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One sentence summary: In this review, we discuss our current understanding of phage-encoded inhibitors that block prokaryotic CRISPR-Cas systems,

their mechanisms, structures and applications.

Editor: John van der Oost

ABSTRACT

CRISPR-Cas represents the only adaptive immune system of prokaryotes known to date. These immune systems are
widespread among bacteria and archaea, and provide protection against invasion of mobile genetic elements, such as
bacteriophages and plasmids. As a result of the arms-race between phages and their prokaryotic hosts, phages have
evolved inhibitors known as anti-CRISPR (Acr) proteins to evade CRISPR immunity. In the recent years, several Acr proteins
have been described in both temperate and virulent phages targeting diverse CRISPR-Cas systems. Here, we describe the
strategies of Acr discovery and the multiple molecular mechanisms by which these proteins operate to inhibit CRISPR
immunity. We discuss the biological relevance of Acr proteins and speculate on the implications of their activity for the
development of improved CRISPR-based research and biotechnological tools.

Keywords: CRISPR-cas; phage; genome editing; anti-CRISPR

INTRODUCTION

Viruses are ubiquitous entities co-existing with cellular life
forms, present in almost all explored environments (Koonin
and Dolja 2013). Viruses that infect bacteria (bacteriophages or
phages) are the most abundant biological entities on the planet
with population numbers in the order of 103! (Suttle 2005; Koonin
and Dolja 2013; Guemes et al. 2016). The ability of phages to eas-
ily manoeuvre between different biomes, operating as vehicles
of horizontal gene transfer (HGT), makes them major agents of

evolution (Sano et al. 2004). Bacteriophages are classified based
on their life-cycle into virulent and temperate. Virulent phages
rely exclusively on productive infection cycles for propagation,
which ultimately kills the host for the release of new viral par-
ticles that can engage in another round of infection. Temperate
phages have the choice to multiply in their host cells leading
to cell lysis or to integrate their phage genome into the bacterial
chromosome as a prophage. Prophages are propagated passively
by the replication machinery of the bacterial cell (Gandon 2016).
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As a response to the constant threat of phage infection,
a diverse arsenal of defence mechanisms has evolved in bac-
terial hosts. Because phages evolve rapidly to counter these
immune systems (Drake et al. 1998), the hosts need to con-
stantly evolve new means of self-protection, leading to a peren-
nial arms-race between hosts and their phages (Forterre and
Prangishvili 2009). The defence systems evolved by bacteria pro-
vide both innate and adaptive immunity against phage infec-
tion. Innate immunity systems interfere at different levels of
the phage’s infection cycle via receptor masking, superinfection
exclusion (Sie), restriction-modification (R-M), bacteriophage
exclusion (BREX), toxin-antitoxin (TA) modules, abortive infec-
tion (Abi), prokaryotic Argonautes (pAgos), production of anti-
phage chemicals and defence island system associated with
restriction-modification (DISARM) systems (Chopin, Chopin and
Bidnenko 2005; Makarova et al. 2011; Makarova, Wolf and Koonin
2013; Samson et al. 2013; Goldfarb et al. 2015; Kronheim et al.
2018), whereas other remain to be characterized (Doron et al.
2018). Adaptive and heritable immunity is provided by Clus-
tered Regularly Interspaced Short Palindromic Repeats (CRISPR)-
CRISPR-associated (Cas) systems (Barrangou et al. 2007), which
work as a fascinating complementation to the innate defence
strategies.

Diverse variants of the CRISPR-Cas defence system are
present in most of the sequenced genomes of archaea and
half of those of bacteria (Makarova et al. 2013). A CRISPR-Cas
locus typically consists of a CRISPR array and an operon of
CRISPR-associated (cas) genes. The CRISPR array is composed
of a series of short, partially palindromic and direct repetitive
sequences (repeats) interspaced by variable sequences (spac-
ers), originating from phage genomes or other invading mobile
genetic elements (MGE), such as (conjugative) plasmids (Bolotin
et al. 2005; Mojica et al. 2005; Pourcel, Salvignol and Vergnaud
2005; Shmakov et al. 2017). The cas genes encode for the Cas
proteins, which are necessary for the generation of new spacers
or are involved in the targeting of the MGE, as explained below.
Collectively, these two elements of CRISPR-Cas systems mediate
sequence-specific immunity against invasive MGEs (Brouns et al.
2008; Marraffini and Sontheimer 2008; Hale et al. 2009; Garneau
et al. 2010).

The continuous arms-race between prokaryotic hosts and
their cognate MGEs is speculated to be responsible for the
rapid evolution of highly diverse CRISPR-Cas systems. The cur-
rent CRISPR-Cas classification scheme distinguishes two broad
classes based on the protein composition of the effector Cas
complex. Class 1 systems (types I, IIl and IV) use multi-subunit
Cas protein complexes for the recognition of targeted nucleic
acids, while the less common class 2 systems (types II, V and
VI) employ a single multi-domain effector protein complex that
performs target recognition and cleavage. These classes are fur-
ther subdivided into a total of six CRISPR types with 25 subtypes
(Koonin, Makarova and Zhang 2017).

