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FEEL: Fast, Energy-Efficient Localization for
Autonomous Indoor Vehicles
Vineet Gokhale, Gerardo Moyers Barrera, R. Venkatesha Prasad

Embedded and Networked Systems, Delft University of Technology, The Netherlands

Abstract—Autonomous vehicles have created a sensation in
both indoor and outdoor applications. The famous indoor use-
case is process automation inside a warehouse using Autonomous
Indoor Vehicles (AIV). These vehicles need to locate themselves
not only with an accuracy of a few centimeters but also within
a few milliseconds in an energy-efficient manner. Due to these
challenges, localization is a holy grail. In this paper, we propose
FEEL – an indoor localization system that uses a fusion of
three low-energy sensors: IMU, UWB, and radar. We provide
detailed software and hardware architecture of FEEL. Further,
we propose Adaptive Sensing Algorithm (ASA) for optimizing
for localization accuracy and energy consumption of FEEL by
adjusting the sensing rate to the dynamics of the physical envi-
ronment in real-time. Our extensive performance evaluation over
diverse test settings reveals that FEEL provides a localization
accuracy of sub-7 cm with an ultra-low latency of around 3ms.
Additionally, ASA yields up to 20% energy savings with only
a marginal trade off in accuracy. Furthermore, we show that
FEEL outperforms state of the art in indoor localization.

Index Terms—Localization, FEEL, accuracy, energy-efficiency,
latency, AIV

I. INTRODUCTION

In this paper, we propose FEEL – a fast, accurate, and
energy-efficient localization system using a sensor fusion of
IMU, UWB, and radar for Autonomous Indoor Vehicles (AIV).

Recently, there have been many innovations and automation
around the IoT, CPS, Industry 4.0, autonomous vehicles and
drones. These innovations are paving ways for a few hundreds
or thousands of AIV to collaboratively execute complicated
industrial processes. As an example, several AIVs could be
executing all tasks starting from supplying raw materials in a
manufacturing process to stocking finished products in a ware-
house. Efficiently performing these diverse tasks necessitate
that the AIVs be capable of accurately sensing the operating
environment in order to take intelligent decisions. A crucial
part of this is localization – which is a holy grail – by which
the AIVs learn their positions in the physical environment. In
a dense environment with several obstacles and narrow paths,
localization accuracy of 10 cm or lower is desired for safe
operations. Furthermore, this should be achieved in a fast and
an energy-efficient manner.
Why fast and energy-efficient? Several applications
of (semi-)autonomous robots requiring ultra-low latency
(<10 ms) are fast-emerging. Primary examples are the ones
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Fig. 1: Side and frontal views of FEEL – the proposed fast,
energy-efficient, and accurate localization system for AIV.

including fast control loops such as Tactile Internet [1] and
FPV/autonomous drone racing [2]. Violation of latency re-
quirements pose catastrophic consequences, such as crashes.
This latency budget subsumes several processes like sensing,
localization, path planning, communication, and actuation. In
order to facilitate such applications with fast control loops,
permissible localization latency is within a couple of mil-
liseconds. In general, accurate and fast indoor localization
can be achieved by employing powerful sensing (like LiDAR)
and computational infrastructure. However, this is not always
an affordable solution since the AIVs house small micro-
controllers and are powered by batteries with limited energy
budget in order to maintain a small form factor. Sub-optimal
usage of energy results in frequent recharging and replacement
of batteries, thereby contributing heavily towards the overall
carbon footprint. Hence, achieving fast and energy-efficient
localization while meeting the necessary accuracy requirement
is a challenging research problem.

For outdoor environments, Global Navigation Satellite Sys-
tem (GNSS) is the de facto localization method [3]. However,
due to its poor localization accuracy in indoor environments,
several other sensors have been extensively investigated. While
vision-based sensors, like LiDAR and camera, can guarantee
the required high accuracy for indoor environments, they
are energy-intensive (sensing and computation) as well as
unreliable under poorly illuminated conditions. Hence, other
low-energy sensors, such as radar, Inertial Measurement Unit
(IMU), odometry, Ultra-wideband (UWB), and WiFi have
been extensively investigated in literature. Further, sensor fu-
sion techniques are used to reap the benefits of simultaneously
learning from multiple sensors.

