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Abstract
The surface texture of asphalt pavement has a significant effect on skid resistance
performance. However, its contribution to the performance of skid resistance
is non-homogeneous and subjects to local validity. There are also a few deep
learning models that take into account the effective contact texture region. This
paper proposes a convolutional neural networkmodel based on the effective con-
tact texture region, containing macro- and micro-scale awareness sub-modules.
In this study, the asphalt mixture with varying gradations was designed to
accurately obtain the effective contact texture region. Then, the textures were
disentangled into macro- and micro-texture scales by applying the fast Fourier
transformand fed into themodel for training. Finally, the area of effective contact
texture region was calculated, and the effective contact ratio parameter was then
proposed using the triangulation algorithm. The results showed that the effective
contact texture area of pavement varies by the asphalt mixture type. The effective
contact ratio parameter exhibited a significant positive correlation (Pearson cor-
relation coefficient is 0.901,R2= 0.8129)with skid resistance performance andwas
also influenced by key sieve aggregate content from 2.36 to 4.75 mm. The data of
effective contact texture region following disentanglement significantly released
the model performance (the relative error dropped to 1.81%). The model exhib-
ited improved precision and performance, which can be utilized as an efficient,
non-contact alternative method for skid resistance analysis.

1 INTRODUCTION

The skid resistance of a road surface is a crucial part of
the performance component since it largely impacts the
driving safety of a vehicle. For road surfaces, skid resis-
tance refers to the ability of the road surface to resist
wheel slip. This essential property is mainly composed of
the horizontal cutting force provided by the aggregates in
the asphalt mixture and the adhesive force of the asphalt

© 2023 Computer-Aided Civil and Infrastructure Engineering.

binder. According to studies, numerous traffic accidents
are directly attributable to the absence of skid resistance
on the roadway (WHO, 2018). Under adverse conditions
such as rain, the contact area between the road surface and
the wheels is significantly reduced. The decrease in skid
resistance contributes to an increase in traffic accidents
and fatalities, particularly during snow and ice. However,
when the skid resistance of the road surface is increased by
more than 10%, the likelihood of traffic accidents decreases
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by approximately 13% (Ahammed&Tighe, 2009). Thereby,
enhancing the surface skid resistance of the pavement
under various difficult conditions and improving the inter-
action between the pavement and the tire is a promising
direction.
Appropriate research methods are essential for the in-

depth investigation of the skid resistance mechanism. The
earlier research on the skid resistance of road surface
has focused on the development of skid resistance testing
equipment and the improvement of testing methodolo-
gies. Still, most of them are direct friction tests (Kumar
et al., 2021), such as the pendulum tester (Kulakowski et al.,
1990), dynamic friction testing (L. Chu et al., 2019), Grip-
Tester (Kouchaki et al., 2018), and so on. Among these, the
pendulum tester has been proven to be the most accurate
in terms of friction mechanism in actual situations (L. J.
Chu & Fwa, 2019).
Although such methods (ASTM E303-93, 2018, JTG

3450-2019, 2019) and equipment (Han et al., 2018;
Wasilewska et al., 2020) are continually being improved,
the conventional direct testing method will always be
time-consuming and inefficient concerning the traffic
opening. The non-contact testing and pavement texture
analysis techniques based on digital images are becoming
increasingly indispensable tools for skid resistance studies
due to the portability of the sampling equipment (Puzzo
et al., 2017; Vilaca et al., 2010) and the efficacy of the
analysis (Wesolowski et al., 2018; Yan et al., 2020).
Given various advantages of non-contact measure-

ment methods, many studies have demonstrated the link
between pavement texture and pavement skid resistance
(Dong et al., 2022; Han et al., 2019; Kogbara et al., 2016).
Yan et al. (2020) adopted a laser scanner to obtain point
clouds data. They characterize pavement texture features
with texture spectra using selected in-service pavements.
After determining the relationship between spectral analy-
sis and field measurement results, they observed a positive
correlation between pavement texture spectra and friction
coefficients. Further investigations by Celko et al. (2016)
and Wang et al. (2018) exhibited that the two-dimensional
texture feature parameters do not contain richer texture
information. In addition, studies by Hofko et al. (2019)
and Zhang et al. (2019) demonstrated a significant corre-
lation between the reduction of pavement texture profile
and the deterioration of skid resistance. The existing stud-
ies on the skid resistance of non-contact pavements can
be divided into two main categories: statistical texture fea-
ture parameter analysis and frequency and signal-based
macro–micro texture analysis. Overall, the relationship
between pavement texture and pavement skid resistance
is evident.
Considering the validity of the contact between the tex-

tured region of the road surface and the vehicle tire, the

texture is not in complete contact with the tread. Thus,
Kogbara et al. (2018) found that the peak density and
peak volume at the top of the region down to a depth
of 2 mm contribute significantly to the skid resistance,
with the density effect being more significant than the
volume effect. Ding et al. (2021) obtained the relation-
ship between friction values and surface area of textured
regions at different depths by using digital image pro-
cessing techniques. The results indicated that the skid
resistance of the pavement is significantly and positively
correlated with the surface area of textured areas in the
range of 0.5 to 2 mm in depth. Yang, Wang et al. (2021)
used discrete wavelet transforms to decompose 3D pave-
ment data into 11 texture types with different wavelengths
and adopted cross-validation and stepwise multiple linear
regression to analyze them. They reported that the pave-
ment textures with wavelengths not exceeding 3.2 mm in
the maximum 2.5 mm depth range of the pavement can
be used as an effective tire–pavement contact area. Most
of the above-mentioned studies investigated the distribu-
tion characteristics of pavement texture in a comparatively
informative way. All evidence suggests that the effec-
tive area of surface pavement texture exists objectively. It
is necessary to formally consider the effective region of
pavement texture in skid resistance studies.
Due to the outstanding nonlinear expression capability,

data abstraction, and analysis, machine learning methods
and neural network models are increasingly used (Adeli,
2001, 2020) in civil engineering. With the development of
supervised and unsupervised learning, efficient and robust
paradigms (Alam et al., 2020; Rafiei et al., 2017) are gradu-
ally derived, which has greatly improved the efficiency and
accuracy of work in areas such as road crack identification
(Chen & He, 2022; C. Liu et al., 2022; Żarski et al., 2022)
and road condition evaluation (Grande et al., 2017; Jeong
et al., 2020).
Especially in the field of road skid resistance studies,

