, but also in [21] such ML-NIDS achieves an aver-
age F1-score of 85%. Similarly, in the heterogeneous scenario,
the ML-NIDS in [19] achieve 99.0 F1-score on both IDS18
and DDOS19, whereas [17] achieves 99.0 F1 on CTU13—
all these results align with ours, confirming that our XeNIDS
implementation is efficient.

B. Generalization

We then assess the baseline ML-NIDS when they are subject
to attacks also contained in different networks, i.e., C4. We
report the detection results in Table VI; the FPR is the same
as in the baseline C1 (cf. caption of Table V): this is expected
because in C4 uses the same training sets as C1, and also the
benign samples of the evaluation sets are the same as in C1,

From Table VI, we observe that the performance decreases
because most of the attacks are ‘unknown’ to the baseline ML-
NIDS. However, we can observe some interesting phenomena.

In the uniform scenario, the ML-NIDS of UF-ToNIoT
can detect botnet attacks remarkably well (82% F1-score),

TABLE VII
Extension–C7. BY AUGMENTING THE TRAINING SET OF THE

ML-NIDS WITH THE MALICIOUS SAMPLES, THE F1-SCORE IMPROVES

W.R.T. C4. THE AVERAGE FPR IS LOWER THAN 0.001 FOR ALL

NETWORKS ASIDE FROM UF-BOTIOT (FPR = 0.01)

despite having no ML-model specialized on botnet attacks
(because no such attacks are contained in UF-ToNIoT).
Such an intriguing finding could only be appreciated by cross-
evaluating the ML-NIDS trained on UF-ToNIoT against
malicious samples from different networks. Furthermore, the
heterogeneous scenario shows that the baseline ML-NIDS of
DDOS19 works very well against DoS attacks from other
networks—despite such attacks being performed by different
means.

We also compare some of our results with those in [19],
which also investigated C4. Specifically, the ML-NIDS trained
on DDOS19 and tested on IDS18 in [19] achieves 64%
F1-score on average, which is similar to ours. Conversely,
the ML-NIDS trained on IDS18 and tested on DDOS19
in [19] achieves an average 78% F1-score, which is slightly
superior than ours. We explain this difference to the different
conditions in [19]: they only consider a smaller portion of the
initial dataset, whereas we use all of them. Hence, our sam-
ples may present a more skewed distribution that makes them
more difficult to classify.

C. Extension

Next, we assess C7 when τ̄ extends ō, and report the
results in Table VII. We observe that the overall performance
increases (w.r.t. Table VI) by augmenting the training sets with
the corresponding malicious samples.

In the heterogeneous scenario, our ‘extended’ ML-NIDS
naturally outperform those in [19], but we cannot claim this
as a contribution because our ‘extended’ ML-NIDS use an
augmented training set.

We also appreciate that the FPR remains stable (cf. Table V).
We owe such results to our reliance on ensembles of detectors.

D. Surrogation

Finally, we assess C7 when τ̄ and ō are disjointed, and
report the results in Table VIII. From this table, we observe
that all detectors exhibit very high F1-scores, implying that the
malicious samples are considerably different than the benign
samples. Sometimes, the F1-score reaches 99.9%, but is not
perfect: we believe such occurrence to be positive because an
F1-score of 100% could be related to overfitting.

VII. DISCUSSION

We now discuss the results presented in Section VI. We first
summarize the main findings (Section VII-A), and then make
some considerations reliability of the results (Section VII-B

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5165

TABLE VIII
Surrogation–C7. WE EXCLUDE ALL MALICIOUS SAMPLES (AND

DETECTORS) FROM THE EACH ‘ORIGIN’ NETWORK. THE EXTREMELY

HIGH PERFORMANCE MUST BE INVESTIGATED. THE AVERAGE FPR
IS LESS THAN 0.001 AND 0.0001 FOR ALL NETWORKS OF Uniform

AND Heterogeneous SCENARIOS, RESPECTIVELY

and Section VII-C). We then present the main limitations
of our demonstration, as well as possible workarounds
(Section VII-D).