Literature provides several combinations of the aforemen-
tioned low-energy sensors fused in a variety of ways to max-
imize the localization accuracy. However, to the best of our
knowledge, none of these combinations yields the necessary
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localization accuracy of sub-10 cm. Further, characterization
of latency and energy efficiency of these localization methods
have garnered negligible emphasis. In this work, we attempt to
bridge this gap. Our contributions are summarized as follows.
• We present the design of FEEL – a system that fuses three

low-energy sensors – IMU, UWB, and radar, for achieving
fast and energy-efficient localization in the scale of a few
centimeters in indoor environments. We design and develop
a custom AIV (see Figure 1) for demonstrating the proof of
concept of FEEL.

• We propose Adaptive Sensing Algorithm (ASA) for oppor-
tunistically minimizing the energy consumption of FEEL
while marginally trading off accuracy by adjusting the sens-
ing rate to suit the dynamics of the operation environment.
ASA offers the flexibility to tune its system parameters to
meet the application-specific energy-accuracy demands.

• Our robust and extensive performance evaluation under
diverse experimental settings reveal that FEEL can provide
an accuracy of up to 6.94 cm with a mean latency of
3.15 ms. Further, we show that ASA yields up to 20%
reduction in energy consumption.

II. RELATED WORK

In this section, we will discuss the recent works for provid-
ing a general view of the state of the art in localization.

Vision-based localization: They rely on at least one vision
sensor, such as LiDAR and camera, for localization. Zhen
et al. employed LiDAR and UWB for localization in a
tunnel-like environment based on Error State Kalman Filter
(ESKF) [4]. Song et al. employed LiDAR and RGB depth
camera for localization using visual tracking and depth
information [5]. Wan et al. designed a robust localization
method through fusion of LiDAR, GNSS, and IMU [6].

Non-vision based localization: Several localization methods
using only non-vision based sensors, such as IMU, UWB,
magnetometer, GNSS, and odometry, have also been exten-
sively investigated. Hellmers et al. explored the combination
of IMU and magnetometer [7]. While the works in [8]–[10]
performed a fusion between IMU and UWB, Dobrev et al.
fused radar, ultrasound (US), and odometry information [11].
Haong et al. explored the localization potential of GNSS, in-
frared, and UWB [12], and Zhou et al. developed a localization
method using WiFi infrastructure [13].

In general, vision-based sensors have shown the potential to
yield a localization accuracy of sub-10 cm, however, they are
both expensive both energy- and cost-wise. As an example,a
LiDAR sensor costs a few thousand USD. On the other hand,
non-vision based sensors are generally cheap and consume
low energy, albeit their localization accuracy is considerably
lower.

III. FEEL: DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
details of our proposed localization system. We begin by pro-
viding the hardware details of our AIV design (Section III-A),

Fig. 2: Block diagram representation of FEEL showing the
sensor fusion of IMU, UWB, and radar.

then move to the software design where we present the EKF
employed in our testbed (Section III-B) and the proposed ASA
technique (Section III-C).

A. Hardware Testbed

The appropriate choice of sensors plays a vital role in de-
termining the accuracy, latency, energy-efficiency, and cost of
localization system. In this work, we explore the combination
of three cost-effective and low-energy sensors: IMU, UWB,
and radar. To the best of our knowledge, ours is the first
attempt to explore localization using fusion of these three
sensors.
IMU: In order to capture the acceleration and orientation of
the AIV, we employ MPU6050 [14]. It offers a maximum
sensing rate of 1 kHz and has an average power consumption
of 12.89 mW.
UWB: We use four UWB anchors placed at pre-defined loca-
tions in the test environment to obtain 2D position and velocity
vectors of the UWB tag placed on the AIV. For our testbed, we
use Decawave DWM1001dev [15] with a maximum sensing
rate of 10 Hz and an average power consumption of 0.67 W.
Radar: We employ radar for its ability to compensate for the
erroneous measurements from UWB, and to detect objects in
the proximity of AIV. For our testbed, we used AWR1843,
which offers a maximum sensing rate of 130 Hz and has an
average power consumption of 1.92 W.

The sensor fusion using EKF and other data processing
steps are performed using NUCLEO-L4R5ZI processor board
[16]. It has an ARM Cortex M4 32-bit microcontroller with
an operating frequency of 120 MHz. The 5 V DC motors for
driving the wheels are powered using a Lipo 2S battery with
a capacity 3000 mAh.