the combination of macroscopic (Najafi et al., 2016; Qiang
Joshua Li, 2017) and microscopic texture statistics param-
eters (Yang et al., 2021; Zhan et al., 2022) with machine
learning or deep learning has driven skid resistance stud-
ies into the new era. Nevertheless, suchmodels commonly
require a manual selection of feature indicators followed
by supervised learning. Their accuracy and generalization
ability are usually affected by the degree of accuracy of
feature engineering. Aiming for generalized metrics is not
easy to achieve. In response to these uncertainties, it is
necessary to adopt a better paradigm.
The convolutional neural network (CNN) model is

particularly well-suited for feature extraction and fitting
pavement non-contact test data as a classical algorithm of
deep learning with the assistance of high perception and
abstraction capacity of spatial features using convolutional
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intercorrelation algorithm. Yang et al. (2018) used an
onboard texture scanner to obtain a 3D point cloud for a
certain length of a route and calculatedmean depth (MPD)
per unit of a route length as an evaluation index and trans-
formed the scanned pavement section lines into a spectral
map as the input of a CNN model to rate the skid resis-
tance of the pavement. Zhan et al. (2020) summarized the
previous studies, extended the acquisition source of pave-
ment area texture data while using the grip test results as
an index, and validated the high accuracy and performance
of the model based on the residual CNN, that is, ResNet.
Tong et al. (2018) utilized a handheld scanner to acquire
the regional surface texture of pavement core specimens,
transformed it into a pixel-like two-dimensional matrix,
then provided as an input into a CNN model to estimate
the level of pavement skid resistance with MPD value. Lu
et al. (2022) developed a CNN model to investigate the
primary relationship between the texture and the field-
level skid-resistance measurement of the pavement. They
investigated the relationship between the texture acquisi-
tion interval and the effective contact. It was concluded
that textures with wavelengths higher than 2.4 mm were
critical for wet friction. The effective texture contact area
is 0.6 times the original region, verifying the capacity of
the model to maintain relative error at 14%. The utiliza-
tion of CNNs in the study of pavement skid resistance has
achieved tremendous success. However, the majority of
studies have not paid enough attention to the effectiveness
of the texture region contributing to antiskid performance.
There is still much potential for improvement in studies
that coupled CNN models with studies of skid resistance.
The tire–road interaction is complicated during the

actual vehicle driving process. There is a maximum depth
limit for the natural contact area (B. Chen et al., 2017; Ding
et al., 2021). This indicates that the contribution of the tex-
ture configuration to the skid resistance of the pavement
is insufficient and uneven, and there is discrepancy in the
texture distribution in different areas. However, most of
the prior models do not adequately account for the effec-
tive contact region between the pavement surface and the
rubber tire. Presently, few studiesmatch the skid resistance
test area with the texture acquisition area, which leads to
supervised model training metrics that do not necessarily
meet reality. The relationship between the features learned
by the model and the actual measured labels would not
correspond precisely to each other.
The existing studies on pavement skid resistance using

CNN models tend to achieve favorable outcomes, which
are closely related to the preparation of large datasets,
model architecture preferences, and training methods.
Still, there is a dynamic balance between performance and
overhead of neural networks (Bengio & Lecun, 2007; Pas-
canu et al., 2013). Well-designed structures and sample

expansion can reduce unnecessary resource consump-
tion (Zhuang Liu et al., 2022). It is time-consuming
and expensive to train complex models if large-volume
datasets are prepared for indoor experiments. Conversely,
the models are not easy to achieve good fitting accuracy,
which is the difficulty of building models using indoor
experiments. The existingCNN-based pavement skid resis-
tance research results are relatively scattered and cannot
be quickly generalized for application. Therefore, it is
required to develop a CNN model with concise logic,
high accuracy, and fast generalization for various types of
pavements.
Given this, the paper proposes a CNN model based on

the effective contact texture region. The region of the cap-
tured texture is tested for skid resistance using a British
pendulum tester (BPT). Disentanglement of effective tex-
tures was performed by frequency analysis at macro- and
micro-scales. A mapping paradigm between the effec-
tive contact texture region to the skid resistance of the
pavement is established to predict the skid resistance of
pavement. Finally, the area of the effective contact tex-
ture region is calculated by triangulation. Its distribution
characteristics and influencing factors have been studied
thoroughly. It provides new insights into asphalt pavement
skid resistance research and material design.

2 METHODOLOGY

2.1 Framework

In this paper, in order to study the role of effective texture
contact effect on the skid resistance of asphalt pavement,
tests are conducted on asphalt mixture rutting slabs that
are prepared by indoor experiments, At the same time,
collection and processing methods of scanning area sam-
ples are improved, and the technical route of this study is
illustrated in Figure 1.

2.2 Specimen preparation

In this study, asphalt pavement is used as the research
object, and tests are conducted in the laboratory by forming
asphalt mixture rutting plate specimens. The performance
of the base asphalt (Table 1) used to make the asphalt mix-
ture is tested according to the Chinese specification JTG
E20-2019 (JTG E20-2019, 2019).
Based on the AC-13 asphalt mixture (JTG F40-2004,

2005), a total of nine types of varying gradations are
designed by controlling the different key sieve passing
rates (Table 2), and the gradation curves are shown in
Figure 2. All aggregates are obtained from locally produced
limestone in Shaanxi Province, China.
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4 SHI et al.

F IGURE 1 Framework for the study.

TABLE 1 Asphalt performance parameters.

Type of asphalt Performance parameters Indicators
Karamay 70# Penetration (25◦C, 5 s, 100 g)/0.1 mm 66

Ductility (15◦C, 5 cm/min)/cm >100
Softening point/◦C 50.5
RTFOT Quality loss/% −0.512

Penetration ratio/% 71
Residual ductility
(15◦C, 5 cm/min)/cm

20

Note: RTFOT means Rolling Thin Film Oven Test.

F IGURE 2 Asphalt mixture gradation curve for this
experiment.

