
Extending SymbolicPlanners with forward propagation landmark extraction

Ka Fui Yang

Supervisors: dr. Sebastijan Dumančić, Issa Hanou
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Abstract
The Fast Downward planning system is currently
mainly used for solving classical problems. An-
other alternative to Fast Downward is Symbolic-
Planners, which sacrifices speed for generality and
extensibility. SymbolicPlanners is missing land-
mark based planners and landmark extraction algo-
rithms. The research question we are trying to an-
swer in this research paper is: What design choices
can be made to adapt the forward propagation ex-
traction algorithm into SymbolicPlanners? The
forward propagation landmark generation design
choices are discussed and implemented in Symbol-
icPlanners. The runtime performance of the imple-
mentation is only about two times slower than the
Fast Downward implementation. Another aspect of
the implementation is the incorrect amount of land-
marks generated in complex problems caused by
limitation in the relaxed planning graph from Sym-
bolicPlanners.

1 Introduction
The goal of classical planning is to find a sequence of actions
to go from the initial state to the goal state, where the states
are defined by predicates. Landmarks are intermediate states
that are necessary to achieve the goals state, meaning every
planning solution must contain these landmarks. These land-
marks can be extracted using the goal state, initial state and
domain. A solution plan can be found by using a heuristic
function with landmarks in a heuristic search planner.

Multiple algorithms have been proposed for extracting
these landmarks and each of them has its own method for ex-
tracting these landmarks for heuristic. The majority of them
have been implemented in the Fast Downward planning sys-
tem [3]. Another alternative to the Fast Downward planner is
the SymbolicPlanners in Julia. SymbolicPlanners is a com-
pelling alternative to Fast Downward in terms of generality
and extensibility while only 3% slower [9].

SymbolicPlanners has multiple planners and heuristics im-
plemented but is missing landmark based planners and land-
marks extraction functions. One such landmark extraction
algorithm is described by Zhu & Givan[10]. The aforemen-
tioned algorithm is also implemented in Fast Downward.

In the following paper we will try to answer the follow-
ing research question: What design choices can be made to
adapt the forward propagation extraction algorithm into
SymbolicPlanners? We will be comparing our implementa-
tion to the Fast Downward implementation. The runtime and
the amount of landmarks extracted will be used as metrics.
We will also compare the extraction algorithm to the algo-
rithm described by Porteous, Sebastia & Hoffman with the
same metrics[7].

In this paper, we will first describe the background. Sec-
ondly, we will introduce related works. Thirdly, we will de-
scribe the design choices and the results. Furthermore, we
will describe the implications of this research in the responsi-
ble research section. Afterward, we will discuss the findings

and give reasons for them. Lastly, we will summarize the
findings and suggest future works.

2 Background
In this section, we present background information, including
definitions and concepts essential for understanding the sub-
sequent sections. Firstly, we explain the representation of a
STRIPS planning problem. Secondly, we delve into PDDL
and its application in SymbolicPlanners. Lastly, we provide
an overview of what a planning graph entails.

2.1 Notation and PDDL
For notation, we follow Koehler & Hoffmann[6]. A STRIPS
planning problem is defined as a tuple ⟨P,A, I,G⟩ , where
P represents the set of propositions, A stands for the set of
actions, I ⊆ P denotes the initial state, and G ⊆ P signi-
fies the goal state. In this context, states signify the subset of
propositions currently considered true. An action o in A is a
triple, denoted as o = (PRE(o), ADD(o), DEL(o)), where
PRE(o) represents the precondition—indicating the set of
propositions required to be true for execution; ADD(o) rep-
resents the add effect—depicting the set of propositions that
become true upon action execution; and DEL(o) denotes the
delete effect—illustrating the set of propositions that become
false once the action is applied. A plan for a classical prob-
lem refers to the sequence of actions executed from state I ,
culminating in state G.

PDDL is used to describe STRIPS planning problems in
SymbolicPlanners [9]. A PDDL formulation consists of a
domain description and a problem instance. The problem
instance includes objects, an initial state, and a goal state.
The domain description encompasses predicates and action
schemas with free variables. Through the process of ground-
ing, predicates and action schemas are instantiated using
objects from the problem instance [4][2]. Free variables
within predicates are substituted with various object combi-
nations to derive propositions, while free variables within ac-
tion schemas are similarly replaced to obtain grounded ac-
tions. SymbolicPlanners uses PDDL.jl for the grounding
process[9].

