
Efficient Option
Pricing Under Rough

Volatility Models
by

Pietro Pezzoli Frigerio

Faculty: Applied Mathematics, TU Delft
First Supervisor: Kristin Kirchner
Second Supervisor: Antonis Papapantoleon

Abstract

Rough volatility models have become a prominent tool in quantitative finance due to their ability to cap-
ture the rough nature of financial time series. However, these models typically have a non-Markovian
structure, and this poses significant computational challenges. Existing methods for approximating
these models often involve either complex quadrature techniques or require optimization algorithms op-
erating in high-dimensional spaces, making them difficult and computationally intensive to implement
in practice. This work introduces a novel and highly efficient quadrature rule for a Markovian approx-
imation of rough volatility models, along with its theoretical error bounds. We verify the error bounds
through a detailed error analysis and conduct several experiments on option pricing, demonstrating
that the proposed method outperforms other state-of-the-art methodologies in terms of efficiency and
accuracy across a range of roughness parameters. A further advantage of the approach is its ease to
implement it in practice.

i

Contents

Abstract i

Nomenclature iii

1 Introduction 1

2 Volatility 3
2.1 Implied Volatility . 3

2.1.1 At The Money Skew . 6
2.1.2 Volatility Smile, Leverage Effect and Zumbach Effect 6

3 Rough Volatility Models 8
3.1 rBergomi . 10
3.2 rHeston . 13
3.3 Truncated Brownian Semistationary Processes . 14

4 Simulating Rough Volatility 16
4.1 Exact Schemes . 16
4.2 Hybrid Scheme . 19

5 Markovian Approximation 22
5.1 Construction of the approximation . 22
5.2 Strong And Weak Error Bounds . 24

5.2.1 Strong Error Bounds . 24
5.2.2 Weak Error under Rough Heston . 27

5.3 Nodes and Weights . 29
5.3.1 Gaussian Quadrature Rule . 29
5.3.2 Superpolynomial Rate . 30
5.3.3 Improvements on the rate of convergence . 33
5.3.4 Optimal Algorithms . 34

6 Sinc: How it works 37
6.1 Preliminaries . 37
6.2 SINC Quadrature . 41
6.3 Computation of the L1 error . 43
6.4 Computation of the Lp error . 45

7 Numerics 50
7.1 Algorithms . 50

7.1.1 Node in Zero . 53
7.2 Empirical Numerical Convergence . 55
7.3 Comparison with state of the art . 57

7.3.1 Largest node and computational time . 57
7.3.2 Convergence rate comparison . 59
7.3.3 Option Pricing under Rough Heston . 63

8 Conclusions and future work 70

9 Aknowledgments 71

References 72

ii

Nomenclature

Frequently Used Notation

Symbol Definition

Γ Gamma function
h Step-size
H Hurst parameter
Lp([0, T]) p-integrable functions over [0,T]
M Truncation level on the half negative real line
N Truncation level on the half positive real line
K Total number of nodes in a given quadrature rule
N Set of natural numbers, zero included
P Physical Measure
Q Martingale Measure
R Set of real numbers
R+ Half positive real line, zero excluded
R− Half negative real line, zero excluded
T Final time
W Brownian Motion
|·| Absolute value
∥·∥ Norm
⌈·⌉ Ceil function

iii

1
Introduction

In Financial Mathematics, volatility refers to the degree of variation of the price of a certain financial
asset or instrument. It is a key measure for risk, that gives insight on the stability and uncertainty of
the price. Hence the modelling of volatility is of utmost importance in financial mathematics and risk
management.

The class of rough volatility models, has been introduced by Gatheral et al in [28] where for the
Rough Fractional stochastic volatility (RFSV) model was born. Modifications and of this model lead to
the Rough Bergomi model in [9]. Furthermore, generalization of the classical Heston model brought
to the Rough Heston model in [22]. All those models have something in common, that is in their
formulations appear a stochastic integral of the form:∫ T

0

g(t)dWt, g(τ) =
tH−1/2

Γ(H + 1/2)

where g is a power-law function, with a singularity in t = 0, being H ∈ (−1/2, 1/2). The result of
this stochastic integral, due to the nature of the integrand, is a process that it’s neither a martingale
nor a Markov process. This of course implies that the simulation and pricing under Rough volatility
can be extremely expensive. When it comes to pricing, the literature distinguishes two cases: one is
the class of affine forward variance models, which include also the rough Heston model.In this class,
one can make use of the characteristic function of the model, which is available modulo the resolution
of a fractional Riccati equation. Once the characteristic function of the model is available, one can
use Fourier pricing methods like [25],[16]. In the other cases, where the characteristic function is not
available and one needs to price in a different manner: Monte Carlo simulations [41],[33], Quasi Monte
carlo [5], Weak Type schemes [29],[29], PDE approaches [4]. Also, a very popular method is the Hybrid
Scheme [10] and its turbocharged version for the Rough Bergomi model [37].

In this work, we will focus on approximating these models using a Markovian approximation intro-
duced first by Abi Jaber and El Euch in [1]. Further development of this approach have been [7],[8].
This method employs a quadrature rule to approximate the rough kernel. This type of approximations
have the advantage of being extremely flexible, being useful both for the approximation of models like
the Rough Heston and the Rough Bergomi model.

In this paper, we are going first to introduce the concept of volatility in mathematical finance, show-
ing what type of characteristics we want such model to satisfy. After that we give a review for two
different models: the Rough Heston and the Rough Bergomi. Then we present how one can construct
the Markovian Approximation of such models. Finally, in chapter 6 and 7 we begin our contribution.
Specifically, in our work we use the SINC quadrature. By transforming the rough kernel into an integral
over the entire real line, we can then apply the simplest quadrature rule for integrals: the trapezoidal
rule. Themain advantage of this method is that it is extremely easy to implement without relying on com-
plex polynomial bases, as required in Gaussian quadrature and at the same time is able to outperform
the most recent advancements in the literature. Additionally, this approach maintains the exponential
decay of the error as the number of quadrature points increases and in fact gives a better approximation
than the state of the art [8] when the Hurst parameter H ∈ (−0.5, 0.2).

1

2

The structure of this work is as follows:
In Chapter 2, our focus will be on introducing fundamental concepts of volatility modeling and its

critical importance in financial applications, especially in pricing contexts. The chapter aims to empha-
size the essential properties that a volatility model must satisfy to effectively capture market dynamics
and facilitate accurate pricing.

In Chapter 3, we will introduce two different rough volatility models: the Rough Bergomi model and
the Rough Heston model. Additionally, we will introduce Brownian Semi-Stationary processes and
Truncated Brownian Semi-Stationary processes. This chapter will include a theoretical discussion on
how these models have been introduced in the literature, along with their advantages and disadvan-
tages.

In Chapter 4, we will present various methods for simulating rough volatility models. Specifically,
we will introduce two different types of exact schemes and the Hybrid scheme, which remains the state-
of-the-art method for simulating Truncated Brownian Semistationary Processes. This chapter will also
examine the limitations of each of these methods.

In Chapter 5, we will introduce the construction of a Markovian approximation for rough volatility
models. We will explain the underlying concept and specifically show how to bound the error, both
weak and strong, using the Lp error between the fractional kernel and its approximation through a
quadrature rule. Additionally, we will review various quadrature rules from the literature, with special
emphasis on those that exhibit exponential convergence with respect to the total number of nodes used

In Chapter 6, that is the start of our contribution, we will delve into the theoretical foundation of our
work, focusing on providing error bounds for the trapezoidal rule based on the total number of nodes.
Specifically, we will derive bounds for the Lp([0, T]) errors, where p ∈ 1, 2.

Moving to Chapter 7, we will conduct numerical experiments to validate the findings from Chapter 6.
First, we are going to present two different algorithms that we have developed for the SINC quadrature.
One will be an algorithm that optimally chooses the step size for final times in the range T > 0.1, while
the second will choose the best step size for T < 0.1. Inspired by the approach outlined in [8], our em-
phasis will be on comparing theoretical and empirical convergence rates of the errors. Furthermore, we
will compare different quadrature rules against our method, considering factors such as computational
time, node distribution, and convergence rates. To complete our study, we will present various numer-
ical experiments within financial applications. These experiments will involve computing option prices
and constructing implied volatility smiles and surfaces under the Rough Heston model, considering
both European-style and Asian geometric options.

2
Volatility

In this chapter, we present the core concept Volatility in financial mathematics and the so-called stylised
facts. Our goal is to present the phenomena that characterise Volatility and in the next chapter, to see
how rough volatility models propose a novel approach to capture these phenomena with high accuracy.
Finance is a matter of balance between returns and risk. One of the benchmark for the latter is volatility.
Volatility in itself, however, can not be observed in the same way returns can be observed. So one has
to find a way to derive a proxy for this quantity. Having in mind that the price of an asset is always
positive, the standard practice is to see its returns as an exponential of some random variable, say for
example:

St/St−1 = eξ

with ξ ∼ N(0, σ2) So one can define an estimator of the volatility as√√√√ 1

T

T∑
t=1

(
log

St

St−1

)2

Of course, if one were to compute this estimate for the volatility of any asset present on the market
on a given time period and then recompute it on a different period one would most likely get different
results. In fact, it seems logical and also realistic to assume that volatility is a process that is time
varying. Despite these initial observations, it was in 1973 when Black and Scholes [38] revolutionised
finance with a closed form option pricing formula that is independent of any utility function or subjective
preference.

One of Black and Scholes formula assumptions is that volatility was assumed to be constant, im-
plying then that the distribution of returns is log-normal. However, in the 1987 market crash known as
Black Monday, where the SP500 futures price fell 29%made it clear that this assumption is not realistic
and there was a need for a change in volatility modelling. In fact, for a log-normal distribution, a 29%
change in price in one day would be−27 standard deviation event, that happens with probability 10−160.
Such an event, that was maybe caused by something exogenous made it clear that there was a need
for a better modelling of asset’s returns and as a consequence, volatility.

Another phenomenon that appeared in the aftermath of the Black Monday market crash was the so
called Implied Volatility smile: Let us first introduce the concept of implied volatility.

2.1. Implied Volatility
In this section we are going to introduce the concept of implied volatility. First, recall [39] that a call,
respectively put option, on an underlying S, with time to expiration T and strike price K, is a contract
that allows its owner to buy or sell at time T an asset S at price K. Now, the option’s payoff can be

3

2.1. Implied Volatility 4

seen as a function of ST ,K, T and be written as:

(ST −K)
+
= max (ST −K, 0) , in case of a call option

(K − ST)
+
= max (K − ST , 0) , in case of a put option

Now, while K,T are known and fixed for every contract, the final value of the price St is of course
a random value. Usually then St is modelled as a certain Ft−adapted stochastic process living in
a filtered probability space

(
Ω,F , (Ft)t≥0 ,P

)
. Let us now introduce a nomenclature for options that

allows to understand the contract’s characteristics with respect to the price of the underlying asset. In
options trading, the terms ’out of the money’, ’in the money’, and ’at the money’ are used to describe
the relationship between the option’s strike price and the current price of the underlying asset. Here
are the definitions:

• Out of The Money (OTM): A call (put) option is out of the money if the current price of the un-
derlying asset is below (above) the option’s strike price. This means the option holder would not
benefit from exercising the option at the current asset price

• In The Money (ITM): A call (put) option is in the money if the current price of the underlying asset
is above (below) the option’s strike price. Exercising the option allows the holder to buy the asset
at a price lower (higher) than the current market price, which is advantageous.

• At The Money (ATM): (both call and put) is at the money if the current price of the underlying asset
is equal to the option’s strike price. In this scenario, exercising the option would neither result in
a profit nor a loss, excluding the premium paid for the option.

It is a known fact in financial mathematics [39] that the price at time t of a derivative such as an op-
tion, with expiration T , in a market with risk-free interest rate r > 0 can be written as the conditional
expectation of the discounted payoff function given Ft, i.e.:

Pc (t, T) := e−r(T−t)EQ

[
(ST −K)

+ |Ft

]
for a Call Option

Pp (t, T) := e−r(T−t)EQ

[
(K − ST)

+ |Ft

]
for a Put Option

where the expectation is taken using a measure Q, called equivalent martingale measure. Now, let’s
give the definition for Equivalent Martingale Measure:

Definition 2.1.1. Consider aMarket
((

Ω,F , (Ft)t∈[0,T] ,P
)
, (St)t∈[0,T] , r

)
, where

(
Ω,F , (Ft)t∈[0,T] ,P

)
a filtered measure space, (St)t∈[0,T] a stochastic process adapted to the filtration (Ft)t∈[0,T] that repre-
sent the value of the asset in the market, and let r > 01 the risk free interest rate in the market. Then
we define Q to be an Equivalent Martingale Measure (EMM) if:

• Q ∼ P, i.e.: Q is equivalent to P
• e−rtSt, i.e. the discounted asset price is a Martingale with respect to Q, so that the martingale
property reads:

EQ
[
e−rtSt|Fs

]
= e−rsSs, ∀s, t : 0 < s < t

where we remark that the expectation is taken under Q.

Remark. Usually, in financial mathematics we refer to P as in definition 2.1.1 as the Empirical or Phys-
ical measure. So P represents the probability of events based on historical data, so that for example
historical returns or volatility data is measured using the physical measure P. Also, if we would want to
predict future market data, then one would use the physical measure, instead when it comes to pricing
then one uses the Equivalent Martingale Measure.

1Usually, the interest rate is considered positive. However in the last years also this assumption has had some troubles, which
are outside the scope of our thesis.

2.1. Implied Volatility 5

For example, if we consider the Black Scholes model, one can find explicitly the equivalent martin-
gale measure. Remember that ,[39] the price process St under P follows a Geometric Brownian Motion,
with dynamics:

dSt

St
= µdt+ σdWt, µ ∈ R, σ ∈ R+

So now, apply Ito’s product rule to the discounted asset price:

d
(
e−rtSt

)
= −re−rtStdt+ e−rtd (St)

= (µ− r) e−rtStdt+ σe−rtStdWt

So that if we want the discounted asset price to be a martingale with respect to Q, we need to ”kill” the
drift by choosing µ = r i.e.:

dSt

St
= rdt+ σdWt

Under such process, applying Ito’s formula then one obtains that

St = S0 exp
((

r − σ2

2

)
t+ σWt

)
Thus, St is log-normal, and hence one can easily compute the value of a call or a put option. We will
denote as CBS := CBS (S0, T,K, r, σ) the price under Black-Scholes model of a call option expiring at
time T , at strike K with the current underlying price being S0 and with risk-free interest rate r. Notice
that CBS depends also on the parameter σ which is the only parameter that is a-priori unknown. Thus,
the following definition naturally arise:

Definition 2.1.2 (Implied Volatility). Let CMKT (PMKT) be the observed market price of a call (put)
option with maturity T , strike price K, in a market with risk-free interest rate r > 0 while the underlying
is worth S0. Then we define the Implied Volatility (IV) as the value σ̂ = σ̂

(
T, k := log K

S0

)
∈ (0,∞) for

which the Black-Scholes formula yields exactly the market price of the option, i.e.:

σ̂ : CMKT = CBS (S0, T,K, r, σ̂) , for a Call
σ̂ : PMKT = PBS (S0, T,K, r, σ̂) , for a Put

note that we will consider the implied volatility as a function of the log strike k := log K
S0
.

Note that the Implied Volatity measures the expected magnitude in the price change of the under-
lying. Also it is considered Implied, since its value depends not on historical data, but real time market
data. In general, one could define the IV in different ways, using different models rather than the more
classical Black Scholes, however here we chose to give this definition since it’s the one that we will use
throughout this work. If one takes the Black-Scholes formula and computes its derivative with respect
to the volatility, then with simple mathematics would see that it’s always positive, meaning that the BS
formula is strictly increasing. Hence the solution of the equation defining the IV has always a unique
solution. In order to compute the IV, one needs to use root-finding algorithms such as bisection or
Newton’s method since an analytic expression does not exist.
The Option Chain of an asset is the set of all the options that are quoted on the market with a specific
underlying. Those can be ordered in this way:

• Expiry
• For every expiry, by Strike price

then for a given option market one would have {CMKT (Ti,Kj)}i∈I,j∈J i.e. the set of all call prices
quoted on the market. So that if one solves the Implied Volatility equation for every maturity and strike,
one would get in the end a surface, which is called Implied Volatility surface.
Now, for a given surface, we can imagine to do cross sections: if we fix the time to maturity, then we
will have a function of the strike price and vice versa.

2.1. Implied Volatility 6

2.1.1. At The Money Skew
The ATM volatility skew has a precise mathematical definition i.e. the derivative with respect to the
log-strike price k := log K

S0
of the Implied volatility function σ̂ evaluated at zero, in formulas:

ψ (τ) =

∣∣∣∣∂σ̂ (τ, k)∂k

∣∣∣∣
k=0

Where σ̂ is the implied volatility of an option with maturity τ and log-strike k. Note that this quantity
can be extracted from call and put options prices. One can search for the best-fitting curve of the
empirical data. However, solving this problem is not as straightforward as it may seem, as discussed
in the paper from Gatheral [28]. Gatheral suggests that the best fit can be represented by a power-law
equation of the form ψ ∼ Aτ−α, where α ∈ [−0.44,−0.3] and A > 0. In fact [31] conclude that the
power law behaviour fits the data well for maturities from 1 month to a few years, while stays finite
for short maturities instead of blowing up. To the same conclusion arrives also Delemotte et Al, in the
paper [19], where they propose to represent the at the money skew as two different power laws: one
for short maturities, smaller than one or two months with exponent equal to ≈ −0.3, and for longer,
with exponent ≈ 0.49. They note that two different models, precisely a two factor Bergomi model and
a two-power-law model can be used to extrapolate the ATM skew for short maturities, however, the
two factor Bergomi yields a finite skew for T = 0 while the other model is infinite. They say that at
least for the SP500 index, this question of the explosiveness or not of the ATM skew could be hard to
disambiguate. [19] Also proposed both regime-switching models or multi factor models which have the
flexibility of decoupling long and short behaviour of ATM skew.

2.1.2. Volatility Smile, Leverage Effect and Zumbach Effect
In this section we are going to present the nomenclature for some stylised facts of volatility. Starting
from the the first, when we talk about the volatility smile, we are referring to the typical shape of the
volatility surface once we fix the expiration date. One example of such phenomenon can be seen in
figure 2.1.

Figure 2.1: Implied Volatility smile of options with underlying Bitcoin, here the current underlying price is 69.376$, snapshot
taken from [20].

The smile, comes from the fact that since the 1987 market crash, the implied volatility of out of
the money put and call options is consistently higher than the at the money options. This could be
explained economically by heuristic arguments such as that the high demand of OTM options drive up
the price, or that the fat tails of the return distribution imply a higher chance of those options getting in
the money, with a consequent higher price.
As for the Leverage Effect, we refer to the fact that returns and volatility are inversely correlated: the
name leverage was introduced by Black, from the fact that if a stock price drops in value, then the
company’s equity will diminish, while its debt remain the same, making it more ”leveraged”. This expla-
nation however, would be later discarded, and Zumbach says that downward movements in the stock
price are seen as unfavourable events, triggering sell orders, while since most of market’s partecipants
hold a long position, if the price increase makes less of an impact.

2.1. Implied Volatility 7

Lastly, when we talk about the Zumbach’s effect, we refer to the fact that pronounced price trends,
regardless of the direction, increase the volatility, in other words, this could be reformulated with saying
that past squared returns forecast future volatility better than past volatilities forecast future returns.
This could be explained via the fact that if a trend persists, then most investors would have to re-balance
their portfolio, unlike cases where the price remains in a narrow range. In a proper mathematical
definition, it has been observed that financial time series, are not statistically symmetrical when future
and past are interchanged [12]. In particular, consider σ2

t the true integrated variance of day t and let
rt be the corresponding daily return of some asset. Then, as in [24], define the statistic:

C(τ) := ⟨
(
σ2
t − ⟨σ2

t ⟩
)
r2t−τ ⟩, τ = kδ, k ∈ N (2.1)

where we denote here with ⟨·⟩ the empirical mean and with δ the length of a trading day. In words,
the statistic C describes the covariance between the current integrated variance, and the past squared
returns. With this statistic, then one can define a measure for the Time Reversal Asymmetry, defined
first in [17] as Z:

Z(τ) := C(τ)− C(−τ), τ > 0 (2.2)

It has been empirically observed, that the this measure is non-zero, see e.g. [17],[24].
So, concluding this section, we outlined all the properties that we would like our volatility model to

satisfy.

3
Rough Volatility Models

In this chapter, we aim to present various Rough Volatility models, explain their derivation, and discuss
the motivations for using them in volatility modeling.

Previously, we introduced the Black-Scholes model, which has a significant limitation: it assumes
that volatility remains constant over the life of the contract. This assumption is unrealistic, prompting the
development of alternative approaches. In particular, stochastic volatility models have been introduced,
where volatility is modeled as a random variable. These models address the shortcomings of the
constant volatility assumption in the Black-Scholes framework. Volatility then takes the form:

σ : [0, T]× Ω → R+

and can be diffusion driven by a separate Brownian Motion, possibly correlated with the Brownian
motion driving the price process. We refer to [21] for a review of different stochastic volatility models.
To give an idea of the form of this model, one could consider the following equation:

dSt =
√
σtStdWt

dσt = b (t, σt) dt+ d (t, σt) dBt

withB,W possibly correlated BrownianMotion, and b, d satisfying at least a linear growth and Lipschitsz
conditions so that existence and uniqueness of a solution is guaranteed. Also, one needs to ask the
process σt to be always positive, for a complete review of stochastic volatility models we refer to [21].
Those models lead to processes that have regularity close to the one of Brownian Motion. It is a known
fact that Brownian motion has sample paths that are almost surely α-Hölder continuous α ∈ (0, 1/2),
i.e. beingWt a Brownian motion we have that ∀α ∈ (0, 1/2) , ∃C > 0 such that ∀t, h ∈ R+

0 :

|Wt+h −Wt| ≤ Chα ∀α ∈ (0, 1/2) a.s.

However, in the statistical analysis of Gatheral et Al [28], they show that the realised variance using
high frequency data has a rougher behaviour than usual Brownian Motion. In fact they show that paths
of realised volatility are α-Hölder continuous with α < 1/2. To do this, assuming that we can have
N discrete observation of the volatility on a time-grid with mesh ∆ on [0, T] they compute for different
values of q the quantity:

m (q,∆) :=
1

N

N∑
k=1

| log (σk∆)− log
(
σ(k−1)∆

)
|q

Assuming stationarity of the volatility process and that the law of large numbers can be applied, then
this would be the empirical counterpart of the quantity:

E [| log (σk∆)− log (σ0) |q]

What they observe, is that if you plot log (m (q,∆)) as a function of log∆ the points lie on a straight

8

9

Figure 3.1: logm(q,∆) as a function of log∆ of DAX index, Figure taken by [28, Sect. 2 Pg. 9].

line, as shown in Figure 3.1, so yielding an equation of the form:

E [| log (σk∆)− log (σ0) |q] ≈ Kq∆
ζq

most noticeably, they note that ζq ≈ Hq, with H ∈ [0.02, 0.08]. This fact, has implications on the
regularity of the log-volatility process, in particular it implies that the volatility process is α−Holder
continuous with α = H.
In order to arrive to a path with such regularity, what Gatheral et Al propose in their pioneering paper
[28], is to model volatility as a process which is driven not by a classical Brownian Motion, but use a
Fractional Brownian motion with Hurst parameter equal to H ∈ (0, 1/2). Let us now define Fractional
Brownian Motion as in [9]:

Definition 3.0.1 (Mandelbrot-Van Ness Fractional Brownian Motion). [9, Pg. 890] We define as
Mandelbrot-Van Ness Fractional Brownian Motion with Hurst parameter H ∈ (0, 1) the process

ŴH
t := CH

{∫ t

−∞

dWs

(t− s)
1/2−H

−
∫ 0

−∞

dWs

(−s)1/2−H

}

CH :=

√
2HΓ (3/2−H)

Γ (H + 1/2) Γ (2− 2H)

WhereWt is Brownian Motion.