B. Sensor Fusion

In this work, we use Extended Kalman Filter (EKF) as the
sensor fusion technique. For simplicity in implementation, we
take measurements from all three sensors as inputs for pre-
dicting position and velocity of AIV, whereas the orientation
of AIV is solely determined by orientation measurement of
IMU. This is depicted in Figure 2. We now provide a detailed
description of the different steps of EKF involved in the design
of FEEL.



Prediction: Let (ax, ay) denote the 2D acceleration measured
by IMU and θ denote IMU orientation with respect to the
initial position of AIV. Let (x, y) and (vx, vy) be the state
variables of EKF denoting 2D position and velocity of AIV, re-
spectively. Denoting the state variables as X = [x y vx vy]T ,
their prediction X̂ at time step k is then expressed as,

X̂k = FXk−1 +Buk + wk,

where

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


1
2∆t2 0 0 0

0 1
2∆t2 0 0

0 0 ∆t 0
0 0 0 ∆t

 ,
uk = [akx aky aksinθk akcosθk]T is the control input, and a
is the magnitude of acceleration. Here, F and B denote the
state transition matrix and control matrix, respectively, ∆t is
the time between successive measurements of IMU and wk ∼
N(0, Q) denotes the measurement noise of IMU. Note that
to indicate the time step k, we use subscripts for matrices
and superscripts for state variables. The noise covariance of
prediction is given by

P̂k = FPk−1F
T +Q,

where Q is the noise covariance of u expressed as

Q =


σ2
ax 0 0 0
0 σ2

ay 0 0

0 0 σ2
sinθ 0

0 0 0 σ2
cosθ


Measurement: This step relies on the position and velocity
measurements from UWB and radar. Due to the dependence
on the measurements from two different sensors, we employ
a weighted averaging to determine the effective measurement.
The measurement matrix Zk is given as

Zk =


x̄k

ȳk

v̄kx
v̄ky

 + nk =


xkuαx + xkr (1− αx)
ykuαy + ykr (1− αy)

vkx(u)βx + vkx(r)(1− βx)

vky(u)βy + vky(r)(1− βy)

 + nk,

where (xu, yu) and (vx(u), vy(u)) are the 2D position and
velocity measurements of UWB, respectively. Similarly,
(xr, yr) and (vx(r), vy(r)) are the 2D position and veloc-
ity measurements of radar, respectively. αx and αy denote
weights assigned to the position measurements of UWB
along x and y-axis, respectively. Similarly, βx and βy denote
weights assigned to the velocity measurements of UWB along
x and y-axis, respectively. The weighted average of the sensor
measurements is denoted with the overline character. Since the
weighted average is used as state variables in the measurement
model, H (the Jacobian of Z), is an identity matrix, i.e. H = I .
The measurement noise nk ∼ N(0, R), where

R =


σ2
x̄ 0 0 0

0 σ2
ȳ 0 0

0 0 σ2
v̄x 0

0 0 0 σ2
v̄y

 .

Here σ2
x̄ = αxσ

2
xu

+ (1−αx)σ2
xr

, σ2
ȳ = αyσ

2
yu + (1−αy)σ2

yr ,
σ2
v̄x = βxσ

2
vx(u)

+ (1− βx)σ2
vx(r)

, and σ2
v̄y = βyσ

2
vy(u)

+ (1−
βy)σ2

vy(r)
.

Update: After the sensor measurements are available, the EKF
applies the correction step to the predicted values as per the
following equations. The innovation matrix Y , its covariance
S, and Kalman gain K are given by the following equations.

Yk = Zk − X̂k, Sk = P̂k +R, Kk = P̂kS
−1
k

Finally, the prediction and its covariance matrices are updated
as

Xk = X̂k +KkYk, Pk = (I −Kk)P̂k.

Due to the need of accurate localization as well as reduc-
ing the computational demands of FEEL, we run EKF in
synchronization with IMU at 1 kHz. This means that UWB
and radar measurement samples that are generated between
two successive IMU measurements are buffered until the
succeeding IMU sample is generated.

Having presented the hardware and software design of
our AIV testbed, we now present the design of Adaptive
Sensing Algorithm (ASA) for improving the energy-efficiency
of FEEL.

