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Distributed Adaptive Consensus Disturbance Rejection:
a Directed-spanning-tree Perspective
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Abstract: In this paper, we revisit the problem of consensus disturbance rejection for multiagent systems over a digraph, but
from a different perspective, i.e., the perspective of a directed spanning tree (DST). When the minimum nonzero real part of
the Laplacian eigenvalues is available, we reproduce the sufficient lower bound for a static homogeneous coupling gain in the
literature, by exploring a DST structure of the digraph. The major novelty arises when it is shown that by adaptively tuning
the coupling gains along a DST, consensus disturbance rejection can be achieved when the above eigenvalue information is not
available. Numerical examples on networks of second-order oscillators and UAVs are included to validate the theoretical results.
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1 Introduction

Cooperative consensus of multiagent systems appears in a

variety of scenarios such as decision making [1], distribut-

ed optimization [2], robots [3], etc. According to whether

there is a reference agent, the consensus problems can be

roughly divided into leaderless consensus [4, 5] and leader-

follower consensus [6, 7]. Note that a critical point in the

leaderless setting is that the agents reach consensus by pure-

ly self-organizing their behaviors.

Disturbance rejection (also known as disturbance attenua-

tion, regulation, anti-disturbance, etc.), on the other hand, is

a longstanding problem in control system design [8–10]. The

problem is challenging since external disturbances are either

too expensive or even impossible to be directly measured,

which makes a feedforward compensation strategy not ap-

plicable. In this scenario, an intuitive idea is to estimate the

disturbance and cancel its influence. Such an idea has e-

volved into the disturbance observer based control, see e.g.,

[11, 12] for related results and applications.

When considering disturbances rejection problems for

multiagent systems, some results have been reported recent-

ly [13–15]. The work of [13, 14] addressed the disturbance

by means of discontinuous control, which may induce extra

oscillations. Using the pure gain feedback control strategy,

[15] proposed a disturbance observer based design for con-

sensus disturbance rejection. It was shown in [15] that when

the communication graph among the agents contains a di-

rected spanning tree (DST), consensus disturbance rejection

can be attained, provided that the static coupling gain ex-

ceeds a lower bound. Such a lower bound relies on the min-

imum nonzero real part of the Laplacian eigenvalues, which

may not be available in real networks, especially when the

network size is large.

Motivated by the above discussions, we reconsider the
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der Grant 4207012004, in part by the National Key Research and Devel-

opment Project of China under Grant 2020YFA0714301, and in part by

the Natural Science Foundation of China under Grant 62073074 and Grant

61833005.

consensus disturbance rejection for linear multiagent sys-

tems, but from a directed spanning tree perspective. The ex-

istence of a DST structure is widely known as an assumption

in cooperative control of multiagent systems, but is rarely

explored in detail. A major contribution of this paper is to

propose a DST-based adaptive consensus disturbance rejec-

tion scheme, which does not rely on the global information

of the Laplacian eigenvalues (Theorem 1). The framework

covers existing results as a special case (Lemma 3).

Notations: Denote R as the real space, and IN as the set
{1, 2, · · · , N}. For a matrix A, let null(A) be its zero space;
ifA is square, let λ(A) be its eigenvalue andR(λ(A)) be the
real part. For a vector a, span(a) is the real space spanned by
a, i.e., {κa|∀κ ∈ R}. Let ⊗ be the Kronecker product, and

∗ be the complex conjugate. The rest notations are standard.
2 Problem statement and technical lemmas

Consider a class of multiagent systems with dynamics

ẋi(t) = Axi(t) + Bui(t) + Dωi(t), i ∈ IN , (1)

where xi ∈ Rn and ui ∈ Rm are, respectively, the state and
control input of agent i. Agent i is disturbed by unmeasur-
able ωi ∈ Rs, which is generated by an exosystem

ω̇i(t) = Eωi(t), i ∈ IN . (2)

In (1)-(2), A, B,D and E are known constant matrices with

compatible dimensions. Note that the exosystem dynamic-

s is identical for all agents [15, 16], which is reasonable as

the agents are usually supposed to work under the same con-

ditions. We make the following assumptions on the system

dynamics [15].