For this choice of CH we have that:

E
[
ŴH

t Ŵ
H
s

]
=

1

2

[
t2H + s2H − |t− s|2H

]
As a first and simple approach, Gatheral in [28] proposes the Rough Fractional Stochastic Volatility
(RFSV) model that has path-wise regularity similar to the one found empirically, id est of path-wise
α-Hölder continuity with α ∈ [0.02, 0.08]. The model takes the following form [28, Pg. 15]:

σt = σ0 exp (Xt)

dXt = νdŴH
t − a (Xt −m) dt

Where σ0, ν, a ∈ R+, and m ∈ R and most importantly, H ∈ (0, 1/2). Note here that Xt is in fact
a Ornstein–Uhlenbeck process that is driven by a fractional Brownian Motion instead of a classical
Brownian Motion. Xt also allows an integral representation of the following form:

Xt = ν

∫ t

−∞
e−a(t−s)dŴH

s +m (3.1)

3.1. rBergomi 10

The main idea for defining and constructing this model is the following: to try to fit the high frequency
market data that shows how the volatility behaves at low time scales like fractional Brownian Motion.
From a theoretical point of view, Gatheral proves the following proposition:

Proposition 1. [28, Prop. 3.1 Pg. 15] Let ŴH
t be fractional Brownian Motion, and Xa as in (3.1) for a

given a > 0, then one has:

lim
a→0

E

[
sup

t∈[0,T]

∣∣∣Xa
t −Xa

0 − νŴH
t

∣∣∣] = 0

this proposition shows that for a ≪ 1/T then the RFSV has a volatility that behaves like fractional
Brownian Motion. This model, has been the starting point of Rough Volatility modelling, we will see
in the next section how a slight modification of this model extends to a non-Markovian version of the
Bergomi model.

3.1. rBergomi
In this section we are going to present how Bayer in [9] starting from the ideas given in [28] arrives to a
non-Markovian version of the well known Bergomi model. First, we are going to present the classical
Bergomi model, and then, we are going to present the work of [9] where the Rough Bergomi has been
first introduced. First, the classical Bergomi model has been introduced first in [11]. The goal was to find
a model with which one could consistently price derivatives with underlying the variance. In particular
one wishes to model the forward variance curve defined as:

ξT (t) = E [VT |Ft] (3.2)

Where VT is the spot volatily at time T . It is clear that the volatility can be expressed in terms of the
forward variance as ξτ (τ) = Vτ , ∀τ > 0. In particular, Bergomi chooses the following structure for the
forward variance [11, Pg.2]:

dξT (t) = ωe−k1(T−t)dWt

where k1 ∈ R+, ω ∈ R andW is Brownian Motion. This SDE has a closed form solution of type:

ξT (t) = ξT (0) exp
(
ωe−k1(T−t)Xt −

ω2

2
e−2k1(T−t)E

[
X2

t

])
(3.3)

And the process Xt is an Orhnstein-Uhlenbeck process of the form:

Xt =

∫ t

0

e−k1(t−u)dWu

so one can also specify the joint dynamics of the underlying and the volatility (S, V) by putting:

dSt = rStdt+
√
ξt(t)StdZt

and ξt(t) as in (3.3), Zt a Brownian Motion possibly correlated with the Brownian Motion driving the
forward variance curve ξT (t) and r > 0.

Let us briefly introduce the concept of stochastic exponential, that will simplify the notation.

Definition 3.1.1. For a continuous (semi) Martingale Z, the stochastic exponential E(·) is defined as
the process given by:

E(Z)t = exp
(
Zt − Z0 − [Z,Z]0,t

)
If Z is a local martingale, then so is E(Z). Moreover, if Z is a zero mean Gaussian random variable,
that allows a representation of the form:

Zt =

∫ T

0

f(s)dWs

3.1. rBergomi 11

where f is a deterministic function andW is Brownian Motion, then the stochastic exponential of Z can
be rewritten as:

E(Z)t = exp
(
Zt −

1

2
E
[
Z2
t

])
The bottom line here, that the definition of the stochastic integral allows for a simpler representation

of the Bergomi model, in fact one can rewrite (3.3) as:

dξT (t) = ξT (0)E
(
ω

∫ t

0

e−k1(T−u)dWu

)
(3.4)

The Bergomi model that we have just presented, is called one-factor Bergomi, since there is only one
driver of the forward variance curve. This naturally leads to a generalisation of the model to n factors.
Given ωi ∈ R and ki ∈ R+, for , i = 1, . . . , n then one can define the n-factor Bergomi as in [11, Pg.4],
where the forward variance curve takes the form:

dξT (t) = ξT (0)E

(
n∑

i=1

ωi

∫ t

0

e−ki(T−u)dW i
u

)
(3.5)

Where also ρ(W i,W j) ∈ [−1, 1], the correlation parameter between the different Brownian Motion
driving the forward variance curve are chosen at will. Before moving on and presenting the Rough
Bergomi, we remark that the n-factor Bergomi model produces an At The Money volatility skew that
has approximately the form, [9, Pg.889]:

ψ(τ) ≈
n∑

i=1

ωi

kiτ

{
1− 1− e−kiτ

kiτ

}
(3.6)

this, however, as we have seen, is inconsistent with high frequency market data, that shows a power-
law dependence in τ .
Now that we have introduced the classical Bergomi model, from the one factor to the multi-factor
Bergomi, we can move on and present how the Rough Bergomi arises in a natural way by switch-
ing from the physical measure P to an equivalent martingale measure Q in the RFSV model.
As stated before, Gatheral in [28] proposes to model log-volatility under the physical measure P as a
Mandelbrot-Van Ness Fractional Brownian Motion, this means that for u > t, and for some positive
parameter ν > 0, denoting the square root of the volatility with σ then one has:

logσu − logσt = ν
(
ŴH

u − ŴH
t

)
Then the increments of the square of the volatility under the physical measure P can be written as [9,
Pg.890]:

logσ2
u − logσ2

t = 2νCH

{∫ u

−∞

dW P
s

(u− s)
1/2−H

−
∫ t

−∞

dW P
s

(t− s)
1/2−H

}

= 2νCH

{∫ u

t

(u− s)
H−1/2

dW P
s +

∫ t

−∞

[
1

(u− s)
1/2−H

− 1

(t− s)
1/2−H

]
dW P

s

}
:= 2νCH [Mt(u) + Zt(u)] (3.7)

With CH as in the definition of the Mandelbrot-Van Ness fractional Brownian Motion 3.0.1. Now,
Zt(u) is Ft−measurable, while Mt(u) is independent of Ft, Gaussian, with mean zero and variance
(u− t)

2H
/2H. Note that, when we compute option prices, we are interested in taking conditional ex-

pectations say w.r.t. Ft, Hence the quantity Zt(u) would be a known quantity. So now, it is natural to
introduce the Rienmann-Liouville Fractional Brownian Motion.

Definition 3.1.2 (Fractional Brownian Motion). We define as Riemann-Liouville Fractional Brownian
Motion (fBm) with Hurst parameter H the following process:

WH
t :=

√
2H

∫ t

0

(t− s)
H−1/2

dWs t ∈ [0, T]

3.1. rBergomi 12

Remark. Note here that the constant in front of the stochastic integral is put so that the variance ofWH
t

is equal to t2H , exactly as in the Mandelbrot-Van Ness Fractional Brownian Motion.
Now, we want to give an expression for the forward variance curve under the physical measure P,

incorporating also the definition of fractional Brownian Motion given above, ∀u > t starting from (3.7),
that is equivalent of saying:

σ2
u = σ2

t exp (2νCH [Mt(u) + Zt(u)]) (3.8)

then if one conditions on Ft, reminding the Ft measurability of Zt(u), and from the fact thatMt(u) is a
mean zero, Gaussian random variable independent of Ft then one has that the forward variance curve
has the form:

EP
[
σ2
u|Ft

]
= σ2

tEP [exp (2νCH [Mt(u) + Zt(u)]) |Ft]

= σ2
t exp (2νCHZt(u))EP [exp (2νCHMt(u))]

= σ2
t exp (2νCHZt(u))EP

[
exp

(
2νCH√
2H

(
WH

u −WH
t

))]
now, putting η := 2νCH√

2H
we have, as in [9, Pg. 890]:

EP
[
σ2
u|Ft

]
= σ2

t exp
[
2νCHZt(u) +

1

2
η2E

[∣∣WH
u −WH

t

∣∣2]]
so that, combining the last equation and (3.8) then one has:

σ2
u = σ2

t exp
(
η
(
WH

u −WH
t

)
+ 2νCHZt(u)

)
which can also be rewritten using the stochastic exponential:

σ2
u = EP

[
σ2
u|Ft

]
E
(
η
(
WH

u −WH
t

))
(3.9)

Now, always in [9], they change measure, passing from the physical measure P to the equivalent
martingale measure Q. Using Girsanov’s theorem, they set:

dW P
s = dWQ

s + µsds

for some deterministic function of time µs. Then, one can rewrite (3.9) as:

σ2
u = EP

[
σ2
u|Ft

]
exp

(
η
√
2H

∫ u

t

dW P
s

(u− s)1/2−H
− η2

2
(u− t)2H

)
= EP

[
σ2
u|Ft

]
exp

(
η
√
2H

∫ u

t

dWQ
s

(u− s)1/2−H
+ η

√
2H

∫ u

t

µsds

(u− s)1/2−H
− η2

2
(u− t)2H

)
(3.10)

= EP
[
σ2
u|Ft

]
E
(
η
√
2H

∫ u

t

dWQ
s

(u− s)1/2−H

)
exp

(
η
√
2H

∫ u

t

µsds

(u− s)1/2−H

)
(3.11)

Finally, one can arrive to the forward variance curve, which by definition is

ξt(u) = EQ
[
σ2
u|Ft

]
then assuming that the filtration generated by WQ coincides with the one generated by W P, then one
has that the forward variance curve has the following form:

ξt(u) = EP
[
σ2
u|Ft

]
exp

(
η
√
2H

∫ u

t

µs

(u− s)1/2−H
ds

)
(3.12)

Note here the striking resemblance of the Rough Bergomi with the classical one specified in (3.3),
also, now we have that Fukasawa, in [26] shows that such model implies an ATM skew of the desired
form ψ (τ) = τ−γ for small τ .

What Bayer obtained, is a model which is capable with only three parameters to describe and
capture some characteristics of the market:

3.2. rHeston 13

• H, the Hurst parameter controls the roughness of the path, and also controls the explosiveness
of the ATM Skew i.e. ψ (τ) = τ−1/2+H

• Once H is fixed, the product ρν can be fixed by seeing the level of the ATM skew ψ for larger
expirations.

• ρ can be guessed by keeping in mind that it moves the minimum of the volatility smile down and
to the right as it becomes more negative. And is the parameter which can capture the negative
correlation between asset returns and volatility.

However, the rBergomi model is although far from being a flawless model. In fact, as noted by Abi
Jaber, in a recent paper [2], he calibrates the model to different market periods, and he observes that
the correlation parameter ρ tends to saturate at the value ρ = −1, making it somewhat of a redundant
parameter.

Now that we have introduced the Rough Bergomi model, giving the theoretical derivation and ex-
plaining its parameters, we can move on and introduce the Rough Heston model.

3.2. rHeston
In this section we are going to present the Rough Heston model. In similar fashion for what we have
done in the section on the Rough Bergomi, let us first introduce the classical Heston model, where
the volatility process follows a Cox-Ingersoll-Ross process of the form under the equivalent martingale
measure Q, with starting condition V0 = V̂0 [39, Pg.231]:

dVt = κ (v̄ − Vt) dt+ θ
√
VtdWt

and the price process with starting condition S0 = Ŝ0:

dSt = rStdt+
√
VtStdZt

where κ, v̄, θ ∈ R+, and correlated Brownian motions Z,W with correlation ρ ∈ [−1, 1] and r > 0 is the
risk-free interest rate of the market. Now we will introduce the rough counterpart, that was introduced
first by El Euch and Rosenbaum, in [23]. They require the price process and the variance process to
follow:

St = S0 +

∫ t

0

√
VsSsdZs

Vt = V0 +
1

Γ (H + 1/2)

∫ t

0

(t− s)
H−1/2

λ (θ − Vs) ds+
1

Γ (H + 1/2)

∫ t

0

(t− s)
H−1/2

ν
√
VsdWs

WhereH ∈ (0, 1/2] is the Hurst parameter, λ > 0 is the mean reversion, ν > 0 is the volatility of volatility,
θ > 0 is the long term mean mean reversion parameter and (W,Z) is a ρ-correlated Brownian motion
with ρ ∈ [−1, 1]

Now, the novelty here stands in the presence of the fractional kernel inside the integrals that yields
a rough behaviour of the volatility, that becomes Hölder continuous with Holder parameter equal to
H. The fractional kernel g (τ) = 1

Γ(H+1/2)τ
H−1/2 introduces a dependence structure in the volatility

process V . However, this implies that the resulting process V is neither a Markov Process, nor a semi-
martingale. This of course leads to problems in terms of both simulation and theoretical analysis. The
popularity of the classical Heston model is due to the fact that it is able to reproduce different phenom-
ena characterising the market, such as leverage effect, Zumbach effect, time varying volatility and fat
tails. The most interesting aspect of the rough counterpart, is the micro-structural foundations [22],[32],
where they show that the rough nature of volatility is emerging from the behaviour of market parteci-
pants at high frequency. To do this in [22], they model the price process as a sum of bi-dimensional
Hawkes process, i.e.:

Pt = N+
t −N−

t

where Nt :=
(
N+

t , N
−
t

)
is a bi-dimensional Poisson process with time-dependent and self-exciting

intensities λt :=
(
λ+t , λ

−
t

)
defined by:(
λ+t
λ−t

)
=

(
µ+
t

µ−
t

)
+

∫ t

0

(
φ1 (t− s) φ3 (t− s)
φ2 (t− s) φ4 (t− s)

)
·
(
dN+

t

dN−
t

)

3.3. Truncated Brownian Semistationary Processes 14

where µ± are positive constant and the function:

ϕ :=

(
φ1 (t− s) φ3 (t− s)
φ2 (t− s) φ4 (t− s)

)
: R+ → M2 (R+)

is a kernel matrix whose components φi are positive and locally integrable. The idea now, is that with a
model like this, it is apparently easy to encode stylised properties of the market. We will present those
characteristics but not how they are embedded in such a model, directly citing [22]:

• Markets are highly endogenous, meaning that most of the orders have no real economic motiva-
tion but are rather sent by algorithms in reaction to other orders.

• Mechanisms preventing statistical arbitrages take place on high frequency markets. In- deed, at
the high frequency scale, building strategies which are on average profitable is hardly possible.

• There is some asymmetry in the liquidity on the bid and ask sides of the order book. This simply
means that buying and selling are not symmetric actions.

• significant proportion of transactions is due to large orders, called meta-orders, which are not
executed at once but split in time by trading algorithms.

After encoding those properties in the tick-by-tick price process, they manage to prove that this model,
after a rescaling of the price process it converges weakly to a rough Heston model. Also, it has been
shown both theoretically and numerically in [24] that the Rough Heston model displays the Zumbach
effect, which also is a stylised fact of volatility and financial time series. Until now, we have discussed
the motivations to use the Rough Heston model for describing volatility in financial time series.

Another interesting result, that will allow us in section 7 to perform precise numerical experiments
is the fact that the characteristic function of the rough Heston model is known, and in particular it has
been obtained exactly via the limit of Hawkes processes. To retrieve the characteristic function however,
one must solve a fractional Riccati equation, compared to the Riccati-type ODE of the classical Heston.
This means that we can use Fourier pricing methods such as the COS method [25] or the Carr-Madam
option pricing [16].

3.3. Truncated Brownian Semistationary Processes
Let us define in this section both Brownian-Semi Stationary processes (BSS), and the truncated Brown-
ian Semi-Stationary processes (TBSS) which are a large class of models, which include also processes
like Fractional Brownian Motion. We take the definition of such processes by [10]. Let us consider a
filtered probability space

(
Ω,F , (Ft)t∈R ,P

)
, supporting a Brownian motion (Wt)t∈R+ , (σt)t∈R+ is an

Ft predictable stochastic process with locally bounded trajectories and g is a kernel function, positive,
Borel measurable and in L2 (R+). Also, they assume σ to be covariance stationary with finite second
moments, in the sense that

E
[
σ2
t

]
<∞, E [σt] = E [σs] , Cov [σt, σs] = Cov

[
σ0, σ|t−s|

]
, ∀t, s ∈ R+ (3.13)

We will refer as the function g as the Kernel and more specifically we are interested in the case
where g behaves like a power function near the origin, meaning

g(t) ∝ xα, α ∈ (−1/2, 1/2) (3.14)

under this assumption, the process Xt behaves locally like Fractional Brownian Motion with Hurst
parameter H = α + 1/2 ∈ (0, 1) \ {1/2}. They assume, that the kernel function also satisfies those
three additional hypotheses:

• ∃α ∈ (−1/2, 1/2) \ {0} such that:

g (x) = xαLg (x) , x ∈ (0, 1] (3.15)

where Lg is positive, continuously differentiable, slowly varying at 0 and bounded away from 0.
Also ∃C ≥ 0 s.t. the derivative L′

g satisfies:∣∣L′
g

∣∣ ≤ C
(
1 + x−1

)
, x ∈ (0, 1] (3.16)

3.3. Truncated Brownian Semistationary Processes 15

• g is continuously differentiable on (0,∞), with ultimately monotonic derivative such that g′ ∈
L2 ((1,∞))

• ∃β ∈ (−∞,−1/2) s.t.

g (x) = O(xβ), x→ ∞ (3.17)

Definition 3.3.1 (Brownian Semi-Stationary Process). With the assumptions (3.13)- (3.17) on g and σ,
we define a Brownian Semi-Stationary process (BSS) as a process of the form:

Xt =

∫ t

−∞
g (t− s)σsdWs

However, for financial applications, Truncated Brownian Semi-Stationary processes (TBSS) are suffi-
cient. The name Truncated, comes from the fact that the the integration is being done only on intervals
starting from zero, while all the assumptions made on g, σ remains the same as for BSS:

Definition 3.3.2 (Truncated Brownian Semi-Stationary Process). ATruncated Brownian Semi-Stationary
Process is a process of the form:

Xt =

∫ t

0

g (t− s)σsdWs

An example of Brownian Semi-Stationary process is the Riemann-Liouville fractional Brownian mo-
tion, in fact we have that, for H ∈ (0, 1/2) and ∀t > 0:

WH
t =

√
2H

∫ t

0

(t− s)H−1/2dWs

so that the kernel g(τ) =
√
2H(τ)H−1/2, while in this case σs ≡ 1. One can easily check that the

hypotheses (3.13)-(3.17) are in fact satisfied.

4
Simulating Rough Volatility

In this chapter, we will introduce two exact methods for simulating rough volatility models, as well as
the state-of-the-art approach, which, to the best of our knowledge, remains the Hybrid Scheme of
Bennedsen, Lunde, and Pakkanen [10]. First, in the next section, we will begin with exact types of
schemes.

4.1. Exact Schemes
In this section, we will introduce two types of exact schemes. By ”exact schemes,” we refer to meth-
ods that simulate the covariance structure of a process precisely, without any approximations. The
primary advantage of these schemes is that the main source of error stems only from discretization.
However, they come with significant drawbacks: either the computational time increases quadratically
with the number of discretization steps, or the memory usage grows quadratically with the number of
discretization steps.

We will start by presenting the concept outlined in the paper where the Rough Bergomi model was
first introduced [9]. Say that we want to simulate increments of fractional Brownian Motion with Hurst
parameter H ∈ (0, 1/2), then one has that:

WH
t =

√
2H

∫ t

0

(t− s)
H−1/2

dWs

note that the dependence structure ofWH
t is fully specified, in fact ∀v > u [9, Pg.892]:

E
[
WH

v W
H
u

]
= u2HG

(v
u

)
(4.1)

G(x) = 2H

∫ 1

0

ds

(1− s)
1/2−H

(x− s)
1/2−H

, ∀x > 1 (4.2)

Then, always in [9] they propose a method for simulating such process on a discrete time grid {ti}ni=0,
with 0 =: t0 < t1 < · · · < tn

• compute first the covariance matrix for the Fractional Brownian Motion WH
t using (4.1), id est a

symmetric matrix A ∈ Rn×n with

Ai,j = Aj,i = E
[
WH

ti W
H
tj

]
, ∀i, j : i > j ∈ {1, . . . , n}

• compute its Cholesky decomposition C, so a lower triangular matrix such that

A = CCT

• For each time, generate i.i.d. standard normal random n-dimensional vector Z and multiply them
by the lower triangular matrix obtained with the Cholesky decomposition. So that one has:

B = CZ

16

4.1. Exact Schemes 17

Then, the vector B is a Gaussian vector with zero mean and covariance equal to A. This means
that B has in fact the same distribution of the increments of fractional Brownian Motion

So if we would want to compute the dependence structure for the It is clear that this naive algorithm
suffers from two caveat: if one needs a fine time grid, then the Cholesky decomposition becomes com-
putationally unfeasible. In fact remember that in order to compute the Cholesky decomposition of an
n × n matrix, one need O

(
n3
)
floating point operations. Moreover, if one wants to simulate enough

sample paths say M , then one has to compute M vector-matrix multiplications, which each one is of
orderO

(
n2
)
. This results in a total complexity of the algorithm of n3+Mn2, which is clear that becomes

not feasible even for a low number of simulations and time steps. To be more fair with the Cholesky
approach, if one looks closely at the algorithm, then one realises that if values are cached during the
computation, then only n2 operations are needed.
Another exact method that also utilizes Cholesky decomposition is the one proposed by Davies and
Harte [18]. However, this method has a significant limitation: it is only applicable to stationary pro-
cesses. As a result, it cannot be applied to Riemann-Liouville fractional Brownian Motion, which is a
non-stationary process. The main idea that comes into play is the fact that for circulant matrices, it is
possible to compute the Cholesky decomposition using Fast Fourier Transform, hence improving the
computational complexity of the algorithm from n2 to n logn in the number of discretization steps. Let
us give the definition of Circulant matrix:

Definition 4.1.1 (Circulant matrix). An m×m Circulant matrix is a matrix that takes the form:
c0 cm−1 · · · c2 c1
c1 c0 cm−1 c2
... c1 c0

. . .
...

cm−2
. cm−1

cm−1 cm−2 · · · c1 c0

Say that, we want to simulate paths of the Mandelbrot-Van Ness fractional Brownian Motion with

Hurst parameter H that we denote with ŴH
t on a discrete time grid

{
tk := k

n

}n
k=0

⊂ [0, 1]. To see that
ŴH

t is stationary, note first that it is indeed a Gaussian process with mean zero, hence necessary and
sufficient condition for it to be stationary, is that the variance of the increments is independent of time,
i.e.:

E
[∣∣∣ŴH

t − ŴH
s

∣∣∣2] = E
[∣∣∣ŴH

t−s

∣∣∣2]
In fact one has:

E
[∣∣∣ŴH

t − ŴH
s

∣∣∣2] = E
[∣∣∣ŴH

t

∣∣∣2 + ∣∣∣ŴH
s

∣∣∣2 − 2ŴH
t Ŵ

H
s

]
= t2H + s2H −

(
t2H + s2H − |t− s|2H

)
= |t− s|2H

= E
[∣∣∣ŴH

t−s

∣∣∣2]
Since it is a stationary process, and hence also covariance stationary, its auto-correlation structure will
not depend on the time of evaluation, in fact one can define:

ρnH(k) := E
[(
WH

ti+1
−WH

ti

)(
WH

ti+k+1
−WH

ti+k

)]
= E

[
WH

ti+1
WH

ti+k+1
−WH

ti+1
WH

ti+k
−WH

ti W
H
ti+k+1

+WH
ti W

H
ti+k

]
=

1

2
(t2Hi+1 + t2Hi+k+1 −

∣∣∣∣kn
∣∣∣∣2H − t2Hi+1 − t2Hi+k +

∣∣∣∣k − 1

n

∣∣∣∣2H − t2Hi

− t2Hi+k+1 +

∣∣∣∣k + 1

n

∣∣∣∣2H + t2Hi + t2Hi+k −
∣∣∣∣kn
∣∣∣∣2H)

=
1

2n

(
|k + 1|2H + |k − 1|2H − 2 |k|2H

)

4.1. Exact Schemes 18

Then one can put all those auto-correlation coefficients inside a matrix in the following way, as done in
[41, Pg. 23]:

Aut(n) =

ρnH(0) ρnH(1) ρnH(2) · · · ρnH(n− 1)
ρnH(1) ρnH(0) ρnH(1) · · · ρnH(n− 2)
ρnH(2) ρnH(1) ρnH(0) · · · ρnH(n− 3)
...