C. Adaptive Sensing Algorithm (ASA)

As mentioned in Section III-A, the power consumption of
sensors used in FEEL is substantially lower than LiDAR-
based localization systems. However, as a good engineering
practice, it is important that the AIV be designed to utilize
only as much power as required to meet the demands of any
given application. This improves the energy performance of
AIV and significantly contributes towards development of eco-
friendly industries. This motivates us to design Adaptive Sens-
ing Algorithm (ASA) for opportunistically sensing information
depending on the nature of AIV trajectory and the physical
environment. The idea behind ASA is to dynamically adjust
the sampling rate of sensors in real-time for optimizing the
energy consumption and localization error of FEEL.

As already discussed in Section III-A, the energy consump-
tion of IMU is significantly lower than UWB and radar. Hence,
in ASA we keep the IMU sampling rate fixed at its maximum
(1 kHz) while adapting only the sampling rates of UWB (fu)
and radar (fr). Naturally, the energy consumption (localization
error) monotonically increases (decreases) with the sensing
rates, although characterizing the exact relationship between
them is non-trivial and out of the scope of this work. For
simplicity, we define threshold frequencies γu and γr as the
minimum fu and fr, respectively, such that there is negligible
reduction in accuracy (<1 cm in our case) compared to the
best accuracy which is achieved at maximum sampling rates of
sensors. Let us denote the permissible minimum and maximum
frequency of UWB as fu(min) and fu(max), respectively, and
those of radar as fr(min) and fr(max), respectively. Note that
fu(min) < γu < fu(max) and fr(min) < γr < fr(max).

ASA works by increasing the sampling frequency in the
following scenarios:



Algorithm 1: Adaptive Sensing Algorithm

/* For radar and UWB, add/prefix
subscript r and u, respectively, to
f, f(min), f(max), γ,m, c */

Result: Determine f based on δθ and d
1 Set mu = 1,mr = 0.5, cu = −1, cr = 0
2 Initialize: f = fmax
3 if δθ < θ′ then
4 if f(min) < f ≤ γ then
5 f ← mf + c
6 else if f = f(max) then
7 f ← γ
8 else
9 if f(min) ≤ f < γ then

10 f ← γ
11 else
12 f ← fmax
13 end
14 end
15 if d < d′ then
16 fr ← fr(max)

17 Wait for time T and go back to Step 3

1) Change in AIV orientation: Let δθ denote the change in θ
per T time units and θ′ is the orientation threshold used by
ASA. If δθ > θ′, then the measurements of both UWB and
radar are heavily impacted. In this case, both fu and fr are
increased aggressively to minimize the localization error.
The frequency is increased as follows: If fr = γr, then
fr ← fr(max), and if fr(min) ≤ fr < γr, then fr ← γr.
Adaptation of fu also happens in a similar fashion.

2) External objects in AIV’s proximity: If an external object
is in close proximity of AIV then only localization of radar
is impacted. Hence, if d ≤ d′, then fr ← fr(max). Here
d denotes the distance between AIV and the closest object
as measured by radar and d′ is the distance threshold used
by ASA.

If none of the above scenarios occur, then localization ac-
curacy can be traded off slightly for obtaining energy sav-
ing. To achieve this, ASA prudently reduces fu and fr until
fu(min) and fr(min) are reached, respectively. Due to the
heterogeneous ranges of sampling frequencies, i.e. fu ∈
[1, 10] Hz and fr ∈ [1, 130] Hz, we choose to reduce fu
linearly and fr multiplicatively. The working of ASA is
presented in Algorithm 1.

The efficacy of ASA lies in the fact that the user can
configure its parameters to obtain the desired application-
specific energy-accuracy performance from FEEL.

IV. PERFORMANCE EVALUATION

We now move to comprehensive performance evaluation
of FEEL where we first describe the experimental setup
(Section IV-A) and then shed light on our important findings
(Section IV-B).

A. Experimental Setup

In order to conduct robust performance evaluation under
a wide variety of operating conditions, we consider several
profiles of indoor test environment, track, and AIV speed.
Environment profile: We evaluate FEEL in three test envi-
ronments with different physical characteristics as shown in
Figure 3.

