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Abstract

The increasing global demand of renewable and clean energy has led to the expo-
nential growth, development, and interest in the offshore wind energy industry and
expansion towards earthquake-prone areas. Offshore wind turbine structures, typ-
ically supported by a tubular monopile foundation, are increasing in size to meet
the increasing human demands. In the constant ongoing debate in search of a bal-
ance between design accuracy and efficiency, general consensus is yet to be found
in search of accurate yet simplified representation of soil-pile interaction. A Winkler
foundation principle has shown to be a good compromise regarding this discussion
but current knowledge is mainly based on (pseudo-static) small soil-strain inducing
wind- and wave load-cases. Adopting this principle, the soil-structure interaction
mechanism is represented by local lateral soil reactions (springs with distributed
stiffness in mechanical formulation). Strong ground shaking induces shearing and
volumetric variation of the soil particles. Through hysteresis the soil material ex-
hibits energy dissipation: hysteretic damping. Accounting for hysteresis is considered
computationally more demanding than when the soil continuum is assumed elastic
but this is an assumption which only holds when soils undergo very small soil strains.

This thesis explores the amount of energy dissipated as a result of hysteresis
during seismic response of an offshore wind turbine and the applicability of such
damping in a local linear visco-elastic manner. To assess the seismic response, an
equivalent one-dimensional Finite Element Model was developed in OpenSees [31].
In order to obtain insight in this nonlinear energy-dissipation mechanism associ-
ated with the hysteretic offshore wind turbine model under seismic excitation, a
Python code was developed that calculates the energy dissipation of each load-cycle
separately. The developed energy dissipation assessment algorithm is effective in
application of arbitrary hysteretic response and unloading-reloading rules.



The hysteretic nature of the soil-pile interaction springs in question are cali-
brated against the widely applied API [3] p-y, force-displacement curves. Unloading-
reloading rules are specified to define the load-cycles. Boulanger et al. [5] describes
such unloading-reloading rules for pile application under seismic loading and is di-
rectly applicable in OpenSees under the name of PySimplel. The applicability of
these backbone curves and unloading-reloading rules remains questionable in appli-
cation of rigid monopile foundations. Despite not representing the accuracy of true
soil-monopile interaction, obtained results in this research may support the explo-
ration of innovative unloading-reloading rules.

The developed energy dissipation algorithm is proven to be a powerful tool in
identifying the amount of energy dissipation over a total timeseries. Reasonable
agreement in peak (maximum observed), Ultimate Limit State, deflection and bend-
ing moment seismic response at mudline and tower top has been found between
a hysteretic supported model and equivalent elastic models using a single (load-
dependent and depth-dependent) equivalent damping coefficient in parallel with
each soil spring. Representing the hysteretic energy dissipation mechanism using
viscous dampers with constant damping coefficients has therefore proven to be
an effective modelling strategy to account for the damping mechanism of plastic
unloading-reloading rules without accounting for hysteresis. The effectiveness of an
equivalent elastic modelling strategy reduces when the response undergoes substan-
tial permanent plastified displacements. A typical property which is unable to be
simulated under the application of an elastic modelling strategy.
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Chapter 1

Introduction

1.1 Offshore Wind

The increasing global demand of renewable and clean energy has led to the expo-
nential growth of development in the offshore wind industry. Because of a smoother
overall surface, wind quality is better at sea than on land. Therefore, it ensures a
greater and more reliable power production, allowing for the use of larger turbines
and is less disturbing for the public. The offshore wind industry is mainly located
in North-Western Europe but alongside the increasing demand in clean and renew-
able energy, the number of proposed and planned wind farms is increasing rapidly.
The proposed and planned locations for new offshore wind farms are expanding ac-
cordingly towards seismically active regions. While current designs are increasing
in height and rotor diameter, the seismic performance of offshore wind turbines still
has not been investigated thoroughly. Investigation is thus necessary to reach more
reliable and cost-effective design methods for these structures against strong ground
excitations.

1.2 Offshore Wind Turbine Support Structures

Figure 1.1 indicates common foundation types supporting the offshore wind tur-
bines. The monopile foundation is by far the most common foundation concept.
Its application is mostly justified because it has demonstrated to be an economical
choice at shallow water depths [11], it is well suited for mass-fabrication and the
installation method, based on conventional impact driving, is robust in most soil

1



2 1. INTRODUCTION

conditions [24]. Next to that, the use of tubular sections has its structural advan-
tages due to equal bending stiffness in all directions, fatigue resistance and generally
good dynamic behavior.

,=>>=>

Figure 1.1: Common foundation types used in offshore wind turbine design: (a)
monopile, (b) monopod, (c) jacket structure, (d) tripod, (e) floating wind turbine
[26].

As the offshore energy market is increasing, wind turbine dimensions increase to
meet these increasing demands. Large monopile foundations of about 8m in diam-
eter in shallow waters are currently state of the art [59]. Alongside new proposed
larger designs this monopile diameter is gradually increasing and the extension to
deeper waters is starting to be made. Since the cost of the monopile foundation
could reach levels up to 35% of total cost [26] it is obvious that the monopile foun-
dation design should receive critical attention. Kallehave et al. [24] estimated that
by improving the current conventional design methods for offshore wind turbines
supported by monopile structures the potential savings can be up to 25% by re-
duction of steel tonnage. This would mean that better assessment could lead to
substantial total cost reduction.

1.3 Design Considerations

Offshore wind turbines are long and slender structures with most mass concentrated
at the top (represented by the nacelle, hub, and blades) and are therefore sensi-
tive structures in terms of dynamics. For the North-Western Europe concentrated
market it is assumed that environmental loads such as wind- and wave-loads are
predominant for the design considerations. Expansion towards seismic prone re-
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gions includes earthquake loading as new - possibly dominant - load-case to which
the offshore wind turbine is subjected. There exist no detailed guidelines about
earthquake design for offshore wind turbines because of the mostly North-Western
Europe concentrated current market. There exists only little experience and knowl-
edge of the application of offshore wind farms in seismic active regions and even
less about regions probable to strong seismic motions.

Earthquake loads are extremely cyclic and complex. A typical time history of
an earthquake acceleration response includes the amplification of many frequencies
and many different magnitudes of amplitude. Earthquake ground shaking induces
not only horizontal loads through the soil onto the monopile but vertical loads as
well. The natural frequencies of the offshore wind turbines in the vertical direction
are significantly higher compared to the lateral direction: typically, between 4-7 Hz
which often coincides with the (vertical) peak spectral values of earthquakes [26].
This makes them vulnerable even to moderate ground shaking. Vertical ground
shaking could possibly be one of the governing design cases as the vertical excitation
from an earthquake can produce severe vertical accelerations in the upper parts of
a wind turbine [28, 27]. Although horizontal and vertical response is coupled if
the seismic loading activates nonlinear soil behavior and can occur simultaneously
with wave- and wind-loading, the two directions are often treated as separate design
cases.

1.4 Damping

Damping is considered the energy dissipation of a material (or system) under cyclic
stress and causes a system to gradually stop moving over time. In fact, a system
would oscillate forever once it is excited without any source of damping but, in
reality, there almost always exists some damping (energy loss) in vibratory systems.
The more damping is present in a system, naturally, the shorter the time to force
the system response to become stationary. In most practical situations reference is
made towards viscous damping which is proportional to the velocity of the mass of
the system in question.

1.4.1 Soil Damping

Soil damping is known to affect and reduce both the soil motions as well as the
structural response through dynamic soil-structure interaction. Clear guidelines
on the application of the amount of soil damping are limited. Derivation on the
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amount of damping as a result of cyclic nonlinear, plastic/inelastic (hysteretic) be-
haviour of soils generally relies on simplified sets of unloading- and reloading rules
where an overestimation of damping is observed under large soil-strains compared
to measurement data. General consensus is yet to be reached for accurate nonlinear
unloading-reloading sets in the simulation of soil-monopile interaction because the
mechanism is complex and holds many components. Uncertainties increase rapidly
when a seismic event is considered. Lastly, nonlinear models are computationally
expensive. Industry therefore adopts equivalent linear analyses where the soil stiff-
ness is linearized to be constant. The nonlinear soil damping is then simplified and
applied in a linear viscous damping: equivalent (hysteretic) damping.

1.5 Motivation & Scope

The understanding of the dynamic response of monopile supported offshore wind
turbines subjected to seismic loads is key to reach reliable and efficient designs for
the expansion towards areas prone to (strong) earthquakes. Soil-structure interac-
tion is a complex process, especially during strong seismic motions. The dynamic
response is best captured using a full nonlinear three-dimensional Finite Element
time domain formulation: a continuum model. This formulation requires extensive
modelling considerations and is computationally expensive. A one-dimensional Win-
kler foundation is found to be a reasonable compromise in describing the structural
lateral response while notably increasing convenience and computational speed.
Time domain analysis, evaluating and updating the structural response at each
(user-specified) timestep, is typically used in practice to determine offshore wind
turbine response to a seismic event. Nonlinear uncoupled P-Y (pre-defined force-
displacement paths) springs along the embedment depth are used in a one-dimensional
Winkler foundation to account for the soil resistance. The depth-dependent free-field
soil column excitiation as a result of seismic shaking is then imposed onto the sup-
ports of the structural model. The accuracy of capturing 3D soil-structure interaction
using 1D uncoupled lateral springs is questionable, but its limitations are well doc-
umented from which several extensions have been provided to incorporate 3D soil-
structure interaction components in a 1D model formulation [51, 7, 4, 49]. One soil-
structure interaction component specifically, foundation damping and more specif-
ically: soil hysteretic damping (prone damping component during strong ground
shaking), has still not been investigated thoroughly while it is assumed to be ca-
pable of significantly alleviating seismic loads. Hysteretic modelling shows great
potential in the simulation of unloading-reloading paths (hysteretic loops) while
still holding on to the convenient Winkler principle. General consensus is yet to be
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reached on correct unloading- and reloading rules related to a monopile foundation
and simulation of unloading- and reloading paths for every load-cycle in a strong
dynamic process can be very time-consuming. Therefore, the use of linear elastic
models (unloading-reloading along the same load-path) are generally preferred by
the industry and the energy dissipation mechanism is applied in an equivalent man-
ner. Recommended practice [12] prescribes the application of local soil hysteretic
damping on offshore wind turbine structures under seismic excitations where a sin-
gle damping value is representative for the total analysis duration. However, the
approach in describing and applying equivalent viscous damping is based on rigor-
ous assumptions and is not tailored to arbitrary load-paths subjected to permanent
displacements and unloading- and reloading rules which deviate from recommended
practice. No information is obtained of the time-dependent nature of energy dissipa-
tion. Knowledge in equivalent elastic analysis with equivalent hysteretic damping for
offshore wind turbine structures subjected to seismic excitations remains therefore
limited.

Considered the above, the focus will be on the response of offshore wind turbines
and in particular on the soil-structure interaction mechanism represented by local
springs. The focus lies on the lateral response only and only on the large-strain
/ displacement regime considering that damping originating from nonlinearities is
assumed to be prone. Increasing the reliability of values of soil damping within
the large-strain regime will be expected to result in more efficient designs. Yet,
this topic has been widely researched throughout literature [14, 36, 2, 23, 29, 44,
52, 55, 58, 61, 60] with focus primarily on innovative sets of unloading-reloading
rules and/or initial load paths (so called p-y curves) and will therefore considered
to be outside the scope. Furthermore, pore pressure effects like liquefaction will
not be considered. In the equivalent 1D model developed to conduct the analyses,
the rotor-nacelle assembly and blades are simplified in a single top mass and top
inertia where its additional dynamic effects are neglected resulting in no differences
in operational state (either idling or operational). At last, the scope is limited on
the ultimate limit state of the structure (ULS) leaving the main discussion limited to
observed peak response.
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1.6 Objective

The application of equivalent damping in support of elastic analyses is currently
adopted by the offshore wind turbine industry because general consensus for accu-
rate unloading-reloading rules during strong seismic excitations is yet to be reached
and hysteretic modelling tends to be computationally expensive. In-house software
of Siemens Gamesa Renewable Energy is no exception to this elastic modelling with
an equivalent damping strategy. Either applied on a local spring level or applied
on global structural level. However, current strategy of equivalent soil damping is
not based on seismic excitations. Because hysteretic modelling is usually omitted
completely, investigation is necessary of its implication on the seismic response of
an offshore wind turbine structure with main focus on the beneficial soil damping
effects. Additionally, more investigation is considered to be necessary to understand
the limits and the implication on the dynamic response of an equivalent damping
strategy when subjected to seismic excitations.

To increase our knowledge of soil damping in the large-strain regime during a
seismic event the main objective of this thesis is therefore to answer the following
question:

How to establish an engineering method that assesses soil material damp-
ing during seismic motions in the large-strain regime and integrate this into an
equivalently damped dynamic offshore wind turbine model?

Achievement of this main goal requires intermediate objectives to be accomplished:

* What characterizes the soil-monopile interaction mechanism and what compo-
nents are relevant to the soil material damping?

* What is the industry standard approach for soil-pile interaction mechanism
and how is soil damping applied?

* How to formulate a one-dimensional model for seismic analysis and how to
implement this in a Finite Element model formulation?

* How to capture the amount of dissipated energy by hysteresis and amount of
equivalent damping in a nonlinear hysteretic offshore wind turbine model sub-
jected to lateral seismic excitations?
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How does an offshore wind turbine model supported by hysteretic springs com-
pare with a model supported by (linear) elastic springs and equivalent dash-
pots?

1.7 Outline

In order to answer the aforementioned objectives, this thesis is structured as follows:

Chapter 2:

Essential theoretical background relevant to an offshore wind turbine sup-
ported by a monopile foundation subjected to seismic excitations. The fun-
damentals of soil modelling, dynamics of hysteretic systems, soil-structure in-
teraction, and the foundation damping mechanism will be discussed based on
conclusions drawn by previous research.

Chapter 3:
Formulation of the time domain 1D distributed Winkler based Finite Element
model for seismic analysis. Investigation and calibration of the specific soil-
structure interaction element to be used and time incremental lateral response
validation.

Chapter 4:

Description and formulation of equivalent viscous damping and energy dissi-
pation techniques including formulation and validation of the method to be
applied based on a single degree of freedom system.

Chapter 5:

Numerical analyses of the offshore wind turbine model. Eigenproperties of the
structure, description of the considered input motions, and performance anal-
ysis of the effective equivalently damped elastic models for a single harmonic
and seismic load case. In conclusion, the relation towards recommended prac-
tice is discussed.

Chapter 6:
Conclusions, and recommendations for further work.






Chapter 2

Theoretical Background

2.1 Fundamentals of Soil Modelling

Soil globally represents different behaviour under different amplitudes of strain.
Therefore, the soil response is generally classified in domains of shear strain am-
plitude. Earthquake loads are highly cyclic and complex from nature. A typical time
history of an earthquake response includes multiple frequencies and multiple differ-
ent magnitudes of amplitude hence a complex waveform. Under a single seismic
input signal, it is therefore no exception that this complex waveform can induce dif-
ferent and multiple ranges of constitutive soil behaviour. The main tools for soil clas-
sification is by the means of a shear strain dependent shear modulus reduction curve,
generally used as direct input in constitutive soil models. The soil resistance is visu-
alized over shear strain amplitude derived from a monotonic backbone curve which
presents the shear strain versus shear stress response. This typical shear stress-strain
relationship is presented hereafter in Figure 2.1. Until the soil reaches its peak shear
strength, the shear stress increases with gradual descending rate. This relationship is
known as the shear modulus reduction (curve): indicating the soils’ secant stiffness
over shear strain amplitude.

In the small-strain regime, shear strains (often) less than the linear threshold:
v ~ 1072, the soil generally exhibits linear elastic behaviour. The shear modulus acts
as a constant maximum and damping as a constant minimum: unloading-reloading
follows the same path and is linear. In fact, soils undergo volumetric variation and
inelastic response even when subjected to small strains. At these low deformations
/ small strains the nonlinear behaviour of soils remains limited and is therefore
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Figure 2.1: Monotonic backbone shear response [14].

often neglected (and regarded as elastic). Note that in Figure 2.1 a different range
of values is presented than the aforementioned threshold. This already indicates
that site-specific soil properties can vary notably and must be carefully evaluated,
preferably by means of laboratory testing. For shear strains above the volumetric
threshold: generally v, ~ 10~4, the soil exhibits non-negligible volumetric variation.
The volumetric variation can induce substantial nonlinearity resulting in different
load-paths (divergent of a single backbone relationship) in a non-monotonic load-
case. This cyclic, nonlinear, plastic behaviour is often also referred to as hysteresis.
Severe consequences of soils undergoing large strain cyclic response are permanent
displacements or liquefaction. Liquefaction is a typical consequence of pore-pressure
effects which start building up from the volumetric threshold in cohesionless (sandy)
soils (no capacity in standing on its own). Because of (fast) volumetric variations,
pore water can move freely through the soil particles. If the pore pressure exceeds
the soil skeleton pressure, the soil starts behaving like a fluid and the soil shear
strength is lost completely.

