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H I G H L I G H T S

• A learning-based framework is proposed for energy- and comfort-driven maintenance.

• Continuous and discrete states of heating, ventilation, and air conditioning are managed.

• Continuous (energy) and discrete (maintenance) controls are jointly optimized.

• A dual formulation accounts for the need to estimate the equipment status online.

• Active learning (joint control and estimation) achieves the best economic performance.

A R T I C L E I N F O

Keywords:
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A B S T R A C T

In smart buildings, the models used for energy management and those used for maintenance scheduling differ in
scope and structure: while the models for energy management describe continuous states (energy, temperature),
the models used for maintenance scheduling describe only a few discrete states (healthy/faulty equipment, and
fault typology). In addition, models for energy management typically assume the Heating, Ventilation, and Air
Conditioning (HVAC) equipment to be healthy, whereas the models for maintenance scheduling are rarely
human-centric, i.e. they do not take possible human factors (e.g. discomfort) into account. As a result, it is very
difficult to integrate energy management and maintenance scheduling strategies in an efficient way. In this
work, a holistic framework for energy-aware and comfort-driven maintenance is proposed: energy management
and maintenance scheduling are integrated in the same optimization framework. Continuous and discrete states
are embedded as hybrid dynamics of the system, while considering both continuous controls (for energy man-
agement) and discrete controls (for maintenance scheduling). To account for the need to estimate the equipment
efficiency online, the solution to the problem is addressed via an adaptive dual control formulation. We show,
via a zone-boiler-radiator simulator, that the best economic cost of the system is achieved by active learning
strategies, in which control interacts with estimation (dual control design).

1. Introduction

The economic cost of buildings is largely dependent on control and
maintenance of Heating, Ventilating and Air Conditioning (HVAC)
equipment [1]. For example, neglecting any performance degradation
or even faults in HVAC will irredeemably lead to increased costs for
facility managers and building owners. While control decisions have a
direct impact on energy consumption [2], literature has shown that the

effect of performance degradation is more complex and essentially
twofold: firstly, increased consumption of resources in order to com-
pensate for the system inefficiency [3]; secondly, failure to meet the
given set points leading to decreased comfort within the building (with
loss of productivity, complaints, etc.) [4]. This human-centered impact
adds to the cost of maintenance, which should be scheduled optimally
in such a way to minimize the overall adverse economic effects. In a
nutshell, joint control and predictive maintenance is a complex and
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largely unsolved optimization problem involving the joint design of
estimation and control. In this work, we formulate such problem as a
dual control problem: the term ‘dual’ refers to the twofold action of the
control action, which is in charge of both running the HVAC system
toward optimal performance and of reducing the uncertainty when
estimating HVAC degradation. We address two types of actions: a
continuous action involving the selection of the HVAC set point (e.g.
water temperature set point for boilers), and a discrete action de-
termining maintenance (e.g. repairing or not the boiler). Due to the
thermostatic mechanism of HVAC operation, we embed such me-
chanism in a hybrid dynamical system with continuous and discrete
dynamics, thus requiring the solution of a hybrid control problem.

Because it involves the monetization of HVAC performance and
discomfort, the formulation and the solution of such control problem is
relevant and, to the best of the authors’ knowledge, novel. Previous
researches have analyzed smaller aspects of the global problem,
namely: (a) optimization of HVAC energy consumption and thermal
comfort (with no focus on maintenance); (b) performance monitoring,
i.e. fault detection and identification of HVAC equipment (with no focus
on scheduling maintenance); (c) scheduling HVAC maintenance (with
no focus on the human-centered impact of decreased comfort). In the
following, we review these three research directions.

1.1. Related works in optimization of energy/comfort

With respect to optimization of energy consumption and thermal
comfort, several strategies can be found in literature to predict the ef-
fect of changing the control strategy on indoor comfort [5], or energy
consumption [6], or both [7]: typical criteria driving the optimization
include maximizing economy while satisfying power demand [8], op-
timizing components sizing [9], maximizing self-consumption [10],
balancing natural ventilation and air conditioning [11], and many more
techno-economic criteria [12] (see also references therein). The terms
‘human-in-the-loop optimization’ [13], or ‘comfort-driven optimization’
[14], or ‘ occupancy-based optimization’ [15] are sometimes adopted,
referring to the fact that the energy demand is ultimately driven by
human needs [16]. See also the recent review [17]. In [18], a data-
driven approach for minimization of HVAC energy consumption and
room temperature ramp rate is presented. Intelligent glazed facades is
the subject of [19], with emphasis on the influence of different control
policies on energy and comfort performance. The authors in [20] apply
particle swarm optimization to optimize the set points based on some
comfort zones. In [21] the operation of variable air volume HVAC is
optimized with respect to comfort and indoor air quality. The influence
of thermostat operation on energy consumption and thermal comfort is
studied in [22,23] focuses on integration of multiple HVAC systems,
[24] studies how to optimize simultaneously several HVAC set points,
and [25] studies cooperation among intelligent HVAC systems. Co-
operative HVAC control has lead to studying the effect of HVAC op-
eration at the grid level, such as demand response [26] or other an-
cillary services [27]. All these approaches show, sometimes also via
real-life experiments, that relevant energy savings can be achieved
without compromising thermal comfort. However, in these and other
related works the degradation of HVAC components is neglected to a
large extent: the HVAC system is assumed to work as good as new, thus
neglecting the possible waste of energy and loss of comfort due to
HVAC degradation.