Despite substantial structural and functional diversity, all
CRISPR-Cas systems mediate immunity through three distinct
steps: adaptation, expression and interference (Mohanraju et al.
2016). During adaptation, short DNA fragments (known as pro-
tospacers) are acquired from invading MGEs and subsequently
processed and inserted as spacers into the CRISPR locus, typi-
cally by the Cas1-Cas2 complex (Jackson et al. 2017). Next, dur-
ing expression, the CRISPR array is transcribed as a long precur-
sor CRISPR RNA (pre-crRNA) and the Cas proteins are expressed.
The pre-crRNA is then processed within repeat regions to yield
mature CRISPR RNAs (crRNAs) by dedicated Cas proteins and/or
host factors (Brouns et al. 2008; Hale et al. 2008; Haurwitz et al.
2010; Deltcheva et al. 2011). The crRNAs are packaged with

one or more Cas proteins into effector Cas complexes that
scrutinise the microbial cell for potential invasion. Finally, dur-
ing interference, the Cas complexes recognize complemen-
tary target sequences of invading MGEs by Watson-Crick base-
pairing. Upon binding to a cognate target sequence, the com-
plex either recruits a nuclease or stimulates its intrinsic nucle-
ase activity to neutralize the invader (Brouns et al. 2008; Garneau
etal. 2010; Westra et al. 2012). Type L, Il and V CRISPR-Cas systems
target DNA and rely on a short stretch (2 to 7 nucleotides) of con-
served nucleotides adjacent to the protospacer, known as the
protospacer-adjacent motif (PAM), for spacer selection during
adaptation and target identification during interference (Mojica
et al. 2005; Marraffini and Sontheimer 2008). The PAM allows for
self/nonself discrimination, as its absence in the CRISPR array
prevents autoimmunity and self-cleavage.

In response to the microbial antiviral defence mecha-
nisms, phages have evolved numerous mechanisms to over-
come prokaryotic immunity. Phage evasion from prokaryotic
CRISPR-Cas systems was first found to rely on mutational drifts,
predominantly occurring in regions that require perfect com-
plementarity between the crRNA and the protospacer (so-called
seed region) for interference, or in the PAM sequences (Deveau
et al. 2008; Sun et al. 2013; Bondy-Denomy et al. 2015). Depend-
ing on the location of the mismatch (between the crRNA and
the protospacer), a single mutation can be sufficient to abol-
ish CRISPR-Cas immunity (Deveau et al. 2008; Semenova et al.
2011). Deletion of the protospacer sequence and/or the PAM
have also been shown to provide an effective way for phages
to escape CRISPR-Cas targeting, despite the potential of impos-
ing a fitness cost (Deveau et al. 2008). Similar to the evasion
strategy from R-M systems, phages can also modify their bases
with hydroxymethylcytosine (HMC) and its bulkier glycosylated
form to reduce target binding affinity and thereby protect from
CRISPR-mediated targeting by both type I and type II systems
(Bryson et al. 2015; Vlot et al. 2018), whereas other modifications
do not disturb Cas9 recognition (Yaung, Esvelt and Church 2014).
Finally, some phages encode their own CRISPR locus that targets
host antiviral genomic regions, such as chromosomal (defence)
islands (Seed et al. 2013).

The first examples of phage-encoded anti-CRISPR (Acr) pro-
teins were found in class 1 type I-F and I-E systems of Pseu-
domonas aeruginosa (Bondy-Denomy et al. 2013; Pawluk et al.
2014). Acr proteins have distinct sequences (Tables 1 and 2),
structures (Maxwell et al. 2016; Wang et al. 2016a; Harrington et al.
2017) and mechanisms (Bondy-Denomy et al. 2015) and they pro-
vide phages with a direct and specific means to inhibit targeting
by the CRISPR-Cas system. To date, 45 unique families of Acr pro-
teins have been discovered, and categorized into class 1 (Table 1)
and class 2 (Table 2) CRISPR-Cas inhibitors. These highly diverse
and small (typically 50-330 amino acids) proteins do not share
much sequence or protein domain similarity to each other or to
any protein of known function (Marino et al. 2018).

Here, we explore the biological relevance and detail the
recent insights into the molecular mechanisms and structures
of anti-CRISPR proteins. We also address the development of
anti-CRISPRs as ‘off-switches’ for genome editing and discuss
the impact of their use in other biotechnological applications.

BIOLOGICAL RELEVANCE OF ANTI-CRISPR
PROTEINS

The emergence of widespread, specialized and highly diverse
phage-encoded proteins that thwart CRISPR-Cas immunity,
suggests that Acr proteins play an important role in phage
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Table 3. Anti-CRISPR-associated (aca) genes used in the guilt-by-association approach.

Name Size (aa) Accession number References

acal 79 YP_007392343 (Bondy-Denomy et al. 2013)
aca2 125 ‘WP_019933869.1 (Pawluk et al. 2016a)
aca3 70 WP_049360086.1 (Pawluk et al. 2016a)
aca4 67 ABR13385.1 (Marino et al. 2018)
aca5 60 WP_039494319.1 (Marino et al. 2018)
aca6 65 ‘WP_035450933.1 (Marino et al. 2018)
aca7 68 WP_064702654.1 (Marino et al. 2018)

