
A computer-checked library of category theory
Formally verifying currying via the product-exponential adjunction

Gabriel-Ciprian Stanciu1

Supervisors: Benedikt Ahrens1, Lucas Escot1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Gabriel-Ciprian Stanciu
Final project course: CSE3000 Research Project
Thesis committee: Benedikt Ahrens, Lucas Escot, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract. Existing implementations of category theory for proof assistants aim to be as
generic as possible in order to be reusable and extensible, often at the expense of readability
and clarity. We present a (partial) formalisation of category theory in the proof assistant
Lean limited in purpose to explaining currying, intended to be faithful to the language and
definitions used in mathematics literature. We also present some design features of our
library and contrast the extent and educational merit with other implementations.

1 Introduction
Category theory is a branch of mathematics that, essentially, provides a formal

instrument for defining categories, (mathematical) structures formed of objects of
the same type and relations between them, functors, mappings between two cat-
egories that preserve their structure, and other notions that emphasize studying the
relations between mathematical objects and not their specific details. As category
theory focuses on studying structure and abstracting away objects’ specific details
that are tied to their area of mathematics, it helps reveal connections between dif-
ferent mathematical fields and potentially find or lift results from one field to apply
in multiple others.

Although it is pure mathematics, this concern with structure has led to category
theory being used to reason about notions in other sciences such as physics, where
similarity has been found between categories that model the theory of general re-
lativity and quantum theory, or logic, where the properties of categories modelling
different systems of logic provide insight into the rules it follows [1]. More relevant
to computer science, programming languages have lifted some of its concepts to bet-
ter structure programs. Notably, Haskell types and functions form a structure akin
to a category and the language has borrowed categorical concepts such as functors
[2] or monads [3].

Dependent type theory is a language that can be used for encodingmathematics,
suitable for computer proof assistants as it allows the program to spot mistakes —
statements that are syntactically valid but are incorrect. Computer proof assistants
can be used to verify the correctness of formal mathematical proofs by checking
every step in the proof and using other already computer-checked theorems, down
to the fundamental base axioms. In this context and taking into account the abstrac-
tion level of category theory, computer proof assistants are useful — they provide
complete confidence in the correctness of a result which could otherwise contain
mistakes overlooked by reviewers.

A bachelor’s degree education in computer science tends not to go into category
theory, while it almost always contains courses about functional programming or
programming languages in general. For this reason, understanding how concepts
such as currying or monads work, or the motivation behind them, can be difficult.

This paper aims to provide a readable and understandable description of cur-
rying, a notion of isomorphism between arrows from a binary product and arrows
to an exponential that also appears in computer science, alongside its prerequisite
concepts, supported by a computer-checked implementation of parts of category
theory. It also provides details behind the decisions taken during its implementa-
tion and differences to other category theory libraries.

The inclusion of a formally verified library has two purposes: to serve as a learn-
ing experience for the author and be targeted toward beginner users who may find
existing implementations for working categoricians daunting and too abstract. It

1



Gabriel-Ciprian Stanciu

also prefers more explicit proofs using less automation for educational purposes,
while it has unambiguity as an advantage over a classic mathematical explanation.

Section 2 goes over the presentation of the content included in the paper and
provides a short overview of the proof assistant chosen and the type theory power-
ing it, along with a description of the library structure. Section 3 contains short ex-
planations of the core part of the library — definitions and theorems developed by
the whole project group for the basic notions in category theory. An explanation
of adjunction and an example useful to computer science, currying, can be found
in section 4. Section 5 reviews design decisions taken during the development of
the project and includes a comparison with other related work. Finally, section 6
finishes the paper and proposes a future direction for the work.

2 Method
Explaining currying requires some familiarity with other concepts from cat-

egory theory. In computer science, currying transforms a function taking two vari-
ables into one that takes the first variable as an argument and returns a new func-
tion. The result should take in the second variable as its only argument and return
the same result as the original function. In category theory however, currying is the
natural isomorphism between morphisms from binary products and morphisms to
exponential objects.

In order to introduce it, we will start from the basic notions of category and func-
tor and incrementally build upon this knowledge. We will be stating the next con-
cepts and presenting an abridged version of the formal definition from the library,
alongside examples if necessary.

2.1 Formal verification
We chose to implement our library in Lean 3.x1, a proof assistant with a type the-

ory based on the Calculus of Inductive Constructions (CIC) [4], capable of represent-
ing proofs in higher-order predicate logic and of representing data types efficiently
using inductive definitions.

The reasons for this choice of proof assistant were Lean’s accessible ecosystem,
existingdocumentation and category theory library [5]–[7], and its use ofCICwhich
is at the base of many existing formalisations of category theory [8, Table 1], show-
ing its suitability.

As Lean adheres to the Curry-Howard correspondence, a proposition is repre-
sented by a typewith objects of the same type constituting proofs of the proposition.
Propositions such as 𝐴∧𝐵 are typed as pairs A×B of proofs of 𝐴 and 𝐵, implications
𝐴 ⇒ 𝐵 are of type A→B that convert proofs of 𝐴 to proofs of 𝐵, while ∀𝑥 ∶ 𝐴, 𝐵 also
can be written as dependent types Π x: A, B that map each 𝑥 in 𝐴 to a proof.