E1: In this environment, shown in Figure 3a, a couple of
large objects are located around the track. E1 enables us
to understand the performance of FEEL in a typical office
environment with sparse distribution of objects.

E2: In this environment, shown in Figure 3b, there are several
objects, such as chairs, tables, and a few plants, located in
close proximity to the track. E2 helps us to assess the perfor-
mance of FEEL in a typical factory/warehouse environment
with dense distribution of objects.

E3: This is a narrow, long corridor with no other apart from
AIV as shown in Figure 3c. E3 enables us to understand
the performance of FEEL in narrow spaces such as tunnels
with extremely low margin of error and strong radio wave
reflections off the walls.

Track profiles: In our investigation, we consider two track
profiles: straight track and race track. As the names suggests,
while in straight track profile the AIV drives along a straight
line between two pre-defined points, in race track profile, the
AIV trajectory resembles an oval shape.
Speed profiles: Experimenting with different speed profiles
helps us identify the speed limits under which FEEL provides
necessary performance guarantees. Since the maximum per-
missible speed of our AIV is 4 kmph, we consider two speed
profiles: low (1.2 kmph) and high (4 kmph).

As mentioned in Section III-B, EKF runs at 1 kHz im-
plying that ∆t=1 ms. In order to compute Q and R, we
record sensor measurements by running several tests un-
der different experimental conditions described above. By
comparing the recorded values against ground truth, we
deduce [σ2

ax , σ
2
ay , σ

2
sinθ, σ

2
cosθ]=[2.31, 0.60, 0.32, 0.65]×10−3.

By empirically setting αx=αy=0.7 and βx=βy=0.4, we ob-
tain [σ2

x̄, σ
2
ȳ, σ

2
v̄x , σ

2
v̄y ]=[0.14,0.06, 0.13,0.11]. As concerns the

parameters of ASA, we empirically set θ′=10°, d′=1 m,
and T=1 s. These parameters can be tuned based on
the expected application-specific requirements. Additionally,
fu(max)=10 Hz and fr(max)=130 Hz. Other parameter config-
urations, such as fu(min), fr(min), γu, and γr, will be dis-
cussed in the next section.

B. Experimental Results

We begin by presenting the localization accuracy and la-
tency performance of FEEL. Note that although we con-
duct performance evaluation across several profiles explained
earlier, due to space constraints we present only the most
interesting findings in this paper.

Figure 4a shows a head-to-head comparison of localization
accuracy of FEEL against two commonly used non-vision
based localization techniques: IMU-radar and IMU-UWB. In



(a) (b) (c)

Fig. 3: Indoor test environments used for performance evaluation of FEEL. a) E1: office environment with sparsely distributed
objects, b) E2: office environment with densely distributed objects, and c) E3: narrow, long corridor with no other objects.

(a) (b) (c)

Fig. 4: Performance evaluation of FEEL. (a) Comparison of localization RMSE with two common localization methods, (b)
Localization RMSE in three test environments (c) Localization latency in three environments and high speed profile.

order to obtain a fair and consistent performance analysis,
we implemented these localization techniques on our testbed.
The presented findings correspond to the two speed profiles in
E1 and straight track. It can be seen that FEEL outperforms
others giving RMSE of 8.57 cm and 6.85 cm for low and high
speed profiles, respectively. FEEL yields a significant accuracy
improvement of up to 2x and 2.2x over IMU-radar and IMU-
UWB methods, respectively. Interestingly, the accuracy of
our method increases with the AIV speed. This behavior is
attributed to the higher localization accuracy of the radar
module used in our testbed.

We present the localization accuracy of FEEL in the three
test environments for straight track and both speed profiles in
Figure 4b. It can be seen that in all cases, the RMSE is sub-
9 cm. Interestingly, for low speed profile, the performance in
E2 better than in E1 and E3. The rationale behind this behavior
is that the large number of objects present in E2 aid the radar in
localizing the AIV better. We observe comparable performance
of FEEL in case of race track profile also.

We now move to measuring the localization latency of
FEEL. Figure 4c presents our findings for straight track
in the three test environments. It can be observed that the
mean latency is 3.15 ms. The extremely low latency profile
demonstrates the potential of the usage of FEEL in ultra-low
latency applications. Further, the similar latency measurements
in all test environments also demonstrate robustness of FEEL’s
latency performance to the characteristics of the operating
environment.