2.3 Dataset preparation

2.3.1 Scanning sample acquisition methods

The preparation of the dataset is a critical step in the sub-
sequent CNN model training. Its accuracy and precision
almost determine the correctness of the whole model. In
this study, a 3D laser texture scanner (LTS), model LTS-
9400HD, manufactured by AMES, is utilized to obtain the
texture point clouds. This Workstation-type scanner is lit-
tle affected by the difference in surface gloss and abrupt
changes in the elevation of the sample. Its scanning accu-
racy is higher than the handheld laser scanner, and the
main technical parameters of the scanner are shown in
Table 3.
According to the specification (ISO 13473-1, 2020), the

sampling spacing should not exceed 1 mm for texture
analysis, while the specification (ASTM E1845, 2015) spec-
ifies that the sampling resolution in the vertical direction
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SHI et al. 5

TABLE 2 Gradation and optimum asphalt content.

Gradation

Passing rate/%

OAC/%16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
R54S050 100.0 97.5 76.6 46.0 41.0 26.9 17.8 11.6 7.6 5.0 4.76
R54S075 100.0 97.5 76.6 46.0 38.5 25.5 17.1 11.4 7.5 5.0 4.60
R54S100 100.0 97.5 76.6 46.0 36.0 24.2 16.4 11.1 7.4 5.0 4.44
R57S050 100.0 97.5 74.9 43.0 38.0 25.3 17.0 11.3 7.5 5.0 4.67
R57S075 100.0 97.5 74.9 43.0 35.5 23.9 16.3 11.0 7.4 5.0 4.55
R57S100 100.0 97.5 74.9 43.0 33.0 22.6 15.6 10.7 7.3 5.0 4.42
R60S050 100.0 97.5 73.2 40.0 35.0 23.7 16.2 10.9 7.4 5.0 4.58
R60S075 100.0 97.5 73.2 40.0 32.5 22.3 15.5 10.6 7.3 5.0 4.48
R60S100 100.0 97.5 73.2 40.0 30.0 20.9 14.7 10.3 7.2 5.0 4.38

Note: R54 in R54S050 means 54% of the aggregate above 4.75 mm, while S050 means 5% of the aggregate between 2.36 and 4.75 mm. OACmeans optimum asphalt
content.

TABLE 3 Key technical parameters of the scanner.

Parameters Value
Maximum resolution in the length direction (mm) 0.00635
Maximum resolution in the width direction (mm) 0.02469
Vertical Resolution (mm) 0.005
Scanning speed (line/s) 4.5

should be less than 0.05mm. The sampling spacing should
be no more than 1.00 mm.
If the maximum resolution is adopted to scan the data

in this study, the average single region takes up to 3.65 h.
Moreover, the sampling accuracy (Ding et al., 2021; Lu
et al., 2022) has an impact on the performance of the neu-
ral network model. Thus, this study searches for a balance
between high accuracy and efficient acquisition under
the premise of satisfying the specification and chooses
the scan length and width direction resolutions of 0.0740
and 0.0254 mm, respectively, which can reduce the single
sampling elapsed time about to 1 h.

2.3.2 Scanning direction and position

Based on the definition of pavement skid resistance and
specification standards, skid resistance analysis using
pavement surface texture requires that samples are to be
collected from the longitudinal section of the pavement in
the direction of the axis. The sampling direction on the
specimens in this study was the same as the rolling direc-
tion in which the rutted slab specimens were made, while
the field sampling was aligned with the direction of the
carriageway.
Considering the distinctive contributions of texture dis-

tribution to the skid resistance of the pavement, the length
of the scanning area in this study is set to the sliding dis-
tance necessary for the pendulum tester, that is, 126 mm.

The width of the scanning area is set to be slightly wider
than two times the width of the pendulum slider, that is,
51 mm. The necessary extra space is left here for the tran-
sition to a steady-state resolution of the scanner laser. But
the real size of the entire sampling area is unified in the
formal data processing phase as 126 mm × 25.4 mm × 2.
To ensure the consistent location of the sampling and

testing areas, an area positioning gauge is made of acrylic
plastic, which has the same outer dimensions as the rutting
plate specimen. The internal sizes are set according to the
above principles. Each partition number is i ∈ {1,2,3,4,5,6}.
The samples are obtained by the single-area dual sampling
method, with a total of 12 pieces in six partitions for each
specimen, and the specific collection locations are shown
in Figure 3.

2.3.3 Sample preparation and label
acquisition

Sample Preprocessing
Although high-performance, low-sensitivity scanners can
minimize the impact of such shortcomings, they cannot
eliminate noise or bad spots. The bad point is an extreme
form of noise, usually manifested as a point where the ele-
vation rate of variation tends to infinity. In this study, they
are collectively referred to as noise.
In addition, the scanned data usually have problems

such as skewed or tilted sections due to uneven place-
ment of the specimen or uneven surface to be measured.
Therefore, calibration is also required for the collected raw
samples.
The noise collected by the device (the field of view shows

the burr or spike area) is often detected by the quadrature
point method, substituted by the minimum value of the
neighborhood. This method replaces the noisy points on
the scan line with the minimum value of the elevation of
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6 SHI et al.

F IGURE 3 Data acquisition example: (a) the laser scanner and
specimen sampling, (b) the pendulum tester, (c) field sampling, (d)
sampling rules, and (e) original point cloud.

the neighboring points before and after it as illustrated in
Equations (1) and (2).

𝑆𝑛 = {𝑧𝑛 > 1.5𝑄𝑢𝑜𝑟𝑧𝑛 < 1.5𝑄𝑙} (1)

𝑍′𝑛 = min (𝑧𝑛−1, 𝑧𝑛+1) (2)

where 𝑆𝑛 is the set of lousy point, and𝑍′𝑛 is the elevation
at the lousy point after the substitution; 𝑧𝑛 is the elevation
at the lousy point; 𝑧𝑛−1 is the elevation of the point before
the lousy point; 𝑧𝑛+1 is the elevation of the point after the
lousy point; 𝑛 is the index of the location of the lousy point,
and 𝑄𝑢, 𝑄𝑙 are the upper and lower quartiles, respectively.
To solve the problem that the section line is skewed or

biased due to uneven surface and irregular spatial posi-
tion of the specimen, which leads to the deviation of
the acquired point data from the accurate position infor-
mation. Usually, a section elevation correction algorithm
based on the principle of least squares is implemented.
This method takes the scanned section as the object and
uses the original skewed elevation value minus the hori-
zontal correction distance obtained to correct the skewed
elevation as shown in Equation (3).