2.2 Planning graph
For definition of planning graph we follow Blum & Furst[1].
A planning graph is a directed, leveled graph where the lev-
els alternate between action nodes and predicate nodes. The
initial level consists of all the predicates in the initial state.
For level i the precondition predicates are connected via edge
to the action node and the action nodes are connected to ef-
fect predicates in level i + 1. Delete and add effects are
both present in the planning graph. No operations(no-op) are
present for capturing conditions that do not change. Addi-
tionally, mutex exclusions must be marked since adding and
deleting the same condition does not correspond to a legal
state.

A relaxed planning graph is a planning graph with the
delete effects omitted. As the relaxed planning graph lacks
delete effects, there is no need to verify whether the delete ef-
fect and the add effect of the same condition are in the same



layer. The downside is that landmark verification is essential
for the extracted landmarks on a relaxed planning graph[7].

Figure 1: Planning graph for a simple example. Predicate layer 0
here is the initial layer.

SymbolicPlanners provides a method that builds a relaxed
planning graph using the domain and the problem instance.
It is not a relaxed planning graph in definition since it lacks
the layer property but is helpful for the implementation. The
planning graph includes various fields, with the key ones be-
ing:

• conditions: Contains all the ground conditions.

• act parents: Contains the effects of the actions.

• act children: Contains the preconditions of the actions.

• cond children: Contains the action where the condi-
tions are precondition.

3 Related Work
In this section, we introduce related work that serves as a ref-
erence or point of comparison throughout the paper. Firstly,
we outline the workings of the Zhu & Givan extraction algo-
rithm and highlight key data structures essential for its imple-
mentation. Secondly, we will explore the Porteous, Sebastia
& Hoffmann extraction algorithm. Thirdly, we discuss the
Fast Downward planning system. Lastly, we will explore the
Keyder, Richter & Helmert extraction algorithm.

3.1 Forward propagation algorithm
The forward propagation of labels described by Zhu & Gi-
van works as follows[10]. In the initial layer, conditions from
the initial state are labeled with themselves, while labels for
other conditions remain empty. An action can only occur if
the labels from the preconditions are not empty. The label of
the effect condition in the next layer contains the union of all
precondition labels and the effect itself. The new label for
conditions with multiple actions that add the same conditions
is the intersection of precondition labels of the actions. The
labeling process continues until there are no changes in the

labels of subsequent layers. The landmarks are then identi-
fied as the conditions labeled in the goal state in the last layer.
Subsequently, a landmark graph is created from these con-
ditions and the noncausal landmarks are removed from the
graph.

3.2 Backward search algorithm
Another extraction algorithm similar to forward propagation
is the extraction algorithm described by Porteous, Sebastia
& Hoffmann [7]. The algorithm uses a backward search on
the relaxed planning graph. It uses a landmark candidates
set LC initially containing the goal conditions. For condition
c in LC, actions with add effect c are added to a new set.
The intersection of the preconditions of every action in this
new set is added to the LC set. The process gets repeated
till the initial state is reached. The forward propagation and
backward search algorithms employ the intersection of condi-
tions, meaning that this is an essential component of extract-
ing landmarks.

Each condition in LC except the conditions in the initial
state and the goal state is verified in the verification process,
where candidates that are not landmarks are removed. Ac-
tions that add candidates c are removed from the relaxed plan-
ning graph. Candidate c is removed from LC whenever the
goal state is reachable in the new relaxed planning graph. A
landmark-generation tree LGT is also used in the process of
generating and ordering landmarks in the landmark graph.

3.3 The Fast Downward System
The Fast Downward consists of three components: transla-
tion, knowledge compilation, and search [3]. The translation
component transforms the PDDL domain and problem into a
finite-domain representation using the method outlined in the
paper [4]. While there may not be an apparent advantage to
this finite-domain representation for planning algorithms that
do not encounter any infeasible states within this representa-
tion, other algorithms do derive benefits from it.