Assumption 1 There exist a matrix F such that D = BF .

Assumption 2 The eigenvalues of the matrix E are simple
with zero real parts.

Assumption 3 The pair (A, B) is stabilizable; the pair
(E, D) is observable.

Remark 1 Assumption 1 is known as the matching condi-
tion. Assumption 2 guarantees that the disturbances are non-
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vanishing sinusoidal functions or constants. The observabil-
ity of (E, D) is reasonable since any unobservable compo-
nents would have no impact on the agents.

Lemma 1 ([15]) Under the observability of (E, D) of As-
sumption 3, the pair (AH , H) is also observable, where

AH =

(
A D

0s×n E

)
and H = (In, 0n×s).

The communications among the agents are characterized

by a directed graph (or simply digraph) G(V, E ,A), where
V = IN is the node set, E = {eij , i �= j|i → j} is the
edge set, and A = (aij) ∈ R

N×N is the adjacency matrix

such that aij > 0 if eji ∈ E , and aij = 0 otherwise. The
Laplacian matrix L = (lij) ∈ R

N×N associated with G
consists of lij = −aij for i �= j, and lii =

∑N
j=1 aij . For

eij ∈ E , i is called an in-neighbor of j and j an out-neighbor
of i in return: i ∈ Nin(j) and j ∈ Nout(i). A path is a

sequence of edges connecting a pair of nodes, which respects

the edge directions.

A directed spanning tree Ḡ(V, Ē , Ā) of G is a subgraph
which contains a root (has no in-neighbors), such that one

can find a unique path from the root to every other node.

Without loss of generality, we label the root as node 1. Fol-
lowing the notations in [2, 17, 18], let ik denote the unique
in-neighbor of node k + 1 in Ḡ, k ∈ IN−1. Corresponding-

ly, L̄ is the Laplacian matrix of Ḡ and N̄out(i) is the set of
out-neighbors of i in Ḡ.
Assumption 4 The communication digraph G contains a di-
rected spanning tree Ḡ.
Let us construct two matrices based on the directed span-

ning tree Ḡ. Define Ξ ∈ R(N−1)×N as

Ξkj =

⎧⎨
⎩

−1, if j = k + 1,
1, if j = ik,
0, otherwise.

(3)

Define Π ∈ R(N−1)×(N−1) := Π̃ + Π̄ with

Πkj =
∑
c∈V̄j+1

(L̃k+1,c − L̃ik,c)
︸ ︷︷ ︸

Π̃kj

+
∑
c∈V̄j+1

(L̄k+1,c − L̄ik,c)
︸ ︷︷ ︸

Π̄kj

,

(4)

where L̃ = L − L̄, and V̄j+1 represents the vertex set of the

subtree of Ḡ rooting at node j + 1.

Lemma 2 ([2]) Under Assumption 4, the following state-
ments hold for L (of G), and Ξ, Π defined above:
1) 0 = λ1(L) < R(λ2(L)) ≤ R(λ3(L)) ≤ · · · ≤
R(λN (L)). Moreover, null(L) = span(1N ).

2) ΞL = ΠΞ. Moreover, null(Ξ) = span(1N ).
3) λi(Π) = λi+1(L), i ∈ IN−1.
4) Π̄ can be explicitly written as

Π̄kj =

⎧⎨
⎩

āj+1,ij , if j = k,
−āj+1,ij , if j = ik − 1,
0, otherwise.

The consensus disturbance rejection problem is to drive

the agents to consensus despite the effect of the disturbances,

i.e., limt→∞
(
xi(t)− xj(t)

)
= 0, ∀i, j ∈ IN .

3 Main results

In this section, we provide a DST-based adaptive consen-

sus disturbance rejection scheme. To start with, we consid-

er the non-adaptive (static) case studied in [15, Section IV],

i.e., under the assumption that the information of R(λ2(L))
is available.