2.1.1 Inelastic, Hysteretic Soil Behaviour

The cyclic nonlinear plastic/inelastic unloading-reloading behaviour of soils can be
referred to as hysteresis. One cyclic unloading-reloading loop, also referred to as
hysteretic loop, is visualized in Figure 2.2.

Experiments have shown that when soils undergo large deformations, such as
those induced by earthquakes, their behaviour deviates from linearity, and inelastic
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Figure 2.2: Hysteretic loop: fist-cycle stress-strain curve [52].

effects can no longer be ignored [25]. Therefore, to properly model the (strong)
seismic, cyclic strain-dependent behaviour of the soil, full nonlinear plastic models,
also referred to as hysteretic models, must be used. A plasticity model described
by the Masing rules is well-known and commonly used to describe such hysteretic
behaviour for soil models. The Masing model assumes that unloading and reloading
paths are scaled and/or inverted replicas of the backbone curve: 7 = f(v). Masing’s
rule for unloading or reloading is defined as:

1

Sy =f [QW - %)} @D

With (7.,7.) as the load reversal points. This nonlinear model remembers the
previous strain history, but is rate independent, since the path does not depend on
the deformation speed and the model is completely defined by its initial load path.
The aforementioned hysteretic soil response in Figure 2.2 is constructed under appli-
cation of the well-known Masing rules. The original rules only describe response un-
der (pseudo-static) harmonic loading. To describe the full range of strain-dependent
multi-harmonic unloading and reloading, Pyke [38] describes an extension to the
Masing rules:

1. ”The unloading-reloading curves should follow the backbone curve if the previous
maximum stress is exceeded.”

2. ”If the current unloading/reloading curve intersects the curve described by a pre-
vious load cycle, the stress-strain relationship follows that of the previous cycle.”
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2.1.2 Hysteretic Damping

Providing this hysteresis mechanism, another essential quantity can be distinguished:
hysteretic damping. Under the criterium that constitutive behaviour is modeled hys-
teretic, the material exhibits energy dissipation. The amount of energy dissipation
is directly related to the area enclosed by the unloading-reloading paths of the hys-
teretic loop (indicated by AF in Figure 2.2). This specific energy dissipation mech-
anism is no exception in the case of (large-strain) cyclically loaded soils. Generally,
an equivalent critical damping ratio ¢ is used to indicate the amount of energy dissi-
pation over shear strain amplitude.

2.2 Dynamics of Hysteretic Systems subjected to Ground
Motion

Dynamic analyses of structures are commonly carried out through Finite Element
Analyses (FEA). During Finite Element Analysis the structure is discretized into mul-
tiple elements and nodes where individual Finite Elements can be visualized as a
small piece of a structure for which we know the relationship between displacement,
strain, stress, and forces.

2.2.1 Dynamics of Linear SDoF Systems

The dynamic behaviour of the mass-spring system under a single harmonic force
may be considered as a fundamental knowledge, which helps understanding the
behaviour of the system under a force of arbitrary time signature because in fact, any
(time-dependent) arbitrary force can be represented as a superposition of harmonic
forces. The dynamics of a system subjected to a ground motion can be described
using a single node carrying a single degree of freedom: Single Degree of Freedom
(SDoF) system, Figure 2.3. Essentially, a total structure couples’ multiple nodes
connected by elements creating a Multi Degree of Freedom (MDoF) system.

Following Newton’s second law, the balance of forces acting on the mass, an
equation of motion is found for the single degree of freedom system:

mii(t) + cu(t) + ku(t) = —miig(t) (2.2)

i(t), u(t),u(t): are the relative acceleration, velocity, and displacement, re-
spectively;

m;: is the mass of the system;
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Figure 2.3: Mass-spring-dashpot system subjected to ground excitation [47].

k: is the (linear) spring stiffness;
c: is the viscous damper coefficient;

ii4(t): is the applied ground excitation (in acceleration).

In the case of a time-dependent force, F'(¢), directly applied on the mass, the
equation simplifies to:

mii(t) + cu(t) + ku(t) = F(¢) (2.3)

Free Vibrations

The free vibration response is an indicator of the viscous damping present in the
system. If the external force is removed at an arbitrary point in time, the right-hand-
side of equation 2.3 simplifies further in F(¢) = 0 yielding a linear homogeneous
second order differential equation which can be solved analytically. Upon solving
this differential equation, the roots of the characteristic equation hold the property
to indicate the corresponding decay of vibrations after load removal. The following
relevant cases are discussed:

1. Overdamped: the roots are real valued and the damping coefficient is too large
relative to the spring stiffness: ¢ — 4mk > 0;

2. Underdamped: the roots are complex valued: ¢? — 4mk < 0;

3. Critically damped: ¢ = 4mk, cerit = 2V km.

In the case of overdamping the free-"vibration” response returns a so called aperi-
odic motion: after load-removal the mass gradually creeps back towards equilibrium.
In the case of underdamping the oscillatory motion free-vibration response decays
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with exponential amplitude. For the critical damped case the same general aperi-
odic motion as for overdamping is found. From the critical damping relationship a
so-called (linear) critical damping ratio is found, equation 2.4.
Cc C
(= —=—— (2.4)
Cerit 2\/ km
Metrikine et al. [34] claims that in practice for most situations it is safe to assume
that most systems are underdamped: ¢ << c..;; where the corresponding free-
vibration decays harmonic according:

u(t) = Age™S“lsin(wt + ¢) (2.5)

Forced Vibrations
Consider the single degree of freedom system to be excited by an arbitrary har-
monic sinusoidal force: F(t) = Fysin(wt). Searching for a harmonic solution in the
frequency-domain in the form of u(t) = I'm[Ue™"] yields the following expression
for the complex amplitude of vibrations:
U 1 Fy = G(w)F, (2.6)
=— “Fy=G(w .
—w?m+iwe+ k° 0

Taking the identified cases of damping and its characteristics into mind, the ratio
of the amplitude of the steady state vibration and the corresponding ’static deflection’
F‘éj/lk yields the dynamic amplification factor directly indicating the dynamic response
of a damped single degree of freedom system which is visualized in Figure 2.4 (a).
It holds a substantial amount of information from which the following observations
can be made:

* when the ratio of forcing frequency to the natural frequency ;2 is small, the
steady state amplitude converges to that of the static displacement Fy/k = 1
regardless of the amount of damping in the system;

* as damping is increased in the system phase lag decreases: resonance occurs
at w, = wgy/1 — 2¢2;

* when the ratio of forcing frequency to the natural frequency 2 is large the
dynamic amplification G/(w) converges towards zero regardless of the amount
of damping in the system;

* when the forcing frequency w is relatively close to the natural frequency wy of
the system the steady-state amplification tends to increase rapidly. The amount
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of damping strongly controls the amount of peak amplification. Beyond the
critical damping region, namely the overdamped region, the magnification
function has no maximum i.e. no peak which means no dynamic amplifica-
tion is possible if the system is overdamped (and only a maximum of F/k can
be achieved) [34].
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(a) Magnification factor F‘éj/‘k for Fy/k =1 (b) Energy dissipated by a viscous dashpot for an
underdamped system

Figure 2.4: Single degree of freedom characteristics

Upon integration of the viscous dashpot force: [ ci(t)du, the relation of energy
dissipation for the viscous damper is found. Using this relation, one could plot the
dynamic amplification in terms of energy dissipation and find that, for underdamped
systems, the amplification of energy dissipation is again highest around w = wy.
Figure 2.4 (b) visualizes the frequency-dependent energy dissipation response to
a unit sinusoidal force for an underdamped unit single degree of freedom linear
system.
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2.2.2 Nonlinear SDoF Subjected to Ground Motion

The equation of motion of a nonlinear system under a seismic applied motion is
presented as follows:
mu(t) +fat+ fs= _mug(t)
fa = cui(t) 2.7
fo = £ (u(t), sign(a(1)))

y F’lf(t) I—»u,(t)

Figure 2.5: Nonlinear SDoF system subjected to ground motion [47].

The system is characterized by a (linear) damping force and a (nonlinear) restor-
ing force where the latter is a function of time and the sign of velocity response. All
nonlinear characteristics (including the hysteretic damping mechanism of interest)
are hidden within this restoring force. The restoring force at timestep ¢*! is defined
as: fitl = fi 4 kT (ui*t1(t) — u'(t)), or in words: the force at timestep ¢'*! equals
the force at time step ¢ plus the tangent stiffness times the relative displacement
increment in that specific timestep.

Iwan-Masing Model
Experiments have shown that the transition from elastic to plastic is not incidental
but happens generally smooth. This smooth transition can be achieved by a specific
parallel mechanism first described by Iwan [21]. By using the Iwan-model in a
dynamic system, Masing type hysteresis is achieved following the same set of rules
but then applied in mechanical formulation. The mechanical formulation and its
response is visualized in Figure 2.6.

The behaviour of the Iwan-model can be captured by the continuous change of
instantaneous tangent stiffness:

f;?Jrl N 1 1o i+1d P
Fy (2 + QSlgn(fs U)) > |fs‘ < Iy

07 |fS‘ZF1/

Ko [1—

kT = 2.8)
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Figure 2.6: Visualization of the Iwan-model providing smooth hysteresis [47].

N is a parameter that controls the smoothness by directly defining the number
of elements in parallel.

2.2.3 Seismic Analysis of Nonlinear MDoF Systems

Generally speaking, equation 2.7 can only be solved numerically. Despite full accu-
racy is possible this is an onerous task, especially when many degrees of freedom are
involved. Due to the nonlinear nature of the stiffness (in multi degree of freedom
formulation: a stiffness matrix), the stiffness varies over time implying the need to
update the stiffness matrix every time instance. In earthquake design codes it is
well-known practice to repeat analyses for multiple sets of input ground motions
and directions [47] which is a time consuming process. The dynamic response is
often computed using simplified methods of analysis opposing the computationally
demanding full nonlinear time history analysis. Tsouvalas et al. [47] discusses two
common simplified nonlinear analysis methods in relation towards seismic design.
The following simplified strategies will be discussed briefly:

1. Equivalent elastic analysis using a behaviour factor: g;

2. Modal pushover analysis

During the first strategy, instead of designing for elastic forces, the design is based
to withstand reduced forces through introduction of this reduction factor ¢. Appli-
cation on a multi degree of freedom system is questionable. The value of the factor
varies per vibration mode and the principle of superposition of the response for each
vibration mode does not hold for nonlinear systems. In application of the second
strategy, the displacement pattern of a pushover analysis is substituted by that of an
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arbitrary modeshape computed by a (linear) eigenvalue analysis. However, because
of nonlinear stiffness in nonlinear systems, the modes of vibration vary over time.

2.3 Soil-Structure Interaction (SSI)

The dynamic response of the offshore wind turbine structure is affected by the pro-
cedure in which the ’free-field’ soil is coupled with the monopile structure: the soil-
structure interaction (SSI) mechanism. For an accurate representation of dynamic
response, it is necessary that the soil-structure interaction mechanism is accurately
accounted for. Soil characteristics and therefore the soil-structure interaction mech-
anism considered in design contributes to most of the uncertainties in the design
[6]. Mainly because the mechanism involved behaves nonlinear. It is proven that
the influence of soil-structure interaction on the response of the offshore wind tur-
bines is significant [10] even possibly capable of reducing earthquake loads by as
much as 10% [26] if captured accurately. De Risi et al. [11] concluded that the
lack of proper soil-structure interaction modelling leads to an overestimation of the
seismic capacity of about 60% and 70% of the serviceability limit state and ultimate
limit state, respectively.

2.3.1 Aspects of Soil-Structure Interaction

The cyclic soil behaviour and soil-structure interaction for monopile foundations
approximately follows Masing-type behaviour under small soil strains/deformations
but accuracy decreases when soil strain/deformation increases. To increase accuracy
and understanding of the hysteretic models to be applied in the soil-structure interac-
tion mechanism the response must incorporate additional mechanisms. PISA [4, 7]
carried field tests to study soil-structure interaction effects under cyclic loading. The
following effects were observed having direct effect on the unloading-reloading loop
shape:

* rate effects resulting in an increased foundation capacity at fast load rates;
* ratcheting (asymmetric cyclic loading);

* and gapping (gaps occurring between soil and pile: contact with the soil is lost
and consequently the soil stiffness is lost).

Furthermore, [9] suggests the following observation: stiffness degradation under
increased vibration amplitude, and [30] presents the effect of strength deterioration
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under increasing displacement amplitude of cyclic loading for soft clays. On top
of that, it is important to mention that 3D to 1D modelling in current industrial
approaches oversimplifies the failure mechanism occurring for rigid monopiles due
to effects of pile diameter and aspect ratio [54].

2.3.2 Typical Industrial Practice of Foundation Design

The design of monopile foundations is mostly performed using the so-called p-y
method based on a series of 1D spring elements along the monopile embedment
depth. This is a distributed element model (also commonly referred to a Winkler
foundation model) where uncoupled springs couple the free-field soil with the struc-
ture, and, in that way accounting for the soil-structure interaction mechanism. The
spring properties are generally defined using a set of soil reaction curves: depth
varying free-field soil response in the form of nonlinear elastic p (force) — y (dis-
placement) curves directly specifying the load-path (and stiffness) of the springs.
The p-y method is visualized in Figure 2.7.

p-y curve

Fixed

k: initial subgrade
reaction modulus

p.: ultimate lateral
soil resistance

Figure 2.7: Schematic of the spring method used in practice for static analysis of
laterally loaded single piles [40].
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The industry mainly follows the DNV [12] standard which has adopted the p-y
approach from the oil & gas industry: American Petroleum Institute (API) [3]. Here,
research was conducted on long and slender (flexible) piles (typically pile diameters
of 0.6m) whereas large monopile foundations of about 8m in diameter in shallow
waters are currently state of the art [59]. Rigid monopiles activate a whole different
(more global instead of local [51]) response compared to more slender piles where
for the latter the effects of pile diameter and aspect ratio are of no significance.

These reaction curves are no physical representation of the soil-structure inter-
action but merely a description of the static lateral (1D) resistance. The method
should therefore be adopted with care as its limitations and the applicability to rigid
monopile foundations under cyclic loading is well questioned [51, 7, 40, 39, 61, 54,
41]. Static pushover analysis using a 3D continuum model is generally used to deter-
mine p-y curves of higher accuracy to be used in the Winkler approach applicable to
rigid monopile foundations. It is demonstrated that under the application of ground
shaking API p-y curves are considerably different from ones obtained from a con-
tinuum model because the initial slope and ultimate resistance is poorly predicted
[41]. In the derivation of p-y curves, load-paths derived based on cone-penetration
tests (CPT) have shown great potential in the simulation of more realistic soil-pile
interaction for laterally loaded piles in cohesionless soil under static loading where
[45] validates such formulation against a full-scale wind turbine.

p-y Method for Cyclic Loading

For the case where equilibrium has been reached under cyclic loading, the ultimate
capacity of p-y curves is reduced by an empirical reduction factor because cyclic
loads cause deterioration of lateral bearing capacity [3]. Reese et al. [42] describes
the same procedure but approaches the multiplication of a loading-type coefficient
A, or A, (static/cyclic) for depth to diameter ratio z/D graphically which may be
computed from figure 3.24 in [42]. In the case of soft clay (cohesive soil) the degra-
dation varies over depth which is highest around the ground surface and decreases
linearly until a critical depth is reached. Beyond this critical depth, failure occurs in
a different mode: from wedge failure at shallow depths to flow failure beyond the
critical depth threshold. The backbone relation changes over increasing deflection
amplitude y and depth z. After a certain displacement the reaction force remains
constant: the soil-pile system tends to stabilize if equilibrium is reached under cyclic
loading. This effect is in literature often denoted as shakedown. Because the ap-
proach represents the cyclic loading using an equivalent monotonic/static approach,
it is unable to provide any information about mechanisms occurring during cyclic
and dynamic soil-structure interaction including the effects of soil material damp-
ing. These mechanisms are mostly related to the soil behaving as a plastic material
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but, instead: using the approach API [3] prescribes, the soil state is assumed elas-
tic (material returns to its original state when force is removed). The tendency
of this method to under-predict the ultimate lateral resistance, combined with the
relatively large displacement required to mobilize the ultimate resistance, are the
principal causes of the traditional approach to give a conservative estimate of over-
all pile response for wave- and wind-loading [7]. Since these empirical factors are
based on slow cyclic loading, they are therefore prone to erroneous results applied
to strong cyclic loading [40].