...
...

...
...

ρnH(n− 1) ρnH(n− 2) ρnH(n− 3) · · · ρnH(0)

 .

Now then the task become to build a circulant matrix, such that in the top left corner lies the original
auto-correlation matrix Aut (n). So, if we consider a circulant matrix as in the definition 4.1.1, with
m = 2n, and set, as in the definition:

ci = ρH (i) , i = 0, . . . , n− 1

ci = ρH (2n− i) , i = n+ 2, . . . , 2n− 1

then we have obtained a circulant matrix, such that the top left n× n sub-matrix coincides with Aut(n).
Then, by the theorem from Brockwell [14], it is possible to compute the Cholesky decomposition of a
circulant matrix C via the Fast Fourier Transform. In particular, ∃U,Λ such that U us an unitary matrix
and Λ is diagonal such that:

C = UΛU∗

but then one can rewrite:

C = UΛ1/2U∗UΛ1/2U∗

With the matrix U such that:

Uj,k =
1√
2n

exp
(
−2π i

2n
jk

)
, 0 ≤ j, k ≤ 2n− 1

Where i is the imaginary unit, and Λ is a diagonal matrix with diagonal {λk}2n−1
k=0 :

λk =

2n−1∑
j=0

cj exp
(
−2π i

2n
jk

)
(4.3)

So, if we consider the matrixG := UΛ1/2U∗, and simulate a vector of length 2n of independent standard
normal random variables, say Z, then one has that

X := GZ = UΛ1/2U∗Z ∼ N (0, C)

Now, since Z is standard normal distributed, then also U∗Z =: S+ iT will be a vector of normal random
variables. Wood and Chan, in [42] prove the following properties on S, T :

Theorem 1. [42] The random vectors S, T satisfy:

1. E [S] = E [T] = 0, and E
[
STT

]
= 0, so that they are in fact independent.

2. If j ∈ {0, n} then Tj = 0 and
E [SjSk] = δj,k

where δ is the Kronecker delta.
3. If j /∈ {0, n} then

E [SjSk] =
1

2
δj,k, E [TjTk] =

1

2
δj,k − 1

2
δ2n−j,k

4.2. Hybrid Scheme 19

So, using this theorem, then one can define a vector V of length 2n in the following way, as done in
[41, Pg.25]:

V0 = A0, Vn = B0

Vj =
1√
2
(Aj + iBj) , V2n−j =

1√
2
(Aj − iBj) , j = 0, . . . , n− 1 (4.4)

Where A,B are vectors of length n such that Aj , Bj ∼ N(0, 1), ∀j = 0, . . . , n − 1. It is clear now that
the vector V has the same distribution of the vector U∗Z via theorem 1.

Finally, we need to compute X = Uλ
1
2V , that is:

Xj =

2n−1∑
k=0

1√
2n

exp
(
−2πi

2n
jk

)√
λkWk (4.5)

And this vector can be computed using Fast Fourier transform. So finally we give a recap of the algo-
rithm, as done in [41]:

1. Compute (λk)
2n−1
k=0 using (4.3), via FFT.

2. Simulate two independent standard normal vectors A,B of size n.
3. Compute the vector V , using equation (4.4).
4. Compute X, using (4.5), using FFT.
5. Finally, retrieve the first n elements of X. Those will be fractional Brownian Motion increments.

With this method, one can simulate exactly paths of the Mandelbrot-Van Ness fractional Brownian Mo-
tion with a computational complexity ofO (n logn). However, in financial applications, we are interested
in simulating the Riemann-Liouville fractional Brownian Motion. This process is not stationary, which
prevents efficient simulation using circulant matrices.

To address this challenge, various algorithms have been proposed to approximate the Riemann-
Liouville fractional Brownian Motion. Among these, the Hybrid Scheme, developed by Bennedsen et
al. in [10] stands out, and to the best of our knowledge, is the state of the art for simulation of Brownian
Semi-stationary processes and Truncated Brownian Semi-stationary processes. As we will see in the
next section, this method has computational complexity ofO (n logn), and memory complexity ofO (n),
where n is the number of time steps used in the discretization.

4.2. Hybrid Scheme
This simulation method, is somewhat general in the sense that can be applied to every Brownian Semi-
Stationary process (BSS). The main idea of the paper [10], is to capitalise on the regularity structure
of the kernel and approximate its values near zero as a power law function, while using step functions
elsewhere. Let us first present the method for general Brownian Semi-Stationary processes, introduced
in section (3.3). In fact, let us rewrite the process Xt as done in [10, Pg.938], splitting the integral on a
timebgrid Gn

t =
{
t− k

n

}
k∈N. Then one can make a first approximation:

Xt =

∞∑
k=1

∫ t− k
n+ 1

n

t− k
n

g(t− s)σsdWs ≈
∞∑
k=1

σt− k
n

∫ t− k
n+ 1

n

t− k
n

g(t− s)dWs

Reminding that
g(τ) = ταLg(τ), τ > 0

where Lg is slowly varying and satisfy the hypotheses 3.13 - 3.17 then in the first terms of the sum, we
can exploit the structure of g: since Lg is a slowly varying function, then one can approximate as a step
function in a finite interval of type

[
k−1
n , kn

]
, for some n ∈ N \ {0} , k ≤ n

g(t− s) ≈ (t− s)αLg

(
k

n

)
, t− s ∈

[
k − 1

n
,
k

n

]
\ {0}

4.2. Hybrid Scheme 20

while for larger values of k then one can just approximate g as a step function:

g(t− s) ≈ g

(
bk
n

)
, t− s ∈

[
k − 1

n
,
k

n

]
where bk can be optimally chosen, with the only constraint being that bk ∈ [k − 1, k]. Now, having
chosen a κ small, in the range κ ∈ {1, 2, 3} as they propose in their paper, one can approximate the
process Xt by:

Xt ≈
κ∑

k=1

Lg

(
k

n

)
σt− k

n

∫ t− k
n+ 1

n

t− k
n

(t− s)
α
dWs+

+

∞∑
k=κ+1

g

(
bk
n

)
σt− k

n

∫ t− k
n+ 1

n

t− k
n

dWs

The method is easily adapted to Truncated Brownian Semi-Stationary processes (TBSS), which are of
most interest for our financial applications. So in this case the approximation, dropping all the terms of
the sum for which the interval have non trivial intersection with the negative half real line then becomes:

Yt ≈
min(⌊nt⌋,κ)∑

k=1

Lg

(
k

n

)
σt− k

n

∫ t− k
n+ 1

n

t− k
n

(t− s)
α
dWs+

+

⌊nt⌋∑
k=κ+1

g

(
bk
n

)
σt− k

n

∫ t− k
n+ 1

n

t− k
n

dWs

Now, one needs to note that both integrals in the equation above, are in the end Gaussian random
variables, with mean zero and for the first summand, we have a particular covariance structure for
which the details are given in the original paper. While as for the second sum, the integrals are just
increments of Brownian motion. So if we want to sample Y at a particular time, it can be computed as,
[10, Pg.938]:

Y n
i
n
=

min(i,κ)∑
k=1

Lg

(
k

n

)
σ i−k

n
Wn

i−k,k +

i∑
k=κ+1

g

(
bk
n

)
σ i−k

n
Wn

i−k (4.6)

Where

Wn
i,j :=

∫ i/n+1/n

i/n

(
i+ j

n
− s

)α

dWs, i = 0, . . . , ⌊nT ⌋ − 1

j = 1, . . . , κ

Wn
i :=

∫ i+1
n

i
n

dWs, i = 0, . . . , ⌊nT ⌋ − 1

Note that the the vectors

Wn
i :=

(
Wn

i ,W
n
i,1, . . . ,W

n
i,κ

)
, i = 0, . . . , ⌊nT ⌋ − 1

Are independent realizations of a normal Gaussian random variable with mean zero and covariance
matrix Σ which is known in closed form.
Another important remark, is the fact that the second sum of (4.6) can be seen as a discrete convolution,
and so we can reduce the computational complexity toO (n logn). Note also that to be precise, one has
also to compute the Cholesky decomposition of the covariance matrix Σ in order to generate correlated
Gaussian random vectors. However, as they state in their paper, low values of κ such as κ = 3
is enough for Brownian Semi-Stationary processes, while it’s even enough κ ∈ {1, 2} for Truncated
Brownian Semi-Stationary processes. This means that in fact the Cholesky computational complexity
does not influence the efficiency of the algorithm, and n logn remains the term with higher weight.

4.2. Hybrid Scheme 21

In its Turbocharged version, [37] the authors employ a variance reduction technique using as a control
variate the value of a Timer Option, managing to speed up the simulation time up to a factor of 20.
However, they do so conditioning first on the filtration generated by the Brownian motion driving the
variance, and this has the caveat of loosing the relationship with Hedging strategies, as the authors
them self remark.
As for the theoretical convergence of this scheme, we note that strong convergence is proven. In fact,
theorem 2.5 of [10], gives the proof for at least the case that we are interested in. However, more than
of the strong error, since our ultimate goal would be in the end option pricing, we need to take care of
the weak error of such an approximation. In this sense, the paper of Paul Gassiat [27] and the paper
[33] try to answer this question. In fact, in the latter they prove that there is indeed weak convergence
of the hybrid scheme in the sense that they prove the approximation of fractional Brownian motion
converges weakly to fractional Brownian motion, and also they guarantee that there is convergence of
the approximation log-stock price and the hybrid scheme itself. However, proving weak convergence
and establishing a precise rate of convergence is far from a trivial step. In this direction, Paul Gassiat
proved that if the test function is a cubic polynomial, and the volatility has enough regularity,which in
our practical case is guaranteed since they just require that

σt = f
(
t,WH

t

)
f ∈ C3

b

then the weak order of convergence is of H + 1/2.
Now that we have seen in this chapter different methods for simulating Rough Volatility models, we
move on to the main topic of this work, which is the Markovian approximation of Rough Volatility mod-
els.

5
Markovian Approximation

In the previous section, we explored various simulation methods for rough volatility models. The liter-
ature on this topic is extensive, and we did not cover all available simulation schemes. We discussed
two exact schemes and one approximation, namely the Hybrid scheme. While the Hybrid scheme
performs well for various volatility models, it has the limitation of being applicable only to Brownian
Semi-Stationary (BSS) processes and Truncated Brownian Semi-Stationary (TBSS) processes. Con-
sequently, models like the Rough Heston model were not included in our discussion.

In a pioneering paper by Abi Jaber and El Euch [1], inspired by a well-known result from Carmona
[15], a method was introduced to construct a Markovian approximation of rough volatility models. This
method is both straightforward and flexible. In this section, we will present the construction of this ap-
proximation. Following that, we will discuss the weak and strong error bounds associated with it.

5.1. Construction of the approximation
Let us start with a definition, that ensures us the existence of solution, and it is flexible enough to contain
every model that we have discussed in section 2 but the rough Heston Model, for which the existence
of a weak, non-negative solution to the volatility process is also ensured, but via a different type of
argument.
Let us give a couple of definitions that will be useful for the rest of the work.

Definition 5.1.1 (Complete Monotone Kernel). A function f : R+ → R+ is called completely monotone
if there exists a measure µ on R+ such that:

∀τ ∈ R+ : f (τ) =

∫ ∞

0

e−τxµ (dx) (5.1)

Now, we can fully specify the type of equation that we will work with for the rest of this work:

Definition 5.1.2 (Volterra Equation). On a given filtered probability space (Ω,F , (Ft)t∈[0,T] ,P), for
some T > 0, we define to be a Volterra Equation an SDE of the form:

Xt = x0 +

∫ t

0

g(t− s)b(Xs)ds+

∫ t

0

g(t− s)σ(Xs)dWs, (5.2)

where W is standard d-dimensional Brownian Motion, x0 ∈ Rd, b : Rd → Rd, σ : Rd → Rd×d are
globally Lipschitz continuous, i.e.:

∃L > 0 : ∀x, y ∈ Rd, |b(x)− b(y)|+ ||σ(x)− σ(y)|| < L |x− y|

Also, we ask g : R+ → R to be a completely monotone kernel such that there exist a bounded measur-
able functionM : R+ → R such that

g(τ) =

∫
R+

e−ρtM(ρ)µ(dρ)

22

5.1. Construction of the approximation 23

and: ∫
R+

e−ρtµ(dρ) <∞

Also, we assume that ∫ T

0

|g(s)|2 ds <∞, ∀T ∈ R+

Under those assumptions one can apply Theorem 3.1 of [43], that states that in such case, there
exists a unique strong solution to the equation (5.2), and also one has that:

∀τ ∈ [0, T] , E
[
|Xτ |2

]
≤ CT,2,g,x0

(
1 +

∫ T

0

g (T − s) ds

)
that implies:

sup
τ∈[0,T]

E
[
|Xτ |2

]
<∞ (5.3)

Note that for our work, in Rough Volatility models, we have that the Volatility is driven by a Stochastic
Volterra Equation. Now let us present proposition 2.1 of Alfonsi and Kebaier [35] that allows a repre-
sentation of the solution to such Stochastic Volterra Equation in a particular, but useful setting.

Proposition 2. Let us assume that µ(dρ) =
∑n

i=1 αiδρi(dρ), with αi ≥ 0 and ρ1 < · · · < ρn. In the
setting of the definition of Stochastic Volterra Equations in (5.2) say that there exist x10, . . . , xn0 ∈ Rd

such that
∑n

i=1 αiM(ρi)x
i
0 = x0. Then, the solution of (5.2) is given by:

∑n
i=1 αiM(ρi)X

i
t where

(X1
t , . . . , X

n
t) is the solution of the n× d−dimensional stochastic differential equation defined by:

Xi
t = xi0 −

∫ t

0

ρi(X
i
t − xi0)ds+

∫ t

0

b(

n∑
i=1

αiM(ρi)X
i
s)ds+

∫ t

0

σ(

n∑
i=1

αiM(ρi)X
i
s)dWs (5.4)

Proof. The SDE (5.2) has Lipschitz coefficients, and therefore there exists a unique strong solution.
Now compute:

d(eρit
(
Xi

t − xi0
)
) = ρie

ρit
(
Xi

t − xi0
)
dt+ eρitd

(
Xi

t − xi0
)

= ρie
ρit
(
Xi

t − xi0
)
dt− ρie

ρit
(
Xi

t − xi0
)
dt+ eρitb(

n∑
i=1

αiM(ρi)X
i
t)dt

+ eρitσ(

n∑
i=1

αiM(ρi)X
i
t)dWt

= eρitb(

n∑
i=1

αiM(ρi)X
i
t)dt+ eρitσ(

n∑
i=1

αiM(ρi)X
i)dWt

i.e., we get:

Xi
t = xi0 +

∫ t

0

e−ρi(t−s)b(

n∑
i=1

αiM(ρi)X
i
s)ds+

∫ t

0

e−ρi(t−s)σ(

n∑
i=1

αiM(ρi)X
i
s)dWs

Now, if we left multiply this equation by αiM(ρi) and sum over i then
∑n

i=1 αiM(ρi)X
i
t solves (5.2),

and the strong uniqueness result gives the claim. In fact, (5.2) with λ(dρ) =
∑n

i=1 αiδρi
(dρ) becomes:

Xt = x0 +

∫ t

0

∫
R+

e−ρ(t−s)M(ρ)λ(dρ)b(Xs)ds+

∫ t

0

∫
R+

e−ρ(t−s)M(ρ)λ(dρ)σ(Xs)dWs =

=

∫ t

0

n∑
i=1

e−ρi(t−s)αiM(ρi)b(Xs)ds+

∫ t

0

n∑
i=1

e−ρi(t−s)αiM(ρi)σ(Xs)dWs

and if one considers Xt =
∑n

i=1 αiM(ρi)X
i
t then it’s clear that the two solutions coincides.

5.2. Strong And Weak Error Bounds 24

If we specialise now this proposition to our case, i.e.: the fractional kernel case with Hurst parameter
H then one has thatM as in (5.7) is exactlyM ≡ 1, and

µ (x) =
1

Γ(H + 1/2)Γ(1/2−H)
x−(H+1/2),

in fact:

τH−1/2

Γ(H + 1/2)
=

1

Γ(H + 1/2)Γ(1/2−H)

∫ ∞

0

e−τxx−(H+1/2)dx,

approximating g as a weighted sum of say, K exponentials, i.e.:

ĝ (τ) =

K∑
i=1

wie
−τxi ,

for some nodes xi ∈ R+, wi ∈ R, ∀i = 1, . . . ,K, then the approximation of Stochastic Volterra equation
(5.2) becomes:

X̂t = x0 +

∫ t

0

ĝ(t− s)b(X̂s)ds+

∫ t

0

ĝ(t− s)σ(X̂s)dWs, (5.5)

then we can rewrite Proposition 2 as Proposition 1.1 in [7]:

Proposition 3. Let x10, . . . , xK0 ∈ Rd such that
∑K

i=1 wix
i
0 = x0, Then the solution to (5.5) is given by∑K

i=1 wiX
i
t where

(
X1

t , . . . , X
K
t

)
is the solution to the N × d- dimensional system of SDEs defined by:

Xi
t = xi0 −

∫ t

0

xi
(
Xi

t − xi0
)
ds+

∫ t

0

b

 K∑
j=1

wjX
j
s

 ds+

∫ t

0

σ

 K∑
j=1

wjX
j
s

 dWs (5.6)

Note that this is an approximation of the original process Xt, and it is given by a sum of OU-
processes driven by the same Brownian motion, but with different mean reverting speed. In fact, from
a qualitative point of view, having a path with low Hölder regularity can be stylised with superimposing
OU-processes with high mean reversion. The nodes of the quadrature appear in the SDE 5.6 only in
the first integral, and they can be interpreted as the mean reversion speeds of the different Orhnstein-
Uhlenbeck processes.

Now that we know how to simulate the Markovian Approximation given the nodes and weights
(xi, wi)

N
i=1, let’s explore in the next section what is the objective that one has to have in mind when

choosing the nodes and the weights for the quadrature rule.

5.2. Strong And Weak Error Bounds
In this section, we are going to present both the strong and the weak error bounds for the Markovian
Approximation of Rough Volatility models.

Our discussion will be divided in two parts, the first part will regard the strong error that one has
when approximating Rough Volatility models, and we will see how this type of error can be bounded
with the L2([0, T]) error between the original kernel and its approximation. Then in the second part of
this section we are going to focus on the weak error for the Rough Heston Model.

In particular, we will need to distinguish in our discussion, the case of the Rough Heston model and
all the other models, this is because, σ, as in (5.2) in the case of the Rough Heston model is equal
to σ(x) =

√
x, that is a non-Lipschitz function over the positive real half line. We will see how for this

model, the weak error is bounded by the L1([0, T]) error between the kernel and its approximation.

5.2.1. Strong Error Bounds
Let us take care now of the strong error that one has when using the Markovian Approximation. To do
this, let us reproduce the proposition and its proof for the non-Rough Heston case, which corresponds
to [35, Proposition 3.2]. They relate the strong L2 (0, T) between the approximated solution of (5.5)

5.2. Strong And Weak Error Bounds 25

and the solution of (5.2) to the L2 (0, T) error between the kernel g and its approximation ĝ. We will
present a particular version of this proposition, perhaps in a bit less general setting, that will be sufficient
for our purposes. In any case, the proposition is easily generalised to the multidimensional case, just
replacing absolute values with euclidean norms, and for matrices with the Frobenious norm. To do this,
we assume that g has the same properties as in Definition 5.1.2 id est.:

g(τ) =

∫
R+

e−ρτM(ρ)λ(dρ), t ∈ (0,∞) , (5.7)

withM : R+ → R, withM bounded i.e.:

M := sup
ρ∈R+

||M(ρ)|| <∞. (5.8)

For our case, let’s assume that our approximating kernel ĝ is such that:

ĝ ∈ L2
loc (R+,R+) , (5.9)

which for our case certainly holds since:

ĝ (τ) =

N∑
i=1

wie
−xit.

Then, for c > 0, consider the resolvent of second kind Ec(τ) that solves the equation:

Ec(τ) = ĝ2 (τ) +

∫ τ

0

cĝ2 (τ − s)Ec(s)ds. (5.10)

Thanks to assumption (5.9), we know also that ĝ2 ∈ L1
loc (R+,R+) then, we have that Ec(τ) is well

defined and also that Ec(τ) ∈ L1
loc (R+,R+). Now that we have all the tools, we can reproduce the

proof of [35, Proposition 3.2]. In particular, the goal is to arrive at a Grönwall-type of inequality, and
then apply the result of [30, Theorem 9.8.2]:

Proposition 4. [30, Theorem 9.8.2] Let k be a scalar kernel, i.e. a measurable function:

k : [0, T] → R

Assume also that k ∈ Lp
loc([0, T])Moreover, assume that −k has a non-positive resolvent r of the same

type. Let x, f ∈ Lp
loc (0, T) such that

x(t) ≤ (k ⋆ x) (t) + f(t) a.s.

where ⋆ is the convolution operator. Then, x(t) ≤ y(t), where y solves:

y(t) = (k ⋆ y) (t) + f(t).

With this in mind, let’s move on to [35, Proposition 3.2]

Proposition 5. [35, Proposition 3.2] Let (X̂t)t∈[0,T] be the strong solution of (5.5) and (Xt)t∈[0,T] the
strong solution to (5.2). Then there exists a constant C, dependent on the kernel,T, b, σ such that:

∀t ∈ [0, T] , E
[∣∣∣X̂t −Xt

∣∣∣2] ≤ C

∫ T

0

|g (τ)− ĝ (τ)|2 dτ

Proof. Denote, in a similar fashion of [35, Proposition 3.2]:

∆(τ) := g (τ)− ĝ (τ) , ∀τ ∈ [0, T] .