A. Preliminary Analysis

We appreciate that, in general, our results show the effec-
tiveness of XeNIDS in producing baselines with state-of-the-
art performance, while also extending the detection surface.
It is intriguing that, in some cases, it is possible to detect
attacks without training on the related malicious samples. To
further stress the advantages of cross-evaluations, we provide
an in-depth look at our results by focusing on the CTU13
dataset. This dataset contains only botnet attacks and, from
Table II, the state-of-the-art (e.g., [17]) achieves 99.1% F1-
score against such attacks. A similar performance may suggest
that improvements can be incremental at best; however, no past
works have assessed how ML-NIDS trained on CTU13 can
detect different botnet attacks (not included in CTU13). By
applying the proposed XeNIDS framework, we discover that
similar ML-NIDS perform much worse: as shown by Table VI
(Section VI-B), the F1-score of such ML-NIDS drops by 20%
against botnet attacks of diverse datasets; even worse, it is
unable to detect DoS attacks (F1-score of 38%). Such poor
performance could only be assessed via cross-evaluations. To
make it better, the performance against these – different –
attacks can be increased by training on the respective samples:
by observing Table VII, the F1-score can be restored to 99%
via cross-evaluations. Also noteworthy is that the FPR always
remains within acceptable levels (below 0.001). Such FPR
will resemble the one after deployment (because the source
of benign samples is always the same).

However, as stated in Section III-C, it is necessary to further
analyze the results of XeNIDS. This is to avoid relying on
a false-sense of security, given by high performance at test-
time which does not correspond to the performance after the
ML-NIDS is deployed. We specifically focus on contexts of
type C7 because they involve modifications of the training
data, which can lead to ‘network artifacts’ that affects the
Env component of NetFlows (cf. Exp. 4 in Section IV-B) and,
potentially, lead to overfitted ML-NIDS.

B. Reliability: Uniform Scenario

In this scenario, by definition, the Env is affected only
by NetId because Conf is the same for all datasets; such
characteristic implicitly reduces the risk of network artifacts.

Fig. 8. Feature importances of the Rbot detectors (Heterogeneous scenario).

Nevertheless, we find instructive to analyze the results of the
surrogate ML-NIDS, reported in the right-side of Table VIII.
In particular, we consider the UF-NB15 network. We
observe that the ‘surrogate’ detectors focused on botnet attacks
achieve a near-perfect F1-score, which is higher than both their
‘extended’ and ‘baseline’ variants (cf. Tables VII and V). This
implies that benign samples of UF-NB15 are very similar to
the (malicious) botnet samples of UF-NB15, making such
botnet samples harder to classify by the UF-NB15 ML-NIDS
w.r.t. the botnet samples in other networks. Such occurrence
can be a sign of overfitting, because the UF-NB15 ML-NIDS
could be detecting the botnet samples from other networks on
the basis of network artifacts. However, a more detailed anal-
ysis can remove such doubt. Indeed, in the uniform scenario,
the only other source of ‘botnet’ samples is UF-IDS18,
where the baseline performance is also perfect (cf. Table V),
a result also confirmed by the state-of-the-art [21]. Simply
put, the ‘botnet’ samples in UF-IDS18 are easy to identify.
Such observation reduces the chance that the surrogate (or the
extended) ML-NIDS of UF-NB15 are affected by artifacts
from UF-IDS18.

C. Reliability: Heterogeneous Scenario

This scenario assumes NetFlows generated via different
means, hence the Env component is affected by both NetId
and Conf. Such characteristic increases the chance that some
artifacts ‘evaded’ XeNIDS standardize stage. To find a trace
of such artifacts, we compare the feature importances of each
ML-NIDS (all ML-NIDS use the same feature set).

Intuitively, the most important features for detecting an
attack in its ‘origin’ network should denote the malicious
behavior–hence, such features should be also the most impor-
tant when the attack is ‘transferred’ to train a different
ML-NIDS (which is the case in C7). We provide in Fig. 8
a comparison of such importances, focusing on the detec-
tors specialized on the Rbot botnet attack (contained in the
CTU13 network). Specifically, Fig. 8 shows the importances
of the top6 most important features (out of 12–cf. Table IV)
for all the Rbot detectors among the four different networks.

From Fig. 8 we observe that the detectors can either ‘agree’
or ‘disagree’ on the importance of such features. Specifically,
we observe that the ‘origin’ CTU13 detector (blue bars)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5166 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

places a great importance on the tot_bytes, denoting agree-
ment with the other detectors; however, there is disagreement
on the duration, which is less important for the CTU13
detector. The general trend in Fig. 8 is that the detectors dis-
agree on most features: therefore, we cannot exclude that some
underlying effects of Env are still present.