1.2. Related works in performance monitoring

On the other hand, much literature has been focusing on HVAC
performance monitoring, both at a system-level or at a component-level
[28]. System-level approaches describe the HVAC system as a network
of interconnected subsystems [29]: for every subsystem, a monitoring
agent is designed that combines local and transmitted information from
its neighboring agents in order to provide a decision on the type and

location of the faults [30]. In the presence of uncertainty, decisions can
be based on stochastically robust thresholds [31], adaptive thresholds
[32], or on state estimation techniques [33]. Centralized (in place of
distributed) strategies are also possible, like the data-driven automated
building HVAC fault detection methods in [34] and the system identi-
fication-based method in [35]. At a component-level, mainly boilers
and air handling units have been studied. For boilers, in [36] a model
was developed to predict the seasonal efficiency based on the efficiency
at full load evaluated at return water mean temperature. In [37] heat
and mass transfer analytical models of a condensing heat exchanger
system were developed to predict the boiler efficiency according to
design parameters choices: the model in [38] includes flue gas outlet
temperature, supply water temperature, water vapor mole fraction, and
condensation rate of water vapor. A dynamic relation between boiler
efficiency and state of the heat exchange can be derived from the model
in [39]. In [40] algorithms for real-time monitoring of condensing
boilers have been developed. For air handling units, the work in [41]
focuses on monitoring techniques as part of the on-going commis-
sioning process. The set of expert rules derived from mass and energy
balances in [42] is able to detect faults in air handling units, whereas
[43] adopts Kalman filtering techniques instead of expert rules. A de-
tailed overview of fault detection and diagnosis methodologies on air-
handling units is given in [44]. What is missing in current fault de-
tection and diagnosis methodologies is a complete monetization ana-
lysis taking into account the balance between costs due to loss of per-
formance and costs due to maintenance actions. A work partly going in
this direction is [45], which adopts a hybrid approach utilizing expert
rules, performance indexes and statistical process control models: in
this way it is possible to include increased energy consumption due to
HVAC degradation. Summarizing, most works on fault detection and
diagnosis do not investigate the whole economic aspects of degraded
HVAC operation.

1.3. Related works in scheduling maintenance

In the category of maintenance, the authors in [4] develop com-
missioning strategies to identify cost-effective operational and main-
tenance measures in buildings to bring them up to the optimum op-
eration. The aim of [46] is to early plan maintenance interventions for a
multi-components system based on stoppages characteristics, system
remaining useful life and components criticalities. Retrofitting is the
focus of [47]. The approach in [48] focuses on operational and cleaning
costs of a biomass boiler. In [49] the energy and economic performance
of energy recovery ventilators is studied as a function of parameters
such as climate, building design and HVAC system parameters. An
overview of procedures about continuous commissioning in office
buildings is given in [50]: interestingly, this work discusses how to
select good models not only for maintenance, but also for model-based
control. However, rarely these two aspects are connected into a human-
centric (e.g. comfort-driven) maintenance strategy: notable exceptions
are [51], where it is recognized that discomfort plays an important role
in determining when the maintenance is performed, and [52], that
investigates the maintenance characteristics of HVAC system that affect
occupants’ satisfaction. However, what is missing in these works is re-
cognizing the role of control in reducing uncertainty (e.g. uncertainty
around efficiency parameters). To clarify this point let us observe this:
the use of identification techniques as in [52] to establish relationships
among quantities, e.g. regression models, is a passive learning method;
on the other hand, the use of the control action to improve the fidelity
of the regression models while minimizing HVAC operational costs
(dual control action) is an active learning framework, whose formulation
and solution is still missing.

1.4. Main contribution and originality

In this work we address the gaps in the state of the art by
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considering an active learning framework which is relevant to the
maintenance optimization problem. The monetization model we pro-
pose will incorporate in a comprehensive cost function the operational
costs of HVAC equipment subject to degradation, the human-centered
costs of the fault occurring in the system, and the costs of maintenance
actions. The following points are covered in this work that, to the best
of the authors’ knowledge, have not been covered in the state of the art:

• The control, the monitoring, and the maintenance problems are
recast in the same optimization framework via a dual control for-
mulation (joint design of control and estimation).
• The thermostat hysteretic behavior is embedded as hybrid dynamics
of the system (with continuous and discrete states). In addition, both
continuous and discrete control actions are considered.
• Comparisons between passive learning strategies and active learning
strategies are provided.

In order to keep the optimization problem tractable, assumptions
and simplifications have been made when describing the joint control/
estimation problem: such assumptions and simplifications have been
studied by the authors in such a way to retain the main features of the
HVAC problem. It is worth mentioning that the proposed framework is
validated (cf. Section 7) on a zone-boiler-radiator simulation environ-
ment developed within the European Union project ‘Advanced Methods
in Building Diagnostics and Maintenance (AMBI)’ (FP7-PEOPLE-2012-
IAPP – Industry-Academia Partnerships and Pathways).

The rest of the paper is organized as follows: in Section 2 the HVAC
and room models are given; in Section 3 the efficiency model is given,
whereas in Section 4 all the continuous/discrete dynamics are recast as
a hybrid system. The role of uncertainty is covered in Section 5, and the
proposed adaptive approach is in Section 6. Section 7 gives the simu-
lation results, and Section 8 concludes the work.

Notation: The notation is quite standard as explained in Table 1. The
subscripts B R Z, , refer to boiler, radiator, and zone, respectively. The
subscripts rw sw, stand to return and supply water. The numerical
values of such parameters used for simulation purposes are reported in
the Appendix.

2. HVAC and room models

In the following we provide the details of the model used for
synthesis of the maintenance strategy. We consider a single zone whose
HVAC consists of a radiator driven by a boiler. The model has been
selected as a trade-off between depth of description of the thermal/
energy dynamics and computational feasibility of the maintenance
strategy: Dynamics of boiler, radiator and zone are presented in order.

2.1. Boiler

We will focus on a condensing boiler which, whenever the return
temperatures from the heating system is below the dew temperature of
the flue gas, can recover the latent heat of water vapor in the flue gas so
as to achieve higher efficiency than traditional boilers. Above the dew
temperature, no latent heat is recovered and the boiler will operate in a
non-condensing mode [53]. We assume that the boiler has no dynamics,
which amounts to assuming being in steady-state operation. This is a
reasonable assumption, since most boiler models available in literature
are static models [40]. The input provided to the boiler is the supply
temperature set point Tsw, which determines the power (on the water
side) necessary to reach the set point, according to

=p c w T T( )out w w sw rwB (1)

where cw is the specific heat of water in kJ/kg °C], wwB is the boiler mass
flow rate in [kg/s],Tsw andTrw are the temperatures in [°C] of the supply
and return water exiting and entering the boiler, respectively. Let us
distinguish between the power on the water side and the power on the

gas side, by calling them pout and pin, respectively. The output power of
the boiler in [kW] (on the water side) is =p T p( )out rw in, where pin is the
input power to the boiler in [kW] (on the gas side) and T( )rw is the
(dimensionless) efficiency curve depending on Trw (an example of this
curve is shown in Fig. 1).1 The boiler mass flow rate wwB and the firing
rate will be assumed to be constant.