biology. The first identified Acr proteins were shown to inac-
tivate the type I-F CRISPR-Cas system of P. aeruginosa, halt-
ing the host CRISPR machinery upon phage infection (Bondy-
Denomy et al. 2013). However, finding other Acr proteins by
homology searches proved to be a challenging task due to
their low sequence similarity. Instead, it was noted that the
genomic neighbourhood of acr genes had interesting similar-
ities that could be exploited to discover new Acrs. Typically,
many acr genes co-occur with a group of genes that were collec-
tively called ‘anti-CRISPR-associated genes’ (aca’s) (Pawluk et al.
2016a). To date, seven aca genes have been identified (Table 3).
While the function of aca’s is not yet understood, these genes
often encode for a protein containing a helix-turn-helix (HTH)
motif, suggesting they fulfil a regulatory function (Pawluk et al.
2016a). Nevertheless, the presence of aca’s has been instrumen-
tal in finding new Acr proteins and vice-versa, a method that
is now known as ‘guilt-by-association’ (Fig. 1A). In addition, the
occurrence of a so-called ‘self-targeting’ spacer (i.e. a spacer
that targets the host’s own genome) within the CRISPR array is
often indicative of a suppressed CRISPR-Cas system due to the
presence of a (prophage encoded) acr gene (Rauch et al. 2017)
(Fig. 1B). Furthermore, novel Acr proteins can be found using
(high-throughput) screening and testing assays, including trans-
formation of metagenomic libraries in an Acr-selection strain
(Fig. 1C) either combined or not with synthetic genetic circuit-
based selection for CRISPR-Cas suppression activity (Uribe et al.
2019).

The high diversity of the Acr proteins, their ability to inhibit
different (sub)types of CRISPR-Cas systems (I-C, I-D, I-E, I-F, II-
A, 1I-C, V-A, VI-B) (Smargon et al. 2017; He et al. 2018; Marino
et al. 2018), their widespread presence and their usual coexis-
tence in the same locus, demonstrate the strong evolutionary
pressure that CRISPR-Cas systems exert in Acr arsenal diversi-
fication, and vice versa, meeting the Red Queen Hypothesis on
the continuous shaping of the host-invader dynamics (Westra
et al. 2015; van Houte et al. 2016).

The origin of Acr proteins remains to be understood, but it is
hypothesized that these proteins do not share a common ances-
tor due to their low structural similarity (Pawluk et al. 2016a).
While it is theorized they represent a product of de novo evolu-
tion from intergenic regions (Tautz, 2014; Stanley and Maxwell
2018), parallel studies show that they might have derived from
other bacterial or viral proteins, as specific nuclease inhibitors,
regulatory or even phage capsid proteins (Stanley and Maxwell
2018; Stone et al. 2018). Due to their function, acr genes were
classified as accessory, or ‘morons’, since they are not strictly
necessary in a phage lifecycle (Juhala et al. 2000; Brussow, Can-
chaya and Hardt 2004; Borges, Davidson and Bondy-Denomy
2017). However, when facing specific CRISPR-active hosts, the
presence of these genes was shown to increase the fitness of Acr-
positive phage populations (Bondy-Denomy et al. 2013; Pawluk

et al. 2016a). While previous studies show the activity of CRISPR-
Cas systems in vivo can clear a targeted phage in as little as
2 min (Garneau et al. 2010; Borges et al. 2018), the presence of
Acr proteins seems to decrease or completely abolish bacte-
rial immunity, classifying it as a major CRISPR-counteracting
mechanism for successful phage infection and replication. How-
ever, the fast-acting nature of CRISPR-Cas limits the potential of
a single phage to overcome the host’s defence by Acr activity.
Recently, it was shown that even though CRISPR-Cas systems
are partially affected by the expression of Acr proteins, the lat-
ter are not able to confer full protection to their phage associated
genome upon a single infection (Borges et al. 2018; Landsberger
etal. 2018) Instead, a critical Acr concentration inside each single
cell is necessary for successful host immunosuppression, allow-
ing posterior lytic re-infection or genomic integration of temper-
ate phages (Borges et al. 2018; Landsberger et al. 2018). It was then
demonstrated that a single clonal phage population could inac-
tivate CRISPR-Cas immunity through phage cooperation, where
failed infections from ‘sacrificial Acr donors’ allow accumulation
of Acr inhibitors inside a cell, which, upon a certain threshold,
leads the ‘acceptor’ phages to successfully infect and amplify
(Borges et al. 2018; Landsberger et al. 2018). The quantitative
demand of Acr proteins for full host immunosuppression pos-
tulated that phage concentration has a key role on CRISPR eva-
sion, which is inversely proportional to the strength of each Acr
protein (Borges et al. 2018; Landsberger et al. 2018).

The existence of Acr proteins might also explain the incom-
plete, absent or deficient CRISPR-Cas systems found in bacte-
ria (Stanley and Maxwell 2018). Prophage integration into the
host chromosome and consistent Acr expression might result
in CRISPR-Cas inactivating mutations, loss of cas genes and
even complete loss of CRISPR-Cas systems (Stanley and Maxwell
2018). Interestingly, although it is evident that Acr proteins are
relevant for the phage it originated from, bacteria might also
benefit from the stable expression of these proteins (e.g. from
prophage regions). For example, inhibition of CRISPR-Cas immu-
nity might enhance HGT in these hosts, which can have a pos-
itive contribution to bacterial fitness upon acquisition of bene-
ficial foreign genetic material (Bondy-Denomy et al. 2013; Jiang
et al. 2013; Pawluk et al. 2014; Borges et al. 2018; Stanley and
Maxwell 2018).