D. Limitations and Future Work

To increase the reliability of the detection performance, it
is necessary to assume the perspective of the owners of each
network. As a practical example that could remove any doubt,
the owners of the NB15 network should infect their machines
with the Rbot botnet (contained in CTU13), and verify
whether their ML-NIDS (trained on the Rbot samples from
CTU13) can detect such attack. Doing such verifications is not
possible for our scientific paper, as they require a complete
control and overview of the monitored network. Moreover,
the CnC servers of the Rbot botnet are no longer active.
Our experiments are for demonstrative purposes, but realistic
deployments should integrate such verifications–which must be
done regardless of the origin of the malicious samples (i.e.,
both in ‘traditional’ and in ‘cross’ evaluations).

Moreover, we note that each considered context type is an
independent use case. Indeed, our focus is not on develop-
ing systems that outperform the state-of-the-art: it would be
unfair to claim that our ML-NIDS generated via C7 are bet-
ter than those in [19]. In contrast, our goal is to demonstrate
the contexts that can be assessed by mixing different network
datasets, showcasing the potential of such cross-evaluation
for the state-of-the-art. As such, we can consider our results
as a ‘benchmark’, allowing future cross-evaluation studies to
compare their results with those in our paper.

Finally, an intriguing future research direction is the assess-
ment of cross-evaluations in adversarial settings: for instance,
how would a ML-NIDS poisoned with samples from a differ-
ent network perform (cf. Section III-C)? Answering a similar
question would be beneficial to the ML-NIDS research area.

VIII. CONCLUSION

Despite many successes, the integration of supervised
Machine Learning (ML) methods in Network Intrusion
Detection Systems (NIDS) is still at an early stage. This
is due to the difficulty in obtaining comprehensive sets of
labelled data for training and evaluating a ML-NIDS. The
recent release of labelled datasets for ML-NIDS was appreci-
ated by the research community; however, few works noticed
the opportunity that such availability provides to the state-of-
the-art.

Inspired by the necessity of proactive empirical evaluations
and the recent release of more open datasets, we promote the
idea of cross-evaluating ML-NIDS by using existing labelled
data from different networks. Such approach has been applied
before, but no past work specifically tackled this problem. As
a result, all the benefits of cross-evaluations, as well as their
intrinsic risks, are still unexplored.

We address all of these issues in this paper. We begin by
presenting the first model for cross-evaluation of ML-NIDS,

which is data-agnostic and general enough to cover both super-
vised and unsupervised ML-NIDS. By using such model, we
highlight the limited scope adopted by most related works,
and showcase the benefits provided by cross-evaluations of
ML-NIDS. We also present all the challenges and limitations
of such opportunity, which must be known and adequately
addressed in order to provide actionable results.

To foster proactive cross-evaluations, we develop XeNIDS,
the first framework for cross-evaluations of ML-NIDS.
XeNIDS aims to mitigate all the hazards arising from using
data from different networks. Specifically, XeNIDS focuses on
NetFlow data, which is popular in the ML-NIDS community
due to its flexibility and suitability for detection purposes.

Finally, we elucidate the potential of cross-evaluations
via a large set of experiments, where we use XeNIDS to
cross-evaluate ML-NIDS on 6 well-known datasets. In our
demonstration, we show the capability of XeNIDS to retain
the ‘baseline’ performance of past ML-NIDS, while illustrat-
ing some additional use-cases enabled by cross-evaluations,
such as ‘extending’ the detection surface of ML-NIDS. We
conclude our demonstration with a follow-up discussion where
we question the reliability of the results, which is necessary
for realistic deployments of ML-NIDS.

Our paper will hopefully inspire future works on ML-NIDS,
and is oriented to both researchers and practitioners. The for-
mer can make better use of open datasets to cross-evaluate
past and future ML-NIDS, allowing broader assessments of
the state-of-the-art; the latter can use future research results,
or completely integrate cross-evaluations in their proactive
assessments, to develop or improve Machine Learning-based
Network Intrusion Detection Systems—without incurring in
extra labeling procedures. We believe that cross-evaluations
– supported by data-sharing platforms and federated learn-
ing techniques – represent a pragmatic way to overcome the
specificity of NIDS and realize ‘general’ ML-NIDS.