𝑍(𝑖) = 𝑧(𝑖) − 𝑏1 − 𝑏0 (𝑖 = 0, … ,𝑁 − 1) (3)

where 𝑧(𝑖) is the pre-calibration elevation value; 𝑍(𝑖) is the
corrected elevation value; 𝑖 is the index of data points in
the section construction line; 𝑁 is the number of points
collected for this construction line; 𝑏0 and 𝑏1 are the

correction parameters for the degree of skew and offset,
whereby 𝑏1 and 𝑏0 are calculated by Equations (4) and (5),
respectively.

𝑏1 =
12

∑𝑖=𝑁−1

𝑖=0
𝑖𝑧𝑖 − 6 (𝑁 − 1)

∑𝑖=𝑁−1

𝑖=0
𝑧𝑖

(𝑁 − 1)𝑁 (𝑁 + 1)
(4)

𝑏0 =
1

𝑁

𝑁−1∑
𝑖=0

𝑧𝑖 − 𝑏 ×
𝑁 − 1

2
(5)

Effective contact texture region extraction
Considering the transient and partial tire–road contact, it
is not easy to obtain accurate depth values of the effective
contact texture region due to tire size and tread pattern,
contact surface pressure, and others. Nevertheless, many
studies have found that effective contact occurred within
0.5 to 2 mm (Ding et al., 2021; Kogbara et al., 2018; Yang
et al., 2021).
Given this, the paper adopts themethod of filtering from

the top to the bottomof the texture. Themaximumdepth of
the surface texture is taken as the threshold value of 2 mm.
And the points whose depth did not exceed the maximum
depth of the texture were filtered out from the 3D point
matrix, and then the depth of those points that failed to
meet the filtering conditions was assigned to 0. After that,
the original coordinate system is reset, and the plane with
the depth value of 0 is utilized as the (𝑥, 𝑦) plane of the
point array position index𝑥𝑜𝑦, while the depth (i.e., the
elevation) is z-axis as shown in Figure 4a,b,d.
Finally, a total of 3000 sample regions acquired in the

experimental phase are batch processed. Among them,
2700 of these samples were from the test specimens men-
tioned before, and 300 were from the test road. Afterward,
the individual sample data files are then re-indexed as
the dataset training values, and the above processes are
implemented by Python.

Sample label acquisition
The label of a sample refers to the data used to represent the
actual meaning of the sample in the learning algorithm. In
this paper, the sample label for each effective contact tex-
ture region is the British pendulum number (BPN) value
obtained by the BPT under that region. Then, the effec-
tive contact texture region and BPN mapping relationship
are constructed to build the dataset required for themodel,
and Figure 4e shows an example of a data sample.

Texture disentanglement
The relative contribution of macro-texture and micro-
texture to skid resistance is not identical under dif-
ferent velocity conditions. The skid resistance evalua-
tion technique adopted in this study was the BPT test,

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13063 by T
u D

elft, W
iley O

nline L
ibrary on [27/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SHI et al. 7

F IGURE 4 Dataset preparation: (a) Texture data preprocessing, (b) method for extraction of effective contact texture regions, (c) method
for disentanglement of macro- and micro-textures, (d) example of effective depth interception, (e) original (x, y, z) elevation data and a local
example of point cloud elevation matrix, and (f) an example of macro- and micro-textures in one region. BPN, British pendulum number.

which is generally known as a low-speed test. There-
fore, the textures were disentangled by means of fil-
tering whereby the neural network can focus more
on identifying the features of the textures on various
scales.
Initially, the frequency information of the texture is

obtained by the fast Fourier transform (FFT). The tex-
ture elevation scanning lines are then filtered using
an appropriate high-pass filter. The spatial frequen-
cies below 10 m−1 (i.e., the wavelengths larger than
100 mm) are filtered to preserve the texture character-
istics. Subsequently, a low-pass filter (LPF) is used to
eliminate texture clutter with wavelengths of less than
0.1 mm.
The spatial frequency of 2000 m−1 (i.e., the wave-

length is 0.5 mm) is identified as the boundary between
macro- and micro-textures (ISO 13473-1, 2020). The effec-
tive contact texture regions obtained based on the afore-
mentioned processing were then disentangled into two
scales: macro-texture and micro-texture, as shown in
Figure 4c,f. The processes above are implemented in
Python.

3 CCNMODEL:
EFFECTIVETEXTURE-NET

A CNN model generally consists of a stacked combina-
tion of input, convolutional, pooling, and output layers.
The input layer is the starting step of the model, and the
input has a multi-channel image data matrix; the convolu-
tional layer is the core component (i.e., also called encoder)
for extracting features, which extracts the original infor-
mation layer by layer to generate higher-order features;
the pooling layer is utilized to enhance the main features
and reduce the sensitivity of the model to the data source;
the output layer is defined according to the model task
to output the predicted probability or fitted value to the
samples.
This study adopts the residual leap-frog connec-

tion structure to build the neural network model. The
model output is the skid resistance performance (i.e.,
BPN value) as awarded via the effective contact texture
region on macro- and micro-texture scales. The model
(i.e., EffectiveTexture-Net) architecture is shown in
Figure 5.
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8 SHI et al.

F IGURE 5 EffectiveTexture-Net model: (a) Network architecture (b) backbone of the network in detail.

3.1 CNNmodel structure

This section presents the details of the CNNmodel utilized
in the study to clearly explain the idea or logic of model
construction established on the effective contact texture
region.

3.1.1 Input

The input layer, as the first layer of the model, is uti-
lized to receive the input of the image matrix and perform
preprocessing (e.g., size transformation, color gamut trans-
formation). Then the data described in Section 2.2.3 of
this paper is passed into the network backbone for feature
extraction.
Inputting a raw sample into the network is essentially

feeding its texture point cloud that has been disentangled
at two scales (macro andmicro) as shown in Figure 5a. The
format of the data for each sample is downscaled from a
3D point cloud to a 2D heat map, where the rows of the
matrix correspond to the position indexes of the original
point matrix. The element value of each position corre-
sponds to the value of the elevation z as shown in Figure 4e.
The sample tensorswill be normalized to pass into the bulk
of the model.
Subsequently, the data stream initially inputs a three-

layer adjustment block that consists of convolution (with
kernel size of 3 × 3), max pool, convolution (with kernel
size of 3× 3), respectively, before proceeding into the corre-
sponding sub-module for feature extraction. This serves for
resizing the data tensor to be acceptable for the backbone
network.