MECHANISMS AND STRUCTURES OF
ANTI-CRISPR PROTEINS

Over the last six years, a series of studies interlacing genetic,
biochemical and structural analyses have elucidated the mech-
anism of action of 12 Acr proteins from different families.
Although many Acrs remain to be tested for anti-adaptation
activity, the vast majority of the currently characterized Acr
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Figure 1. Different discovery and testing methods of Acrs. (A) Guilt-by-association discovery method (Pawluk et al. 2016a). This discovery method is based on the
strong co-occurrence and clustering of acr and aca genes through proximity and homology searches. In this example, homology searches using the acrl gene yields its
homologue acrl.1. Inspection of genes in close proximity yielded acaY.1, which in turn can be used for further iterative rounds of acr and/or aca gene discovery. Both acr
and aca genes typically appear in clusters leading to the discovery of new acr and aca genes. (B) The self-targeting discovery method (Rauch et al. 2017). The presence
of a self-targeting spacer (in green) within the CRISPR array hints at the presence of a (set of) acr gene(s) (in purple) somewhere within the host’s genome, often within
prophage regions. (C) Low- and high-throughput functional assays to identify phage-encoded Acrs. In a low-throughput assay, individual phages are used to screen
for anti-CRISPR activity in hosts with a CRISPR-Cas system targeting the phage (left) using (for example) plaque assays. High-throughput screening can be performed
by transforming phage ORF libraries that are placed on a plasmid containing a protospacer. Successful transformants can be screened further to pinpoint the gene

with the Acr activity within the collection of ORFs.

proteins act at the interference phase by directly blocking tar-
get DNA binding or cleavage (Fig. 2). These two general modes-
of-action are spread among both class 1 and class 2 Acr pro-
teins, with distinct molecular mechanisms (Borges, Davidson
and Bondy-Denomy 2017).

Class 1 Anti-CRISPR Proteins

The class 1 Acr proteins studied up till now all impede type I
(subtype C, D, E or F) CRISPR-Cas systems (Table 1). Two mech-
anistic routes have been described for Acrs to perturb CRISPR
interference: the most common is the direct interaction with the
Cascade surveillance complex to prevent DNA binding (Bondy-
Denomy et al. 2015; van Erp et al. 2015; Maxwell et al. 2016;
Chowdhury et al. 2017; Guo et al. 2017; Peng et al. 2017), while
the less common involves the direct interaction with the effec-
tor nuclease Cas3, which typically gets recruited upon success-
ful target binding by the Cascade, to block DNA cleavage (Pawluk
et al. 2014; Bondy-Denomy et al. 2015; Pawluk et al. 2016a; Wang
et al. 2016a; Wang et al. 2016b; Pawluk et al. 2017).

A) Preventing DNA Binding via Interaction with the
Cascade Complex

Steric occlusion of DNA binding

AcrIF1 from P. aeruginosa phage JBD30 binds along the hex-
americ Cas7f spine with a stoichiometry of 2-3 molecules per
Cascade complex (Bondy-Denomy et al. 2015). Several high-
resolution cryo-electron microscopy and nuclear magnetic res-
onance (NMR) studies combined with site-directed mutagen-
esis indicated that AcrlF1 molecules bind tightly at different
positions of the P. aeruginosa Cascade complex. More specif-
ically, two AcrIlF1 monomers sit on the Cas7f.4 and Cas7f.6
thumbs (Tyr6, Tyr20 and Glu31 lying on a single interaction sur-
face of each monomer interact with the conserved Lsy85 on
the Cas7f thumb), resulting in a conformational change that
sterically blocks access of the crRNA guide to the target DNA,
while a possible third monomer binds to a Cas7 region in close
proximity to the Cas8f-Cas5f tail, which is crucial for target
DNA binding (Bondy-Denomy et al. 2015; Maxwell et al. 2016;
Chowdhury et al. 2017; Guo et al. 2017; Peng et al. 2017; Gabrieli
et al. 2018).

6102 AINF 2z U0 Josn Yja@ NBNSIOAIUN SYOSIUYOD ] AQ GEFB8YS/860ZUY/6/99€/10BISqE-O[OILE/S|SWS/WO0Y"dNO"DIWLSPED.//:SA))Y WO PAPEOjUMOQ



Trasanidouetal. | 9

Typel Typell

1. Adaptation

2. Expression and 1“21\
complex assembly v . 1

a.Target binding ncz | ucs

nca | ucs

b. Nuclease activation

——

Type VI

c.Target degradation

e v =

\ PN s v

H nci I—' Icsx27, T wT A N
] ‘-’l ] 'Ah-j A\A____,’)

Figure2. Schematic overview of the different Acrs and their mechanisms. The green boxes on the left show the different stages of CRISPR-Cas immunity. The columns
indicate which CRISPR-Cas type is suppressed by which (group of) Acrs. Acrs are depicted as circles with their abbreviated names (e.g. AcrlIF3 is abbreviated to IF3).
A dashed line indicates a suggested role for the particular Acr or that the Acr mechanism remains to be elucidated. Note that most Acrs appear to suppress the

interference stage, whereas only one Acr (AcrlIF3) suppressed different stages.

