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Abstract

This study focuses on automated malaria diagnosis in low quality blood smear images, cap-
tured by a low-cost smartphone based microscope system. The aim is to localize and classify
the healthy and infected erythrocytes (red blood cells) in order to evaluate the parasitaemia in
an infected blood smear. Due to the lower quality of the smartphone microscope system com-
pared to traditional high-end light microscopes, conventional algorithms fail to process these
images. We propose a framework using a convolutional neural network as a pixel classifier
to localize the erythrocytes. Afterwards we classify them accordingly, using a convolutional
neural network as an object classifier. Such a system can offer in-the-field malaria diagnosis
without human intervention or can act as an aid for human experts to lower workload and
increase diagnosis accuracy. The algorithm successfully localizes the erythrocytes with an
average sensitivity of 97.31% and precision of 92.21%. Classification performed inadequate,
in terms of low agreement with two human experts. This can be due to the low image quality
or the small amount of training data available at the time.
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Chapter 1

Introduction

Nearly half of the world population is at risk of malaria [WHO, 2016]. Malaria is a serious
disease caused by a peripheral blood parasite of the genus Plasmodium, transmitted to hu-
mans via mosquitoes [Sherman, 1979]. In 2015 alone, the global tally of malaria reached 212
million cases of which 429 000 fatal. Most of these deaths occurred in the African region
(92%) and the vast majority is due to P. falciparum malaria (99%) [WHO, 2016]. Early
and accurate malaria diagnosis and prompt treatment can cure a patient, preventing severe
malaria cases and possible fatal disease states [WHO, 2016] [Blumberg and Frean, 2007]. All
around the world there are still millions of people lacking access to malaria prevention and
treatment [WHO, 2015].

Recent developments made by the Optical Smart Malaria Diagnostic (OSMD) research team
of the Technicical University Delft shows promising potentials in malaria diagnostics. The
smartphone based imaging system developed by the team [Agbana et al., 2017], can mean
drastic improvements to the cost, availability and readiness of malaria diagnosis in low-
resource settings.

However, the problem of optical malaria diagnosis is a twofold. Not only the costs
of purchasing and maintaining microscopes are high [Carpenter et al., 1991], trained per-
sonal is scarce and also expensive since the technique is labour intensive and time-
consuming [Uzochukwu et al., 2009]. The accuracy of optical malaria diagnosis is ulti-
mately determined by the expertise and reader technique of the microscopist and qual-
ity of the blood smear [O’Meara et al., 2006]. While theoretically very high sensitiv-
ity and specificity can be reached using microscopy analysis, practice shows big dis-
crepancies between different technicians and on-field versus laboratory diagnosis results
[O’Meara et al., 2006][McKenzie et al., 2003].

Automated image analysis software could remove the most serious limitation of the new
smartphone based microscope system and microscopy in general, dependency on human
expert performance for the diagnostic accuracy of the results. This software is not new,
different image processing techniques have been applied in the past to tackle this prob-
lem. Most of these techniques are dedicated to the quantification of parasites with respect
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2 Introduction

to the total amount of erythrocytes (red blood cells). Conventional techniques like mor-
phology [Di Ruberto et al., 2002][Ross et al., 2006], edge detection [Sio et al., 2007], region
growing [Theerapattanakul et al., 2004] and more, have reported positive results with respect
to their data. However all these researches are based on image data acquired using digital
cameras coupled to high-end light microscopes, examining Giemsa (or similar) stained thin
blood smears under oil immersion. This data acquisition results in high resolution, highly
detailed, uniform illuminated, altogether high quality images, and even in this type of images
inconsistent light intensities are causing problems [Ross et al., 2006]. A low cost device using
a smartphone camera to capture images will inherently produce inferior images, and these
conventional techniques will not be sophisticated enough to analyze these images.

1-1 Aims and objectives of this thesis

In this thesis a novel approach to the automated malaria diagnosis problem is presented. We
show a two-phase procedure to localize erythrocytes and classify them as healthy or infected
in relative low quality thin blood smear images. Localization of the erythrocytes is done
using a Convolutional Neural Network (CNN) as a pixel classifier [Ciresan et al., 2013]. The
classification of individual erythrocytes is done using a CNN as an object classifier. The
system must be able to provide a quantification and exact locations of healthy and infected
erythrocytes shown in different fields of view captured using the smartphone camera. Such a
system would either enable a fully automated diagnosis or act as an aid to improve accuracy
and lower workload of human experts.

To show if the algorithm is an applicable diagnostic tool, the performance will be evaluated
against two human experts. From these results, recommendations for the future will be made.

1-2 Thesis Structure

The thesis is organized as follows. Chapter 2 gives background information on malaria diag-
nosis, neural networks and the acquired images from the smartphone based microscope. We
will also show the performance of conventional algorithms on this data, which serves as a
motivation for this study. Chapter 3 proposes the method, including the two-phase approach
using convolutional neural network to localize erythrocytes and elaborates on the classifica-
tion problem. At the end of this chapter, information on algorithm efficiency along with a
proposed improvement is given. In chapter 4 the experimental results can be found, both
the localization and classification phases are tested against two human experts. Chapter 5
consists of the discussion and conclusion of this work.

It is important to note that the results of this thesis work has been summarized for publication
in a peer review journal. Before publication the content and results of this paper will be
subject to change. To provide the reader with a more compact alternative to thesis we refer
to appendix A, containing the version of the paper as this thesis is written. The paper is
advised for readers that have most background information readily available. This thesis will
however provide an outlined procedure and detailed implementation steps for readers with
little or no theoretical background in deep learning algorithms.
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Chapter 2

Background and Thesis Motivation

2-1 Malaria Diagnosis by Human Experts

Rapid and precise diagnosis is essential to address the global burden of malaria. Low-cost
malaria diagnosis can roughly be divided into two classes, microscopy diagnosis and antigen
detection. The performance of diagnostic tools is normally measured in two parameters,
sensitivity and specificity. Sensitivity expresses share of true positives correctly identified
as such. Specificity is the share of true negatives correctly identified as such. Using these
two proportions the diagnosis ability of a test can be evaluated [Altman and Bland, 1994].
To be an applicable diagnostic for malaria, a test must achieve greater than 95% sensitivity
and a specificity of at least 90% [WHO, 2000]. In this section both diagnostic methods are
summarized with their respective advantages and disadvantages

2-1-1 Microscopy Malaria diagnosis

Microscopy examination of stained thick and thin blood smears is seen as the most suitable
diagnostic instrument for malaria. It is regarded as the gold standard for malaria diagno-
sis [Moonasar et al., 2007]. Blood is collected from a patient, stained with a Romanovsky
stain (most often Giemsa), which is a dye to make DNA visible, and spread over glass as
either a thick or thin blood smear. This smear is examined under a light microscope with
a 100x oil immersion objective [WHO, 2010]. Thick blood smears contain more blood com-
pared to thin ones, and are used to determine the presence of malaria parasites. If malaria
parasites are found, thin blood smears (example shown in figure 2-1) are used to differentiate
between malaria species and to estimate the parasitemia, the amount of infected erythrocytes
to healthy erythrocytes. Parasitemia is used as an indication for the severeness of the disease.

M.Sc. thesis R. Sorgedrager



4 Background and Thesis Motivation

50 pm

Figure 2-1: Example of a thin blood smear, the dark purple rings inside the erythrocytes are
malaria infections. Image taken with a digital camera coupled to a light microscope, 100x magni-
fication under oil imersion. Taken from the Mamic database, see Linder [Linder et al., 2014] for
source

Microscopy has numerous advantages. It yields the lowest cost per test [Shillcutt et al., 2006],
supports direct parasite count and discrimination between different species. Results can be
achieved with very high sensitivity and specificity, both close to 100%.

The main disadvantage is dependency on the human expert. The tech-
nique requires skill and experience that is scarce even in developed coun-
tries [Blumberg and Frean, 2007][Wongsrichanalai et al., 2007]. The accuracy is ultimately
determined by the expertise and reader technique of the microscopist and quality of the
blood smear [O’Meara et al., 2006]. A recent study shows big differences in parasitemia
estimation between different technicians. The differences are even bigger between on-field
versus laboratory diagnosis results [O’Meara et al., 2006][McKenzie et al., 2003].