F IGURE 6 An example of a convolution operation from the
dataset.

3.1.2 Backbone of the model

The backbone of the model is the cornerstone from which
the model derives features from the data. For image-like
data, the convolution is an essential tool to extract the
intrinsic features.
Different from the previous multi-layer perceptron

model, the convolutional layer utilizes convolutional win-
dows (also known as convolutional kernels) to implement
the mutual correlation algorithm (Figure 6) to encode the
data features as illustrated in Equation (6).

𝑐
(𝑘)
𝑖𝑗

= 𝑋
(𝑘)
𝑖𝑗

∗ 𝜔(𝑘) + 𝑏(𝑘) (6)

where 𝑘 is the channel value; 𝑐(𝑘)
𝑖𝑗

is the feature encoding
value at the row 𝑖 and a column 𝑗 in the featuremapmatrix;
𝑋
(𝑘)
𝑖𝑗

is the matrix to be sampled at the row 𝑖 and a col-
umn 𝑗 (i.e., sampling window); 𝜔(𝑘) is the weight matrix
(i.e., convolution kernel); 𝑏(𝑘)denotes the deviation term,
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SHI et al. 9

F IGURE 7 Illustration of residual structure (ReLU is the
activation function).

and “*” represents the inner product operation of the
matrix.
To overcome challenges such as gradient extinction and

network degradation, the residual leap-frog structure has
been proposed byHe et al. (2016) as shown in Figure 7. This
enables the neural network to deepen tremendously and to
behave well at the same time.
In order to separately consider the contribution of

macro-texture and micro-texture to skid resistance perfor-
mance, two parallel backbone sub-modules with the same
residual structure were created based on the ResNet-50.
For sub-modules focusing on micro-textures, the convo-
lution kernels were set as 1 × 1, 3 × 3, and 1 × 1 in
each residual block. While for the sub-module focusing
on macro-textures, the convolution kernels were set as 1
× 1, 5 × 5, and 1 × 1 in each residual block as shown in
Figure 5b. The output of the two sub-modules will eventu-
ally be concatenated in dimension and then passed to the
fully connected layer for regression.
The activation function is rectified linear unit (ReLU)

function, that is, Equation (7). It contributes to mitigate
gradient explosion or gradient disappearance during the
training phasemaking the training terminated. The output
through activation can be expressed as Equation (8).

𝐹𝑅𝑒𝐿𝑈 (𝑥) =

⎧⎪⎨⎪⎩
𝑥, 𝑥 > 0

0, 𝑥 ≤ 0

(7)

𝐼(𝑘) = 𝑓𝑅𝑒𝐿𝑈
(
𝑐(𝑘)𝑖𝑗

)
(8)

where 𝑘 is the channel value, 𝑐(𝑘)
𝑖𝑗

is the characteristic cod-
ing value at the column 𝑗 of a row 𝑖 in the feature map
matrix, and 𝐹𝑅𝑒𝐿𝑈(𝑥) is the activation function.

3.1.3 Batch normalization

After obtaining feature maps from convolution layers,
batch norm (Ioffe & Szegedy, 2015) was adopted to cor-

rect the imbalance of the data after the convolution layer
and reduce the sensitivity of the algorithm to the data
in the subsequent process. It contributes to accelerating
model convergence, mitigating gradient dispersion, and
improving model stability.

3.1.4 Pooling layer

Pooling algorithms are typically implemented after con-
volution to highlight the effective information from the
feature map and reduce the volume of operations.
Pooling algorithms are usually classified as average pool-

ing and maximum pooling. The pooling window matrix
manipulates the input data for the pooling operation as
shown in Equation (9). The size of the data stream in the
neural network model is halved, and the channels remain
unchanged after pooling.

𝑝
(𝑘)
𝑖𝑗

= 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑋
(𝑘)
𝑖𝑗
) (9)

where 𝑘 is the channel value; 𝑝(𝑘)
𝑖𝑗

is the pooling value at
the column 𝑗 of a row 𝑖 in the pooling matrix; 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥)
is the poolingmethod, and𝑋(𝑘)

𝑖𝑗
is thematrix to be sampled

(i.e., the pooling window) corresponding to a column 𝑗 of
the row 𝑖.
In this paper, the task is to identify the most salient

pavement texture features and to evaluate the skid resis-
tance accordingly. Thus, maximum pooling is chosen as
the pooling layer algorithm.

3.1.5 Fully connected layer

The fully connected layer assigns weights to the abstract
features extracted by the convolutional kernel (i.e., the
encoder). It maps the feature space to the sample label-
ing space to achieve the transformation from features to
output values. The operations of each neuron in the fully
connected layer can be expressed in Equation (10).

𝑓
(𝑙)
𝑐 =

𝑛∑
𝑖=0

𝑥𝑖 × 𝜔
(𝑙) + 𝑏 (10)

where𝑛 denotes the number of input neurons connected to
the neuron in each layer, represents the value of each input
neuron, 𝜔(𝑙) means the weight coefficient of the neuron at
the location of 𝑙 in each layer, and 𝑏 is the bias term.
To mitigate overfitting, this paper adopts the Dropout

mechanism to make the layer sparse. The nodes in the
fully connected layer will be randomly discarded during
the learning process with a certain probability andwithout
discrimination. This can significantly reduce the quantity

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13063 by T
u D

elft, W
iley O

nline L
ibrary on [27/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 SHI et al.

of model operations and enhance the robustness of the
model. This paper adopts a Dropout rate of 0.32.