DNA mimicry
While AcrIF1 exploits three different binding modes to dis-
rupt target DNA recognition by the Cascade complex, AcrIF2
from P. aeruginosa phage D3112 mediates inhibition by interact-
ing with a single site within the complex. AcrlF2 directly com-
petes with the target DNA for a positively charged binding inter-
face on the Cas5f:Cas8f tail between the Cas7f.6 thumb and the
Cas8f hook, a region called the ‘lysine-rich vise’ (Bondy-Denomy
et al. 2015). The small acidic AcrIF2 protein behaves as a DNA
mimic, as the numerous acidic residues on its surface adopt a
pseudo-helical distribution, resembling a double-stranded DNA
(dsDNA) molecule. The interaction sites of AcrlF2 and DNA
on the Cas5f:Cas8f heterodimer overlap partially, and AcrIF2
binding shoves the Cas8f hook away from the DNA-association
pocket, sterically hampering the access of the dsDNA to the
Cascade complex. Additional interactions of AcrIF2 with basic
residues crucial for DNA binding further ensure obstruction of
target DNA binding (van Erp et al. 2015; Chowdhury et al. 2017,
Guo et al. et al. 2017; Peng et al. 2017). Given the close proximity
of the interaction sites of AcrIF2 and the third AcrIF1 monomer,
when cooperating, AcrlF1 exhibits a maximum of two binding
modes while AcrIF2 activity remains intact (Peng et al. 2017).
Similar to AcrlF2, AcrIF10 from Shewanella xiamenensis
prophage also mimics DNA by occupying a region on the
Cas5f:Cas8f heterodimer that closely overlaps with the bind-
ing site of AcrlF2 (possibly Cas8f K71 and R78, Cas5f R90 and
Cas7fK299). However, instead of wrenching the Cas8f hook away,
AcrIF10 triggers a partially closed state of the hook swinging it
toward Cas7.6f (similar but smaller than the movement caused
by DNA binding), displaying the conformational flexibility of this
domain and implying the need of additional interactions for

absolute closure of the hook. Intriguingly, AcrIF10 and dsDNA
display different charge profiles on the interaction surface; nev-
ertheless, they interact with closely overlapping regions in the
Cascade complex to prevent DNA binding (Guo et al. 2017).

The first archaeal Acr protein identified, AcrID1, was shown
to directly interact as a homodimer with two copies of the large
subunit (Cas10d) of the type I-D Cascade complex in Sulfolobus
islandicus. The strong negatively charged surface of this protein
suggests that it may behave as a DNA mimic, such as AcrIF2. In
addition, conserved residues on the surface of AcrID1, such as
Glu21, Lys34, Tyr55, Glu81, Arg92 and Trp91, may have a key role
in inter-protein interactions. However, the exact mechanism of
AcrID1 still remains to be explored (He et al. 2018).

Unknown mechanisms

AcrIE3 and AcrlF4 from P. aeruginosa phage DMS3 and JBD26,
respectively, have been shown to associate with the Cascade
complex to hinder DNA binding, though via an unknown mech-
anism (Pawluk et al. 2014; Bondy-Denomy et al. 2015).

B) Preventing DNA Cleavage via Interaction with the
Cas3 Nuclease

Disruption of binding to the Cascade:dsDNA chimera

Cryo-electron microscopy and X-ray crystallography demon-
strated that the AcrIF3 protein from P. aeruginosa phage JBDS
forms a homodimer that binds to the Cas3 nuclease (Wang et al.
2016a; Wang et al. 2016b). High binding affinity was observed,
since more than half of the AcrIF3 surface interacts with the
Cas3 protein, forming several hydrogen bonds and hydropho-
bicinteractions. As a consequence, the interaction sites for both
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the non-complementary DNA strand and the Cascade complex
are blocked. Specifically, one AcrIF3 monomer occupies the heli-
case domain (HD) and the Linker region of Cas3, while the
other monomer relates to the C-terminal domain (CTD) (Tyr97,
Trp93, and a large network of hydrogen bonds), which alto-
gether constitute the internal cleft of the Cas3 structure. By
covering this cleft, AcrIF3 disrupts association with the target
DNA (non-complementary strand) and locks the ATP-dependent
Cas3 nuclease in an inactive ADP-bound form (Wang et al.
2016a; Wang et al. 2016b). Noteworthy, the Cas3 effector nucle-
ase/helicase is fused to the Cas2 protein in type I-F systems and
thereby forms an integral part of the type I-F (primed) adaptation
machinery, hinting at the functional link between adaptation
and interference, as shown recently (Kunne et al. 2016; Staals
etal. 2016; Fagerlund et al. 2017). Interestingly, AcrIF3 dimer binds
to the opposite site of Cas2, thus not influencing the assem-
bly of the Casl1-Cas2-Cas3 complex (Rollins et al. 2017). How-
ever, the dimer obstructs the recruitment of the Cascade:dsDNA
chimera to Cas3, preventing the generation of precursor pro-
tospacer DNA. Consequently, AcrIF3 blocks both primed spacer
acquisition and crRNA interference (Vorontsova et al. 2015; Wang
et al. 2016b).

Unknown mechanisms

Akin to AcrlF3, AcrlE1 from P. aeruginosa phage JBD5 directly
associates with the ATP-dependent Cas3 nuclease, without
affecting the binding ability of the Cascade to the target DNA.
Due to the structural homology between Cas3 proteins of type I-
F and I-E CRISPR-Cas systems, it is likely that AcrIF3 and AcrIE1
either adopt distinct modes of binding to the same surface or
target unrelated regions on the Cas3 protein, hindering target
DNA cleavage (Pawluk et al. 2014; Pawluk et al. 2017).