Then, ∀t ∈ [0, T] one has:∣∣∣X̂t −Xt

∣∣∣2 ≤ 4

∣∣∣∣∫ t

0

∆(t− s) b (Xs) ds

∣∣∣∣2 + 4

∣∣∣∣∫ t

0

∆(t− s)σ (Xs) dWs

∣∣∣∣2
+ 4

∣∣∣∣∫ t

0

ĝ (t− s)
[
b (Xs)− b(X̂s)

]
ds

∣∣∣∣2 + 4

∣∣∣∣∫ t

0

ĝ (t− s)
[
σ (Xs)− σ(X̂s)

]
dWs

∣∣∣∣2

5.2. Strong And Weak Error Bounds 26

where we used the inequality: (a+ b+ c+ d)2 ≤ 4
(
a2 + b2 + c2 + d2

)
. Now taking the expected value

of the equation above, apply Ito’s Isometry to the terms with σ while for the other two terms we use
Jensen saying that: ∣∣∣∣∫ t

0

∆(t− s)b(Xs)ds

∣∣∣∣2 ≤ t

∫ t

0

|∆(t− s)b(Xs)|2 ds,

then one has that:

E

[∣∣∣∣∫ t

0

∆(t− s) b (Xs) ds

∣∣∣∣2
]
≤ E

[
t

∫ t

0

|∆(t− s) b (Xs)|2 ds
]
= t

∫ t

0

|∆(t− s)|2 E
[
|b (Xs)|2

]
ds

As for the other term, repeating the same reasoning:

E

[∣∣∣∣∫ t

0

ĝ (t− s)
[
b (Xs)− b(X̂s)

]
ds

∣∣∣∣2
]
≤ E

[
t

∫ t

0

|ĝ (t− s)|2
∣∣∣b (Xs)− b(X̂s)

∣∣∣2] ds
= t

∫ t

0

|ĝ (t− s)|2 E
[∣∣∣b (Xs)− b(X̂s)

∣∣∣2] ds
Putting all the pieces together we obtain:

E
[∣∣∣X̂t −Xt

∣∣∣2] ≤ 4t

∫ t

0

|∆(t− s)|2 E
[
|b (Xs)|2

]
ds+ 4

∫ t

0

|∆(t− s)|2 E
[
|σ (Xs)|2

]
ds

+ 4t

∫ t

0

|ĝ (t− s)|2 E
[∣∣∣b (Xs)− b(X̂s)

∣∣∣2] ds+ 4

∫ t

0

|ĝ (t− s)|2 E
[∣∣∣σ (Xs)− σ(X̂s)

∣∣∣2] ds.
(5.11)

Now, knowing that the coefficients σ and b are Lipschitz continuous one has that :

∀x, y ∈ R, b(x) ≤ |b(0)|+ L |x| , b(x− y) ≤ L |x− y| , (5.12)
∀x, y ∈ R, σ(x) ≤ |σ(0)|+ L |x| , σ(x− y) ≤ L |x− y| (5.13)

So, using (5.12) and (5.13) we have that (5.11) becomes:

E
[∣∣∣X̂t −Xt

∣∣∣2] ≤ 4t

∫ t

0

|∆(t− s)|2 E
[
(|b(0)|+ L |Xs|)2

]
ds

+ 4

∫ t

0

|∆(t− s)|2 E
[
(|σ(0)|+ L |Xs|)2

]
ds

+ 8L2

∫ t

0

|ĝ (t− s)|2 E
[∣∣∣Xs − X̂s

∣∣∣2] ds
≤ 8 (T ∨ 1)

(
|b(0)|2 ∨ |σ(0)|2 + 2L2 sup

τ∈[0,T]

E
[
|Xτ |2

])∫ t

0

|∆(t− s)|2 ds

+ 8L2

∫ t

0

|ĝ (t− s)|2 E
[∣∣∣Xs − X̂s

∣∣∣2] ds (5.14)

Note that, we used (5.3) to bound:

E
[
|Xs|2

]
≤ sup

τ∈[0,T]

E
[
|Xτ |2

]
<∞, ∀s ∈ [0, T]

now that we have fully justified how to arrive at (5.14) then, the idea here in [35], is to use Grönwall-type
of inequality of Lemma 4, to obtain:

E
[∣∣∣X̂t −Xt

∣∣∣2] ≤ c1

(∫ t

0

|∆(t− s)|2 ds
)(

1 +

∫ T

0

Ec2(s)ds

)

5.2. Strong And Weak Error Bounds 27

where Ec is defined as in (5.10) where the constant are defined:

c1 = (T ∨ 1)

(
|b(0)|2 ∨ |σ(0)|2 + 2L2 sup

τ∈[0,T]

E
[
|Xτ |2

])
c2 = 8L2

And Ec(x) is defined as in (5.10) and also Ec

(
L1
loc (R+,R+)

)
. Then, one can define the constant C, to

be:

C := c1

(
1 +

∫ T

0

Ec2(s)ds

)
And then arrive at the thesis of the proposition:

E
[∣∣∣X̂t −Xt

∣∣∣2] ≤ C

∫ t

0

|∆(t− s)|2 ds

With this proposition then, one can reduce the initially very complex problem of determining how
good it is the approximation of the solution to the Volterra Equation (5.2) with a much simpler problem,
that is to minimise the L2([0, T]) error between the Kernel g and its approximation ĝ. Now, another
thing that one has to take into account is the fact that the Markovian Approximation X̂t, t ∈ [0, T]
cannot always be simulated exactly. So one has also take into account the discretisation error when
simulating Rough Volatility models. On the other side, models like the Rough Heston model, suffer less
from this fact, since its characteristic function can be computed with arbitrary precision, and then one
can both simulate exactly the model, and also can use Fourier Pricing methods.

5.2.2. Weak Error under Rough Heston
Now that we have discussed and presented the results in [35] on how one can relate the strong error of
the Markovian approximation and the L2 ([0, T]) error between g and ĝ, we can go on in our discussion
and see how things work for the Rough Heston model. In this section we are going to present the
results on how one can bound the strong error and the weak error with the L1 ([0, T]) error between g
and ĝ. As we have seen in section 3.2, the Rough Heston model reads:

dSt = St

√
VtdWt (5.15)

Vt = V0 +

∫ t

0

g (t− s) (θ (s)− λVs) ds+

∫ t

0

g (t− s) ν
√
VtdBs (5.16)

WhereW,B are correlated Brownian motion, with correlation coefficient ρ, λ, ν are positive parameters,
while θ (s) is a deterministic function that it’s used to fit the forward variance curve at time zero. However,
we can see how in the second term of (5.16) appears a square root, which is not Lipschitz continuous,
so the volatility in the Rough Heston model does not meet the definition of Volterra equation (5.2). For
this reason, the discussion for this model is a bit different, and it is mostly based on the fact that Abi
Jaber and El Euch in [1]. They showed that the characteristic function for the Rough Heston model can
be obtained via solving a fractional Riccati equation, i.e.:

E [exp (z log (St/S0))] = exp
(∫ t

0

F (z, ψ (t− s, z))G (s) ds

)
where:

G (t) = V0 +

∫ t

0

g (t− s) θ (s) ds

and ψ is the solution of a fractional Riccati-type equation:

ψ (t, z) =

∫ t

0

g(t− s)F (z, ψ (s, z)) ds

5.2. Strong And Weak Error Bounds 28

where

F (z, x) =
1

2

(
z2 − z

)
+ (ρνz − λ)x+

ν2

2
x

In the same fashion as before, Abi Jaber and El Euch showed that by replacing the kernel g with the
kernel ĝ, then one can also find the characteristic function for the log-stock price via solving an ordinary
Riccati equation. So denoting

(
Ŝ, V̂

)
the Markovian approximation then one has:

E
[
exp

(
z log

(
Ŝt/S0

))]
= exp

(∫ t

0

F
(
z, ψ̂ (t− s, z)

)
Ĝ (s) ds

)
where:

Ĝ (t) = V0 +

∫ t

0

ĝ (t− s) θ (s) ds

and ψ̂ is the solution of a Riccati-type equation:

ψ̂ (t, z) =

∫ t

0

ĝ(t− s)F
(
z, ψ̂ (s, z)

)
ds

It is shown, always in [1], that this equation can be solved by usual numerical integrators for ODEs. In
particular, they also gave a bound for the absolute error between the characteristc function ψ and the
one of the Markovian approximation ψ̂. In particular they gave the following theorem:

Proposition 6. [1, Theorem 4.1] There exists a constant C > 0, such that ∀a ∈ [0, 1] , b ∈ R one has:

sup
t∈[0,T]

∣∣∣ψ̂ (t, a+ ib)− ψ (t, a+ ib)
∣∣∣ ≤ C

(
1 + b4

) ∫ T

0

|ĝ(s)− g(s)| ds

using this result, they proved the following proposition:

Proposition 7. [1, Proposition 4.3] Denote C (k, T) the price of a call option with log-strike k and
expiration T under the Rough Heston model, and denote Ĉ (k, T) the price of the same derivative,
under the Markovian approximation of the Rough Heston model. Then there exists a constant c such
that: ∣∣∣C (k, T)− Ĉ (k, T)

∣∣∣ ≤ c

∫ T

0

|ĝ(s)− g(s)| ds

Finally, Bayer and Breneis, in a recent paper, managed to improve proposition (7) for a much more
general payoff function, in fact Corollary 2.12 of [7] states:

Proposition 8. [8, Corollary 2.12] Let h : R+ → R a 8 times weakly differentiable and compactly
supported function, Then there exists a constant C, such that:∣∣∣E [h (ST)− h

(
ŜT

)]∣∣∣ ≤ c

∫ T

0

|g(s)− ĝ(s)| ds

The previous two results are per se very much interesting: as a first observation, we see that the
weak error, is bounded now by theL1 ([0, T]) error instead of theL2 ([0, T]). This is waymore convenient
because especially for Hurst parameters H ≈ 0, the kernel g becomes barely L2 ([0, T]), in the sense
that the norm tends to explode as H → 0, and this is not true for the L1 ([0, T]) norm. Also, as Bayer
et Al. in [6] points out, solving a (System) of Riccati equation can be done in a more efficient way. In
particular the fractional Riccati equation can be solved with Adam scheme, at a rate of convergence
equal to O (∆t), while a predictor-corrector scheme is able to solve a Ordinary Riccati equation with
O
(
∆t2

)
, where ∆t is the stepsize.

Another advantage of using the Markovian approximation for the Rough Heston model is the following:
if one were to use the approximation in a model like Rough Bergomi, where the characteristic function is

5.3. Nodes and Weights 29

not available neither in closed form nor as a solution of some differential equation, then the only method
for pricing that is available becomes the classical Monte Carlo simulation. Then, one has also to take
into account the discretization error of the Euler Scheme, Alfonsi and Kebaier in [35] showed that it is
of the order

(
T
N

)2H , where here N stands for the number of time steps used in the discretization of the
SDE. In fact, [35, corollary 4.1] states:

Proposition 9. [35, corollary 4.1] In the setting of definition 5.1.2, let Xt the solution to (5.2), and Let
X̂N

t the discretised solution of (5.5), where N time steps have been used for the discretization. Also,
let g, ĝ the original kernel and its approximation respectively. Then we have a bound on the strong error
of the discretization error for a Rough Kernel with H ∈ (0, 1/2): for some C > 0 depending on b, σ, g
such that:

max
k∈{1,...,N}

E
[∣∣∣X̂N

tk
−Xtk

∣∣∣2] ≤ C

((
T

N

)2H

+
T

N

N∑
k=1

∥g(tk)− ĝ(tk)∥2
)

(5.17)

Note that this proposition tells us two things: The first term in (5.17) represents the discrtization
error between the Markovian approximation, and its discretized counterparty. This error, as we can
see has a power law decay in the number of discretization error, with exponent 2H, that for financial
applications remains very low. This means that if we are using Euler Scheme to simulate Stochastic
Volterra Equations with fractional kernel, then one does not need a particularly good approximation
for the kernel since the main source of the error will be in any case the discretization error. Then, the
second term in (5.17), represents the error between the Markovian approximation and the real solution
to (5.2). Note here that the L2([0, T]) error has been replaced to its discretized version, which for
fractional kernels tends to be much less than the continuous counterparty. The bottom line after those
observations is that one can exploit the most a good Markovian approximation in two cases: when there
is a possibility of simulating exactly the approximation, or when the characteristic function is known, and
hence one can use Fourier Methods both for simulation and pricing.

In the next subsection we are going to present different quadrature rules in the literature. Both
quadrature rules in Abi Jaber and El Euch [1] or Alfonsi, Kebayer [35] have a rate of convergence
that behaves like a power law. In particular, in the paper of Alfonsi and Kebayer, they manage to find
a quadrature rule that converge with rate N−H . However, this rate of convergence is still very slow,
since it was shown that usually the values of H tend to be close to zero. Then, Bayer and Breneis, in
[6], they provide a set of nodes and weights that converges at an exponential rate. Let us start with the
latter. In particular, Gaussian quadrature rule will be used in different papers, so let us give first a first
insight of how Gaussian quadrature rule works.

5.3. Nodes and Weights
In this section, we are going to present different quadrature rules that we have found in the literature.
We are going to present the main ideas behind Gaussian quadrature rule, since it has been used widely
in the literature to approach this problem, see e.g. [9],[6],[7],[8]. Then we are going to see how the
Gaussian quadrature was used in the literature. Finally, we are going to present quadrature rules that
rely not on a deterministic and predefined rule like the Gaussian, but rely on optimization algorithms
that work directly with the Lp([0, T]) errors, for p ∈ {1, 2}.

At the end of this section one will have an overview of all the quadrature rules that are present in
the literature for this specific problem.

5.3.1. Gaussian Quadrature Rule
In this section, we are going to present some basics but still important facts about Gaussian quadrature.

Let [a, b] a finite non empty interval, and let ω : [a, b] → R+ a positive continuous weight function. Let
instead f : [a, b] → R the function that we are trying to integrate. Consider the following approximation:∫ b

a

f(x)dx ≈
m∑
i=1

wif(xi) (5.18)

Now, we have to choose m nodes and m weights, for a total of 2m degrees of freedom. Gaussian
quadrature of level m is defined to be the quadrature that integrates exactly all polynomials up to level

5.3. Nodes and Weights 30

2m − 1 against the weight w. This means that for every polynomial up to degree 2m − 1, (5.18) is an
equality.

Now, in order to get the nodes and weights for the Gaussian rule, we need to compute the first m
orthogonal polynomials pn with respenct to the inner product:

⟨f, g⟩ω =

∫ b

a

f(x)g(x)ω(x) dx

Such polynomials can be found via a recurrence relation:

pk+1(x) =

(
x− ⟨xpk, pk⟩ω

⟨pk, pk⟩ω

)
pk(x)−

k−1∑
i=0

⟨xpi, pi⟩ω
⟨pi, pi⟩ω

pj(x)

p0(x) = 1

Then, the nodes for the Gaussian quadrature of level m are the roots of pm. It can be shown that all
these roots are real and lie in the interval [a, b]. Finally, the weights can be computed as:

wi =
⟨pm−1, pm−1⟩ω
p′m(xi)pm−1(xi)

In particular, we can find an almost explicit expression for the error given by the Gaussian quadrature
rule. In fact [13, Theorem 4.2.3]

Proposition 10. Let f : [a, b] → R be a 2m times continuously differentiable function and let wi, xi be
the nodes and weights of the Gaussian quadrature rule for i = 1, . . . ,m, then:∫ b

a

f(x)ω(x)dx−
m∑
i=1

wif(xi) =

∫ b

a

f (2m)(x)κ2m(x)dx

where κ2m is the Peano Kernel corresponding to the weight function ω.

5.3.2. Superpolynomial Rate
In this section, we are going to deep-dive into the paper of of Bayer and Breneis [7], where they give
a quadrature rule that achieves a superpolynomial rate of convergence. In particular, their idea is the
following: given the Laplace transform of the power-law Kernel

G(t) =
tH−1/2

Γ(H + 1/2)
= cH

∫ ∞

0

e−ρtρ−H−1/2dρ, cH =
1

Γ(H + 1/2)Γ(1/2−H)

they divide the positive real line into intervals, say [ξi, ξi+1] for i = 0, . . . , n, with ξi > 0. Then they apply
Gaussian quadrature of level m to those intervals with the weight function being

ω(x) := cHx
−H−1/2 (5.19)

Now, let us specify the parameters for the quadrature that are used and set this as a definition.

Definition 5.3.1. Let N ∈ N the total number of nodes and α, β, a, b ∈ (0,∞). Define A := AH =(
1
H + 1

3/2−H

)1/2
, where H ∈ (0, 1/2) is the Hurst parameter. Define:

m :=
β

A

√
N, n :=

A

β

√
N

ξ0 := a exp
(
− α

(3/2−H)A

√
N

)
, ξn := b exp

(
− α

HA

√
N
)

ξi := ξ0

(
ξn
ξ0

)i/n

, , i = 0, . . . , n

Then, define Gaussian rule of type (H,N,α, β, a, b) to be the sets of nodes and weights (xi)nmi=1,(wi)
nm
i=1

of the Gaussian quadrature rule of level m applied to the intervals [ξi, ξi+1] for i = 0, . . . , n − 1 with
the weight function ω defined as before in (5.19). In addition, they add a node x0 := 0 with weight
w0 = cH

∫ ξ0
0
x−H−1/2dx = cH

1/2−H ξ
1/2−H
0 .

5.3. Nodes and Weights 31

With this in mind, they first compute the error that is made using Gaussian quadrature on a generic
interval [a, b] with respect to the weight function ω(x) = cHx

−H−1/2. In particular [7, Lemma 2.8] reads:

Lemma 1. [7, Lemma 2.8] Let wi, xi the nodes and weights of the Gaussian quadrature rule of level
m, on the interval [a, b] with respect to the weight function ω(x) = cHx

−H−1/2. Then:∣∣∣∣∣cH
∫ b

a

e−txx−H−1/2dx−
m∑
i=1

wie
−xit

∣∣∣∣∣ ≤
√

5π3

18

cH
22m+1mH

t−1/2+H

(
b

a
− 1

)2m+1

the proof of this lemma relies on the estimate of the sup norm of the Peano kernel. Then, with those
estimates available for each sub-interval, they then use it for giving an estimate for the error on the
interval [ξ0, ξn].

Lemma 2. [7, Lemma 2.9] With the Gaussian rule of type (H,N,α, β, a, b) then one has:

∫ T

0

∣∣∣∣∣cH
∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣∣
2

dt

≤ 5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

.

Proof. recalling that

ξi+1

ξi
=

(
ξn
ξ0

)1/n

= exp α
√
N

An
A2 = exp αA

√
N

n
= eαβ

Then, using triangular inequality and lemma 1:

∫ T

0

∣∣∣∣∣cH
∫ ξn

ξ0

e−txx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣∣
2

dt

≤
∫ T

0

∣∣∣∣∣
n−1∑
i=0

√
5π3

18

cH
22m+1mH

t−1/2+H

(
ξi+1

ξi
− 1

)2m+1
∣∣∣∣∣
2

dt

=

∫ T

0

∣∣∣∣∣n
√

5π3

18

cH
22m+1mH

t−1/2+H
(
eαβ − 1

)2m+1

∣∣∣∣∣
2

dt

=
5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

Now, they give an estimate of the L2 ([0, T]) error:

Theorem 2. [7, Theorem 2.1] Let (Xt)t∈[0,T] be the strong solution to (5.2), and (X̂t)t∈[0,T] the strong
solution of (5.5), using the Gaussian rule in Definition 5.3.1, with parameters (H,N,α, β, 1, 1), with
α := 1.06418 and β := 0.4275, then:

E
[∣∣∣Xt − X̂t

∣∣∣2] ≤ CH,T,α,β exp

(
−2α

(
1

H
+

1

3/2−H

)−1/2 √
N

)

Proof. First, note that we have presented with proposition 5 already the fact that one can bound the
strong error between the solution X and X̂ with the L2([0, T]) error between the kernel g and its ap-

5.3. Nodes and Weights 32

proximation ĝ. Then let us compute the latter explicitly:∫ T

0

∣∣∣∣∣cH
∫ ∞

0

e−xtx−H−1/2dx−
N∑
i=0

wie
−txi

∣∣∣∣∣
2

dt ≤

3

∫ T

0

∣∣∣∣∣cH
∫ ξ0

0

e−xtx−H−1/2dx− w0

∣∣∣∣∣
2

dt+

+ 3

∫ T

0

∣∣∣∣∣cH
∫ ξn

ξ0

e−xtx−H−1/2dx−
N∑
i=1

wie
−txi

∣∣∣∣∣
2

dt+

+ 3

∫ T

0

∣∣∣∣cH ∫ ∞

ξn

e−xtx−H−1/2dx

∣∣∣∣2 dt
Now, for the first term:∣∣∣∣∣cH

∫ ξ0

0

e−xtx−H−1/2dx− w0

∣∣∣∣∣ = cH

∫ ξ0

0

(
1− e−tx

)
x−H−1/2 ≤ cH

∫ ξ0

0

txx−H−1/2dx

∣∣∣∣∣cH
∫ ξ0

0

e−xtx−H−1/2dx− w0

∣∣∣∣∣ ≤ cH
3/2−H

tξ
3/2−H
0 =

cH
3/2−H

texp
(
−α

A

√
N
)

Then integrating and squaring∫ T

0

∣∣∣∣∣cH
∫ ξ0

0

e−xtx−H−1/2dx− w0

∣∣∣∣∣
2

dt ≤ c2HT
3

3(3/2−H)2
exp

(
−2α

A

√
N

)
As for the last term, ∫ T

0

∣∣∣∣cH ∫ ∞

ξn

e−xtx−H−1/2dx

∣∣∣∣2 dt
= c2H

∫ T

0

∫ ∞

ξn

∫ ∞

ξn

e−t(x+y)x−H−1/2y−H−1/2dydxdt ≤

≤ c2H

∫ ∞

ξn

∫ ∞

ξn

∫ ∞

0

e−t(x+y)dtx−H−1/2y−H−1/2dydx =

= c2H

∫ ∞

ξn

∫ ∞

ξn

x−H−1/2y−H−1/2

x+ y
dydx ≤

≤ c2H
2

∫ ∞

ξn

∫ ∞

ξn

x−H−1/2y−H−1/2

√
xy

dydx

=
c2H
2H2

ξ−2H
n =

c2H
2H2

exp
(
−2α

A

√
N

)
Finally, using lemma 2 and adding the pieces together:∫ T

0

∣∣∣∣∣cH
∫ ∞

0

e−xtx−H−1/2dx−
N∑
i=0

wie
−txi

∣∣∣∣∣
2

dt ≤

3

(
c2HT

3

3(3/2−H)2
exp

(
−2α

A

√
N

)
+

5π3

36

c2HT
2H

H

n2

m2H

(
1

2

(
eαβ − 1

))4m+2

+
c2H
2H2

exp
(
−2α

A

√
N

))
=

And now inserting the values of n,m they get:

3c2H

(
T 3

3(3/2−H)2
exp

(
−2α

A

√
N

)
+

5π3

36

A2−2HT 2H

Hβ2−2H
N1−H

(
1

2

(
eαβ − 1

))4m+2

+
1

2H2
exp

(
−2α

A

√
N

))

5.3. Nodes and Weights 33

Also, recalling that m = β
A

√
N then(

1

2

(
eαβ − 1

))4m

= exp
(
log
(
1

2
(eαβ − 1)

)
4β

A

√
N

)
Then, in order to find the optimal values for α, β, they maximise α, constrained to:

log
(
1

2
(eαβ − 1)

)
4β

A

√
N = −2α

A

√
N

So that all the three terms have the same decay in N . The values that they find, for H = 0.1, α/A ≈
0.3251.

