
 
 

Delft University of Technology

Three-dimensional time-dependent water flows with constant non-vanishing vorticity and
depth dependent density

Geyer, Anna; Martin, Calin I.

DOI
10.1016/j.physd.2025.134523
Publication date
2025
Document Version
Final published version
Published in
Physica D: Nonlinear Phenomena

Citation (APA)
Geyer, A., & Martin, C. I. (2025). Three-dimensional time-dependent water flows with constant non-
vanishing vorticity and depth dependent density. Physica D: Nonlinear Phenomena, 472, Article 134523.
https://doi.org/10.1016/j.physd.2025.134523

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.physd.2025.134523
https://doi.org/10.1016/j.physd.2025.134523


Physica D 472 (2025) 134523 

A
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Three-dimensional time-dependent water flows with constant non-vanishing
vorticity and depth dependent density
Anna Geyer a ,∗, Calin I. Martin b

a Delft Institute of Applied Mathematics, Technical University Delft, Mekelweg 4, 2628 XE Delft, The Netherlands
b Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Mihail Kogalniceanu Str. 1, Cluj-Napoca, Romania

A R T I C L E I N F O

Communicated by Ye Zhou

MSC:
35Q31
35Q35
76B70

Keywords:
Three-dimensional water wave equations
Continuous depth-dependent stratification
Vorticity

A B S T R A C T

We show that the movement of a time-dependent gravity water flow with constant non-zero vorticity and
continuously depth dependent density satisfying the three-dimensional water wave equations is essentially
two-dimensional: the velocity field, the pressure and the free surface do not change in the direction orthogonal
to the direction of propagation. Our result is true both for the inviscid as well as for the viscous water wave
problem.
1. Introduction

The mathematical study of the propagation of water waves is
tremendously intricate. Difficulties arise since the evolution of waves
has to be tracked along free boundaries (at the waters surface or as
internal waves along an interface), and the governing equations as well
as the boundary conditions are nonlinear. If in addition to that one
takes into account the stratification of the fluid and the presence of
underlying currents or swirling motions of the fluid due to the presence
of vorticity, the analysis becomes truly challenging.

Despite all of these potentially complicated fluid motions, it is some-
times possible to observe simpler wave patterns: ocean swell, generated
as wind waves at a distant source and aligned due to dispersive effects,
forms a regular wave train with no variation in the direction orthogonal
to the flow direction. This was mathematically first analysed by Con-
stantin [1,2], who observed that the mere presence of non-zero constant
vorticity renders the flow beneath the surface wave essentially two-
dimensional: he showed that under the assumption of a steady periodic
free surface profile, the velocity, surface and pressure have no variation
in the direction orthogonal to the direction of propagation, and the
vorticity points orthogonal to the flow direction. For similar results
concerning solitary water waves we refer the reader to [3] for the
irrotational case and to [4] for the rotational scenario. Non-existence
results for two-dimensional solitary waves can be found in [5–7].

∗ Corresponding author.
E-mail addresses: A.Geyer@tudelft.nl (A. Geyer), calin.martin@ubbcluj.ro (C.I. Martin).

Moreover, the three-dimensional case where the free surface has a
traveling wave character in both horizontal directions was dealt with by
Wahlén [8]. More recently it was shown that the result is still true even
without the steadyness assumption [9], which highlights that the main
driver of this phenomenon is indeed the non-zero constant vorticity.

Vorticity is omnipresent in fluid flows. It can be viewed as a measure
of the local infinitesimal rotation of fluid elements (with no implication
on the global rotation, see [10]), similar to the angular momentum in
solids. In vector calculus terms, this feature is captured by the vorticity
vector which is defined as the curl of the velocity vector. Vorticity gives
rise to currents (in its simplest form, a linear shear can be used to model
tidal currents [11,12]) whose interaction with waves is a delicate and
subtle problem to analyze not only mathematically [10], but also from
a numerical and experimental perspective [11,13–16].

In the current study, we aim to investigate the combined effect of
non-vanishing vorticity and stratification. Many water wave models do
not take into account density variations in the fluid, arguing on the
grounds of negligible compressibility of water. While this is often a rea-
sonable simplification, there are certainly regions, for example near the
Equator, where the water density varies considerably due to changes in
temperature and salinity [17,18]. This results in a layering of the fluid
and the appearance of a pycnocline [17,19,20], which separates the
lighter fluid above from the heavier fluid below. The pycnocline can
be modeled as an interface using a density distribution with a jump
https://doi.org/10.1016/j.physd.2025.134523
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discontinuity at the interface, which facilitates the study of the propa-
gation of internal waves as perturbations of the pycnocline [21–25]. In
contrast to that, the present study focuses on a continuous density distri-
bution [26–33] that allows the density to vary with depth and time [34].
From a historical perspective, stratified water waves have been stud-
ied by Dubreil-Jacotin [35], who constructed two-dimensional small-
amplitude stratified traveling gravity waves by means of power series
expansions. Following [35], major contributions to the field of stratified

ater flows have been made by Ter-Krikorov [36] and Yanowitch [37],
Amick [38], Amick–Turner [39,40], Benjamin [41,42], Bona–Bose–
Turner [43], James [44], Kirchgässner [45], Sun [46], Vanden-Broeck
& Turner [47]. More recently, substantial contributions to water waves

ith stratifications concerning existence (and qualitative properties)
f exact solutions by Abrashkin & Constantin [48], Constantin and
ohnson [16], Ambrose, Strauss and Wright [49], Chen–Walsh [50],

Chen–Walsh–Wheeler [51], Haziot [52], Henry and B.-V. Matioc [27,
53], Henry and A.-V. Matioc [28], Nilsson [54], Sinambela [55], and

alsh [56–58].
Our result extends previous results in homogeneous fluids [1,9,59]

nd in two-layered fluids (in the rigid-lid and free-surface cases) [60–
63] to continuously stratified fluids, where we assume that the density
depends only on the water depth and on time. The main outcome is
that, in the presence of non-zero constant vorticity, the flow beneath
a free surface–allowed to depend in the most general way on time and
pace–is effectively two dimensional: the velocity field, the surface and
he pressure exhibit no variation in the direction orthogonal to the flow.

The outline of the paper is as follows: after introducing the three
imensional inviscid gravity water wave problem with non-constant

continuously stratified density in Section 2, we present in Section 3 the
result regarding the dimensionality reduction of the flow. The viscous
ase is treated in Section 4. The Appendix contains the proof of the

invariance of the water wave problem under rotations in the inviscid
and viscous case, which is of great importance in Sections 3 and 4.