The finite-domain representation translation involves mul-
tiple steps, with one key step being invariant synthesis, partic-
ularly the identification of mutual exclusion (mutex) invari-
ants. Mutually exclusive conditions can be encoded into a
single state variable, where the value specifies which of the
conditions is true.

The forward propagation extraction algorithm is located in
the search component and uses the finite-domain represen-
tation as input to extract the landmarks and create a land-
mark graph as result. The noncausal landmarks are removed
from the graph. Solving planning problems using a planner,
a heuristic and a landmark graph also happens in the search
component.

3.4 AND/OR graphs algorithm
Keyder, Richter & Helmert describes that many problems re-
lated to delete relaxation can be understood as computation
on the AND/OR graph[5]. The forward propagation pro-
cess can be understood as performing the update rules on the
AND/OR graph according to the order in which the nodes are
generated in the relaxed planning graph. Their approach finds



strictly more causal landmarks than the forward propagation
algorithm.

According to Zhu & Givan, ”We call a propositional land-
mark causal when every successful plan contains an action
that requires the landmark as a pre-condition”[10]. They also
explain that since the landmarks extracted from the forward
propagation are causal, the extracted landmarks will survive
the verification process from subsection 3.2.

4 Methodology
In this section, we define the design choices made and pro-
vide a detailed description of the algorithm implementation.
Lastly, we elaborate on the chosen domain and the criteria
used to evaluate performance.

4.1 Design choices
As discussed in Section 3, two crucial design choices can im-
pact the extraction algorithm. The first choice relates to how
the planning graph is represented and utilized in the prop-
agation phase. The second design choice involves how the
extracted labels are used to construct a landmark graph.

The data structure for each layer is a vector of labels,
whereas a label is a set of integers. The vector’s size cor-
responds to the size of the ’conditions’ from subsection 2.2.
The labels of the conditions from the initial state contain
the index of themself and other conditions are initialized as
empty.

Another data structure created using ’cond children’ is
used for adding actions in the queue. The data structure is
a vector of vectors of integers. The size of the outer vector
corresponds to the size of the ’conditions.’ The inner vector
contains the index of the actions where the precondition index
is equal to the index of the outer vector.

Before propagation, initialize both structures. Add actions
from initial state condition indexes to queue and propagate
using algorithm 1.

Algorithm 1 Forward propagation
while queue not empty do

create new queue
copy old layer
for action in queue do

if action is applicable then
label the effect of action in layer
if Check for difference old and new layer then

Add action of difference in new queue
end

end
end
queue = new queue

end

We take the intersection of the label for conditions with
multiple actions that add the same condition.

The landmark graph creation works as follows: Firstly, a
new empty Landmark Graph is initialized. Secondly, extract
the goal conditions using the PlanningGraph. Thirdly, check

the labels of the goal condition for empty. An empty label
means the goal condition is not reached during the forward
propagation. A goal landmark is created if the label is not
empty. Fourthly, create a Landmark for each integer in the
label. The landmark connects to the goal landmark with a
natural ordering edge. The noncausal landmarks are removed
during the verification process.

4.2 Domains and performance criteria
We will use the domains from Zhu & Givan experiment
and Porteous,Sebastia & Hoffman experiment[10][7]. These
will be Blocksworld, Logistics, Tireworld, Grid, Gripper and
Freecell. The Sokoban domain before 2003 does not exist in
the PDDL-instances repository which means we will not use
it in the experiment.

The domains above are very different from each other.
Blocksworld, Logistics, Gripper, and Grid are simple do-
mains with actions that contain two or three free variables.
Freecell is a complex domain with multiple actions contain-
ing five or six free variables. Tireworld lies in the middle. We
will run every problem instances in the domain.

For each problem instance in the domains, the number of
landmarks is extracted using backward search and forward
propagation. For the backward search implementation, we
will use the implementation described by Tervoort[8]. From
Tervoort we will also use the landmark verification method.
For the forward propagation, we will run one without verifica-
tion and one with verification. We will also run the compiled
and non compiled domains for each instance. We will run the
instance three times and calculate the average runtime and
amount of landmarks. For each problem instance in the do-
mains, we will also run the Fast Downward implementation
of the forward propagation. We will run the instance twice
and calculate the average runtime and amount of landmarks.