5.3.3. Improvements on the rate of convergence
In this section we are going to present the quadrature rule given by Bayer and Breneis [8], what they
call Geometric Gaussian (GG) and Non-Geometric Gaussian (NGG), for which theyt give the following
asymptotic rates of convergence:

for GG : 2(
√
2 + 1)−2

√
(H+1/2)N

for NGG : 60e−2.38
√

(H+1/2)N

Let us start with the Geometric Gaussian. The main difference from what we have discussed in the
previous section is the following: in the paper [7], they divide the half positive real line in the following
way: given a partition of the half positive real line {ξi}ni=0 ⊂ R+ they applied the following rule:

• from [0, ξ0] they approximate the integrand with a constant w0.
• in the interval [ξ0, ξn] they apply Gaussian quadrature rule up to level m in each one of the sub-
intervals [ξi, ξi+1]

n−1
i=1 with respect to the weight function as in (5.19).

Instead, in the last paper [8], their approach is slightly different:

• from [0, ξ0] they approximate the integral with a Gaussian Quadrature rule of levelm with respect
to the weight function as in (5.19).

• in the interval [ξ0, ξn] they apply Gaussian quadrature rule up to level m in each one of the sub-
intervals [ξi, ξi+1]

n−1
i=1 with respect to the weight function w ≡ 1.

In fact, they use the following definition for Geometric Gaussian Quadrature rule [8, Def. 3.1]:

Definition 5.3.2 (Geometric Gaussian quadrature rule.). Let N ∈ N the total number of nodes and
α, β, a, b ∈ (0,∞) the parameters of the scheme. Define:

m := round
(
β
√

(H + 1/2)N
)
, n := round

(
1

β

√
N

H + 1/2

)

ξ0 = 0, ξn := b exp

(
α
√
N√

1/2 +H

)
, ξi = a

(
ξn
a

) i
n

, i = 1, . . . , n

Let {xj}mj=1,{w̃j}mj=1 be respectively the nodes and the weights of a Gaussian quadrature of levelm on
the interval [0, ξ1] with respect to the weight function as in (5.19). Also let {xj}(i+1)m

j=im+1,{w̃j}(i+1)m
j=im+1 be

the nodes and weights of a Gaussian quadrature of levelm on the intervals [ξi, ξi+1] for i = 1, . . . , n− 1
with weight function w ≡ 1. Then define the Geometric Gaussian Rule of type (H,N,α, β, a, b) to be
the set of nodes and weights {xi, wi}mn

i=1 defined as:

wj := w̃j , j = 1, . . . ,m (5.20)

wj := cHw̃jx
−H−1/2
j , j = m+ 1, . . . ,mn (5.21)

Where cH is defined as in (6.9), and they assume, without affecting the convergence rate that the
product mn is integer-valued.

5.3. Nodes and Weights 34

Now, with this choice of nodes and weights Bayer proves the following Theorem that gives an
asymptotic convergence rate.

Theorem 3. [8, Theorem 3.9]. Let (xi, wi)
N
i=1 the nodes and the weights of the Geometric Gaussian

quadrature rule with α = log
(
3 + 2

√
2
)
, β = 1, a = 10

√
2−14
eT

√
(H + 1/2)N , b = 10

√
2−14
eT then one has:∫ T

0

|g(t)− ĝN (t)| dt ≤ cH
H + 1/2

(
eT

10
√
2− 14

)H+1/2 (√
2 + 1

)−2
√

(H+1/2)N

(5.22)

Other than the Geometric Gaussian rule, in [8] they introduce a so called Non-Geometric Gaussian
quadrature. The choice of weights used for the Gaussian rule is the same as for the Geometric, what
changes is the partition of the positive half real line. In fact, they define:

Definition 5.3.3. Non-Geometric Gaussian quadrature rule [8, Def 3.11]. Let N ∈ N the total number
of quadrature points used in the rule; let β, a, c ∈ (0,∞) define:

m := round
(
β
√

(H + 1/2)N
)
, n := round

(
1

β

√
N

H + 1/2

)

ξ0 = 0, ξ1 = a, ξi+1 :=

c+ ξ
1/2+H

2m
i

c− ξ
1/2+H

2m
i

 ξi, i = 1, . . . , n− 1

Here, they assume c > ξ
1/2+H

2m
i , ∀i = 1, . . . , n − 1. Then, the nodes and the weights for the quadrature

are defined exactly the same as for the Geometric Gaussian rule, using Gaussian quadrature of level
m with respect to the weight function ω(x) = cHx

−H−1/2 on the interval [0, ξ0], while for the others
intervals the weight function considered becomes ω(x) ≡ 1.

In this setting, they prove the following theorem, which again gives an asymptotic estimate for the
error:

Theorem 4. [8, Theorem 3.16] Define β0 = 0.92993273 and c0 = 3.6058502, Let ĝN a Gaussian ap-
proximation coming from a Non-Geometric Gaussian rule with parameters c ≥ c0, β ≥ β0, a > 0, where
either β or c are strictly greater than β0, c0 respectively. Then:∫ T

0

|g(t)− ĝN (t)| ≤ cH
H + 0.5

ξ−H−1/2
n ≤ C exp

(
−2.38

√
(H + 0.5)N

)
(5.23)

5.3.4. Optimal Algorithms
In this section, we are going to present three different algorithms, all from the paper by Bayer and
Breneis [8]. The name of this section comes from the fact that those algorithms, do not come from a
specific quadrature rule where the nodes and weights are specified to give a certain error bound but
they are the result of an optimization algorithm.
For an approximation of the type:

ĝN (t) =

N∑
i=1

wie
−xit, wi ∈ R, xi ∈ (0,∞), ∀i = 1, . . . , N

The algorithms that we are going to present are the following:

• OL2: Optimal L2 error, for which it optimizes the L2([0, T]) between the kernel g and its approxi-
mation ĝ.

• BL2: Bounded Optimal L2 error, for which it optimizes the L2([0, T]) between the kernel g and its
approximation ĝ, but penalizes large nodes.

• OL1: Optimal L1 error, for which it optimizes the L1([0, T]) between the kernel g and its approxi-
mation ĝ.

5.3. Nodes and Weights 35

Let us start with the first algorithm. In order to have an optimization algorithm for the L2([0, T]) error,
Bayer uses the following proposition [7], that is the result of a simple calculation of a definite integral:

Proposition 11. [7, Prop 2.12] Let (xi, wi)
N
i=0 the nodes and weights such that xi > 0, ∀i = 1, . . . , N ,

x0 = 0 and wi ∈ R, ∀i = 0, . . . , N . Let:

ĝN (t) =

N∑
i=0

wie
−xit, g (t) =

1

Γ(H + 1/2)
tH−1/2

Then, the following equality holds:∫ T

0

|ĝN (t)− g (t)|2 dt = T 2H

2HΓ(H + 1/2)2
+ w2

0T (5.24)

+ 2w0

N∑
i=1

wi

xi

(
1− e−xiT

)
+

N∑
i,j=1

wiwi

xi + xj

(
1− e−(xi+xj)T

)
− 2w0T

H+1/2

Γ(H + 3/2)
− 2

Γ(H + 1/2)

×
N∑
i=1

wi

x
H+1/2
i

∫ xiT

0

tH−1/2e−tdt

with this proposition, the OL2 algorithm, is simply given by optimizing (5.24) with respect to the
nodes and weights (xi, wi)

N
i=1, using some optimization algorithms.

As for the second algorithm, the Bounded L2, as we said before, the main idea is still to optimizing
equation (5.24), but now penalizing having large nodes. Say we want a quadrature rule with N points,
with N > 1.

In [8], Bayer and Breneis propose the following method to optimize the nodes and weights of a
quadrature rule for a given Hurst parameter H ∈ (−1/2, 1/2), time horizon T > 0, and number of
nodes N ∈ N. For a fixed ϵ ∈ (0, 1) and for a fixed q ∈ (1,∞):

1. If N = 1 return the result from the OL2 method.
2. Set the side length L of the hypercube to 1.
3. Use an optimization algorithm to search for the nodes within the hypercube [0, L]

N , and save the
rule, ruleN and the error errN

4. Use an optimization algorithm to search for the nodes within the hypercube [0, L]
N−1, and save

the rule, ruleN−1 and the error errN−1

5. if errN < (1 − ϵ)errN−1, meaning that there is a relative improvement of the error of at least ϵ
then return ruleN

6. otherwise, increase the size of the search space by setting the side of the hypercube to L = qL,
for some q ∈ (0,∞) and then repeat the algorithm until termination from point 3

This method systematically increases the search space for the quadrature nodes and weights, itera-
tively adjusting the hypercube’s side length to minimize the L2([0, T]) error. In the paper of Bayer and
Breneis [8], this algorithm is the one that is capable to obtain the best results in every way possible:
the size of the largest node remains relatively small, especially if compared with the nodes given by
the OL2 algorithm. Both the strong and the weak convergence outperform every other quadrature rule
that we have presented so far.
Lastly, we will present the OL1 algorithm, which is the last algorithm of this type introduced by Bayer
and Breneis in [8]. The idea is still the same: optimize the L1([0, T]) error. The only difference is that
there is no analytic expression available like for the L2([0, T]) error as in (5.24). In Appendix E of [8]
they explain how to compute the following quantity:∫ T

0

|g(t)− ĝN (t)| dt

5.3. Nodes and Weights 36

in particular the idea of the algorithm is the following: first compute all the intersections between g and
ĝN , say that there are M intersection: {ti}Mi=1. Then, when one has all the intersections between the
kernel and its approximation, then one can compute exactly the integral above in the following way:∫ T

0

|g(t)− ĝN (t)| dt =
M−1∑
i=1

∣∣∣∣∫ ti+1

ti

g(t)− ĝN (t)dt

∣∣∣∣
where in the right hand side of the equation, one can compute the integrals explicitly. The main problem
of this method, is that the root finding algorithm, even if it is sure to converge and find all the roots,
may take a long time to compute. Already for N = 7, the computational time exceeds the minute
in computing time. However, this method, being far from fast, it’s very efficient and yields very good
results in terms both of weak and strong convergence. Also, the size of the nodes remains relatively
small compared to the OL2.

6
Sinc: How it works

In this section, we will introduce the theory behind SINC quadrature. The main idea behind it, is to
use first the Laplace transform of the rough kernel g, which is an integral over the real positive half line
and transform it into an integral over the whole real line. After this change of variable, we successfully
remove the singularity of the integrand in zero and obtain a function that is analytic over the whole real
line. With this new integrand, we employ a simple trapezoidal rule. Thanks to the regularity of the new
integrand, we can obtain error bounds that decay exponentially in the total number of nodes used in
the quadrature rule.

We will start by presenting the main tool from complex analysis that we will use: the Residue The-
orem. Following that, we will discuss the results from [36], where it is shown that for a relatively large
class of functions defined in a domain in the complex plane, one can achieve high accuracy using a
very simple quadrature rule: the trapezoidal rule. We will reproduce the main proofs given by Lund and
Bowers, which will provide the key ideas for arriving at an efficient solution to our problem.

6.1. Preliminaries
In this section we introduce the key concepts and results from complex analysis that will be needed for
the computation of the error bound of the SINC quadrature. We will not provide a proof of the Residue
Theorem here, as it can be found in many introductory texts on complex analysis, such as [40].

Theorem 5 (Residue Theorem). Let Ω a domain1,if f is analytic in Ω\{zj}nj=1 and {zj}nj=1 is contained
in the interior of the simple closed contour γ ⊂ Ω then:∫

γ

f(z) dz = 2πi

n∑
j=0

Res(f, zj),

where if the singularity is a simple pole one can compute the residue as

Res(f, z) := lim
x→z

f(x)(z − x)

Now the main idea, is that we need to compute an integral over the real line, so we that f is analytic
in a domain containing R.

Definition 6.1.1. We say thatDd denotes the infinite strip domain of height 2d, d > 0 whereDd is given
by:

Dd := {z ∈ C | z := x+ iy, x ∈ R, |y| < d} (6.1)

Now, let’s introduce the class of functions for which we can apply the SINC quadrature.
1For a Domain we use the standard definition being: a domain Ω is defined as an open, simply connected subset of C, where

simply connected means that C ∪ {∞} \ Ω is connected.

37

6.1. Preliminaries 38

Definition 6.1.2. Say that f ∈ B (Dd) if f is analytic in Dd and satisfies:∫ d

−d

|f (x+ iy)| dy = O (|x|α) , x→ ∞, α ∈ [0, 1) (6.2)

Also, f must satisfy the following condition:

N(f,Dd) := lim
y→d−

∫ ∞

−∞
|f(x+ iy)|+ |f(x− iy)|dx <∞. (6.3)

Remark. Condition (6.2) asks the integral of the function f over vertical segments in the complex plane
to grow at most like a power law function, with exponent less than one. This condition will be crucial in
computing exactly the error that one has when using the trapezoidal rule. Condition (6.3) instead will
be part of the estimate for the error.

Now that we have the main tools and definitions, we can move on and reproduce the proof of [36,
Theorem 2.13]. First they give an analytic formula for the error that one has when using the SINC basis
functions for interpolating a function.

Theorem 6. [36, Theorem 2.13] Let f ∈ B (Dd) and h > 0, then:

f (x)−
∞∑

k=−∞

f(kh)sinc

(
(x− kh)

h

)
= (6.4)

=
sin
(
πx
h

)
2πi

∫ ∞

−∞

(
F (x, u− id−)

sin (π (u− id−) /h)
− F (x, u+ id−)

sin (π (u+ id−) /h)

)
du

:= Sh(x)I(f, h)(x)

:= ε(x)

Where, define:

∀x ∈ R, sinc(x) =
sin (πx)
πx

χR\{0} (x) + χ{0} (x) ,

where χA(x) is the characteristic function of the set A, that yields one if x ∈ A and 0 if x /∈ A

F (x, u± iv) =
f (u± iv)

u± iv − x

Sh(x) :=
sin
(
πx
h

)
2πi

I(f, h)(x) =

∫ ∞

−∞

(
F (x, u− id−)

sin (π (u− id−) /h)
− F (x, u+ id−)

sin (π (u+ id−) /h)

)
du

Proof. Let yn = d− 1
n and define the domain:

Rn :=

{
z ∈ C : z = x+ iy |y| < yn, −

(
n+

1

2

)
h < x <

(
n+

1

2

)
h

}
Define also, ∂Rn as the boundary ofRn. It is clear than thatRn → Dd as n→ ∞. Applying the Residue
Theorem to the integral of

g(z) =
sin
(
πx
h

)
f(z)

(z − x) sin
(
πz
h

)

6.1. Preliminaries 39

One obtains:

In := Sh(x)

∫
∂Rn

f(z)dz

(z − x) sin
(
πz
h

)
= f(x)−

n∑
k=−n

f(kh)sinc

(
(x− kh)

h

)
So, since In is a sequence of rectangles that converges to the infinite strip Dd and also from the last
equation, one can easily see that

lim
n→∞

In = ε(x)

where ε(x) being the same as in (6.4).
Also, integrating around ∂Rn we get exactly four terms, one for each side of the rectangle that we

are integrating on:

In(x) = Sh(x)

{∫ yn

−yn

F (x, (n+ 1/2)h+ iy) idy

sin (π ((n+ 1/2)h+ iy) /h)
+

∫ yn

−yn

F (x,−(n+ 1/2)h+ iy) idy

sin (π (−(n+ 1/2)h+ iy) /h)

}
(6.5)

+ Sh(x)

{∫ −(n+1/2)h

(n+1/2)h

F (x, u+ iyn) du

sin (π (u+ iyn) /h)
+

∫ (n+1/2)h

−(n+1/2)h

F (x, u− iyn) du

sin (π (u− iyn) /h)

}

Now, for the first two terms, i.e. the terms representing the vertical lines on the rectangle ∂Rn we have:

sin [π ((n+ 1/2)h+ iy) /h]

= ± sin
(
2n+ 1

2
π

)
cosh (πy/h) + i cos

(
2n+ 1

2
π

)
sinh (πy/h)

= ±(−1)n cosh (πy/h)

Then:
|sin [π ((n+ 1/2)h+ iy) /h]| = cosh (πy/h) ≥ 1

And also:

|± (n+ 1/2)h+ iy − x| ≥ |± (n+ 1/2)h− x|

So we can bound:∣∣∣∣Sh(x)

{∫ yn

−yn

F (x, (n+ 1/2)h+ iy) idy

sin (π ((n+ 1/2)h+ iy) /h)
+

∫ yn

−yn

F (x,−(n+ 1/2)h+ iy) idy

sin (π (−(n+ 1/2)h+ iy) /h)

}∣∣∣∣
≤
∫ yn

−yn

|f (x, (n+ 1/2)h+ iy)|
|(n+ 1/2)h− x|

dy +

∫ yn

−yn

|f (x,−(n+ 1/2)h+ iy)|
|(n+ 1/2)h+ x|

dy → 0

as n→ ∞, using the hypothesis (6.2). So that we have:

ε(x) = lim
n→∞

In(x)

= Sh(x) lim
n→∞

∫ (n+1/2)h

−(n+1/2)h

{
F (x, u− iyn)

sin (π (u− iyn) /h)
− F (x, u+ iyn) du

sin (π (u+ iyn) /h)

}
du

= Sh(x)

∫ ∞

−∞

{
F (x, u− id−)

sin (π (u− id−) /h)
− F (x, u+ id−) du

sin (π (u+ id−) /h)

}
du

And this shows the thesis (6.4).
Instead, if we want to have a bound for the modulus of the error, then if we consider the following

two inequalities:

|u± id− x| ≥ d (6.6)

|sin [π (u± id) /h]| = |sin(πu/h) cosh (πd/h)± i cos (πu/h) sinh (πd/h)| ≥ sinh (πd/h) (6.7)

6.1. Preliminaries 40

So using (6.6) and (6.7) then one gets:

|ε (x)| = |Sh(x)|
∣∣∣∣∫ ∞

−∞

{
F (x, u− id−)

sin (π (u− id−) /h)
− F (x, u+ id−) du

sin (π (u+ id−) /h)

}
du

∣∣∣∣
≤ 1

2πd sinh (πd/h)

∫ ∞

−∞

{∣∣f (u+ id−
)
+ f

(
u− id−

)∣∣} du
≤ N (f,Dd)

2πd sinh (πd/h)

This theorem however, it’s not directly useful for our purpose, but it will be used for showing the
that in fact the error of the trapezoidal rule, decays in fact exponentially for all the functions in the class
B (Dd). In particular we have:

Theorem 7. [36, Theorem 2.20] If f ∈ B (Dd)and h > 0 then:∫ ∞

−∞
f (x) dx− h

∞∑
k=−∞

f (kh) ≡ η (6.8)

where:

η =

∫ ∞

−∞
ε (x) dx

=
e−πd/h

2i

∫ ∞

−∞

[
f (u+ id−) eiπu/h

sin (π (u+ id−) /h)
− f (u− id−) e−iπu/h

sin (π (u− id−) /h)

]
du

Proof. Integrate equation (6.4), i.e.:∫ ∞

−∞
f (x) dx−

∫ ∞

−∞

∞∑
k=−∞

f(kh)sinc

(
(x− kh)

h

)
dx =

=
sin
(
πx
h

)
2πi

∫ ∞

−∞

(
F (x, u− id−)

sin (π (u− id−) /h)
− F (x, u+ id−)

sin (π (u+ id−) /h)

)
du

Now, the right hand side of the equation above can be elaborated using again the Residue Theorem,
in fact: ∫ ∞

−∞
sinc

(
(x− kh)

h

)
=

∫ ∞

−∞

sin (π (x− kh) /h)

π (x− kh) /h
= h

so that the right hand side becomes exactly the error between the integral of f and the integral computed
with trapezoidal rule: ∫ ∞

−∞

∞∑
k=−∞

f(kh)sinc

(
(x− kh)

h

)
dx = h

∞∑
k=−∞

f (kh)

On the other hand, one has:∫ ∞

−∞

sin
(
πx
h

)
2πi

∫ ∞

−∞

F (x, u± id−)

sin (π (u± id−) /h)
dudx

=

∫ ∞

−∞

∫ ∞

−∞

sin
(
πx
h

)
2πi(u± id− − x)

f (u± id−)

sin (π (u± id−) /h)
dxdu

Integrating first in x, we have that:∫ ∞

−∞

sin (πx/h)
u± id− − x

dx = −πeiπξsign(ℑ(ξ)), ξ = u± id−

6.2. SINC Quadrature 41

where ℑ is the imaginary part of a complex number. So that, putting all the pieces together, one obtains
the thesis. Moreover, If we want to bound the absolute value of the error, then one has:

|η| ≤ e−πd/h

∫ ∞

−∞

[∣∣∣∣ f (u+ id−) eiπu/h

sin (π (u+ id−) /h)

∣∣∣∣+ ∣∣∣∣f (u− id−) e−iπu/h

sin (π (u− id−) /h)

∣∣∣∣] du
= e−πd/h

∫ ∞

−∞

[
|f (u+ id−)|

|sin (π (u+ id−) /h)|
+

|f (u− id−)|
|sin (π (u− id−) /h)|

]
du

≤ e−πd/h

sinh (πd/h)

∫ ∞

−∞

∣∣f (u+ id−
)∣∣+ ∣∣f (u− id−

)∣∣ du =
e−πd/hN(f,Ds)

sinh (πd/h)

where it has been used the bound for the denominator as in (6.7)

Now, this theorem made us clear that it is possible to achieve exponential convergence in the step-
size h. However, one needs also to ask the integrand itself to decay such a way, that the tails of the
integral can keep up with an exponential decay of the SINC quadrature error. In fact, we need to deal
with truncated series of the trapezoidal rule.In order to give some heuristics about this we will reproduce
the idea of the proof of Theorem 2.21 of [36]. Suppose that we have a positive function f ∈ B (Dd) and
also suppose that ∃C,α ∈ R+ such that:

f : R → R+, f(x) ≤ Ce−α|x|, x→ ±∞

and say we have two integersM,N ∈ N. To compute the absolute error between the truncated trape-
zoidal rule with step size h and the integral of f one has:∣∣∣∣∣

∫
R
f(x)dx− h

N∑
k=−M

f(kh)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
R
f(x)dx− h

∞∑
k=−∞

f(kh)

∣∣∣∣∣+ h

∞∑
k=M+1

f(−kh) + h

∞∑
k=N+1

f(kh)

We already know, from theorem (7), that the first term of the equation above, has a decay that is
proportional to e−πd/h. So in this case, where f becomes exponentially small for x → ±∞, then one
can bound the tails of the series with2:

h

∞∑
k=M+1

f(kh) ≤ hC

∞∑
k=M+1

e−α|kh| <
hC

1− e−αh
e−αMh

and with the same reasoning, one can bound the other tail of the series. In this way, one is sure to
have exponential convergence rate also for the truncated trapezoidal rule.