2.2. Radiator

The radiator is modeled as a first-order system as follows

=
+ + =

=

+( )c V T
c w T T K T VALVE

VALVE

( ) if 1

if 0
w w R rw

w w sw rw R Z
T T

R

R

2
R

R R
rwR sw

(2)

where w is the density of the water in [kg/m3], VR is the volume of the
radiator in [m3], wwR is the water mass flow rate into the radiator in
[kg/s], =K h AR R R is the heat transfer coefficient in [kW/°C], where AR

Table 1
Table of symbols.

Explanation Symbol Unit

Boiler supply water temperature Tsw [°C]
Boiler return water temperature Trw [°C]
Radiator return water temperature TrwR [°C]
Dew point temperature Tdew [°C]
Room (zone) temperature TZ [°C]
Neighbor room temperature Tn [°C]
Outside temperature To [°C]
Desired temperature Td [°C]

Boiler mass flow rate wwB [kg/s]
Radiator mass flow rate wwR [kg/s]
Shunt mass flow rate wwS [kg/s]

Percentage shunt mass flow rate cS [%]

Input power of boiler (gas side) pin [kW]
Output power of boiler (water side) pout [kW]
Boiler efficiency curve T( )rw –

Specific heat of water cw [kJ/kg °C]
Density of water w [kg/m3]
Specific heat of air ca [kJ/kg °C]
Density of air a [kg/m3]

Volume of the radiator VR [m3]
Area of the radiator section AR [m2]
Radiator heat transfer coeff. KR [kW/°C]
Convection heat transfer coeff. hR [kW/m2 °C]
Room area with outside Ao [m2]
Room area with neighbors An [m2]
Room-to-out. heat transfer coeff. ho [kW/m2 °C]
Room-to-room heat transfer coeff. hn [kW/m2 °C]

Thermostat hysteretic threshold h [°C]
Valve quantization –
Boiler degradation rate [s−1]
Forgetting factor [s−1]

Efficiency parameter 1 [°C−1]
Efficiency parameter 2 –
Efficiency parameter 3 [°C−1]
Variance radiator noise R

2 [kW2]
Variance zone noise Z

2 [kW2]
Variance efficiency noise B

2 –

Variance 1 noise 1
2 [°C−2]

Variance 2 noise 2
2 –

Variance 3 noise 3
2 [°C−2]

1 The reason which the x-axis in Fig. 1 is given in Fahrenheits, is that most
boiler manufactures provide the efficiency curve with this unit. Nevertheless,
all the calculations in this work are carried out in Celsius.
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is the surface area of the radiator and hR is the convection heat transfer
coefficient of the radiator in [kW/m2 °C]. In addition, TrwR represents
the temperature in [°C] of the return water out of the radiator, andTZ is
the temperature in [°C] of the air in the zone. The quantity R represents
a stochastic process noise. According to (2), the heat exchange with the
room occurs via the difference between the zone temperature and the
radiator mean temperature.

Assuming a heating setting (late fall or winter), we model the
thermostatic control in the radiator as follows:

=
> +

VALVE
T T T h

T T T h
1 if 0 and or

if 0 and
0 otherwise

Z Z d

Z Z d
(3)

where = =CLOSED OPEN0, 1. In other words, the valve can be fully
open or fully closed, leading to raising or decreasing temperature
(thermostat hysteretic behavior).

Remark 1. It is also possible to model multiple valve positions (not only
open or closed), at the expense of complicating the model, i.e.

=

> + +

> + +

> +

VALVE

T T h T T h
T T h T T h

T T h T T h
T T h T T h

T T T T h
T T h T T

1 if 0 and ( 1) / or
if 0 and ( 1) /

2/ if 0 and / 2 / or
if 0 and 2 / /

1/ if 0 and / or
if 0 and /

0 otherwise

Z d Z d

Z d Z d

d Z d

d Z d

d Z d

d Z d
(4)

where is the discretization step of the valve. This model is not
considered to keep the control setting as simple as possible.

The radiator receives water from the boiler: the presence of a ra-
diator shunt splits the mass flow rate as

=
= +
=

w w w
w VALVE t c VALVE t w
w c VALVE t w

(1 ( ) ( ))
(1 ) ( )

w w w

w S w

w S w

S B R

S B

R B (5)

where wwS is the water mass flow rate of into the shunt in [kg/s] and cS
is the minimum percentage of flow circulating in the shunt. In other
words, even if the radiator valve is fully open, a mass flow rate c wS wB
will circulate in the shunt. As shown in Fig. 2, the return water to the
boiler is given by the mixing between the return water from the radiator
and the supply water,

=
+

T
w T w T

wrw
w rw w sw

w

R R S

B (6)

2.3. Zone

The zone is modeled as a first-order system interacting with the
outside air, with the neighbor zones, and with the radiator

=
+

+ +

=

+ + =

+( )c V T
h A T T h A T T

K T

VALVE

h A T T h A T T VALVE

( ) ( ) if 1

( ) ( ) if 0

a a Z Z

o o o Z n n n Z

R
T T

Z Z

o o o Z n n n Z Z

2
rwR sw

(7)

where a is the density of the air in [kg/m3], VZ is the volume of the
zone in [m3], ca is the specific heat of air in [kJ/kg °C], ho and hn are the
convection heat transfer coefficient in [kW/m2 °C] of the indoor air
with outside and neighbor zones, respectively, Ao and An are the sur-
face in [m2] of the zone with outside and neighbor zones, respectively.
In addition, To and Tn are the temperatures [°C] of the outside and
neighbor zone air, respectively, while the quantity Z represents a sto-
chastic process noise.