For performance criteria, we will use the runtime of the
extraction algorithm on the problem instances in the domain
mentioned above versus the number of objects in the problem
instance. Also we will compare the amount of landmark ex-
tracted to the Fast Downward implementation. The forward
propagation implementation should extract the same amount
of landmark to the Fast Downward implementation for every
problem instances in every domain.

5 Experimentation result
The experiment has been runned on a laptop running Man-
jaro Linux with a 2.80 GHz 11th Gen Intel and 15.3 Gb main
memory. The benchmark code, implementation and data are
available in the GitHub repository.

Figure 2 shows the implementation without verification us-
ing a compiled and non-compiled Blocksworld domain. Fig-
ure 3 shows the runtime of three different implementations in
the non-compiled Blocksworld domain. The first data point
for implementation without verification and backward search
is significantly higher compared to the data point afterward.
Figure 4 shows the runtime between the forward propaga-
tion algorithm in SymbolicPlanners and Fast Downward in
Blocksworld domain. The reason for high and low data point
is because there is multiple problem instances with the same
problem size.



Figure 2: The runtime for the implementation without verification
in Blocksworld domain. Runtime lower is better.

Figure 3: The runtime for three different implementation versus the
problem size in non-compiled Blocksworld domain. Lower runtime
is better.

Table 1: Amount of instances where our implementation extracted
an equal amount of LM to Fast downward implementation. Higher
ratio is better.

Domain
Problem instance
with same amount
LM extracted

Blocksworld 102/102
Logistics 82/82
Tireworld 16/30
Grid 0/5
Freecell 0/60
Gripper 20/20

Table 1 shows the number of problem instances where
the implementation extracted the same number of landmarks
as the Fast Downward implementation. The implementa-
tion does not perform well at Freecell and Grid but well at
Blocksworld, Logistics and Gripper. For the Tireworld do-

Figure 4: The runtime for Fast Downward and SymbolicPlanners
implementation in non-compiled Blocksworld. Lower runtime is
better.

Figure 5: Runtime of Fast Downward and SymbolicPlanners imple-
mentation with the first entry omitted in non-compiled Tireworld.
Lower runtime is better.

main, half of the problem instances have the same extracted
landmarks. In the discussion, we will use the Tireworld do-
main to explain the faults in the implementation.

Figure 5 shows the runtime difference Fast Downward
and SymbolicPlanners implementation in non-compiled Tire-
world domain. The runtime for the implementation is higher
in places where it should be low, like the data point with
problem size 60. Figure 6 shows the amount of landmarks
extracted for both implementations in Tireworld. Our im-
plementation stops extracting more landmarks at problems
with sizes bigger than 68. Figure 7 shows that the backward
search and forward propagation with verification stop running
at sizes bigger than 68 while the forward propagation keeps
running.



Figure 6: The amount of landmarks extracted for Fast Downward
and SymbolicPlanners implementation in Tireworld domain.

Figure 7: The runtime for three different implementation in non-
compiled Tireworld domain with the first entry omitted. Lower run-
time is better.

6 Responsible Research
In the following subsection, we discuss why the experiment’s
reproducibility is necessary and the actions taken to make it
reproducible. We also discuss the context in which the imple-
mentation is used and the limitations.

Research must be reproducible such that each generation
of scientists can build on the previous generation’s achieve-
ments. The Internet and new technology are constantly
changing, making experiments more challenging to repro-
duce. The following remedy has been taken to make the fol-
lowing research reproducible. Firstly, the source code and
data used for generating the results are published. Both are
available in the GitHub repository. The result is located in
the ’forward-propagation-results’ folder while the data are in
the ’experiments/logical’ folder. Secondly, a README.md
file is included in the repository, describing how to reproduce
the experiment with the source code and data. The file in-
cludes instructions on running the experiment, sources of the
data used, and problem instances used for the experiment.

The International Planning Competition is a yearly compe-
tition to evaluate planning systems on different benchmark
problems. The data used for the experiment comes from
the old IPC competitions, ranging from 1998 to 2008, in
a GitHub repository 1. The used domains and problem in-
stances are copied into the experiment repository to prevent
data change. Change to the data should not happen since we
do not own the IPC data repository and the data we used are
from 1998 to 2003.