2-1-2 Antigen Malaria Diagnosis

An antigen is a protein expressed by bacteria or virus to which the immune system can
respond by producing specific antibodies. Malaria has its own specific antigens, these can be
detected using Rapid Diagnostic Tests (RDTs). These 'dipstick’ tests, also known as lateral
flow immunochromatographic assays, are simple tests that can be used by persons without
much diagnostic expertise [Wongsrichanalai et al., 2007].

The advantage of RDT-based diagnosis is its relative ease to support at peripheral health
facilities compared to appropriate microscopes including trained personnel. This means it may
facilitate access to diagnosis in areas where this was not possible before [Shillcutt et al., 2006].
These days it can also achieve high sensitivity (> 95%) and relative high specificity (> 90%)
[WHO, 2010].

Unfortunately, their results depend heavily on the storage, quality assurance and end user
training [Moonasar et al., 2007]. So despite being able to be used by people without knowl-
edge of malaria or diagnosis in general, the usage is not trivial. Also, they cost more (around
two times the cost per test) compared to microscopy [Shillcutt et al., 2006].

Despite some advantages, current RDTs are not intended to replace microscopy.

R. Sorgedrager M.Sc. thesis



2-2 Previous Work on Automated Malaria Detection 5

2-2 Previous Work on Automated Malaria Detection

There have been numerous studies aimed at automating the malaria diagnosis process. All
these studies are an extension to microscopy diagnosis, they work towards automatic quan-
tification of thin smeared blood films. Most (earlier) studies show results on an image level
(i.e. microscope field-of-view) [Tek et al., 2009], while more recent studies also attempt to
diagnose malaria on a patient level [Linder et al., 2014].

On a general level the automated techniques work in the same way. The first step is to
segment the erythrocytes from the background. Afterwards infected erythrocytes are iden-
tified, sometimes along with their respective life stage. At last healthy erythrocytes and
infected erythrocytes are counted and the parasitemia can be estimated. Problems arise
when erythrocytes are clustered or overlap [Ross et al., 2006]. A lot of these techniques make
assumptions on uniform object shapes or sizes and use area fitting techniques to identify ery-
throcytes [Di Ruberto et al., 2002][Ross et al., 2006][Linder et al., 2014]. Naturally, if these
assumptions are violated (by overlap or clustering) these approaches fail. The algorithms
vary in complexity, below some examples are given of the most common approaches.

One of the most basic, and frequently used techniques to segment erythrocytes from the
background is based on morphological operators. Di Ruberto [Di Ruberto et al., 2002] im-
plemented an automatic thresholding method based on Otsu’s threshold method [Otsu, 1979,
to separate the erythrocytes from the background. Using different morphological steps clus-
tered and overlapped erythrocytes are split. At last two different methods to classify the
erythrocytes are proposed, one based on morphological operators and one based on colour
histogram similarity. They report good results on their data, however also state that the result
is heavily dependent on the image quality. This is not a problem in an scientific laboratory
setting, where high-end microscopes produces high quality images, but is a different story
in the field. Morphological methods have the great downside that the operators affect the
whole image in the same way. When all erythrocytes have nearly equal shape, size and colour
this is not a problem, but when differences appear, they will still be processed in the same
way. This processing can lead to one erythrocyte being segmented properly but a different
erythrocyte in the same image not being recognized as one and being discarded. Dealing with
these differences using morphological operators is possible, but require human intervention
during the process to tweak settings in an trial-and-error approach, this is not desired in an
automated diagnosis system.

A slightly more advanced segmentation technique is used by Sio [Sio et al., 2007]. Using
edge detection, the edges of all erythrocytes are detected and linked together at their ter-
minal points to form closed boundaries around all erythrocytes. These closed boundaries
may compromise clumps of overlapping erythrocytes, and therefore a clump splitting routine
that separates these regions is implemented. Finally, the infected erythrocytes are differenti-
ated from healthy erythrocytes using the edge correlation coefficient and binary morphology.
Again this technique relies on high quality images, small differences in contrast and luminance
variations can be handled using the edge detection algorithm, but differences in shape or size
still poses problems. FEnclosed regions that differ from those of average erythrocytes are re-
moved during the segmentation process. The algorithm was able to handle slight overlap, but
in situations with greater overlap or multiple erythrocytes touching each other, the technique

failed.
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6 Background and Thesis Motivation

A last example is given by the work of Diaz [Diaz et al., 2009]. Their main effort is aimed
at the classification of infected erythrocytes in their respected life cycle. Their segmentation
process is based on a pixel classification method, that labels every pixel in the image as ei-
ther background or foreground (belonging to an erythrocyte) based on its colour features.
Afterwards an Inclusion-Tree-Structure based on [Monasse and Guichard, 2000] removes ir-
relevant objects from the image and keeps only the erythrocytes for the classification stage.
Splitting of erythrocytes is based on a template matching approach. Which comes down to
finding a ’best match’ when two or more template shapes are superimposed in different ways
to match the clumped shape. The classification is done using predetermined features of indi-
vidual erythrocytes, such as; the color histogram, saturation level histogram, Tamura texture
histogram and Sobel histogram. Two different classification algorithms are evaluated using
these features to classify erythrocytes accordingly, a multilayer perceptron neural network
(MLP) and a support vector machine (SVM). The advantage of their segmentation method
over morphological operators is the usage of expert knowledge through a trained pixel classi-
fier, this should result in the ability to process lower quality images. The classification stage
is also more extensive using a good deal of information available in the different histograms
and classifying using state of the art classifiers. The blood smears are used from a unrelated
study from one year ago, which resulted in noisy smears with stain differences and artifacts in
them. However, the images are still captured using high end microscopes coupled to a digital
camera. So despite the lower quality blood smears, the images are still of high quality.

2-3 Smartphone based Microscope Blood Smear Images and the
Performance of Conventional Techniques

The major difference between this thesis and previous researches on automated malaria diag-
nosis is the input data that is being used. In all researches, including this one, the input data
consist of RGB digital images of blood smears. Differences between these images can be found
due to the capturing device (different cameras), magnification at which images are captured
and differences in microscopes. However, all other researches have very similar images with
respect to each other. High quality images captured using digital cameras coupled to scien-
tific light microscopes in a laboratory setting. We are dealing with a very different quality
type of images. The smartphone based microscope is aimed to be as low cost as possible
with sufficient resolution to detect an early ring malaria parasite. The images it produces are
inherently worse than the digital camera coupled to light microscopes images, which brings a
new obstacle to the automated diagnosis problem.

The smartphone based microscope has specifications listed in table 2-1, as a comparison a
standard light microscope used for malaria diagnosis is also listed. The smartphone based
imaging platform consist of a Motorola Camera XT1572 with 20.7 megapixels camarea sensor
with a pixel size of 1.12 microns. Directly on the camera a 0.5 mm ball lens is placed, as
explained in [Agbana et al., 2017] . Images are captured in the JPEG format in the maximum
resolution possible by the camera, 4080x5344 pixels. Since the imaging system has been
optimized to minimize system aberrations, the usable field-of-view for the 0.5 mm ball lens is
therefore limited to 100 microns (equivalent to approximately 1300x1300 pixels).

R. Sorgedrager M.Sc. thesis



2-3 Smartphone based Microscope Blood Smear Images and the Performance of
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Mag | NA | DI Res | FOV
Standard Light Microscope 50x | 1.25 | 0.22 um | 180 um
Smartphone (0.5mm Ball Lens) | 8.5x | 0.2 | 1.8 um | 100 um

Table 2-1: Specifications of smartphone based microscope system versus and a standard labora-
tory light microscope

The differences in quality can be explained by table 2-1. For the optimal quality the following
applies; magnification, higher is better, numerical aperture, higher is better, diffraction limit
resolution, lower is better, field of view, higher is better, but can be nullified by examining
more field of views per sample. The smartphone microscope is outperformed by the light
microscope on all fronts by at least a factor 4, hence produces low contrast and low resolution
images.

Two example images can be found in figure 2-2, a comparison is shown between an example
image captured using the smartphone based microscope and a digital camera coupled to a
light microscope, taken from the Mamic Database used by Linder [Linder et al., 2014]. Both
images show only the green colour channel in which the purple colour from stained parasites
is most visible [Ross et al., 2006]. Big differences in illumination consistency, contrast and
detail (not visible at print-scale) can be found.
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Figure 2-2: Example of smartphone based microscope image (a), with corresponding image
histogram (c). Example of light microscope image, taken from Mamic Database (b) , with
corresponding image histogram (d).