2.3.3 3D to 1D Considerations

The soil-monopile mechanism is in fact a 3D environment which is nonlinear. The
p-y curve approach is merely a description of lateral 1D resistance and therefore, the
reliability of these p-y curves is well questioned. The diameters of state-of-the-art
monopile foundations are way beyond the original field tests conducted for API reg-
ulation. In terms of cyclic response and (even more severe) strong dynamic response
the influence of the 3D to 1D soil-structure interaction mechanism simplification
yields even more uncertainties compared to a static load-case. As described in 2.3.2,
often a 3D continuum model is used to determine more accurate p-y curves based
on a rigid monopile foundation. Howevey, it is time-consuming to build many 3D FE
models for many wind-turbines in a wind farm. The soil stratum can be complicated
in areas like Japan and varies from site to site [54] resulting in different site-specific
dynamics.

The simplifications in the 3D to 1D mechanism form the basis of the convenience
of the current industrial practice of foundation design conform the p-y method. The
simplifications can be very extensive and it is therefore very important to know and
assess the limitations of the preferred foundation design method. Despite attempts
have been made in formulating analytical expressions to account for shortcomings
in current recommended pile design [54, 59], general consensus is yet to be reached
in the application of design standards and are therefore not considered further.

2.4 Foundation Damping

Foundation damping — dissipation of energy from structure (monopile) to the envi-
ronment (soil) through radiation of elastic waves and soil material damping — plays
an important role in the design process as it limits the response amplitude over time.
An accurate representation of the offshore wind turbine foundation damping, and
therefore soil-structure interaction, is necessary for efficient designs. Foundation



22 2. THEORETICAL BACKGROUND

damping is found to have the highest contribution to the overall damping when the
turbine is idle or when the side-side motion (parallel to the rotor diameter) is consid-
ered [29]. During operating conditions, it is considered to have the second largest
contribution. Considering its significance in contribution, increasing its accuracy
potentially holds great value to reach more cost-effective designs.

2.4.1 Soil Material / Hysteretic Damping

Soil material damping is arguably the most important contributor to foundation
damping [29]. It is the result of energy dissipation within the soil mass due to fric-
tion, sliding and structural rearrangement of the soil medium originating from the
soil nonlinear behaviour, making it a nonlinear source of damping. It is dependent
on the soil shear strain and generally insensitive to frequency or rate of loading.

An equivalent critical damping ratio is typically used to support elastic analysis to
characterize the energy dissipation in soils. The equation is expressed as a function
of the energy dissipated over one load cycle E}, (directly related to the loop area) and
the maximum stored elastic energy (or maximum potential energy) stored during the
cycle E,,.

(- LAy 1B

S 2m ky? 4T E, (2.9)

In equation 2.9 the stiffness term k& and amplitude displacement term y can be
related towards soils using & = G and y = . (Figure 2.2). The strain-dependence of
the damping mechanism (and shear modulus) is visualized in Figure 2.8. The secant
stiffness decreases and equivalent damping ratio increases gradually over increasing
strain amplitude. The energy quantities, £}, and E, are indicated by the shaded
and hatch pattern, respectively. At large strain/deformation the damping ratio ¢ is
significantly overestimated up to a value of 60% whereas experimental results have
shown geometric soil damping ratios of approximately 20-30% under large values of
strain/displacement [36]. In Figure 2.9 the overestimation of equivalent damping
is visualized as a result of the application of equation 2.9 on hysteresis computed
using Masing rules.
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2.4.2 Radiation Damping

Whenever the monopile foundation moves against the surrounding soil, stress waves
originate at the contact surface and spread outward. These waves carry away some
of the energy transmitted by the foundation into the soil. Its behaviour is found to
be comparable with viscous damping [18]. The magnitude of the radiation damping
depends mainly on the frequency of excitation, geometry of soil-foundation system,
mode of oscillation, and the stress-strain characteristics of the soil. It is found to
be important at high frequencies (> 1H z) which makes it in potential an important
contributor to the damping of seismic loading. Radiation damping is generally of
small influence and often neglected for vibrations in the horizontal direction because
the loading frequency of wind- and wave-loading and fundamental frequency in the
lateral direction is typically below 1H z. For lateral strong seismic loading, damping
originating from soil nonlinearities is found to be prone [56, 60] on which literature
concludes that the contribution of radiation damping is thought to be negligible
during strong seismic (laterally-focused) motions.

2.4.3 On the Topic of the Classical Equivalent Viscous Damping
Ratio

The process of representing equivalent viscous damping is not easily applied to ar-
bitrary nonlinear systems [22, 19]. This makes its applicability questionable to eval-
uate soil-structure interaction. On top of that, it holds some debatable assumptions
in its derivation:

* the theory is considered for a single single degree of freedom system only,
making the direct application debatable in a multi degree of freedom system
(Winkler foundation model in question) where the nodal response is coupled;

* the steady-state displacement (and therefore velocity) is assumed perfectly
harmonic (e.g. u(t) = Ucos(wt — ¢));

* considering the assumption above, the hysteretic loop in question is completely
symmetrical and perfectly elliptical whereas it is generally known that this does
not hold for a seismic load-case;

* plasticity effects (permanent displacements) are disregarded: the mean of os-
scillation is assumed around zero displacement;
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* the energy dissipated by the viscous damper F; (2.4 (b)) considered over one
load cycle for a nonlinear system is derived based on a critical damping coeffi-
cient related to a linear system;

* evaluating the integral in Figure 2.4 (b) will result in energy dissipated by a
linear viscous damper that is proportional with respect to the excitation fre-
quency [19]. Damping originating from hysteresis is generally insensitive to
frequency (2.4.1). To overcome frequency dependency it is assumed that the
excitation is harmonic with the same frequency as the natural frequency of the
system (w = wy);

* throughout literature, often the area under a linear secant stiffness is used to
specify the maximum potential energy E,, i.e. the stored energy is taken to be
square-proportional to the displacement for every loop to be considered which
is inexact in the case of highly nonlinear behaviour.

It seems apparent that in the simulation of highly nonlinear seismic response, the
use of the classical equivalent damping ratio ¢ in the form presented in equation 2.9
yields little reliability in accurate values equivalently accounting for the hysteretic
damping mechanism during stochastic excitations. Each of the aforementioned as-
sumptions must be carefully taken into mind because the procedure is not always
applicable in arbitrary elastic analyses. On top of that, one must not forget that the
theory upon which the derivation is based does not include additional soil-structure
interaction components discussed in 2.3.1 and 2.3.3.

2.4.4 Recommended Practice of Foundation Damping in Seismic
Design

DNV [12] prescribes that the application of foundation damping, both hysteretic
and radiation, when using time-domain analyses may be represented by a series of
dashpots connecting to the same nodes as the soil reaction springs. The equivalent
viscous damper coefficients may be approximated as the sum of the two components.
In that way, the hysteretic soil damping contribution is accounted for on a local scale
(per soil spring). The soil hysteretic damping contribution may be applied in terms of
a percentage of critical damping in seismic design practice. To determine the amount
of hysteretic damping contribution, is then referred to equation 2.9 which may be
applied in parallel with secant stiffness linear elastic soil springs. Practically, for each
individual soil-structure interaction component equivalently damped linear analysis
may be supported by secant stiffness and equivalent damping curves: Figure 2.8.
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This is a procedure which is well applied in one-dimensional site response analysis
(shear wave propagation to bedrock shaking, [16]). Upon application of an iterative
procedure (as it is not possible to determine the maximum level of strain before the
analysis is completed) convergence can be found somewhere on the specific target
curves. Furthermore, upon recognizing that when using the (extended) Masing rules
the hysteretic damping contribution is physically overestimated compared to labora-
tory testing: using a widespread of dynamic test results [37, 36] present a reduction
factor which effectively reduces the amount of damping to a level which is close to
measurement data. It must be clear that when the implemented soil springs are fully
nonlinear and inelastic, the hysteretic damping term shall always be omitted [12].
In the turbine manufacturing industry logarithmic decrement damping is also
frequently used to apply damping on a global level instead. A percentage of critical
damping is applied per mode of vibration. Such logarithmic decrement is typically
found in either time-domain or frequency-domain strategies under so called ’rotor-
stop’ tests. Here, the offshore wind turbine is shut down and subsequent decaying
movement is measured. While the amount of damping present is dependent on soil-
and structural characteristics, typical numerical and experimental data shows 0.8-
1.5% critical damping in the first bending mode originating from the soil [50, 13].

2.5 Random Vibrations

The randomness of the earthquake signal can be addressed by statistical methods:
in terms of probability. During the application of statistical and stochastic methods
on dynamically loaded structures, the loads are often schematised by so-called sta-
tionary ergodic processes. Such a procedure often thrives on the assumption that a
stochastic load is a summation of sine functions with random phase angle (2.2.1).

Earthquake response analysis is generally done in the frequency-domain using
variance spectra [1]. A variance spectrum represents the total variance of a signal
and can be considered as a summation of the contributions of the several Fourier
components [1]. Conducting analyses within the frequency-domain provides signif-
icant computational gain compared to time-domain analysis. This solution strategy
is however limited to linear analyses. A linearization procedure is therefore required
when used in solving nonlinear dynamic systems.



Chapter 3

Beam on Winkler Foundation
Model

In reality, a total structure will experience 3-dimensional excitation under a seismic
load-case (2.3.3). On top of that, each loading direction and structural response
interact and influence each other. Considering the scope of this research: the main
point of interest is the lateral response only, which is thought to be most dominant
in design for Offshore Wind Turbines. It is common practice to assess structures by
discretization of the physical problem into a Finite Elements (2.2). To assess equiv-
alent hysteretic damping originating from the soil-structure interaction mechanism
between the soil and monopile supported offshore wind turbine structure due to (lat-
eral focused) seismic response, a 2-dimensional Finite Element model is developed.
OpenSees (the Open System for Earthquake Engineering Simulation) [31] enables
users to create finite element applications for simulating the response of structural
and geotechnical systems subjected to earthquakes and is adopted in this study as
tool to approximate the structural behaviour.

27
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3.1 Monopile Supported OWT and Site Characteris-
tics

3.1.1 Soil Characteristics

The effect of soil layering is that the overburden pressure of overlying soil layers
will influence the resistance of the layers beneath. In order not to underestimate
the soil resistance of a dense layer overlying a light one or underestimate the soil
resistance of a light layer overlying a dense one the soil reactions must be altered
to incorporate the soil layering effect. To incorporate these effects, Georgiadis et
al. [42] presents a method to correct the capacity of the p-y curves applicable to a
Winkler foundation soil-pile interaction model. The method is based on determining
an equivalent depth where the layer beneath would have started if the layer would
have been the same material holding the same properties as the layer above. For re-
alistic soil resistance and, therefore, (more) realistic structural response the layering
effect must be incorporated. Though, for educational purposes it is chosen not to
incorporate the effect as the main focus of interest lies within the dynamic soil-pile
interaction response mechanism following this initial static soil reaction curve. The
following educational soil profile is considered to investigate the beam on hysteretic
Winkler foundation model response:

Layer | Soil Type | ziop [m] | 2bot [m] | o/ [kN/m?®] | & [deg] | ¢, [kPal | PI [%]
1 sand 0 -2.5 8 35 - -

2 sand -2.5 -4.5 8 40 - -

3 clay -4.5 -9.5 6.5 - 70 30
4 clay -9.5 -14.5 6.5 - 80 30
5 sand -14.5 -24.5 8.5 40 - -

6 sand -24.5 -50 8.5 37

Table 3.1: Sand overlying Clay overlying Sand: Mixed Soil Profile

3.1.2 OWT Characteristics

The turbine properties presented hereafter will be discretized to approximate the
structural behaviour. The foundation and tower structural geometry and properties
are based on Siemens Gamesa Renewable Energy 8.0 MW: SG 8.0-167 DD as reference
offshore wind turbine. Simplification has been made in the behaviour of the turbine
model as added mass for contained soil / water is not included and the behaviour
of the machine (RNA + blades) is approximated as a single lumped point mass
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at tower top. Also, foundation and tower are assumed perfectly tubular without
cross-sectional discontinuities on the surface and the connection between monopile
foundation and tower is assumed to be completely rigid. The monopile foundations’
outer diameter considered is 7.5m. Additional relevant structural and geometric
characteristics are presented in Table 3.2. The model focuses on the fore-aft motion
only hence J = I, but considering the RNA is modeled as a lumped mass/inertia,
the difference is only present in amount of inertia considered.

LIml | E [kg/ms?] | G [kg/ms?] | m [kgl | J [kgm?]
Foundation | 83.69 2.1E11 8.1E10 - -
Tower 88.82 2.1E11 8.1E10 - -
Top Mass - - - 4.5E4 6.5E7

Table 3.2: Geometric Characteristics of Foundation and Tower

3.2 Structural Modelling

The structure is divided into many elements (Timoshenko beam elements: 3.2.1)
which are joined by nodes where degrees of freedom (DoF’s) are defined. In the
current study, which is chosen to be limited to an in-plane two-dimensional problem,
the number of degrees of freedom at the nodes is limited to 3: x(t) = [u,, u., ¢].

The governing set of coupled equations describing the dynamic response of the
total discretized nonlinear multi-degree of freedom structure yields for uni-axial
ground excitation:

Mx(t) + Cx(t) + fs(x(t), sign(x(t)),t) = —Mriiy(t) 3.1

Equation 3.1 describes the systems’ total mass matrix M, linear damping matrix
C, and stiffness term and couples them through the total translational, velocity, and
acceleration degree of freedom vector x(¢). The right-hand-side of the equation de-
scribes the in-plane seismic force input with vector r being an influence factor linking
the corresponding ground motions to the correct mass degree of freedom. Solving
the coupled set of equations is an onerous task because the nonlinear stiffness con-
tribution is updated each time step and can therefore generally only be solved nu-
merically. For reference purposes, in the linear elastic case the total stiffness term
fo(x(t), sign(x(t)), t) will simplify to Kx(¢).

The total mass matrix M with size [NDoF x NDoF] is described by the global
translational M, and rotational mass (inertia) Mpy:
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3.2

o fi 3]

0 My

Additional structural damping is set to zero for ease of calculation. The total
linear (velocity proportional viscous) damping matrix C with size [NDoF x NDoF]
is therefore OnpoFxNDoF Which implies the null matrix (all entries are zero) in the
case without any source of velocity proportional viscous damping meaning without
any viscous dashpots applied (2.2.1). Matrix entries will be nonzero in the degrees
of freedom where viscous dashpots would have been present.

The total stiffnes matrix K with size [NDoF x NDoF] is described by the (linear)
structural geometry of the structure: the bending and shear resistance of the struc-
ture providing bending and shear resistance to the element K,, and the stiffness
component from the foundation springs K, respectively. The latter is updated each
timestep when the foundation springs behave nonlinear.

| Ky Ky Ky O
K= |:K0t KOJ +{ 0 0} (3.3)

3.2.1 Timoshenko Beam Theory

The offshore wind turbine foundation and tower constitutive behaviour is captured
using elastic Timoshenko beam elements connecting nodes. The choice for the ap-
plication of Timoshenko beam theory over Euler-Bernoulli beam theory follows from
the fact that the equations for the beam theory in question is based on both shear
(transverse deflection y(z,t)) and bending deformations (cross-sectional rotation
¢(z,t)). The choice is substantiated because the effect of shear deformation and
of rotational inertia may not be neglected as the foundation and tower geometry is
characterized as a 'thick beam’ exhibiting shear deformation under bending.

The governing system of equations of motion present themselves after coupling
of the kinematic, constitutive and equilibrium relationships:

0%y 0 Oy
P dy 9 9¢

Where:

p: is the density of the Timoshenko beam material,;
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G A: is the shear stiffness which is the product of G, the shear modulus and A,
the cross-sectional area;

k: is a cross-sectional dependent shearing coefficient;

ET:is the bending stiffness of the Timoshenko beam which is the product of E,
the Young’s Modulus and I, the area moment of inertia;

y: is the corresponding lateral pile deflection.

Euler-Bernoulli bending is obtained by approaching the limit case of GAx =
0o, or in words: rigid shear stiffness. Pure shear is obtained by approaching the
limit case of I = oo, or in words: rigid in bending. Implementation in OpenSees
is conveniently achieved by specifying E, G, A, I, A,,, and m where the latter
two represent the cross-sectional shear area and the mass per length, respectively.
Hutchinson et al. [20] prescribes a formulation of the cross-sectional dependent
k value applicable to Timoshenko beam theory. Though, throughout subsequent
results the value of x = 0.52 is adopted.