3.1.6 Output layer

Considering that the CNNmodel in this study aims for the
effective contact texture regions for identification, the out-
put predicts the BPN values. This is an inherent regression
task rather than a classification task, so the mean square
error (MSE) is chosen as the loss function.
To further mitigate the the overfitting, L2 regulariza-

tion, Equation (11), is introduced in the output layer. The
loss function modified by using L2 regularization, Equa-
tion (12), can reduce the weight of insignificant features
and reduce the overfitting. Finally, the output layer calcu-
lates the Euclidean distance between the actual BPN value
and the predicted BPN value. Then error gradient, Equa-
tion (13), will be back-propagated to the model. The fully
connected layer is composed of three hidden layers with
dimensions of 1024, 512, and 64. The activation function
remains the same as before, also using ReLU.

L2RT =
𝜆

2𝑛

𝑛∑
𝑖=0

𝜔2
𝑖

(11)

𝑓𝑐𝑜𝑠𝑡 =
1

2𝑁

𝑁∑
𝑖=1

(
𝐵𝑃𝑁𝑖 − 𝐵𝑃𝑁𝑖

)2
+

𝜆

2𝑛

𝑛∑
𝑖=0

𝜔2
𝑖

(12)

𝜕𝑓cos 𝑡

𝜕𝐵𝑃𝑁𝑙

=
1

𝑁

𝑁∑
𝑖=1

|||𝐵𝑃𝑁𝑙 − 𝐵𝑃𝑁𝑖
||| (13)

where 𝜆 is the regularization parameter; 𝑁 is the number
of samples; 𝐵𝑃𝑁𝑖 is the model prediction result; the 𝐵𝑃𝑁𝑖

is the actual value, and 𝜕𝑓𝑐𝑜𝑠𝑡

𝜕𝐵𝑃𝑁𝑖

is the error gradient.

3.2 Model training

In this paper, the forward propagation process of the CNN
model to respond to the input and make predictions is
similar to that of a general feedforward neural network.
In the backward propagation, to update the learnable

parameters of the network, stochastic gradient descent
(SGD; Ruder 2016), adaptive gradient (AdaGrad) optimiza-
tion algorithm (Duchi et al., 2011), and root mean square
propagation (RMSprop) optimization algorithm can usu-
ally be chosen as the training methods. However, the
SGD method tends to fall into local optimum and con-
verge slowly. The AdaGrad method tends to disappear in
the middle and late stages of training and terminate the
training. Compared to the former, the RMSprop optimiza-
tion algorithm can alleviate the gradient disappearance

caused by the rapid learning rate decrease but still needs
to calculate all the gradients in the iteration process.
Therefore, the adaptive moment estimation (Adam)

optimization algorithm (Kingma & Ba, 2014) is chosen
as the training method in this paper, which dynami-
cally adjusts the learning rate of each parameter using
first-order moment estimation and second-order moment
estimation of the gradient and ensures smooth learning of
the model parameters after bias correction.
To ensure the robustness of the CNNmodel, the dataset

was randomly partitioned each turn, where 70% of the
dataset was utilized as the train set, and 30% dataset
was regarded as the test set. Ten parallel isolated tri-
als were conducted on the dataset to evaluate the model
performance comprehensively.
The entire model was implemented via Pytorch (Paszke

et al., 2019), while the related algorithms were imple-
mented by using Python-based open-source libraries. The
backbone parts of the model are all initialized using
the weights released by Pytorch for transfer learning, and
the other learnable parts are all initialized in the same way
before training. The model was trained by Intel R© Xeon R©
Platinum 8358P dual central processing unit with 512 GB
RAM, and an RTX A6000 graphics processing unit with 48
GB graphic memory.

4 AREA CALCULATION OF
EFFECTIVE CONTACT TEXTURE REGION

After segmenting by the effective contact depth, there are
some orphan points in the texture point clouds, which are
not easy to determine the gradient at the orphan points by
using the regular two-dimensional interpolation method.
It is also challenging to obtain the area of the effective con-
tact texture region by the integration method. Considering
that the point cloud data obtained in this study are locally
ordered and dense, the dissection is carried out based on
geometricmethods.Ahigh-density triangular grid division
is obtained first, after which a simple method is adopted to
calculate the contact areawithin the effective depth region.

4.1 Delaunay triangulation

Delaunay triangulation is a special triangulation algorithm
that has two strict premises: the criterion of the empty cir-
cle and the criterion of maximizing the minimum angle.
In other words, the Delaunay triangle network is unique
(i.e., any four points cannot be a co-circular), where no
other points exist within the outer circle of any triangle
in the Delaunay triangle network. The minimum angle of
the triangle formed by the Delaunay triangle profile is the
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SHI et al. 11

F IGURE 8 The Delaunay triangular profiling criterion: (a)
empty circle guideline, (b) maximizing minimum angle criterion,
and (c) an example of triangulation in a texture region.

largest among the possible triangulation of the scatter set,
its geometric representation can be seen in Figure 8a,b.

4.2 Area calculation of triangular
meshes

Although Delaunay dissection is the standard for trian-
gulation, it is algorithmically idealistic, which leads to
inefficiency. Thus, this study utilizes the Bowyer–Watson
algorithm (Chrisochoides & Sukup, 1999; Rebay, 1993). The
method utilizes the Delaunay triangular mesh generated
by point-by-point insertion. It is implemented using the
Python-based Numpy and Scipy open-source libraries.
After the triangulation, the coordinates of the vertices

for each triangular mesh in the space will be obtained.
Then the area of this triangular mesh 𝑆Δ can then be
expressed as the absolute value of the determinant as Equa-
tion (14). The area of the entire effective contact texture
region S𝑒𝑎 and the effective contact ratio 𝑟

𝑐𝑜𝑛𝑡𝑎𝑐𝑡
can be

obtained from Equations (15) and (16). Figure 8c illustrates
an example of meshing texture region by triangulation.

𝑆Δ =
1

2

|||||||
det

⎡⎢⎢⎣
1 1 1

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2

⎤⎥⎥⎦
|||||||

(14)

𝑆𝑒𝑎 =

𝑁∑
𝑖=0

𝑆
(𝑖)
Δ

(15)

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑆𝑒𝑎
𝑆𝑡𝑎

(16)

where (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are the coordinate repre-
sentations of any two adjacent side vectors in the triangular
grid; 𝑖 denotes the index in the triangular grid set;𝑁 is the
total number of grids, and 𝑆

𝑡𝑎
is the projected area of the

test area, which is also equal to the area of the rubber slider
of the pendulum tester sliding.