3. Boiler efficiency

The efficiency of the boiler is approximated as a piecewise affine
function of Trw, similarly to what shown in Fig. 3. The approximation
range is 30–71 °C (corresponding to 90–160 °F):

= +
+ >

T T T T
T T T

( )
¯ ¯ if
¯ ¯ ifrw

rw rw dew

rw rw dew

1 2

3 4 (8)

with + = +T T¯ ¯ ¯ ¯dew dew1 2 3 4 for continuity of the efficiency curve. In
order to reduce the number of parameters from four to three, we ex-
plicitly make use of the continuity condition, so that the previous ex-
pression can be written as

= +
+ + >

T T T T
T T T T T

( ) if
( ) ifrw

rw rw dew

rw rw dew rw dew

1 2

1 2 3 (9)

The curve (9) has not only less parameters, but it is also continuous

Fig. 1. Condensing boiler efficiency curve. As a condensing boiler can recover
the latent heat of water vapor in the flue gas, its efficiency is higher low water
temperature.

Fig. 2. Radiator shunt. The radiator operation depends on its valve which in
turn is open/closed via the thermostatic control.

Fig. 3. Piecewise affine approximation of the efficiency curve (in the range
90–160 °F).

S. Baldi, et al. Applied Energy 252 (2019) 113478

4



by construction. The dew point Tdew is the temperature at which the
condensing process will occur: as commonly done by all boiler manu-
facturers, this temperature is given in terms of the return water tem-
perature even if, from a physical point of view, it should be calculated
in terms of the flue gas temperature [39]. The dew point is commonly in
the range T 54–58rw °C (slightly depending on the flue gas composi-
tion). The temperature of the return water Trw is calculated as in (6). In
the following, it is described how the parameters of the curve (9)
change with time as a consequence of performance degradation.

3.1. Boiler degradation and maintenance

In order to include performance degradation we consider the fol-
lowing multiplicative degradation

=T t d t T( )( ) (1 ( )) ( )(0)rw rw (10)

where d t( ) [0, 1] indicates the level of degradation from ‘new’
=d t( ( ) 0) to ‘completely faulty’ =d t( ( ) 1) condensing boiler. The mul-

tiplicative degradation (10) is used to model the deleterious effects of
processes like deposition, erosion and corrosion. The formulation (10)
leads to the degradation model

=
+

+ + >

T t
d t T d t T T

d t T d t d t
T T

T T

( )( )
(1 ( )) (1 ( )) if

(1 ( )) (1 ( )) (1 ( ))
( )

if

rw

rw rw dew

rw

rw dew

rw dew

1 2

1 2 3

(11)

Remark 2. In other words, the linear-in-the-parameter efficiency model
(9) leads to a degradation model (11) whose parameters

d t d t d t(1 ( )), (1 ( )), (1 ( ))1 2 3 evolve linearly with the
degradation d t( ). So, these parameters (which are typically unknown)
can be estimated using standard state estimation techniques (cf. Section
5).

We assume an exponential incipient degradation

=d t e( ) 1 t (12)

where > 0 is the degradation rate, i.e. the rate of deposition, erosion
and corrosion deteriorating the efficiency of the boiler. The relation
(12) implies that the half-life of the boiler, i.e. the time necessary for
the efficiency to fall to one half of its initial value is ln(2). Most
condensing boilers have half-life time constant of several months or a
few years. The exponential incipient degradation (12) results in the
following degradation model for the parameters

= + =
= + =
= + =

t t
t t
t t

( ) ( ) , (0)
( ) ( ) , (0)
( ) ( ) , (0)

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

new

new

new (13)

which is a set of first-order filters driven by stochastic noises. The
parameters ,1 2new new and 3new describe the efficiency for a new boiler.

Remark 3. The stochastic noises , ,1 2 3 account for model
inaccuracies, for example if the degradation is not exactly
exponential. Similarly to R and Z , by setting appropriate covariances
for such disturbances, the designer will be able to set to which extent
the model is an approximation of the actual system (the larger the
covariance, the larger the modelling inaccuracies).

3.2. Actions

Two possible actions, namely control and maintenance actions, can
be taken on the system:

• The first type of action is the local continuous control, i.e. setting the
set point for building equipment: in the case at hand, this amounts
to properly setting the supply hot water temperature set pointTsw for
the boiler.
• The second type of action is the maintenance discrete action, i.e. the
repair at a certain time t̄ of the building equipment. In this work we
consider an ideal repair restoring its performance to the initial
performance:

=
=
=

t
t
t

x t MAINT
(¯)
(¯)
(¯)

if (¯)
1 1

2 2

3 3

new

new

new (14)

where x and MAINT are the variables and the set to be used by the
maintenance strategy, as they will be defined later. In other words,
whenever it occurs, the maintenance action is supposed to restore
the state of the boiler to its initial value = [ ]new 1 2 3new new new .

4. Automaton formulation

The boiler-radiator-zone system can be described by a particular
class of stochastic hybrid system. A hybrid dynamical system is an in-
dexed collection of dynamical systems along with some map for
jumping among them (switching dynamical system and/or resetting the
state). This jumping occurs whenever the state satisfies certain condi-
tions, given by its membership in a specified subset of the state space.
The hybrid dynamical system can be described as

= [ , , , , , , ]cH Q A G V C F (15)

with constituent parts as follows

• Q is the set of index states or discrete states.
• = { }q q Q is the collection of controlled dynamical systems, where
each = X f U[ , , ]q q q q is a controlled dynamical system. Here, Xq are
the continuous state spaces, and fq are the continuous dynamics; Uq
is the set of continuous controls.
• = A A X{ } ,q q q qA Q for each q Q , is the collection of autono-
mous jump sets.
• = G{ }q qG Q , where ×G A V:q q q S is the autonomous jump tran-
sition map, parameterized by the transition control setVq, a subset of
the collection = V{ }q qV Q ; they are said to represent the discrete
dynamics and controls.
• = C C X{ } ,q q q qC Q is the collection of controlled jump sets.
• = F{ }q qF Q , where F C: 2q q

S where is the collection of controlled
jump destination maps.
• Finally, = ×X q{ }q qS Q is the hybrid state space of the dynamical
system.