3.3 Dynamic Soil-Pile Interaction Spring Element

There have been many attempts in search of hysteretic rules with increased accuracy
in the large-strain regime even with research directly related to pile applications. Al-
though, most research is still based on long and slender piles. Boulanger et al. [5]
describes the numerical implementation of soil-pile interaction under dynamic load-
ing while holding on to the p-y curve Winkler approach. A nonlinear, dynamic p-y
spring element was developed that can model a range of desired p-y behaviour. The
nonlinear p-y element suggested follows conceptualized behaviour consisting of elas-
tic (p — y°) (representing response far from the structure), plastic (p — y?), and gap
components (p — y9) (latter two representing response near the structure) placed
in series where a dashpot which is placed in parallel with the elastic component.
This represents the simulation of radiation damping behaviour. The dynamic spring
element is formulated as such that the gap components (in the form of a drag- and
closure spring) are only of influence if a gap has been formed in its previous load
cycle. For the implementation of the Boulanger element in OpenSees (using the
PySimplel material model) the viscous damper is placed across the entire material,
but the viscous force is calculated as proportional of the component of velocity that
developed in the far-field elastic component of the material to the displacement in
the total element. This still correctly causes the viscous damping term to become
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zero during load increments along a fully formed gap where physically speaking the
contact with soil is lost. Using this approach, the radiation dashpot force is not con-
sidered in solving for compatible forces and displacements, only after which results
in a more computationally stable approach. Consequently, by placing the dashpot in
series with the elastic component (as its implementation in OpenSees, Figure 3.1)
instead of in parallel (as formulated by [5]) representing the Maxwell model and
Kelvin-Voigt model, respectively results in a different formulation of deformation
over time and is expected to produce excessive damping forces under large strains.

The element is described using the p-y behaviour of each component. The total
p-y element represents:

p= pe(lastic) _ pp(lastic) _ pg(ap)
pg — pd(rag) +pc(losure) (3.6)
y=y" +y" +y’

(a) after Boulanger et al. (1999)

Drag Elastic Component
Pile Node Free-Field
Plastic Soil Node
Component
Closure Dashpot
(b) PySimple1 OpenSees implementation
Drag
Elastic Component
Pile Node Free-Field
Plastic Soil Node
Component
Closure
-
L
Dashpot

Figure 3.1: Boulanger element and its implementation in OpenSees: PySimplel [48].
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3.3.1 Backbone p-y and Global Cyclic Response

Before any signs of a gap, the dynamic spring element is characterized by a nonlinear
backbone curve that represents its initial load-path. The backbone curve of the dy-
namic spring element is distinguished in a ’far-field’ elastic region and a 'near-field’
plastic region in accordance with the mechanical formulation of the spring element.
The initial elastic region is characterized by the region where the plastic spring is
defined to behave rigid:

_Crpult < p < Crpult (37)
Meaning, the load at yield point p, is defined by:

bo = Crpult (3.8)

The linear far-field spring (p — y°¢) is described by:

p=Cye (3.9)
Ys0
Beyond this initial elastic region, the nonlinear region of the backbone curve is
described by the plastic spring component (p — y?):

CY50
P = Putt — (Putt — po) LySO T lyp = yg] (3.10)

Where p,;; = the ultimate resistance of the p-y material in current loading direc-
tion; p, = p and y? = y, at the start of the current plastic load cycle. Unloading and
reloading is achieved by updating the reversal point (p,, y?) starting with the last soil
resistance value of the elastic spring and corresponding elastic pile displacement. In
subsequent loading cycles; ¢ = a constant to control the tangent modulus at the start
of plastic yielding; n = an exponent to control the sharpness of the (p — y?) curve;
and ys5¢ = the displacement at which 50% of the ultimate capacity p,;; is mobilized
in monotonic loading. Lastly, C. denotes the stiffness factor for the initial elastic
region of the backbone curve. Values of p,;;, ys0, ¢, n, Ce, and C,. are used as such
to approximate the shape of different p-y backbone relations.

The shape of the load paths / hysteretic loops is influenced by the gap component
(in the form of a drag and closure spring in parallel) in the dynamic spring element
after mobilization of the initial load path. The closure spring component (p¢ — y9)
allows for smooth transition in the p-y behaviour as the gap opens and closes and is
described by:
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c Ys0 Ys0

P e [ R0 —9%) oo + 500y — yg)] G

Where yI = a memory term for the positive side of the gap; and y_ for the

negative side. Initial values are set as: y59/100 and —ys50/100, respectively. The
factor of 1.8 brings p¢ up to p,;; during initial loading to y} and v, .
The nonlinear drag spring component (p? — y9) is described by:

d d Ys0 "
= Caputr — (Capure — — 0 3.12
p® = Capuir — (Capuir — pp) [%0 20 y3|] ( )

Where C,; = the ratio of the maximum drag force to the ultimate resistance py;;;
p? = p? and yJ = y9 at the start of current loading cycle. The gap development and
lateral response is visualized in Figure 3.2.

Figure 3.2: Gap development under lateral loading [33].

The dynamic spring element can be classified in terms of its restoring force re-
lationship to relate its properties in terms of dynamics of a hysteretic system. This
has been presented earlier by specifying its tangent stiffness relationship in 2.2. The
elastic, plastic, closure, and drag spring components, equations 3.9, 3.10, 3.11, and
3.12, respectively can each be classified in terms of its tangent stiffness after rewrit-
ing the force-displacement (p-y) relationships:

ke = ¢, Dult (3.13)
Ys0
pp — TvS1en (y (tl) (Putt — Po) [( C@éso ) ] (3.14)
lyP — 5| + cyso ly? — y$| + cyso
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1.8py 422 1.8py 42
ho= ——PUL0 Pult'so (3.15)
(55 —v+u) (58— +uw)
2n (pd — Capu
jd n (po dap l;) ( Ys0 . ) (3.16)
yso +21y9 — vl \wso + 2[y9 — g
The total nonlinear spring stiffness yields:
k9 = k% + k° (3.17)
1
k= (3.18)

1 1 1
BT T e

In the gap region the closure spring takes no load, and the total soil resistance
will only be governed by the drag spring. At the end of the region, the gap compo-
nent represents rigid behaviour by reaching infinite stiffness: k9 — oc.

1.25 ———1—T

T T T T
—— This study - sand

1.00 —— AFlsand

0.75

PP

0.50

0.25

Wyso

Figure 3.3: Hard-coded approximation p-y
curves of Boulanger element [5]

Unfortunately, the implementation
of the element in OpenSees using
PySimplel yields limited freedom in
defining the shape of these backbone
curves through direct input parameters.
Through defining a soil type (soft clay
or sand) two specific sets of hard-coded
parameters are available for the user
defining the shape of the curve leaving
just two parameters for direct input by
the user: py; and yso. Conveniently
enough such an approach is consistent
throughout literature. Design codes,
such as API [3], prescribe the shape of
the p-y curve to represent a specific soil
type from which the user calculates the

values of p,;; and yso through provided equations. Though, the hard-coded imple-
mentation leaves even a bigger drawback in simulating accurate soil-pile interaction
response. The backbone curve shapes for soft clay and sand, approximating Matlock
[30] and API [3], respectively, are of when equilibrium is reached under static load-
ing since there is no sign of empirical reduction of ultimate resistance (2.3.2). The
hard-coded approximation of static p-y curves is visualized in Figure 3.3.
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(a) Global response for clay (b) Global response for sand

20 A

2
T 0]
—10 1
T T T
0 2 4
t [s]
(¢) Reaction force (d) Displacement response

Figure 3.4: Overview of the global response for hard-coded sets of clay and sand

The (normalized) global cyclic response of the PySimplel material object to a
unit sinusoidal force is visualized in Figures 3.4. Ater following the initial load-path,
the influence of the gap spring component by means of drag-resistance parameter C
is visible: within a fully mobilized gap only a maximum of Cj * p,;; soil resistance is
possible. In return, the closure spring component ensures that the stiffness increases
again before reaching the ultimate capacity. The effect is slightly visible for sand as
the recurring loops return a slightly different stiffness than its initial load-path after
reaching p,;;. This effect can be described as a numerical effect of the drag force
resistance parameter C, that affects the cyclic stiffness, and does not represent the
physical effects of gapping. Though, the drag force resistance parameter influence
is only mobilized after the ultimate capacity is reached in a previous load-cycle. be-
cause of the plasticity in the element, more displacement needs to be mobilized in
subsequent load cycles to again reach the full ultimate capacity pq;.
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On the Limited Applicability

The Boulanger element formulation and its implementation in OpenSees by the
name of PySimplel is setup as such, that the backbone curve approximates a short-
term static load-case and therefore, there is no strength degradation in terms of
cyclic loading. Where cyclic loading for sand is represented by an empirical re-
duction factor A to reduce the amplitude of p (chapter 2.3.2) (shape of the curve
remains the same), cyclic loading for clay is represented in a somewhat more com-
plicated approach as the ultimate capacity of the material decreases linearly over y.
This mechanism of decreasing p over increasing y is not found in the static repre-
sentation of the backbone p-y in Figure 3.3 and therefore not found in the hysteretic
loops in Figure 3.4. As a result, p is overestimated for high amplitudes of y and
in turn, the overall area of the loop is overestimated as well leading to a physical
overestimation of equivalent hysteretic damping ratio (compared to experimental
lab-results: = 20 — 30%, 2.3.1). Incorporating soil strength degradation will lead
to substantial increase in pile response when compared to the case with static p-y
curves [33, 32]. Also, there are no signs of rate effects and no ratcheting effects.
In terms of geometric soil-pile behaviour one could say that the PySimplel element
is mainly designed to incorporate the effects of gapping. The results obtained seem
consistent with the conclusions of research conducted by [41] on the performance
of the Boulanger element under seismic loading. Additionaly, the author concluded
that both the acceleration response spectra and the obtained hysteretic loops are sig-
nificantly different from a reference (verified against two different centrifuge tests)
continuum model. Yet, the author concludes that the maximum bending moment
along the pile shaft is acceptably predicted for the Winkler approach with Boulanger
elements.

Taking the aim of this thesis in consideration (which is on the assessment of a
method on finding and applying equivalent hysteretic damping without the appli-
cation of hysteresis in itself), the simulation of more accurate unloading-reloading
paths compared to measurement data (and more accurate backbone, initial load-
paths) are considered to be outside the scope. As well as accurate values of soil
damping compared to measurement data. Nonetheless, it is crucial to be aware of
the limitations of any applied reference soil-structure interaction element in order for
any results to make sense. Taking the element limitations into account, the choice
of taking the PySimplel material model as reference element is still substantiated
because the element is calibrated against the throughout literature heavily applied
and researched API regulation and is therefore thought to be a strong basis of com-
parison and assumed to be a strong stepping-stone towards any set of backbone plus
unloading-reloading rules.
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3.3.2 Identification of Parameters

User-Defined Parameters

1. Soil Type: The implementation of the dynamic spring element in OpenSees
currently enables the user to use two different sets of soil types each representing
two different sets of fixed parameters: ¢, n, C., and C,. to approximate the backbone
relations as presented in Figure 3.3 for sand, drained conditions (¢ = 0.5, n = 2,
C, = 0.542, and C, = 0.2) and soft clay, undrained conditions (¢ = 10, n = 5,
C. = ﬁ, and C, = 0.35), respectively under static/monotonic loading conditions.
This leads to limited options for the user in defining the material properties through
backbone relations as the shape of the curves is hard coded into the OpenSees ma-
terial object.

2. Ultimate Capacity pyit: The user has the freedom to specify the ultimate
capacity of the p-y material which directly indicates the reaction force magnitude
of the p-y backbone curve which the specified soil type is approximating. Increas-
ing/decreasing the parameter increases/decreases the stiffness of the material in the
process. The proposal of Matlock [30] is used for defining the ultimate capacity
of soft clay and the method according API [3] for defining the ultimate capacity
for sand since the p-y relationships are approximated using the hard-coded values
specified under the soil type above. For clay the ultimate capacity is described by:

! J
Pul = (3 + Z—uz + Dz) cuD

Dus = 9c D (3.19)
Puit = Min (pu1, pu2)
Where:
D: is the pile diameter;
~/: is the effective unit weight of soil;
¢y is the undrained soil shear strength;

z: is the depth from ground surface;

J: is a constant with values ranging 0.25 < J < 0.5 determined by field testing.
Matlock et al. [30] indicates that 0.5 is used to represent soft clay (as found
from field tests conducted in the Gulf of Mexico) from which the PySimplel
element is calibrated against. Lower values of .J indicate more stiffer clay’s.
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For sand the ultimate capacity is described by:
pu1 = (Cr1z + CeD) v 2
puz = C3Dv'z (3.20)
Pult = min (puhpuZ)
Here, the constants C1,C5,C5 may be determined graphically from figure 6.8.6-1

[3]. For numerical implementation, the ultimate capacity may also be determined
numerically:

Kyztan ¢sin 8 tan
w1 = Ay’ D+ ztan 8t
Put e tan(6—¢)cosa+tan(ﬁ—¢)( + ztan Stana)
+Koztan B (tan ¢ sin 8 — tana) — K, D (3.21)

Pu2 = A’Y/Z [KaD (tans B - 1) + KoD tan¢tan4 ﬁ]

Putt = Min (Pu1, Puz)
Where:
Ky: equals the coefficient of earth pressure at rest generally taken as Ky = 0.4;
¢: equals the friction angle of the sand in radians;
B=2+%;

_ 9.
Oé—i,

K, = tan® (% — %) to denote the active earth pressure.

3. Displacement at 50% Ultimate Capacity: yso: The displacement at which
50% of the ultimate capacity of the p-y material has been mobilized is specified as di-
rect input of the material model. The parameter has direct effect on the shape of the
backbone curve as the ultimate capacity of the material is reached at a lower/higher
displacement amplitude if the value is decreased/increased, stretching the backbone
curve over displacement amplitude. As the material model is setup as such that it
provides initial elastic behaviour, the duration of linear elastic behaviour increases
accordingly. The proposal of Matlock [30] is used for defining the y5, displacement
of soft clay and method according API [3] for defining the ys5¢ displacement for sand
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since the p-y relationships are approximated using the hard-coded values specified
under the soil type above. For clay, the ys5¢ displacement value is described by:

Ys0 = 2.5€50D (3.22)

Here €5 is the strain which occurs at one-half of the maximum stress on a laboratory
stress-strain curve. A value may be assumed in the range of: 0.005 < €5 < 0.020
representing stiff/brittle clays for low values and soft clays for high values. Matlock
et al. [30] indicates that e59 = 0.010 is probably satisfactory for most purposes and
the Boulanger element was calibrated for €5y = 0.005 based on published laboratory
tests [5]. For sand, the y5o displacement value may be taken as:

Ap, 0.5
Ys0 = ]];th arctanh (A) (3.23)

The value for the subgrade modulus k is given by graph in [3]. However, [43]
presents the following equations to find a value in a numerical manner based on a
curve-fitting procedure for both below the water table and above, respectively:

k = 10.237D? 4 12.498D,.

(3.24)
k = 4.7541D? + 90.106 D,

Here, D,. is the relative density which may be approximated by another formulation
based on curve fitting:

D, = 1643206.6¢° —5083287.6¢" +-6275860.5¢° —3865226.8¢2 +1187798.4¢—145708.4
(3.25)

4. Drag Resistance Within Fully Mobilized Gap: Cgq4: The user can specify
the drag force resistance of the p-y material within a gap in terms of Cy * p,; to
simulate the formation of a gap between the soil and pile. The parameter only has
influence on the gap component (in terms of drag and closure) within the dynamic
spring and has therefore no effect on the initial load path. Increasing/decreasing the
drag resistance parameter has notable effect on the shape of the hysteretic loops as
increasing/decreasing the drag resistance parameter increases/decreases the magni-
tude of soil resistance after mobilization of a full gap. Only the drag force (which is
less than the soil resistance) can be taken by the soil layers when the pile starts mov-
ing in the previously created gap. This result leads to a so called “bow-tie shape”
(Figure 3.4) if no resistance within a gap to no sign of a gap if the parameter is
increased to > 1.0. Increasing the value increases therefore the amount of energy
dissipation by the material after the formulation of this gap. Memarpour et al. [32]
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claims that the drag coefficient has no important effect on overall peak pile response
results.

5. Viscous Damping Term to Simulate Radiation Damping: c: The user is
given the option to include viscous damping to simulate the effect of radiation damp-
ing. If no value is specified, then the default of zero damping is used meaning no
influence of the viscous damper and no influence of radiation damping. Because
hysteretic damping originating from the nonlinear plastic soil state is assumed to be
prone, the Radiation damping contribution is disregarded throughout this thesis.

Hard-Coded Parameters

The parameters discussed here are not directly defined as input by the user but are
fixed values hard coded within the PySimple1 material object. As the user can define
the soil type — soft clay or sand — these soil types come with a specific set of param-
eters that ultimately defines the shape of the backbone curve.

6. Tangent Modulus Constant: c¢: The tangent modulus constant has direct in-
fluence on the nonlinear portion of the backbone curve: the plastic spring. Through
increasing the value, the shape of the curve returns softer behaviour in the plastic
region and through decreasing of the value stiffer behaviour. The parameter must
not be confused with the initial tangent modulus of the nonlinear portion of the
backbone curve as that is defined by its tangent stiffness: k? at y? = yj).

7. p-y Curve Sharpness Constant: n: The variation of the sharpness constant
of the p-y curve returns roughly the same behaviour as the tangent modulus con-
stant. One noticeable difference is that the ultimate capacity p,;: is reached at a
later displacement while lowering the value of the constant compared to the tangent
modulus constant.