6.2. SINC Quadrature
Now, we are going to introduce a quadrature rule for the fractional kernel that exploits a change of
variable of the Laplace transform of G(τ) = τH−1/2

Γ(H+1/2) , for H ∈ (−1/2, 1/2) , τ > 0.
So, the Laplace transform reads:

τH−1/2

Γ(H + 1/2)
= cH

∫ ∞

0

e−ρτρ−H−1/2dρ

cH =
1

Γ(H + 1/2)Γ(1/2−H)
(6.9)

Now, change variables so that the integral on the positive real half-line becomes an integral on the
whole real line:

logρ = x→ dρ

ρ
= dx

2the inequality comes from the fact that ∀r ∈ (0, 1) and ∀K ∈ N we have that
∑∞

k=K+1 r
k = rK+1

1−r
< rK

1−r

6.2. SINC Quadrature 42

So that we have:

G(τ) = cH

∫ ∞

0

e−ρτρ−H−1/2+1 1

ρ
dρ = cH

∫ ∞

−∞
e−τex+(1/2−H)xdx

i.e.:

G(τ) = cH

∫ ∞

−∞
e−τex+(1/2−H)xdx

First, fix H ∈ (−1/2, 1/2), T > 0 and define the family of functions:

GH :=
{
fτ : C → C : fτ (z) = cHe

−τez+(1/2−H)z
}
τ∈(0,T]

(6.10)

with cH as in (6.9) To apply the SINC quadrature, we need to check first that there exists a d > 0 such
that GH ⊂ B(Dd). We first note that ∀fτ ∈ GH , we have that fτ is entire. Also, the modulo of fτ reads:

∀z ∈ C : z = x+ iy ⇒ |fτ (z)| = cH |e−τex+iy+(1/2−H)(x+iy)| = e−τexcosye(1/2−H)x

So that in particular:

|fτ (x+ iy)| = |fτ (x− iy)|

Now, we want a constant d > 0 such that for every τ > 0 one has fτ ∈ B(Dd). So this would require:

∃d ∈ R+, ∃a ∈ (0, 1) :

∫ d

−d

|fτ (x+ iy)|dy = O(|x|a), ∀τ > 0

and in fact we have, ∀0 < d < π/2:∫ d

−d

|fτ (x+ iy)|dy =

∫ d

−d

e−τexcosye(1/2−H)xdy ≤ cH2de−τexcosde(1/2−H)x

with the right hand side being O(|x|a), ∀a ∈ (0, 1) since both x limits ±∞ tend to zero. Note that here it
is necessary for d to be strictly less than π/2, otherwise the limit for x→ +∞ would diverge more than
exponentially. Moreover, since the modulo of fτ depends only on the cosine of y in [−π/2, π/2] (6.2)
becomes

N(fτ , DS) = lim
y→d−

∫ ∞

−∞
|fτ (x+ iy)|+ |fτ (x− iy)|dx = 2 lim

y→d−

∫ ∞

−∞
|fτ (x+ iy)|dx

= 2 lim
y→d−

∫ ∞

−∞
cHe

−τexcosye(1/2−H)xdx = 2cH lim
y→d−

(τ cos y)H−1/2Γ(1/2−H)

i.e.:

N(fτ , DS) = 2cH(τ cos d)H−1/2Γ(1/2−H) <∞ ∀τ > 0 (6.11)

We just have shown then, that if d ∈ (0, π/2) then fτ ∈ B(Dd), ∀τ > 0.
Now, using triangular inequality one can obtain an estimate for the absolute error:∣∣∣∣∣
∫
R
fτ (x)dx− h

N∑
k=−M

fτ (kh)

∣∣∣∣∣ =
∣∣∣∣∣
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh) + h

−M−1∑
k=−∞

fτ (kh) + h

∞∑
k=N+1

fτ (kh)

∣∣∣∣∣
(6.12)

The first term, can be bounded using theorem 7 by:∣∣∣∣∣
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh)

∣∣∣∣∣ ≤ N(fτ , DS)e
−πd/h

sinh(πd/h)
=
cH(τ cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
(6.13)

6.3. Computation of the L1 error 43

The second term in (6.12), instead we can easily bound it by:

x ∈ (−∞, 0) ⇒ fτ (x) = cHe
−τex+(1/2−H)x ≤ cHe

(1/2−H)x ⇒

h

−M−1∑
k=−∞

cHe
−τekh+(1/2−H)kh ≤ hcH

∞∑
k=M+1

e−(1/2−H)kh ≤ hcH
e−(1/2−H)Mh

(1/2−H)h
= cH

e−(1/2−H)Mh

(1/2−H)

As for the last term, it is easier to compute the bound for the Li ([0, T]) , i = 1, 2 instead of the absolute
error. In the end, we have obtained that the bound for the absolute error reads:∣∣∣∣∣

∫
R
fτ (x)dx− h

N∑
k=−M

fτ (kh)

∣∣∣∣∣
≤ cH(τ cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
+ cH

e−(1/2−H)Mh

(1/2−H)
+ h

∞∑
k=N+1

fτ (kh) (6.14)

Define each one of the terms as:

I :=
cH(τ cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
(6.15)

II := cH
e−(1/2−H)Mh

(1/2−H)
(6.16)

III := h

∞∑
k=N+1

fτ (kh) (6.17)

6.3. Computation of the L1 error
In this section we will compute the L1([0, T]) error for the SINC quadrature, in particular we want to
compute such error for H ∈ (−1/2, 1/2). Now we will compute, using (6.14):∫ T

0

∣∣∣∣∣
∫
R
fτ (x)dx− h

N∑
k=−M

fτ (kh)

∣∣∣∣∣ dτ ≤
∫ T

0

(I + II + III) dτ

As for the first two terms (6.15), (6.16), by basic integration rules:∫ T

0

[
cH(τ cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
+ cH

e−(1/2−H)Mh

(1/2−H)

]
dτ =

cHT
H+1/2(cos d)H−1/2Γ(1/2−H)e−πd/h

(H + 1/2) sinh(πd/h)
+ TcH

e−(1/2−H)Mh

(1/2−H)

While for the last term of the sum (6.17), we need to apply Monotone Convergence Theorem, to ex-
change summation and integration:∫ T

0

h

∞∑
k=N+1

fτ (kh)dτ =

∞∑
k=N+1

h

∫ T

0

fτ (kh)dτ =

∞∑
k=N+1

h

∫ T

0

cHe
−τekh+(1/2−H)khdτ

≤ hcH

∞∑
k=N+1

∫ ∞

0

e−τekh+(1/2−H)khdτ = hcH

∞∑
k=N+1

e−(1/2+H)kh ≤ cH
e−(1/2+H)Nh

(1/2 +H)

6.3. Computation of the L1 error 44

So that the bound for the L1 ([0, T]) error reads:∫ T

0

∣∣∣∣∣
∫
R
fτ (x)dx− h

N∑
k=−M

fτ (kh)

∣∣∣∣∣ dτ
≤ cHT

H+1/2(cos d)H−1/2Γ(1/2−H)e−πd/h

(H + 1/2) sinh(πd/h)
+ TcH

e−(1/2−H)Mh

(1/2−H)
+ cH

e−(1/2+H)Nh

(1/2 +H)

Now, let us chooseM,N such that the last two terms have the same exponential rate of convergence.
For instance, take β ∈ (0,∞) and setM = ⌈βN⌉, then one has:

(1/2−H)⌈βN⌉h ≥ (1/2−H)βNh = (1/2 +H)Nh

So if we choose

β =
1/2 +H

1/2−H
, (6.18)

then one can note that if H ≥ 0, then β ≥ 1 and vice versa. For now, we can just consider the case
where H is positive. If H is negative, just consider N = ⌈ 1

βM⌉
So with the choice of β as in (6.18) one has:

TcH
e−(1/2−H)⌈βN⌉h

(1/2−H)
+ cH

e−(1/2+H)Nh

(1/2 +H)
≤ TcH

e−(1/2−H)βNh

(1/2−H)
+ cH

e−(1/2+H)Nh

(1/2 +H)

= cH

(
T

1/2−H
+

1

1/2 +H

)
e−(1/2+H)Nh

Now, we can rewrite the hyperbolic sine as:

∀x ∈ R : sinh(x) = 1− e−2x

2e−x
⇒ (sinh (πd/h))−1

=
2e−πd/h

1− e−2πd/h
(6.19)

Then we can bound the L1 ([0, T]) norm of I in (6.15) as:∫ T

0

I dτ =
cHT

H+1/2(cos d)H−1/2Γ(1/2−H)e−πd/h

(H + 1/2) sinh(πd/h)

≤ cH2TH+1/2(cos d)H−1/2Γ(1/2−H)

(H + 1/2)(1− e−2πd/h)
e−2πd/h

then, set equal convergence rate for all the terms:

2πd

h
= (1/2 +H)Nh ⇒ h =

√
2πd

(1/2 +H)N
,

so that we have

(1/2 +H)Nh =
√
2πd(1/2 +H)N

Now, we have K nodes where, with the choice of beta as in (6.18):

K = N +M + 1 = N + ⌈βN⌉+ 1 ≤ N + ⌈β⌉N +N ⇒

N ≥ K

⌈β⌉+ 2
= K

1/2−H

3/2−H
≥ K(1/2−H)

and using the fact that N ≥ K(1/2−H) we get:√
2πd(1/2 +H)N ≥

√
πd(1/2− 2H2)K

The final estimate on the L1 ([0, T]) error reads then:

cH

(
2TH+1/2(cos d)H−1/2Γ(1/2−H)

(H + 1/2)(1− e−2πd/h)
+

T

1/2−H
+

1

1/2 +H

)
e−

√
πd(1/2−2H2)K (6.20)

6.4. Computation of the Lp error 45

6.4. Computation of the Lp error
In this section, let us consider p > 1, H ∈ (−1/2, 1/2). In particular, since the kernel G (τ) is a power-
law of exponent H − 1/2, to guarantee integrability, we need to restrain p to be p < 1

1/2−H . So in
particular, for negative H, we have that p < 1

1/2−H < 2.
With this choice, let us compute the Lp ([0, T]) norm of the error that we get from approximating our

kernel with the SINC quadrature, reminding first that:

fτ (x) = CHe
−τex+γx, τ ∈ (0, T], γ = 1/2−H

Where cH is as in (6.9)∥∥∥∥∥
∫
R
fτ (x)dx− h

N∑
K=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

=

∥∥∥∥∥
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh) + h

∞∑
k=M+1

fτ (−kh) + h

∞∑
k=N+1

fτ (kh)

∥∥∥∥∥
Lp([0,T])

using triangular inequality for Lp norms:

≤

∥∥∥∥∥
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh)

∥∥∥∥∥
Lp([0,T])

+

∥∥∥∥∥h
∞∑

k=M+1

fτ (−kh)

∥∥∥∥∥
Lp([0,T])

+

∥∥∥∥∥h
∞∑

k=N+1

fτ (kh)

∥∥∥∥∥
Lp([0,T])

Define now, for clarity:

A :=

∥∥∥∥∥
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh)

∥∥∥∥∥
Lp([0,T])

(6.21)

B :=

∥∥∥∥∥h
∞∑

k=M+1

fτ (−kh)

∥∥∥∥∥
Lp([0,T])

(6.22)

C :=

∥∥∥∥∥h
∞∑

k=N+1

fτ (kh)

∥∥∥∥∥
Lp([0,T])

(6.23)

Let’s evaluate first the left and right tail of the series, (6.22) and (6.23). Using the continuity of the
Lp([0, T]) norm:∥∥∥∥∥h

∞∑
k=M+1

fτ (−kh)

∥∥∥∥∥
Lp([0,T])

+

∥∥∥∥∥h
∞∑

k=N+1

fτ (kh)

∥∥∥∥∥
Lp([0,T])

= h

∞∑
k=M+1

∥fτ (−kh)∥Lp([0,T]) + h

∞∑
k=N+1

∥fτ (kh)∥Lp([0,T])

= cHh

∞∑
k=M+1

(∫ T

0

e−pτe−kh−pγkhdτ

)1/p

+ cHh

∞∑
k=N+1

(∫ T

0

e−pτekh+pγkhdτ

)1/p

= cHh

∞∑
k=M+1

e−γkh

(∫ T

0

e−pτe−kh

dτ

)1/p

+ cHh

∞∑
k=N+1

eγkh

(∫ T

0

e−pτekh

dτ

)1/p

= cHh

∞∑
k=M+1

e−γkh

(
ekh

p

(
1− e−pTe−kh

))1/p

+ cHh

∞∑
k=N+1

eγkh
(
e−kh

p

(
1− e−pTekh

))1/p

(6.24)

Using now the fact that 1 − e−x ≤ x in the first term of (6.24) and 1 − e−x ≤ 1 for the second term in

6.4. Computation of the Lp error 46

(6.24) one has:

≤ cHh

∞∑
k=M+1

e−γkh

(
ekh

p
pTe−kh

)1/p

+ cHh

∞∑
k=N+1

eγkh
(
e−kh

p

)1/p

= T
1
p cHh

∞∑
k=M+1

e−γkh + p−
1
p cHh

∞∑
k=N+1

e−(1/p−γ)kh

= T
1
p cHh

e−γMh

1− e−γh
+ p−

1
p cHh

e−(1/p−γ)Nh

1− e−(1/p−γ)h

Now, the first term converges, since γ > 0, as for the second term, we need to impose: γ − 1/p < 0 i.e.
p < 1/γ = 1

1/2−H . As for the term (6.21), thanks to theorem 7, we have an explicit expression, that is
the one of (6.13) so that:

A :=

∥∥∥∥∥
∫
R
fτ (x)dx− h

∞∑
k=−∞

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤
∥∥∥∥cH(τ cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)

∥∥∥∥
Lp([0,T])

≤ cH(cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
TH−1/2+1/p

(p(H − 1/2) + 1)
1/p

As we did before, we can rewrite the Hyperbolic sine with (6.19):

=
cH(cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
TH−1/2+1/p

(p(H − 1/2) + 1)
1/p

≤ 2cH(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(
1− e−2πd/h

)
(p(H − 1/2) + 1)

1/p
e−2πd/h

Putting together all the estimates for A,B,C we obtain:∥∥∥∥∥
∫
R
fτ (x)dx− h

N∑
K=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤ A+B + C

≤ 2cH(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(
1− e−πd/h

)
(p(H − 1/2) + 1)

1/p
e−2πd/h + T

1
p cHh

e−(1/2−H)Mh

1− e−(1/2−H)h
+ p−

1
p cHh

e−(1/p−(1/2−H))Nh

1− e−(1/p−(1/2−H))h

Now, we have three convergence rate for A,B,C i.e.:

A ∝ e−2πd/h

B ∝ e−(1/2−H)Mh

C ∝ e−(1/p−1/2+H)Nh

Since our benchmark will be the error in function of the total number of nodes, let’s say that there are
in our quadrature rule exactly K points. So the relation will be:

K =M +N + 1 ⇒M = K −N − 1 ⇒

B ≤ T
1
p cHh

e−(1/2−H)(K−N−1)h

1− e−(1/2−H)h
= T

1
p cHhe

(1/2−H)h e
−(1/2−H)(K−N)h

1− e−(1/2−H)h

Now, we can equate all the exponents, so that we have the same rate of convergence for all the terms:

2πd/h = (1/2−H)(K −N)h, (1/2−H)(K −N)h = (1/p− 1/2 +H)Nh

h2 =
2πd

(1/2−H)(K −N)
, p(1/2−H)K = N (6.25)

6.4. Computation of the Lp error 47

For the last equation to have sense, we need to impose that p(1/2 − H) ≤ 1, i.e.: p ≤ 1/(1/2 − H),
which is exactly what we asked p to be at the beginning of this section. If we now substitute h into the
exponent 2πd/h we obtain:

2πd/h =
√
2πd(1/2−H) (1− p (1/2−H))K (6.26)

This is accomplished, with step size:

h =

√
2πd

(1/2−H)(1− p(1/2−H))K

N = ⌈(K(1/2−H)p)⌉
M = ⌈(K −N − 1)⌉

Where with ⌈·⌉ we denote the ceil function, that takes a real integer and approximate it to the closest
and nearest integer, then if we put all the pieces back together:∥∥∥∥∥

∫
R
fτ (x)dx− h

N∑
k=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤ cH

(
2(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(

1− e−2πd/h
)
(p(H − 1/2) + 1)

1/p
+

T
1
phe(1/2−H)h

1− e−(1/2−H)h
+

p−
1
ph

1− e−(1/p−(1/2−H))h

)
× e−

√
2πd(1/2−H)(1−p(1/2−H))K

We note here that, this results coincides with the result previously found for p = 1. So, until now, we
have shown the following theorem:

Theorem 8. For a fixed T > 0 and H ∈ (−1/2, 1/2) and 1 ≤ p < 1
1/2−H and for a given d ∈ (0, π/2).

Then for every K ∈ N set:

h =

√
2πd

(1/2−H)(1− p(1/2−H))K
(6.27)

N = ⌈(K(1/2−H)p)⌉ (6.28)
M = K −N − 1 (6.29)

Let (xi, wi)
K
i=1 the nodes and weights of the SINC quadrature rule given by:

xi = e(i−M)h, wi = hcHe
(1/2−H)(i−M), i = 0, . . . ,M +N

where rd denotes the function that rounds every real number to its nearest integer, and cH the constant
defined as in (6.9). Then one has, for this choice of nodes and weights the following error bound:∥∥∥∥∥ τH−1/2

Γ(H + 1/2)
−

N∑
k=−M

wie
−τxi

∥∥∥∥∥
Lp([0,T])

≤ cH

(
2(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(

1− e−2πd/h
)
(p(H − 1/2) + 1)

1/p
+

T
1
phe(1/2−H)h

1− e−(1/2−H)h
+

p−
1
ph

1− e−(1/p−(1/2−H))h

)
× e−

√
2πd(1/2−H)(1−p(1/2−H))K (6.30)

Another path that one can take, instead of bounding the Hyperbolic sin with (6.19) and obtaining:

=
cH(cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
TH−1/2+1/p

(p(H − 1/2) + 1)
1/p

≤ cH(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(
1− e−2πd/h

)
(p(H − 1/2) + 1)

1/p
e−2πd/h

6.4. Computation of the Lp error 48

one, can also use the following inequality [3]:

sinh(z) > z cosh4/3(z/2) > ze2/3z, ∀z ∈ (0,∞).

Then, one obtains:

=
cH(cos d)H−1/2Γ(1/2−H)e−πd/h

sinh(πd/h)
TH−1/2+1/p

(p(H − 1/2) + 1)
1/p

≤ hcHT
H−1/2+1/p(cos d)H−1/2Γ(1/2−H)

πd (p(H − 1/2) + 1)
1/p

e−π 5
3d/h

Putting together all the estimates for A,B,C we obtain:∥∥∥∥∥
∫
R
fτ (x)dx− h

N∑
K=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤ A+B + C

≤ hcHT
H−1/2+1/p(cos d)H−1/2Γ(1/2−H)

πd (p(H − 1/2) + 1)
1/p

e−π 5
3d/h + T

1
p cHh

e−(1/2−H)Mh

1− e−(1/2−H)h
+ p−

1
p cHh

e−(1/p−(1/2−H))Nh

1− e−(1/p−(1/2−H))h

Remark. Note that in the bounds that we have just given, we have that only one of the two tail has a
dependency on time. So this means that for smaller T , we will need a lower number forM

Now, we have three convergence rate for A,B,C i.e.:

A ∝ e−π 5
3d/h

B ∝ e−(1/2−H)Mh

C ∝ e−(1/p−1/2+H)Nh

doing the same reasoning as before we have:

K =M +N + 1 ⇒M = K −N − 1 ⇒

B ≤ T
1
p cHh

e−(1/2−H)(K−N−1)h

1− e−(1/2−H)h
= T

1
p cHhe

(1/2−H)h e
−(1/2−H)(K−N)h

1− e−(1/2−H)h

Now, we can equate all the exponents, so that we have the same rate of convergence for all the terms:

5

3
πd/h = (1/2−H)(K −N)h, (1/2−H)(K −N)h = (1/p− 1/2 +H)Nh

h2 =
5πd

3(1/2−H)(K −N)
, p(1/2−H)K = N

For the last equation to have sense, we need to impose that p(1/2 − H) ≤ 1, i.e.: p ≤ 1/(1/2 − H),
which is exactly what we asked p to be at the beginning of this section. If we now substitute h into the
exponent 5πd/3h we obtain:

5

3
πd/h =

√
5

3
πd(1/2−H) (1− p (1/2−H))K (6.31)

This is accomplished, with step size:

h =

√
5πd

3(1/2−H)(1− p(1/2−H))K

N = ⌈(K(1/2−H)p)⌉
M = ⌈(K −N − 1)⌉

6.4. Computation of the Lp error 49

then if we put all the pieces back together, setting γ = (1/2−H):∥∥∥∥∥
∫
R
fτ (x)dx− h

N∑
K=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤ cH

(
hcHT

γ+1/p(cos d)γΓ(γ)
πd (pγ + 1)

1/p
+

T
1
pheγh

1− e−γh
+

p−
1
ph

1− e−(1/p−γ)h

)
× e−

√
5
3πdγ(1−pγ)K (6.32)

In the next section, we are going to compare the two different quadrature rules that we have given
here in (6.32) and in (6.30)

7
Numerics

In this section, first we are going to present two algorithms that we have developed to obtain the nodes
and weights of the SINC quadrature rule, secondly we are going to present the numerical experiments
that we have performed. In particular, we will evaluate the goodness of the SINC quadrature rule, via
different metrics, inspired by the paper [8]. In their paper, they evaluate different quadrature rules via
different methods:

• For different Hurst parameters H, plot the relative Lp ([0, T]) , p = 1, 2 error between the real
kernel and its approximation against the number of quadrature points.

• Numerically verify that the theoretical convergence rate that we found is in line with the one that
we found in chapter 6.

• Compare the computational time to get the quadrature nodes of the SINC compared with the
ones reported by the various paper that we analysed in the literature review.

• Compare the largest node between different quadrature rules. As remarked in [8], having nodes
that are small, improves the numerical stability of the pricing method and lower computational
times.

• Compute implied volatility smiles for European call options under the Rough Heston model for
different values of the Hurst parameter and for different maturities and compare it with the other
quadrature rules presented in chapter 5.

• Compute Implied Volatility surfaces under the Rough Heston model and under its Markovian
approximation, using different quadrature rules and comparing the results obtained.

• Compute prices for continuously monitored Geometric Asian options under the Rough Heston
model.

7.1. Algorithms
In this section, we will provide two algorithms for optimally choosing the step-size h used in the SINC
quadrature rule.