For the problem at hand we have:

• The continuous state spaceXq arises from the room temperature (7),
radiator return water temperature (2) (which can be observed) and
the boiler performance parameters (13) (which have to be esti-
mated).
• The discrete state spaceQ arises from the states of the valve (closed/
open state {0, 1} or, in case of valve with quantized openings, states

…{0, 1/ , ,1}).
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• The autonomous transitionsA are driven by the thermostat behavior
(3) or (4). This defines the mapG : the vector field changes regime,
when the state (room temperature) hits the hysteresis boundaries.
• The controlled transitionsC are driven by the repair of the boiler (11).
This defines the map F : the continuous state (boiler performance
parameters) changes impulsively on hitting prescribed regions of the
state space (maintenance action region).

The hybrid dynamical system can be represented as an automaton as
in Fig. 4: note that the room temperature and radiator return water
temperature evolve continuously, but the performance parameter
evolve discontinuously after repair. The different regimes of the auto-
maton are formally defined as:

Regime valve open

= + +

= + + +

= +
= +
= +

+

+

( )
( )

c V T c w T T K T

c V T h A T T h A T T K T

t t
t t
t t

( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

w w R rw w w sw rw R Z
T T

R

a a Z Z o o o Z n n n Z R
T T

Z Z

2

2

1 1 1

2 2 2

3 3 3

R R R
rwR sw

rwR sw

(16)

Regime valve closed

=
= + +

= +
= +
= +

c V T
c V T h A T T h A T T

t t
t t
t t

( ) ( )
( ) ( )
( ) ( )
( ) ( )

w w R rw R

a a Z Z o o o Z n n n Z Z

1 1 1

2 2 2

3 3 3

R

(17)

In addition, some limits are selected taking into account typical
operating conditions:

Operating conditions

> >

T
T

T T T T T

0, 0, 0
30 70
40 85

, ,

rw

sw

z n o sw rw

1 2 3

(18)

where the constraints have been selected taking into account typical
operating conditions. It is clear that the control actions influence the

transitions and thus the behavior of the hybrid dynamical system. In the
following we will introduce a cost to quantify the performance asso-
ciated to a certain behavior.

4.1. Cost

The operation of the automaton presented in Fig. 4 must be opti-
mized taking into account the following cost:

= + + +C t C t C t C t C t( ) ( ) ( ) ( ) ( ).tot oper fail maint cycl (19)

The four terms are all monetized in €, as explained in the following.

• Operational costsCoper : the first term in (19) is related to the costs of
system operation, which in most cases is simply the cost of energy
consumed by the HVAC system for given time step as function of
observations and inputs. In the boiler case, the energy consumption
is given by pin, i.e. the energy (at the gas side) necessary to reach the
set-point temperature, based on the efficiency of the boiler. As the
boiler degrades its performance, more and more energy will be
necessary to achieve the same set point (for the same return water
temperature). The economic value of this term is derived from the
natural gas price statistics in EU-28 [54], which is 0.07 €/kW h

=C t p t( ) 0.07 ( )oper in (20)

• Failure costsCfail: the second term in (19) is related to the costs due to
improper behavior of the system, which in our case is not following
the desired temperature Td. We focus on zone set points, since in
building domain these are crucial constraints to occupant comfort
and thus productivity. It has been estimated by the Federation of
European Heating, Ventilation and Air Conditioning (REHVA) that
improving indoor environment in office buildings would result in a
direct increase in productivity of 0.5–5%: reduction in performance
is around 4% at cooler temperatures and 6% at warmer tempera-
tures [55]. To the purpose of this study, the failure cost is taken as
the squared distance from the desired temperature

=C t T t T t dt( ) 0.2( ( ) ( )) /fail d Z
2 (21)

where dt is the sample time. The following estimate is made: losses
of 0.2 €per sample time for one degree far from the desired one and
0.8 €per sample time for two degrees far from the desired one, and
so on.
• Maintenance costsCmaint: the third term in (19) is related to the costs
of maintenance actions. We will focus on the maintenance action of
reparation.

=C t( ) 500 at controlled jumpsmaint (22)

as the cost of condensing boiler reparation vary in the range
500–2000 €depending on the brand or output [56].
• Cycling costsCcycl: finally, one last term should be considered in (19)
mainly due to well-posedness reasons

=C t( ) 0.15 at autonomous jumpscycl (23)

In fact, in order to have a well-posed formulation with no chattering
phenomena (high frequency control actions), it is necessary to pe-
nalize any transition caused by autonomous switches (i.e. changes in
the valve). Roughly speaking, assigning a cost to such switches has
an interpretation in terms of avoiding fast cycling, which could
potentially wear out the equipment.

Fig. 4. Automaton associated to the joint energy/maintenance problem: Tit
comprises two regimes (on/off) driven by the thermostat. Each regime contains
continuous dynamics for evolution of temperature and degradation. The
maintenance action is a discrete control that restores the efficiency of the boiler.
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5. Uncertainty

Let us specify which coefficients can be measured and which ones
must be estimated. The known coefficients are:

• The thermostat hysteretic threshold h.
• Properties of fluids (density and heat capacitance of air and water).
• Volumes of boiler, radiator and zone.
• The heat transfer coefficients.
• The exponential decay of the boiler efficiency .

Uncertainty arises from the unknown coefficients in the boiler ef-
ficiency curve (the efficiency of the boiler cannot be known perfectly
and it is thus subject to uncertainty):

• The coefficients ,1 2 and 3 are unknown and must be estimated.

Let us consider a least-squares estimator for the following linear-in-
the-parameter model

=p T c w T T( ) ( )in rw w w sw rwB (27)

where pin is assumed to be measured (from gas side measurements). The
least-squares estimator takes the form

=
=

P
P P P P

¯

(28)

where = = p T c w T T¯ [ ] , ( ) ( )in rw w w sw rw1 2 3 B is the estima-
tion error, T( )rw is the estimate of >T( ), 0rw is a forgetting factor,

= T T T[ 1 ]rw rw dew is the regressor vector, and P is the covariance
matrix of the uncertainty. In order to take into account the error arising
from neglecting the boiler transient, the following stochastic model is
taken

= +T
c w T T

p
( )

( )
rw

w w sw rw

in
B

B

(29)

where B is a stochastic noise. Because the management/maintenance
algorithm is ultimately implemented on a digital controller, we con-
sider the estimator in discrete time in place of (28). After discretization
of (13) using backward Euler and sample time dt, the parameters in

T( )rw are estimated using the stochastic Kalman filter at the end of the
page.