Owing to the type theory used, a program written in Lean that type-checks can
be considered to be valid; that is, if all objects are successfully checked to be of the
proper type then the proofs they represent are also valid.

Lean has a useful tool for creating proofs in the form of tactics, programs that
change the goal that needs to be proved based on hypotheses derived from the initial
proposition and previously proved theorems. Although the code snippets in the
next sections are meant to be understandable without much prior knowledge, table
1 contains short descriptions of the more common tactics.

1https://leanprover.github.io/, https://leanprover-community.github.io/

2

https://leanprover.github.io/
https://leanprover-community.github.io/


A computer-checked library of category theory

intros adds hypotheses (terms) 𝑥 ∶ 𝑃1 𝑦 ∶ 𝑃2 ... if the goal is of the
form 𝑃1 → 𝑃2 → 𝑔 or ∀(𝑥 ∶ 𝑃1)(𝑦 ∶ 𝑃2), 𝑔 and changes the
goal to 𝑔

refl completes the proof if the goal is an equality with both sides
equal

split for a goal of the form 𝑝1∧𝑝2, splits it into two separate goals
to be proved in sequence 𝑝1, 𝑝2

simp tries to rewrite the goal using built-in theorems and the cur-
rent hypotheses

rw h... rewrites the goal using the theorems or hypotheses spe-
cified

apply h for a theorem or hypothesis of the form 𝐻 ∶ 𝑝 → 𝑔, changes
the goal 𝑔 to 𝑝

have h : <type> introduces a new hypothesis ℎ of the specified type and
switches the current goal to proving the new hypothesis

let id := <expr> introduces a new term 𝑖𝑑 defined by <expr>
unfold id replaces 𝑖𝑑with its definition
exact h completes the proof if the goal is of the same type as ℎ

Table 1: Overview of common Lean tactics.

2.2 Project structure, contributors
The code of the project can be studied at https://github.com/sgciprian/ct.
Folder doc contains files explaining how some concepts were formalised in our

library, showing how to type the Unicode notation used in the project, and a bibli-
ography with sources for category theory and Lean.

The actual source code can be found in folder src containing concepts from cat-
egory theory implemented in the files or folders with the same name. The folder
instances/ contains examples of categories. Some concepts that havemultiple def-
initions or examples implemented contain both a file (eg. functors.lean) and a
folder (eg. functors/). The file serves as a meta-file, including the entire content
of the folder.

The implementation part of the project was done in two stages, within the re-
search project group. The first stage focused on building up a base of core defini-
tions for the library, while the second focused solely on defining adjunctions and
providing examples.

The second part was individual work (albeit with help and support provided
by the group colleagues at times) and roughly includes the files contained in the
folders adjunctions/ and universal_properties/. The rest of the source files
were either contributed by the other members for either of the two stages, or by
the author during the first, fully collaborative stage.

The paper itself is the own work of the author.

3 Core definitions
This section introduces the prerequisite notions necessary for introducing ad-

junctions: categories, functors, and natural transformations, also showcasing the use
of the library. The presentation of the definitions is largely based on Leinster’s in-
troduction to category theory [9], with parts from Mac Lane [10] and Pierce [11].

3

https://github.com/sgciprian/ct


Gabriel-Ciprian Stanciu

3.1 Categories
Categories are structures consisting of objects, morphisms or equivalently arrows

that link two objects together, a composition operation that creates a new arrow
whenever we have two arrows that end and start, respectively, on the same object,
and an identitymorphism unique for each object that points to itself. Objects are not
important beyond their existence; they are specified only by the arrows that con-
nect them to other objects, so an object could stand for a number, a set, or any other
notion.

There are some rules that any structure with objects and morphism must have
in order to be a category: the composition operator should be associative, and the
identity combined with any morphism should construct the original morphism.
structure category :=
--attributes
(C₀ : Sort u)
(hom : Π (X Y : C₀), Sort v)
(id : Π (X : C₀), hom X X)
(compose : Π {X Y Z : C₀} (g : hom Y Z) (f : hom X Y),

hom X Z)
--axioms
(left_id : ∀ {X Y : C₀} (f : hom X Y),

compose f (id X) = f)
(right_id : ∀ {X Y : C₀} (f : hom X Y),

compose (id Y) f = f)
(assoc : ∀ {X Y Z W : C₀}

(f : hom X Y) (g : hom Y Z) (h : hom Z W),
compose h (compose g f) = compose (compose h g) f)

--src/category.lean

With this definition we can define various instances of categories, for example
the snippet below defines the object type, morphism type, the identity and com-
position and proves the three category laws for the product category — a category
where each object is a pair of objects from the two ”parent” categories and each
morphism is also a pair of morphisms from the two categories.
def Product (C D : category) : category :=
{
C₀ := C × D,
hom := λ p p', (C.hom p.fst p'.fst) × (D.hom p.snd p'.snd),
-- 1(c, d) = (1c, 1d), where 1 is the identity morphism
id := λ p, (1C p.fst, 1D p.snd),
-- Composition composes each morphism component in its category.
compose := λ {p q r} (g : (C.hom q.fst r.fst) × (D.hom q.snd r.snd))