The differences in figure 2-2 also becomes clear looking at the distribution of the pixel
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8 Background and Thesis Motivation

value histograms. Histogram (d), corresponding to the light microscope, shows a typ-
ical bimodal histogram, the principal mode corresponds to the greyscale intensities of
the background colour, and the second mode to those that make up the erythro-
cytes [Ross et al., 2006] [Linder et al., 2014]. Histogram (c), that of the smartphone image,
shows a less distinct bimodal distribution. The researchers discussed in section 2-2, for ex-
ample [Ross et al., 2006][Linder et al., 2014][Di Ruberto et al., 2002] use this distribution to
their advantage. An easy way of segmenting the erythrocytes from the background is by
selecting a threshold level that maximizes the separability of the resultant classes, this can
be done automatically using Otsu’s method [Otsu, 1979].

The result of Otsu’s method and the more advanced edge detection method of Sio
[Sio et al., 2007] on both examples from image 2-2 is shown in figure 2-3. Note that the
code for Otsu’s method is standard in MATLAB 2017, the code for Sio’s method is published
along with their paper, see [Sio et al., 2007].
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Figure 2-3: (A) Smartphone based microscope example image with Otsu's thresholding method.
(B) Example image from a light micrsoscope taken from the Mamic Database with Otsu's thresh-
olding method. (C) Smartphone based microscope example image processed with Sio’s edge de-
tection algorithm. (D)Example image from a light micrsoscope taken from the Mamic Database
processed with Sio's edge detection algorithm.

As can be seen in the upper part of figure 2-3 (A-B) the threshold method is not capable
of segmenting all the erythrocytes from the background in the smartphone image (A). The
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2-4 Convolutional Neural Networks Background 9

image from the Mamic Database (B) with its distinct bimodal histogram shown in figure
2-2, is segmented almost perfectly. The difference can be explained due to a lack of uniform
lightning in the smartphone based microscope. Pixels that belong to erythrocytes in the top
part of the image share the same intensity as pixels in the background in the lower part of
the image, whereas the Mamic image has a very even background with distinct pixel values
for the erythrocytes.

The lower part, image C and D show the result of the first step of Sio’s algorithm, the edge
detection. Again the algorithm performs much worse on the smartphone image (C) compared
to the image from the Mamic database (D). Due to less contrast and detail the edges of a
erythrocyte in the smartphone image are more blurred and a smooth transition instead of a
sharp step at the edges of erythrocytes in the Mamic image. This results in edges not to be
found or scattered as small pieces around a erythrocyte. The next step in the algorithm would
be to link together the edges to form closed boundaries around the erythrocytes, however the
algorithm is unable to perform this step in the smartphone image, the preliminary result from
the Mamic image (D) poses no problems for this next step.

2-3-1 Lightning Differences between the smartphone based microscope and light
microscopes

One of the important differences in image quality is found due to the different lightning
techniques in the smartphone based microscope and a light microscope. Modern scientific
light microscopy makes use of Kohler illumination [Society, 1894]. This illumination method
makes use of additional optical elements in the illumination element which results in extremely
even illuminations, however, this increases the cost of the system. The smartphone based
microscope is aimed to be very low cost and used a LED covered with a white paper, this can
be improved a bit but will never reach the even distribution of Kohler illumination.

2-4 Convolutional Neural Networks Background

Convolutional Neural Networks (CNNs) is a class of deep, feed-forward Artificial Neural
Networks (ANNs), specialized at analyzing image data [Krizhevsky et al., 2012].

An ANN processes information in roughly the same way that a biological nervous network,
like a brain, processes information. The structure of ANNs especially stands out, it consist
of a large number of neurons that are highly interconnected and work in unison to solve
problems. A very important aspect of ANNs is the ability to adapt to certain problems by
training’ the network. Just like humans have the ability to learn by example, an ANN can
do the same. This also means that the same network could solve several different problems
by training the network differently.

Neural Networks have a remarkable ability to derive meaning from large amounts of com-
plicated (imprecise) data. Patterns and trends can be discovered that are not visible for a
human expert. All these characteristics make ANN very suitable for processing images and
especially pattern recognition in images. The networks that excels in this area are called
Convolutional Neural Networks.

M.Sc. thesis R. Sorgedrager



10 Background and Thesis Motivation

In this section background information on (Convolutional) Neural Networks will be given.
First general information on Neurons, Network Architectures and Training characteristics
will be given, which hold for all Artifical Neural Networks, afterwards the information will
narrow down to Convolutional Neural Networks.

2-5 Artifical Neurons

An ANN consist of many artificial neurons, a single neuron is a mathematical function that
can be seen as a model for a biological neuron. This model is quite simple and explained
below.

For a given neuron, let there be n inputs, with signals x; to z,. Each input will be weighted
with an according weight, w; to w,. Next to this there will also be a bias value, b. The
output of the neuron will be given as

y=fO_ ww;i+b) (2-1)
i=1

Note that equation Eq. (2-1) not only contains a dot product of its inputs and the weights
plus a bias but also a f which stands for the activation function. This activation function
takes the output of the neuron and applies a certain fixed non-linearity function to it. A
visualization of this single neuron can be seen in Figure 2-4

b
x; O———w;
Activation
Function
Output
x, O——> w,
Weights

Figure 2-4: Visual representation of the model of a single Artificial Neuron

The activation function, f, is an important property of a neuron and determines its function-
ing. In its simplest form the activation function could be step function, resulting in a binary
(0 or 1) output of the neuron. Using other non-linear functions however, such as the tanh or
ReLU and many more non-linear functions, a small network with few nodes (neurons) can
solve nontrivial problems.

2-5-1 Rectified Linear Unit (ReLU)
A neuron using a rectifier as the activation function is also know as a Rectified Linear Unit
(ReLU) [Nair and Hinton, 2010]. ReLU’s have drastically increased in popularity over the

last years. The activation function is expressed as; f(z) = max(0,x), i.e. the output of the

R. Sorgedrager M.Sc. thesis



2-6 Artificial Neural Network Architectures 11

neuron is thresholded at zero, so only positive arguments are propagated as outputs, a visual
representation of this function is given in figure 2-5

Figure 2-5: Rectified Linear Unit (ReLU) activation function , which is zero when x < 0 and
then linear with slope 1 when x > 0

One of the reasons for its popularity is the fact that this activation is a simpler computa-
tion compared to a traditional tanh, which requires computing an exponent. This results
in decreased training and evaluation times[Krizhevsky et al., 2012]. Next to this, networks
using ReLLU activation usually result in sparse networks.Sparsity in a network is a measure
for the amount of ’dead” neurons (neurons that never activate, thus always output 0) in a
network. Sparsity in neural networks has various advantages, these are explained neatly by
Glorot [Glorot et al., 2011] in section 2.2. Nevertheless, too much sparsity in a network can
have negative effects on the performance, various adaptions to the ReLU have been made to
solve this problem, for example leaky rectified linear unit (Leaky ReLU), parametric rectified
linear unit (PReLU) and a randomized leaky rectified linear units (RReLU) [Xu et al., 2015].

2-6 Artificial Neural Network Architectures

The neurons in an ANN can be connected in various ways, here we will only discuss feed-
forward neural networks and disregard recurrent neural networks. This means all neurons
are connected in a acrylic graph, meaning the output of neurons can be the input to the
next neurons. Also there can be no cycles present in the connection, thus a signal can only
propagate forward trough the network. Most of the time ANNs are organized in a layer-wise
architecture. Examples of this architecture are shown in Figure 2-6 and Figure 2-7

M.Sc. thesis R. Sorgedrager



12 Background and Thesis Motivation
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Figure 2-6: Example of a Figure 2-7: Example of a 3-layer feed-
2-layer feed-forward Neural forward Neural Network (Input layer of
Network (Input layer of 3 3 neurons, 2 hidden layers with 4 neu-
neurons, hidden layer with 4 rons each and an output layer with 2
neurons and an output layer neurons

with 2 neurons)

As we can see in Figure 2-6 and Figure 2-7 both networks, and all networks for that matter,
consist of at least a input and output layer. In between these layers there can be none, one or
multiple hidden layers. The most common type of hidden layer is the fully-connected layer,
which are shown blue in Figure 2-6, where all neurons in the layer are fully connected to each
adjacent layer but share no connections with each other inside the layer.