For a fixed Hurst parameter H ∈ (−1/2, 1/2), let’s fix a p ∈ [1, 1/(1/2 −H)). Say that we want K
nodes in the quadrature rule, then, we have seen in the previous section that if we choose

N = p(1/2−H)K

M = K −N − 1

h =

√
2πd

(1/2−H)(1− p(1/2−H))K
(7.1)

for a given d ∈ (0, π/2), then one has the error bound for the Lp([0, T]) error

50

7.1. Algorithms 51

cH

(
(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(
1− e−2πd/h

)
(p(H − 1/2) + 1)

1/p
+

T
1
pheγh

1− e−γh
+

p−
1
ph

1− e−(1/p−γ)h

)
× e−

√
2πd(1/2−H)(1−p(1/2−H))K (7.2)

However, d remains a parameter that needs to be selected. We have developed an algorithm to opti-
mally choose d:

1. For a fixed total number of nodes K, we computedM,N by setting:

N = ⌈p(1/2−H)K⌉, M = K −N − 1

2. For h as in (7.1), minimise expression (7.2), with respect to d,M,N as a constrained optimisation
problem with:

N ∈ [0, ⌈p(1/2−H)K⌉] , M ∈ [0,K −N − 1] , d ∈ (0, π/2)

to do this, we used Scipy’s minimise function for constrained optimisation.
3. Recompute the step size h with the optimised value of d using (7.1)
4. Finally, compute the nodes and the weights (xi, wi)

K
i=1 of the quadrature:

xk = e(k−M)h, wk = cHhe
(1/2−H)(k−M)h, ∀k = 0, . . . ,M +N (7.3)

with cH as in (6.9)

We have observed that for small values of T , our algorithm does not perform well. Specifically, the
constrained optimization tends to select the largest possible values for M . To address this issue, we
propose a new algorithm that provides exactly K nodes and weights for the SINC quadrature while
accounting for small T . Instead of selecting the step size h using a fixed rule as in (7.1), we leave this
task to an optimization procedure. The previous algorithm appeared to be almost ”time-independent,”
with the dependence on the final time T hidden within the function being optimized. The new algorithm
aims at selecting the step size h by explicitly considering the time T . Wewill now describe the developed
algorithm in detail, which utilizes the error bound we have previously established:∥∥∥∥∥

∫
R
fτ (x)dx− h

N∑
K=−M

fτ (kh)

∥∥∥∥∥
Lp([0,T])

≤ A+B + C (7.4)

≤ 2cH(cos d)H−1/2TH−1/2+1/pΓ(1/2−H)(
1− e−πd/h

)
(p(H − 1/2) + 1)

1/p
e−2πd/h

+ T
1
p cHh

e−(1/2−H)Mh

1− e−(1/2−H)h
+ p−

1
p cHh

e−(1/p−(1/2−H))Nh

1− e−(1/p−(1/2−H))h
(7.5)

Where

fτ (x) = cHe
−τex+(1/2−H)x

For a given starting tolerance, say ε0 = 0.1 and for q > 1, say that we want to find K nodes.

1. Optimize expression A in (7.4) with respect to h, d, until it reaches tolerance ε0/3.
2. For the optimised parameters h, d, find the least integerM such that expression B in (7.4) is less

or equal than ε0/3.
3. Now, with the value of h found in the first step, compute the least integerN ∈ {0, . . . ,M −K − 1}

such that C in (7.4) is less than ε0/3.
4. If the values ofM,N are such thatM +N +1 = K then the algorithm stops. Otherwise, reassign

to the hyper parameter ε0 ε0 = ε0/q and repeat from step 1.

7.1. Algorithms 52

Note that this algorithm will terminate. In fact, one can note that both B,C in (7.4) are decreasing with
respect toM,N respectively. Also, choosing N ∈ {0, . . . ,M −K − 1} ensures that the algorithm does
not pick values forM,N such thatM +N +1 > K. An important note on the first step of this algorithm
is the following: we want to choose h, d such that A in (7.4) is less than ε0/3. However, A tends to
zero if h tends to zero, so our task is to choose the biggest h such that A < ε0/3. In this way, we can
achieve the same accuracy of each term A,B,C in expression (7.4). In our implementation, we chose
to solve this problem in the following way:

• fix h0 > 0, d ∈ (0, π/2). If there is a couple (h, d) in (h0,∞)× (0, π/2) such that A < ε0/3 then the
algorithm terminates.

• if there is no values for (h, d) such that A < ε0/3 then decrease h0 by a fixed factor and repeat
step 1 until termination.

Note that this algorithm is guaranteed to come to a stop since limh→0A = 0. The second algorithm
has two more hyper parameters that need to be optimised, id est the starting tolerance ε0 and q. We
noticed in fact that ε0 influences the convergence rate and has to be chosen accordingly to the total
number of nodes present in the quadrature rule. In fact, we empirically observed that for a low number
of nodes, it is necessary for ε0 not to be too small, because if this is the case, then the algorithm will
choose a value for the step size h that is too low to compensate for the error given by the tails of the
integral B,C in (7.4). In fact we see that if the step size is too small, then the exponentials in the terms
B,C will have a low rate of convergence in the number of nodesM,N . So, after a lot of trial and error,
we noted that for small T , in particular for T < 0.1 algorithm 2 would outperform Algorithm 1, with the
following choice of ε0, q:

ε0 =
2
√
T

K
, q = 1.1

WhereK is the total number of nodes. With this choice, we can improve the L1([0.T]) errors by almost
a factor of 2 in the asymptotic regime. As for T > 0.1, we noticed that the first algorithm tends to
outperform algorithm 1 for a number of nodes K > 10. To support our thesis, let us plot in Figure 7.1-
7.2 the L1([0, T]) errors between the kernel and its approximation for different values of T and Hurst
parameter H.

Figure 7.1: L1([0, T]) errors for algorithm 1 and algorithm 2 for different values of T , H = −0.1

Figure 7.2: L1([0, T]) errors for algorithm 1 and algorithm 2 for different values of T , H = 0.001

7.1. Algorithms 53

So, in light of this observations, we decided to proceed in the following way: to use algorithm 2 for
computing implied volatility smiles with T < 0.1. Instead, for computing all the other implied volatility
smiles and implied volatility surfaces we will use algorithm 1.

7.1.1. Node in Zero
Now, in this subsection, we are going to briefly present how we could use an idea given in [6] to improve
the SINC quadrature rule.

Recall that, for the L2([0, T]) error, we have an analytic expression, i.e.:∫ T

0

|ĝN (t)− g (t)|2 dt = T 2H

2HΓ(H + 1/2)2
+ w2

0T (7.6)

+ 2w0

K∑
i=1

wi

xi

(
1− e−xiT

)
+

K∑
i,j=1

wiwi

xi + xj

(
1− e−(xi+xj)T

)
− 2w0T

H+1/2

Γ(H + 3/2)
− 2

Γ(H + 1/2)

×
K∑
i=1

wi

x
H+1/2
i

∫ xiT

0

tH−1/2e−tdt

where

g(t) =
tH−1/2

Γ(H + 1/2)

ĝ(t) = w0 +

K∑
i=1

wie
−xit, xi ∈ (0,∞), wi ∈ R, ∀i = 1, . . . ,K

then, one realises that the expression in 7.6 is a polynomial of second degree in w0 and then one can
also easily optimise equation (7.6) expression with respect to w0, by setting:

w0 =
1

T

(
TH+1/2

Γ(H + 3/2)
−

N∑
i=1

wi

xi

(
1− e−xiT

))
(7.7)

The only problem of this, is that we cannot give an estimate of the error of the SINC quadrature with
the additional node and weight (0, w0), since the nodes of the SINC are expressed via an exponential
as one can see in (7.3), they are always strictly positive. However, by adding this node in zero, one
can boost even more the performance of the SINC quadrature, in particular for H ∈ (0, 1/2)

Now, instead we plot the Lp([0, T]) relative error for the SINC quadrature, with and without the node
in zero, as specified in 7.7

7.1. Algorithms 54

Figure 7.3: Relative L1([0, T]) errors for different values of the Hurst parameter H in function of the number of nodes in the
quadrature rule with and without the node in zero

As we can see in the Figure 7.3, for some values of the number of nodes, adding a node in zero
in fact yields a better approximation of the kernel. In particular, we noted that for higher values of the
Hurst parameter,H ≈ 1/2, the approximation yields even better results. Instead, for negative values
of the Hurst parameter or H ≈ 0, having or not having the node in zero does not make that big of a
difference as we can see from the Figure 7.3.

As for the L2([0, T]) error we have the following results:

Figure 7.4: Relative L2([0, T]) errors for different values of the Hurst parameter H in function of the number of nodes in the
quadrature rule

7.2. Empirical Numerical Convergence 55

Figure 7.5: Relative L2([0, T]) errors for different values of the Hurst parameter H in function of the number of nodes in the
quadrature rule

The surprising fact here, is the fact that one expects a better result for the L2([0, T]) error, as we
are choosing w0 by optimizing exactly this quantity, as we can clearly see in 7.4 and 7.5. However,
from the figure one can see how an improvement is also made for the L1([0, T]) error. As we will see,
adding a node in zero, gives an impressive boost on the performances of the SINC quadrature, both
regarding the strong and the weak error.

7.2. Empirical Numerical Convergence
In this section, we present the empirical numerical convergence of our scheme. We will plot both the
L1([0, T]) and the L2([0, T]) errors as functions of the total number of nodes.

To compute the L2 ([0, T]) error, we used Proposition 2.12 from Bayer [7]. This proposition provides
a straightforward method to compute L2 ([0, T]) errors given the nodes and weights of the quadrature.

For the L1 ([0, T]) error, we used the method described in AppendixE of [8], which we have outilined
in Section 5.3.4.

Let us plot in Figure 7.6 and 7.7 first the relative error with respect to the Lp([0, T]) the norm, for
p = 1, 2 and the error against the theoretical convergence rates found in (7.2). When we say relative
error it means that we consider the following quantities: the theoretical Lp([0, T]) norm for the kernel:

∥g∥pLp([0,T]) =

∫ T

0

|g (s)|p ds = T ((H−1/2)p+1)

Γ(H + 0.5)((H − 1/2)p+ 1)

and for relative error we mean:

eN =
∥ĝN − g∥Lp([0,T])

∥g∥Lp([0,T])

Figure 7.6: In dotted lines, is plotted expression (7.2), for different values of H, that is, our theoretical error bound, the other
line represents the actual L1([0, T]) error

7.2. Empirical Numerical Convergence 56

Note here two things, that the precision of our approximation is higher for values of the Hurst pa-
rameters H that are close to zero, while deteriorates progressively for H → ±0.5. Also, we can note
how the error bound that we have found is very much in line with the actual error. The situation seems
much different for the case p = 2.

Figure 7.7: In dotted lines, is plotted expression (7.2), for different values of H and p = 2, that is, our theoretical error bound

Finally, we can estimate the asymptotic rate for the SINC quadrature. Through several experiments,
we observed that as the total number of nodes increases, the optimal choice of d (the height of the strip
in the complex plane, as explained in section 6) tends towards π/2. To support this observation, we
plotted the difference between d and π/2 as a function of the total number of nodes for different values
of H.

Figure 7.8: Difference between the length d of the strip in the complex plane and π/2 for the L1-SINC and L1-SINC-W0

7.3. Comparison with state of the art 57

The situation is a bit different instead for the L2-SINC, in fact, for values of H that are close to zero,
then there is such an evident convergence as for the case of the L1-SINC. In what follows, we plot the
same difference for d, but for the L2-SINC algorithm.

Figure 7.9: Difference between the length d of the strip in the complex plane and π/2 for the L2-SINC

In this way, we can assert that the asymptotic convergence rate for the SINC quadrature is expo-
nential in the number of nodes used in the quadrature K with exponent:√

π2(0.5−H)(H + 0.5)K

Now that we have shown accordance with the theoretical error bound that we have previously given,
we move on to the next section where we will compare the SINC quadrature rule to the state of the art.

7.3. Comparison with state of the art
In this section, we are going to compare our choice of nodes and weights with the state of the art.
Specifically, we will first compare the computational time for computing these nodes and the size of
the largest node, similar to [8]. Once we have done this, we will compare the convergence rate of our
quadrature. Finally, at the end of this section, we will compute option prices in the Rough Heston model
via Fourier inversion techniques, and then compare the Implied Volatility smile of the approximated
Markovian Rough Volatility model and the original model.

Throughout this section, we will refer to our proposed algorithms with this notation:

• L1-SINC, id est the SINC method, optimised for reducing the L1([0, T]) error, as in (7.2), with
p = 1.

• L1-SINC-W0, id est the SINC method, optimised for reducing the L1([0, T]) error, as in (7.2), with
p = 1, with an additional node in 0, as specified before in (7.7).

• L2-SINC, id est the SINC method, optimised for reducing the L2([0, T]) error, as in (7.2), with
p = 2.

• L2-SINC-W0, id est the SINC method, optimised for reducing the L2([0, T]) error, as in (7.2), with
p = 2, with an additional node in 0, as specified before in (7.7).

In general, for computing the Lp([0, T]) errors, we are going to use the corresponding Lp-SINC. More-
over, for computing option prices and implied volatility smiles, we are going to use the L1-SINC.

7.3.1. Largest node and computational time
In this section, we present the largest node and the computational times for all the algorithms proposed
above.
In Table 7.1, we present the maximum value of the node in log10 scale for different algorithms, different

7.3. Comparison with state of the art 58

values of the Hurst parameter, and for fixed T = 1. Note that we did not include values for the algorithms
Lp-SINC-W0 for p ∈ 1, 2 to avoid redundancies. When we consider K nodes, the first K − 1 nodes are
identical to the Lp-SINC, and we add a node at zero as described in (7.7). Thus, the maximum node for
the Lp-SINC-W0 with K total nodes is exactly equal to the maximum node of the Lp-SINC with K − 1
nodes.
It is clear from the Table 7.1 that the L1-SINC algorithm has very small nodes compared even to an
algorithm like BL2, which is constructed by optimizing the L2([0, T]) error and penalizing large nodes
in favor of smaller ones. In contrast, comparing L1-SINC with an algorithm like AE is not meaningful
since the AE algorithm converges at a rate of N−H , meaning that having 10 nodes will result in very
low precision. As observed, the L1-SINC algorithm maintains relatively bounded node sizes even for
a large number of nodes.

H = -0.1 H = 0.001 H = 0.1
K L1-SINC GG NGG OL1 SINC GG NGG OL1 AK SINC GG NGG OL1 AK
1 0.00 0.18 0.05 0.24 0.00 0.12 0.00 0.14 - 0.00 0.06 -0.07 0.02 -
2 1.24 1.17 0.95 1.40 1.37 1.02 0.95 1.28 3.32 1.54 0.92 0.95 1.18 1.48
3 2.54 1.59 1.70 2.24 2.66 1.39 1.70 2.07 3.32 2.97 1.25 1.70 1.93 1.48
4 3.65 1.94 2.49 2.98 2.46 1.70 2.49 2.75 7.10 2.72 1.58 2.49 2.57 3.13
5 3.38 2.24 3.32 3.66 3.68 2.02 3.32 3.35 7.10 2.26 1.81 1.09 3.14 3.13
6 4.50 2.57 4.16 4.24 3.05 2.26 1.86 3.91 11.5 3.40 2.04 1.86 3.65 4.40
7 5.62 2.82 2.66 4.79 4.06 2.48 2.66 4.42 11.5 2.95 2.24 2.66 4.28 4.40
8 4.63 3.04 2.66 5.32 3.52 2.68 2.66 4.90 15.5 3.94 2.42 2.66 4.58 5.45
9 5.56 3.24 2.66 6.03 4.41 2.86 2.66 5.35 15.5 3.52 2.58 2.66 5.20 5.45
10 4.82 3.44 3.49 6.65 3.94 3.04 3.49 6.02 20.0 3.21 2.75 3.49 5.74 6.35

Table 7.1: Size of the largest node for different quadrature rules, expressed in log base. Bold values are values that are
greater than the one given by the L1-SINC quadrature. Values for the other algorithms are taken from [8, Table 1, Section 4]

As for the computational times, every algorithm we provided runs in at most 20 milliseconds for
every total number of nodesK. This is in clear contrast with algorithms like OL1, as given in [7], where
the computational time for 10 nodes reaches 10 minutes.

Now that we have shown that our algorithm, particularly L1-SINC and L1-SINC-W0, performs better
than the state of the art in terms of the largest node and computational time, we are ready to demon-
strate that we also achieve better performance in terms of convergence. This comparison is made at
least when considering all algorithms that do not rely on a direct optimization procedure of the Lp([0, T])
error like OL1,OL2 and BL2 proposed in the literature.

To corroborate our findings, we plotted the computational times for different quadrature rules, except
OL1,OL2,BL2. What we found is that the SINC quadrature has a computational time that is comparable
to all the other quadrature rules, with no significant improvement or loss in the running time:

7.3. Comparison with state of the art 59

Figure 7.10: Computational time for different quadrature rules

First, we noted that neither the Hurst parameterH, nor the final time T are influential on the run time
of every quadrature. Secondly, the only quadrature rule that is much faster than the other ones is the
one given by Abi Jaber and El Euch in [1]. However, as we will see in the next section, this quadrature
rule performs the worst, meaning that any time saved during computation is subsequently lost due to
reduced accuracy.

7.3.2. Convergence rate comparison
In this subsection, we are going to compare different quadrature rules, with the respective convergence
rates. First, we plot the errors obtained by using the quadrature rules from Alfonsi and Kebaier [35]
that we will denote with ’AK’, the one from the initial paper from Abi Jaber et al [34], denoted with ’AE’,
and the one introduced by Bayer et al in [8],[6], id est both the Non-Geometric Gaussian ’NGG’, and
Geometric Gaussian ’GG’ that we have introduced in chapter 5.

First, we are going to plot the relative L2([0, T]) errors for different quadrature rules and different
values of the Hurst parameter in Figures 7.11-7.12

Figure 7.11: Relative L2 errors for different quadrature rules and different terminal values T .

7.3. Comparison with state of the art 60

Figure 7.12: Comparison for the relative L2([0, T]) error between SINC and different quadrature rules introduced in chapter 5.
On the left column, we chose T = 1, while for the right column we have T = 0.01

First we note that the only case where the SINC quadrature is actually not able to perform well with
respect to the other quadrature rules is the case where the Hurst parameter H is greater than 0.3. On
the other hand, the SINC quadrature outperforms every other rule in all the other cases, both in the
pre-asymptotic range and in the asymptotic range. The situation instead for the L1([0, T]) error is quite
different. In Figure 7.13 we plotted the L1([0, T]) error for different terminal values of T , and focusing
on negative values of the Hurst parameter. In those cases, the sinc quadrature is able to outperform
the state of the art. In the right column of Figure 7.13, we choose to plot the relative error for T = 0.01,
and in addition, we used also the second Algorithm that we have developed for small T .

7.3. Comparison with state of the art 61

Figure 7.13: Comparison for the relative L1([0, T]) error between SINC the different quadrature rules introduced in chapter 5.
On the right column we consider T = 1 while on the left T = 0.01 and we consider different negative Hurst parameters.

As for Figure 7.14, we plotted the same type of error, while focusing on the range of Hurst parameter
for which the SINC quadrature is not fully able to outperform quadratures like NGG or GG. As we can
see, from H = 0.2, we already have some underperforming of the quadrature rule, in particular for the
small terminal time T .

7.3. Comparison with state of the art 62

Figure 7.14: Comparison for the relative L1([0, T]) error between SINC the different quadrature rules introduced in chapter 5.
Here T = 0.01

In figure 7.14 we can see how the second algorithm, denoted in the plots with ’SINC2’ is able to
outperform every quadrature rule for H < 0.2 and small T , while the first algorithm that we have given
remains behind. Let us plot (7.1), with K = 1, for different values of H, against the convergence rate
given by the NGG and the GG rules.

Figure 7.15: coefficient in front of the
√
N inside the exponential.

7.3. Comparison with state of the art 63

Here, in figure 7.15 we plotted:

2.38
√
(H + 0.5), NGG rate

2 log(1 +
√
2)
√
(H + 0.5), GG rate√

π2(0.5−H)(H + 0.5), L1-SINC rate

One one hand, it seems that the SINC would under perform both Geometric Gaussian and Non-
Geometric Gaussian quadrature rules for positive values of the Hurst parameter H. However, as we
have seen in this section, using SINCW0 would give an impressive boost to the performance of the
algorithm for this case. Since also we noted that we could outperform up until H ≈ 0.2, we computed
the L1([0, 1]) errors and then estimated the coefficient α in front of the exponential of the convergence
rate e−α

√
N using a simple linear regression. What we have found is the following:

Figure 7.16: estimated coefficient α for different quadrature rules

As we can see, the estimated convergence rate surpasses the one of the Geometric Gaussian rule
and the Non Geometric Gaussian rule for every H ∈ (−0.5, 0.2).

7.3.3. Option Pricing under Rough Heston
In this section we are going to benchmark our method in computing option prices under the Rough
Hestonmodel. To compute option prices, we used the function rHestonFourieriveurcall of the library
provided by Bayer in the GitHub repository in [8]. The function uses Fourier Inversion technique to
compute option prices and implied volatility.

In particular, we are in the following setting for the Rough Heston dynamics:

dSt = St

√
VtdWt

Vt = V0 +

∫ t

0

g (t− s) (θ (s)− λVs) ds+

∫ t

0

g (t− s) ν
√
VtdBs

dWtdBt = ρdt

and we use the same set of parameters that are used in [8], id est:

λ = 0.3, θ ≡ 0.02, V0 = 0.02, S0 = 1, ν = 0.3 (7.8)

With this set of parameters for the Rough Heston model, we are going to compute option prices and
implied volatility smiles for maturity T = 1 using 451 linearly-spaced log-strikes in the interval [−1.5, 0.75].
Then, we are going to compare the results obtained using the algorithms proposed with the state of
the art. First, let us plot the implied volatility smile for different values of quadrature points used in the
SINC:

7.3. Comparison with state of the art 64

Figure 7.17: Markovian volatility smiles given by L1-SINC-W0 plotted against the true smile given by the Rough Heston model.

Figure 7.18: Markovian volatility smiles given by L1-SINC-W0 plotted against the true smile given by the Rough Heston model.

7.3. Comparison with state of the art 65

Figure 7.19: Markovian volatility smiles given by L1-SINC-W0 plotted against the true smile given by the Rough Heston model.

As one can observe, the smile given by the Markovian approximations become almost indistinguish-
able from the true smile for every K greater than 5 for various values of the Hurst parameter.

To have a better understanding on how our proposed methods compare with the state of the art,
let us present Table given in [8, Sect. 4 pg. 34] that gives the maximal relative errors in % for the
Markovian approximations for implied volatility smiles of the European call option:

H = −0.1 H = 0.001 H = 0.1
K SINC GG NGG OL1 BL2 AE SINC GG NGG OL1 OL2 BL2 AE AK SINC GG NGG OL1 OL2 BL2 AE AK
3 2.608 13.35 3.46 2.527 0.112 34.46 1.644 8.704 15.75 1.147 6.394 0.101 21.56 8.138 2.737 6.017 12.31 0.738 0.553 0.066 17.60 1.112
4 0.748 10.58 14.16 1.281 0.012 31.01 1.927 7.066 13.16 0.525 5.848 0.007 19.28 24.38 1.519 4.405 9.812 0.306 0.427 0.005 15.92 2.004
5 0.896 8.802 5.84 0.681 0.002 28.56 0.829 7.599 10.74 0.262 5.395 0.001 17.65 24.38 0.523 5.058 6.501 0.140 0.319 0.001 14.67 2.004
6 0.746 6.109 13.38 0.399 0.000 26.72 0.461 3.161 10.83 0.138 5.051 0.000 16.41 29.50 0.656 2.121 9.107 0.069 0.236 0.000 13.68 1.659
7 0.432 3.707 11.78 0.238 0.000 25.27 0.508 1.965 7.282 0.077 4.740 0.000 15.43 29.50 0.413 1.371 5.525 0.029 0.174 0.000 12.88 1.659
8 0.333 3.697 11.78 0.147 0.001 24.07 0.314 1.898 7.282 0.044 4.469 0.000 14.63 31.27 0.370 1.245 5.525 0.019 0.128 0.000 12.21 0.999
9 0.288 3.844 11.78 0.079 0.002 23.07 0.297 1.932 7.282 0.026 4.228 0.000 13.95 31.27 0.277 1.206 5.525 0.008 0.094 0.000 11.64 0.999
10 0.217 2.482 7.052 0.047 0.003 22.22 0.192 1.263 4.476 0.012 4.010 0.000 13.38 30.54 0.218 0.804 3.414 0.004 0.070 0.000 11.15 0.503

Table 7.2: Maximal Relative errors (in %) of IV smiles for different quadrature rules. Results of the other algorithms are taken
from [8, Table 3, Section 4]

• In blue, our proposed quadrature rule
• In bold red are the values that we are able to outperform
• In black, the values that we cannot outperform

With maximal relative error we refer to the following quantity: for a given Hurst parameter H and a
given maturity T , we will have the so-called true smile, which is given by the real Rough Heston model.
We will denote as the True smile with respect to the log-strikes {Ki}ni=1 and with maturity T the set of
all implied volatilities IVr(T,Ki) with the different strikes under the Rough Heston model, i.e.:

IVr := {IVr(T,Ki)}ni=1

While we will denote the Implied volatility smile under the Markovian approximation as

IVM := {IVM (T,Ki)}ni=1 .