Class 2 anti-CRISPR proteins

Class 2 Acr proteins have been discovered for type II (subtype
A and C), type V (subtype A) and type VI (subtype B) CRISPR-
Cas systems (Table 2). Almost all type II Acrs characterized to
date directly interact with the Cas9 endonuclease, although by
distinct mechanisms, as described below.

A) Preventing DNA Binding via Interaction with the
Cas9 Protein

DNA mimicry and steric occlusion of DNA binding and cleavage

Both AcrIIA2 and AcrllA4 from Listeria monocytogenes prophage
J0161a/b have been demonstrated in vivo and in vitro to directly
interact with single-guide RNA (sgRNA)-loaded SpyCas9, abol-
ishing DNA binding and cleavage (Dong et al. 2017; Rauch et al.
2017; Yang and Patel 2017; Basgall et al. 2018). Biochemical and
structural studies have indicated that AcrllA4 binds to sev-
eral regions within SpyCas9. First, AcrlIA4 (Asp14, Asp37, Glu4o0,
Asp69 and Glu70) associates with the PAM-interacting domain
(Glu1108, Ser1109, Ser1216, Lys1200, Argl335 and Argl333)
through an acidic surface that mimics a negatively-charged
dsDNA molecule, thereby hampering the initial PAM search-
ing stage. Second, AcrlIA4 (Asp14 and Asn36) interacts with the
Topo-homology domain (Glu1108, Ser1109 and Ser1136), also
known as DNA-melting region, putatively preventing DNA bind-
ing or unwinding. Third, AcrlIA4 (Leul9-GIn29) forms numer-
ous surface complementarities with the concave surface of Spy-
Cas9 at the RuvC domain (Asn767, Thril3, Ala764 and Arg976),
abrogating the endonuclease activity. In addition, AcrlIA4 binds
the linker between RuvC and HNH domains, sterically blocking

conformational changes necessary for DNA cleavage (Dong et al.
2017; Shin et al. 2017; Yang and Patel, 2017). Similar to AcrllA4,
AcrlIA2 prevents target DNA recognition, binding and cleavage.
Specifically, AcrlIA2 (Asp71 and Glu72) associates with the PAM-
interacting domain (Argl335 and Argl333), the WED domain
(Lys1107, Glu1108, Ser1109 and Ser1136 of WED domain interact
with His37, Asp38, Glu93 and Asp96 of AcrlIA2), the HNH domain
(GIn774 and Arg778 interact with Asn19 of AcrlIA2) and the REC2
domain (Lys268 and Asp269 interact with GIn7, Thr28 and Asp30
of AcrllA2) (Jiang et al. 2019; Liu et al. 2019). Notably, both AcrlIA4
and AcrlIA2 are not able to bind to SpyCas9 in the absence of a
preloaded sgRNA, as sgRNA-binding is required for the forma-
tion of the Acr-interaction surface of SpyCas9 (Dong et al. 2017;
Shin et al. 2017; Yang and Patel 2017; Jiang et al. 2019; Liu et al.
2019).

DNA and sgRNA mimicry

Although AcrIIC2 from Neisseria meningitidis prophage was pre-
viously speculated to associate with catalytic residues of the
NmeCas9 HNH domain (Pawluk et al. 2016b; Harrington et al.
2017), a recent biochemical and structural study revealed
interaction with the NmeCas9 bridge helix (BH)-REC1 domain
(residues 51-241) (Zhu et al. 2019). Indeed, AcrlIC2 forms an
homodimer, forming an acidic groove on top of the dimer. The
residues in this groove (E18, N23/D24/E25 and residues 109-124)
strongly bind to the arginine-rich « helix of BH (residues 56—
79; mainly R62, R63, R70 and R73). As such, the AcrIIC2 dimer
significantly impedes sgRNA loading to apoNmeCas9, and abro-
gates dsDNA binding to the sgRNA-NmeCas9-AcrlIC2 complex.
Remarkably, AcrIIC2 requires the apo form for effective inhibi-
tion, being the first Acr reported to directly interfere with the
sgRNA loading to Cas9 (Zhu et al. 2019).

Dimerization of Cas9

AcrlIC3 from N. meningitidis prophage hinders DNA binding and
induces NmeCas9 dimerization by associating with the HNH
domain and the REC lobe, respectively (Zhu et al. 2019). AcrIIC3
(K532-Y540, R557-H563) interacts with a non-conserved region
of the NmeCas9 HNH domain opposite to the active site (L58,
N60, R33, V34 and D38 among others) (Zhu et al. 2019), allowing
PAM detection but hampering complete R-loop formation (Har-
rington et al. 2017). Hence, the binding affinity for target DNA is
decreased, while DNA cleavage is abrogated. AcrlIC3 addition-
ally associates with the REC lobe, triggering NmeCas9 dimeriza-
tion with a 2:2 stoichiometry. Each AcrIIC3 molecule binds to
the HNH domain as well as the REC lobe of the same or another
NmeCas9 molecule, forcing AcrIIC3-Cas9 dimerization and pre-
venting target DNA loading (Zhu et al. 2019).

Unknown mechanisms

Recently, AcrlIC4 and AcrlIC5 were discovered in a Haemophilus
parainfluenzae prophage and a Simonsiella muelleri transfer ele-
ment. Both were shown to impede the Cas9:sgRNA complex
from binding to the target DNA, following an unknown mode-
of-action (Lee et al. 2018).