(f : (C.hom p.fst q.fst) × (D.hom p.snd q.snd)),
((C.compose g.fst f.fst), (D.compose g.snd f.snd)),

-- We will use the laws of the parent categories to prove these rules.
left_id := by { intros, simp, rw C.left_id, rw D.left_id, simp }
right_id := by { intros, simp, rw C.right_id, rw D.right_id, simp }
assoc := by { intros, simp, rw C.assoc, rw D.assoc }

}
--src/instances/Product_category.lean

4



A computer-checked library of category theory

3.2 Functors
A functor is a mapping that takes objects and arrows from one category to an-

other category while preserving the relations between objects. To achieve this, it
includes functions mapping each object and morphism from the first category to
objects and morphisms in the second one, while satisfying some laws. The identity
morphism should map to identity, and the composition of morphisms should give
the same result regardless of whether it is applied before or after the morphism
mapping.

structure functor (C D : category) :=
(map_obj : C → D)
(map_hom : Π {X Y : C} (f : C.hom X Y),

D.hom (map_obj X) (map_obj Y))
(id : ∀ (X : C),

map_hom (C.id X) = D.id (map_obj X))
(comp : ∀ {X Y Z : C} (f : C.hom X Y) (g : C.hom Y Z),

map_hom (C.compose g f) = D.compose (map_hom g) (map_hom f))
--src/functors/functor.lean

Using the product category we defined in section 3.1, we can define an example
functor from category 𝐶 to category 𝐶 × 𝐶: the diagonal functor, which maps each
object 𝑐 to the pair (𝑐, 𝑐) and similarly the morphisms.

def diagonal_functor (C : category) : functor C (Product C C) :=
{
map_obj := λ (c : C), (c, c),
map_hom := λ {c d : C} (h : C.hom c d), (h, h),
id := by { intros, refl } -- trivial proofs
comp := by { intros, refl }

}
--src/functors/diagonal.lean

3.3 Universal constructions
Universal constructions correspond to the most general object in a category that

satisfies some property. As an important example, we will look at product objects.
A product of two objects 𝑐 and 𝑑 is the unique (up to isomorphism2) object 𝑐 × 𝑑

with two projection morphisms 𝑝1 to 𝑐 and 𝑝2 to 𝑑. In addition, for all objects 𝑥with
arrows to 𝑐 and 𝑑, there is a unique morphism from 𝑥 to 𝑐 × 𝑑 that composed with
the projections returns the initial arrows of 𝑥.

structure binary_product3 {C : category} (c d : C) :=
(p : C)
(p₁ : C.hom p c)
(p₂ : C.hom p d)
(ue : Π (x : C) (x₁ : C.hom x c) (x₂ : C.hom x d),

C.hom x p)
(ump : ∀ (x : C) (x₁ : C.hom x c) (x₂ : C.hom x d),

x₁ = C.compose p₁ (ue x) ∧ x₂ = C.compose p₂ (ue x))
2There may be more objects with the property, but all have the same relations with other objects.
3This structure is changed from the library code; there x, x₁ and x₂ are all bundled together.

5



Gabriel-Ciprian Stanciu

(uu : ∀ (x : C) (x₁ : C.hom x c) (x₂ : C.hom x d) (h : C.hom x.x p),
x₁ = C.compose p₁ h ∧ x₂ = C.compose p₂ h → h = ue x)

--src/universal_properties/binary_product.lean

By binary product’s universal property, we can always construct a morphism
from 𝑐× 𝑖 to 𝑑× 𝑗 that essentially maps 𝑐 to 𝑑 by morphism 𝑓, and 𝑖 to 𝑗 by morphism
𝑔; we will name this the product of morphisms 𝑓 × 𝑔.

def product_morphism4 {C : category} {c d i j : C}
{cxi : binary_product c i} {dxj : binary_product d j}
(f : C.hom c d) (g : C.hom i j) : C.hom cxi.p dxj.p
:= dxj.ue cxi.p (C.compose f cxi.p₁) (C.compose g cxi.p₂)
--src/universal_properties/product_morphism.lean

We can now construct a product functor from category 𝐶 × 𝐶 to 𝐶 as some sort
of analogue to the diagonal functor, as long as category 𝐶 has all products defined.
It is trivial to see that a pair (𝑐, 𝑑) in 𝐶 × 𝐶 can be mapped to 𝑐 × 𝑑, while a pair of
morphisms (𝑓, 𝑔) in 𝐶 × 𝐶 can be mapped to the product of morphisms 𝑓 × 𝑔.

def product_functor (C : category) [has_all_products C]
: functor (Product C C) C :=
{
map_obj := λ (c : Product C C), (po c.fst c.snd).p,
map_hom := λ {p q : Product C C} (m : (Product C C).hom p q),

begin
-- for ease we define consistent with previous notation
let f := m.fst, -- f as the left element of the tuple m
let g := m.snd, -- g as the right element of m
-- now we just construct product_morphism
exact product_morphism f g, -- fxg

end,
id := by { intros, simp, rw identity_morphism_of_product, refl }
comp := by { intros, simp, symmetry,

apply product_of_composible_morphisms }
}
--src/functors/product.lean

We have to skip over the complete proofs of identity and composition for lack
of space, however they can be found in the file defining the product of morph-
ism universal_properties/product_morphism.lean under the names used in
the code snippet above.
3.4 Natural transformations

Natural transformations are perhaps the core concept of category theory, with
pioneer Mac Lane remarking that the notions of categories and functors were intro-
duced only after natural transformations [12].