. Then one can define the maximal relative error between the true smile and its approximation by:

max
i=0,...,n

|IVr(T,Ki)− IVM (T,Ki)|
IVr(T,Ki)

7.3. Comparison with state of the art 66

So if we compare our results contained in Table 7.2, we can see how our method, in particular L1-SINC
is able to outperform every quadrature rule that is not the result of a direct optimisation of the Lp([0, T])
error for p ∈ {1, 2}. In fact the only algorithms that consistently perform better than the SINC rule
are OL1 and BL2. For values of H close to zero, our method is even able to perform better than the
OL2 algorithm proposed by Bayer in [8]. Then, we computed implied volatility smiles under the Rough
Heston model for European Call Options with maturity T = 1, what we found is presented in Figure
7.24.

Figure 7.20: Implied Volatility Smile relative errors for different quadrature rules and different values of the Hurst parameter H.

Also in this case, we manage to outperform every quadrature rule.
Then, to give a full picture, we also reproduced the experiment done in [8], where they computed

the whole Implied Volatility surface in the Rough Heston case and then they compared it with the
Implied Volatility surface given by the Markovian approximation. In particular, without changing the
set of parameters given in (7.8) for the Rough Heston model. For maturities and strikes, we used the
same as in [8] for the sake of reproducibility of the results. In particular we consider implied volatility
surfaces, using 25 maturities linearly spaced in [0.04, 1], where we define Tmin := 0.04 and Tmax := 1.
For each maturity T we take 301 linearly spaced values of log-moneyness in the interval [−1, 0.5]∙

√
T .

Then, similarly to what Bayer has done in [8], we calibrated the nodes and the weights of the SINC
quadrature by using a fixed maturity T0. In particular we have chosen T0 in the same way of Bayer, i.e.:
given Tmin, Tmax respectively the minimum and the maximum maturity in the Implied Volatility surface,
then defined T0 as:

T0 = T
α(K)
min T 1−α(K)

max

where K is the total number of nodes and α : N → R defined as:

α(1) = 3/5, α(2) =
1

2
, α(3) =

1

3
, α(4) =

1

4

α(5) =
1

6
, α(6) =

1

10
, α(N) = 0 ∀N ≥ 7

Note that this choice for T0 is not straightforward and we have not optimised this choice because of
the long computational times of implied volatility surfaces. In general we noticed that in our case, for
the SINC quadrature, it might be beneficial to choose T0 closer to zero, since we have observed that
for lower maturities, the approximation performs the worst, while on higher maturities, we have good

7.3. Comparison with state of the art 67

results, this behaviour can be easily seen by looking at the heatmaps that we have plotted in Figure
7.21,7.22,7.23. Also, it is worth noticing that we have been using the T0 for calibrating our model on
the whole volatility surfaces equal to the one chosen by Bayer. However, it is very likely that this is not
the optimal choice for our method.

H = −0.1 H = 0.001 H = 0.1

K SINC GG NGG OL1 BL2 AE SINC GG NGG OL1 OL2 BL2 AE AK SINC GG NGG OL1 OL2 BL2 AE AK
3 5.085 18.14 18.14 4.975 0.806 52.76 5.601 15.12 12.87 3.203 14.52 0.948 40.45 19.10 2.884 14.22 11.09 2.632 6.808 1.012 33.71 4.089
4 5.085 14.68 13.81 2.881 0.644 53.02 2.217 12.26 9.995 1.583 11.88 1.044 40.74 24.45 1.429 12.27 8.611 1.233 3.679 0.807 33.07 2.426
5 3.331 12.38 11.15 1.620 0.176 53.61 2.872 12.43 8.213 0.900 14.55 0.274 41.42 26.41 1.316 11.67 19.72 0.676 1.505 0.194 34.57 2.153
6 2.753 11.12 9.455 1.043 0.012 54.04 1.291 8.618 11.90 0.531 12.52 0.056 41.94 26.59 0.776 8.732 9.581 0.372 0.623 0.036 35.03 1.218
7 1.371 8.756 10.84 0.720 0.012 55.16 1.599 7.406 6.733 0.338 16.00 0.012 43.36 26.98 0.834 7.845 5.410 0.188 0.414 0.008 36.31 1.473
8 0.642 7.604 10.84 0.720 0.002 54.58 0.672 5.997 6.733 0.196 16.02 0.002 42.60 26.56 0.450 6.253 5.410 0.126 0.284 0.002 35.62 1.197
9 0.823 6.933 10.84 0.229 0.001 54.02 0.877 5.077 6.733 0.117 16.00 0.001 41.92 26.56 0.316 5.148 5.410 0.053 0.289 0.000 35.01 1.197
10 0.439 5.121 5.967 0.136 0.001 53.50 0.420 3.829 3.557 0.056 15.96 0.001 41.29 26.56 0.190 3.940 2.831 0.026 0.228 0.000 34.45 0.994

Table 7.3: Maximal Relative errors (in %) of IV surfaces for different quadrature rules. Results of the other algorithms are taken
from [8, Table 4, Section 4]

It is worth noticing that our proposed algorithm is able to ouperform every quadrature rule, besides
the one that are the result of an optimisation procedure, id est OL1,OL2 and BL2. Also, we have noticed
that the argmax of the relative error for implied volatility surfaces comes always from short maturities.
In fact it is quite interesting that even for a low number of quadrature points, we can already achieve
high accuracy of ≈ 0.8% on most of the IV surface, however, for small maturities, and also for deep in
the money options the error becomes predominant, this is clear in Figure 7.21, where even for 6 total
nodes in the quadrature rule, we have errors that are below 1% for every maturity T > 0.08. Interestingly
enough, is the fact that for small maturities, in this case for T = 0.04 then the Markovian approximation
given by the L1-SINC algorithm fails to approximate both deep in the money options, out of the money
options but also at the money options. In fact the maximal error for N = 6 is attained for T = 0.04 and
for log-strike K ≈ 1. Approximately the same phenomenon appears in Figure 7.22, where we plotted
the relative errors for the implied volatility surface for H = −0.1. For reference, even though we have a
maximal error of 0.75%, we computed also the mean relative error for the whole surface and obtained
0.196%.

Figure 7.21: Relative errors for Implied volatility surface in the Rough Heston model, for a total number of nodes N = 6, using
the L1-SINC for Hurst parameter H = 0.001

7.3. Comparison with state of the art 68

Figure 7.22: Relative errors for Implied volatility surface in the Rough Heston model, for a total number of nodes N = 10,
using the L1-SINC for Hurst parameter H = −0.1

Figure 7.23: Relative errors for Implied volatility surface in the Rough Heston model, for a total number of nodes N = 10,
using the L1-SINC-W0 for Hurst parameter H = −0.1

As a final experiment, we computed prices for continuously monitored geometric Asian options,
which can still be evaluated using Fourier pricing methods. Specifically, a continuously monitored
geometric Asian option is an option where the underlying asset is the following quantity:

A(0, T) = exp

(
1

T

∫ T

0

log (St) dt

)
.

7.3. Comparison with state of the art 69

Then, the payoff of such instrument will be:

(A(0, T)−K)
+ for a Call

(K −A(0, T))
+ for a Put

The goal of this experiment, along with computing the implied volatility surfaces, is to determine if the
Markovian Approximation of Rough Volatility models using SINC quadrature can accurately capture
the probability distributions of the underlying asset and volatility not only at the terminal time but also
at intermediate maturities. While this property of the Markovian approximation has been verified by
computing the entire implied volatility surface without adjusting the quadrature rule for each expiration,
we aim to perform an additional check for thoroughness.

Figure 7.24: relative weak errors for asian call options for different quadrature rules and different values of the Hurst parameter
H.

As we can see, also in this experiment, our proposed quadrature rule is able to outperform both the
Geometric and Non-Geometric Gaussian quadrature.

8
Conclusions and future work

Finally, we have come to the conclusion of this work. First, we have introduced Rough Volatility models
and their ability to describe Market’s properties. Then in chapter 5 we deep-dived into the Markovian
approximation for such models. In chapter 6 we introduce a new quadrature rule, the SINC quadrature
rule, computing theoretical error bounds for the SINC quadrature, in particular regarding Lp([0, T])
errors, for p ∈ {1, 2}. With those error bounds, we developed two algorithms in chapter 7, one for the
quadrature rule when the final time considered T is less than 0.1, and the other one for T > 0.1. Finally,
in chapter 7, we compared the SINC quadrature with different quadrature rules present in the literature.
What we found is that the SINC quadrature is able to outperform every other quadrature rule both from
the point of view of the weak error and the strong error. The boosted performance are restricted to
choices of values of the Hurst parameterH ∈ (−0.5, 0.2), which is a range which is the most interesting
for financial applications. The main advantage of our quadrature rule is the following: despite it is
extremely easy to implement, especially if compared to Gaussian Quadrature, where an orthogonal
basis of polynomials must be constructed for obtaining the nodes and weights of the quadrature, we
showed how we can achieve state of the art results in various experiments.

To get to those results, we heavily relied on the error bounds given for the SINC quadrature in [36].
As future research, one could investigate more in the directions of approximating Rough Volatility

models with H ∈ (0.2, 1), we have seen that despite the fact that the SINC quadrature rule is able to
have extremely good performances forH ∈ (−0.5, 0.2), we have observed a decay in the convergence
rate when H > 0.2, and in particular, we did not consider at all the non-fractional case, where H > 0.5.

Moreover, one could try to investigate another class of change of variables that might be beneficial
to an improvement of the convergence rate of the SINC quadrature, in particular using the so called
Double Exponential transformations. In particular, with double exponential we suggest that instead of
using the change of variables:

ρ = ex

instead one would deal with
ρ = esinh(x)

where ρ is the variable that is being integrated in the integral:∫ T

0

e−ρτρ−(H+1/2)dρ

We have tried to investigate this possibility, however the challenges are two: first, the error analysis
is not as easy as the one of the standard SINC quadrature that we have presented in this work. In
fact one has to compute integrals on the complex plane that have no analytical solutions and have no
straightforward bounds. With this in mind, we have tried to deal with the double exponential but it led to
extremely large nodes and weights, and hence if one has no control on the error bound, then choosing
an appropriate step-size can become an extremely difficult task, as one has to deal with underflow and
overflow errors that arise when the step-size is too large.

70

9
Aknowledgments

Finally, after nine months, here we are at the acknowledgments. Firstly, I would like to thank my su-
pervisor Kristin Kirchner, for helping me in the moments of discomfort and stress, always giving me a
positive feedback and reminding me to keep my head up when I was way too much self critical about
my work. Secondly I want to thank Antonis Papapantoleon, for the guidance and recommendations.

Per quanto riguarda i riconoscimenti non accademici e non istituzionali, vorrei ringraziare con tutto
il cuore i miei genitori, Laura Ciusani e Davide Pezzoli, per il prezioso sostegno che mi hanno dato
in questi anni, appoggiando sempre le mie decisioni, aiutandomi nei momenti bui, ma soprattutto per
la fiducia che hanno in me. Voglio ringraziarvi per tutti i sacrifici che avete fatto, per l’impegno e la
pazienza che avete avuto e che avete tuttora. Voglio dire che non c’è giorno in cui non pensi a quello
che avete fatto per me e per tutto il bene che mu volete. Vi sono e vi sarò sempre grato. Vorrei poi
ringraziare poi della mia famiglia mia Zia Paola, per tutte le volte che abbiamo pranzato insieme a
Milano, per rendere possibile un florido scambio intergenerazionale.

Per i miei amici infine vorrei ringraziare tutte le persone che ho conosciuto a Delft, con cui abbiamo
condiviso momenti e esperienze incredibili. Tra di loro vorrei ringraziare in particolare Albert, Albin,
Alessandro, Fernando, Francesco, Gideon, Matthias, Panos, Songyang e Tomas. Grazie a voi che mi
avete sia fatto compagnia in questi anni, sia mi avete motivato e trainato in questo viaggio.

Un ringraziamento va ai miei coinquilini, Laura, Lourens, Niels e Karim. In particolare grazie a
Laura per l’anno trascorso insieme, per aver esserci sostenuti l’un l’altro. Grazie a Lourens per tutta la
compagnia che ci siamo fatti, per le discussioni e gli scambi di opinione sempre costruttivi. Grazie a
Niels infine per tutta la musica che abbiamo condiviso e cantato a squarciagola.

Un ringraziamento a tutti i miei amici in Italia e nel mondo, a tutto il gruppo di Chemminchiabici.
Tra di loro non posso non ringraziare esplicitamente Gio per tutti i passaggi e tutti i momenti insieme
sempre genuini, (M) Dario per tutte le discussioni sulla filosofia che ogni uomo di tecnica e di scienza
non dovrebbe mai lasciar nell’oblio, Mea per tutte le esperienze condivise.Un ringraziamento ai miei
compagni di triennale, Nicola e Carlo, con cui ho passato tre anni fantastici grazie a voi. Un ringrazia-
mento speciale infine alle persone più vicine con cui ho sempre avuto discussioni che mi fanno metter
in dubbio le mie opinioni e che mi son state affianco per quasi una decade ormai: grazie Isa per il tuo
supporto e sostegno, grazie a Joris a alla tua famiglia, che mi ha regalato indimenticabili momenti e che
mi ha fatto sempre sentire a casa, grazie a Edo per le infinite discussioni e per tutti i giri in montagna
. Infine vorrei ringraziare in particolare Alessandro, che nonostante la distanza continua a rimanere
un punto di riferimento per la costanza, la motivazione e la sua infinita voglia di eccellere e forza di
volontà.

71

References

[1] Eduardo Abi Jaber and Omar El Euch. “Multifactor approximation of rough volatility models”. In:
SIAM journal on financial mathematics 10.2 (2019), pp. 309–349.

[2] Eduardo Abi Jaber and Shaun Xiaoyuan Li. “Volatility models in practice: Rough, Path-dependent
or Markovian?” In: Path-Dependent or Markovian (2024).

[3] Yogesh J Bagul and Christophe Chesneau. “Some new simple inequalities involving exponential,
trigonometric and hyperbolic functions”. In: Cubo (Temuco) 21.1 (2019), pp. 21–35.

[4] Peter Bank et al. “Rough PDEs for local stochastic volatility models”. In: arXiv preprint arXiv:2307.09216
(2023).

[5] Christian Bayer, Chiheb Ben Hammouda, and Raúl Tempone. “Hierarchical adaptive sparse grids
and quasi-Monte Carlo for option pricing under the rough Bergomi model”. In: Quantitative Fi-
nance 20.9 (2020), pp. 1457–1473.

[6] Christian Bayer and Simon Breneis. “Efficient option pricing in the rough Heston model using
weak simulation schemes”. In: arXiv preprint arXiv:2310.04146 (2023).

[7] Christian Bayer and Simon Breneis. “Markovian approximations of stochastic Volterra equations
with the fractional kernel”. In: Quantitative Finance 23.1 (2023), pp. 53–70.

[8] Christian Bayer and Simon Breneis. “Weak Markovian approximations of rough Heston”. In: arXiv
preprint arXiv:2309.07023 (2023).

[9] Christian Bayer, Peter Friz, and Jim Gatheral. “Pricing under rough volatility”. In: Quantitative
Finance 16.6 (2016), pp. 887–904.

[10] Mikkel Bennedsen, Asger Lunde, and Mikko S Pakkanen. “Hybrid scheme for Brownian semis-
tationary processes”. In: Finance and Stochastics 21 (2017), pp. 931–965.

[11] Lorenzo Bergomi. “Smile dynamics II”. In: Available at SSRN 1493302 (2005).
[12] Pierre Blanc, Jonathan Donier, and J-P Bouchaud. “Quadratic Hawkes processes for financial

prices”. In: Quantitative Finance 17.2 (2017), pp. 171–188.
[13] Helmut Brass and Knut Petras. Quadrature theory: the theory of numerical integration on a com-

pact interval. 178. American Mathematical Soc., 2011.
[14] Peter J Brockwell et al. “The Spectral Representation of a Stationary Process”. In: Time Series:

Theory and Methods (1991), pp. 114–165.
[15] Philippe Carmona and Laure Coutin. “Fractional Brownian motion and the Markov property”. In:

(1998).
[16] Peter Carr and Dilip Madan. “Option valuation using the fast Fourier transform”. In: Journal of

computational finance 2.4 (1999), pp. 61–73.
[17] Rémy Chicheportiche and Jean-Philippe Bouchaud. “The fine-structure of volatility feedback I:

Multi-scale self-reflexivity”. In: Physica A: Statistical Mechanics and its Applications 410 (2014),
pp. 174–195.

[18] Robert B Davies and David S Harte. “Tests for Hurst effect”. In: Biometrika 74.1 (1987), pp. 95–
101.

[19] Jules Delemotte, Stefano DeMarco, and Florent Segonne. “Yet Another Analysis of the SP500 At-
The-Money Skew: Crossover of Different Power-LawBehaviours”. In:Available at SSRN4428407
(2023).

[20] deribit.com.
[21] Giulia Di Nunno et al. “From Constant to Rough: A Survey of Continuous Volatility Modeling”. In:

Mathematics 11.19 (2023). ISSN: 2227-7390. URL: https://www.mdpi.com/2227-7390/11/19/
4201.

72

https://www.mdpi.com/2227-7390/11/19/4201
https://www.mdpi.com/2227-7390/11/19/4201

References 73

[22] Omar El Euch, Masaaki Fukasawa, and Mathieu Rosenbaum. “The microstructural foundations
of leverage effect and rough volatility”. In: Finance and Stochastics 22 (2018), pp. 241–280.

[23] Omar El Euch and Mathieu Rosenbaum. “The characteristic function of rough Heston models”.
In: Mathematical Finance 29.1 (2019), pp. 3–38.

[24] Omar El Euch et al. “The Zumbach effect under rough Heston”. In: Quantitative finance 20.2
(2020), pp. 235–241.

[25] Fang Fang and Cornelis W Oosterlee. “A novel pricing method for European options based
on Fourier-cosine series expansions”. In: SIAM Journal on Scientific Computing 31.2 (2009),
pp. 826–848.

[26] Masaaki Fukasawa. “Asymptotic analysis for stochastic volatility: martingale expansion”. In: Fi-
nance and Stochastics 15 (2011), pp. 635–654.

[27] Paul Gassiat. “Weak error rates of numerical schemes for rough volatility”. In: SIAM Journal on
Financial Mathematics 14.2 (2023), pp. 475–496.

[28] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. “Volatility is rough”. In: Commodities.
Chapman and Hall/CRC, 2022, pp. 659–690.

[29] JimGatheral andMartin Keller-Ressel. “Affine forward variancemodels”. In: Finance and Stochas-
tics 23 (2019), pp. 501–533.

[30] Gustaf Gripenberg, Stig-Olof Londen, and Olof Staffans. Volterra integral and functional equa-
tions. 34. Cambridge University Press, 1990.

[31] Julien Guyon and Mehdi El Amrani. “Does the Term-Structure of Equity At-the-Money Skew Re-
ally Follow a Power Law?” In: Available at SSRN 4174538 (2022).

[32] Ulrich Horst, Wei Xu, and Rouyi Zhang. “Convergence of Heavy-Tailed Hawkes Processes and
the Microstructure of Rough Volatility”. In: arXiv preprint arXiv:2312.08784 (2023).

[33] Blanka Horvath, Antoine Jacquier, and Aitor Muguruza. “Functional central limit theorems for
rough volatility”. In: arXiv preprint arXiv:1711.03078 (2017).

[34] Eduardo Abi Jaber et al. “Volatility models in practice: Rough, Path-dependent or Markovian?”
In: arXiv preprint arXiv:2401.03345 (2024).

[35] Ahmed Kebaier et al. Approximation of Stochastic Volterra Equations with kernels of completely
monotone type. Tech. rep. 2022.

[36] John Lund and Kenneth L Bowers. Sinc methods for quadrature and differential equations. SIAM,
1992.

[37] Ryan McCrickerd and Mikko S Pakkanen. “Turbocharging Monte Carlo pricing for the rough
Bergomi model”. In: Quantitative Finance 18.11 (2018), pp. 1877–1886.

[38] Robert C Merton. “Theory of rational option pricing”. In: The Bell Journal of economics and man-
agement science (1973), pp. 141–183.

[39] Cornelis W Oosterlee and Lech A Grzelak. Mathematical modeling and computation in finance:
with exercises and Python and MATLAB computer codes. World Scientific, 2019.

[40] Walter Rudin. Real and Complex Analysis. McGraw-Hill Science/Engineering/Math, 1986. ISBN:
0070542341.

[41] Yat Chun ChesterWong and Paul Bilokon. “Simulation of Fractional BrownianMotion and Related
Stochastic Processes in Practice: A Straightforward Approach”. In: Available at SSRN (2024).

[42] Andrew TA Wood and Grace Chan. “Simulation of stationary Gaussian processes in [0, 1] d”. In:
Journal of computational and graphical statistics 3.4 (1994), pp. 409–432.

[43] Xicheng Zhang. “Stochastic Volterra equations in Banach spaces and stochastic partial differen-
tial equation”. In: Journal of Functional Analysis 258.4 (2010), pp. 1361–1425.

	Abstract
	Nomenclature
	Introduction
	Volatility
	Implied Volatility
	At The Money Skew
	Volatility Smile, Leverage Effect and Zumbach Effect

	Rough Volatility Models
	rBergomi
	rHeston
	Truncated Brownian Semistationary Processes

	Simulating Rough Volatility
	Exact Schemes
	Hybrid Scheme

	Markovian Approximation
	Construction of the approximation
	Strong And Weak Error Bounds
	Strong Error Bounds
	Weak Error under Rough Heston

	Nodes and Weights
	Gaussian Quadrature Rule
	Superpolynomial Rate
	Improvements on the rate of convergence
	Optimal Algorithms

	Sinc: How it works
	Preliminaries
	SINC Quadrature
	Computation of the L1 error
	Computation of the Lp error

	Numerics
	Algorithms
	Node in Zero

	Empirical Numerical Convergence
	Comparison with state of the art
	Largest node and computational time
	Convergence rate comparison
	Option Pricing under Rough Heston

	Conclusions and future work
	Aknowledgments
	References