B) Preventing DNA Cleavage via Interaction with the
Cas9 Protein at the Catalytic Site

Like the type I AcrIF3, AcrlIC1 from N. meningitidis MGE allows
binding of the CRISPR interference complex to the target DNA,
though hampering DNA cleavage. Biochemical and structural
characterization have revealed that AcrlIC1 specifically binds
to the active site of the NmeCas9 HNH domain (D587, H588),
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blocking cleavage of the target strand and preventing conforma-
tional changes necessary for the activation of the RuvC domain,
which would theoretically catalyse cleavage of the non-target
strand. Thus, the sgRNA-loaded Cas9 remains bound to the
target DNA, being trapped in a catalytically inactive state. To
achieve high stability of the inter-protein interaction, AcrlIC1
additionally associates with five neighbouring residues of the
HNH domain (K549, K551, D598, K603, N616). Similar to AcrIIC1,
AcrlIC2 associates with catalytic residues of the NmeCas9 HNH
domain, albeit the exact mode-of-action is still elusive (Pawluk
et al. 2016b; Harrington et al. 2017).

C) Preventing CRISPR-Cas Immunity via Putative
Binding to RNA or DNA Molecules

Similar to AcrID1, AcrIIA1 from L. monocytogenes prophage J0161a
forms a homodimer, though with an unusual two helical-
domain structure. The N-terminal domain resembles the HTH
motif of transcriptional factors, whilst the CTD adopts an archi-
tecture of unknown function. It is anticipated that AcrlIA1 rec-
ognizes and associates with heterogeneous RNA molecules to
abolish CRISPR-Cas immunity. However, no binding to CRISPR
RNA (crRNA), trans-activating RNA (tracrRNA) or their duplex
has been observed. AcrlIA1 harbours a positively charged sur-
face around the HTH region, resembling nucleic acid bind-
ing motifs of many transcriptional factors that are crucial for
RNA and dsDNA recognition. Hence, it would be possible that
AcrlIIA1 binds to the promoter regions of crRNA or tracrRNA to
hinder CRISPR-Cas immunity. However, Cas9 expression levels
appeared to be unaffected by AcrlIA1l (Ka et al. 2018). The unique
structure and function of AcrlIAl reveals a novel mechanism
of action yet unknown among Acr proteins, strengthening our
understanding about the versatile and sophisticated ways in
which these small proteins may hamper CRISPR-Cas systems
(Rauch et al. 2017; Ka et al. 2018).

D) Preventing RNA Binding or Cleavage via Interaction
with the Cas13b Protein

Although not associated to a phage genome, through the com-
putational pipeline that guided the discovery of subtype VI-
B CRISPR-Cas loci, the accessory protein Csx27 was recently
found to repress the interference stages of its associated
CRISPR-Cas system (Smargon et al. 2017). Experimental test-
ing of Bergeyella zoohelcum Csx27 (201 aa) has demonstrated an
inhibitory effect of the protein when expressed together with
different Cas13b proteins, weakening their RNA interference
activity. Even though important details on the mechanism of
Csx27 remain to be identified, the current findings suggest a
broad activity of the protein among type VI-B loci, relating to a
possible regulatory mechanism of phage interference (Smargon
et al. 2017).

APPLICATIONS OF ANTI-CRISPR PROTEINS

CRISPR-Cas systems have recently been scrutinised for their
potential in biotechnological applications. Type II CRISPR-Cas9
systems raise special interest among the scientific commu-
nity, due to their programmability and specific nuclease activ-
ity, representing the most promising tool on genome editing and
modulation studied to date (Komor, Badran and Liu 2017). The
use of catalytically inactive Cas9 (‘dead’, dCas9) was also pre-
viously shown to have powerful biotechnological applications.
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These include CRISPR interference and activation (CRISPRi and
CRISPRa), modification of epigenetic marks and gene expres-
sion modulation when fused dCas9 to other metabolic key
enzymes (Hilton et al. 2015). Other applications encompass
dynamic genomic imaging, identification of specific genes or
genomic loci, monitoring of gene copy and follow-up of chro-
matin formation and telomere elongation, when combining site-
specific sgRNA molecules with fluorescent tagging of dCas9
(EGFT-dCas9) (Rauch et al. 2017; Liu et al. 2018). Recently, a Cas9-
Assisted Targeting of Chromosome segments (CATCH) was also
used for nanopore sequencing of a breast cancer gene (Gabrieli
et al. 2018). Taken together, the quick emergence of CRISPR-
based technologies and the continuous quest for finding new
CRISPR-Cas nucleases and variants hereof indicates that more
(advanced) applications are expected to be developed in the near
future. However, full specificity is crucial in these applications,
especially those with therapeutic purposes, as off-target events
are still one of the main bottlenecks that limit the efficiency of
this technology (Zhang et al. 2015).