3.1 Static coupling case: a DST perspective
The control input for agent i is designed based on a state

observer and a disturbance observer. Specifically,

ui = −Kχi − F zi (5a)

χ̇i = (A − BK)χi + cΓx

N∑
j=1

aij(ρi − ρj) (5b)

żi = Ezi + cΓω

N∑
j=1

aij(ρi − ρj) (5c)

where ρi = xi − χi; K, Γx and Γω are gain matrices to be
determined and c ∈ R+ represent the static coupling strength

among the agents. Note that only relative state information is

involved in the scheme, which suits the case when absolute

state measurement is not available.

Since (A, B) is stabilizable, there exists a P > 0 such that

AP + P AT − 2BBT < 0. (6)

Moreover, since (AH , H) is observable by Lemma 1, there
exists a Q > 0 such that

QAH + ATHQ − 2HTH < 0. (7)

We have the following lemma.

Lemma 3 Under Assumptions 1-4, the consensus distur-
bance rejection problem of the multiagent system (1) can
be solved by the static scheme (5). The parameters are de-
signed as K = BTP−1, Γ := (ΓTx ,ΓTω )

T = Q−1HT , and
c ≥ 1

R(λ2(L)) .

Proof. The lemma is straightforward by [15, Theorem 4].

However, let us sketch an alternative proof below from a

DST perspective, which also helps for a better understanding

of the DST-based adaptive scheme later on.

Denote ei =

(
xi − χi
ωi − zi

)
as the composite observer er-

ror system. It is clear that ρi = Hei. For the ease of analysis,
let us stack the vectors as e = (eT1 , · · · , eTN ). Based on (1),
(2) and (5), the dynamics of e can be obtained as

ė = (IN ⊗ AH − cL ⊗ ΓH)e (8)

Let us consider the transformation ξ = (Ξ⊗In+s)e, where
ξ is defined as in (3). The dynamics of ξ follows from (8) as

ξ̇ = (IN−1 ⊗ AH − cΠ⊗ ΓH)ξ (9)

where we have used statement 2) of Lemma 2. We claim that

ξi converge to zero by showing that the system matrix of ξ
is Hurwitz. Note that any square matrix is unitarily similar

to an upper triangular matrix with diagonal entries being its

eigenvalues. When this fact is applied to Π and noticing

4695

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2023 at 13:14:32 UTC from IEEE Xplore.  Restrictions apply. 



statement 3) of Lemma 2, it is sufficient to show that the

matrix⎛
⎜⎝

AH − cλ2(L)ΓH � �
. . . �

AH − cλN (L)ΓH

⎞
⎟⎠

is Hurwitz, which is then equivalent to show that the diago-

nal blocks are Hurwitz. In fact, for any i ∈ {2, · · · , N},
Q(AH − cλi(L)ΓH) + (AH − cλi(L)ΓH)∗Q

=QAH + ATHQ − cλi(L)HTH − cλ∗i (L)HTH

=QAH + ATHQ − 2cR(λi(L))HTH

≤QAH + ATHQ − 2HTH < 0. (10)

where we have used Γ = Q−1HT , c ≥ 1
R(λ2(L)) , and

the LMI (7). The above implies that AH − cλi(L)ΓH for

i ∈ {2, · · · , N} are indeed Hurwitz. This guarantees that ξ
converges to zero.

On the other hand, under Assumption 1, we have

ẋi = Axi − BKχi − BF zi + Dωi

= (A − BK)xi + B(K, F )ei (11)

for each agent i. If we stack the state and consider again the
transformation δ = (Ξ ⊗ In)x, the dynamics of δ can be
obtained as

δ̇ =
(
IN−1 ⊗ (A − BK)

)
δ +

(
IN−1 ⊗ B(K, F )

)
ξ. (12)

With K = BTP−1, A − BK is Hurwitz. Then, as ξ con-
verges to zero, it is clear that δ converges to zero. Since
null(Ξ) = span(1N ), the convergence of δ to zero is equiv-
alent to the consensus of xi, i.e., the consensus disturbance
problem is solved. The proof is completed.

