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Chapter 14
Reliability and Degradation of Power 
Electronic Materials

R. Ross and G. Koopmans

1  Introduction to Reliability and Degradation

Power electronics (PE) obtain their properties from a constellation of materials. The 
performance of such devices depends on the properties of the applied materials and 
the quality of the assembly. This chapter describes reliability matters related to per-
formance of materials and systems in R&D experiments and production. The focus 
is on the statistical description, failure data analytics, and inferences.

The chapter starts out with a description of the basic parts in PE and how their 
degradation can jeopardize the integrity of PE. Next the basics of relevant statistical 
analysis are discussed. This is followed by describing the acceleration due to 
enhanced stresses. The effect on the system lifetime by size, redundancy, and repa-
rability is discussed next. Finally, it is discussed that a product batch may consist of 
various subpopulations (e.g., defected and sound products) and that various pro-
cesses may occur simultaneously (e.g., random and wear-out failure) which leads to 
the phenomenon of mixed failure distributions. Some examples illustrate how to 
deal with such complicated situations that nevertheless occur frequently in testing.

A full review of the extensive literature that exists on reliability analysis is 
beyond the scope of this chapter. For a more extensive introduction the reader is 
referred to textbooks such as on lifetime data [7], accelerated testing [10], and reli-
ability data [8]. The present approach also transfers practice on asset management 
in electric power supply [13] to power electronics. As a special topic the present 
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contribution also discusses the fact that multiple processes can lead to the degrada-
tion of devices, which leads to the concept of combined distributions. With acceler-
ated aging the original distributions can all change, but probably at different rates. 
This is a noteworthy phenomenon which may help or hinder R&D testing.

2  Power Electronic Materials

The basic functionalities in PE devices are conduction, semi-conduction, insulation, 
and stress control. The performance and degradation of electrical materials in PE 
devices is described in industry handbooks and textbooks, e.g., [3], and relevant 
information can also be found in electrical materials handbooks, e.g., [4] and, e.g., 
IEEE transactions. The background is that phenomena that happen in high voltage 
engineering also appear to happen in miniaturized low voltage PE devices, because 
the electric fields are in the same range.

Most applied materials in increasing order of conductivity are aluminum, gold, 
copper, and silver. Other important properties of conductors are mechanical strength, 
thermal expansion, and chemical stability. Lack of conductivity can stem from 
design (insufficient cross section) or high Ohmic contact (e.g., fracture in soldered 
connection). Overheating may be caused by forced current (e.g., by inductances) 
through high impedances.

Semi-conducting materials owe their conduction to available charges and elec-
tric fields that advance or block current. This is the essential functionality of PE 
devices. Particularly during switching, electric losses occur that cause heating and 
may lead to thermal degradation of the device. Lack of cooling may lead to a ther-
mal runaway that damages the insulating layers.

Insulating materials serve to keep charges separated. Such materials are often 
referred to as dielectric materials because many are polarized in an electric field. 
Characteristic dielectric properties are electric susceptibility χe and permittivity ε, 
of which the real part ε’ reflects the capacitive properties and the imaginary part ε“ 
the conductive part (i.e., the leakage current through the insulator). The ratio 
ε”/ε’ = tan δ is the dielectric loss factor that quantifies the ratio of the leaked and the 
stored energy. Tan δ may increase with temperature which may contribute to a ther-
mal runaway. The electric breakdown strength is the electric field at which an insu-
lating material breaks down. A local transgression of the breakdown strength can 
lead to electrical treeing with high fields at the branch tips which may quickly lead 
to a full breakdown. The electric field may also exceed the strength in cracks and 
cavities (e.g., from delamination) which may first lead to partial discharging in such 
spaces and next to eroding the walls and consequently cause treeing and breakdown. 
Such phenomena are also quite common in high voltage (i.e., high electric field) 
engineering.

Finally, stress control materials are used to control the electric field in and at the 
surface of insulators in order to prevent exceeding the breakdown strength.
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All the above-mentioned functionalities of the materials are essential to the per-
formance of PE devices and malfunction can jeopardize the PE device. Not only the 
quality of the materials, but also the configuration and assembly are essential. As 
mentioned above, multiple processes can be expected to occur simultaneously.

3  Reliability

When multiple objects fail as a result of a given failure process, the individual fail-
ures will be distributed in time (or any other relevant variable X that reflects the 
object performance, but for clarity time is used as the representative variable). This 
distribution of failure events in time is often characteristic for the process. Even 
being one specific distribution in time, such a distribution is still represented by 
various basic functions: the cumulative failure distribution F(x), the survival func-
tion R(x), the distribution density f(x), the hazard rate h(x), and the cumulative haz-
ard rate H(x). A noteworthy distinction is made in statistics between the variable X 
and the values x it can adopt. A statement that the (variable) time X is smaller than 
time value x is written as: X < x.

3.1  Basic Functions

The description of the basic functions follows that of [13] maintaining the different 
meanings of distribution and probability function. A distribution describes how fail-
ure times are spread in time. Probability of failure describes the perceived likeli-
hood of failure which depends on the available knowledge of individual objects. 
E.g., we may know how failure times overall tend to spread in time (the distribu-
tion), but if we also know that a specific test object, e.g., runs hot before it fails, we 
may be able to assign a higher probability of failure to those objects that feature a 
significant rise in temperature. The probablity of failure may differ per object, while 
the distribution remains the same for the group.

The cumulative distribution F(x) describes the population part that failed at or 
before x (so X ≤ x). The survival function R(x) describes the population part that 
survived at least up to x (so X > x). The values of the function F range from 0 to 1 
and those of R range from 1 to 0. F(x) and R(x) relate as:

 
R x F x� � � � � �1

 (14.1)

The distribution density f(x) describes the rate of failures:

 
f x

F x

x
� � � � �d

d  (14.2)
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The density is normalized, which means that its integral over the complete range of 
x equals 1. The mass function f(xi) has values at discrete values xi. It is the discrete 
analog of the continuous density f(x). The mass function is also normalized meaning 
that the sum of its values over all xi equals 1.