5 RESULTS AND DISCUSSION

So far, this study has clarified how to obtain the effec-
tive contact texture region and to build a CNN model that
can be aware of the skid resistance of asphalt pavement
over effective contact texture region. And then the per-
formance of the CNN model will be evaluated whether it
can be utilized as an efficient, non-contact method. Fur-
thermore, the influencing factors of the effective contact
texture regionwill be discussed for newperspectives on the
improvement of pavement skid resistance analysis.

5.1 Performance validation of the CNN
model

5.1.1 The performance of
EffectiveTexture-Net

The model is trained with a combination of Adam
optimizer, Dropout mechanism, and L2 regularization
method, which can significantly improve the learning effi-
ciency and performance in the training process. The root
mean squared error (RMSE) is then used as a criterion to
estimate the accuracy of the model proposed in the paper
as shown in Equation (17).

𝑅𝑀𝑆𝐸 =

√√√√ 1

𝑁
×

𝑁∑
𝑖=1

(
𝐵𝑃𝑁𝑖 − 𝐵𝑃𝑁𝑖

)2
(17)

where 𝑁 is the number of samples; 𝐵𝑃𝑁𝑖 is the model
prediction result; the 𝐵𝑃𝑁𝑖 is the actual value.
Thewhole training process consists of 100 epochs, one of

which contains 100 iterations. The training set is traversed
in one iteration for a batch size of 24 samples per input.
The actual average training time for one epoch is about 35
min, which is 67% and 38% less than the time taken by the
SGD optimizer and the RMSprop optimizer, respectively.
The training error of the model using the Adam optimizer
is shown in Figure 9.
It can be seen that the difference between the prediction

of model for pavement BPN values and the real measure-
ment results is very significant after the initialization. But
with the iterations increasing, the error decreases rapidly.
When the iteration reaches the 10th time, fluctuations

occurred in the training. However, due to the contribu-
tion of the Dropoutmechanism and L2 regularization, the
model gradually reaches the balance in the confrontation
between underfitting and overfitting when the epoch is
around the 55th time. The error variance remains stable
for amore extended period, which indicates that themodel
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12 SHI et al.

F IGURE 9 The trend of training error.

training is completed. The average absolute training error
of final epochs (from 70 to 100) is 1.021.
For the performance evaluation of region skid resis-

tance, EffectiveTexture-Net can be percept by extracting
the abstract features from the effective contact texture
regions. Thus, this paper utilizes the error level between
the predicted BPN values and the real test BPN values to
evaluate the perceptual field characterization capability of
the EffectiveTexture-Net. The sample size of the total test
set is 900, and the model prediction performance is shown
in Figure 10.
Themean absolute error of themodel on the test set was

1.232, while the mean relative error was 1.81% over 10 par-
allel isolated trials (mentioned in Section 3.2) of the model
training.
In comparison, the percentage for the samples of pre-

dicted BPN values larger than or equal to the measured
BPN values is 46.67%, with a mean absolute error of 1.264
and a mean relative error of 1.86%. While the percentage
for the samples of predicted BPN values less than the mea-
sured BPN values is 53.33%, with a mean absolute error of
1.189 and a mean relative error of 1.73%. The skewness of
the model in the test set toward the prediction results is
0.02, and the test results are approximated to the normal
distribution. This further demonstrates that the current
methodology enables promising robustness of the model.
Collectively, the prediction errors of this model are

comparable to the continuous test measurement error
requirements specified in the specification (JTG 3450-2019,
2019). Moreover, it has achieved stable performance on
both the test and training sets.
In order to further estimate the performance of the

model, this study also adopted the validity ratio to assess
the predictive accuracy of the model. The above proce-

dure is carried out immediately following the evaluation
of model errors.
When the model iterated through the test set, each

sample was predicted five times in succession. The pre-
diction was considered valid if the difference between the
maximum and minimum values is less than 3. The mathe-
matical meaning of validity ratio is the percentage of valid
samples to the total samples.
The RMSE values, variance, and validity ratio of the

model under each replicate test are shown in Table 4.
The validity ratio serves for the comparison of the

EffectiveTexture-Net with the BPT direct skid resistance
test. Tentatively, the model performed (mean validity ratio
of 98.57%) rather consistently in parallel trials and met the
expectations of this study.
Table 5 showed the performance of the other pre-

vailing networks assembled as the backbone of the
EffectiveTexture-Net on the Effective Contact Texture
Region dataset.
In real training tests, it can be found that the majority

of the classical CNN architectures with pre-trained trans-
fer learning have better performance. The deployment
efficiency of the model can be improved by appropriate
fine-tuning of the preprocessing and regression layers.
However, it is worth noting that deepening the network

hierarchy overly cannot help much in terms of perfor-
mance improvement. The residual leapfrog connectivity
(i.e., ResNet) can significantly improve this issue. Fur-
thermore, when ResNet-101 is serving as the backbone
for transfer learning, the performance improvement, com-
pared to the ResNet-50, is marginal, but the computational
workload is significantly increased.
On the other hand, the transformer model with a self-

attention mechanism, such as Swin Transformer (Ze Liu
et al., 2021), also becomes one of the new state-of-the-
art models in the field of computer vision for upstream
tasks. Thus, the Swin-L version of the Swin Transformer
is considered to be a comparison in this study as the back-
bone network for feature extraction of the effective contact
texture regions.
When Swin-L is serving as the backbone, the perfor-

mance of the model is moderately improved (approx.
0.79% reduction in relative error) over ResNet-50 as the
backbone on the dataset after texture disentanglement.
But the cost is a burst in the computational effort of
about 12% extra. Moreover, the performance of the model
with Swin-L as the backbone on datasets without texture
disentanglement directly corresponds to the performance
of ResNet-50 on datasets with texture disentanglement.
This supports the feasibility and justification of using
ResNet-50 as the backbone for this study under the
prerequisite of texture disentanglement.
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SHI et al. 13

F IGURE 10 An example of one-trial
predictive performance for the model. BPN,
British pendulum number.

TABLE 4 Results of the repetitive tests.