3.2 Adaptive coupling case: a DST perspective
We move on to the adaptive case when the information of

R(λ2(L)) is not available. The idea is to promote the con-
sensus over ρi on the basis of the static scheme (5), by adap-
tively tuning the coupling gains along a DST. Specifically,

the controller for agent i is proposed as

ui = −Kχi − F zi (13a)

χ̇i = (A − BK)χi + Γx

N∑
j=1

cijaij(ρi − ρj) (13b)

żi = Ezi + Γω

N∑
j=1

cijaij(ρi − ρj) (13c)

ċij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
(
(ρik − ρk+1)−

∑
j∈N̄out(k+1)

(ρk+1

−ρj)
)T

(ρik − ρk+1) � ˙̄ck+1,ik , if eji ∈ Ē
0, if eji ∈ E \ Ē

(13d)

where γ ∈ R+ is a constant gain. By construction, the cou-

pling gain between agent i and its in-neighbor j is updat-
ing only when the edge eji appears in Ḡ (i.e., j = ik and
i = k + 1 for some k ∈ IN−1).

The convergence result of (13) is summarized below.

Theorem 1 Under Assumptions 1-4, the consensus distur-
bance rejection problem of the multiagent system (1) can be
solved by the adaptive scheme (13). The parameters are de-
signed as K = BTP−1, Γ = Q−1HT , and γ ∈ R+. More-
over, the gains c̄k+1,ik , k ∈ IN−1, in Ḡ converge to some
finite constant values.

Proof. Define Lc as the gain-dependent Laplacian matrix as
Lcij = −cijaij , i �= j;

Lcii =
N∑

j=1,j �=i
cijaij , i ∈ IN .

Then, following the notations in the previous subsection, we

have that the dynamics of e is

ė = (IN ⊗ AH − Lc ⊗ ΓH)e. (14)

Similar to (9), the dynamics of ξ is

ξ̇ = (IN−1 ⊗ AH −Πc ⊗ ΓH)ξ (15)

where Πc is defined as in (4) based on the DST Ḡ and the
gain-dependent Laplacian matrix. More specifically, Πc =
Π̃c + Π̄c contains the fixed matrix Π̃a (note that ċij = 0 if
eji ∈ E \ Ē), and the time-varying matrix

Π̄ckj =

⎧⎨
⎩

c̄j+1,ijaj+1,ij , if j = k,
−c̄j+1,ijaj+1,ij , if j = ik − 1,
0, otherwise.

(16)

Note that in component-wise form, ξk = eik − ek+1, k ∈
IN−1. Then, we can rewrite ˙̄ck+1,ik in (13d) as

˙̄ck+1,ik = γ(Hξk −
∑

j+1∈N̄out(k+1)

Hξj)
THξk. (17)

As before, we show that ξ converges to zero. Consider the
candidate Lyapunov function

V =
1

2
ξT (IN−1 ⊗ Q)ξ

+
N−1∑
k=1

ak+1,ik

2γ
(c̄k+1,ik(t)− φk+1,ik)

2

where Q is a solution to (7) and φk+1,ik ∈ R+, k ∈ IN−1,

are constants to be decided later. The derivative of V along

(15) and (17) can be obtained as

V̇ =ξT (IN−1 ⊗ QAH −Πc ⊗ QΓH)ξ

+
N−1∑
k=1

ak+1,ik(c̄k+1,ik − φk+1,ik)
(

Hξk

−
∑

j+1∈N̄out(k+1)

Hξj)
THξk. (18)

From (16), one has

N−1∑
k=1

ak+1,ik c̄k+1,ik

(
Hξk −

∑
j+1∈N̄out(k+1)

Hξj)
THξk

=
N−1∑
k=1

(Π̄ckkHξk +
N−1∑

j=1,j �=k
Π̄cjkHξj)

THξk

=
N−1∑
k=1

N−1∑
j=1

Π̄cjkξ
T
j HTHξk = ξT (Π̄c ⊗ HTH)ξ. (19)

4696

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2023 at 13:14:32 UTC from IEEE Xplore.  Restrictions apply. 