A network can have multiple hidden layers. This means we can speak of a depth in the
network, a N-layer network counts all layers except for the input layer. For example, a single
layer-network is a input layer directly connected to a output layer. A network with one
hidden layer is called a shallow network, more than one hidden layer and the network can be
considered a deep neural network, however the exact definition of a deep neural network is
not unambiguous and often also take into account what happens in the layers and not just
the count.

Deep Neural Networks are the current state-of-the-art type of Neural Networks. They have
proven to outperform previous state-of-the-art algorithms on various problems and contests
[Krizhevsky et al., 2012]. A good overview of the history and recent successes is given by
[Schmidhuber, 2015].

The main thing that defines Deep Neural Networks and also where the name comes from is
the large amount of layers in the network. Due to the amount of layers the original input is
transformed more times than shallow networks. This way the network is able to ’learn’ harder
tasks than shallow networks, for example more complicated features can be extracted in image
recognition. There are also downsides to Deep Neural Networks. A large network needs a big
amount of training data and is extremely computational expensive to train. For this reason
a lot of times GPU’s are necessary to train Deep Neural Networks. Also they do not have a
strong theoretical background, thus choosing the right network with its parameters, training
method, topology, etc. is considered more an art than science. Getting insight in what is
happening is not easy to comprehend in a lot of cases, which results into trial-and-error design
processes.
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2-7 Training the Neural Network

In order to make an ANN solve problems it has to be trained. But before training can
take place a network has to be initialized, more specifically the weights and biases have to
be initialized. Biases can generally be initialized to zero, weights are normally chosen at
random from a distribution specified by the expert. A suitable distribution is dependent on
the network and type of activation functions used.

The first objective during training is to perform the task the network is supposed to do as
good as possible. This measure is done via a cost function. The cost function represent the
difference between the prediction and the ground-truth. A common way to express this is via
a quadratic loss function, shown in equation Eq. (2-2) in its most basic form. Where y; is the
output of output neuron j and Ej is the expected outcome (ground-truth) of that neuron.

Cuse =05 Z(yj - Ej)? (2-2)

This cost value is also known as the mean squared error. It is one of the ways to express the
quality of the estimator. Minimizing the cost function, which is minimal at zero in this case,
is the objective during the training phase.

Optimizing an ANN during training is done with backpropagation [Hecht-Nielsen, 1988]. This
is the workhorse of learning in ANNs. Backpropagation is based on calculating derivatives
of the errors starting in the last layer, with those error derivatives, one can compute error
derivatives in previous layers, thus propagating backwards trough the network, from output
to input. During backpropagation the weights are updated using a gradient descent method
each cycle until a desired quality of the estimator is achieved, that means once the network
output matches the desired output good enough, and thus the cost function is small enough.
For a full explanation and proof we refer to the work of Hecht-Nielsen [Hecht-Nielsen, 1988].

During the training phase the Neural Network is prone to overfitting. Overfitting occurs
when a model is too complex to describe an underlying relationship and instead describes
random error or noise. To prevent overfitting of the network, regularization methods can be
used. There are different methods that show good performance in different applications, thus
there is not one golden regularization method. L2 regularization is a common regularization
method, while dropout [LeCun et al., 2015] shows promising results. Regularization can be
seen as a way of penalizing the complexity of the model and is the second objective during
training.

2-8 Convolutional Neural Networks

Convolutional Neural Networks, called ConvNets for convenience, are a special type of Arti-
ficial Neural Networks. All information given in the last section about ANNs hold but since
the explicit assumption is made that the inputs to these networks are images some properties
can be encoded in the network. These make the networks more efficient to implement and
vastly reduce the amount of parameters to tune.

Most recent well performing ConvNets are mainly build from three types of (hidden) layers,
convolution layers, pooling layers and fully connected layers. The fully connected layers are

M.Sc. thesis R. Sorgedrager



14 Background and Thesis Motivation

exactly the same as described in the previous section. The convolutional and pooling layers
are described below.

2-8-1 Convolutional Layers

Convolutional layers are responsible for feature extraction in images. Convolutional layers
can be seen as a sort of filters. These filters are in fact a window of small dimensions that
slide over the input image so that the centre has been in every position. At every spatial
location the filter does a convolution with the input image and produces a activation map
that gives a response of the filter at all locations. An example of this procedure is shown in
Figure 2-8 where 3 filters, also known as kernels perform a convolution with the input and
produce 3 separate feature maps.

Activation

Input image  10x10 kernel 3x3 function Feature map 8x8
]
~L T L /i
\\ —-
S~ ~ L

Figure 2-8: Convolution of an input image (10x10 pixels) with 3 kernels (3x3 pixels) shown in
red, green and yellow, resulting in 3 feature maps (8x8 pixels) that contain the output activation's
for a given kernel

The convolutions that are performed are very alike to 1-D convolutions known from signal
processing that take the form of time series. The main difference is of course the change
in dimensionality and that convolution in ANNs are actually a slightly modified version of
convolutions that is called cross correlation in signal processing.

The formula to perform the convolution is given in equation Eq. (2-3)

m—1m—1
Yij = Z Z Wab (i4-a)(j+b) (2-3)
a=0 b=0
Where the input is a N x N square neuron input layer called x, the filter is called w and has
size M x M. The output of the convolution is y at place (7,j). This convolution can easily
be visualized in Figure 2-9.
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‘(100)-(101)+(100)-(101)+(100)-(101)‘

Figure 2-9: Convolution equation example, the input image (4x4 pixels) is shown in the left top
corner, the kernel (3x3 pixels) in the middle and the output (2x2) pixels in the right top corner,
the blue box at the bottom is one the 4 convolutions done, represented in blue in the top images
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In Figure 2-9 we can see one convolution done, the blue window will slide across the whole
input image and cover each possible position, resulting in 4 convolutions, shown in the most
right feature matrix.

Normally there are multiple convolutional layers, each with different filters. The filters are
trained in such a way that they all will detect’ separate features in an image, from low-level
features such as edges and corners up to high-level patterns like honeycomb or grid patterns.
A lot of these filters have fixed weights for the whole image, and do not have different values
for the left part of the image than the right part. This is called parameter sharing and is very
effective to bring down the total amount of parameters to train. After the convolution of the
input image with all these convolutional layers it gives an output of multiple activation maps
that shows all the locations where certain features are present in the image.

2-8-2 Pooling Layers

Pooling layers are used to reduce the dimensionality of the feature maps and to prevent over-
fitting [Hinton et al., 2012]. There are multiple pooling techniques like L2-pooling, average
pooling and MAX pooling, where MAX pooling is the most popular and will be explained
here.

A MAX pooling layer produces a map that shows the most dominant feature in di-
vided parts of the feature map. MAX pooling layers leads to improved generalization
[Rawat and Wang, 2017] It is often enough information to know what is the most dominant
feature in an approximate area and not the exact location. Just like the convolutional layer it
is again a filter with a small dimensionality, most of the times 2x2, that is moved with stride
2 over the activation maps and takes the max value of each 2x2 window. An example of this
pooling layer is shown in Figure 2-10

Single depth slice

% 111124
max pool with 2x2 filters
5,6 |78 and stride 2 6| 8
3/2]|1]|0 314
11213 |4
y

Figure 2-10: Max Pooling Layer on a 4x4 input (left) with a 2x2 filter with stride 2, resulting in
an output image (right) that is down-sampled by a factor 2 and holds only the maximum values
of the coloured areas in the input image

Using a pooling layer as depicted in Figure 2-10 means the activation maps are down sampled
by a factor 2 over the width and height, thus leaving less inputs for the next layer and
improves computation times. Since this inevitably also reduces the amount of information,
the improvement in computation times sometimes comes at the cost of accuracy.
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Chapter 3

Method

Our proposed automated malaria diagnosis procedure consists of two stages: 1) Localization of
all erythrocytes present in the image, 2) Classification of each erythrocyte as either infected or
healthy. Both stages use Convolutional Neural Networks, first as a pixel classifier, secondly as
an object classifier. In this chapter the choice for this approach and both stages are discussed
in detail. The overview of the process is shown in figure 3-1.