We now compare the performance of FEEL (without ASA)
with state of the art in localization. Note that the power

IMU-UWB UWB-LiDAR IMU-UWB- Radar-US IMU-UWB
[9] [17] LiDAR [4] [11] -Radar (FEEL)

Test speed 2.5 2.88 2.52 4.32 4(kmph)
Max. accuracy 10.2 7.6 10 15 6.94(cm)
Mean latency – 3 – – 3.15(ms)
Power consp. – >10 >10 ∼6.06 4.19(W)
System cost – >4500 >4500 >4000 ∼400($)

TABLE I: System- and performance-level comparison of
FEEL with state of the art in localization.

IMU-UWB UWB-LiDAR IMU-UWB- Radar-US IMU-UWB
[1] [2] LiDAR [3] [4] -Radar (Ours)

Test speed 2.5 2.88 2.52 4.32 4(kmph)
Max. accuracy 10.2 7.6 10 15 6.94(cm)
Mean latency – 3 – – 3.15(ms)
Power consp. – >10 >10 ∼6.06 4.19(W)
System cost – >4500 >4500 >4000 ∼400($)

TABLE II: System- and performance-level comparison of
FEEL with state of the art in localization.

consumption presented is for the overall system including the
sensors. As can be seen from Table II, only UWB-LiDAR
[17] matches the accuracy and latency provided by FEEL,
however this comes at the expense of high power consumption
and overall system cost since it employs LiDAR. The missing
details of [9] is due to the insufficient details provided in the
article. To summarize, FEEL outperforms the state of the art



Fig. 5: Trade off between localization error and sensing power
consumption over a wide range of fr and fu in E2.

Fig. 6: Demonstration of sampling frequency adaptation of
ASA and the resulting localization error in response to turns
(blue arrows) and objects (red arrows) in the environment.

in localization comprehensively.
Finally, we now move to the energy-efficiency aspect of

FEEL. Before moving to assessing the performance of the
proposed ASA, it is important to understand the influence of
fr and fu on localization accuracy and power consumption
in order to determine fr(min), fu(min), γr and γu. Figure 5
presents these dynamics for E2 and race track profile. It can
be seen that while the localization error falls off exponentially
with increasing fr and fu, the sensing power consumption
increases linearly on a log scale for fr and a linear scale for
fu. Interestingly, radar information has significant redundancy
that can be exploited to achieve energy efficiency in ASA.
It is worth mentioning that the variation looks similar for
other experimental profiles also. From Figure 5, it is clear
that γr=16 Hz and γr=7 Hz. It can be seen that at these values,
there is approximately 18% reduction in energy consumption
in comparison with that at the maximum sensing rates. This
demonstrates the scope of improving the energy efficiency of
FEEL with negligible compromise on accuracy.

With the above values for frequency parameters, we now
present the performance evaluation of ASA in E1 on race track.
The total length of the track is 14 m with three large objects
around the track. The three objects and turns are marked in
Figure 6 using red and blue arrows, respectively. As can be
seen, sensing rate increase as a response to objects starts prior
to reaching the object due to the radar detecting them, whereas
response to turns starts only once the AIV starts changing its
trajectory. Our measurements reveal that due to the sampling

rate adaptation of ASA, there is approximately 20% reduction
in power consumption of AIV, although the localization RMSE
is measured to be 12 cm.

V. CONCLUSIONS

Autonomous indoor vehicles will be heavily employed in
automation industries/warehouses in the near future. These
AIVs require high localization accuracy at ultra-low latency
and low-energy demands. In this paper, we proposed a system
called FEEL for indoor localization by fusing IMU, UWB, and
radar. We presented the design of the custom-built hardware
for showing the proof of concept. In order to address the
energy challenges, we proposed Adaptive Sensing Algorithm
(ASA) for opportunistically tuning the sampling frequency
to minimize energy consumption by trading off marginally
for accuracy. We performed extensive evaluation and found
that the localization accuracy of FEEL is within 7 cm while
the mean localization latency is around 3.15 ms. We showed
that ASA provides a considerable improvement in the energy
performance of FEEL of up to 20%. Further, we showed that
FEEL comprehensively outperforms state of the art in indoor
localization. We believe that the work presented here will
become one of the benchmarks for further research in this
domain.
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