8. Linear Far-Field Spring Constant: C,.: Varying the linear far-field spring
constant has direct effect in terms of increasing/decreasing the constant linear elas-
tic initial stiffness portion of the backbone p-y curve. Consequently, the load at yield
point py is reached at different values for displacement due the varying initial stiff-
ness k¢. The parameter yields from great importance as the shape of the hysteretic
loops are directly related to this linear initial stiffness: a higher initial stiffness re-
sults in a much greater loop area as the loop shape is mostly characterized by its
initial load-path.
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9. Rigidness Region Plastic Spring Constant: C,: As the region in which the
dynamic spring is defined to behave plastic is defined by the region presented in
equation 3.7 and the load at yield point py is therefore directly related to this pa-
rameter it is clear that by increasing the rigidness region plastic spring constant pa-
rameter, the linear elastic region is stretched over force and displacement amplitude.
It must be obvious that by increasing the linear-elastic path in the initial load-path,
the damping mechanism occurring from hysteresis remains absent as long as the
plastic spring behaves rigid.

3.3.3 Calibration of Soil Springs for Dynamic Analyses

Through the soil- and structural properties presented in 3.1 and the identified proce-
dure in 3.3.2, the dynamic springs representing the soil-pile interaction mechanism
can be calibrated. The main point of focus are the direct user-input parameters.
The two specific sets (sand and clay) of hard-coded parameters approximate the
throughout research heavily used API and Matlock curves (Figure 3.3). On top of
that, working with the OpenSees source code and implementing own code is a te-
dious and time-consuming process. Therefore, the hard-coded parameters will re-
main untouched.

Calibration of User-Input Parameters

Conveniently enough, OpenSees provides an command (PySimple1Gen) construct-
ing PySimplel material objects along the embedment depth of the pile structure
where values for p,;; and ys5o are determined on basis of input soil and pile proper-
ties like the approach described in 3.3.2, hereafter denoted as the “API” approach as
described in [3]. [3, 30, 42] all provide procedures in determining those two param-
eters for the two soil types directly available for implementation (though, all these
p-y approaches are calibrated against slender piles). For numerical implementation,
equations 3.19, 3.21, 3.22, 3.23, 3.24, and 3.25 are adopted. The approach in de-
termining the drag coefficient in simulating the gapping behaviour between the soil
and pile C; is less systematic as this is site specific and therefore, generally found
using field-testing in the simulation of soil-pile interaction. As the sand material
type represents drained conditions, it is assumed that the sand has no capacity in
standing on its own and no potential in forming a gap. The total force across the
p-y material is restricted to p,;; in magnitude so the value of C; = 1.0 is adopted for
baseline analyses for sand. Back-calculated p-y curves from centrifuge experiments
suggest that C; ~ 0.3 would be reasonable for soft clay [5] and will therefore be
adopted for the baseline analyses. Because the Boulanger element was calibrated
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for e5qg = 0.005 based on published laboratory tests, this value is adopted for base-
line analyses. Because the hard-coded p-y formulation represents a short-term static
load-case, the procedure in formulating the PySimplel spring input properties fo-
cuses solely on the static properties to be considered in the equations mentioned
above. For reference, a total overview is given of all identified parameters relevant
in specifying the tangent stiffness in dynamic reponse, equation 3.18:

Soil Type Pult Y50 Cd Crad c n Ce C’r J KO €50
1: Clay eq. 3.19 | eq. 3.22 | 0.3 | 0.0 | 10 | 5| 1.02 | 0.35 | 0.5 - | 0.5%
2:Sand | eq.3.21 | eq.3.23 |1.0| 0.0 | 05| 2 |0.542 | 0.2 - 104 -

Table 3.3: Overview of PySimplel parameters

Resulting Sets of Layered p-y Curves

Considering the soil characteristics presented in 3.1.1, and geometry input as pre-
sented in 3.1.2 the embedded (depth-dependent) nonlinear hysteretic PySimplel
springs can be calibrated using the numerically implemented equations as specified
above. Following the depth dependent soil characteristics, the total depth-dependent
p-y curve set directly related to the depth-dependent spring stiffness can be visual-
ized and is presented in Figure 3.5.

The spring stiffness increases under increasing embedment depth (decreasing =
relative to the mudline) as a result of the increasing ultimate spring capacity. It
is noticeable that the clay soil layers return a constant value of y5o because of a
constant €5 input (equation 3.22 is depth independent) originating from laboratory
testing and a substantially higher value compared to that of the sand layers. This
indicates that sand is a much stiffer layer compared to that of clay. Considering
the results presented above, the resulting sets of layered and depth-dependent p-
y curves can be visualized in Figure 3.6. Here, the reaction force p versus lateral
displacement y is plotted over embedment depth 2.
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3.4 Time Incremental Pushover Validation

BHawC (Bonus Horizontal axis wind turbine Code) is used to compare and verify the
global lateral response of the equivalent OWT model created in OpenSees. For this
exercise any additional aeroelastic loads are excluded. The BHawC analysis used
the same geometric and constitutive parameters defined in the OpenSees analysis
(3.1 and 3.3.3). Response is compared upon application of both a lateral force and
bending moment just below mudline. The loads are gradually increased from ¢ =
(10, 550]s with total analysis duration of 600s. The situation presented in Table 3.4 is
investigated where both force and bending moment are applied just below mudline:
z = —1m. The result is found in Figure 3.7. Overall, the agreement between the
OpenSees and BHawC analyses verifies that the OpenSees implementation is capable
of returning sensible results for laterally-loaded pile simulations.

Fyo [Nl Eya [N] | Myo [Nm] My, [Nm]
10 26700000 10 1200000000

Table 3.4: Load Characteristics of Pushover Validation

0 1 04
—5 —5 1
—10 A —10 1
— —15 1 = —15 1
£ £
w —20 1 w —20 1
—25 1 —25 1
—30 4 —30 1
—— BHawC
—35 4—— OpenSees —35 1
M L B
0.0 0.2 0 1000
y m] M [kNm]
(a) Lateral displacement (b) Bending Moment

Figure 3.7: Overview of the lateral pushover response



46



Chapter 4

Equivalent Viscous Damping

Recommended practice specifies that whenever the implemented soil-structure in-
teraction springs are not fully nonlinear and inelastic, the application of nonlinear
hysteretic damping may be simplified and linearized to support linear elastic analy-
ses [12]. Upon application of Masing rules the amount of energy dissipation is then
approximated and reduced to overcome the physical amount of overdamping com-
pared to laboratory test results (not to get confused with the term presented earlier
in 2.2.1). Because the target response (hysteretic PySimplel soil-pile springs) may
be simulated prior, this chapter will focus on the exercise of back-calculating damp-
ing observed from plastic time-domain response. Please note that in practice the
maximum level of spring extension is unknown before the analysis.

4.1 Classical Equivalent Damping Ratio

Considering the energy quantities from the balance of forces / equation of motion
in equation 2.2, the equivalent damping ratio ¢ (which represents the equivalence
of the hysteretic damping mechanism) in equation 2.9 is derived. The total energy
in the nonlinear single degree of freedom system (Figure 2.5) can be obtained by
integrating the single degree of freedom equation of motion with respect to the
displacement response [47]. Each (rewritten) term represents a different form of
energy in the system: Kkinetic energy Fj, dissipated energy by the viscous damper
Eg4, dissipated energy by yielding and recoverable strain F,, ,, and imparted energy
E;, respectively:
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t
Ej, = m/ i(t)a(t)dt = %miﬂ(t) (4.1)
0
t
Eq = 12 (t)d 4.2
d C/O u (t) t ( )
Eyyy = / , (u(t), sign(a(t))) a(t)dt 4.3)
t
E;=-m / i (£)i(t)dt (4.4)
0

The energy dissipated by the hysteretic loop and of the system entering the non-
linear plastic regime can be obtained by subtracting the recoverable strain energy
Es.

ES:/O ku(t)du:/o ku(t)a(t)dt 4.5)

t t
E,=Ey s —E;= | [s(u(t),sign(u(t)))u(t)dt — / ku(t)a(t)dt (4.6)
0 0
The total energy dissipated in the nonlinear SDoF system subjected to a ground
motion then yields:

t t
E,+E;= / fs (u(t), sign(u(t))) w(t)dt — / ku(t)u(t)dt + c/ W (t)dt  (4.7)

0 0
Equation 2.9 is then derived upon the major assumption that the steady-state
displacement response is perfectly harmonic: w«(t) = U cos(wt), upon which the
velocity response is assumed perfectly harmonic as well: u(t) = —Uwsin(wt). The
energy dissipated by a viscous damper in single degree of freedom formulation over

one load cycle then yields:

27

E;= / ¢ cU?w? sin? (wt)dt = mewl? 4.8)
0

Using the relationship of equivalent viscous critical damping (equation 2.4) the
energy dissipated during one cycle can be expressed as:
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Ey = 20CVkmwU? = 2n¢owoU%m = 2n¢ 2 U2k (4.9)
wo

Considering the relationship of the maximum stored elastic energy for a purely
linear spring (equation 4.5) one can derive and express the equivalent viscous damp-
ing ratio as the ratio between the energy dissipated by a viscous damper and maxi-
mum stored strain energy:

1 wo Ed
S .10
¢ 4 w B (4.10)

Apparently the equivalent viscous damping ratio of a linear single degree of free-
dom system does not only depend on ratio between the dissipated energy over max-
imum stored energy, but also on the ratio between natural frequency of oscillation
and forcing frequency/frequency of excitation. The hysteretic damping to be ap-
proximated is generally frequency independent [29]. To overcome frequency depen-
dency the assumption is made of w = wy. Something which seems to be consistent
throughout literature [19, 22, 34].

4.2 Equivalent Damper Coefficient

4.2.1 Peak Alignment

Dowgala et al. [15] presents an interesting yet plain method in obtaining mass-
normalized equivalent viscoelastic damping coefficients based on known hysteretic
response. A mass-normalized damping coefficient multiplied by the relative velocity
is empirically added to the equation of motion to force the peak in the absolute
acceleration to shift in time to align with the time instant the relative velocity is
zero. Considering equation 2.2 for F(t) = 0 (free-vibrations), that should then
be equal to the (mass-normalized) restoring force: ii(t) + <u(t) = —Zu(t). In the
knowledge that the time instances where restoring force is peaked should be equal to
the time instances that the relative velocity crosses zero the following equations can
be solved for time and set equal to find the damping in the system. This procedure is
demonstrated in equations 4.11 and 4.12 for an (underdamped) harmonic solution
in equation 2.5. The result is the theoretical expression of critical damping presented
earlier in equation 2.4. The method is demonstrated in Figure 4.1 for an arbitrary
seismic signal applied to a single degree of freedom support.



4. EQUIVALENT VISCOUS DAMPING

c —3C2wiw + 25 Cwow + w?
i(t } =0 — tan(wt + ¢)M) = s
®) an(wt +¢) £ 203 — Gwi + 3Cwow? — Zw?

a(t) = 0 — tan(wt + )P = ——
wo(
(4.11)
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Figure 4.1: Overview of the peak alignment procedure for applied viscous damping

to a linear SDoF

4.2.2 Energy Quantities

Instead of relating the damping to the ratio of energy dissipation to recoverable
strain energy in many situations it would make most sense to relate the damping
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directly to the true dynamic response, disregarding the thorough assumptions upon
derivation of equivalent damping (4.1). Using a same energy based approach in
derivation of equivalent damping, an equivalent damper coefficient ¢, can be cal-
culated. The method is thus closely related to that of the prescribed one back in
[12]. A damper coefficient is found by setting the energy dissipated by a viscous
damper E; (equation 4.2) equal to the energy dissipated by hysteresis Fj,. We know
that the latter is equal to the area enclosed by the unloading and reloading paths.
Subsequently, an equivalent damper value can be solved for:

Aloop

[ (tydt

(4.13)

Ceqge =

Note that equation 4.13 depends directly on the response considered in the ¢ =
[t — 1,7 + 1] range, where ¢ = [T — 1, 7 + 1] represents the time for a single loop to
close.

4.3 Method

4.3.1 Equivalent Viscous Damping Ratio

In relation towards the application of equivalent viscous damping on a structural sys-
tem, (relative) displacement dependent equivalent damping ratio curves are usually
constructed (or in the case of soil deposits, shear strain dependent curves) to address
a single equivalent damping value based on a single equivalent relative displacement
[12, 8, 56, 36, 29, 44, 52, 58, 60]. In practice, it is possible to construct hypothet-
ical loops from a single backbone p-y curve adopting Masing rules. However, in
approximation of arbitrary unloading-reloading behavior that deviates from Mas-
ing principle (unloading-reloading response that deviates from the backbone curve
shape) one could construct curves based on the hysteretic steady-state response. The
single degree of freedom system is loaded into the steady-state regime using an har-
monic force with forcing frequency equal to the natural frequency (that of the initial
stiffness, that is) of the single degree of freedom oscillator. The plastified steady-
state displacement response amplitude is then measured for multiple displacement
amplitudes (induced by conducting the same analysis for multiple harmonic forcing
amplitudes) and linked to the loop area: the ’identified loop’. This procedure is vi-
sualized in Figures 4.2 and 4.3. Notice how in the steady-state only a maximum of
p = Cyq * pyz is possible, which is p/p,;: = 1.0 for sand and p/p.;: = 0.3 for clay.
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Permanent plastic displacements are clearly observable which can not be simu-
lated during elastic analyses. On that note, the reference steady state displacement
value is taken as the amplification relative to the mean value of steady-state (in this
case plastified) displacement. Please note that significant plastified conditions are
presented here and are only to demonstrate the method. In real-time soil-pile inter-
action analyses such significant permanent displacements are expected not to be of
this magnitude. Repeating this same exercise for a range of forcing amplitudes one
could measure associated reference loop area (or dissipated energy by hysteresis)
and associated secant stiffness for each value of measured relative reference dis-
placement. An equivalent viscous damping ratio is then found using equation 4.10
for every reference displacement. These results are visualized in Figure 4.4.

Indeed, the results associated with hard-coded sets for both sand and clay ap-
proximately follow the trends as observed earlier in 2.8. For both clay and sand
the numerical effect of the drag force resistance parameter is directly observed and
represented by a kink. This kink occurs after the ultimate capacity p,;; is reached
in a previous load-cycle as earlier described in 3.3.1. For sand, the effect is a lot
less dominant than for clay, directly related to the loop area observed in Figure 4.3.
On top of that, the hard-coded backbone curve for clay has a longer initial elastic
branch compared to sand (Figure 3.3). Such a long linear elastic branch seems to be
inconsistent with literature.

4.3.2 Equivalent Damper Coefficient

Instead of computing the ratio of loop area to the recoverable strain energy (equation
2.9), the ratio is taken as loop area to the integral of velocity squared for an identi-
fied reference loop (equation 4.13). Upon multiplication of such equivalent damper
coefficient with the velocity, an equivalent damping force is found in Figure 4.5. The
damper coefficient gradually decays over increased speed of oscillation (increasing
denominator, equation 4.13). The magnitude of the coefficient increases with soil
stiffness. As a result of both decrease in loop area in the steady-state regime (because
of gapping) and increase in integrand of squared velocity, the decay of the damper
coefficient for clay soils happens more instantaneous and magnitude is lower overall
compared to sand. The back-calculated damping force perfectly follows the equiv-
alent damping ratio ¢ observed earlier for sand. For clay the distribution tends to
deviate after the ultimate capacity has been reached and the magnitude of (steady-
state) damping force is significant lower than compared with sand. The latter is the
numerical result of pinching/gaps: reduction of ultimate capacity in the steady-state
regime compared to the maximum observed throughout the total timeseries.
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4.3.3 Equivalent Viscous SDoF

Single degree of freedom response is compared in Figures 4.6 and 4.7 for an arbi-
trary harmonic forcing amplitude F,. In order for the equivalent damping ratio ¢
to be applied, it is chosen to apply (initial) stiffness proportional damping which is
a modal damping where the damping ratio increases linearly over frequency. The
(constant valued after relating the frequency equal to the (linear) natural frequency
of the oscillator and stiffness equal to the initial stiffness of the nonlinear spring)
damper coefficient then reads ¢ = a; k;,,; Where a; = Z—g Here, the reference equiv-
alent damping value is taken from the constructed equivalent damping curves found
in Figures 4.4 and 4.5 with reference displacement measured from the steady-state
hysteretic response. Without the available information of "true” hysteretic response,
which is generally the case in practice, values for equivalent damping may be taken
using relative displacements from an elastic case and applied in an iterative manner.
Upon comparison of the steady-state hysteretic response with equivalently damped
response in Figures 4.6 and 4.7, it is observed that next to the fact that the steady-
state hysteretic response provides permanent displacements, the back-calculated
equivalent damping ratio ¢ underestimates the response in application of a non-
linear but elastic spring. This is the result of upon derivation of equation 4.10 where
the maximum stored energy is taken as that of a linear elastic secant stiffness. With
nonlinear springs the stiffness is updated each time instance leading to an under-
estimation of maximum potential energy. An observation earlier made by [22, 19].
The equivalently damped linear elastic spring model provides good agreement. The
same agreement is found in application of a back-calculated equivalent damper coef-
ficient which is directly based on the hysteretic response. Both nonlinear but elastic
and linear elastic springs provide good agreement when hysteretic velocity response
is used in calculating c. Figure 4.6 provides the steady-state response of the models
where the hysteretic model is subjected to permanent displacement. By substraction
of the mean steady-state response in Figure 4.7, the agreement in amplification is
verified.
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Figure 4.6: Comparison of time domain steady-state equivalent damping response



58 4. EQUIVALENT VISCOUS DAMPING

1_: J 14 S,

5 0 S
~ ~~
Ry Ry

-1 7 Tl —1 1 -

_9 —9 4

-50 0 50 -50 0 50
y/Ys0 Y/Ys0
(a) Equivalent damping ratio ¢ (b) Damper coefficient ¢

Figure 4.7: Associated force-displacement curves, with substraction of mean steady-
state response

4.4 Arbitrary Excitation

Up until now, the assessment has been limited towards the identification of per-
fect harmonic oscillations and the identification of reference loops in the steady-
state regime. In relation to multi-harmonic excitations, and especially in the case of
stochastic seismic excitations, it is not always clear which loop area is to be taken
as reference. To overcome this loss of information throughout the whole timeseries,
[46] proposes a method that assesses each of the unloading and reloading branches
individually (each half of a full loading cycle). The method enables the estimation
of a damping ratio for each of the loading increments composing such half loops. As
a result, a continuous variation of damping ratio with time can be evaluated. In that
regard, the method provides valuable insight into which soil-structure interaction
components (layers of soil deposits, essentially) are responsible for most of energy
dissipation.