Natural transformations represent uniform ways with which to transform ob-
jects mapped by one functor into objects mapped by another functor, assuming both
functors are between the same categories and in the same direction. Uniformmeans

4This definition is changed in a similar manner to binary_product.

6



A computer-checked library of category theory

that, if we have two objects 𝑋 and 𝑌 in one category and functors 𝐹 and 𝐺 to some
other category, then for each morphism 𝑓 from 𝑋 to 𝑌, mapping 𝐹(𝑋) to 𝐺(𝑌) and
then applying 𝐺(𝑓) to get 𝐺(𝑌), or applying 𝐹(𝑓) to get 𝐹(𝑌) and then using the nat-
ural mapping to 𝐺(𝑌) leads to the same results, for every combination of 𝑋 and 𝑌.
The two paths in figure 1 should be the same (the diagram should commute), where
𝛼𝑋 is the natural mapping from 𝐹(𝑋) to 𝐺(𝑋).

𝐹(𝑋) 𝐹(𝑌)

𝐺(𝑋) 𝐺(𝑌)

𝛼𝑋

𝐹(𝑓)

𝛼𝑌

𝐺(𝑓)

Figure 1: Natural transformation commuting diagram.

structure natural_transformation {C D : category} (F G : functor C D) :=
(α : Π (X : C.C₀) , D.hom (F.map_obj X) (G.map_obj X))
(naturality_condition : ∀ {X Y : C.C₀} (f : C.hom X Y),
D.compose (G.map_hom f) (α X) =
D.compose (α Y) (F.map_hom f)

)
--src/natural_transformation.lean

4 Adjunctions
We can now begin to talk about adjunctions. Adjunctions, defined by two adjoint

functors between the same categories but in reverse directions, express the idea of
the functors being opposite or dual operations. Remarkably, very often it is the case
that mathematical constructions are adjoint functors [10, p. vii].

For example, if we consider (Z, ≤) and (R, ≤) as categorieswith functors𝑈 taking
each integer number to its real representation and ⌈𝑟⌉ taking each real 𝑟 to its ceiling,
then the two functors form an adjunction, with the ceiling functor being left adjoint
to 𝑈 [11, p. 39].

4.1 Definitions
Adjunctions have multiple definitions, all of them being equivalent. Here we

will only mention two. Let 𝐶 and 𝐷 be two categories, with L a functor from 𝐶 to 𝐷
and R a functor from 𝐷 to 𝐶. Then, L and R are adjoint and define an adjunction if
we have a bijection 𝜑 mapping each morphism in 𝐷 of the form 𝐿 𝑐 → 𝑑 (where 𝑐
in an object in 𝐶 and 𝑑 is an object in 𝐷) to a morphism in 𝐶 of the form 𝑐 → 𝑅 𝑑,
so that it is natural in 𝑐 and 𝑑 (that is, figures 2 and 3 below commute for every
morphism ℎ to 𝑐 and every morphism 𝑘 to 𝑑), and likewise for the reverse direction
of the bijection.

There is an alternative definition for adjunction in terms of natural transforma-
tions which is sometimes easier to use. Two functors F and R defined as before are
adjoint if there are two natural transformations 𝜂 — the unit — from 𝐼𝑑𝐷 (iden-
tity functor of 𝐷) to 𝑅 ∘ 𝐿 and 𝜖 — the counit — from 𝐿 ∘ 𝑅 to 𝐼𝑑𝐶, so that for all 𝑐,
𝜖(𝐿 𝑐) ∘ 𝐿(𝜂 𝑐) = 𝑖𝑑(𝐿 𝑐) and likewise for all 𝑑.

7



Gabriel-Ciprian Stanciu

𝐷(𝐿 𝑐, 𝑑) 𝐶(𝑐, 𝑅 𝑑)

𝐷(𝐿 𝑐′, 𝑑) 𝐶(𝑐′, 𝑅 𝑑)

∘𝐿 ℎ ∘ℎ

𝜑

𝜑

Figure 2: Naturality in 𝑐.