APPENDIX A
CONTRIBUTORS TO NETFLOWS

Let us illustrate the role played by Comm and Env (i.e.,
NetId and Conf) in the generation of the corresponding
NetFlows (see Exp. 4). Assume that two organizations, O1 and
O2, have two distinct networks both having a pair of hosts (h11
and h21 for O1, h12 and h22 for O2); such hosts communicate
with each other within their own networks. It is straightforward
that if these two pairs of hosts exchange different information
(viz., resulting in different Comm) then the resulting NetFlows
generated in O1 and O2 will differ. Let us focus on the case
where the pairs of hosts exchange the same information (viz.,
same Comm). For simplicity, assume that the first host of each
pair (h1) sends exactly the same file of 100MB to the second
host, using exactly the same protocol and ports. Let us assume
that the hosts in O1 are allocated a bandwidth of b1 Mb/s, and
that those in O2 are allocated a bandwidth of b2 Mb/s. Finally,
let us assume that the organizations use the same NetFlow gen-
eration software, configured to allow the maximum duration
of a NetFlow to be d1 for O1, and d2 for O2. We identify
four scenarios.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5167

• b1 = b2 and d1 = d2 → same NetId and same Conf
(viz. same Env). For instance, if b1 = b2 = 100Mb/s and
d1 = d2 = 10s, then the file will be transferred in the
same amount of time (8s) in both O1 and O2, resulting
in similar NetFlows (with a duration of 8s).

• b1 �= b2 and d1 = d2 → different NetId but same Conf
(viz. different Env). For instance, if b1 = 100Mb/s and
b2 = 1Mb/s, then the file will be transferred in 8s in O1

but in 800s in O2, resulting in different NetFlows.
• b1 = b2 and d1 �= d2 → same NetId but different Conf

(viz. different Env). For instance, if b1 = b2 = 100Mb/s
while d1 = 10s and d2 = 1s, then the transfer will take
8s in both O1 and O2; but in O1 there will be 1 NetFlow
of 8s, while in O2 there will be 8 NetFlows of 1s.

• b1 �= b2 and d1 �= d2 → different NetId and different
Conf (viz. different Env). This is self-explanatory.

Of course, there are many other factors that affect NetId and
Conf (aside from the bandwidth and maximum duration). The
above-mentioned example is just for demonstrative purposes.

APPENDIX B
GUIDELINES FOR STANDARDIZE

To avoid generating network specific artifacts (cf.
Section IV-B), we provide some recommendations on three
common NetFlow fields: the IP addresses, the service ports,
and the duration.

IP addresses: There are two issues that may arise when
standardizing the IP addresses of two distinct datasets:

• different networks use different subnet masks. For
instance, the internal IP addresses of Di may present
the structure “192.168.x.x”, whereas those in Dj are
“175.32.x.x”;

• the malicious traffic of a given dataset may be entirely
produced by just few machines.

Neglecting these issues may result in ML models that distin-
guish legitimate from anomalous samples on the sole basis
of the IP address of a host, without giving the due impor-
tance to the remaining traffic characteristic. This is a problem
because if a real attack involves a machine with a different IP
address, the detector would never identify it. We hence pro-
pose to standardize each dataset by separating internal from
external hosts. The ML model will use these features, instead
of the IP addresses, to perform its analyses. The information
to perform this separation can be obtained either from the doc-
umentation of a dataset, or by inferring it from the data using
expert knowledge; if such information is not obtainable, then
we suggest not to use any IP-related feature.

Service Ports: Handling the service ports of distinct datasets
presents similar issues to the IP addresses discussed above:
different networks may adopt different port policies; and the
attacks captured by a given dataset may rely just on a restricted
(or unique) set of ports. We thus propose to standardize each
dataset by categorizing each port on the basis of the IANA
guidelines, i.e., well-known [0-1023], registered [1024-49151]
and dynamic [49151-65535].

Duration: Besides verifying that all datasets use the same
measurement units, standardizing the NetFlow duration (d)

of distinct datasets is a challenging task. On the one hand,
datasets may be created with different NetFlow tools and/or
different configuration parameters. For example, setting the
maximum duration (dmax) of a NetFlow to 1000 or 100 sec-
onds would lead to significantly different results.16 On the
other hand, there may be some underlying traits of a given
network that lead its machines to generate flows of different
duration. To address these issues, we propose three possi-
ble solutions, all involving the identification of the smallest
maximum duration across all datasets, min(dmax):

• Outlier removal. This approach assumes that (i) the
duration of the majority of samples (from all consid-
ered datasets) falls within a reduced range [dl , dt], and
that (ii) the top limit dt of this range is lower than
min(dmax). In these circumstances, it is possible to
remove the few “outliers” that have extremely high dura-
tions with respect to the remaining samples. Despite the
consequential loss of samples, removing outliers does not
necessarily reduce the prediction performance.