The hazard rate h(x) looks much like the density but only applies to the surviving 
population part R(x).

 

h x
f x

R x

d R x

dx
� � � � �

� �
�
� � �� �ln

 (14.3)

Since R ≤ 1 the hazard rate h(x) ≥ f(x). A discrete hazard rate is based on the mass 
function. The cumulative hazard rate H(x) is the integral or sum of the hazard rates. 
A noteworthy relationship between R and H is:

 
R x H x H x R x� � � � � �� � � � � � � � �� �exp ln

 (14.4)

If one of the fundamental functions F, R, f, h, or H is known, the other functions can 
be derived from that in principle.

Distributions are often reflected in measures like the mean time to failure and the 
variance (i.e., squared standard deviation σ) of failure times, which follow from the 
fundamental functions. The mean 〈x〉 follows from integrating x with f(x):
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A non-trivial equation for the mean is also:
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The variance var(x) is found as (using the above equation for 〈x〉):
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The mean (and similarly variance) may also follow from the complete set of N val-
ues xi (i = 1,..,N) as:

 
x

N
x

i

N
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�
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1  (14.8)
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If only a subset of n observations is available with n < N, then this is a sample of 
which the average x  and sample variance s2 can be determined. This average and 
sample variance often serve as estimator of the mean and variance of the complete 
population.

3.2  Some Important Distribution Families

The previous sections discussed distributions as a concept. Various types of distri-
bution families exist for various purposes. Here we will address four of those distri-
butions: the Normal, Lognormal, Weibull, and Exponential distribution.

The Normal or Gaussian distribution is the best-known and possibly also the 
most misused distribution. The distribution has parameters mean μ and standard 
deviation σ. Because of the central limit theorem, the Normal distribution is particu-
larly adequate (the asymptotic distribution) for describing the sums or averages of 
large data sets in the range (−∞, ∞). Many physical quantities are positive and do 
not fulfill this property. If the standard deviation σ is smaller than 3 or 4 times μ), 
the fraction F(x) with x < 0 is small, but that remains to be checked. There is no 
analytical expression for the cumulative distribution F, but for the Normal distribu-
tion density f there is:
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Various approximations exist that enable numerical calculation of F(x) to any 
desired precision ([18]). The mean x is equal to μ.

As mentioned, −∞ < x < ∞ and therefore x is not time in this case. The Lognormal 
distribution offers a way to fix the range-issue. If x follows a Normal distribution, then 
t = exp(x) follows the so-called Lognormal distribution. It also has parameters μ and 
σ but they are the mean and standard deviation of ln(t), not of t. The Lognormal distri-
bution is particularly useful for describing the sum or mean of large sets of log-posi-
tive t-values (if t > 0 then −∞ < log(t) = x < ∞ for which the Normal distribution 
applies). It can also be applicable in its own right. Again, there is no analytical expres-
sion for the cumulative distribution, but the distribution density is:
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The mean of the Lognormally distributed t is not equal to μ (which is the mean of 
the Normally distributed x). The mean θ of a Lognormal distribution is:
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The Weibull distribution is the asymptotic distribution for the smallest of an increas-
ingly large set of positive values t. While the Normal and Lognormal distribution 
focus on the center (i.e., the mean), the Weibull distribution focuses on the lower 
extreme such as the lowest breakdown time that characterizes the electric strength 
of a device. The Weibull distribution usually is applied with two parameters: namely 
a scale parameter α and a shape parameter β. Analytical expressions exist for all 
basic functions. The cumulative distribution function reads:
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The other functions follow from this as discussed before. A three-parameter version 
employs a threshold parameter δ as lower limit for t, in which case t in the equation 
above is replaced by t−δ. A one-parameter version employs only the scale parame-
ter α, and sets β to a fixed value by definition. The Weibull mean θ is:
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 (14.13)

Here Γ is the Gamma distribution. If β ≥ 1 then θ closely resembles α with a maxi-
mum deviation of −11.4% at β = 2. The ratio θ/α runs up fast with decreasing β < 1.

The exponential distribution can be regarded as such a one-parameter Weibull 
distribution with β  =  1 per definition. In that case the scale parameter is often 
denoted as θ. This is the mean failure time, also called the characteristic time. Again, 
analytical expressions exist for all basic functions and the cumulative function reads:

 
F t

t
;�

�
� � � � ��

�
�

�
�
�1 exp

 (14.14)

An important property of the Exponential distribution is its constant hazard rate 
h(t) = h = 1/θ. Working devices having a constant hazard rate do not suffer from 
child disease, nor from wear-out. Failure is random in time (‘bad luck’) and often 
due to external impact like cosmic radiation or mechanical impact, if unrelated to 
the use and age of the device, etc. Another situation where the Exponential distribu-
tion applies is where maintenance is carried out to keep the hazard rate at a more or 
less constant level. This constant hazard rate implies an Exponential distribution.

3.3  Competition of Processes and Mixed Subpopulations

A batch of devices under test will often suffer from multiple processes. For instance, 
devices may be simultaneously exposed to child mortality processes (e.g., an ongo-
ing cracking or chemical reaction originating from the production process, random 
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failure (e.g., cosmic radiation), and wear (e.g., electrochemical degradation). 
Additionally, the batch of devices may be inhomogeneous if there are multiple sub-
populations with distinct failure behavior. For instance, a certain subpopulation may 
contain defects from production that leads to failure behavior that is not found for 
the rest of the population. Competing processes and mixed populations lead to more 
complicated failure distributions.

As for competing processes, the functions Ftotal, etc., representing the total distri-
bution are illustrated with the case of two competing processes A and B. A device 
only survives if it survives both A and B. From this principle follow:

 R R RA Btotal � �  (14.15)

 F R F F F FA B A Btotal total� � � � � �1  (14.16)

 
f

F

x
f R f RA B B Atotal

totald

d
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 (14.17)

 h h hA Btotal � �  (14.18)

 H H HA Btotal � �  (14.19)

It is noteworthy that items that fail by process A still bear information about process 
B. The reason is that the moment they fail at time tA by process A, then it is also clear 
that they survived process B up to tA. This finding should be taken into account with 
the data analytics for process B (see also the section on censored data).