The proposed method relates the energy accumulated during an arbitrary stress-
strain path E,..; to the elastic energy E.;; within this region between two stress
reversal points: (Yyev, Trev)s (7i, 7:). The accumulated energy and elastic energy in
the region are:

Vi
Eacc,i = / (T - Trcv)d7 (414)

rev
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Figure 4.8: Areas used in the evaluation of the damping ratio and definition of accu-
mulated energy and elastic energy [46]

Eel,i = %(7—1 - Trev)('}/i - 77"(51)) (415)

To extend the algorithm for a hypothetical full-cycle, the current stress-strain
path (or p-y path for that matter) is related to a full loop area as is done in Figure
4.8. Please note that following this procedure it is assumed that to close a hy-
pothetical full-cycle, the unloading or reloading branch is an inverted replica of the
previous load-cycle. True cycles may deviate under large-strain stochastic vibrations.
Still each cycle is assessed separately, and because both the loop area and integral
of squared velocity are scaled by two this information loss remains limited (both
the numerator and denominator are scaled by two). A back-calculated equivalent
viscous damper coefficient is considered representative and valid for each separate
load-cycle. In that way, the proposed method is insightful in stochastic excitations.

The relations for a full cycle transform to:
Eh = Aloop = 2(Eacc,i - E€l7i) (416)

Eel,i
4
Upon adoption of equations 4.10 and 4.13, the classical equivalent viscous damp-
ing ratio and damper coefficient assessed for each individual load-path then yield,
respectively:

Ep = Aelastic = (417)
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1 Eh 1 2(E‘accj - Eel,i) 2(lz‘acc,i - Eel,i)

eqei — T T = .18

Ceaesi = 7 E, 4w Bes TEey; (4.18)
A 00! 2 Eacci - Ee i

Cege,i = t:t+1l .p = ( ST L) (4.19)
Sarydr 200 A(t)dy

While the method may be adopted for arbitrary load-paths, the single-harmonic
timeseries considered earlier in 4.3.3 is visualized first. To demonstrate the effec-
tiveness of the algorithm and applicability independent of unloading-reloading rule,
pinching (representing soil-pile separation) is included in the following results. This
timeseries was presented earlier as the response for a clay spring in 4.3.1. The
algorithm is adopted to identify the amount of equivalent damping present in the
hysteretic timeseries. A single-degree of freedom system with an equivalent elastic
spring in parallel with a constant equivalent viscous damper is able to accurately
calculate the steady-state displacement amplification of an hysteretic system sub-
jected to pinching, presented in Figure 4.9. The pinching effect only numerically
occurs whenever the user-defined ultimate capacity is exceeded in an earlier load-
cycle when using the PySimplel material element (Figure 4.2). When conducting
analyses while holding onto nonlinear but elastic backbone curve only, the reaction
force in the steady-state regime will therefore be significantly overestimated without
manual reduction of the ultimate capacity. This reduction of ultimate capacity is
included in the linear elastic spring stiffness.
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Figure 4.9: Hysteretic versus equivalently damped elastic steady-state displacement
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The time varying energy quantities and related equivalent damping result are
presented in Figure 4.10. Under a single harmonic force, the results follow the dis-
placement response trend where eventually, in the steady-state regime convergence
is found towards a single (peak) value of accumulated hysteretic energy, accumu-
lated elastic energy, loop area, damping ratio, and damper coefficient. Any arbitrary
hysteretic timeseries (which requires relative displacement, velocity, and reaction
force as input) can be used to asses the time varying energy dissipation mechanism
related to the timeseries in question using this aforementioned procedure.
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Chapter 5

Earthquake Response Analysis

To assess an equivalently damped elastic model that is supposed to represent the
energy dissipation mechanism equivalent to an hysteretic model, we first need to
know the amount of energy dissipation that each of the hysteretic soil-pile interac-
tion springs produces. The amount of energy dissipation is directly related to the
dynamic properties of the structure, calibration of the soil springs, but also to the
applied input motion. Hence, it is difficult to know beforehand in practice how much
energy dissipation to consider. Within this research the analysis results of the hys-
teretic model form the basis for determining the amount of energy dissipation on a
local level to consider. Because the amount of damping is considered each spring
separately, one could say that the damping is matched on a local-spring basis. Per-
fect agreement is therefore not to be expected. The following flowchart is presented
to indicate the steps in formulation of the equivalently damped model:
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Figure 5.1: Flowchart of the adopted analysis procedure

5.1 Site Response Analysis

Three arbitrary but different signals were selected to asses the model. Because it is
wrong to assume that a signal only applies to a single point or that the same sig-
nal applies for multiple points (or nodes), site response analysis is conducted to find
depth-dependent input motions to be applied at each of the supports. The properties
of the motions and results of the free-field site response to vertical shear wave prop-
agation are presented below. Because the site response analysis is only considered as
input to asses seismic response of the offshore wind turbine, no detailed attention is
made towards the soundness and correctness of the free-field soil column response.
In fact, the topic of site response analysis is something which is still thoroughly re-
searched [36, 25, 55, 56, 57]. ProShake [16] is adopted to conduct one-dimensional
equivalent linear frequency domain site-response analysis. For an extensive overview
of the adopted equivalent linear frequency domain one-dimensional site response
method, the interested reader is referred to [16].
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5.1.1 Ground Motion at Bedrock

A seismic signal is applied at a bedrock layer connected to the bottom of a soil
column with soil properties as given in Table 3.1. The following records were se-
lected (Table 5.1 and Figure 5.2). It can be observed that the most important part
of the motion, generally also known as the strong motion part approximately occurs
between ¢ = 15s and ¢t = 30s, ¢t = 15s and ¢ = 35s, and ¢ = 15s and ¢ = 30s, respec-
tively. Considering the response spectra of the input motions, it can be observed that
the frequency content of the acceleration input seeds are mainly contained between
approximately 7= 0.1sand T'= 1s (f = 1Hz and f = 10H 2).
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Figure 5.2: Overview of the applied signals at bedrock
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Event M, | PGA g
1 El Centro, California 6.95 0.344
2 | Kern County, California | 7.36 | 0.185

3 | Northridge, California | 6.69 | 0.329

Table 5.1: Selected ground motion records
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5.1.2 Free-Field Response

Upon application of the selected seismic records from Table 5.1 onto a bedrock layer
underlying the soil profile as presented in Table 3.1 the equivalent linear free-field
response yields the following results to be applied and impose as motions onto the
supports of the offshore wind turbine structure (Figures 5.3 and 5.4). Both the
amplitude in terms of peak ground acceleration and the dominant frequency content
vary according the geometric properties of the soil profile and the characteristics of
the input motion.

5.2 Hysteretic Response Analysis

As the hysteretic beam on Winkler foundation model is considered to be the target
model it is key that the model response, and especially the energy dissipation ca-
pabilities, is assessed extensively to substantiate, compare, and form a basis for any
equivalently damped model. The depth-dependent free-field response of the differ-
ent considered motions (5.1.2) are imposed as accelerations at the foundation model
supports. No other source of damping is applied. The case of a single harmonic force
with forcing frequency equal to the second natural frequency of the total structure
(f1: Table 5.2) applied just below mudline is discussed briefly first.

5.2.1 Single Harmonic Response

The depth-dependent identified hysteretic results of a single harmonic force applied
just below mudline is found in Figure 5.5 using both equations 4.18 and 4.19. Be-
cause the amount of energy being dissipated by hysteresis is directly related to the
loop area, one could argue that this energy dissipation mechanism is a function of
both soil stiffness and relative displacement. Under the application of a single har-
monic force just below mudline, the latter is found to increase gradually towards
mudline and the soil stiffness decreases gradually towards mudline but is also soil
type dependent. As a result, the identified value for a (depth-dependent) equivalent
damper coefficient returns a shape which does not follow any of the aforementioned
distributions. The observation was made earlier that for a clay-calibrated soil-spring
a longer portion of linear elasticity is found, which is found again in the depth-
dependent equivalent damper result. Because of this longer linear elastic branch,
the sand calibrated soil-springs just beneath the clay layers may provide hysteresis
where the first few clay layers still follow their linear-elastic branch. Whenever the
clay layers do provide hysteresis, loop area is noticeably lower compared to that of
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sand because of lower ultimate spring capacity. In relation towards the Ultimate
Limit State, back-calculated equivalent damping coefficients to be applied in equiva-
lent damped analyses are found at the time-instance where the relative displacement
response is peaked. These time-instances occur (in this case) simultaneously when
the time-dependent nature of ¢ is maximum, but not necessarily when the observed
¢ is maximum.
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Figure 5.5: Overview of the identified damping over embedment depth for sand
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(a) Time varying equivalent damping ratio {eqe at z = —1m, eq. 4.18
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(b) Time varying equivalent damping ceqe at z = —1m, eq. 4.19

Figure 5.6: Time varying single harmonic equivalent damping for the OWT model at
z=—1m

For good reference, results on the soil spring just below mudline is shown in Fig-
ures 5.6 and 5.7. Here, the identified equivalent values are indicated. The amount of
energy that is being dissipated over time is largest during the first few cycles between
t = 0 — 5s: both observable in Figure 5.7 by the colorbar and in the time-dependent
result. Afterwards, the response slowly converges towards a constant response am-
plitude which is found in both the p-y response and equivalent damping result. The
same effect is found in the cumulative energy dissipation, where a kink is found after
~ 40m of cumulative spring extension. After the kink, energy that is being dissipated
approximately follows a linear distribution because the response converges towards
a single peak value.
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Under application of equation 4.19, a depth-dependent distribution of equivalent
dashpot coefficients ¢4 is found. This is visualized in Figure 5.5. The dashpots are
then applied in parallel with nonlinear but elastic springs which follow the same
backbone curves as the initial load-path of the hysteretic springs. Very good and
conservative agreement is found in the peak time-domain response to a single har-
monic force. The peak time-domain results normalized with respect to the maximum
observed hysteretic response of the two nonlinear models is compared in Figure 5.8.
The applied load magnitude is still at a level where the maximum capacity of the clay
soil layers have not yet been exceeded. No effects of soil-pile separation is observed
within these layers. If this would this have been the case, effect would have been
noticeable in both time varying nature of equivalent damping, p-y response, and
cumulative energy dissipation. In the case of soil-pile separation, loop area (and
therefore amount of damping by hysteresis) decreases. For the cumulative energy
result in Figure 5.7 for instance, this implies that the kink is represented much more
dominantly.

5.2.2 Seismic Response

The lateral hysteretic spring response is assessed to indicate the amount of energy
dissipation of each of the individual embedded springs to seismic input. Upon ap-
plication of the different imposed motions at the supports of the structure (5.1.2),
the springs return different behavior as a result of the difference in frequency and
amplitude characteristics of the applied motions (Figures 5.3 and 5.4). From the re-
sponse of each hysteretic spring an equivalent damping c.4. is found using equation
4.19 and applied in parallel with the equivalent elastic springs. Below in Figure 5.9
the force-displacement response and corresponding cumulative energy dissipation
associated with the specific timeseries is summarized. Considering these results, it is
consistently found that after the strong motion part has occurred (where plasticity
is largest), the energy cumulative dissipation reaches a certain plateau because the
response globally returns towards linear-elasticity. The magnitude and position of
this plateau naturally varies per input motion.
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In Figure 5.8 the time-varying equivalent damping to the response just below
mudline is visualized. In ¢ versus time the observed equivalent damping is largest in
the strong-motion parts of the seismic signal (when comparing with the time range
indicated by colorbar in Figure 5.9). This is again not observed for ¢ where the iden-
tified damper coefficient can differ quite substantially with the observed maximum
throughout the total timeseries. Identified equivalent damping values are indicated
in the figures at the timestep when relative displacement has reached its absolute
maximum value. According to the computed equivalent damping response to mo-
tion 2, this does not necessarily imply that identified equivalent value (.. is at its
peak value. When the relative displacement response to this specific motion at this
specific spring is maximum, the subsequent reloading-path occurs at an earlier stage
than other load-cycles. In relation towards the ultimate limit state, it is found that
the single identified c.,e using equation 4.19 at the timestep where relative dis-
placement is largest can be used to reasonably represent the damping over a total
timeseries. Repeating the same exercise for each individual soil spring, the total
distribution of equivalent damping is found in Figure 5.9 for each of the considered
motions. Apart from the magnitude of equivalent damping, the depth-dependent re-
sults show a fairly similar distribution over embedment depth. This result indicates
that the distribution of energy dissipation over depth is frequency independent be-
cause of the observed deviations in frequency content of the input motions (Figure
5.3). Additionally, a secant stiffness distribution is found by the ratio of reaction
force to relative displacement. This constant, identified secant spring stiffness may
be used to support linear elastic analysis. To take permanent plastified displace-
ments into account, the secant stiffness is computed for both observed minimum
and observed maximum response and taken as average of both. Because of a larger
load-level the identified secant stiffness to motion 1 is lowest, but the amount of
identified damping is the largest relative to motions 2 and 3.

(a) Motion 1, ¢
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5.3 Results

The response of the hysteretic and equivalently damped (both linear and nonlinear)
models is analyzed and discussed. For reference purposes, non-damped (both linear
and nonlinear) but elastic situations are considered as well. Values for the equiv-
alent hysteretic dashpot coefficients to be applied in parallel with the soil springs
along the monopile embedment depth have been derived according the procedure
presented in 5.2.2 for the three considered input motions and are visualized in Fig-
ure 5.9 (b). Discussion will focus further on the results computed at mudline and at
tower top.

5.3.1 Eigenproperties

Before imposing any loads, it is important to evaluate the dynamic properties of
the offshore wind turbine model: perform an eigenvalue analysis. A generalized
eigenvalue problem for two symmetric matrices K and M of size n x n is given by:

(K- AM)® =0 (5.1)
Where:
K: is the (initial) stiffness matrix;
M: is the mass matrix;
A: is the eigenvalue;
®: is the associated eigenvector.