2. Preliminaries

The following analysis concerns surface gravity water waves prop-
gating above a three-dimensional water flow bounded below by a
igid flat bottom. In Cartesian coordinates (𝑥, 𝑦, 𝑧) and denoting time

by the variable 𝑡, the surface elevation is described by the equation
= 𝜂(𝑥, 𝑦, 𝑡) and the flat bed by 𝑧 = −𝑑, with 𝑑 > 0. Given that

typical Reynolds numbers in (geophysical) fluid dynamics are typically
very large [64], with nonlinear effects dominating over viscosity, the
inviscid theory is suitable for water waves that are not near breaking,
cf. [65]. In the following, we state the governing equations for the
motion of an inviscid fluid, which will be analyzed in Section 3, while
he viscous situation will be considered in Section 4. Denoting the

velocity field by 𝐮 = (𝑢, 𝑣, 𝑤), the pressure by 𝑃 , the gravitational
constant by 𝑔, and the density by 𝜌, the motion of an inviscid fluid
is governed (see e.g. [20,66,67]) by the conservation of momentum
quation,
𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 +𝑤𝑢𝑧 = − 𝑃𝑥

𝜌 ,

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 +𝑤𝑣𝑧 = − 𝑃𝑦
𝜌 ,

𝑤𝑡 + 𝑢𝑤𝑥 + 𝑣𝑤𝑦 +𝑤𝑤𝑧 = − 𝑃𝑧
𝜌 − 𝑔 ,

(2.1)

as well as by the equation of mass conservation,

𝜌𝑡 + (𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 + (𝜌𝑤)𝑧 = 0. (2.2)

The system of equations that hold in the bulk of the fluid is com-
pleted by the boundary conditions. These are the kinematic boundary
conditions

𝑤 = 𝜂𝑡 + 𝑢𝜂𝑥 + 𝑣𝜂𝑦 on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (2.3)

and
𝑤 = 0 on 𝑧 = −𝑑 , (2.4)

2 
and the dynamic boundary condition

𝑃 = 𝑃𝑎𝑡𝑚 on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), (2.5)

where 𝑃𝑎𝑡𝑚 denotes the constant atmospheric pressure.
Note that since the density is not assumed to be constant in (2.2),

he velocity field is allowed to be compressible (the case of incom-
pressible flows is analyzed in Section 3.1.). The well-posedness for
models of compressible flows has been studied, for instance, in [68–
72]. Moreover, allowing for compressibility raises the question about
an equation of state. As discussed in Talley et al. [73], to serve practical
urposes in theoretical and numerical models, the equation of state
s sometimes approximated as linear and its pressure dependence is
gnored. That is, an adequate form of the equation of state, advocated
lso by Abrashkin & Constantin [48], is

𝜌 ≈ 𝜌0 − 𝛼(𝑇 − 𝑇0) + 𝛽(s − s0), (2.6)

where 𝑇 is temperature, s is salinity, 𝜌0, 𝑇0 and s0 are mean values for
the region being modeled, and 𝛼 is the thermal expansion coefficient
and 𝛽 is the saline contraction coefficient. For instance, Abrashkin &
Constantin [48] argue that the Southern Ocean presents variations in
salinity and temperature with depth: the salinity in the mentioned area
ranges from 34 to 35 ppt, cf. also [74], while the temperature difference
between the surface and bottom is around 4 ◦C, cf. also [75]. Since we
are interested in the behavior of the velocity field, pressure and density,
we can absorb the differences in salinity and temperature in the density
function. Moreover, the density may also depend on time, which can
be justified, for instance, by the seasonal and diurnal variability: the
temperature can vary by 6◦ C, cf. [76]. Thus, we will take the density
to vary with respect to time and depth, that is 𝜌 = 𝜌(𝑧, 𝑡), which we
consider as the equation of state of the problem (2.1)–(2.5), see also
Remark 2.2. This discussion justifies the following assumption.

Assumption 2.1. We will assume throughout the paper that

𝜌 = 𝜌(𝑧, 𝑡),
that is, the density 𝜌 depends only on the time variable 𝑡 and on the
depth variable 𝑧.

Remark 2.2. Depth-dependent density stratification (as considered
in this work) represents an intrinsic characteristic of large-scale ocean
movements, cf. [20,67,77]. Density fluctuations in the ocean, driven
y variations in temperature and salinity, lead to stratification, where

fluid layers of differing densities are arranged with higher-density
ayers below lower-density ones, cf. [16,17,24,78]. In line with the
revious statement, recent findings [79] suggest that the evolution

of hydroacoustic waves in weakly compressible fluids is significantly
influenced by depth variations of the sound speed profile.

Remark 2.3. We note that in this paper we are interested in three-
dimensional water flows from an analytical perspective (and are not
concerned at all with atmospheric flows). That said, including a more
eneral equation of state 𝜌 = 𝜌(𝑇 , 𝑆 , 𝑝) as suggested, for instance, by

Griffies et al. [80], Griffies [81] and McDougall et al. [82] is of great
interest, but beyond the scope of the methods presented in this paper.

Assumption 2.4. Throughout the paper we make the assumption that

sup
(𝑥,𝑦)∈R2

𝑃𝑧(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) < 0, (2.7)

at all times 𝑡. Moreover, we will assume that the tuple (𝜂 , 𝑢, 𝑣, 𝑤, 𝑃 ) is
bounded solution of the water wave problem (2.1)–(2.5) and that 𝑢, 𝑣

nd 𝑤 are two times differentiable with respect to 𝑥, 𝑦 and 𝑧.
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Remark 2.5. The condition in (2.7) is a restatement of the fact that
the water pressure increases with depth near the surface. Indeed, since
the pressure function is assumed to be continuous, the condition (2.7)
mplies that 𝑃𝑧(𝑥, 𝑦, 𝑧) < 0 for 𝑧 ∈ (𝑓 (𝑥, 𝑦), 𝜂(𝑥, 𝑦)] where 𝑓 is some real

valued function of (𝑥, 𝑦) ∈ R2. Therefore, the pressure at a depth below
the free surface is bigger than the constant atmospheric pressure, which
is what one expects. Hence, assuming 𝑃𝑧 negative on the surface can
e made without loss of generality, see also [8,67]. We emphasize that

we need this assumption only at the free surface, not in whole bulk of
the fluid.

As underlined in the introduction, we will take into account the
ffect of the flow’s local swirling motions, which are encompassed in
he vorticity vector, defined as the curl of the velocity field:

𝜔 = (𝑤𝑦 − 𝑣𝑧, 𝑢𝑧 −𝑤𝑥, 𝑣𝑥 − 𝑢𝑦) =∶ (𝜔1, 𝜔2, 𝜔3). (2.8)

Owing to the invariance of the water wave problem under rotations
round the 𝑧 axis, cf. Appendix, we can assume without loss of gen-

erality that one of the horizontal components of the vorticity vector
vanishes. Therefore, the following assumption is justified.

Assumption 2.6. The vorticity vector 𝜔 is constant and non-vanishing
throughout the flow such that 𝜔1 = 0.

3. The inviscid case

Lemma 3.1. Assume that the vorticity vector is constant and non-
vanishing throughout the flow. Then the third component of the vorticity
vector vanishes: 𝜔3 = 0.