𝐷(𝐿 𝑐, 𝑑) 𝐶(𝑐, 𝑅 𝑑)

𝐷(𝐿 𝑐, 𝑑′) 𝐶(𝑐, 𝑅 𝑑′)

𝑘 𝑅 𝑘

𝜑

𝜑

Figure 3: Naturality in 𝑑.

structure adjunction_hom {C D : category}
(L : functor C D) (R : functor D C) :=

(φ : Π {c : C} {d : D}, (D.hom (L c) d) → (C.hom c (R d)))
(φr : Π {c : C} {d : D}, (C.hom c (R d)) → (D.hom (L c) d))
(sect : ∀ {c : C} {d : D} (h : C.hom c (R d)), (φ ∘ φr) h = h)
(retr : ∀ {c : C} {d : D} (k : D.hom (L c) d), (φr ∘ φ) k = k)
(naturality_c : ∀ (c : C) (d : D) (dh : D.hom (L c) d),

∀ {c' : C} (h : C.hom c' c),
C.compose (φ dh) h = φ (D.compose dh (L.map_hom h)))

(naturality_d : ∀ (c : C) (d : D) (dh : D.hom (L c) d),
∀ {d' : D} (k : D.hom d d'),

C.compose (R.map_hom k) (φ dh) = φ (D.compose k dh))
(naturality_cr : ∀ (c : C) (d : D) (ch : C.hom c (R d)),

∀ {c' : C} (h : C.hom c' c),
D.compose (φr ch) (L.map_hom h) = φr (C.compose ch h))

(naturality_dr : ∀ (c : C) (d : D) (ch : C.hom c (R d)),
∀ {d' : D} (k : D.hom d d'),

D.compose k (φr ch) = φr (C.compose (R.map_hom k) ch))
--src/adjunctions/homset.lean

structure adjunction_unit {C D : category}
(L : functor C D) (R : functor D C) :=

(η : natural_transformation (Id C) (R∘L))
(ε : natural_transformation (L∘R) (Id D))
(id_L : ∀ (c : C),
D.compose (ε.α (L c)) (L.map_hom (η.α c)) = D.id (L.map_obj c))

(id_R : ∀ (d : D),
C.compose (R.map_hom (ε.α d)) (η.α (R d)) = C.id (R.map_obj d))

--src/adjunctions/unit_counit.lean

These twodefinitions are equivalent as proved in files adjunctions/to_hom.lean
and adjunctions/to_unit.lean.

As another example, we have proved that the two functors introduced in section
3 form an adjunction. We shall have to skip once more over the code, but it can also
be found in the repository.
4.2 Currying

In programming languages, currying is a way to change functions of 𝑛 variables
into a sequence of 𝑛 functions that take a single variable each. For a more theoretic
definition, currying represents an equivalence between morphisms from product
objects: 𝑏 × 𝑐 → 𝑑, and morphisms from the first object in the product to some

8



A computer-checked library of category theory

sort of function object standing in for morphisms from the second object to a result:
𝑏 → 𝑜𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝐶(𝑐, 𝑑)5.

This function object is formalised in category theory by the exponential object,
defined as a universal construction which specifies the object 𝑑𝑐 and its evaluation
arrow 𝑑𝑐 × 𝑐 → 𝑑, such that for all objects 𝑏 and morphisms 𝑔 ∶ 𝑏 × 𝑐 → 𝑑, there is
an unique morphism 𝑔∗ ∶ 𝑏 → 𝑑𝑐 preserving the expected behaviour of the function
object (making diagram 4 commute).

𝑑𝑐 × 𝑐 𝑑

𝑏 × 𝑐

𝑔𝑔∗×𝐼𝑑𝑐

𝑒𝑣

Figure 4: Exponential commuting diagram.

structure exponent {C : category} [has_all_products C] (b a : C) :=
(ob : C)
(ev : C.hom (po ob a).p b)
(ue : Π (c : C) (g : C.hom (po c a).p b),

C.hom c ob)
(ump : ∀ (c : C) (g : C.hom (po c a).p b),

g = C.compose ev (product_morphism (ue c g) (C.id a)))
(uu : ∀ (c : C) (g : C.hom (po c a).p b) (h : C.hom c ob),

g = C.compose ev (product_morphism h (C.id a)) → h = ue c g)
--src/universal_properties/exponent.lean

We can already identify this concept of exponentiation with functions that can
be fully memoized into lookup tables in computing [13, p. 144]. Both concepts create
a new object within the type system that, when coupled with an index or exponent
respectively, evaluates to the result of the original function. Separate from memo-
ization, exponentials also give rise to higher-order functions that either take another
function as argument or return it.

A category that has all products, exponentials, and a terminal object (object to
which all objects in a category have a uniquemorphism to) is called cartesian closed.
This notion is especially interesting to theoretical computer scientists as there is a
correspondence between these types of categories and typed lambda calculus [14],
a model of computation for functions and applications on which many functional
programming languages such as Haskell or ML are based.

We have now covered almost all background knowledge necessary to intro-
duce our final result: the proof that currying works, that there exists an equivalence
between morphisms of types 𝑏 × 𝑐 → 𝑑 and 𝑏 → 𝑑𝑐. It is clear that currying can only
work in a cartesian closed category (where we have all products and exponentials),
and that the equivalence of morphisms can be expressed in terms of an adjunction
by our first definition.

By introducing two new functors: the right product functor−×𝑐mapping objects
𝑏 to 𝑏 × 𝑐 and morphisms 𝑓 ∶ 𝑏 → 𝑑 to 𝑓 × 𝐼𝑑𝑐; and the exponential functor (−)𝑐
mapping objects b to 𝑏𝑐 and morphisms 𝑓 ∶ 𝑏 → 𝑑 to the left component of the

5In the same notation as the figures in 4.1.