The first four (lateral) bending modes of both the nonlinear and equivalent linear
models are summarized in Table 5.2 and the first four (normalized) eigenvectors are
visualized in Figure 5.10. The eigenproperties of the equivalent linear models differ
by variation of the soil-spring stiffnesses. It is found that because of larger load
level associated with motion 1, secant spring stiffness is lowest compared to the
other models which results in different eigenproperties and a ”softer” modeshape.
Because the load-level of applied motion 2 is lowest, observed secant stiffness is
closest to the initial stiffness of the nonlinear model leading in eigenproperties close
to that of the reference nonlinear model. The modeshapes for the nonlinear models
have been derived using the initial stiffness matrix but in fact, the stiffness matrix
changes each time increment due to the nonlinear nature of soil springs which is
a simplification of true modal properties. Because the true focus of this work does
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not lie on evaluating the full and true modal properties of an offshore wind turbine
structure, this will not be assessed any further.

fo fi fa f3
Nonlinear | 0.238 | 1.108 | 2.001 | 3.747 | Hz
Motion 1 | 0.221 | 0.966 | 1.880 | 3.535 | Hz
Motion 2 | 0.240 | 1.071 | 1.944 | 3.654 | Hz
Motion 3 | 0.243 | 1.123 | 1.994 | 3.748 | Hz

Table 5.2: Natural Frequency Characteristics
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Figure 5.10: Overview of the first four normalized bending modes
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5.3.2 Time-Domain Response Analysis
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Figure 5.11: Absolute maximum time-domain response to motion 1

The peak time-domain results are visualized in Figures 5.11, 5.12, and 5.13. All
results have been normalized with respect to the observed peak hysteretic response
of the quantity of interest. Except for relative displacements to indicate and compare
the amount of plasticity present. Throughout all the three considered input motions
it is found that for the equivalently damped nonlinear elastic model the relative dis-
placements along the pile shaft and rotations along the structure total height are
converging towards the hysteretic model and are consistently on the conservative
side. Performance differs per input motion for lateral deflection and bending mo-
ment. Good agreement has been found for motions 1 and 3 in terms of bending
moments, but motion 2 returns the same observed peak bending moment as the
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non-damped reference case. Good and conservative agreement is found for motions
1 and 2 in terms of peak lateral deflection, but not for motion 3 where closer towards
tower top, the peak lateral deflection gets substantially underestimated. Because of
linearization a perfect match for the equivalent linear model is not to be expected.
Good agreement is found for motions 1 and 2 in terms of bending moment response.
The lateral deflection is somewhat underestimated. For motion 3 the bending mo-

ments and lateral deflection are both underestimated using a linear elastic secant
stiffness model.
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Figure 5.12: Absolute maximum time-domain response to motion 2
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Figure 5.13: Absolute maximum time-domain response to motion 3

Additional time-domain results are found in Appendix A where the (normalized)
time history associated with bending moment and deflection at mudline and tower
top is presented. Here it is found that looking beyond the observed peak values,
all load-cycles get reduced to an acceptable level and show similar response to the
reference hysteretic response. These results are discussed more extensively in 5.3.4.
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5.3.3 Frequency Content Response Analysis

Different seismic signals vary in both amplitude and frequency content. Result is
that different response characteristics can be encountered. Next to that, lineariza-
tion has effects on the dynamic response and the response of the hysteretic model is
subjected to permanent displacements which can not be simulated using our equiv-
alent elastic models. A more common approach to assess the structural response
is generally done in the frequency domain by investigating the dynamic amplifica-
tion. The spectral ratio of bending moments and lateral deflections at mudline and
tower top is visualized. Here, the (Fourier transformed) output quantity is normal-
ized with the input motion applied at bedrock and normalized by the peak observed
hysteretic response. Such a ratio is generally referred to as a transfer function to
relate input with output. A similar procedure was earlier presented in Figure 2.4
(a). The total resulting magnification spread throughout the three different consid-
ered input motions is summarized in Figures 5.14 and 5.15 on both logarithmic and
linear scale. The shaded areas indicate the range between observed minimum and
maximum amplification for all three motions and the minimum and maximum non-
damped reference cases are characterized by the dash-dotted lines. In Appendix A
the (non-normalized with forcing input) amplification of the deflection and bending
moment at mudline and at tower top on linear scale is presented separately for all
input motions to enhance our understanding.

The bending moment response at mudline and tower top is mostly amplified
around the second resonance frequency of the structure to all input seeds. However,
at tower top amplification is dominated close to the third resonance frequency. Am-
plification is significant for the non-damped models around this frequency compared
to the damped models. In application of equivalent dashpots in parallel with soil-
pile interaction springs, bending mode amplification around both the second and
third resonance frequency of the structure are effectively reduced. Because of low-
frequency noise, normalization is taken from the peak observed hysteretic amplifi-
cation in this second resonance frequency at mudline. Ignoring the presence of low
frequency noise in the deflection spectral ratio, tower top deflection is dominated
by the first resonance frequency of the structure. This result can be substantiated
by looking at the eigenshape associated with this first resonance frequency: mode
1 in Figure 5.10. None of the equivalent elastic models seem to be able to capture
the magnitude of peak hysteretic amplification at tower top. At mudline, the lat-
eral deflection gets mainly amplified by the second resonance frequency which is
equivalently damped to an acceptable level. Including the results from Appendix A,
it is found that it is not possible to match amplification in the first mode with the
equivalent elastic models. Except for motion 2 where applied load-level is low.
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5.3.4 Discussion

Throughout this chapter, it is discussed that the dynamic behavior of the offshore
wind turbine is complex. Assessing the dominance of frequency content is a critical
design aspect, but assessing dynamic behavior of a structure against the stochas-
tic nature of seismic input is an ambiguous process to begin with. Opposed to the
nonlinear hysteretic model, the equivalent elastic models impose different dynamic
characteristics because of a constant stiffness (linear elastic) and zero stiffness upon
unloading (nonlinear elastic). The following observations made in this chapter are
discussed:

It is found that the influence of higher bending modes are of utmost importance.
In general, the structural response is mostly characterized by its second bending
mode under the three considered seismic seeds. However, the third mode governs
the bending moment response at tower top and the first mode governs the lateral
deflection at tower top.

The application of equivalent dashpots in parallel with elastic springs seems to
most effectively damp amplification around higher resonance frequencies of the
structure. Looking at the normalized modeshapes of the structure in Figure 5.10,
the soil-springs extend the most for higher bending modes and only a little for mode
1. Because of this, it is found to be difficult to match the amplification at tower top
lateral deflection. This observation seems consistent throughout the three different
input motions.

The time domain results have shown that it is complicated to capture the peak
bending moments and peak deflection along the total structure. The dynamic am-
plification supporting the associated time histories has shown insight to why the
match is so extremely disproportional at tower top deflection. The lateral deflection
at tower top is characterized mostly by the first resonance frequency, and the elastic
equivalently damped models have shown that converging to the dynamic amplifica-
tion associated with this first resonance frequency is not possible. Only amplification
of higher bending modes are effectively reduced to that of the hysteretic response.
The response to motion 2 provides good agreement in terms of lateral deflection
amplification at tower top however, permanent plastic displacements are negligible.

Permanent displacements have noticeable effect on the performance of the equiv-
alently damped elastic models because this typical characteristic of hysteresis is not
captured during elasticity. Large permanent displacements relative to the observed
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peak value are found in the response to motion 1 causing a large mismatch in peak
tower top deflection: Figures A.5 and A.6.

During linear analysis, the complete stiffness matrix is simplified to act as a con-
stant: a strict simplification that already alters the dynamic response. Overall, this
has its effect on the performance compared to that of the nonlinear elastic model,
where response results are underestimated in combination with equivalent damping.
Motion 1 with larger plasticity compared to the response to the other two motions
provides good agreement in the peak values using equivalently damped linear elastic
springs. Permanent displacements are present but are relatively small compared to
the peak values.

On the topic of the timeseries’ results in Appendix A, it is observed that the equiv-
alently damped models converge to the hysteretic response for all load-cycles at both
mudline and tower top. This observation is a sign that looking beyond the ultimate
limit state, an equivalently damped model yields potential in the fatigue limit state
(FLS). To substantiate this, (normalized) cumulative response at mudline is visual-
ized in Figure 5.16. Clearly, the equivalently damped models provide better agree-
ment than the non-damped results and almost exactly follow the hysteretic response
shape. The cumulative result computed with linearized stiffness does overestimate
the amount of damping related to the bending moment response, however.

The discretization steps applied in this study to assess the offshore wind turbine
structural response against the earthquake signals are far from reality. In real-time
dynamic behavior bending modes would be highly influenced by the operational
condition (either idling or fully operational), coupling of lateral and vertical modes,
blade modes, and coupling of different lateral directions. Especially bending modes
of the blades seem to have significant influence on the total response, but mostly at
tower top [35], leaving the interpretation of the results found throughout this work
and their representation of reality highly open for debate. This discrepency could
lead to unrealistic inertial force distribution of the structure. The blades could even
be the driving design factor [35], highlighting the actual importance of including
such additional structural properties in the discretization. As stated by [29], the soil
hysteretic damping contribution may vary over operational conditions and loading
direction. Regarding the statement above, in realistic situations one must consider
each of the loading-directions and operational conditions to conclude the peak criti-
cal loads.
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5.3.5 Relation to Recommended Practice

Local Approach

Results in this chapter were limited to the application of back-calculated dashpot
coefficients c.q.. However, in relation to practice where the amount of damping to
be applied is generally expressed in % of critical damping [12], the time-domain
equivalently-damped linear elastic models to motions 1, 2, and 3 under application
of back-calculated (., (Figures 5.8 (a), (c), (e)) are explored in Appendix B. The lo-
cal dashpot coefficients are found by adopting stiffness proportional damping, with
stiffness equal to the linearized soil-spring stiffness and frequency equal to the dom-
inant frequency of the applied signal at bedrock. Results in Figure 5.17 show an
approach closely related to that as described by recommended practice is capable of
providing sensible results in terms of peak bending moment response. For a more
extensive description and comparison of c.q. With (.4 is referred to Appendix B.
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Figure 5.17: Peak bending moment response
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Global Approach

Additionally, recommended practice [12] prescribes the application of the soil ma-
terial damping contribution on a global scale where logarithmic decrement damp-
ing is used. An amount of critical damping ( is fit onto the general solution of
free-vibration decay presented in equation 2.5. Tsouvalas et al. [47] claims that
in earthquake engineering practice, the first mode is always one of the two modes
chosen and the latter one being the second mode or a higher order one. The time-
domain damping identification strategy is applied to indicate the damping ratio to
the first and second bending mode in a procedure fully described in Appendix C. A
displacement-dependent modal damping is found for the first two bending modes of
the PySimplel spring supported structure visualized in Figure 5.18.
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Figure 5.18: PySimplel logarithmic decrement to bending mode 1 & 2

Using Rayleigh damping, a damping matrix as proportion to the mass and stiff-
ness of the structure is then identified by the two vibration modes: equation 5.2.
¢(w) needs always to be considered to guarantee that damping is in fact positive and
reasonable. Following observed mudline displacements at motion 1 (Figure 5.11),
values for (; and (; are found using Figure 5.18 (b) and applied in equation 5.2.
The modal damping ratio is visualized over frequency in Figure 5.19 using equation
5.5. While the amount of damping follows ¢; and (s, higher bending modes than the
second are disproportionally damped in this specific case. One must therefore care-
fully assess which modes to consider which are usually the bending modes expected
to participate the most.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

Soil-structure interaction has shown to be a very complex process. Regarding the as-
sociated complexities, reasonable accuracy is achievable using a full nonlinear three-
dimensional Finite Element model. Such modelling is not only computationally de-
manding, but also lacks convenience due to many modelling considerations. On
that note, it is common practice to simplify the soil continuum into one-dimensional
springs connected to the foundation. These foundation springs can vary in type:
from linear elastic to nonlinear hysteretic. Soils exhibit hysteresis during seismic
loading. Such hysteresis provides damping: the dissipation of energy. This damping
has therefore positive contribution to the dynamic response, as it limits the response
amplitude. The inclusion of nonlinear hysteresis implies computational demand:
each of the nonlinear unloading-reloading cycles has to be simulated separately. To
do so, the nonlinear spring stiffness must be updated each timestep. In addition,
general consensus is yet to be reached for sets of unloading-reloading rules in the
simulation accurate seismic soil-monopile interaction. Practice therefore prefers the
application of soil damping in an equivalent way, either local or global. For this
reason, the main objective of this research is:

How to establish an engineering method that assesses soil material damping dur-
ing seismic motions in the large-strain regime and integrate this into an equivalently
damped dynamic offshore wind turbine model?
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6.1.1 Review of the Research Questions

* Industry typically represents the soil-monopile interaction mechanism by one-
dimensional depth-dependent soil reaction curves. When the structure is sub-
jected to a seismic event, the soil-structure interaction mechanism is charac-
terized by substantially more components rather than merely a description
of static lateral resistance. Realistically, hysteresis must be accounted for un-
der the presence of dynamic loading. Measurement and numerical data re-
lated to offshore wind turbines indicates the importance of additional rate
effects, ratcheting, gapping, stiffness degradation, and strength deterioration
[4, 7, 9, 30]. Soil material damping is typically characterized by the area
enclosed by these unloading-reloading paths. For an accurate representation
of soil material damping, accurate unloading-reloading rules are therefore of
paramount importance. However, general consensus is yet to be reached for
correct unloading-reloading rules and thus an accurate representation of soil
material damping.

* A simplified contribution of soil material damping is applied either in local
or global fashion. To account for soil material damping on a global level,
logarithmic decrement damping is typically used based on experimental and
numerical measurement data. To account for soil material damping on a lo-
cal level, equivalent damping curves (lateral deflection versus % of critical
damping, ¢) are constructed under prescription of [12] and applied in parallel
with the linearized soil stiffness. These curves are typically constructed using
Masing rules which provide an unrealistically large amount of damping under
large soil-strains compared to measurement data (60% versus 20-30%). These
curves may therefore be effectively reduced under provision of [36, 37].

* To gain insight in the soil material damping mechanism during seismic mo-
tions, the amount of energy that is being dissipated is captured on a local
scale. The equation that describes the amount of equivalent damping on a lo-
cal level by recommended practice (equation 2.9) holds little reliability when
applied to stochastic, non-symmetrical load-paths. To incorporate the effects
of permanent hysteretic displacements in finding the local energy dissipation,
a method is employed that assesses each loading-cycle separately. The amount
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of equivalent damping is then calculated based on the amount of energy dissi-
pation by an equivalent viscous damper on single-degree of freedom scale.

* When omitting hysteresis and the soil-structure interaction mechanism is mod-
elled in an equivalent elastic procedure, the offshore wind turbine seismic re-
sponse imposes generally different dynamic characteristics. In the hysteretic
PySimplel spring element adopted in this study (initial) stiffness is maintained
upon unloading-reloading. During nonlinear but elastic modelling, the stiff-
ness at this instance is zero. When adopting equivalent linear elastic springs,
the stiffness is constant. Therefore, conclusions on the explored methods are
presented hereafter in 6.1.3.

6.1.2 Conclusions on the Method

* An equivalent elastic strategy is not able to simulate the effect of permanent
displacement which is a typical effect of hysteresis. Therefore, it is not pos-
sible to perfectly match time-domain response in the presence of relatively
large (compared to the observed peak value) permanent displacements. How-
ever, results on a single-degree of freedom scale (4.3.3 and 4.4) show that
frequency-domain amplification is accurately captured.

* Based on the assumptions related in derivation of the ”classical” equation of
Ceqe: €quation 2.9, it does not always hold in combination with arbitrary elas-
tic systems and arbitrary forcing input. When the forcing frequency is larger
than the natural frequency of the system, the amount of damping gets overes-
timated and vice-versa. In combination with an elastic but nonlinear system,
the equation underestimates the recoverable strain energy when taken as that
of an equivalent linear spring which subsequently overestimates the damping.

* The application of a single dashpot coefficient c.q.: equation 4.13, derived by
setting the energy dissipation of hysteresis equal to that of a viscous damper,
has proven to provide a good and conservative match of steady-state displace-
ment response under a single harmonic force for both nonlinear and linear
equivalently damped elastic models compared with the employed hysteretic
spring element (PySimplel) on a single-degree of freedom scale. This is veri-
fied for both hard-coded sets of sand and clay. The latter is subjected to pinch-
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ing, physically representing soil-pile separation (gapping) hence verifying that
the adopted method is not limited to Masing type hysteresis only.

The employed method approximates the amount of equivalent soil hysteretic
damping on local spring level in a multi-degree of freedom offshore wind tur-
bine model where the response of the nodes is coupled. It is therefore not
possible to match the amplification of all bending modes at the same time with
a local equivalent soil damping strategy. Frequency-domain results (Figures
5.14, 5.15, and A.7 - A.9) show that both equivalently damped elastic models
(linear and nonlinear) effectively damp the amplification in higher bending
modes. More specifically, amplification around the second and third reso-
nance frequency. Amplification around the first resonance frequency is not
successfully captured using equivalent elastic models and therefore, tower top
deflection is not accurately approximated. The mismatch is larger when per-
manent plastic displacements are substantial, mostly observed in the response
to motion 3 where tower top deflection is significantly underestimated for both
elastic models.

6.1.3 Conclusions on the Equivalently Damped OWT

* Good and conservative agreement is found using equivalent nonlinear elas-

tic modelling for observed time-domain peak deflection and bending moment
along the total structure when subjected to single harmonic loading. However,
during such load-case, permanent displacements are typically negligible and
hysteretic loops remain fairly symmetric (Figure 5.7 (a)).

The time-domain response to the different seismic motions considered in this
research shows that equivalent nonlinear elastic soil springs with the inclusion
of local equivalent viscous dashpots (constant coefficients obtained using equa-
tion 4.19) consistently provide effective and conservative results in terms of
peak time-domain relative displacement/spring extension along the embedded
monopile shaft. Over the course of the three different motions the peak time-
domain bending moment response and lateral deflection is therefore captured
with reasonable agreement. Equivalent linear elastic springs in combination
with local equivalent viscous dashpots consistently underestimates the peak
time-domain relative displacement. A strategy with equivalent linear elastic
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springs therefore mostly underestimates the peak time-domain response.