Remark 4. It has to be noted that, despite the fact that the condensing
boiler operates in two modes, a unique estimate ¯ and a unique
covariance matrix P are updated. Because 1 and 2 are shared in
both modes, but 3 can be observed only in the non-condensing mode,
the following estimation strategy is adopted:

• in the non-condensing mode, full-order update (for the three com-
ponents from measurements) and full-order prediction (based on
dynamics for the three components) is performed;
• in the non-condensing mode, reduced-order update (for the first two
components from measurements) and full-order prediction (based
on dynamics for the three components) is performed.

This amounts to assuming that when 3 is not observed its estimate
is only based on the evolution of its dynamics. In fact, 3 will decay
exponentially also when it is not observed (in the condensing mode).
Also, every time a maintenance occurs, we reset the covariance matrix
P to some initial value, i.e. =P t P(¯) new, where t̄ is the same instant as
in (14). This is done in order to reset the a priori knowledge of the
Kalman estimator.

6. Optimization approach

The idea is to adopt the unified framework for optimal control in
hybrid systems [57,58]. The following total discounted cost is con-
sidered

+ + +e C C d e C t e C t[ ( ) ( )] ( ) (¯ )oper fail
i

t
cycl i

i

t
maint i0

¯i i

(30)

where is the discounting factor for the future cost. The decision
variables over which this cost has to be minimized are: the continuous
control Tsw (boiler set point), and the maintenance strategy, which will
both be defined in the following.

According to the way the automaton in Fig. 4 is operated, the cost
(30) can be closer to or more distant from the optimum. It is clear that
the continuous control Tsw (supply water temperature) is a crucial
parameter in operating the automaton. Let us define a simple base case
strategy for operating the supply water temperature:

S. Baldi, et al. Applied Energy 252 (2019) 113478

7



=
=
= >

+ =
T t

T VALVE
VALVE T T

T k T T VALVE T T
( )

if 0 or
if 1 and

( ) if 1 and
sw

rw

Z d

rw p d Z Z d (31)

with >k 0p a proportional gain to be designed. The strategy (31)
amounts to setting the boiler off when the radiator valve is closed or
when the valve is open but the temperature is above the desired tem-
perature (note that when =T Tsw rw then =p 0in ). When the valve is
open and the temperature of the zone is below the desired temperature,
the supply water set point is increased proportionally to the difference
T Td Z .

In order to reformulate (31) as a function of the continuous state
( )T T,rw ZR , we equivalently rewrite it as

=

=
= >
=+

T t

T VALVE
VALVE T T
VALVE T T

( )

if 0 or
if 1 and
if 1 and

sw

rw

Z d
w T w k T T

w Z d
( )

R

wR rwR wB p d Z
wR (32)

For the maintenance strategy, a simple idea is to perform main-
tenance once the efficiency falls below a certain percentage r% of the
efficiency of a new boiler. However, in view of uncertainty in the
parameters ,1 2 and 3, the efficiency must be estimated. Therefore,
we propose two different strategies depending on how the estimated
efficiency is used.

6.1. Certainty equivalence strategy

The simplest idea for maintenance strategy is to perform main-
tenance once the estimated efficiency falls below a certain percentage
r %th of the efficiency of a new boiler. In other words, in this certainty
equivalence framework the control action is calculated as if the esti-
mate k( ) were exact. This amounts to neglecting any uncertainty in
the estimate

=MAINT t r( ) 1 if

0 otherwise

T t
T th

( )( )
( )

rw
new rw

(33)

where T( )new rw is the efficiency curve of a new boiler (with parameters
,1 2new new and 3new), and it has to be noted that we take into account

that the efficiency curve depends on Trw.

Remark 5. Two things must be noticed. The first one is that it is not
difficult to include the firing rate, call it fr in the efficiency model, i.e.

T fr( , )rw : this can be simply achieved by a linear in the parameter
model not only with respect toTrw, but with respect toTrw and fr. In fact,
most efficiency curves for boilers, heat pumps etc are given as linear in
the parameter models with respect to two or more parameters (cf. [23]
for more details). The second one is that, according to (14), we have

=x T[ ]rw 1 2 3 and that the strategy MAINT is defined by the
parameters T r, , ,dew th 1 2new new and 3new.

6.2. Cautious strategy

The maintenance strategy (33) does not take into account any un-
certainty in the estimation of the efficiency. A simple design to take into
account the uncertainty is a ‘cautious’ control action that adds a mea-
sure of caution depending on the uncertainty: to this purpose we first
define the covariance of the efficiency

=t t P t t( ) ( ) ( ) ( )2 (34)

and then we define the ‘cautious’ threshold

=MAINT t r( ) 1 if

0 otherwise

T t t
T th

( )( ) 3 ( )
( )

rw

new rw

(35)

In other words, for the same threshold rth, the cautions controller
will tend to do maintenance more often if is large. Basically, we
notice that the numerator decreases if the uncertainty associated to

T( )rw increases. The uncertainty on T( )rw is measured as the square
root of the covariance t( )2 . If reduces to zero, then the cautious
strategy converges to the certainty equivalence strategy. Therefore, a
crucial question arises: is it possible to actively reduce uncertainty by
means of the control action? The next strategy tries to address this
question.

6.3. Dual strategy

Both the certainty equivalence and the cautious strategy are adap-
tive because they depend on an efficiency curve that is estimated, and
thus adapted, online. However, both the certainty equivalence and the
cautious strategies are passive learning policies because they do not
involve any active probing signal generated to improve the estimation
of the efficiency curve. In the following, we want to create a more ac-
tive learning mechanism. Let us define the proportional gain:

= + >k k k k k¯ 3 , , 0p p p (36)

In other words, the control gain increases if the uncertainty in
T( )rw increases. This is because when the uncertainty is large, larger

control actions might help in reducing the estimation error (and thus in
reducing t( )2 ). It has to be remarked that pin enters the linear-in-the-
parameters model, thus the selection ofTsw has an effect on reducing the
uncertainty. Note that the opposite mechanism (the gain k̄p is decreased
as the uncertainty is increased) is not desirable: since the effect of a
control action on estimation is not taken into account, this can lead to
turning off the controller if the uncertainty becomes too large.