Let us define Φ ∈ R(N−1)×(N−1) as

Φkj =

⎧⎨
⎩

φj+1,ijaj+1,ij , if j = k,
−φj+1,ijaj+1,ij , if j = ik − 1,
0, otherwise.

(20)

Then, it follows from (18)-(20) and Γ = Q−1HT that

V̇ =ξT (IN−1 ⊗ QAH −Πc ⊗ HTH)ξ

+ ξT
(
(Π̄c − Φ)⊗ HTH

)
ξ

=ξT (IN−1 ⊗ QAH)ξ − ξT
(
(Π̃c +Φ)⊗ HTH

)
ξ

=
1

2
ξT
(
IN−1 ⊗ (QAH + ATHQ)

− (Π̃c + (Π̃c)T +Φ+ ΦT )⊗ HTH
)

ξ. (21)

Following similar procedures as in [2, 17, 18],

one can show that Φ + ΦT > 0 by selecting

φk+1,ik >

∑k
j=2 φ

2
j,ij−1

a2j,ij−1

2ak+1,ik
λmin(Ωk−1)

, whereΩ1 =
(
2φ2,i1a2,i1

)
,

and Ωk =

(
Ωk−1 ϕk
ϕTk 2φk+1,ikak+1,ik

)
with ϕk =

(φk1ak1, φk2ak2, · · · , φk,k−1ak,k−1)
T , k = 2, · · · , N − 1.

Furthermore, since the matrix Π̃c is fixed, one can

always select larger φk+1,ik , k ∈ IN−1, such that

λmin(Π̃
c + (Π̃c)T + Φ + ΦT ) ≥ 2. Then, it follows from

(21) that

V̇ ≤1

2
ξT
(
IN−1 ⊗ (QAH + ATHQ − 2HTH)

)
ξ.

Based on LMI (7), we have V̇ ≤ 0, where the equality holds
only if ξ = 0. By LaSalle’s invariance principle [19], it
follows that ξ converges to zero. As a consequence, xi reach
consensus following similar analysis as in Lemma 3, and the

adaptive gains c̄k+1,ik in the DST converge to some finite

constants (since ei reach consensus as ξ converges to zero).
The proof is completed.

Remark 2 The proposed DST-based adaptive consensus
disturbance rejection scheme (13) is a natural extension of
[15, Section V], from undirected graph to digraph with a
DST. The design and analysis is essentially more complex
due to the communication graph being asymmetric.

Remark 3 In [20], a class of node-based adaptive consen-
sus disturbance rejection scheme was proposed for a leader-
follower network with exact disturbance observers, and the
idea was generalized to switching digraphs in [21]. Some
differences of our method are worth to remark: first, the dis-
turbance observer follows a similar philosophy as[15] in the
sense that the disturbances that does not influence the con-
sensus manifold does not need to be rejected; second, a lead-
erless network is considered where a reference agent does
not exist; third, the proposed DST-based adaptive method
is essentially different from the node-based one where the
adaptive gains are designed for each agent (see [2, 18] for
detailed comparisons).

4 Numerical examples

In this section, we give two examples to validate the pro-

posed DST-based adaptive consensus disturbance rejection

scheme (13). The communication graphs are shown in Fig. 1

with unitary edge weights. In both example, the initial xi,
χi, ωi, zi are generated randomly via Gaussian distribution,
and the initial cij are set as 0.1, ∀i, j ∈ IN .

Fig. 1: The communication graphs where the DSTs are high-

lighted with red color.