* Asmentioned in 6.1.2, permanent displacements are not simulated using equiv-
alent elastic strategies. Therefore, frequency-domain response provides better
insight. Despite not able to accurately capture the peak time-domain response,
bending moment and lateral deflection amplification at mudline and bend-
ing moment amplification at tower top are reasonably captured for both linear
elastic and nonlinear elastic models over the course of the three input motions.
An equivalent local damping strategy effectively damps amplification around
the second and third resonance frequency of the structure. Next to a shift of
resonance frequency in the linearized model, amplification is more effectively
damped in the linear model. Linearization already reduces the peak response
in both time- and frequency-domain. The adopted local strategy is not able to
converge towards hysteretic tower top deflection which amplification is signif-
icantly dominated by the first resonance frequency.

* According the cumulative time-domain response computed at mudline, equiv-
alent elastic modelling shows potential in the fatigue limit state. A constant
identified equivalent damper coefficient per soil spring is capable of closely
converging to the total hysteretic cumulative deflection at mudline for both
equivalent elastic nonlinear and linear elastic models. Performance differs
for both elastic models in the cumulative mudline bending moment response
where the response gets underestimated using linear elastic springs in parallel
with viscous dashpots.

* Both equivalent elastic strategies in combination with equivalent hysteretic
damping provide sensible results when compared to a reference hysteretic sup-
ported model subjected to seismic excitations. In both strategies, the dynamics
of the structure are mostly characterized by the second and third bending mode
which get effectively damped to a comparable level between the two elastic
models. Given that nonlinear time-domain analyses are computationally ex-
pensive and the response is comparable between both equivalent models, an
equivalently damped strategy shows great potential to be used in support of
linearized frequency-domain analyses. Results in this research show and con-
clude that given the assumptions made, a locally equivalently damped elastic
strategy is capable of accurately capturing the damping originating from the
hysteretic soil-pile interaction mechanism during seismic excitations in the sec-
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ond and third bending mode.

* Given the computed time-domain and frequency-domain response, a local
equivalent damping strategy is capable of reasonably capture the total foun-
dation deflection and bending moment response, typically characterized by
higher bending modes.

* The local approach is not limited to the application of c.4. based on the true
hysteretic velocity response, equation 4.19. Local dashpot coefficients derived
using equivalent stiffness proportional damping (equation B.1) in parallel with
linear elastic springs with % of critical damping derived according equation
4.18 show reasonable agreement in time-domain and frequency-domain re-
sponse. Hence, it is verified that the application of equivalent linear analysis
in support of a set of depth-dependent local modulus reduction curves and
equivalent damping curves, a solution strategy as prescribed by recommended
practice [12], can be an effective solution strategy.

6.2 Recommendations

The topic of equivalent (hysteretic) soil damping is full of uncertainties because of
the complexity regarding the soil-structure interaction mechanism. This research
only contributes partly in increasing our understanding in soil-monopile interaction.
Recommendations for further work and topics that require further investigation are
classified in two parts: a review of the ways to improve the method addressed in this
thesis and points that are not considered in this work but could be important to look
into. Recommendations regarding the method adopted in this study are:

* The throughout this thesis developed and adopted algorithm thrives on the
core assumption that each of the subsequent unloading-reloading cycles are
inverted replicas of each other. An assumption which is consistent with Mas-
ing principle, described in 2.1.1. Furthermore, the algorithm assumes that the
integral of velocity squared is equal for both the true cycle and the hypothetical
cycle so that the numerator and denominator are scaled by the same factor:
information of each loading cycle is therefore obtained separately. For further
research it is recommended to include information of the subsequent loading
cycle in derivation of c.4. To do so, focus on finding an innovative method
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that closes an hypothetical loop based on related unloading-reloading rules.

* By using % of critical: (., instead of the application of c.4., to keep close
relation towards recommended practice [12], it is recommended for further
research to reduce the amount of critical damping towards realistic values of
soil hysteretic damping as found in measurement data using reduction factors
prescribed by [37, 36].

* The algorithm in its current form identifies the amount of equivalent damping
at the timestep where the relative displacement / spring extension is largest.
This does not necessarily imply that the related load-path provides the largest
amount of damping as seen in Figure 5.8 (d). For further research it is rec-
ommended to stick to a formulation in % of critical damping as this is widely
adopted throughout research and to compute the amount of (., from an hys-
teretic timeseries it is recommended to use the timestep where the observed
critical damping ( is largest.

Points that are not considered in this research and are potentially interesting
further research possibilities are:

* Application of dashpot coefficients in this study are *tuned’ on local level: us-
ing local hysteretic spring response. Therefore, matching modal amplification
(which is global) is not possible for every mode of excitation simultaneously.
Matching of the damping on a global level is normally done in the modal do-
main: per mode of vibration. The turbine manufacturing industry is no ex-
ception to this where logarithmic decrement damping is frequently used. To
extend gained knowledge in this research, a next research step should be made
to translate such equivalent hysteretic damping per mode of vibration. In 5.3.5
and Appendix C a first attempt is made to find logarithmic-decrement damping
for the first two bending modes. Versteijlen et al. [50] has shown that damp-
ing measurement in the frequency-domain by adopting the Q-factor (quality
factor) method shows significant potential. It is a rather fast and accurate
technique which allows identification of damping of multiple frequencies in a
signal, as opposed to the time-domain logarithmic-decrement method.

* OpenSees is open source which makes it possible to alter the material object
and its constitutive behaviour. Following the critical review about the PySim-
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plel material object (after Boulanger et al. [5]) used in this study, which relies
on hard-coded parameters, it is recommended for further practice to rewrite
the source code and to specify more accurate (for instance calibrated against
3D FE or following measurement data) backbone p-y curves and innovative
unloading-reloading rules to strive for accurate values of soil damping in rela-
tion towards measurement data.

It is recommended for further research to validate if the current adopted method
holds for different soil-profiles, input motions, structural characteristics, and
unloading-reloading rules in a similar procedure as presented in this study to
act as a stepping stone towards clear and detailed guidelines in the application
of equivalent soil hysteretic damping.

In addition to the simulation of realistic soil-pile interaction and structural re-
sponse: a logical step to take for further research would be the exploration
of pore-pressure effects on the soil hysteretic damping mechanism. Previous
research agrees that these effects are of utmost importance regarding seismic
soil-pile interaction [53]. Additionally, it is recommended to include the dy-
namic effects of the rotor nacelle assembly and blades to explore the effects of
operational state on the hysteretic soil damping mechanism and contribution
which may vary [29].

Lastly, the algorithm has proven its worth in identifying the amount of en-
ergy that is being dissipated in the soil-monopile interaction mechanism. A
potential very interesting research possibility lies in the identification of soil-
structure interaction components for offshore wind turbine structures sub-
jected to seismic excitations. An interesting step for further research would
therefore be to firstly, identify if the algorithm is capable to be applied di-
rectly in field measurement data and secondly, used to identify the amount
of equivalent viscous damping present in the soil-monopile interaction mecha-
nism directly from this measurement data.



Appendix A

Additional Results

A.1 Additional Time-Domain Results

Additional time-domain time-history results are presented in Figures A.1, A.2, A.3,
A4, A5, A.6 to support the peak time-domain results along the total structure height
in 5.3.2. Despite not always being able to converge towards the peak response (of in-
terest when conducting analyses in the ultimate limit state), overall good agreement
is found for the equivalently damped elastic models throughout the total observed
timeseries. All individual load-cycles are reduced to a level close to that of the hys-
teretic response. Except for the lateral deflections at tower top where the response
to motion 1 and 3 either gets significantly amplified (motion 1), or damped (motion
3). This result is also visible in the frequency-domain results presented in A.2. Be-
cause load-level from motion 2 is relatively low, permanent plastified displacements
remain low and lateral deflection at tower top is captured to reasonable accuracy.
It is clearly visible that the response to motion 3 provides plastified permanent dis-
placements providing the mismatches in Figure 5.13.
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Figure A.1: Equivalently damped nonlinear elastic model time-history to motion 1
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Figure A.2: Equivalently damped linear elastic model time-history to motion 1
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Figure A.3: Equivalently damped nonlinear elastic model time-history to motion 2
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Figure A.4: Equivalently damped linear elastic model time-history to motion 2
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Figure A.6: Equivalently damped linear elastic model time-history to motion 3
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A.2 Additional Frequency-Domain Results

The (normalized to the hysteretic response) Fourier transform of the response on
linear scale focused up until the first three bending modes is presented in Figures
A7, A8, and A.9. Throughout the plots, using vertical dotted lines the first few
identified bending modes of the reference linear elastic secant stiffness model are
indicated (Table 5.2). Here, higher bending modes are significantly underestimated
for motion 1 compared to the nonlinear models (amplification peak occurs after
vertical dotted lines). The second amplification peak of these nonlinear models con-
sistently occurs after the vertical dotted line. Considering the time-history response
of the soil-pile interaction springs one can observe that the response for motion 1
is significantly more influenced by plasticity (Figure 5.9) compared to that of the
two other motions. Taking the simplification of a linear (initial) stiffness in com-
puting the eigenproperties of the dynamic system into account, strong plasticity and
a strong subsequent degradation in stiffness will lead to stronger deviations in the
true dynamic response compared to that of the initial system and cause a shift in
resonance frequency. One could say that the (nonlinear) resonance frequency is
dependent on the load level.

The bending moment response of the two points of interest is mostly influenced
by the second bending mode of the structure for both of the considered points of in-
terest. However, the third bending mode seems to get significantly amplified at tower
top and, governing the response for motions 1 and 3. The non-damped models (both
linear and nonlinear) all provide larger peak bending moment amplification than the
reference models. Except for tower top bending moments due to motion 1. Here the
non-damped nonlinear elastic model already underestimates the peak bending mo-
ment response close to the third resonance frequency. Apart from this mismatch, the
equivalently damped models overall provides a good match in terms of bending mo-
ment amplification compared to the hysteretic model. In relation to the deflection
spectra the following is observed. Naturally, at tower top amplification is largest (as
found in 5.10) and regarding the amplification response at mudline, perfect agree-
ment is found. For the amplification response at tower top, only the second bending
mode gets converged towards the hysteretic response. The tower top deflection gets
significantly amplified during motion 1, but during motion 3 this happens exactly
the other way around: the amplification in the first mode gets significantly reduced.
The amplification results of the equivalent linear elastic models show that motion
1 and motion 3 provide a too large reduction in amplification in terms of bending
moments at both mudline and tower top. In terms of deflection, it is found that the
amplification at tower top is underestimated. This observation is the only observa-
tion of significance which is on the contrary with the equivalently damped nonlinear
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model. Except for the bending moment response to motion 2 where the linear elastic
equivalently damped model seems to underestimate the response only slightly. All
models without plasticity, are not able to simulate the amount of amplification at
tower top around the first resonance frequency. To motion 3, this effect is significant
which was already visible during the time-domain results.
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Figure A.8: Equivalently damped models spectra to motion 2
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Figure A.9: Equivalently damped models spectra to motion 3



Appendix B

Equivalent Local Hysteretic
Damping: the Practical
Approach

For reference purposes, the recommended practice under prescription of DNV [12]
for application of foundation damping is adopted. As mentioned in 2.4.4, the soil
material damping contribution may be applied in percentage of critical damping.
Throughout the seismic response the amount of critical damping to be applied per
soil-pile interaction spring (.4 is already visualized: Figures 5.8. Gazetas et al. [17]
describes the horizontal response of piles in layered soils presenting an approach on
derivation of both material (hysteretic) dashpot coefficients and radiation dashpot
coefficients. The equivalent dashpot coefficients are related to the soil stiffness, in
mechanical formulation represented by the soil-pile interaction springs. An equiva-
lent damper coefficient ¢ is then related to the percentage of critical damping ¢ by
adopting stiffness proportional damping:

c= ng (B.1)
w

The adoption of a damping as described using equation B.1 is in fact a modal
damping where the amount of critical damping varies per mode of vibration in os-
cillatory systems: (; and w;. Despite [17] presents the application of equivalent
hysteretic damping using a single dashpot at pile head, recommended practice [12]

prescribes the application of equivalent dashpots in parallel with the lateral soil-pile
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interaction springs. The throughout this research developed and adopted algorithm
indicates the percentage of critical damping per embedded hysteretic soil-pile inter-
action element over the course of a total timeseries. Gazetas et al. [17] indicates
that the fundamental frequency of the soil column may be applied in B.1 however,
in derivation of equation 4.10 forcing frequency is already assumed equal to the nat-
ural frequency. On that note, results presented hereafter are presented in adoption
of the dominant frequency of the applied signal at bedrock.
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—925 —25 A —25 1
—30 4 —30 A —30 1
—35 Ceqe —35 —35 1
B R B Ceqe
T T T T T
0 5000 0 10000 0 5000
c [kNs/m] ¢ [kNs/m] c [kNs/m]
(a) Motion 1 (b) Motion 2 (c) Motion 3

Figure B.1: Equivalent dashpot coefficients

Results in Figure B.1 shows that the computed dashpot coefficients using equa-
tion B.1 differ quite substantially over the course of the three different input motions
compared to the results according equation 4.13 because the amount of damping to
consider is substantially determined by the dominant forcing frequency of the signal
applied at bedrock. Comparing Figure B.1 with observations made in Figures 5.11,
5.12, and 5.13 one could argue that the adoption of the practical approach where
equivalent damping coefficients are function of input motion soil stiffness yields
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more desirable results. Equivalent damping in motion 1 is still approximated with
similar magnitude, but the equivalent damping to motion 2 and motion 3 is now ap-
proximated to be larger and smaller, respectively. In comparison of the observations
made earlier in the time-domain results approximated using equation 4.13, better
agreement is found in terms of time-domain peak bending moment response along
the total structure (Figure B.2), but difference in bending moment amplification at
mudline and tower top remains limited (Figure B.3, here A indicates the observed
difference in amplification):

—
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(a) Motion 1 (b) Motion 2 (¢) Motion 3

Figure B.2: Peak bending moment response
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Appendix C

Logarithmic Decrement

In the turbine manufacturing industry, logarithmic decrement damping is frequently
used [12]. This time-domain technique is theoretically associated with the free-
vibration decay of a single degree of freedom system (2.2.1) and is in fact a linear
damping estimation technique. A value for ¢ is found under the assumption that the
vibration decays according equation 2.5. It directly follows the definition of damping
as the decrease in peak amplitude displacement response over time is measured and
is limited to one particular frequency at a time. The logarithmic decrement of the
displacement response is described by equation C.1:

Here, n depicts the number of peaks, Aq the initial amplitude, and A,, the ampli-
tude at the last measured peak. Subsequently, an adequate damping ratio is found
from the value of logarithmic decrement, equation C.2:

(= —t €.

2
1+ (%)

The identification of damping values is not always as straightforward. The damp-
ing ratio is strongly dependent on the logarithmic decrement which in turn is strongly
dependent on the amplitude of the free vibration response peaks. Higher initial am-
plitude possibly results in stronger decrement of the peaks over time. Conclusions
must therefore be made with care as the values are strongly dependent on the load-
ing environment. Additionally, in application of a multi degree of freedom system
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results yield little reliability since nodal response is subjected to excitation in multi-
ple frequencies. Even more so when response is influenced by the nonlinear nature
of springs. An attempt is made to apply the same theory to find the % of critical
damping for the first two modes of vibration, ¢; and (, of the total structure for
the PySimplel supported hysteretic spring model in an approach which is divergent
from the so-called 'rotor-stop’ test. To measure the amount of logarithmic decre-
ment in the first bending mode of the structure, the structure is excited at tower top
(amplification at tower top is largest in the first bending mode, Figures 5.10) with a
single-harmonic force with forcing frequency equal to the first natural frequency of
the total structure. After a certain while the load is removed, and subsequent decre-
ment of displacement peaks is measured. The same is done for the second bending
mode, which is at a certain height around the ”belly” of the structure: ~ 75m. At
tower top, amplification is strongly dominated around the first natural frequency of
the total structure. However, at the belly of the structure, the response amplifies in
both the first but predominantly the second resonance frequency. The logarithmic-
decrement method is limited to a single frequency so under adoption of a high-pass
filter amplification below the second bending mode is filtered.

The logarithmic-decrement method fits” the amount of damping ¢ into a (in
amplitude) decreasing timeseries. By taking the mean over all the observed peaks
it is found that this fit is not always perfect. A good fit is possible providing the
associated displacement level at which the load is removed is still at an acceptable
level and a limited amount of peaks is considered. The decrement test is taken
and measured over a limited number of 7 peaks and repeated for multiple forcing
amplitudes applied at the points of interest. The fitted decrement is related to the
observed maximum displacement at mudline as reference value. The maximum
obtained time-domain result to the first and second bending mode are presented in
Figure C.1.

The total set of observed decay and damping using equations C.1 and C.2 is
then visualized in Figure C.2. As such, a displacement-dependent equivalent modal
damping is found for the first two bending modes.
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