In case of mixed subpopulations a similar set of equations can be derived. Let us 
assume each subpopulation is indexed with ‘i’ and forms a fraction pi of the com-
bined population. The sum of the fractions pi amounts to 1. This leads to the 
following:
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The hazard rates are less straightforward than in the case of competing processes.
As discussed, the total distribution can be deduced conveniently if the distribu-

tions of the competing processes and fractions of subpopulations are known. 
Unfortunately, starting from observed failure times without further knowledge, it 
may be much harder to disentangle distributions and reconstruct the competing pro-
cesses and mixed subpopulations. Moreover, observation data generally scatter 
which can give the false impression of entangled distributions. Therefore, objective 
measures are needed to evaluate whether a study into competing processes and 
mixed subpopulations is justified.

However, plots may nevertheless reveal entangled distributions if they are suffi-
ciently distinctive. As an illustration consider the case of two mixed subpopulations. 
Subpopulation 1 has a Weibull distribution with parameters α = 1 and β = 0.6 (which 
has a character of a child mortality process as β < 1). Subpopulation 2 follows a 
Weibull distribution with parameters α = 20 and β = 3 (which has a character of a 
wear-out process as β > 1). If these are mixed the resulting distribution functions can 
be found with Eqs. 14.18, 14.19, 14.20, 14.21, and 14.22. Figures 14.1 and 14.2 
show respectively the hazard rate plot and distribution density plot. The figures 
show the original functions and the total function. The figures also show the obser-
vations that can be expected on average if the total population consists of ntotal = 13 
test objects (n1 = 4 and n2 = 9). Particularly the distribution density plot gives a clear 
indication of a mixed case.
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Fig. 14.1 Hazard rate plot of two entangled distributions due to a mixed population
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3.4  Bath Tub Curves and Screening

Well-known examples of competing processes and mixed subpopulations are often 
found in so-called bath-tub curves. These are hazard rate graphs plotted as a func-
tion of time.

Table 14.1 shows an illustrative example of entangled distributions. The example 
is based on a case where typically three processes compete in each device, namely: 
child mortality or also called early failures; random failure; and wear-out failure. 
The early failures can be due to production errors or curing materials. With time this 
process loses importance. Wear-out can typically be due to degradation of insulating 
layers or other changing material properties in the long run. In between is an inter-
val where, e.g., cosmic radiation or other often external influences deteriorate the 
devices. In this example this would be a set of competing processes that are typical 
for a ‘normal’ batch.

In this particular example 10% of the devices have been assigned an additional 
failure mechanism that causes fast wear-out and competes with the other three pro-
cesses. This is a subpopulation in the total batch and turns the total batch into a 
mixed population.
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Fig. 14.2 Distribution density plot of two entangled distributions due to a mixed population

Table 14.1 Example composition of batch of devices. The total population consist of two 
subpopulations (‘Normal’ and ‘Weak subpopulation’) with multiple competing processes

Subpopulation Normal Weak subpopulation Weibull parameters

Percentage 90% 10%
Child mortality or early failures Present Present α = 10,000, β = 0.005
Random failure Present Present α = 200, β = 1
Wear-out Present Present α = 25, β = 4
Additional wear out N.A. Present α = 0.3, β = 6
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Table 14.1 details the composition of the total. The rules in the previous section 
can be used to obtain the overall hazard rate for each subpopulation (cf. Eq. 14.18) 
and subsequently the total hazard rate (cf. Eq. 14.23).

Figure 14.3 shows this example of entangled distributions in a hazard rate plot. 
The entanglement is due to both competing processes and a mixed population. In 
various stages the underlying distributions dominate here. In a first stage a child 
mortality or also called ‘early failure’ process dominates. If such a phase is normal 
to produced batches of devices, a screening or burn-in process may be applied to 
prevent the delivery of early failing devices to customers. This process is normally 
done by applying enhanced stresses beyond rating which causes accelerating aging. 
This can be conceived as speeding up the consumption of operational life until a 
point that the hazard rate is reduced to acceptable levels.

A disadvantage of burn-in is that operational life of all devices is reduced. 
Therefore, the enhanced stress preferably targets the early failure mechanism spe-
cifically. Another approach is investigating whether the early failures can be pre-
vented by improved production, after which the burn-in process may be shortened 
or even skipped, which translates in longer operational life of all devices.

Secondly, the plot shows a peak where the fast wear-out process of the weak 
subpopulation is dominant. This applies only to a part of the total batch and once 
this part is eradicated, the hazard rate drops. If batches normally contain such imper-
fection, a burn-in process may cause too much damage to the healthy part in case 
the mechanism cannot be targeted specifically. Other strategies may be developed to 
detect imperfect devices, e.g., by condition indicators such as the occurrence of hot 
spots, unusual leakage currents, partial discharge, etc.
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Fig. 14.3 A bath tub curve combined with subpopulation of weak devices based on Table 14.1. 
This is an example of entangled hazard rates based on competing processes (the bath tub) and a 
mixed population. The data here are illustrative and can be very different in other cases
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The third stage is the desired operational mode where typically only random 
failures occur, i.e., the ‘bad luck’ region. Such failures may be due to effects that are 
unrelated to the age of the device, such as solar flames, lightning nearby, etc.

The final stage is the wear-out phase. Material and composition may deteriorate 
over time due to TEMA (thermal, electrical, mechanical, and ambient) processes. 
Knowledge of the timing of this wear-out is necessary for predicting product life, 
warranty, replacement planning, etc.