Example 1 Consider a multiagent system consisting of 6
second-order agents where

A =

(
0 1
−1 0

)
, B =

(
0
1

)
,

D =

(
0 0
0 1

)
, E =

(
0 1.5

−0.8 0

)
. (22)

It can be verified that Assumption 1-3 hold, and the matrix
F = (0, 1). Solving LMIs (6)-(7) gives

P =

(
1.8320 −0.4000
−0.4000 1.8320

)
,

Q =

⎛
⎜⎜⎝

1.8104 0.0277 −0.8625 −0.2063
0.0277 1.7253 −0.4713 −1.4358
−0.8625 −0.4713 2.1824 0.5405
−0.2063 −1.4358 0.5405 3.6667

⎞
⎟⎟⎠ ,

resulting in K = (0.1251, 0.5732) and

Γx =

(
0.6906 0.0951
0.0951 0.8973

)
, Γω =

(
0.2850 0.1484
0.0341 0.3348

)
.

Finally, let γ = 0.01 in (13d). After the simulation, the
states of the agents are shown in Fig. 2, where the agents
reach consensus asymptotically. The coupling gains cij are
shown in Fig. 3, where the gains on the DST keep updating
before converging to some constants. It is interesting to note
that the average coupling gain in the steady state network
is mean(0.4254, 0.4981, 1.0156, 0.7311, 0.6882, 0.1) =
0.5764, which is fairly smaller than the sufficient bound
provided in Lemma 3 (which is 2 in this case).
To highlight the necessity of introducing adaptive cou-

plings, we show that the non-adaptive case with γ = 0 in
(13d) fails to guarantee consensus in Fig. 4. In this case,
the scheme is equivalent to (5) with c = 0.1 (the initial cij),
which is too weak for the agents to collaborate over a direct-
ed ring: it is known that a directed ring structure is harmful
for consensus [22].

Example 2 Consider the problem of consensus disturbance
rejection for formation control of unmanned aerial vehicles
(UAVs) studied in [15]. Each agent represents a YF-22 re-
search UAV under a possible vibration in the control sur-
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Fig. 2: The states xi of the second-order agents under the
proposed adaptive scheme (13) with γ = 0.01.

0 20 40 60 80 100
t

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3: The adaptive coupling gains cij .

Fig. 4: The states xi of the second-order agents under non-
adaptive scheme

(
(13) with γ = 0

)
.

face, whose longitudinal dynamics can be identified by (1)-
(2) with

A =

⎛
⎜⎜⎝

−0.2840 −23.0960 2.4200 9.9130
0 −4.1170 0.8430 0.2720
0 −33.8840 −8.2630 −19.5430
0 0 1.0000 0

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝

20.1680
0.5440

−39.0850
0

⎞
⎟⎟⎠ , E =

(
0 2
−2 0

)
.

Here, the four states of xi = (Vi, αi, qi, θi) are the speed in
meters per second, angle of attack in degrees, the pitch rate
in degrees per second, and pitch in degrees, respectively. The
vibrations, as disturbance ωi to be rejected, has frequency
2 radians per second and satisfies the matching condition
with F = (1, 0). The communication graph is G2 shown in
Fig. 1(b) with a DST.
The gain matrices K and Γ are designed following The-

orem 1, and are omitted here for brevity. Let the parameter
γ = 0.2 for adaptation. After implementing (13), the states
of the UAVs reach consensus, as shown in Fig. 5. In this case,
the flight formation is maintained under the disturbances,
though the disturbances have an impact in the common tra-
jectories. The adaptive coupling gains are shown in Fig. 6.
Finally, the control inputs are shown in Fig. 7.
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Fig. 5: The states xi of the UAVs under the proposed adap-
tive scheme (13) with γ = 0.2.

5 Conclusions

In this paper, a novel directed spanning tree (DST) per-

spective has been presented to reconsider the consensus

disturbance rejection for multiagent systems over digraphs.

Specifically, we have reproduced the lower bound for a stat-

ic homogeneous coupling gain in the literature by exploring

the structure of a DST. Then, we have proposed a DST-based

adaptive consensus disturbance rejection scheme, which e-

liminates the requirement for the global information of the

Laplacian eigenvalues.

Future work may include nonlinear agents, and/or extend

the results into a leader-follower network [20].

4698

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2023 at 13:14:32 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20
t

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6: The adaptive coupling gains cij .
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Fig. 7: The control inputs ui for consensus disturbance re-
jection of the UAVs.
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