In view of these considerations, the dual strategy becomes

=

=
= >

=+
T t

T VALVE
VALVE T T

VALVE T T
( )

if 0 or
if 1 and

if 1 and
sw

rw

Z d
w T w k T T

w Z d
¯ ( )

R

wR rwR wB p d Z
wR (37)

Summarizing, the proposed strategies are illustrated in Table 2:
their performance will be compared via numerical simulations.

Table 2
Summary of the tasks to be accomplished (energy management and maintenance schedule) and of the policies to accomplish them (certainty equivance, cautious and
dual policy).

Task Type of control Required measurements Variable Optimization parameter

Energy management Continuous (water temperature) Room temperature Supply water temperature Hot water supply temperature Proportional gain kp
Maintenance scheduling Discrete (maintain - not maintain) Boiler input power (gas) Return water temperature Minimum allowed efficiency Degradation threshold rth

Policy Energy management Maintenance scheduling Type of learning

Certainty equival. Strategy (32): nothing is done to reduce estimation error Strategy (33): deals with estimated efficiency as the true one Passive
Cautious Strategy (32): nothing is done to reduce estimation error Strategy (35): uncertainty bound is added to estimated efficiency Passive
Dual Strategy (37): tries to reduce estimation error via probing Strategy (35): uncertainty bound is added to estimated efficiency Active
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7. Simulation experiments

Simulation experiments are performed on a ‘smart building’ simu-
lator developed by the authors. The simulator environment is based on
the zone-boiler-radiator dynamics described in the previous sections,
implemented in Matlab in a similar way as previously done by some of
the authors in [23]. A visualization of the features of the simulator can
be seen in Fig. 5, with the available measurements, the flow diagrams of
energy/maintenance controls and the different policies. The simulator
also comprises a few additional modules, such as thermostat features
and testing criteria which are proprietary and cannot be disclosed due
to intellectual property agreement. The weather data used for the si-
mulations represent outside temperature and solar radiation for
36 days; as it can be seen from the trend of the weather, initially we

have a quite rigid winter that evolves into a milder one. In order to
consider a longer simulation horizon, we repeated these 36 days for 60
times, with random perturbations on the values. In this way we are able
to simulate around 2200 days of winter season (Fig. 6).

The simulations are run to optimize the following parameters:

• For the certainty equivalence strategy: kp and rth;
• For the cautious strategy: kp and rth;
• For the dual strategy: k k,p and rth.

Because of the low number of parameters, we can optimize the
parameters using a brute force approach over a grid. The following
initial grid has been chosen for optimization

k
k
r

: 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50
: 0.1, 0.25, 0.5, 1, 2.5
: 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55

p

th (38)

whose meaning is the following: the proportional gain kp is selected
from low gain (shallow control) to high gain (aggressive control); the
threshold rth goes from 10% degradation to 55% degradation with steps
of 5%; finally, the probing gain k goes from low probing to high
probing. All experiments run on a Dell OptiPlex 7060 MT, Intel Core i5-

Fig. 5. Visualization of the features of the zone-boiler-radiator test case used to test the proposed framework (on the left is only an artist’s impression and the actual
test case is written in Matlab). The building test case (of around 150m2) contains a boiler driving a zone with radiators. The boiler uses a proportional controller to
set the water supply temperature, while the thermostatic controller determines on and off regimes. The efficiency of the boiler degrades with time, so that main-
tenance is needed. The flow diagrams of energy/maintenance controls are on the right. The overall energy/maintenance scenario can be managed according to three
policies (certainty equivalence/cautious/dual).

Fig. 6. Weather data (outside temperature and solar radiation) during 36
winter days. The data are used to drive the ‘smart building’ simulator.

Table 3
Parameters and costs for each strategy.

kp rth k Hourly cost

Certainty 12 0.32 – 0.494 €/h
Cautious 5 0.17 – 0.486 €/h
Dual 6 0.24 0.5 0.475 €/h

Fig. 7. Certainty equivalence strategy: Average hourly cost as a function of kp
and rth.
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8500, 8 GB RAM DDR4, Windows 10. The simulation platform is de-
veloped in Matlab R2016b. Spanning the complete grid (450 possible
policies) takes around 4 h (around half a minute to simulate one policy
over a 2200 day horizon). Then, when a rough estimate of the optimal
point has been found, the grid can be refined and reduced in size to
further improve the performance. Spanning this smaller grid takes
around 30min. Therefore, we verified that the computational com-
plexity of the proposed approach is relatively low, and it is due to the
fact that one policy can be simulated over a 2200 day horizon in less
than half a minute. Key to such a fast simulation is the relatively simple

nature of the proposed hybrid modelling, which can simplify the model
while still retaining the main features of the HVAC maintenance pro-
blem. We believe that the proposed hybrid modelling reaches quite a
good trade-off in terms of realistic maintenance scenario and com-
plexity of the formulation. It is inevitable that, when increasing the
number of states and actions, the proposed optimization would become
more and more complex and cumbersome: such an issue can be studied
in future work.

The results of the optimization are shown in Table 3, where it is
shown that the dual strategy can improve the cost of around 0.02 €/h

Fig. 8. Cautious strategy: Average hourly cost as a function of kp and rth.

Fig. 9. Dual strategy: Average hourly cost as a function of kp and rth (with
=k 0.5).

Fig. 10. Certainty equivalence strategy: Pareto front for C C,oper fail and Cmaint.

Fig. 11. Cautious strategy: Pareto front for C C,oper fail and Cmaint.

Fig. 12. Dual strategy: Pareto front for C C,oper fail and Cmaint.