The same combination of distributions is shown in a reliability plot in Fig. 14.4. 
In this plot three types of screening are illustrated. The first is the full batch without 
screening which exhibits a considerable number of failures due to the child mortal-
ity process. The second graph shows the effect of screening for these early failures. 
The third graph shows the effect of extra screening until also the weak population is 
taken out. The resulting cumulative failure distribution Ftot,s(t) after screening until 
t = ts is obtained from:
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The screening or burn-in process has a great influence on the quality as perceived by 
customers. Whether or not the weak subpopulation is timely known will determine 
whether screening is applied and/or other measures are taken to prevent these low- 
quality devices to be delivered.
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Fig. 14.4 Failure probability graph of the same population as in Fig. 14.3. In addition to the popu-
lation without screening, also plots are added for screening (up to t = 0.01 year) to mitigate child 
mortality and extra screening (until t = 0.45 year) to also mitigate the weak population
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4  Data Analytics

Failure data analysis is an important part of R&D and quality assurance. Quite 
straightforward is the analysis of results if all objects failed in the test and only one 
mechanism is active that is characterized by a single distribution. In general, many 
experiments and tests will not reveal all failure data to each failure mechanism. 
Such hidden data are called censored or suspended data and will be discussed first.

The two main categories of data analytics are graphical analysis and parameter 
estimation. Both have their distinct value. In the following these two are reviewed 
after discussing censored data.

4.1  Censored Data

As mentioned above, at the time of evaluation not all test results may be available, 
e.g., objects may survive a test for a certain time without a failure. This period of 
survival bears information about the failure distribution even if no failure is 
observed. Data that remain hidden are called censored or suspended data. Some 
causes of censored data are: withdrawal of test objects, disrupted tests, unequal 
starting times, and data from competing processes.

Test objects may be withdrawn from a test for various reasons like noticeably 
deviating and irrelevant aging conditions, or the data may be regarded unreliable 
and be discarded for that matter. Tests may also be terminated before all objects fail.

If the lifetime of devices in service is monitored, the tracked devices may not 
have been taken into operation at the same time. Some may have replaced failed 
devices from the same batch. This usually also leads to censored data.

If testing or aging in operation involves competing failure processes, then failure 
of an object by one process means it does not fail by other processes. For the process 
in question, it is a valid observation, but with respect to the other processes it is 
censored. Other objects will fail by other competing processes for which the obser-
vation is valid. Each failure principally yields a valid observation for one of the 
processes and is censored for the other competing processes. This implies that the 
data sets for each process can be significantly censored.

In summary, censoring is a very common phenomenon. It occurs not only in 
incomplete tests, but also in experiments with competing processes. Proper evalua-
tion of test results requires analysis methods that can deal with censored data and 
are addressed in the following sections.

4.2  Graphical Analysis

Graphs are visuals that are informative about evolution and scatter of data. They are 
used to identify outliers, check the family to which the failure distribution might 
belong, check for entangled distributions, etc. In a graphical representation of 

R. Ross and G. Koopmans



461

observed failure times, it is customary to plot the observations along the horizontal 
axis. Along the vertical axis ranked theoretical values based on the assumed distri-
bution are plotted. These are often means (or medians) of ranked values from trans-
formed distribution functions like F, R, f, h, or H. These theoretical values are the 
so-called ‘plotting positions’ Z and are paired with the individual observations to 
form the plot. The purpose of the graph should determine the choice of the plotting 
positions.

Two major analysis families are non-parametric and parametric plots. Non- 
parametric plots show the distribution as a function of time without assumptions 
about the distribution. There are various methods. A rather straightforward tech-
nique is to plot the cumulative distribution, i.e., the failed fraction, F(t) against time 
t. Assume a complete set of n failure times ti (i = 1,..,n) is observed. The values for 
the corresponding fractions Fi are to be defined. Often the data set is treated as an 
n-sized sample randomly drawn from a (very) large N-sized population of devices. 
When repeatedly done, the mean fraction Fi of the ith test object can be proven to be:

 
F

i

ni � �1  (14.26)

A popular alternative for the mean is the median plotting position FM,i. If this choice 
is made, the median plotting position is usually approximated with:
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A typical example of a non-parametric plot of only the wear distribution in 
Table 14.1 is shown in Fig. 14.5. No assumptions have been made with respect to 
the type of the distribution like Lognormal or Weibull.

The parametric plots assume a type of distribution. The plotting position com-
monly depends on this type in such a way that the graph of the assumed distribution 
type becomes a straight line. This is very helpful for estimating parameters, for 
evaluating outliers, for extrapolating the graph to do predictions, etc. The challenge 
is to find a linear relationship between (functions of) the distribution function and 
the observed failure times.

For instance, for the Weibull distribution equation Eq. 14.11 can be rewritten as 
a linear relation between log(−ln(1−F)) and log(t). Other sources give the relation 
in terms of ln(−ln(1−F)) and ln(t). The choice in the present paper is to use ‘ln’ as 
the natural logarithm when taking the inverse of ‘exp’. The choice for log or ln can 
be regarded a matter of taste. The expression for Z is:

 
Z F t� � �� �� � � � � � � � � �log ln log log1 � � �

 (14.28)

The slope of such a graph is β and the intercept or initial value is −β∙log(α). A graph 
is prepared by plotting the logarithm of observation ti along the horizontal axis and 
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the plotting position can be chosen as the expected values ‹Zi,n› and be plotted along 
the vertical axis. The exact expression for can be found with the Beta function, Sect. 
6.2 in [1], as:
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A good approximation for finding ‹Zi,n› is [5]:
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Although Z-values are plotted  along the vertical axis, normally the scale is dis-
played such that it shows F-values. As a result the scale is not linear anymore. An 
example is shown in Fig. 14.6. Here the same wear data as for Fig. 14.5 were used. 
From the graph the data can be fit quite well with a straight line, which supports the 
assumption that the wear-out process follows a Weibull distribution.

As mentioned previously, for various reasons data may be incomplete. If the first 
r of n observations are available, but the remaining n-r are missing, then this is 
called ‘right censoring’. The failure times ti with i ≤  r are known and ti  ≤  tr. 
Furthermore, for i > r the times ti are unknown as yet, but ti > tr. This typically hap-
pens if all objects entered the test simultaneously and the data are evaluated before 
the test is completed and/or the test is terminated while some objects survive as yet.