INPUT LOCALIZATION

Localization Neural
Network
Data Acqguisition Blood Smear Images Erythrocyte Centroid
Locations
CLASSIFICATION OUTPUT

Healthy

Blood cells Estimated
Parasiteamia %

Infected
Blood cells

y—' | Classification
— Neural Network

Single Erythrocyte
images

Erythrocyte patches

Expert verification

Figure 3-1: Overview of the proposed automated diagnostic method for the smartphone based
microscope
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As can be seen in figure 3-1 the total process consist of various steps to achieve our goal. The
first step is data acquisition, this is done with the smartphone based microscope discussed in
2-3. The second step is to localize the centre coordinates of all erythrocytes in the input image.
With these coordinates cropped images can be made containing the individual erythrocytes
in a image. In the third step these images are classified as being a healthy or infected
erythrocyte. In the last step, results from the classification stage that hold confidence scores
for each classified erythrocyte can be shown to human expert(s) for validation, afterwards
parasitemia can be estimated.

3-0-1 Stage 1: Erythrocyte Localization

Given a RGB input image I the goal is to find the set C' = {¢1, co, ¢, ..., ¢, } with elements ¢
living in R? and n is unknown beforehand. This set contains the centroid coordinates of all
n erythrocytes present in I. To achieve this goal a CNN is trained to classify cropped images
of I in two classes: erythrocyte or non-erythrocyte.

Using this CNN every pixel p in image I is classified, this process is shown in figure 3-2. This
process includes classifying small z by « windows of I that have pixel p as a centre and moves
over every pixel p in I. At every pixel p the CNN computes the class-score for that specific
window, stores this in a matrix and moves to the next pixel. After this process, every pixel
p has a class designated and confidence matrix M can be constructed. This matrix depicts
the confidence scores at every pixel for a specific class. For the first class, erythrocyte, we
expect to see high scores (close to 1) around the erythrocyte centroids and low scores (close
to 0) everywhere else. Using the post-processing steps explained in subsequent section 3-0-4
we can compute the set C' from this matrix M.

Figure 3-2: Localization process, (A) is a part of the input image, where p depicts the centre of
the n by n window to be classified as erythrocyte or non-erythrocyte, (B) shows the confidence
matrix M that holds output scores for one output class, (C) shows the centre locations found
after post-processing the matrix M

3-0-2 Erythrocyte Localization network architecture
We utilize a relatively narrow and shallow CNN for the localization phase, this is possible
because of the simple shape of the erythrocyte that has to be detected. This network has

to analyze very large amounts of data, a separate window for every pixel in I, so a small
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network is necessary to get acceptable computation times. The malaria infections, which are
more detailed features inside the erythrocyte are only of importance in the second stage.

The network architecture is build up (from input to output) by 2 convolutional layers followed
each by a max-pooling layer, hereafter 2 fully connected layers with a final double class soft-
max layer. The convolutional, pooling and fully connected layers are explained in section 2-4
on Convolutional neural networks. The soft-max layer at the output ensures that the outputs
of the network all add up to 1. This layer is used because there are two mutually exclusive
classes, erythroctye or non-erythrocyte. By forcing the outputs to represent a probability
distribution across discrete alternatives this information is included in the network. The cost
function used during training is the cross-entropy cost function, which is commonly used with
a softmax output layer, this function is given as;

C=Y"t;logy; (3-1)
J

with ¢; being the target value, which is 1 for correct answer and 0 for the wrong answers.
This cost function has the nice property that it has a very big gradient when the target value
is 1 and the output is almost zero, this gradient is used in the back propagation algorithm to
train the CNN.

Furthermore we use neurons with a ReLu activation function, the advantages of these are
explained in section 2-5-1 on rectified linear units, in short we refer to [Glorot et al., 2011]
for an overview of advantages of this activation function.

3-0-3 Erythrocyte Localization Training data

An expert manually annotated a total of 1473 erythrocytes centroids in 10 blood smear
training images. To create a large enough training data set, an extra augmentation step
is included. 9 windows are cropped of each erythrocyte, the first window having its centre
coincide with the annotation, and 8 others all shifted +/— 1 pixel in either x or y direction.
This results in a total of 13257 training images for the erythrocyte class.

For the non-erythrocyte class 13000 patches are randomly cropped from the same 10 blood
smear images annotated by the expert. The only rule we impose on the these patches is that
the centre of a patch ¢ can not be closer to a annotated centroid ¢ by a euclidean distance of
20 pixels, i.e. d(g;,cj) > 20 V i,j € Z. This way we ensure that all non-erythrocyte training
patches contain either off-centre erythrocytes or no erythrocytes at all.

Examples of training images for both classes are given in figure 3-3. Note that these images

are enhanced in both contrast and brightness to make them easier visible for this report, for
the network training and processing of new images the raw RGB images are used.
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(A) Erythrocytes (B) Non-Erythrocytes

EE B
0

Figure 3-3: (A) shows 9 examples of images belonging to the erythrocyte class for training, (B)
shows 9 examples of images belonging to the non-erythrocyte class used for training. Note that
image brightness and contrast is enhanced for print visibility

Erythrocyte detection is rotational invariant. During each network training step we have
a 50 % chance to augment the input image by rotating it 90 degrees, this should ensure a
rotational invariance after training.

3-0-4 Localize erythrocytes in a new unseen image

Localizing the erythrocytes in an unseen image I is straightforward at this point. Since the
network learned the features of the erythrocytes on raw RGB values we do not have to do any
preprocessing on a new image. Using the sliding window technique discussed before we get
confidence matrix M, which yield the classification score for the erythrocyte class for every
pixel p in image I.

To obtain set C' we have to post-process the matrix M. First we threshold matrix M with a
threshold level of 0.9, this leaves us with a new binary matrix that has value 1 for all areas
where the network has the confidence of a erythrocyte centroid being located at that position
of at least 90 % and a 0 every else. Secondly, we segment this binary image and split clumped
areas with a watershed algorithm [Meyer, 1994]. Thirdly we calculate the centre of mass of
all connected regions found by the watershed algorithm, these points make up the set C'. At
last we use our expert knowledge of the erythrocytes, due to their round shape we know the
centres of two erythrocytes can not lie too close to each other. To ensure this, a constraint is
added to set C, all points must have a minimum distance d,,;, from all other points. If two
points lie too close to each other, both points are excluded from the set and a new point that
is the average of both is added, this is done until the constraint is met. This yield final set C
with all centroid coordinates.

Before the next phase we create a set of cropped images from I with the centre coordinates
equal to those of the elements in C, if the algorithm was successful this set of images contain
all erythrocytes present in I in separate images.
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3-0-5 Stage 2: Erythrocyte Classification

In the previous step, the erythrocyte centroid locations are determined and individual crops
are taken showing the erythrocytes in separate images. Given this set of erythrocyte images,
the goal is to classify these as infected or healthy.

Since the two classes are mutually exclusive, a softmax output layer is used again. This
gives a nice result for eventual expert validation. Every image will have a confidence score
attached and can be interpret in a intuitive way, for instance, the network can be 95% certain
the erythrocyte is infected and 5% certain it is healthy, the same way a human could give his
results.

In order to calculate the parasitemia a binary output per erythrocyte image is needed, healthy
or infected. A threshold value is selected on the confidence score to count as a infected
erythrocyte. For now the value is set to 0.9 for the infected class, so the network has to have
at least 90 % confidence in order to count a erythrocyte as infected. If the system would be
employed in the field and used a diagnostic aid, it would be wise to also show an expert all
erythrocytes that have a score of greater then 50% on the infected class, to be more confident
that no infections are missed. Incorrect classified instances can be added to the training
database to improve the network performance over time.

With the erythrocytes divided into the two classes, i for the infected set and h for the healthy
set, perhaps with adjustments from the expert validation input, the parasitemia is calculated
as follows;

1

r 3-2
n; + np ( )

Parasitemia =

with n; the amount of infected erythrocytes and nj; the amount of healthy erythrocytes.

3-0-6 Erythrocyte Classification network architecture

The network utilized for classification of the erythrocytes is fairly similar to the localization
network. From input to output the network is build as follows: 2 convolutional layers each
followed by a max-pooling layer, hereafter 2 fully connected layers with a final double class
soft-max layer. Note that this network is similar to the localization network in the order of
layers but differs in the amount of nodes per layer, the filter size in the convolutional layers
and of course is trained on very different data from the localization network.

We would have liked to try different, especially deeper neural networks for this classification
problem, because of their outstanding performance lately in different competitions, for ex-
ample the traffic sign classification [Ciresan et al., 2012a]. Unfortunately, as becomes clear
in the next section, we suffered from a lack of training data. Using a low amount of training
data for a deep neural network easily converts the network to a memory cell. Such a network
can memorize every training image perfectly and reaches very high classification performance
during training phases, but is unable to generalize the underlying relation that is needed to
classify unseen objects.