• Threshold setting. This solution avoids data loss prob-
lems. If a dataset Di has dmax � min(dmax), its
samples having d > min(dmax) will have their duration
set to min(dmax). However, it is important to store the
original value of d if it is needed to compute some derived
metrics, such as the packets per second. This approach
may be unpractical for ML leveraging sequential analyses
as it disrupts the sequence of samples.

• Flow splitting. This technique enables the application
of sequential ML methods. The intuition is to split
those flows that exceed min(dmax). Given a Di with
dmax > min(dmax), the idea is to truncate all flows of
Di with duration d > min(dmax) into multiple flows.
As a practical example assuming duration expressed in
seconds, if min(dmax) = 300 and Di has dmax = 1000,
and if a given flow in Di has d = 700, the approach
truncates this flow in three distinct flows, with d = (300,
300, 100). When performing the split, it is important to
also update some metrics, such as the transferred bytes
or packets (which can be adjusted proportionally) as well
as the start and finishing times of the flow.

We observe that, in our experiments, we adopt the outlier
removal strategy. Despite being lossy, such technique still
allows to devise ML-NIDS with performance matching the
state-of-the-art (see Table V and compare it with Table II).

APPENDIX C
SYMBOL TABLE

To facilitate the readability, we report in Table IX the major
notation used throughout the main sections of our paper.

We also further explain the difference between some of our
symbols introduced in Section III, and specifically the differ-
ence between the arrays and sets (e.g., �t and t̄). Let us assume
a scenario where n = 3 and μ = 3, meaning that M is a 3 × 3
matrix. We use the ordered arrays �t , �τ (or �e , �ε) to answer the
question “which elements of M are included in T (or E)?”.

16This issue can be overcome if the datasets are provided in PCAP format
by properly setting the NetFlow generation tool.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

5168 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

TABLE IX
TABLE OF RELEVANT NOTATION USED IN THIS PAPER

A possibility is that �t = (1, 1, 2) and that �τ = (2, 3, 3). This
means that T will contain M 2

1 , M 3
1 , M 3

2 . Hence, t̄ = (1, 2)
because t̄ is the set denoting the (unique) ‘malicious’ networks
included in T. At the same time, τ̄ = (2, 3) because τ̄ is the
set denoting the (unique) attacks included in T.

Finally, we stress that, in our cross-evaluation model, ō =
�o = o, because the origin of the benign samples must be the
same for both the training and evaluation partitions (i.e., T and
E, respectively).

REFERENCES

[1] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in
medicine: A practical introduction,” BMC Med. Res. Methodol., vol. 19,
no. 1, pp. 1–18, 2019.

[2] C.-J. Wu et al., “Machine learning at Facebook: Understanding infer-
ence at the edge,” in Proc. IEEE Int. Symp. High Perf. Comput. Archit.,
Washington, DC, USA, 2019, pp. 331–344.

[3] K. Bresniker, A. Gavrilovska, J. Holt, D. Milojicic, and T. Tran,
“Grand challenge: Applying artificial intelligence and machine learning
to cybersecurity,” Computer, vol. 52, no. 12, pp. 45–52, Dec. 2019.

[4] W. Fleshman, E. Raff, R. Zak, M. McLean, and C. Nicholas, “Static
malware detection & subterfuge: Quantifying the robustness of machine
learning and current anti-virus,” in Proc. 13th IEEE Int. Conf. Malicious
Unwanted Softw., Nantucket, MA, USA, 2018, pp. 1–10.

[5] G. D’Angelo, M. Ficco, and F. Palmieri, “Malware detection in mobile
environments based on autoencoders and API-images,” Elsevier J.
Parallel Distrib. Comput., vol. 137, pp. 26–33, Mar. 2020.

[6] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking classifiers for
evasion: A case study on the Google’s phishing pages filter,” in Proc.
25th Int. Conf. World Wide Web, 2016, pp. 345–356.

[7] “Machine learning in the age of cyber AI,” Darktrace,
Cambridge, U.K., Rep., 2020. [Online]. Available:
https://www.darktrace.com/es/resources/wp-machine-learning.pdf

[8] “Using AI to detect and contain cyberthreats,” Lastline, Redwood
City, CA, USA, White Paper, 2019. [Online]. Available: https://
www.lastline.com/wp-content/uploads/2020/01/Lastline_WP_AI_Done_
Right_web.pdf

[9] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. IEEE Symp. Security
Privacy, Oakland, CA, USA, 2010, pp. 305–316.