9



Gabriel-Ciprian Stanciu

unique morphism between 𝑏𝑐 ×𝑐 and 𝑑𝑐 ×𝑐 (of type 𝑏𝑐 → 𝑑𝑐, see diagram 5), we can
express the currying adjunction as such:

− × 𝑐 ⊣ (−)𝑐

The bijection between 𝑏 × 𝑐 → 𝑑 and 𝑏 → 𝑑𝑐 is given precisely by diagram 4 (we
obtain the direct mapping by constructing 𝑔∗ from 𝑔 with exponentials’ universal
property, while the reverse mapping is a consequence of the diagram commuting).
The proof that these two mappings form a bijection, that they are reversible map-
pings, comes from the uniqueness and mapping properties of exponentials, respec-
tively.

𝑑𝑐 × 𝑐 𝑑

𝑏

𝑏𝑐 × 𝑐

𝑒𝑣

𝑒𝑣

𝑓
(𝑓∘𝑒𝑣)∗×𝐼𝑑𝑐

Figure 5: Exponential functor morphism mapping.

def rproduct_exponentiation_adjoint {C : category} [has_all_products C]
[has_exponentiation C] (c : C)
: adjunction_hom (r_product_functor c) (exponentiation_functor c) :=
{
φ := by { intros a b h, exact (exp b c).ue a h, },
φr := by { intros a b h',

exact C.compose (exp b c).ev (product_morphism h' (C.id c)), },
sect := -- to prove: (φ ∘ φr) ∘ h = h
begin

intros a b h', simp, symmetry,
apply (exp b c).uu a

(C.compose (exp b c).ev (product_morphism h' (C.id c))) h',
refl,

end,
retr := -- to prove: (φr ∘ φ) ∘ h = h

begin
intros a b h, simp, symmetry,
exact (exp b c).ump a h,

end,
--src/adjunctions/rproduct_exponentiation.lean

We shall have to once more skip over parts of code, in this case the naturality
proofs of the adjunctions, but these can be proved using productmorphism lemmas
and the properties of the exponential construction, as can be seen in the repository.

We have showed that the right product and exponentiation functors form an ad-
junction. For functional programming, where the language’s functionality is similar
to cartesian closed categories that have this adjunction, the meaning of this is: we
can freely convert between curried and uncurried versions of functions. In Haskell

10



A computer-checked library of category theory

for example, where functions are curried by default, we can identify uncurried func-
tions with tuple arguments.

5 Discussion
5.1 Design decisions

In this section we will present a few design decisions taken while implementing
the library along with the motivation behind them and their importance.
Category definition. There are two main ways to define a category: with a col-
lection of morphisms for each pair of objects (the definition we used), and with a
single collection of morphisms along with two functions that define the source and
target of each morphisms. The definitions are equivalent, but each may be more ap-
propiate for different purposes (for example, an alternative category definition that
avoids representing objects6 is based on the single-collection definition [10, p. 279]).

Given the limited scope of the project, the use of the first definition bymost intro-
ductory texts, and its similarity to dependent type theory (the type of a morphism
depends on the types of the objects), we chose to build our library starting with the
family of collections of morphisms definition.
Structure design. Out of the box, Lean has two tools that can help with defin-
ing the mathematical concepts we deal with: the structure datatype which groups
together multiple values, and type classes which define a family of types with com-
mon properties.

We found that using type classes for mathematical structures is not helpful for
our use case, although recommended by some literature [15]; most importantly,
since the name of the actual instance of the type class becomes hidden, X.hom c d
would be expanded to category.hom c d in the information view, hiding the name
of the category or other structures implemented using type classes.

One other aspect involved in the design of the mathematical structures in our
code was the packing, or lack of, of structure members into bundles. Packing rep-
resents a trade-off between the readability and writability of proofs. This can be
seen in the implementation of some universal constructions: the binary product has
some auxillary structures named bundles7 that pack together an object with its two
projections, while the exponential was defined without any packing.

structure binary_product_bundle {C : category} (c d : C) :=
(x : C)
(x₁ : C.hom x c)
(x₂ : C.hom x d)
--src/universal_properties/binary_product.lean

In these two cases, the packed universal construction is easier to reason about
and the proofs are easier to understand, as we do not need to fully specify the ob-
ject and its arrows when applying the properties of lemmas. However, we have to
create one such bundle object every time we want to use it, some identities are not
inferred by Lean and have to bemanually specified, andwe have to convert between
packed and unpacked form whenever the other is more convenient to use. The un-
packed representation tends to be easier to prove theoremswith, at the cost of larger
expressions.

6Objects can be identified by their identity morphism, after all.
7Similar to the mixins mentioned in [16].

11



Gabriel-Ciprian Stanciu

The last structure design choice we will discuss is the bundling of paramet-
ers. A set of properties that apply to an object can generate type classes such as
is_universal parametrised on the object, with its properties as components and
with instances proving the object respects these properties. While very generic, this
representation cannot easily serve as a standalone object, thus in our implement-
ation the object is bundled with its properties and proofs in a standalone struc-
ture. An analysis of this design choice together with an alternative solution found
in Lean’s standard library has been made by Baanen [17, 4:9].
Preserving computability. Lean is based on constructive logic, amore restrictive
foundation than classical logic. Although it can also support classical reasoning,
that introduces noncomputable theorems which we will try to avoid. Existential
qualifiers have different interpretations under classical and constructive logic. We
have avoided the problem of extracting a witness from ∃ by converting expressions
using this quantifier to remove it.