Proof. We will conduct a proof by contradiction. Hence, we assume
that 𝜔3 ≠ 0. First we consider the curl of the Euler Eqs. (2.1) and obtain
he system
𝐷 𝜔
𝐷 𝑡 = (𝜔 ⋅ ∇)𝐮 − (∇ ⋅ 𝐮)𝜔 + 1

𝜌2
⋅ ∇𝜌 × ∇𝑃 , (3.1)

see for instance [10], where 𝐷
𝐷 𝑡 = 𝜕𝑡+𝑢𝜕𝑥+𝑣𝜕𝑦+𝑤𝜕𝑧 denotes the material

erivative. Note that, unlike for homogeneous flows, the pressure term
oes not vanish from Eq. (3.1) in view of the fact that the density 𝜌 is

not constant and hence ∇ × 1
𝜌∇𝑃 = − 1

𝜌2
∇𝜌× ∇𝑃 . The constant vorticity

vector assumption yields the vorticity equation in the form

(𝜔 ⋅ ∇)𝐮 − (∇ ⋅ 𝐮)𝜔 + 1
𝜌2

⋅ ∇𝜌 × ∇𝑃 = 0,

which can be expanded as

𝜔1𝑢𝑥 + 𝜔2𝑢𝑦 + 𝜔3𝑢𝑧 − 𝜔1(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) −
𝜌′(𝑧)
𝜌2(𝑧)

𝑃𝑦 = 0,

𝜔1𝑣𝑥 + 𝜔2𝑣𝑦 + 𝜔3𝑣𝑧 − 𝜔2(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) +
𝜌′(𝑧)
𝜌2(𝑧)

𝑃𝑥 = 0,

𝜔1𝑤𝑥 + 𝜔2𝑤𝑦 + 𝜔3𝑤𝑧 − 𝜔3(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) = 0.

(3.2)

From the equation of mass conservation (2.2) we find that

−(∇ ⋅ (𝑢, 𝑣, 𝑤)) = 1
𝜌
(𝜌𝑡 + 𝜌𝑧𝑤).

Considering now 𝑤 along the characteristic curves 𝑠 ↦ 𝑥̄(𝑠), 𝑠 ↦
𝑦̄(𝑠), 𝑠 ↦ 𝑧̄(𝑠) defined by the system 𝑑 ̄𝑥

𝑑 𝑠 = 𝜔1,
𝑑 ̄𝑦
𝑑 𝑠 = 𝜔2,

𝑑 ̄𝑧
𝑑 𝑠 = 𝜔3 and

using the above equation, we can rewrite the third equation in (3.2) as
𝑑
𝑑 𝑠𝑤(𝑥̄(𝑠), ̄𝑦(𝑠), ̄𝑧(𝑠), 𝑡) = − 𝜔3

𝜌(𝑧̄(𝑠), 𝑡)
(

𝜌𝑡(𝑧̄(𝑠), 𝑡) + 𝜌𝑧(𝑧̄(𝑠), 𝑡)𝑤(𝑥̄(𝑠), ̄𝑦(𝑠), ̄𝑧(𝑠), 𝑡)).

Integrating the previous equation we find that

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =𝑒−𝜔3 ∫
𝑧+𝑑
𝜔3

0
𝜌𝑧
𝜌 (𝑧̄(𝜉),𝑡)𝑑 𝜉×

[

−𝜔3 ∫

𝑧+𝑑
𝜔3

0

𝜌𝑡
𝜌
(𝑧̄(𝜏), 𝑡)𝑒𝜔3 ∫

𝜏
0

𝜌𝑧
𝜌 (𝑧̄(𝜉),𝑡)𝑑 𝜉𝑑 𝜏

+𝑓
(

𝑥 −
𝜔1 (𝑧 + 𝑑), 𝑦 − 𝜔2 (𝑧 + 𝑑), 𝑡

)]
𝜔3 𝜔3
i

3 
for some function (𝑞 , 𝑝, 𝑡) ↦ 𝑓 (𝑞 , 𝑝, 𝑡). From the kinematic boundary
ondition on the bed (2.4) we see immediately that

𝑓 (𝑥, 𝑦, 𝑡) = 0,
for all 𝑥, 𝑦, 𝑡. The latter yields that

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−𝜔3 ∫
𝑧+𝑑
𝜔3

0
𝜌𝑧
𝜌 (𝑧̄(𝜉),𝑡)𝑑 𝜉 ×

[

−𝜔3 ∫

𝑧+𝑑
𝜔3

0

𝜌𝑡
𝜌
(𝑧̄(𝜏), 𝑡)𝑒𝜔3 ∫

𝜏
0

𝜌𝑧
𝜌 (𝑧̄(𝜉),𝑡)𝑑 𝜉𝑑 𝜏

]

,

from which we infer that

𝑤𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 0, (3.3)

for all (𝑥, 𝑦, 𝑧, 𝑡) for which (𝑥, 𝑦, 𝑧) belongs to the fluid domain. Eq. (3.3)
implies that the third equation in the vorticity Eq. (3.2) reduces to
𝑢𝑥 + 𝑣𝑦 = 0 (3.4)

at all points in the flow. Differentiating with respect to 𝑥 in (3.4) we
btain (after taking into account the definition of 𝜔3 in (2.8)) that

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 (3.5)

throughout the fluid domain. Similarly, we also see that

𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0 (3.6)

within the flow. Now, from (3.5) and (3.6) we infer that the functions

(𝑥, 𝑦) ↦ 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and (𝑥, 𝑦) ↦ 𝑣(𝑥, 𝑦, 𝑧, 𝑡)
are harmonic in R2 (as functions of 𝑥, 𝑦) for all 𝑡 ≥ 0 and all 𝑧 ∈ [−𝑑 , 𝑧0]
where 𝑧0 is such that −𝑑 < 𝑧0 < inf {𝜂(𝑥, 𝑦, 𝑡) ∶ (𝑥, 𝑦) ∈ R2, 𝑡 ≥ 0}. Since
they are also bounded, it follows by Liouville’s theorem [83] that there
exist functions (𝑧, 𝑡) ↦ u(𝑧, 𝑡) and (𝑧, 𝑡) ↦ v(𝑧, 𝑡) such that

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = u(𝑧, 𝑡) and 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = v(𝑧, 𝑡)
in the domain 𝐷0 ∶= {(𝑥, 𝑦, 𝑧) ∶ (𝑥, 𝑦) ∈ R2, −𝑑 ≤ 𝑧 ≤ 𝑧0}. Since 𝜔3
s assumed constant, we have 𝜔3 = 𝜔3|𝐷0

= v𝑥 − u𝑦 = 0. That is, we
have reached a contradiction with the assumption that 𝜔3 ≠ 0. Thus,
we conclude that 𝜔3 = 0. □

Remark 3.2. Instrumental in proving Lemma 3.1, the vorticity Eq. (3.1)
lays critical roles in many scientific and engineering flows, such as
strophysical flows, inertial confinement fusion, scramjet, and many
ther cases, cf. e.g. [84–86].

We are now ready to state the main result.

Theorem 3.3. Assume that (𝜂 , 𝑢, 𝑣, 𝑤, 𝑃 ) represents a bounded solution
of the water wave problem (2.1)–(2.5) with arbitrary density 𝜌 = 𝜌(𝑧, 𝑡)
nd constant non-vanishing vorticity vector 𝜔. Then, under the assumption

(2.7), we have that the horizontal velocity component 𝑣 is constant, and
𝑢, 𝑤, 𝑃 and the free surface 𝜂 are independent of 𝑦.