Another option for data was the official repository of the
Planning Domains website 2. The reason for not using some
of their data was because they included a disclaimer that says
that data is being fixed, problems set are being replaced, and
bugs are being corrected; therefore, it was not recommended
for use in academics.

The implementation is used in the context of solving clas-
sical planning problems. Classical planning problems are ex-
tensive; many types of problems exists ranging from easy to
complex problems. The implementation does not solve clas-
sical problem but extracts the landmarks. From the result, the
implementation extracts the correct number of landmarks in
simple domains such as Blocksworld and Logistics but not
for others. We hope that users are aware of the limitations of
the implementations and refrain from using them in real-life
complex problems.

7 Discussion
For simpler domains such as Logistics and Blocksworld, the
implementation extracts the same amount of landmarks as
the Fast Downward implementation. Using the Tireworld do-
main, we can derive that forward propagation keeps running
for problem sizes bigger than 68 but extracts the same land-
mark amount to a problem with size 68. After thorough de-
bugging and testing, we have found that the relaxed planning
graph provided by SymbolicPlanners does not add ground ac-
tion after a specific amount of actions. Complex domains
have actions that contain multiple free variables and these
problem instances also contain a lot of objects. It is under-
standable that there is a limit to the number of actions being
added.

Using the result of Freecell, we can see that the extracted
landmark is always four. Further inspection of the relaxed
planning graph code shows that no action that adds the goal
condition as an effect exists. The relaxed planning graph also
includes illegal actions such as On(A, A) for Blocksworld do-
mains.

The runtime for the first data point is always higher com-
pared to the point afterward. Figure 5 and figure 8 show that
our implementation does take more than one second in the
first problem instance to extract the landmarks. We assume
Julia causes this. Julia takes some time when the implemen-
tation is compiled for the first time. Subsequent calls within
the same session use the fast compiled function. This also
explains figure 3, because the backward search uses the veri-
fication method first and then the forward propagation.

1https://github.com/potassco/pddl-instances
2https://github.com/AI-Planning/classical-domains



The runtime for forward propagation without verification
is two times slower than Fast Downward. A reason for the
difference can be explained by either the finite-domain rep-
resentation from Fast Downward or the time is timed when
the propagation and landmark generation happens. In con-
trast, our implementation runtime includes the relaxed plan-
ning graph creation, forward propagation and landmark gen-
eration.

The forward propagation runtime is much faster than the
backward search extraction algorithm but the forward prop-
agation with verification is slower than the backward search.
The backward search algorithm without verification could re-
semble the forward propagation in runtime but verification
is necessary for backward search. Backward search also ex-
tracts more landmarks than forward propagation.

8 Conclusions and Future Work
Our implementation does extract the correct amount of causal
landmarks with simple domains such as Blocksworld, Grip-
per, and Logistics. However, our implementation fails to ex-
tract the landmarks for complex and large problem size in-
stances. For Freecell and Grid, zero problem were correctly
extracted. For Tireworld, the algorithms stop extracting land-
marks with problem sizes bigger than 68. The problem origi-
nated from the relaxed planning graph that we use, which can
only handle small problem instances.

The design choices discussed in section 4 were significant
because the runtime between ours and the Fast Downward
implementation is close. Our implementation is about two
times slower compared to the Fast Downward. The runtime
of the forward propagation algorithm starts to increase if ver-
ification is used.

The forward propagation is much faster than the backward
search but extracts fewer landmarks. The drawback of for-
ward propagation is that the landmark graphs do not have
weakly reasonable ordering. Landmark heuristics that need
reasonable ordering do not work with our landmark graph.

The next couple of things to do in the future are as fol-
lows. Firstly, improve the relaxed planning graph to remove
redundant actions and handle large problem size instances.
Secondly, improve the forward propagation to work with do-
mains with axioms. Thirdly, Zhu & Givan describe the land-
mark counting heuristic that can be used with the gener-
ated landmark graph[10]. The heuristic can be implemented
in SymbolicPlanners. Using the heuristic and the landmark
graph we generated, we can solve classical planning prob-
lems.
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A Appendix

Figure 8: The comparison between Fast Downward and Symbolic-
Planners implementation without the first entry omitted.

Figure 9: The runtime for three different implementation in Tire-
world domain without the first entry omitted.
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