Taking binary products as an example, the universal property as stated in sub-
section 3.3 contains an existential qualifier. We can Skolemize [18] this proposition,
turning the existential qualifier into a function taking an object with its two arrows
and ”naming” the unique morphism. Without an existential qualifier, in the code
we refer to the unique morphism by ue, and all other morphisms with the same
properties will be equal to it (as illustrated by the uu component in the code).

5.2 Comparison with other libraries
Our library implements a very limited section of category theory. It does not

go much further than adjunctions, while examples are kept simple: defining the
category of categories, in most other libraries the unique example of a category,
has not even been attempted. This was a conscious decision, as supporting more
than small categories already introduces universe inconsistencies in Lean. The usual
solutions are admittedly slightly awkward constructions that would take away from
the clarity of the library.

In comparison with the mathlib library of mathematics for Lean [7], our library
has more basic instances of concepts, with little to no proof automation. That would
be a problem for a library meant for use in proof-writing, however this makes our
proofs step-by-step and explicit, an advantage for educational use. It also generates
a sizeable body of lemmas that would otherwise be automatically inferred by Lean.

We will now present some of the concepts that do exist in this library but not in
others. Exponential objects are a part of the library, unlike [7], [19]. Currying, in the
form of the hom-functor adjunction, is not present in [8]. As far as we know, some
of the simple instances (preorder forming a category) do not exist in many of the
other categories.

6 Conclusion
In this paper we presented the categorical background behind currying, backed

by a formalisation of category theory in Lean. The difference between this library
of category theory and existing ones lies in the focus: readability at the expense of
generalisation, more examples rather than more concepts. We also discussed some
of the decisions taken during the development of the library, and very briefly con-
trasted it to other similar work. Compared to that, our library is very incomplete
but likely more easily understood by beginners, featuring less automation in proofs
and a structure closer to reference textbooks.

12



A computer-checked library of category theory

A possible future improvement to this work could be to continue the develop-
ment of the library and add more definitions, theorems and lemmas to it. It would
also be interesting to test it in a learning environment such as within a university
course teaching category theory. However, a rework of the library would probably
be needed to make the parts contributed by different people more uniform.

Responsible research
The product of this research, the collection of formal definitions, proofs and ex-

amples for category theory provides a rigurous-by-default example ofmathematical
reasoning. We will address two aspects in this section: reproducibility and ethics.

The reproducibility of the research is guaranteed as the code is publicily avail-
able online along with instructions for running the project and a list of necessary
software. As code written in a theorem prover, the behaviour is deterministic —
as long as the version of code downloaded has passed the CI pipeline it will con-
tinue to typecheck under all installations of the same version of Lean. We have also
included a discussion of some design choices made in section 5, which can aid read-
ers intending to create their own implementation.

Regarding ethical considerations, we are aware that there exist ethical risks in all
fields of mathematics [20]. This library serves as a tool for exploration into abstract
mathematics, with no likely way of influencing decisions in fields such as policy-
making or legal systems. Although it may not have any immediate impact on the
world, in contrast to a statistical model for example, there is always a possibility of
this work having effects, perhaps by introducing more students to the fields of cat-
egory theory or formal verification which we view as a good consequence, however
we believe this work has little likelihood of having negative ethical consequences.

References
[1] J. Baez and M. Stay, “Physics, Topology, Logic and Computation: A Rosetta

Stone,” inNewStructures for Physics, B. Coecke, Ed. Berlin,Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 95–172, ISBN: 978-3-642-12821-9. DOI: 10.1007/
978-3-642-12821-9_2.

[2] M. P. Jones, “A systemof constructor classes:Overloading and implicit higher-
order polymorphism,” Journal of Functional Programming, vol. 5, no. 1, pp. 1–
35, 1995. DOI: 10.1017/S0956796800001210.

[3] P. Wadler, “Comprehending monads,” in Proceedings of the 1990 ACM Con-
ference on LISP and Functional Programming, ser. LFP ’90, Nice, France: As-
sociation for Computing Machinery, 1990, pp. 61–78, ISBN: 089791368X. DOI:
10.1145/91556.91592.

[4] C. Paulin-Mohring, “Introduction to theCalculus of InductiveConstructions,”
inAll about Proofs, Proofs for All, ser. Studies in Logic (Mathematical logic and
foundations), B.W. Paleo andD.Delahaye, Eds., vol. 55, College Publications,
Jan. 2015.

[5] J. Avigad, L. de Moura and S. Kong, Theorem Proving in Lean. 2023. [Online].
Available: https://leanprover.github.io/theorem_proving_in_lean/
theorem_proving_in_lean.pdf.