Proof. In view of the fact that 𝜔3 = 0 by Lemma 3.1, it follows from
the vorticity Eq. (3.2) that

𝜔2𝑢𝑦 − 𝜔1𝑣𝑦 − 𝜔1𝑤𝑧 −
𝜌′

𝜌2
𝑃𝑦 = 0

𝜔1𝑣𝑥 − 𝜔2𝑢𝑥 − 𝜔2𝑤𝑧 +
𝜌′

𝜌2
𝑃𝑥 = 0

𝜔1𝑤𝑥 + 𝜔2𝑤𝑦 = 0.

(3.7)

Therefore, system (3.7) is rewritten as

𝜔2𝑢𝑦 −
𝜌′

𝜌2
𝑃𝑦 = 0,

𝜔2𝑢𝑥 − 𝜔2𝑤𝑧 +
𝜌′

𝜌2
𝑃𝑥 = 0,

𝜔2𝑤𝑦 = 0,
which immediately implies that 𝑤𝑦 = 0 and, using the definition of 𝜔1
n (2.8), we also have that 𝑣 = 0 within the fluid domain.
𝑧
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Since we assume that the density function 𝜌 depends only on 𝑧 and 𝑡,
e have that the equation of mass conservation (2.2) can be simplified

o

𝜌𝑡 + 𝜌(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) + 𝜌𝑧𝑤 = 0.
Applying now a 𝑦-derivative to the latter equation provides us with the
relation

𝑢𝑥𝑦 + 𝑣𝑦𝑦 +𝑤𝑦𝑧 = 0,
which by the previous considerations and in view of the vanishing of
3 implies that 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0. This means that the function (𝑥, 𝑦) ↦

𝑣(𝑥, 𝑦, 𝑧, 𝑡) is harmonic in R2 for all 𝑡 ≥ 0 and all 𝑧 ∈ [−𝑑 , 𝑧0] where
𝑧0 is such that −𝑑 < 𝑧0 < inf {𝜂(𝑥, 𝑦, 𝑡) ∶ (𝑥, 𝑦) ∈ R2, 𝑡 ≥ 0}. Since
(𝑥, 𝑦) ↦ 𝑣(𝑥, 𝑦, 𝑧, 𝑡) is also bounded, we have by Liouville’s theorem [83],
that there exists a function (𝑧, 𝑡) ↦ v(𝑧, 𝑡) such that 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = v(𝑧, 𝑡)
within the domain {(𝑥, 𝑦, 𝑧) ∶ (𝑥, 𝑦) ∈ R2, 𝑧 ≤ 𝑧0}. Hence,

𝑣𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 0
for all (𝑥, 𝑦) ∈ R2, for all 𝑡 ≥ 0 and for all 𝑧 ∈ [−𝑑 , 𝑧0]. The arguments
given by now show that 𝑣𝑥 and 𝑣𝑦 are harmonic functions in the fluid
omain {(𝑥, 𝑦, 𝑧, 𝑡) ∶ 𝑡 ≥ 0, −𝑑 ≤ 𝑧 ≤ 𝜂(𝑥, 𝑦, 𝑡)} which equal 0 on the open

subset {(𝑥, 𝑦, 𝑧) ∶ (𝑥, 𝑦) ∈ R2, −𝑑 < 𝑧 < 𝑧0} at every time instant 𝑡 ≥ 0.
In view of the real analyticity of harmonic functions, we conclude that
𝑣𝑥 = 𝑣𝑦 = 0 at all points of the fluid domain. Since we have already
seen that 𝑣𝑧 = 0 within the fluid domain, this yields that 𝑣 is a function
of time 𝑡 alone. Furthermore, since 0 = 𝜔3 = 𝑣𝑥−𝑢𝑦 we also have that 𝑢𝑦
vanishes identically within the fluid. We can also infer from the second
equation in (2.1) that

−𝑣′(𝑡) = 𝑃𝑦

𝜌
.

Integrating in 𝑦 we find that there exists a function (𝑥, 𝑧) ↦ 𝑓 (𝑥, 𝑧) such
hat

𝑃 (𝑥, 𝑦, 𝑧, 𝑡) = −𝜌𝑣′(𝑡)𝑦 + 𝑓 (𝑥, 𝑧)
for all 𝑥, 𝑦, 𝑧, 𝑡 in the fluid domain. Since this is a linear function in 𝑦
but the function 𝑦 ↦ 𝑃 (𝑥, 𝑦, 𝑧, 𝑡) is bounded we conclude that 𝑣′(𝑡) = 0
for all 𝑡. Therefore, 𝑃𝑦 = 0 and 𝑣 is constant in the fluid domain. Finally,
differentiating the dynamic boundary condition (2.5) in 𝑦 we find that

𝑃𝑦(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) + 𝑃𝑧(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡)𝜂𝑦(𝑥, 𝑦, 𝑡) = 0.
In view of the vanishing of 𝑃𝑦 and the assumption on the pressure
gradient (2.7) this implies that 𝜂𝑦(𝑥, 𝑦, 𝑡) = 0 for all 𝑥, 𝑦 in the fluid
omain at all times 𝑡. □

3.1. Incompressible flows

In the case of incompressible flows, for which we assume that in
addition to the governing equation (2.1)–(2.5) for the inviscid water
wave problem the velocity field is divergence free, that is,
𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, (3.8)

we obtain a stronger conclusion than the one stated in Theorem 3.3,
even without the assumption (2.7) on the pressure.

Proposition 3.4. Assuming an arbitrary density 𝜌 = 𝜌(𝑧, 𝑡) such that
𝜌𝑧 < 0 and constant non-zero vorticity, the only bounded solutions of the
water wave problem (2.1)–(2.5) with a divergence free velocity field (3.8)
re parallel shear flows of the form 𝑢(𝑧) = 𝜔2𝑧+ 𝑐1, 𝑣 = 𝑐2, 𝑤 = 0, 𝑐𝑖 ∈ R,

with a flat free surface.
Before proceeding to the proof of Proposition 3.4 a few remarks are

n order.

Remark 3.5. We would like to point out that similar shear flows
ere found in the context of (piecewise) constant vorticity for the

case of the three-dimensional water wave equations with rigid lid
4 
boundary conditions in [60]. Also, in the presence of Coriolis effects, a
arallel flow solution with two non-vanishing horizontal velocities was
resented in [87]. The assumption that 𝜌𝑧 < 0 can be justified in view of

the typical density stratification present in the Ocean, see Remark 2.2.

Proof. The fact that 𝜔3 = 0 follows more easily than in the proof
of Lemma 3.1: the condition (3.8) implies that 𝑤 is constant, which in
view of (2.4) implies that 𝑤 ≡ 0. Hence, we can conclude that Eq. (3.4)
holds and the rest of the prove is identical to that of Lemma 3.1.