[10] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern clas-
sifiers under attack,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp. 984–996, Apr. 2014.

[11] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti,
“On the effectiveness of machine and deep learning for cyber secu-
rity,” in Proc. IEEE 10th Int. Conf. Cyber Conflicts, Tallinn, Estonia,
May 2018, pp. 371–390.

[12] B. Miller et al., “Reviewer integration and performance measurement
for malware detection,” in Proc. Int. Conf. DIMVA, 2016, pp. 122–141.

[13] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Comput. Security,
vol. 86, pp. 147–167, Sep. 2019.

[14] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 686–728, 1st Quart., 2019.

[15] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. IEEE Int. Conf. Inf. Syst. Security Privacy, 2018, pp. 108–116.

[16] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Elsevier Comput. Security, vol. 45,
pp. 100–123, Sep. 2014.

[17] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi, and
M. Colajanni, “Deep reinforcement adversarial learning against botnet
evasion attacks,” IEEE Trans. Netw. Service Manag., vol. 17, no. 4,
pp. 1975–1987, Dec. 2020.

[18] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-stage
optimized machine learning framework for network intrusion detec-
tion,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2, pp. 1803–1816,
Jun. 2021.

[19] C. F. T. Pontes, M. M. C. de Souza, J. J. C. Gondim, M. Bishop, and
M. A. Marotta, “A new method for flow-based network intrusion detec-
tion using the inverse potts model,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 2, pp. 1125–1136, Jun. 2021.

[20] C. Schaffer, “Selecting a classification method by cross-validation,”
Mach. Learn., vol. 13, no. 1, pp. 135–143, 1993.

[21] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “NetFlow
datasets for machine learning-based network intrusion detection
systems,” in Proc. EAI Int. Conf. Big Data Technol., 2021, pp. 117–135.

[22] L. Williams, G. McGraw, and S. Migues, “Engineering security vulner-
ability prevention, detection, and response,” IEEE Softw., vol. 35, no. 5,
pp. 76–80, Sep./Oct. 2018.

[23] F. Pierazzi, G. Apruzzese, M. Colajanni, A. Guido, and M. Marchetti,
“Scalable architecture for online prioritisation of cyber threats,” in
Proc. IEEE 9th Int. Conf. Cyber Conflicts, Tallinn, Estonia, May 2017,
pp. 1–18.

[24] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[25] R. J. Joyce, E. Raff, and C. Nicholas, “A framework for cluster and
classifier evaluation in the absence of reference labels,” in Proc. 14th
ACM Workshop Artif. Intel. Security (AI Security), 2021, pp. 73–84.

[26] E. Bursztein, M. Martin, and J. Mitchell, “Text-based CAPTCHA
strengths and weaknesses,” in Proc. ACM Conf. Comput. Commun.
Security, 2011, pp. 125–138.

[27] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “ImageNet
training in minutes,” in Proc. Int. Conf. Parallel Process., 2018,
pp. 1–10.

[28] E. Min, J. Long, Q. Liu, J. Cui, Z. Cai, and J. Ma, “SU-IDS: A
semi-supervised and unsupervised framework for network intrusion
detection,” in Proc. Springer Int. Conf. Cloud Comput. Security, 2018,
pp. 322–334.

[29] R. Jordaney et al., “Transcend: Detecting concept drift in malware clas-
sification models,” in Proc. USENIX Security Symp., 2017, pp. 625–642.

[30] Z. Ahmad, A. S. Khan, C. W. Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Trans. Emerg. Telecommun.
Technol., vol. 32, no. 1, p. e4150, 2021.

[31] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del Rincón,
and D. Siracusa, “LUCID: A practical, lightweight deep learning solu-
tion for DDoS attack detection,” IEEE Trans. Netw. Service Manag.,
vol. 17, no. 2, pp. 876–889, Jun. 2020.

[32] R. A. Khamis and A. Matrawy, “Evaluation of adversarial training on
different types of neural networks in deep learning-based IDSs,” in Proc.
IEEE Int. Symp. Netw. Comput. Commun., Montreal, QC, Canada, 2020,
pp. 1–6.