The current architecture of the classification- and localization network, with multiple con-
volutional layers and pooling layers in between, achieve very high performance on image
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classification these days [Krizhevsky et al., 2012]. Most hyper parameters, such as: number
of nodes in each layer, filter sizes of convolutional layers or pooling layers, number of con-
volutional layers, number of fully connected layers, learning rate, and more, are initialized
to values either found in the literature or logically reasoned. Afterwards, these values are
adjusted through a trial-and-error process. We know we have probably not found the optimal
values, but doing so is a problem on its own. This optimization problem suffers heavily from
the curse of dimensionality since there exist a large amount of hyper parameters to be opti-
mized at the same time, therefore we have chosen that a trial-and-error process is sufficient
at this time in the research.

3-0-7 Erythrocyte Classification Training Data

The erythrocytes annotated by the expert before are divided in the healthy and infected class,
examples images are shown in figure 3-4. Our training dataset for infected erythrocytes is
significantly insufficient due to minimal availability of blood smear training images, combined
with relative low parasitemia in those that are available. To circumvent this condition a little
bit, we augmented all sample windows, flipping them vertically to increase the dataset by a
factor of 2. Although 100 training examples of the infected erythrocytes were generated, it
is still considered very small as compared to the data requirement for training an efficient
and well performing neural network. While there is no hard rule for a minimum dataset size,
most neural networks start to perform well with a database of a few thousand samples per
class [Ciresan et al., 2012b].

(A) Healthy Erythrocyte (B) Infected Erythrocytes

%
2
.

Figure 3-4: (A) shows 9 examples of images belonging to the Healthy erythrocyte class for
training, (B) shows 9 examples of images belonging to the Infected erythrocyte class used for
training. Note that image brightness and contrast is enhanced for print visibility
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3-1 Two Stage Approach to Automated Malaria Detection ex-
plained

The two stage approach to automated malaria detection has been well studied and reported
in literature. Linder [Linder et al., 2014] for instance first uses morphological operators to
find candidate regions (possible infected erythrocytes) and classifies these in a second stage
on malaria infections. However, an intuitive reader who has read the first part of erythrocyte
localization may wonder why identification of infected erythrocytes is not done in one-shot.
The paragraph below presents our reasons for the separation.

First of all by using two networks, both of them can be optimized for their specific task. The
first (localization) network has to process large amounts of data, a small cropped image for
every pixel in the input image. The input image easily scale up to 1300x1300 pixels, which
adds up to almost 1.7 million (small) images to be analyzed. To do this in a manageable time,
the network has to be small. The task to classify between a erythrocyte and a non-erythrocyte
is fairly easy due to its distinguishable round shape, so the network can be kept quite small.
For the second task, the classification between an infected and healthy erythrocyte, a lot less
data is needed to be processed, a window per found erythrocyte location, usually around 70
to 150 windows for a 1300x1300 pixel image. However, more detailed information is needed to
differentiate between a healthy and infected erythrocyte. In this stage, larger and/or deeper
networks, multiple networks in parallel, or any other solution can be used that would have
taken too much computation power if used the first stage.

Secondly, this solution lends itself perfectly to be extended upon in the future. Where this
thesis focuses on one of the five parasite species present in humans and does not take into
consideration the life cycle of the found parasites, these are things that should be implemented
before being able to function in the field as an automated tool. To implement these features,
the first part (localization of erythrocytes) can be left intact, and only the classifier should
be updated or extended, which requires little work compared to a overhaul of the whole
algorithm. And again, extending the first phase to also classify the species and life cycles,
would have led to a big increase in computation time when all 1.7 million images would have
had to be classified instead of the 70-150 erythrocytes.

At last, to calculate parasitemia, the total amount of erythrocytes should be known, either
healthy or infected. Since we have shown in section 2-3 the segmentation of erythrocytes from
the background is not possible with conventional techniques, due to image quality. We would
have to implement some other solution to get the total erythrocyte count after finding the
infected erythrocytes. Since this solution will probably be looking similar to the localization
algorithm as is, the current solution seem to make more sense.

3-2 Localization Algorithm Efficiency

In this thesis the efficiency of the algorithm is not of high priority, since we are keen on
demonstrating the proof of concept at this stage. However, the ultimate goal is to have a all-
in-one solution to the malaria diagnosis problem, which would mean to run this algorithm on
the smartphone that captures the images. A smartphone naturally has limited computation
power, so algorithm efficiency becomes more important. Some efficiency is already introduced
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by working with pooling layers, but looking carefully at how the algorithm works, a huge
improvement can be made, which will be explained in this section.

Unfortunately the Neural Network Toolbox of MATLAB 2017B did not allow certain changes
in the code to be made, due to read-only properties. These changes are needed for a imple-
mentation of this method. Therefore the following part remains theoretical and is not tested
yet.

The problem of erythrocyte localization is quite a unique one from the perspective of object
classification. The problem is not so much the unique shape or visual properties to distinguish
an erythrocyte from the background, but to classify many instances of the same object in one
image. We have already found a solution to this problem by splitting the bigger input image
I into small pieces and classify these accordingly, where the class output is allocated to the
centre pixel of this window, i.e. the network is working as a pixel classifier. Due to its current
architecture, the classification of these smaller images involve many computations that are
redundant since they have already been done before, this becomes clear looking at figure 3-5,
where the current method (A) is shown in comparison to the proposed method (B).

(A) Current method (B) Proposed method
9
O
n Input image n Input image
n n
l Convolutional layers l

Input image crops D D D . D
1 n*n

Convolutional layers l,

2 3
% % Feature maps
Feature maps

Fully Connected layers ‘l’

e L L L L

Feature maps
Input image crops

| B e .
)

Class scores I I I I
Overlapping image crops

Figure 3-5: (A) The current method implemented, cropping images from the input image and
using those as an input for the neural network (B) The proposed method which first computes
features maps from the input image and crops parts of these maps as an input for the fully
connected layers of the neural networks. The black box bottom left shows the problem with
method (A), where two frames next to each other overlap in the original image, and computations
are done multiple times with the same result
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In image 3-5 (A) the current method is shown. As explained in section 3, crops are taken from
the original input image, for every crop, feature maps are computed using the convolutional
layers in the neural network, afterwards the information from these maps are combined using
fully connected layers and an output is computed. The main issue occurs when two frames
overlap in the original image, for example, let us use a 100x100 pixel window for the crops.
If two frames lie next to each other, as shown in the black box in figure 3-5, for the first
window (top) the feature maps are computed, fed into the fully connected layers and an
output is derived. The second window (bottom) is shifted by 1 pixel, so there are only 100
new pixels, 99% of the image is already processed in the previous window. However, for this
window again, the feature maps are computed (which contain 99% the same information as
the previous window), fed into the fully connected layer and an output is derived. In other
words, 99% of our computations in the convolutional layers are redundant for this example,
because this information was already computed in the previous step.

For this reason we come up with method (B), where the neural network is split up. Please
note that the neural network is trained in exactly the same way as network (A), so the
filter values in the convolutional layers and neuron weights in the fully connected layers are
identical. With this method, before we take small crops we first compute the feature maps on
the input image, because of the same training method these should look identical to those of
method (A), but now only computed once for the whole image. Afterwards we take crops of
the feature maps and use those as an input to our fully connected layers. The main difference
is omitting the redundant calculations done in (A) while computing the feature maps, but
this adds up. If one considers the crop window to be of size n x n, the amount of calculations
done in the convolutional layers scale down by approximately a factor n % n/4. This would
result in around 2500 times less calculations for the 100x100 pixel windows. Note that the
amount of calculations in the fully connected layers will remain the same, since a class has to
be computed for every pixel in 1.

We believe this proposed method can mean a huge improvement in computation efficiency
and yield the same performance result. Care must be taken when one would implement the
pooling layers, which can result in different feature maps using method (A) or (B), while we
believe this would not affect the performance much, research should prove this.
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Chapter 4

Experimental Results

To asses the performance of our algorithm we will treat it as if it is a fully automated diagnostic
tool, this means no human validation is used after the classification stage.

The algorithm is analyzed in two stages, the ability to localize the erythrocytes and the
ability to diagnose an image, which means to estimate the parasitemia (amount of infected
erythrocytes to total amount of erythrocytes).