The proof that 𝑣 is constant and 𝑢𝑦 = 𝑤𝑦 = 𝑃𝑦 = 0 follows the
ame line of reasoning as in the proof of Theorem 3.3. To obtain the
esired conclusions, we first show that the last step of that proof can be

obtained without the pressure condition (2.7). We do so by extending
an argument presented by Wahlén [8] to our case, which includes
the time-dependence of the problem and the depth-variations of the
ensity. More precisely, let ℎ(𝑥, 𝑡) ∶= sup𝑦∈R 𝜂(𝑥, 𝑦, 𝑡) and note that the
ressure function 𝑃 (𝑥, 𝑧, 𝑡) is defined on the set 𝐷(𝑡) ∶= {(𝑥, 𝑧, 𝑡) ∶ −𝑑 <
 < ℎ(𝑥, 𝑡)} which is the projection of the fluid domain on the 𝑥𝑧-
lane. Assuming, for the sake of contradiction, that 𝜂(𝑥, 𝑦, 𝑡) < ℎ(𝑥, 𝑡),
nd using the real-analyticity of 𝑃 , the lower semicontinuity of ℎ, and
he intermediate-value property of the continuous function 𝜂, we can
rgue, as in the proof of Lemma 3 in [8], that 𝑃 is constant on 𝐷(𝑡) for

all 𝑡. Now, taking into account the bottom condition (2.4), we have
that 𝑤𝑡(𝑥, 𝑦,−𝑑 , 𝑡) = 𝑤𝑥(𝑥, 𝑦,−𝑑 , 𝑡) = 𝑤𝑦(𝑥, 𝑦,−𝑑 , 𝑡) = 0 for all 𝑥, 𝑦, 𝑡,
and, therefore the third equation in the momentum Eq. (2.1) yields the
contradiction 0 = −𝑔 for all 𝑥, 𝑦, 𝑡. Consequently, 𝜂(𝑥, 𝑦, 𝑡) = 𝜂(𝑥, 𝑡) for
ll 𝑥, 𝑦, 𝑡, that is, the surface 𝜂 is independent of 𝑦 as well.

Now we show that the velocity field is actually that of a shear flow
nd the free surface is constant. To see this, note that the equation of
ass conservation can be simplified to

𝜌𝑡 + 𝜌𝑧𝑤 = 0, (3.9)

where we have used that 𝑢𝑥 = −𝑤𝑧 in view of (3.8). Differentiating
in (3.9) with respect to 𝑥 and 𝑦, respectively, the assumption 𝜌𝑧 < 0
implies that 𝑤𝑥 and 𝑤𝑦 vanish identically in the fluid domain. Thus,
from (2.8) we obtain 𝑢𝑧 = 𝜔2 which implies, via 𝑢𝑦 = 0, that

𝑢(𝑥, 𝑧, 𝑡) = 𝜔2𝑧 + 𝐹 (𝑥, 𝑡) (3.10)

within the flow, where 𝐹 (𝑥, 𝑡) is some differentiable function of 𝑥 and
𝑡. Then, from 𝑢𝑥 +𝑤𝑧 = 0 we infer that

𝑤 = −𝐹𝑥(𝑥, 𝑡)𝑧 + 𝐺(𝑥, 𝑡)
for some differentiable function (𝑥, 𝑡) ↦ 𝐺(𝑥, 𝑡). Hence,

0 = 𝑤𝑥 = −𝐹𝑥𝑥(𝑥, 𝑡)𝑧 + 𝐺𝑥(𝑥, 𝑡)
for all 𝑥, 𝑧, 𝑡 with 𝑧 ∈ [−𝑑 , 𝜂(𝑥, 𝑡)]. The latter implies that

𝐹 (𝑥, 𝑡) = 𝑐1(𝑡)𝑥 + 𝑐2(𝑡) and 𝐺(𝑥, 𝑡) = 𝑐3(𝑡),

for some functions 𝑡 ↦ 𝑐𝑖(𝑡), 𝑖 = 1, 2, 3. Since 𝑢 is bounded, we see
rom (3.10) and from the previous equality that 𝑐1(𝑡) = 0 for all 𝑡,

and, consequently, 𝑢(𝑧, 𝑡) = 𝜔2𝑧 + 𝑐2(𝑡) and 𝑤 = 𝑐3(𝑡) at all points of
the fluid domain. Owing to the bottom boundary condition (2.4) we
btain that 𝑤 vanishes identically within the fluid domain. From the
atter assertion and using also (3.11), the first equation in (2.1) can be
ritten as

𝑃𝑥(𝑥, 𝑧, 𝑡) = −𝑐′2(𝑡)𝜌(𝑧, 𝑡).
The boundedness of 𝑃 yields now that 𝑐′2(𝑡) = 0 for all 𝑡, and so 𝑃𝑥 = 0
nd

𝑢(𝑧, 𝑡) = 𝜔2𝑧 + 𝑐2, (3.11)

at all points of the flow. Notice that since 𝑤 = 0 within the flow,
the third equation in (2.1) implies that 𝑃𝑧(𝑧, 𝑡) = −𝑔 𝜌(𝑧, 𝑡). Hence, the
ynamic boundary condition (2.5) implies that

𝑃 = 𝑃 (𝜂(𝑥, 𝑡), 𝑡) = −𝑔
𝜂(𝑥)

𝜌(𝑠, 𝑡) 𝑑 𝑠 + 𝑝(𝑡)
𝑎𝑡𝑚 ∫−𝑑
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for some function 𝑡 ↦ 𝑝(𝑡). Differentiating in the previous equality by
𝑥 we obtain that −𝑔 𝜌(𝜂(𝑥, 𝑡), 𝑡)𝜂𝑥(𝑥, 𝑡) = 0 for all 𝑥, 𝑡. Since the density
never vanishes, it follows that 𝜂𝑥(𝑥, 𝑡) = 0 for all 𝑥, 𝑡. Finally, it follows
from the kinematic surface boundary condition (2.3) that 𝜂𝑡 = 0 as well,
so the surface profile 𝜂 is indeed constant. □

4. The viscous case

In this section we treat the case when the viscosity of the water is
not negligible and the governing equations are taken to be the Navier–
Stokes equation, the equation of mass conservation (as before) and the
associated boundary conditions, see [88]. Using the same notation as in
revious sections, the motion of a viscous, continuously stratified fluid
s governed by the conservation of momentum equation
𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 +𝑤𝑢𝑧 = − 𝑃𝑥

𝜌 + 𝜈 𝛥𝑢,
𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 +𝑤𝑣𝑧 = − 𝑃𝑦

𝜌 + 𝜈 𝛥𝑣,
𝑤𝑡 + 𝑢𝑤𝑥 + 𝑣𝑤𝑦 +𝑤𝑤𝑧 = − 𝑃𝑧

𝜌 − 𝑔 + 𝜈 𝛥𝑤,

(4.1)

where 𝜈 = 𝜇 𝜌−1 denotes the coefficient of kinematic viscosity and 𝜇
tands for the coefficient of Newtonian viscosity, and the equation of
ass conservation

𝜌𝑡 + (𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 + (𝜌𝑤)𝑧 = 0. (4.2)

In the viscous setting the fluid is exposed to normal and tangential
tresses along the free surface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) which is reflected in the
oundary conditions. The normal stresses due to the ambient pressure
bove the surface are expressed as