[33] C. Zhang, X. Costa-Pérez, and P. Patras, “Tiki-taka: Attacking and
defending deep learning-based intrusion detection systems,” in Proc.
ACM Conf. Cloud Comput. Security Workshop, 2020, pp. 27–39.

[34] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Elsevier Pattern Recognit., vol. 84,
pp. 317–331, Dec. 2018.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

APRUZZESE et al.: CROSS-EVALUATION OF ML-BASED NETWORK IDS 5169

[35] M. Horák, V. Stupka, and M. Husák, “GDPR compliance in cybersecu-
rity software: A case study of DPIA in information sharing platform,”
in Proc. ACM Int. Conf. Availab. Reliab. Security, 2019, pp. 1–8.

[36] P. Spagnolettia and A. Salvia, “Digital systems in high-reliability
organizations: Balancing mindfulness and mindlessness,” in Proc.
Int. Workshop Socio-Techn. Perspective Inf. Syst. Develop., 2020,
pp. 155–161.

[37] R. Ramaswamy and T. Wolf, “High-speed prefix-preserving IP address
anonymization for passive measurement systems,” IEEE/ACM Trans.
Netw., vol. 15, no. 1, pp. 26–39, Feb. 2007.

[38] I. Dayan et al., “Federated learning for predicting clinical outcomes in
patients with COVID-19,” Nat. Med., vol. 27, pp. 1735–1743, Sep. 2021.

[39] F. Falcão et al., “Quantitative comparison of unsupervised anomaly
detection algorithms for intrusion detection,” in Proc. ACM Symp. Appl.
Comput., 2019, pp. 318–327.

[40] M. Catillo, A. D. Vecchio, L. Ocone, A. Pecchia, and U. Villano,
“USB-IDS-1: A public multilayer dataset of labeled network flows for
IDS evaluation,” in Proc. IEEE Int. Conf. Depend. Syst. Netw., Taipei,
Taiwan, 2021, pp. 1–6.

[41] A. Bansal and S. Mahapatra, “A comparative analysis of machine learn-
ing techniques for botnet detection,” in Proc. 10th Int. Conf. Security
Inf. Netw., 2017, pp. 91–98.

[42] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550,
2019.

[43] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole,
“Benchmarking datasets for anomaly-based network intrusion detec-
tion: KDD CUP 99 alternatives,” in Proc. IEEE 3rd Int. Conf. Comput.
Commun. Security, Kathmandu, Nepal, 2018, pp. 1–8.

[44] R. Magán-Carrión, D. Urda, I. Díaz-Cano, and B. Dorronsoro, “Towards
a reliable comparison and evaluation of network intrusion detection
systems based on machine learning approaches,” Appl. Sci., vol. 10,
no. 5, p. 1775, 2020.

[45] Y. Zhang, J. Niu, G. He, L. Zhu, and D. Guo, “Network intru-
sion detection based on active semi-supervised learning,” in Proc.
IEEE/IFIP Int. Conf. Depend. Syst. Netw. Workshops, Taipei, Taiwan,
2021, pp. 129–135.

[46] C. G. Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser, and
S. Nadjm-Tehrani, “On generating network traffic datasets with synthetic
attacks for intrusion detection,” ACM Trans. Privacy Security, vol. 24,
no. 2, pp. 1–39, 2021.

[47] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale NetFlow analysis,” in Proc. ACM Annu. Conf. Comput.
Security Appl., Dec. 2012, pp. 129–138.

[48] J. Hou, P. Fu, Z. Cao, and A. Xu, “Machine learning based DDoS
detection through NetFlow analysis,” in Proc. IEEE Mil. Commun. Conf.,
Los Angeles, CA, USA, 2018, pp. 1–6.

[49] G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and A. Guido,
“Identifying malicious hosts involved in periodic communications,” in
Proc. IEEE Int. Symp. Netw. Comput. Appl., Cambridge, MA, USA,
Oct. 2017, pp. 1–8.

[50] M. Stevanovic and J. M. Pedersen, “An analysis of network traffic classi-
fication for botnet detection,” in Proc. IEEE Int. Conf. Cyber Situational
Awareness Data Anal. Assessment, London, U.K., Jun. 2015, pp. 1–8.

[51] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and
M. Colajanni, “Modeling realistic adversarial attacks against network
intrusion detection systems,” ACM Digit. Threats Res. Pract., to be
published.