For plotting, the consequences are little. The plotting positions for n observations 
(censored or not) can be determined as above, but the last n-r observations are left 
open. Particularly parametric plots like Fig. 14.6 can still be conveniently produced.
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Fig. 14.5 Non-parametric plot with expected Fi plotting position of the wear distribution. The 
points have coordinates (ti,‹Fi›). The dotted line would be the best fit
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However, in many other cases the censoring can be random: one of more failure 
times ti are known, but the censored observations can be larger but also smaller than 
existing observations. This typically happens when a fleet of devices is taken into 
operation and failed devices are replaced by new devices. The new ones start their 
operational life later than other as yet surviving devices and they may fail at a 
younger or older age than the already failed devices. As a consequence, the ranking 
of the first r observations of n is no longer fixed. E.g., assume the items in Table 14.2 
were each replaced after failure and the test was continued. At some moment, there 
may be as yet surviving objects with a shorter lifetime than, say, t4. These surviving 
objects may fail before or after t4, which implies that the presently fourth failure 
ultimately may be ranked higher like the sixth, tenth, or higher. The exact ultimate 
ranking remains hidden until the data are complete. However, there are methods that 
estimated the ultimate ranking based on actual observations and the lifetimes of the 
as yet surviving objects. A widely used method is ‘adjusted ranking’ that adjust the 
ranking indices i of observed data to adjusted ranking indices I, which no longer 
need to be integers. The adjusted ranks are calculated as [5]: 
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Fig. 14.6 Weibull plot employing a mean plotting position. The observations for the complete set 
are the same as in Table 14.2 and Fig. 14.5. The censored set is given in Table 14.3
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Ci is the sum of the number of censored and uncensored observations including the 
failure i. I(0) is 0 by definition. As an example, assume not all observations of 
Table 14.2 would be available, but at some time Table 14.3 would apply instead. 
Failure times are in the second row and surviving times without failure (i.e., the 
censored failure times) are in the third row. The adjusted rank follows from 
Eq. 14.31.

The data are included in Fig. 14.6. With data lacking, the fit is not necessarily the 
same as for the complete set. With increasing number of observations it approaches 
the fit for the complete data set. In some cases the set will never become complete. 
For instance if failures occur due to a competing process earlier, the failure time 
according to the studied process will never be determined. With entangled distribu-
tions, this can be very relevant to the data analysis.

There are alternative methods to analyze censored data sets, e.g., [15] and to use 
adjusted plotting positions (cf. Sect. 5.2.2 in [13]). 

4.3  Parameter Estimation

Distributions have parameters and if these are known, various characteristics can be 
estimated such as the expected lifetime, confidence limits (e.g., a probability that 
the first out on n devices will fail before a certain time), etc. The parameters are usu-
ally not known, but are estimated based on a data set of n failure observations. 
Various methods exist to estimate parameters.

At least three aspects of parameter estimation are important: bias, efficiency, and 
consistency. Bias is the systematic error of an estimator. Preferably, the estimator 
should be unbiased, but if it is known at least, it may be corrected for with an unbi-
asing operation. The efficiency is related to the scatter or random error. It should be 
as small as possible and cannot be corrected for, it can be reduced by averaging the 
results from multiple experiments. A consistent estimator fulfills the requirement of 
becoming more accurate with increasing sample size such that bias and scatter 
approach zero.

Two classes of parameter estimators are maximum likelihood (ML) and linear 
regression using least squares (LS). The latter can be improved by applying weights 
(WLS). For large sample sizes n these classes are consistent and perform quite com-
parably. For small sample sizes n the bias and scatter can be significant. This effect 
should be considered when parameters are estimated with data sets that differ in size 
n. A comparison may be flawed if the bias depends on sample size.

Both classes optimize an expression to estimate parameters. For the ML method 
the so-called likelihood function L is maximized, which is a function of the 

Table 14.2 Observed breakdown times for Fig. 14.5

Index i 1 2 3 4 5 6 7 8 9 10

Time ti (y) 13.9 16.7 18.8 20.5 22.1 23.6 25.1 26.7 28.6 31.1
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parameters uj (j = 1,..,m) to be estimated. For instance, u1 could be the Weibull scale 
parameter estimator a of α and u2 could be the shape parameter estimator b of β. The 
observations ti (i = 1,..,n) are parameters. More convenient is to maximize ln(L):
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In case of n−r censored data, ln(L) includes a term Rn−r that describes the surviving 
fraction at given t = τ:
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The parameters can now be found by solving:
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In case of the Weibull scale parameter this yields  (with τj the survival time of 
object j):
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And for the Weibull shape parameter:
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These expressions cannot be solved analytically but require a numerical method 
such as the Newton-Raphson method. The ML method can be extended to handle 
more complicated situations, such as accelerated aging testing or mixed distribu-
tions. Formulas for the bias and scatter exist [13]. There is also extensive literature 

Table 14.3 A set of observed and censored data. Adjusted ranks are shown in the fourth row. The 
set is consistent with Table 14.2, i.e., after completion, the test could yield the same results

Rank i 1 2 3 4 5 6 7 8 9 10

Failure ti (y) 13.9 20.5 22.1 28.6 31.1
Censored (y) 14.0 14.3 21.3 22.3 23.1
Adj.rank I 1 2.25 3.71 6.14 8.57
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on the subject and in various studies Eq. 14.36 is modified in order to even more 
decrease the bias and/or increase the efficiency of b, such as [16]. Bias formulas also 
conveniently enable to define unbiased estimators.

For (W)LS the (weighted) sum of residues is minimized to obtain estimators uj. 
In the following weights wi are included in the equations. The method is elaborated 
for the Weibull distribution. For ordinary LS (OLS) all weights wi  can be set to 
unity. The index ‘i’ can be replaced by the adjusted rank ‘I’ in case of censored data. 
The WLS weights wi are defined as: 
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The weights also for non-integer adjusted ranking can be calculated conveniently 
with an approximation [19]. First two averages are assessed:
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Next the Weibull shape parameter b is found as:
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And the scale parameter a as:
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The WLS is a special case of the generalized LS (GLS) [2].
The estimators of both are biased except the (W)LS-estimator of 1/b. As an 

advantage, (W)LS is consistent with plotting if the expected plotting position ‹Zi› is 
used rather than the median plotting position.