Deeper insight in Acr inhibitory mechanisms might soon
allow for precise temporal, spatial and conditional control of
CRISPR-Cas systems through an ‘on-off switch’ regulation. Sev-
eral AcrllA and AcrlIC proteins were found to work as ‘off-
switches’ of Cas9 activity in human cell lines (Pawluk et al.
2016b, Rauch et al. 2017). The potential of combining these nat-
ural CRISPR inhibitors with Cas9 editing systems, tuning its
activity in cellular environments, could result in full optimi-
sation of gene editing processes, substantially decreasing off-
target events by allowing Acr proteins to accumulate whenever
or wherever editing activity is unwanted (Pawluk et al. 2016b;
Rauch et al. 2017; Shin et al. 2017; Hynes et al. 2018). Innovation
in the use of Acrs to control CRISPR-Cas editing are expected
to quickly emerge, as demonstrated by the combination of an
AcrlIA4 hybrid with a LOV2 photosensor for the light-mediated
control of genome and epigenome editing by CRISPR-Cas9 effec-
tors in human cells (Bubeck et al. 2018). Acr-mediated inhibition
was also proven to be effective towards the activity of dCas9 pro-
cesses (Rauch et al. 2017; Liu et al. 2018; Nakamura et al. 2019)
as well as the control of genomic circuits and gene editing with
Cas9 (Nakamura et al. 2019), once again representing a promis-
ing tool for optimization of the activity of these CRISPR-based
technologies and future therapeutic and biotechnological appli-
cations.

Although no research was performed yet on the possible
applications of Csx27, this represents the only protein known to
date to repress Cas13b, a type VI CRISPR associated protein. In
contrast to most other CRISPR-Cas systems currently classified,
prokaryotes carrying type VI CRISPR loci are able to target foreign
RNA molecules (Smargon et al. 2017). The discovery and employ-
ment of Acr proteins able to inhibit these systems might allow
modulation of future RNA-based biotechnology applications.

Acr proteins might also benefit gene drive technology. Gene
drives are powerful tools to eradicate vector-borne diseases,
eliminate pests (e.g. agricultural pests and invasive species)
and even increase animal welfare. The technology enables the
rapid dissemination of genetic mutation(s) through a popu-
lation by surpassing Mendelian inheritance rules regardless
of the fitness-affecting properties of the introduced muta-
tion (Burt 2003). This is accomplished by turning heterozy-
gous organisms into homozygotes through the incorporation
of the desired mutated gene flanked by a homing endonucle-
ase (such as CRISPR-Cas) and a corresponding guide RNA (tar-
geting the wild-type gene) in the genome. Upon recognition of
the target sequence (i.e. the wild-type gene) on the homologous
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chromosome, the homing endonuclease will introduce a break
at the target site. If this event is followed by homologous recom-
bination, a cassette consisting of the mutated gene flanked by
the homing nuclease and the guide RNA will replace the wild-
type locus. However, one of the main technological hurdles
to overcome is the current inability to effectively control the
spreading of a gene drive once out in the environment (DiCarlo
et al. 2015; Webber, Raghu and Edwards 2015). Acrs can be used
as a molecular tool to control this spread. These proteins have
been shown to reduce the efficiency of the homing nuclease
in a tweakable manner (Basgall et al. 2018; Roggenkamp et al.
2018). Acrs are also envisioned to enable timed drive activa-
tion and to aid anti-gene drives in destroying the original gene
drive construct (immunization) (Basgall et al. 2018). The latter
can be achieved by introducing an acr encoding gene instead of
a mutated gene, as part of a gene drive. This gene drive should
make use of a homing endonuclease which is not suppressed by
the respective acr gene. Though gene drive efficiency can be par-
tially controlled via sgRNA design (Noble et al. 2017; Roggenkamp
et al. 2018; Yan and Finnigan 2018), incorporation of Acrs in the
molecular design to control spreading is advantageous over reg-
ulation via sgRNA design since Acrs work directly against the
homing endonuclease whereas sgRNA based molecular princi-
ples are case specific.

Finally, Acr proteins might represent a powerful tool to
enable phage therapy in CRISPR-active hosts. The emergence of
multidrug resistant bacteria represents a rising scientific con-
cern due to the possible implications of antibiotic unresponsive
infections. Phage therapy poses an interesting alternative to the
control of these bacterial infections (Nobrega et al. 2015), and
Acr-mediated inhibition of active CRISPR-Cas systems might
facilitate the employment of known phages that would be other-
wise targeted by the bacterial immune system. The possibility of
using studied phages, instead of the constant search and charac-
terisation of new ones not yet targeted by the bacterial CRISPR-
Cas system, might represent a therapeutic advantage and lead
to faster treatment.

OUTLOOK

A limited number of Acr proteins has been identified so far, but
their sequence and structural diversity is already remarkable.
The discovery of new Acrs, especially those targeting CRISPR-
Cas (sub)types for which Acr proteins have not yet been found,
is expected to clarify the number of distinct Acr protein fami-
lies and how widespread they are. The development of new Acr
identification strategies will certainly be required to avoid biases
created by current pipelines. Clarification of the mechanisms of
multiple Acr proteins, including the characterisation of AcrVA1,
AcrVA4 and AcrVAS (Dong et al. 2019; Knott et al. 2019) while our
study was under review, is expected to fuel the Acr-based fine-
tuning of CRISPR-Cas applications, such as gene editing or gene
drives.

Because bacteria and phages have co-evolved together for
billions of years, it is anticipated that bacteria have developed
mechanisms to counteract Acr protein activity. Possible strate-
gies have been hinted, including the accumulation of multiple
types of CRISPR-Cas systems in a single cell (e.g. type I-E and I-
F systems in P. aeruginosa), mutation of cas genes (Pausch et al.
2017), or silencing of acr gene expression. Proper research on the
field will certainly increase our understanding on bacterial evo-
lution, and also expand the CRISPR toolbox for biotechnological
applications.
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