Fig. 13. Certainty equivalence strategy: water temperatures and boiler power.
The average power input is 4.86 kW/h.
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with respect to the certainty equivalence strategy, and of around
0.01 €/h with respect to the cautious strategy (note that this amounts to
around 175 €/year and 87.5 €/year, which are non negligible savings
for a zone of 150m2). The first thing to be noticed is that apparently the
certainty equivalence strategy is not the best strategy to be adopted:

this is because the controller is designed independently from the esti-
mator, therefore learning is passive and uncertainty leads to non op-
timal maintenance decisions. By selecting a lower threshold, the cau-
tious strategy adds some caution in the maintenance which helps in
improving the cost: however, even in this case the controller is designed
independently from the estimator, therefore learning is passive. The
dual strategy is the one for which the controller is co-designed with the
estimator (active learning): this dual role of control is apparently really
necessary to improve the performance even more. This is clearly an
interesting result, as it shows that passive learning (certainty equiva-
lence or cautious strategies) on the long run does not pay. Reducing
uncertainty (active learning) can lead to economic benefits on the long
run. This might stimulate future study and implementation of active
learning policies.

In Figs. 7–9 we plot how average hourly cost depends on the
parameters kp and rth. Figs. 10–12 show how the different components
in the cost (C C,oper fail and Cmaint) change by changing the parameters. It
can be seen that a Pareto front exists in all cases: there are tradeoffs
regarding optimization of the different costs. In order to better in-
vestigate such Pareto from, let us compare Figs. 17 and 14 (cautious
strategy), with Figs. 18 and 15 (dual strategy). As indicated in
Figs. 13–15, it can be seen that the dual strategy is the one that saves
more on energy (followed by the cautious and the certainty equiva-
lence): therefore, the dual strategy seems to be the one with the best

Fig. 14. Cautious strategy: water temperatures and boiler power. The average
power input is 4.75 kW/h.

Fig. 15. Dual strategy: water temperatures and boiler power. The average
power input is 4.10 kW/h.

Fig. 16. Certainty equivalence strategy: estimation of efficiency parameters.
The average estimation error is 5.91·10 4 (adimensional).

Fig. 17. Cautious strategy: estimation of efficiency parameters. The average
estimation error is 3.98·10 4 (adimensional).

Fig. 18. Dual strategy: estimation of efficiency parameters. The average esti-
mation error is 1.97·10 4 (adimensional).
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tradeoff between energy costs and maintenance costs. Figs. 16–18 show
the estimation of the efficiency parameters and the covariance of the
efficiency curve: the peaks that can be noticed in the figures correspond
to a maintenance action restoring the efficiency to their initial values
(this also requires to reset the covariance matrix of the estimator). The
boiler has to be maintained several times because the degradation rate
of the boiler has been set a bit higher than usual on purpose, in such a
way to have a richer scenario in which maintenance is required quite
often. As indicated in the figures, the dual strategy is the one with the
smallest estimation error (this can be seen also by noticing that the dual
strategy is the one whose covariance matrix decreases faster), followed
by the cautious strategy and by the certainty equivalence strategy.
Therefore, the estimation of the dual strategy is more accurate, which is
due to the presence of the term k . Note that the certainty equivalence
strategy is the one with the largest gain kp, therefore one would expect
somehow a better estimation performance due to high gain: however,
this does not happen and it is really the term k in the dual strategy
that, by making the controller interact with the estimator, contributes
in a sensible reduction of the estimation error. Overall, the simulations
demonstrate that the best economic cost of the system is achieved by
active learning, i.e. the dual strategy, in which control interacts with
estimation.

8. Conclusions

In smart buildings, the models used for Heating, Ventilation, and Air
Conditioning energy management and for maintenance scheduling
differ in scope and structure: while the models for energy management
describe continuous quantities (energy, temperature), the models used
for maintenance scheduling describe only a few discrete states
(healthy/faulty equipment, and fault typology). In addition, models for
energy management typically assume the Heating, Ventilation, and Air
Conditioning equipment to be healthy, whereas the models for main-
tenance scheduling do not take possible human factors (e.g. discomfort)
into account. In this work, a framework for human-centric optimal
maintenance is proposed: energy management and maintenance sche-
duling for Heating, Ventilation, and Air Conditioning are recast in the
same optimization framework. Both continuous and discrete states are

embedded as hybrid dynamics of the system: in addition, both con-
tinuous controls (for energy management) and discrete controls (for
maintenance (scheduling) are considered. Because of the presence of
uncertainty (the status of the equipment) the solution to the problem is
addressed via an adaptive dual control formulation, where control oc-
curs jointly with estimation. Numerical examples obtained via a zone-
boiler-radiator test case demonstrate the effectiveness of the approach.

This work can further proceed in many directions: (1) considering
more complex models can give a more realistic measure of human
comfort, such as the Predicted Mean Vote and the Predicted Percentage
of Dissatisfaction; (2) studying trade-offs between complexity of human
comfort models (requiring measurements of metabolic rate, ratio of
clothed/nude surface area, surface temperature of clothing, air velocity
relative to human body, etc.) and most commonly available sensors
(temperature and humidity); (3) studying the feasibility and the effec-
tiveness of considering simplified models, i.e. studying how the sim-
plifications in the human comfort model introduce additional un-
certainties to be estimated on line and to be embedded in the
optimization; (4) extending the maintenance actions by considering
non-ideal reparation (that would decrease the degradation without re-
storing the initial state) or inspection (whose effect would be to im-
prove the estimate of the efficiency, possibly resetting the estimate and
the covariance matrix).
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Appendix A. Parameters used for simulation

Table A.4.

Table A.4
Numerical parameters.

Symbol Value Unit

Tdew 57.2 [°C]
Td 21 [°C]

wwB 0.15 [kg/s]
cS 0.5 [%]

cw 4.179 [kJ/kg °C]
w 992.3 [kg/m3]

ca 1.005 [kJ/kg °C]
a 1.205 [kg/m3]

VR 0.971 [m3]
AR 14.63 [m2]
KR 0.015 [kW/°C]
hR 0.005 [kW/m2 °C]
Ao 45 [m2]
An 405 [m2]
ho 0.002 [kW/m2 °C]
hn 0.001 [kW/m2 °C]

h 1 [°C]
1/10368000 [s−1]
1/10368000 [s−1]
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.apenergy.2019.113478.
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Table A.4 (continued)

Symbol Value Unit

1 −0.360 [°C−1]
2 0.359 –
3 0.276 [°C−1]

R
2 200 [kW2]

Z
2 10 [kW2]

B
2 0.001 –

1
2 0.001 [°C−2]

2
2 0.001 –

3
2 0.001 [°C−2]
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