[52] C. Dunn, N. Moustafa, and B. Turnbull, “Robustness evaluations of
sustainable machine learning models against data poisoning attacks in
the Internet of Things,” Sustainability, vol. 12, no. 16, p. 6434, 2020.

[53] M. Bachl, A. Hartl, J. Fabini, and T. Zseby, “Walling up backdoors in
intrusion detection systems,” in Proc. ACM Workshop Big Data Mach.
Learn. Artif. Intell. Data Commun. Netw., 2019, pp. 8–13.

[54] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning
attacks on federated learning-based IoT intrusion detection system,” in
Proc. Workshop Decentralized IoT Syst. Security, 2020, pp. 1–7.

[55] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti, “Addressing
adversarial attacks against security systems based on machine learning,”
in Proc. IEEE Int. Conf. Cyber Conflicts, Tallinn, Estonia, May 2019,
pp. 1–18.

[56] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. J. Goodfellow,
“Realistic evaluation of deep semi-supervised learning algorithms,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 3235–3246.

[57] G. Vormayr, J. Fabini, and T. Zseby, “Why are my flows different? a
tutorial on flow exporters,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2064–2103, 3rd Quart., 2020.

[58] T. Acharya, I. Khatri, A. Annamalai, and M. F. Chouikha, “Efficacy
of heterogeneous ensemble assisted machine learning model for binary
and multi-class network intrusion detection,” in Proc. IEEE Int. Conf.
Autom. Control Intell. Syst., Shah Alam, Malaysia, 2021, pp. 408–413.

[59] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy,” in Proc. IEEE Int. Conf. Security Technol., Chennai,
India, 2019, pp. 1–8.

[60] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf., Canberra, ACT, Australia, 2015,
pp. 1–6.

Giovanni Apruzzese received the master’s (summa
cum laude) and Ph.D. degrees in computer engi-
neering from the University of Modena, Italy,
in 2016 and 2020, respectively. He has been
a Postdoctoral Researcher with the Institute of
Information Systems, University of Liechtenstein
since 2020. In 2019, he spent 6 months as
a Visiting Researcher with Dartmouth College,
Hanover, NH, USA, under the supervision of Prof.
V. S. Subrahmanian. His research interests involve
all aspects of big data security analytics with a

focus on machine learning, and his main expertise lies in the analy-
sis of network intrusions, phishing, and adversarial attacks. Homepage:
https://www.uni.li/giovanni.apruzzese.

Luca Pajola received the M.Sc. degree in com-
puter science from the University of Padova, Italy,
in 2018. He is currently pursuing the Ph.D. degree
with the School of Brain Mind and Computer
Science, University of Padova, Italy. Here, he is
part of the SPRITZ Security and Privacy Research
Group research group under the supervision of Prof.
M. Conti. He is conducting research on fields,
including security and machine learning. Homepage:
https://www.math.unipd.it/∼pajola/.

Mauro Conti (Fellow, IEEE) received the Ph.D.
degree from the Sapienza University of Rome, Italy,
in 2009. After his Ph.D., he was a Postdoctoral
Researcher with Vrije Universiteit Amsterdam, The
Netherlands. He is a Full Professor with the
University of Padua, Italy. He is also affiliated with
TU Delft and University of Washington, Seattle.
In 2011, he joined as Assistant Professor with the
University of Padua, where he became Associate
Professor in 2015 and a Full Professor in 2018. He
has been a Visiting Researcher with GMU, UCLA,

UCI, TU Darmstadt, UF, and FIU. His research is also funded by compa-
nies, including Cisco, Intel, and Huawei. His main research interest is in
the area of Security and Privacy. In this area, he published more than 400
papers in topmost international peer-reviewed journals and conferences. He
has been awarded with a Marie Curie Fellowship (2012) by the European
Commission, and with a Fellowship by the German DAAD (2013). He is
the Editor-in-Chief of IEEE TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, the Area Editor-in-Chief for IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, and has been an Associate Editor for several
journals, including IEEE COMMUNICATIONS SURVEYS AND TUTORIALS,
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, and IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. He was
Program the Chair of TRUST 2015, ICISS 2016, WiSec 2017, ACNS
2020, and CANS 2021 and the General Chair of SecureComm 2012,
SACMAT 2013, NSS 2021, and ACNS 2022. He is the Senior Member
of the ACM and a Fellow of the Young Academy of Europe. Homepage:
https://www.math.unipd.it/∼conti/.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 08:42:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