Two human experts are shown 10 blood smear images captured by the smartphone based
microscope. These images are enhanced using image editing software, where changes to
brightness and contrast are made to make the parasites more visible for the human experts.
Note that the original images are used for the algorithm evaluation. Expert 1 (5 years work
experience) counted all erythrocytes manually using a tally counter, as if the image was viewed
through a microscope. Expert 2 (4 months research experience) used computer software to
manually annotate all erythrocytes and retrieved the counts from this result. After counting,
the amount of infected erythrocytes per image are determined by both the experts. After this
manual step, the same 10 images, now annotated with all erythrocyte centroids having a red
dot, is shown to the experts and verified as the ground truth. For the infections we are not
able to establish this ground truth due to the poor image quality, uncertain cases will always
persist even after careful inspections.

4-0-1 Localization Results

For the first stage, the ability to correctly localize the erythrocytes we will make use of two
performance measures, the precision and sensitivity. Precision will depict the amount of
erythrocytes among all identified spots by the network. Sensitivity will depict the amount of
erythrocytes localized among all erythrocytes annotated in the ground truth image.

Procision — TP Sonsitivity — L
TeCZSZOn—iTP_i_FP €n822U2y—7TP+FN
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True positive (TP) is a localized centroid also annotated in the ground truth. False Positive
(FP) is a localized centroid not annotated in the ground truth. False Negative (FN) is a
centroid annotated in the ground truth but not localized by the network. For all these binary
measures above, the hits and misses of the network, we stick to a small radius around the
annotated ground truth, if a localized centroid is close enough to an annotated centroid it
’hits’ and count as a TP, if it too far off it 'misses’ and counts as a FP.

It is of very high importance to have a high sensitivity since all found locations will be the
input for classification stage, missed erythrocytes could mean missed infections. Besides, high
precision is also needed to estimate the parasitemia correctly.

Results of the localization stage of all 10 images are shown table 4-1.

Table 4-1: Erythrocyte localization results of the algorithm against the ground truth for 10

images
Image # gj;:}i (j)c'ffl‘:elzh IA)legéZf:lttl};?s Precision | Sensitivity
1 151 150 98.00% 97.35%
2 149 155 94.84% 98.66%
3 132 132 96.97% 96.97%
4 185 193 94.82% 98.92%
5 87 96 90.63% 100.00%
6 7 81 90.12% 94.81%
7 93 104 85.58% 95.70%
8 129 141 87.23% 95.35%
9 141 146 96.58% 100.00%
10 128 140 87.14% 95.31%

The average precision has a mean of 92.21 % with a standard deviation of 4.60 %, the average
sensitivity reaches a mean of 97.31 % with standard deviation of 1.99 %. As being said the
sensitivity is the most important measure and scores on 9 out of 10 samples above 95 %,
which is the lower bound to be an applicable diagnostic [WHO, 2000]. The precision is also
reasonable. Most mismatches are found at areas where erythrocytes are clustered, which is
a well known problem where other researches devote a lot of energy to [Ross et al., 2006].
This approach does not need extra steps to solve this problem, which is a nice advantage over
other solutions. The solution can probably be improved by adding more training samples
containing overlapped erythrocytes to the training database.

4-0-2 Diagnostic Results

The results of the algorithm at diagnosing an image, which means first localizing the ery-
throcytes and afterwards classifying them accordingly is compared against the two experts.
The results are shown in table 4-2, as an illustrative example the result of one of the images
is shown in figure 4-1, please note that the right part of the image, showing the single ery-
throcyte images along with their respective class scores, only shows a small selection of all
healthy erythrocytes.
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Infected Erythrocytes Possible infections

0.9520 0.992 0.5942 0.6933

Healthy Erythrocytes

0.0238  0.0096 0.0215  0.0065
Input Localization Result Classification Result

Figure 4-1: Erythrocyte localization and classification result of image 9, from left to right; the
input image, the found locations annotated with a red dot and a review of the classification
result, showing the 4 infected erythrocytes (confidence scores greater than 0.9), 4 erythrocytes
with possible infections (scores above 0.5 but below 0.9) and 4 examples of healthy erythrocytes
with low scores, note that there are many more of these healthy erythrocytes but only 4 are shown
in this figure

The result of image 9 shown in figure 4-1 yields interesting information. The algorithm has
found 4 erythrocytes being infected with high confidence, 4 erythrocytes in between both
classes and 138 marked as healthy with high confidence. Expert 1, with most work experi-
ence from both experts, annotated 2 erythrocytes as infected. The 2 infected erythrocytes
annotated by the expert, match with those erythrocytes that have the highest confidence score
given by the algorithm. Even though there is a difference between the number of infected
erythrocytes given by the algorithm and the expert, the infected annotations from the expert
are at least a subset of the algorithms infected annotations. This result is also observed in
other images, where experts and algorithm disagree on numbers, often the annotated infected
erythrocytes by the experts are a subset of the algorithms annotations.

Table 4-2: Diagnosis Results of two human experts versus algorithm

Amount of Erythrocytes Infected Erythrocytes Parasitemia
Image # | Expert 1 | Expert 2 | Algorithm || Expert 1 | Expert 2 | Algorithm || Expert 1 | Expert 2 | Algorithm
1 112 150 150 3 3 1 2.68% 2.00% 0.67%
2 118 152 155 2 4 4 1.69% 2.63% 2.58%
3 116 134 132 1 4 3 0.86% 2.99% 2.27%
4 177 189 193 0 2 4 0.00% 1.06% 2.07%
5 81 88 96 1 2 5 1.23% 2.27% 5.21%
6 65 7 81 4 6 6 6.15% 7.79% 7.41%
7 91 94 104 3 4 5 3.30% 4.26% 4.81%
8 123 132 141 3 6 6 2.44% 4.55% 4.26%
9 125 143 146 2 5 4 1.60% 3.50% 2.74%
10 128 130 140 1 1 5 0.78% 0.77% 3.57%

To compare the results between the individual experts and the algorithm , one observes
the relation between the results of expert 1 (A), expert 2 (B) and the algorithm (C). The
covariance, correlation coefficient and the Root Mean Squared Error (RMSE) is computed
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between A-B, A-C and B-C. Relations are computed on the total number of erythrocytes
annotated, total number of infected erythrocytes annotated and the estimated parasitemia in
the blood smear. The results are shown in table 4-3.

Table 4-3: Diagnostic result comparison of expert 1 (A), expert 2 (B) and the algorithm (C).
Relation between each participant is given by the covariance, correlation coefficient and Root mean
Squared Error (RMSE). Relations are computed on the total number of erythrocytes annotated,
total number of infected erythrocytes annotated and the estimated parasitemia from table 4-2

Covariance | Corrrelation | RMSE

A-B 971.18 0.93 19.18

# Erythrocytes | A-C 953.80 0.96 22.09
B-C 1100.87 0.99 6.31

A-B 1.56 0.73 2.02

# Infections A-C 0.33 0.18 2.85
B-C 0.77 0.30 1.90

A-B 0.03 0.90 1.40%

Parasitemia (%) | A-C 0.02 0.65 2.08%
B-C 0.03 0.73 1.45%

The erythrocyte localization performance was already determined against the ground truth,
which gave good results. Compared to the experts it is also positive, from the results shown in
table 4-3 we can conclude the correlation is stronger between the algorithm and the individual
experts than the experts with each other, which indicates a nice in-between performance.

In the infection classification stage our performance is unfortunately deficient, looking at ta-
ble 4-3. The scores are not enough in agreement with the human experts to be applicable
as an automated diagnosis system. The foremost reason for this result could well be the
size of the training data set, while there is no hard rule for a minimum dataset size, most
neural networks start to perform well with a database of a few thousand samples per class
[Ciresan et al., 2012b]. We only have around 50 samples (not augmented) of infected ery-
throcytes in our database, acquiring more examples of infected erythrocytes should result in
a better trained network with higher accuracy.