Performance of the model under each parallel isolated trial
No. 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
RMSE value 1.362 1.347 1.337 1.326 1.343 1.358 1.378 1.287 1.411 1.436
S2 0.724 0.687 0.818 0.792 0.837 0.596 0.739 0.821 0.855 0.764
Validity ratio 98.11% 98.78% 99.44% 98.22% 97.78% 98.33% 98.22% 98.67% 98.78% 99.44%

TABLE 5 Performance comparison of various models.

Model Name AlexNet VGG-11 VGG-16 VGG-19 ResNet-34 Swin-L
Effective
Texture-Net

Training set absolute error 1.619 1.528 1.515 1.519 1.433 1.008 1.021
Test set absolute error 1.631 1.537 1.524 1.522 1.467 1.217 1.232
Test set relative error 3.82% 3.67% 3.27% 3.29% 2.07% 1.02% 1.81%

5.1.2 Validation of effective contact texture
region and texture disentanglement

To further validate the beneficial effect of the effective con-
tact texture mechanism and texture disentanglement on
the CNN model in this study, the ablation experiments
were carried out under similar conditions in this section.
Table 6 shows the variation of themodel on the original tex-

ture, effective contact texture region dataset, and effective
contact texture region dataset (with disentanglement).
The model based on the effective contact texture region

showed a significant enhancement in the accuracy of pre-
diction and evaluation (the relative error drops by 6.13%).
In contrast, the results using the original texture region
showed similar results to previous comparable studies, and
considerable benefits were achieved by precisely matching
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14 SHI et al.

F IGURE 11 (a) The trend of the effective contact ratio of each gradation and (b) the linear relationship between the effective contact
ratio and British pendulum number (BPN).

TABLE 6 The model performance on the original texture,
effective contact texture region dataset, and effective contact texture
region dataset (with disentanglement).

Dataset

Test set
absolute
error

Test set
relative
error

Original texture region 5.368 9.37%
Effective contact texture region
(without disentanglement)

2.175 3.24%

Effective contact texture region
(with disentanglement)

1.232 1.81%

the texture acquisition to test regions of the skid resistance
one-to-one.
The expressivity of the model dataset is released fur-

ther (the relative error reduced to 1.81%), when the
macro-texture and micro-texture were disentangled with
frequency domain analysis.
It is believed that this is due to the effective contact tex-

ture region proposed in this study, which filtered the raw
textures favorably. This method retains valid information
of high order and reduces the complexity of the dataset. It
is a valuable way to study the possibility of reducing the
volume of the network.

5.2 Characteristics of the effective
contact texture region

In this section, the point cloud after the maximum depth
threshold segmentation process is utilized for triangula-
tion, enabling easy gridding and easy access to the area of
effective contact texture region.

As shown in Figure 11, it is easy to find that the area of
effective contact texture region provided by varying gra-
dation types of the asphalt mixture decreases relatively
with the increase of coarse aggregate content. On the one
hand, it indicates that the macro-texture does not signif-
icantly improve the richness of the local texture when
the depth increases. On the other hand, the appropriate
increase of the aggregate content from 2.36 to 4.75 mm par-
ticle size can rapidly improve the regional micro-texture
content, which is a critical gain to increase the contact
effect between the pavement texture area and vehicle tires.
The more significant point is that the area of effective con-
tact texture region for pavement texture is not a fixed value
but varies within range and particularly exhibits a corre-
lation with the relative proportions of macro-texture and
micro-texture.
In the case of this study, the effective texture area

reached a maximum of 54% coarse aggregate content and
7.5% aggregate content of 2.36 to 4.75 mm particle size,
while the average effective contact ratio ranged from0.52 to
0.64. There is a significant positive correlation between this
parameter and the skid resistance of the pavement with
a linear fitted Pearson correlation coefficient of 0.901 and
an R2 of 0.8129, which further indicates that the effective
contact ratio parameter has the potential to be utilized in
the experimental phase of asphaltmixtures for preliminary
assessment of skid resistance.

6 CONCLUSION

In contrast to the prevalent indirect feature prediction
models based on texture parameters such as mean texture
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depth or MPD, this study proposed a CNN model based
on 3D effective contact texture region to predict the skid
resistance performance of pavements. This paper utilized
BPT for the skid resistance test of asphalt mixture pave-
ment, and a high-precision 3D laser scanner was used for
the texture point clouds data acquisition.
The area characteristics of effective contact texture

region for different types of asphalt mixtures were ana-
lyzed. Then the capability discrepancy of CNN models
was visually investigated under other training methods.
Finally, the performance of themodel was validated. Based
on this, the following conclusions can be drawn from this
study:

1. Using the effective contact texture region that has been
extracted by themaximum contact constraint decreases
the redundancy of unnecessary information. Disentan-
glement of macro- and micro-scale textures based on
the FFT for the above regions significantly improved
the accuracy and precision of the EffectiveTexture-
Net. The relative error of the EffectiveTexture-Net was
ultimately 1.81%.

2. The contribution of the different backbone networks
to the EffectiveTexture-Net varies considerably. Net-
work structure being over-depth provides negligible
benefits to model performance. Moreover, the network
with residual leap-frog structure performs superiorly
than the typical stacked network. When the backbone
was ResNet-50, the model performed comparable to
the Swin-L (Transformer), but with remarkably less
computation.

3. The triangulation enables better fitting of orphan data
in the effective texture point cloud after filtering by the
maximum depth constraint. The dissection algorithm
is easily implemented programmatically. It can further
subdivide the grid to improve computational accuracy.

4. The surface area of the effective contact texture region
can be efficiently obtained using triangulation, which
is not a fixed value but varies dynamically depending
on the key sieve passing rate from 2.36 to 4.75 mm of
the mixture gradation. Meanwhile, the area exhibits a
high correlation (Pearson correlation coefficient is 0.901,
R2 = 0.8129) with the skid resistance of the pavement.

5. The effective contact ratio obtained in this paper
ranges from 0.52 to 0.64. The pavement skid resistance
improves significantly with the increase of the effective
contact ratio. This parameter is valuable for the design
or preliminary evaluation of asphalt mixtures.

For further work, the influence of morphological prop-
erties of aggregates on the skid resistance of asphalt
mixes will be considered and the new paradigm of neu-

ral networks will be merged with simulation modeling to
establish more generalized evaluation metrics.
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