𝑃 − 2𝜇
𝜂2𝑥𝑢𝑥 + 𝜂2𝑦𝑣𝑦 − 𝜂𝑥(𝑢𝑧 +𝑤𝑥) − 𝜂𝑦(𝑣𝑧 +𝑤𝑦) + 𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) +𝑤𝑧

1 + 𝜂2𝑥 + 𝜂2𝑦
= 𝑃𝑎𝑡𝑚,

(4.3)

where as before 𝑃𝑎𝑡𝑚 denotes the constant atmospheric pressure. The
angential stresses due to the shearing action of the air at the free
urface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) can be formulated as

𝜂𝑥(𝑣𝑧 +𝑤𝑦) − 𝜂𝑦(𝑢𝑧 +𝑤𝑥) + 2𝜂𝑥𝜂𝑦(𝑢𝑥 − 𝑣𝑦) − (𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑦 + 𝑣𝑥) = 0, (4.4a)

and

2𝜂2𝑥(𝑢𝑥 −𝑤𝑧) + 2𝜂2𝑦 (𝑣𝑦 −𝑤𝑧) + 2𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) (4.4b)

+ (𝜂2𝑥 + 𝜂2𝑦 − 1) [𝜂𝑥(𝑢𝑧 +𝑤𝑥) + 𝜂𝑦(𝑣𝑧 +𝑤𝑦)
]

= 0.
Finally, we the usual kinematic boundary conditions on the free surface
and on the rigid bed are given respectively by

𝑤 = 𝜂𝑡 + 𝑢𝜂𝑥 + 𝑣𝜂𝑦 on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (4.5)

and

𝑢 = 𝑣 = 𝑤 = 0 on 𝑧 = −𝑑 . (4.6)

In the following we will prove that the inclusion of viscosity in the
governing equations does not alter the findings previously presented
for the inviscid scenario, i.e. the fact that the flow is essentially two
dimensional in the presence of constant non-zero vorticity remains true
for the viscous case.

Theorem 4.1. Assume that (𝜂 , 𝑢, 𝑣, 𝑤, 𝑃 ) represents a bounded solution of
the viscous water wave problem (4.1)–(4.6) with arbitrary density 𝜌 = 𝜌(𝑧, 𝑡)
and constant non-vanishing vorticity vector 𝜔. Then, under the assumption
(2.7), we have that the third component of the vorticity vector vanishes,
i.e. 𝜔3 = 0, the horizontal velocity component 𝑣 is constant, and 𝑢, 𝑤, 𝑃
and the free surface 𝜂 are independent of 𝑦.

Proof. We first prove that 𝜔3 = 0. Note that in the viscous case
he vorticity equation, which is obtained by taking the curl of the
avier–Stokes equation, takes the form
5 
𝐷 𝜔
𝐷 𝑡 = (𝜔 ⋅ ∇)𝐮 − (∇ ⋅ 𝐮)𝜔 + 1

𝜌2
⋅ ∇𝜌 × ∇𝑃 + 𝜈 𝛥𝜔 + (−𝜈𝑧𝛥𝑣, 𝜈𝑧𝛥𝑢, 0)𝑡,

where the upperscript denotes the transpose of the corresponding vec-
tor. Note that the 𝑧-dependence of the kinematic viscosity 𝜈 is inherited
from 𝜌. Due to the assumption of constant vorticity, one of the viscosity
terms vanishes and the previous equation can be rewritten as

𝜔1𝑢𝑥 + 𝜔2𝑢𝑦 + 𝜔3𝑢𝑧 − 𝜔1(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) −
𝜌′(𝑧)
𝜌2(𝑧)

𝑃𝑦 − 𝜈𝑧𝛥𝑣 = 0,

𝜔1𝑣𝑥 + 𝜔2𝑣𝑦 + 𝜔3𝑣𝑧 − 𝜔2(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) +
𝜌′(𝑧)
𝜌2(𝑧)

𝑃𝑥 + 𝜈𝑧𝛥𝑢 = 0,

𝜔1𝑤𝑥 + 𝜔2𝑤𝑦 + 𝜔3𝑤𝑧 − 𝜔3(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) = 0.

(4.7)

We assume for the sake of contradiction that 𝜔3 ≠ 0. Arguing as in
the proof of Lemma 3.1 we obtain that 𝑤𝑥 = 𝑤𝑦 = 0, which implies
hat the third equation in (4.7) reduces to 𝑢𝑥 + 𝑣𝑦 = 0. From here, all
urther arguments go through as in Lemma 3.1 and we may conclude

that 𝜔3 = 0.
Therefore, the vorticity Eq. (4.7) is reduced to the form

𝜔2𝑢𝑦 −
𝜌′

𝜌2
𝑃𝑦 + 𝜈𝑧𝛥𝑣 = 0,

−𝜔2𝑢𝑥 − 𝜔2𝑤𝑧 +
𝜌′

𝜌2
𝑃𝑥 − 𝜈𝑧𝛥𝑢 = 0,

𝜔2𝑤𝑦 = 0,

(4.8)

from which we readily infer that 𝑤𝑦 = 𝑣𝑧 = 0 within the flow. Utilizing
the equation of mass conservation (4.2) we conclude as in the proof of
Theorem 3.3 that 𝑣 is a function of 𝑡 alone. The latter assertion renders
he first equation in (4.8) the form

𝜔2𝑢𝑦 −
𝜌′

𝜌2
𝑃𝑦 = 0

and the second of the Euler Eqs. (4.1) becomes

𝑃𝑦 = −𝜌𝑣′(𝑡).
From here we are able to conclude as in the proof of Theorem 3.3 that
hroughout the flow 𝑢𝑦 = 𝑃𝑦 = 0. Recalling that

𝑢𝑦 = 0, 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0, 𝑤𝑦 = 0, (4.9)

we proceed to the most difficult part of the proof, the fact that
𝑦(𝑥, 𝑦, 𝑡) = 0 for all 𝑥, 𝑦, 𝑡. Let us assume that at some fixed time 𝑡0
here exists a point (𝑥0, 𝑦0) such that 𝜂𝑦(𝑥0, 𝑦0, 𝑡0) ≠ 0. By continuity,
he same is true in a ball 𝐵𝑟 of radius 𝑟 around (𝑥0, 𝑦0), i.e. there exists
 > 0 such that

𝜂𝑦(𝑥, 𝑦, 𝑡0) ≠ 0 for all (𝑥, 𝑦) ∈ 𝐵𝑟 ∶= {(𝑥, 𝑦) ∶ (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 < 𝑟}.
(4.10)

Our goal is to use the normal and tangential stress boundary conditions
on the free surface to lead this assumption to a contradiction. Note that
due to the conclusions on the velocity field (4.9), the tangential stress
conditions (4.4) simplify to
𝜂𝑦[−(𝑢𝑧 +𝑤𝑥) + 2𝜂𝑥𝑢𝑥] = 0, (4.11a)

and

2𝜂2𝑥(𝑢𝑥 −𝑤𝑧) − 2𝜂2𝑦𝑤𝑧 + (𝜂2𝑥 + 𝜂2𝑦 − 1)𝜂𝑥(𝑢𝑧 +𝑤𝑥) = 0. (4.11b)

In view of (4.10) we may conclude from (4.11a) that

𝑢𝑧 +𝑤𝑥 = 2𝜂𝑥𝑢𝑥 for all (𝑥, 𝑦, 𝑡0) ∈ 𝐵𝑟, (4.12)

which together with (4.11b) yields

2(𝜂2𝑥 + 𝜂2𝑦 )(𝜂
2
𝑥𝑢𝑥 −𝑤𝑧) = 0.