From closer inspection of the full results in table 4-2 we can see the algorithm has a excess
of erythrocytes marked as infected, in 9 out of 10 cases compared to expert 1 and in 4
out of 10 compared to expert 2. This is essentially not a bad thing, proposed in figure 3-1
there is a possibility for human expert validation after the classification stage. We rather see
the algorithm returning too much erythrocytes as infected which can be easily checked and
discarded by an expert than the algorithm missing infections.
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Discussion

The recent developments by the OSMD project can mean a big improvement to the avail-
ability, readiness and costs of malaria diagnosis The low-cost smartphone based micro-
scope system should enable in-the-field optical malaria diagnosis in areas where they cur-
rently lack proper diagnostic tools. But the diagnosis problem is a two-fold, not only
proper equipment is lacking but experienced personnel is also scarce [Carpenter et al., 1991]
[Uzochukwu et al., 2009] . The accuracy of optical malaria diagnosis is heavily depen-
dent on the expertise and reader technique of the microscopist. [O’Meara et al., 2006].
To overcome one of the biggest obstacles of this system and microscopy diagnosis in gen-
eral, an automated diagnosis tool is proposed. Such a system is not new, various algo-
rithms have been proposed for the quantification of parasites in stained thin blood smears
[Linder et al., 2014][Diaz et al., 2009][Di Ruberto et al., 2002][Ross et al., 2006] However, all
these algorithms are based on high quality images captured using digital cameras coupled
to high-end laboratory microscopes with extremely even illuminations due to Koéhler illumi-
nation [Society, 1894]. We have shown that the images from the low-cost smartphone based
microscope are of too low quality to be analyzed with these conventional algorithms, and so
the need for smarter algorithms arises.

In this thesis we presented an automated malaria diagnosis algorithm that analyzes smart-
phone acquired blood smear images. The problem is split in two stages, the first stage is
to localize all erythrocytes so their locations and total number is known, hereafter in the
second stage the erythrocytes are classified as either healthy or infected. This algorithm can
serve as an independent diagnostic tool to calculate the parasitemia of a patient, which is an
indication for the severeness of the disease. It can also serve as a diagnostic aid for human
experts to lower workload and increase accuracy.

By posing the problem in such a way to enable the use of Convolutional Neural Networks
for the localization of erythrocytes, the problems that arose due to low quality images with
uneven lightning, were solved. Where previous studies used tools like morphological operators
or edge detection algorithms, as explained in section 2-3, these are shown to be insufficient for
the smartphone images. The visual appearance of different erythrocytes in the same smart-
phone image differ too much as opposed to those from the high-end light microscope where
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all erythrocytes closely resemble each other. A Convolutional Neural Network is trained to
recognize these different erythrocytes and to base its judgment on a deeper understanding of
the shape, texture and colour of the erythrocyte rather than a difference in pixel intensity
as a morphological threshold method would. Via this more advanced method, not only was
the network able to localize the erythrocytes in the low quality images with a high average
sensitivity of 97.31 % and precision of 92.21 %, but was also able to deal with clustered and
overlapping erythrocytes without extra processing steps as other researches have implemented
[Linder et al., 2014][Diaz et al., 2009][Di Ruberto et al., 2002][Ross et al., 2006]. This pro-
vides a great perspective for the use Convolutional Neural Networks in the erythrocyte lo-
calization problem. Not only to employ this algorithm in the low-quality smartphone based
microscope system. But also to work in an on-field setting where blood smears are often of
sub-optimal quality compared to the laboratory setting most researches aim at.

The way we use the Convolutional Neural Network as a pixel classifier to localize multiple
objects is not a common practice, actually is not to be found in the literature in this way. One
of the downsides is the huge amount of data to be processed this way, where other researches
use high quality, proper smeared blood samples the need for this more complex algorithm
is absent. However, there is a lot of improvement to be made concerning efficiency. The
proposed theory given in section 3-2 can mean huge improvements to the algorithm efficiency,
this combined with pooling layers and the sparse network characteristic from the ReLu ac-
tivations can mean very fast computing networks. Once these networks efficiency matches
the conventional techniques they could provide benefits also for the high quality images. In
sub-optimal quality blood smears that show more clustering or overlap of erythrocytes, we
believe CNNs could provide the solution, however a detailed comparison using the same input
data and different algorithms should prove this first.

The second phase, the classification of erythrocytes performed inadequate. The comparison
with the human experts showed too little agreement, specifically, a correlation coefficient
of 0.65 with expert 1 and 0.73 with expert 2 on the estimated parasitemia. Note must be
made that the correlation of 0.90 between both experts is also considered quite low, as other
researches report correlations between 0.97 and 0.99 [Diaz et al., 2009] [Le et al., 2008]. This
lower correlation can be the cause of difference in experience between both the experts but
is more likely to be the result of the low image quality, since both experts reported to feel
uncertain in classifying particular erythrocytes due to the image quality.

On a positive note, the classification network annotated more erythrocytes as infected com-
pared to the experts in 9 out of 10 cases compared to expert 1 and 4 out of 10 compared
to expert 2. Closer inspection showed that the experts annotations were often subsets of the
algorithms annotations. This is an encouraging result to use the network as an diagnostic aid,
since the excess of infections can be easily checked by experts while still having confidence
that no infections are missed by the algorithm.

The best result so far on erythrocyte classification is reported by Diaz [Diaz et al., 2009],
which classifies erythrocytes based on infections and also in life stages (ring/trophozoite or
schizont infection). Diaz uses machine learning in the form of a SVM (support vector ma-
chine) and MLP (multilayer perceptron neural network) to perform the classification. A big
difference with Diaz and a very probable cause for our lower performance is the size of our
training data set, with only 50 (not augmented) samples of infected erythrocytes, compared to
over 600 samples of Diaz, the training set is very small to train a CNN [Ciresan et al., 2012b].
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Another big difference is the image quality, with various luminance, smudged texture and
edge distributions, and variations in saturation levels per individual erythrocyte from the
same smartphone input image, the classification task becomes harder. We do believe con-
volutional neural networks could provide the outcome for this problem, especially Cirecsan,
[Ciresan et al., 2012a] shows promising results on the classification of traffic signs that deals
with similar differences in detail and contrast using a multi-column deep neural network.
Cirecsan has around 1000 training images per class. Future work should prove the increase
in performance when using a larger training database. Also with an increase in size of the
training database different possibilities open up for deeper convolutional neural networks,
multi-column networks and other state-of-the-art solutions.
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Chapter 6

Conclusion

Smartphone microscope technology has great potential to lighten the burden of malaria in
remote sub-Saharan Africa. However, the accuracy of optical malaria diagnosis depends on
the human expert. We propose an automated diagnostic system that can exclude the human
expert from the process or serve as an aid for an expert to lower workload and improve
accuracy. The images made by the low-cost smartphone based microscope are of low quality
compared to the usual images captured in laboratory settings with digital cameras coupled
to high-end light microscopes. We propose an algorithm, based on convolutional neural
networks, that can deal with the problems inherent in low quality images. We have shown
great performance in localizing the erythrocytes, at least on-par with two human experts. The
classification performance is considered to be inadequate because of its too low agreement with
the human experts. We must, however, note that the experts were also novices to the diagnosis
based on these images and no ground truth could be established due to the image quality. The
algorithm efficiency was of low priority up to this point but should be considered to enable the
algorithm to operate on a smartphone. We have proposed a method to considerably increase
efficiency that should be implemented in future work.

To conclude and summarize our contributions. We have investigated and proposed a solution
to the diagnosis of malaria in low quality blood smear images. The quality of these images
presented problems that conventional techniques of similar researches on automated malaria
diagnosis could not solve. We have split the problem in two parts, first localization of erythro-
cytes and secondly the classification of these as healthy or infected. By using the framework
proposed in this thesis, so that convolutional neural networks can be used for the localization
of erythrocytes we believe to have found a suitable solution for the first part. The second
part, the classification, is performing inadequate to serve as an automated diagnosis tool.
Based on other sources in the literature, we do believe that the convolutional neural network
provided here can offer the solution to this problem. Before the peer review journal will be
published, new experiments will take place. These should prove the increase in performance
with larger training data sets.

The battle against the devastating burden of malaria will continue. Early and accurate
diagnosis is one of the keystones in the fight against this disease [WHO, 2016]. This thesis,
as a part of the OSMD project at the TU Delft, is a component in the development of a tool
that will bring a healthy and malaria-free Africa one step closer.
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Appendix A

Appendix A: Journal paper:

High sensitive malaria diagnosis using
convolutional neural networks in an
on-field setting

The following journal is written in parallel to this thesis and is aimed to be published in the
near future. Please note that before publication, new experiments will be carried out and
therefore, the content and results of this journal is subject to change.
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