The ML and (W)LS methods are widely used. The ML estimators are found by 
a numerical procedure, whereas the (W)LS method employs analytical expressions. 
As a consequence, error calculations can be performed for (W)LS in case the obser-
vations vary in accuracy. The ML and (W)LS estimators of the Weibull shape 
parameter β are biased. The same applies to the ML estimator 1/b. Table 14.4 gives 
expressions for unbiasing factors and for the standard deviations of these estimators 
for complete data sets as a function of their sample size n. For example, the factor 
to unbias the ML estimator b is found to be 4/5.32  =  0.75, 6/7.32  =  0.82, and 
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8/9.32 = 0.86 for n = 6, 8 and 10 observations respectively. This signals that estima-
tors with different sample sizes n require unbiasing to make a fair comparison pos-
sible. For censored data sets the bias and scatter are worse generally and often 
unbiasing expressions are as yet to be developed. 

5  Stress-Related Lifetimes

Power electronics are designed to operate in a range of stresses like voltage, current, 
temperature, humidity, exposure to contamination, etc. Usage within a rated range 
should result in a satisfactory lifetime of the device. However, in the long run 
devices will age. If enhanced stresses are applied, then this will generally accelerate 
the deterioration of devices. In normal use the rated stresses should not be exceeded, 
but in testing this provides a means to assess the quality of devices in a relatively 
convenient short time. Accelerated aging in tests is very useful, but care must be 
taken to not enhance the stresses to such an extent that the deterioration becomes 
unrepresentative of normal operation. At that point a test loses its value.

The Acceleration Factor (AF) is defined as the ratio of the lifetime tB0 at a rated 
level B0 (i.e., the assumed usage stress level) and the lifetime tB at an enhanced stress 
level B. For instance, if a testing period of 2 h at an enhanced stress level is the 
equivalent of a service lifetime of 50 h, then the AF is 50/2 = 25. Put in other words, 
1 h at the enhanced stress level is the equivalent of 25 h at rated stress level. In short:

Table 14.4 Unbiasing factors and standard deviations (st. dev.) of the ML, WLS, and LS estimators 
for the Weibull shape parameter, valid for complete data sets. The original estimators are b and 1/b. 
The unbiased estimators are bu and (1/b)u. The true or theoretical parameters are β and 1/β. The 
formulas are discussed in Chap. 6 of [13]
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The dependency of AF on the stresses varies with the underlying aging mechanism(s), 
as discussed in the following.

5.1  Power Law

Some stresses are known to influence the lifetime through a so-called power law. 
Again, if B is a given test stress, B0 the rated stress, tB the (expected, median) life-
time under stress B, and tB0 the (expected, median) lifetime under stress B0, then the 
power law with power parameter p reads:

 B t B tp
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B� � �0 0  (14.42)

The acceleration factor of the power law, AFP, follows as:
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Degradation types where the power law usually applies:

• Electric breakdown with electric field E versus rated field E0.
• Humidity impact in e.g. breakdown with relative humidity RH.

For failure mechanisms that follow a Weibull distribution it can be shown that a 
power law acceleration only influences the scale parameter α and not the shape 
parameter β. This can be conveniently demonstrated with the cumulative hazard 
rate. The distributions at rated stress and test are the same except for the acceleration 
of time or put in other words the compression of the time scale. The cumulative 
hazard HB0(t0) at stress B0 and HB(tB) at stress B relate as:
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The fact that the shape parameter remains constant is apparent in a Weibull plot 
where data from different stresses have practically the same slope 1/β, but are 
shifted along the time axis. Figure 14.7 shows a typical Weibull plot of failure data 
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under rated stress E0 and an accelerated aging test with stress E = 2∙E0. AF is 2p in 
this example (Eq. 14.43).

If graphs of distributions at various stresses do not run more or less parallel in a 
Weibull plot, this may indicate that, e.g., the stress enhancement leads to unrepre-
sentative degradation, multiple mechanisms play a role, the test objects are differ-
ent, or that the sample sizes n of the test series significantly differ. The last situation 
may be corrected for with the equations in Table 14.4. Comparing the shape param-
eters from tests at different stresses is a good check whether the application of a 
power law is justified.

The purpose of accelerated testing is often to estimate the expected life tB0 under 
rated stress B0 with Eq. 14.43 and given tB and AF. This requires knowledge of p.

The parameter p may be known from experience. If not, it can be determined 
experimentally from tests at various fixed stresses Bi or from ramped stress tests. 
The latter involves a series of tests in which the stress Bi is linearly increased at a 
rate ci with time. On a logarithmic scale the ramped stresses B(t) = c∙t at various 
rates c show as parallel lines (cf. Fig. 14.8). The stresses B(τi) at mean breakdown 
times τi form the power law line for ramped stresses that runs parallel to the power 
law line for fixed stresses. The slope of these lines is −1/p which provides an esti-
mator for p.
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Fig. 14.7 Comparison of failure data at rated stress E0 and enhanced test stress E = 2E0. The power 
in the power law is about 3.6 in this case. The shape parameters of the series are similar
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5.2  Arrhenius Law

Some AFs have an activation energy relationship with the applied stress. Particularly 
temperature follows such an exponential law, that is called the Arrhenius law and is 
also referred to as the Eyring model. This type of AF is often encountered in thermal 
and chemical processes. According to the Arrhenius law the rate constant k of a 
chemical reaction depends on the absolute temperature T as:
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Here A is the pre-exponential factor, kB is the Boltzmann constant (8.62∙10−5 eV/K) 
and Ea is a so-called activation energy (eV) that is related to an energy barrier to be 
overcome for the process to take place. With respect to reliability, such reactions can 
lead to degradation and failure. If applied to degradation of devices, the reaction rate 
is directly related to the failure rate in this model. When comparing aging at differ-
ent temperatures, a reference or rated temperature T0 (K) and a test temperature T 
(K) may be defined. The acceleration factor AFT at T is then given by:
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Fig. 14.8 Experiment to estimate the parameter p of the power law. In two or more tests the stress 
B is ramped up linearly in time. The combined mean or median breakdown times at the various 
ramped stress tests yield the power law line for ramped stress. The figure also shows the power law 
line for fixed stresses
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For voltage stress a similar law is found to describe the physical damage on oxide 
layers. This is probably because of heating the layers by leakage currents. If the 
reference voltage is V0 and the test voltage V, then the acceleration factor AFV is 
found to be:

 
AF V VV � � �� ��� ��exp � 0  (14.48)

Similar to the power law, an enhanced temperature reduces the scale parameter and 
leaves the shape parameter untouched. Again, this may be employed to check 
whether an accelerated aging test remains representative. Transitions in material 
structure may have a large impact and limit the applicability of the Arrhenius law. 
For instance, relatively abrupt changes like the glass transition affect reaction rates 
(much) more than the Arrhenius model predicts [11]. 