In view of the assumption (4.10) this implies that

𝑤𝑧 = 𝜂2𝑥𝑢𝑥 (4.13)
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holds for all 𝑧 = 𝜂(𝑥, 𝑦, 𝑡0) with (𝑥, 𝑦) ∈ 𝐵𝑟. Turning now to the normal
tress condition (4.3), we find that in view of (4.9) it reads

𝑃 − 2𝜇 𝜂2𝑥𝑢𝑥 − 𝜂𝑥(𝑢𝑧 +𝑤𝑥) +𝑤𝑧

1 + 𝜂2𝑥 + 𝜂2𝑦
= 𝑃𝑎𝑡𝑚.

In view of the Eqs. (4.12) and (4.13) the normal stress condition
acquires the simple form

𝑃 (𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡0)) = 𝑃𝑎𝑡𝑚 for all (𝑥, 𝑦) ∈ 𝐵𝑟.

Differentiating the above expression with respect to 𝑦 we obtain that

𝑃𝑦(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡0)) + 𝑃𝑧(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡0))𝜂𝑦(𝑥, 𝑦, 𝑡0) = 0 for all (𝑥, 𝑦) ∈ 𝐵𝑟.

Using now that 𝑃𝑦 = 0 throughout the flow, while 𝑃𝑧 < 0 in
view of the hypothesis (2.7), we conclude that 𝜂𝑦(𝑥, 𝑦, 𝑡0) = 0 for all
(𝑥, 𝑦) ∈ 𝐵𝑟, which is obviously a contradiction with the assumption
that 𝜂𝑦(𝑥0, 𝑦0, 𝑡0) ≠ 0. Therefore, 𝜂𝑦(𝑥, 𝑦, 𝑡0) = 0 for all (𝑥, 𝑦) ∈ R2, and
since the above analysis does not depend on the choice of 𝑡0 the claim
holds for all 𝑡, 𝑥, 𝑦. □

Remark 4.2. For incompressible viscous flows we obtain an even
tronger result without the assumption (2.7) on the pressure, just as in
he inviscid case presented in Section 3.1. One can show that the only

solutions to the governing Eqs. (4.1)–(4.6) are parallel shear flows of
the form 𝑢 = 𝜔2(𝑧 + 𝑑), 𝑣 = 𝑤 = 0, with a flat free surface.
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Appendix

This section is devoted to the proof of the invariance of the water
ave problem under rotations around the 𝑧-axis for the situation of a

ontinuously stratified flow with a density function 𝜌(𝑧, 𝑡). We treat the
inviscid as well as the viscous situation. To this end, we note that it is
well-known that the Euler and Navier–Stokes equations are invariant
under rotations, see [89]. To complete the assertion it remains to show
the invariance (under rotations around the 𝑧-axis) of the equation of
mass conservation (2.2), of the boundary conditions (2.3)–(2.5) in the
inviscid case, and of the boundary conditions (4.3)–(4.6) in the viscous
ase, respectively.

To begin with, we set

𝑄 =
⎛

⎜

⎜

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

⎞

⎟

⎟

⎝ 0 0 1⎠

6 
to be the rotation matrix by angle 𝜃 ∈ [0, 2𝜋) around the 𝑧-axis. For a
given solution (𝑢, 𝑣, 𝑤), 𝑃 , 𝜂 of the water wave problem (2.1)–(2.5) we
efine a new velocity field (𝑈 , 𝑉 , 𝑊 ) through the formula
⎛

⎜

⎜

⎝

𝑈 (𝑥, 𝑦, 𝑧, 𝑡)
𝑉 (𝑥, 𝑦, 𝑧, 𝑡)
𝑊 (𝑥, 𝑦, 𝑧, 𝑡)

⎞

⎟

⎟

⎠

= 𝑄𝑇
⎛

⎜

⎜

⎝

𝑢(𝑋 , 𝑌 , 𝑍 , 𝑡)
𝑣(𝑋 , 𝑌 , 𝑍 , 𝑡)
𝑤(𝑋 , 𝑌 , 𝑍 , 𝑡)

⎞

⎟

⎟

⎠

, (A.1)

where
⎛

⎜

⎜

⎝

𝑋
𝑌
𝑍

⎞

⎟

⎟

⎠

= 𝑄
⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥 cos 𝜃 + 𝑦 sin 𝜃
−𝑥 sin 𝜃 + 𝑦 cos 𝜃

𝑧

⎞

⎟

⎟

⎠

. (A.2)

Likewise, let

𝑃 (𝑥, 𝑦, 𝑧, 𝑡) ∶= 𝑃 (𝑄(𝑥, 𝑦, 𝑧)𝑇 , 𝑡),

̃(𝑥, 𝑦, 𝑡) ∶= 𝜂(𝑥 cos 𝜃 + 𝑦 sin 𝜃 ,−𝑥 sin 𝜃 + 𝑦 cos 𝜃 , 𝑡),

represent a new pressure function and a new free surface, respectively.
ccording to [89] the tuple (𝑈 , 𝑉 , 𝑊 , 𝑃 , ̃𝜂) is a solution of the Euler

(2.1) or Navier–Stokes (4.1) equations as soon as (𝑢, 𝑣, 𝑤, 𝑃 , 𝜂) is. Next
e show that (𝑈 , 𝑉 , 𝑊 ) satisfies the equation of mass conservation (2.2)

provided (𝑢, 𝑣, 𝑤) does. Note first that
𝑈𝑥 = (𝑢𝑥 cos 𝜃 − 𝑢𝑦 sin 𝜃) cos 𝜃 − (𝑣𝑥 cos 𝜃 − 𝑣𝑦 sin 𝜃) sin 𝜃 ,
𝑉𝑦 = (𝑢𝑥 sin 𝜃 + 𝑢𝑦 cos 𝜃) sin 𝜃 + (𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃) cos 𝜃 ,

which yield that 𝑈𝑥 + 𝑉𝑦 = 𝑢𝑥 + 𝑣𝑦. Since 𝑊𝑧 = 𝑤𝑧 we obtain that

𝜌𝑡 + 𝜌(𝑈𝑥 + 𝑉𝑦 +𝑊𝑧) + 𝜌𝑧𝑊 = 𝜌𝑡 + 𝜌(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧) + 𝜌𝑧𝑤 = 0,

which shows that (2.2) holds. A routine computation shows that
 ̃𝜂𝑥 + 𝑉 𝜂̃𝑦 = 𝑢𝜂𝑥 + 𝑣𝜂𝑦, i.e. the kinematic boundary condition on

he surface (2.3) holds as well. The previous considerations show
that (𝑈 , 𝑉 , 𝑊 ), 𝑃 , ̃𝜂 is a solution of the inviscid water wave problem
(2.1)–(2.5) if and only if (𝑢, 𝑣, 𝑤), 𝑃 , 𝜂 is.