13

https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1017/S0956796800001210
https://doi.org/10.1145/91556.91592
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf


Gabriel-Ciprian Stanciu

[6] A. Baanen, A. Bentkamp, J. Blanchette, J. Hölzl and J. Limperg, The Hitch-
hiker’s Guide to Logical Verification. 2022. [Online]. Available: https://raw.
githubusercontent . com / blanchette / logical _ verification _ 2022 /
main/hitchhikers_guide.pdf.

[7] The mathlib Community, “The Lean Mathematical Library,” in Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
ser. CPP 2020,NewOrleans, LA,USA:Association for ComputingMachinery,
2020, pp. 367–381, ISBN: 9781450370974. DOI: 10.1145/3372885.3373824.

[8] J. Z. S. Hu and J. Carette, “Formalizing Category Theory in Agda,” in Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, ser. CPP 2021, Virtual, Denmark: Association for Computing
Machinery, 2021, pp. 327–342, ISBN: 9781450382991. DOI: 10.1145/3437992.
3439922.

[9] T. Leinster, Basic Category Theory (Cambridge Studies in Advanced Mathem-
atics). Cambridge University Press, 2014. DOI: 10.1017/CBO9781107360068.

[10] S.Mac Lane,Categories for theWorkingMathematician (Graduate texts inmath-
ematics), Second Edition. Springer-Verlag New York, 1998, vol. 5.

[11] B. C. Pierce, “A taste of category theory for computer scientists,” Feb. 2011.
DOI: 10.1184/R1/6602756.v1.

[12] S. Mac Lane, “The development and prospects for category theory,” Applied
Categorical Structures, vol. 4, no. 2, pp. 129–136, 1996. DOI: 10.1007/BF00122247.

[13] B.Milewski,Category Theory for Programmers. 2023. [Online].Available: https:
//github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v36-
98b71ac/ctfp--98b71ac.pdf.

[14] J. Lambek, “Cartesian closed categories and typed 𝜆-calculi,” in Combinat-
ors and Functional Programming Languages, G. Cousineau, P.-L. Curien and B.
Robinet, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 136–
175, ISBN: 978-3-540-47253-7.

[15] B. Spitters and E. van derWeegen, “Type classes for mathematics in type the-
ory,” Mathematical Structures in Computer Science, vol. 21, no. 4, pp. 795–825,
2011. DOI: 10.1017/S0960129511000119.

[16] F. Garillot, G. Gonthier, A. Mahboubi and L. Rideau, “Packaging mathemat-
ical structures,” in Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, ser. TPHOLs ’09, Munich, Germany: Springer-
Verlag, 2009, pp. 327–342, ISBN: 9783642033582. DOI: 10.1007/978-3-642-
03359-9_23.

[17] A. Baanen, “Use and Abuse of Instance Parameters in the LeanMathematical
Library,” in 13th International Conference on Interactive Theorem Proving (ITP
2022), J. Andronick and L. deMoura, Eds., ser. Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 237, Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, 4:1–4:20, ISBN: 978-3-95977-252-5. DOI:
10.4230/LIPIcs.ITP.2022.4.

14

https://raw.githubusercontent.com/blanchette/logical_verification_2022/main/hitchhikers_guide.pdf
https://raw.githubusercontent.com/blanchette/logical_verification_2022/main/hitchhikers_guide.pdf
https://raw.githubusercontent.com/blanchette/logical_verification_2022/main/hitchhikers_guide.pdf
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1184/R1/6602756.v1
https://doi.org/10.1007/BF00122247
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v36-98b71ac/ctfp--98b71ac.pdf
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v36-98b71ac/ctfp--98b71ac.pdf
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v36-98b71ac/ctfp--98b71ac.pdf
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.4230/LIPIcs.ITP.2022.4


A computer-checked library of category theory

[18] A. Bundy and L. Wallen, “Skolemization,” in Catalogue of Artificial Intelligence
Tools, A. Bundy andL.Wallen, Eds. Berlin,Heidelberg: Springer BerlinHeidel-
berg, 1984, pp. 123–123, ISBN: 978-3-642-96868-6. DOI: 10.1007/978-3-642-
96868-6_235.

[19] J. Gross, A. Chlipala and D. I. Spivak, “Experience implementing a perform-
ant category-theory library in coq,” in Interactive Theorem Proving, G. Klein
andR.Gamboa, Eds., Cham: Springer International Publishing, 2014, pp. 275–
291, ISBN: 978-3-319-08970-6.

[20] M. Chiodo and P. Bursill-Hall, “Four levels of ethical engagement,” Ethics
in Mathematics Project, Ethics in Mathematics Discussion Papers, no. 1/2018,
[Online]. Available: https://ethics.maths.cam.ac.uk/assets/dp/18_1.
pdf.

15

https://doi.org/10.1007/978-3-642-96868-6_235
https://doi.org/10.1007/978-3-642-96868-6_235
https://ethics.maths.cam.ac.uk/assets/dp/18_1.pdf
https://ethics.maths.cam.ac.uk/assets/dp/18_1.pdf

	Introduction
	Method
	Formal verification
	Project structure, contributors

	Core definitions
	Categories
	Functors
	Universal constructions
	Natural transformations

	Adjunctions
	Definitions
	Currying

	Discussion
	Design decisions
	Comparison with other libraries

	Conclusion