The parameters of the Arrhenius law A and Ea are usually found by plotting the 
logarithmic reaction or hazard rate against the applicable aging parameter like tem-
perature or voltage. The case of temperature follows from Eq. 14.46:
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Therefore, the slope of this plot is −Ea/kB, from which Ea follows.

5.3  Combined Accelerated Aging Factors

Some processes are influenced in various ways. For instance aging of dielectric lay-
ers may be accelerated not only by increasing the electric field, but also by an 
increase in temperature and humidity. If these factors act independently, the com-
bined acceleration factor AFcombi is the product of the separate factors AFi:

 AF AFicombi � �  (14.50)

As an example, an AF due to combined independent influences of an electric field, 
relative humidity, and temperature would yield:
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This can be extended with other factors. If the influences are not independent, then 
a tempering, but also often a synergistic effect may occur. E.g. a higher humidity 
may cause ions to be dissolved. The higher mobility or greater availability of ions 
may increase the rate of a reaction. As a second example, a higher electric field may 
help ions to overcome electrostatic barriers. The increased presence of ions in an 
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insulating layer increases the hydrophilicity and changes the dielectric properties ε’ 
and ε”. That can have a synergistic effect where leakage currents play a role.

It should be noted that the action of combined stresses as discussed above applies 
to a single process. In case of competing processes and mixed subpopulations, the 
effects are evidently more complex.

6  System Lifetime

Many applications of power electronics concern a system or assembly of compo-
nents. For instance, an HVDC converter may consist of various modules, one or 
more power supplies, filters, etc. Not only the component reliabilities, but also the 
exact configuration determine the system reliability RS.

The basic building blocks for a system configuration are series and parallel con-
nections. A block diagram visualizes the dependency of the system reliability on the 
component reliabilities. The diagram consists of a starting point (usually not indi-
cated explicitly) on the left of the diagram. From this point a network of blocks and 
interconnecting lines or arrows develops towards an exit. If all elements between 
start and exit are functioning, then the system works, otherwise it does not. The 
former state is the working or up state, the latter the failed or down state.

Figure 14.9 shows the diagram of a series system. The system failure distribution 
follows the same set of rules as for the case of competing processes. In a series 
system the processes of all components compete. Some rules to calculate the distri-
bution functions of a series system are:
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It can be seen that the hazard rate of a series system is always larger than that of each 
of its components. A general lesson is that longer series configurations tend to 
increase failure rates. This is why keeping systems as simple as possible may be a 
good strategy to make them more reliable. A chain is not as weak as its weakest link; 
it is weaker. This is because it may also fail due to another link.

Fig. 14.9 Block diagram of a series system
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A special case of a series system is the situation where the system length is a 
variable. What if a connection would have M times the length of another connection 
with length L and otherwise the same properties? From Eq. 14.53 it follows that the 
hazard rate is increased with a factor M. It depends on the character of the distribu-
tion how this translates into lifetime. With an exponential distribution the mean 
lifetime is the inverse of the hazard rate and it would thus be reduced with a factor 
M. For a Weibull distribution the shape parameter would remain the same, but the 
scale parameter would be reduced:
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As β remains constant with varying M, the ratio of θ and α also remains constant (cf. 
Eq. 14.13). Therefore, θ changes with the same factor as α with varying M.

Figure 14.10 shows the diagram of a parallel system. It is down only if all parts 
fail. Some rules to calculate the distribution functions for a parallel system are:
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The reliability and hazard rate are more complicated than in the series system case. 
If it comes to a parallel system of n identical components following an Exponential 
failure distribution with mean lifetime θ, then the mean system lifetime θS can be 
shown to be (Sect. 7.6 in [13]):
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Fig. 14.10 Block diagram 
of a parallel system
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This relates redundancy to mean lifetime. For instance, the electrical connection of 
TO-220 packaged devices to the top-side of the chip consists of two parallel Al 
wire-bonds [11]. Provided each wire is able to fulfill the function, this is a redundant 
connection with n = 2. There can be various processes that would disrupt this con-
nection. However, if these would fail at random and independently then the mean 
lifetime of the wire pair is 150% of the mean lifetime of a single wire connection. 
In practice there are also other aspects to consider like thermal impact on degrada-
tion. In those cases, the Exponential distribution may not be applicable.

Systems may be more complicated. It may not be possible to analyze it in terms 
of pure series and parallel systems. Methods like the so-called conditional method, 
truth tables, and minimal path method can be applied to analyze the reliabilities 
(e.g. [12], Chap. 7 in [13]).

6.1  Reparability Considerations

Many power electronic modules are used with a run-to-failure maintenance strat-
egy. This means the devices are operated until failure at which moment the system 
is down unless the system was equipped with redundancy. After failure the module 
is replaced to lift the state of failure. This type of maintenance is called corrective 
maintenance.

So far, corrective maintenance is quite standard on electronic devices and circuits 
because there is often little preventive maintenance that can be done, except for 
auxiliary systems such as the cooling. However, with Reliability 4.0 the ambition 
grows to monitor devices, and rather than to run until failure, the condition of cir-
cuits may be monitored as well. This would open the door to health index method-
ologies and timely replacement of modules to prevent system outages (Ross & 
Koopmans, Timely Detection of Non-compliance, [14]). This is particularly possi-
ble if redundancy is available and problematic modules can be exchanged without 
interrupting services. Such maintenance strategies are standard in infrastructures for 
energy and water, and may increasingly be applied in the domain of power 
electronics.