To prove that the viscous water wave problem (4.1)–(4.6) remains
invariant under the rotations (A.1)–(A.2), we will show the invariance
of all expressions that build up the boundary conditions at the free
surface given by relations (4.3), (4.4a) and (4.4b). Availing of the
xpressions for 𝑈𝑧, 𝑉𝑧, 𝑊𝑥 and 𝑊𝑦 we obtain that

̃𝑥(𝑉𝑧 +𝑊𝑦) − 𝜂̃𝑦(𝑈𝑧 +𝑊𝑥) = 𝜂𝑥(𝑣𝑧 +𝑤𝑦) − 𝜂𝑦(𝑢𝑧 +𝑤𝑥). (A.3)

A tedious computation shows that
2𝜂̃𝑥𝜂̃𝑦(𝑈𝑥 − 𝑉𝑦) =

(𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑥 − 𝑣𝑦) sin(2𝜃) cos(2𝜃) − 2𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) cos(2𝜃) sin(2𝜃)
− (𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑦 + 𝑣𝑥) sin2(2𝜃) + 2𝜂𝑥𝜂𝑦(𝑢𝑥 − 𝑣𝑦) cos2(2𝜃),

and
−(𝜂̃2𝑥 − 𝜂̃2𝑦 )(𝑈𝑦 + 𝑉𝑥) =

2𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) cos(2𝜃) sin(2𝜃) − (𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑥 − 𝑣𝑦) sin(2𝜃) cos(2𝜃)
+ 2𝜂𝑥𝜂𝑦(𝑢𝑥 − 𝑣𝑦) sin2(2𝜃) − (𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑦 + 𝑣𝑥) cos2(2𝜃).

The previous two formulas show that

2𝜂̃𝑥𝜂̃𝑦(𝑈𝑥−𝑉𝑦) − (𝜂̃2𝑥− 𝜂̃2𝑦 )(𝑈𝑦+𝑉𝑥) = 2𝜂𝑥𝜂𝑦(𝑢𝑥−𝑣𝑦) − (𝜂2𝑥−𝜂2𝑦 )(𝑢𝑦+𝑣𝑥). (A.4)

We note now that (A.3) and (A.4) establish the invariance of the
boundary condition (4.4a). To see that the boundary condition (4.4b)
is also invariant we compute

̃2𝑥𝑈𝑥+𝜂̃2𝑦𝑉𝑦 =

(𝜂2𝑥𝑢𝑥 + 𝜂2𝑦𝑢𝑦)
(

1 − sin2(2𝜃)
2

)

+ (𝜂2𝑦 − 𝜂2𝑥)(𝑢𝑦 + 𝑣𝑥)
sin(2𝜃) cos(2𝜃)

2
+ 2(𝜂2𝑦𝑢𝑥 + 𝜂2𝑥𝑣𝑦) sin2(𝜃) cos2(𝜃)
+ 𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) sin2(2𝜃) + 𝜂𝑥𝜂𝑦(𝑣𝑦 − 𝑢𝑥) sin(2𝜃) cos(2𝜃),
(A.5)
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and

𝜂̃𝑥𝜂̃𝑦(𝑈𝑦 + 𝑉𝑥) =

(𝜂2𝑥𝑢𝑥 + 𝜂2𝑦𝑣𝑦)
sin2(2𝜃)

2
− (𝜂2𝑦𝑢𝑥 + 𝜂2𝑥𝑣𝑦)

sin2(2𝜃)
2

+ 𝜂𝑥𝜂𝑦(𝑢𝑥 − 𝑣𝑦) cos(2𝜃) sin(2𝜃)
+ (𝜂2𝑥 − 𝜂2𝑦 )(𝑢𝑦 + 𝑣𝑥)

sin(2𝜃) cos(2𝜃)
2

+ 𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥) cos2(2𝜃).
(A.6)

We find that the previous two expressions yield

𝜂̃2𝑥𝑈𝑥 + 𝜂̃2𝑦𝑉𝑦 + 𝜂̃𝑥𝜂̃𝑦(𝑈𝑦 + 𝑉𝑥) = 𝜂2𝑥𝑢𝑥 + 𝜂2𝑦𝑢𝑦 + 𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥).

Since 𝜂̃2𝑥 + 𝜂̃2𝑦 = 𝜂2𝑥 + 𝜂2𝑦 and 𝑊𝑧 = 𝑤𝑧 we conclude that
𝜂̃2𝑥(𝑈𝑥 −𝑊𝑧) + 𝜂̃2𝑦 (𝑉𝑦 −𝑊𝑧) + 𝜂̃𝑥𝜂̃𝑦(𝑈𝑦 + 𝑉𝑥)

= 𝜂2𝑥(𝑢𝑥 −𝑤𝑧) + 𝜂2𝑦 (𝑣𝑦 −𝑤𝑧) + 𝜂𝑥𝜂𝑦(𝑢𝑦 + 𝑣𝑥).
(A.7)

Moreover, we check that

𝜂̃𝑥(𝑈𝑧 +𝑊𝑥) + 𝜂̃𝑦(𝑉𝑧 +𝑊𝑦) = 𝜂𝑥(𝑢𝑧 +𝑤𝑥) + 𝜂𝑦(𝑣𝑧 +𝑤𝑦). (A.8)

We infer that relations (A.7) together with (A.8) imply the invariance
of the boundary condition (4.4b). Finally, the boundary condition for
he pressure (4.3) is invariant under rotations around the 𝑧-axis in view

of the expressions (A.5), (A.6) and (A.8).
We conclude this section by computing the vorticity associated with

the flow (𝑈 , 𝑉 , 𝑊 ), 𝑃 , ̃𝜂. Denoting with (𝛺1, 𝛺2, 𝛺3) the vorticity vector
associated with (𝑈 , 𝑉 , 𝑊 ) we obtain
𝛺2 =𝑈𝑧 −𝑊𝑥

=𝑢𝑧 cos 𝜃 − 𝑣𝑧 sin 𝜃 −𝑊𝑥

=(𝜔2 +𝑤𝑥) cos 𝜃 − (𝑤𝑦 − 𝜔1) sin 𝜃
=𝜔2 cos 𝜃 + 𝜔1 sin 𝜃

(A.9)

since 𝑊𝑥 = 𝑤𝑥 cos 𝜃 −𝑤𝑦 sin 𝜃. Analogously we obtain

𝛺1 = 𝑊𝑦 − 𝑉𝑧 = 𝜔1 cos 𝜃 − 𝜔2 sin 𝜃 . (A.10)

From formulas (A.9) and (A.10) we infer that, provided 𝜔1 and 𝜔2 are
onstants, there is a value of 𝜃 such that 𝛺1𝛺2 = 0 and 𝛺2

1 +𝛺2
2 ≠ 0.
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