The reliability of components that cannot be repaired is usually described in 
terms of the survival function R(t) and/or expected lifetime θ. Reparable systems are 
subject to an equilibrium between up and down states. For that purpose the avail-
ability is defined as the ratio between up time and total time (i.e., up time plus down 
time). Apart from the failure rate(s) also repair rate(s) are considered. Where reli-
ability focuses on mean-time-until-failure, with availability mean-time-between- 
failures becomes important. The analysis of availability is often carried out with 
concepts as system states, Markov chains and Laplace transforms to solve the dif-
ferential equations that describe the balance between failure and repair and the 
effect of absorbing states (i.e., unrepairable states).
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With the upcoming smart systems, asset management strategies like condition- 
based and risk-based maintenance with concepts like health index and risk index 
may also become more important.

7  Disentangling Combined Distributions

So far, various aspects of reliability degradation of power electronics materials were 
discussed. If only a single process is active, the failure data analysis can be quite 
straightforward. However, the situation is more complicated if:

• Various processes can compete within each test object (cf. Figs. 14.3 and 14.4). 
The rules to calculate the resulting distributions are given in Eq. 14.15 through 
Eq.  14.19 for two processes. These can conveniently be extended to multiple 
processes starting from Eq. 14.15. An important example of competing processes 
is the conventional bath tub curve.

• Populations can be a mix of subpopulations with different processes (cf. 
Figs. 14.1 and 14.2). The rules to calculate the resulting distribution of a mixed 
population are given in Eq. 14.20 through Eq. 14.24. An important example is a 
subpopulation of defect items mixed into a batch of good products.

• When tests are terminated before all items fail and/or when multiple processes 
compete, there will be censored data (cf. Fig. 14.6). This means that the data sets 
for at least one (if not all) processes are incomplete. Times until which items 
were observed to survive, are relevant data and should be involved in the statisti-
cal analysis.

• Enhanced stresses speed up degradation (cf. Fig. 14.7). This acceleration depends 
on various circumstances such as the applied materials, stresses, types of degra-
dation, ambient aspects, etc. In various cases the acceleration factors can be 
described by laws and characteristic parameters. Discussed are the power law 
and the Arrhenius law. The parameters associated with these laws differ from 
process to process.

Single processes are associated with single distributions. The discussed aspects 
can result in more complicated distributions. These can shift in time by enhanced 
stresses. However, since various processes can have a different acceleration factor, 
the appearance of the total distribution can change as well. We used the expression 
‘entangled distributions’ for this combination.

If data are collected in such a complicated situation, the challenge is to recognize 
that situation and to disentangle the distributions. A general strategy is to firstly 
assume a model and secondly evaluate whether the observations match the model. 
For instance, one might assume that a bath tub model of competing processes 
applies. A basic bath tub model would consist of a child mortality process, a random 
process, and a wear-out process (cf. Fig. 14.3 without the weak subpopulation). This 
might be described with two Weibull-2 distributions and an Exponential distribution 
in the middle of the operational life. This would involve five parameters (α1, β1, θ, 
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α2, β2). Based on the observations, the parameter values must be estimated that best 
fit the assumed model.

Thirdly, another model might be proposed for which also the parameter values 
are estimated that fit that model. The more complicated the model, the more param-
eters will be involved. These are not only distribution parameters, but also the frac-
tions pi in case of subpopulations and parameters in acceleration factors if applicable. 
These parameter sets can grow rapidly. Therefore, models must be chosen wisely.

Instead of crunching the numbers to produce best-estimated parameters, a graph-
ical approach might be used to explore models. Figs. 14.1 and 14.2 are examples of 
two mixed subpopulations. The Weibull plot of the total cumulative distribution 
with the original distributions is shown in Fig. 14.11. The observations are ideal in 
this illustrative example in the sense that the expected observations are used as data. 
Naturally these data are not obscured by scatter as practical data would. All figures 
indicate a mix of a child mortality type and a wear-out type of distribution. If confi-
dence intervals were drawn, a part would probably exceed the boundaries. Such 
patterns can be recognized by eye or pattern recognition methods and would suggest 
to use a two-distribution model.

As a rule of thumb, an upward bend indicates a competition where a process at 
some moment in time starts to take over. In contrast, an zigzag shape indicates a 
mixed population of which a weak subpopulation is depleted (see also the example 
in Figs. 14.3 and 14.4). It is also possible that upper levelling off part of the zig-
zag shape is not yet visible in the observations (cf. Fig. 14.11). So, care must be 
taken when interpreting these shapes.

There are two optimizations required in this approach. Firstly, the best-estimated 
parameters require an objective method. With a single distribution ML and (W)LS 
methods are commonly used. For entangled distributions, it must be considered 
what is the most effective way to estimate parameters. Number crunching on the 

0.1 1 10 100

F1

F2

F_tot

observations

t ®

0.05

0.10

0.20

0.70
0.63
0.50

0.99
0.95
0.90
0.80

F
→

Fig. 14.11 Weibull plot of two entangled Weibull distributions and their combination due to a 
mixed population. See Figs. 14.1 and 14.2 for the corresponding hazard rate and distribution den-
sity. Note, the vertical scale is actually the Z-scale (cf. Eq. 14.30)
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complete set is one way. Another way is to divide the data into subsets and subse-
quently estimate parameters for each data subset (acknowledging censored data). 
Examples employing the ML method are described in (Nelson, Applied Life Data 
Analysis, [9]).

Secondly, alternative models may be compared and the choice of model that 
matches the data best should also be based on objective grounds. Various measures 
may be used to quantitatively evaluate the best model and its parameters. Such mea-
sures include a range of goodness of fit tests [6] and measures for the difference 
between observed and expected data such as L2 (sum of squared residues) and the 
similarity index [17].
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