
Using K-Means clustering to export a NeRF for faster rendering in CG
applications while preserving view-dependent appearance

Jurre Jilles Karim Groenendijk1

Supervisors: Elmar Eisemann1, Michael Weinmann, Petr Kellnhofer1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jurre Jilles Karim Groenendijk
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Petr Kellnhofer, Michael Weinmann, Jan van Gemert

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
With the current state-of-the-art research, exporting
a NeRF to a mesh has the side effect of having to
evaluate a Multi Layer Perceptron at render-time,
causing a significant decrease in performance. We
have found a way to use K-Means clustering to pre-
compute values for this MLP, storing them in mul-
tiple octahedron maps for the GPU to fetch when
it’s time to render the object. This improves render
times by a factor of 3-4x.

1 Introduction
Neural Radiance Fields (also called NeRF) [5] are a fasci-
nating way to bridge the gap between the real and virtual
world, allowing anyone to take video media of the real world
and use it to train a Multi Layer Perceptron to synthesize
novel views of the scene with remarkable realism and detail.
The barrier to entry of this technology is as low as using
images taken from a phone using specialized applications,
and can be as high as specialized cameras that capture RGBD
information and store high-precision offsets. The next step is
to enable its use in Computer Graphics applications, which
could massively impact fields such as industrial design,
architecture and video game creation.

A lot of research at this point still focuses on implementing
different types of NeRFs or improving processing time[7][4],
output quality[1], number of inputs[6], etc. However, there
are a few research papers on exporting NeRFs to meshes.
Within the current bounds of research, it is possible to
train and export a NeRF while preserving view-dependant
qualities using a method called nerf2mesh[8], however, this
still depends on evaluating a Multi Layer Perceptron for
view-dependent effects (specifically specularities). Evalu-
ating an MLP is computationally expensive, and especially
when multiple NeRF-exported objects are placed within one
scene, these costs can add up quickly.

This research aims at removing the MLP from the equation
entirely, pre-computing its output colors, and storing those
colors in additional textures used for the final rendering pro-
cess. This is achieved by using K-Means clustering to group
colors together that would have similar specularities, and then
creating octahedron spectral maps for every cluster. This sig-
nificantly increases performance, while resulting in an ac-
ceptable compromise on accuracy compared to the original
model. Using these techniques, a 3x rendering time decrease
was achieved.

2 Method
2.1 Nerf2mesh’s method
Nerf2mesh’s current approach generates a few files to be used
in the final rendering process.

• An object file, containing the geometry of the final
scene.

• A diffuse texture, for fetching the diffuse color.

• A specular texture, for fetching one of the input values
of the multilayer perceptron (MLP).

• A JSON file containing the weights of the MLP.
Then, during the rendering process, for every ray in the
shader, the diffuse color is fetched from the diffuse texture
(cd). Then, the specular input color is fetched from the spec-
ular texture (fs). This is then combined with the view direc-
tion (d) as input to the MLP. The output of this MLP is the
final specular color (cs).

cs = MLP (fs, d)

Then, these two colors are summed together to get the final
color.

c = cd + cs

2.2 Our method
For our method, we pre-compute the output colors of this
MLP. For a specular input color, we generate an octahedron
map [2] that stores the result of the MLP by placing the
output colors for all the possible view directions into a
texture.

However, doing this for all the specular input colors would
create an octahedron atlas of many terabytes, and therefore
we have to be conservative in the number of octahedron maps
we create.

To that end, we perform K-means clustering [3] on the
input specular colors (fs) of the MLP. However, since two
specular colors being similar does not directly mean that
the output (cs) will be similar. As such, we have to use
something else as our criteria to cluster on.

For our approach, we create N evenly spaced points on a
sphere and calculate the output specular color for all those
points. These colors act as an identifier, an approximation if
you will, for the domain of the MLP for particular input color.

identfs = {MLP (fs, d)|d ∈ D}

Where D is a number of evenly spaced points on a sphere.
This is the data that we cluster on, with the general idea
being that if those identifying vectors are close together, the
final specular domain of the MLP for those input colors will
be as well.

Since clustering and generating identifying vectors for the
same input colors is unnecessary, we first group the unique
input colors together while taking note of the number of
occurrences, so that we only have to generate one identifying
vector per color used in the specular input map. Then, we
perform our clustering algorithm on those vectors, taking the
number of occurrences into account.

However, since we have clustered on the identifying
vectors, our cluster centers will also be in the format of those
vectors, we need to get back to an input color. To do this,
for every cluster, we find the input color that creates the

identifying vector that is closest to the cluster center, and use
that as the final input color for generating the maps for that
cluster. As an additional step, we then de-duplicate the list of
input colors to only get the unique inputs for the clustering,
potentially saving space on the final octahedron atlas.

Then, for each of the de-duplicated clustered input color,
we generate an octahedron map [2] that stores the result of
the MLP for the specular input value that we assigned to the
cluster, storing the output values for all the possible view
directions into a square map. These maps then tile together
to form the octahedron atlas, which is saved as one of the
files to be used for the final rendering process.

Afterwards, we take all the input values, and assign them
to their closest cluster center based on their identifier. We
export this label for every value in the input specular texture,
which will create a texture referencing which octahedron
map to look at for the rendering of that ray.

During rendering, the process to get the final specular color
given a view direction and UV in the texture consists of two
steps:

1. Fetch the label from the label texture. This references
which octahedron map to use.

2. Use the view direction to calculate the corresponding lo-
cation in that octahedron map.

The color at the location of that octahedron map is the final
specular color cs we want to use.
Getting the final specular value

int cluster_sqrt = sqrt(clusters);
int label = texture(tLabelMap, uv);
int labelX = label % clusters_sqrt;
int labelY = label / clusters_sqrt;

vec2 octaUV = octahedron_mapping(view_direction);

int map_size = textureSize / clusters_sqrt;

vec2 atlas_UV = vec2(labelX + octaUV.x,
labelY + octaUV.y);

atlas_UV = atlas_UV * map_size / texture_size;

vec3 finalTexel = texture(tOctahedronAtlas,
atlas_UV);

return finalTexel;

Where octahedron mapping is a function that returns the UV
coordinate in an octahedron map for a given view direction,
clusters is the number of clusters in the final atlas, and tex-
ture size is the final size of the octahedron atlas.

3 Experimental Setup and Results
3.1 Frametime measurements
We generated the input texture using Nerf2Mesh’s original
repository [8], while setting super-sampling to 1 and using

a 2048x2048 texture size. This was to circumvent the need
for OpenGL, as the testing environment only supported
CUDA. We believe this has no impact on our testing results,
as textures are sampled sparingly, and texture sampling does
not significantly slow down with a higher texture size.

For our experiments, there were two setups: One setup
with the vertex shader Nerf2Mesh provided, and one setup
with our new vertex shader using the pre-processed textures.
Furthermore, we have tested these setups in two environ-
ments: one WebGL environment using the Three.JS library,
and one environment as a native shader using Unity.

For the Unity environment, we encoded the weights of
the MLP into textures in the format that the WebGL reader
expects it. Then, we ported the GLSL code to HSLS code
so that it works in Unity shaders. We also did this for our
pre-computed method and then created a camera rendering a
screen of size 8192 x 5461, which is the largest unity would
allow. This is to get the highest measurable effect to compare
the two methods.

For the WebGL environment, we edited our Firefox
settings to allow for unlimited FPS, rather than VSync’s cap
of 60, and used the renderer.html file as Nerf2Mesh’s
method, and our renderer_packed.html file as our
method.

Then, in both environments, we positioned the camera
such that the entire screen is taken up by the object, so all
pixels are tasked with the computation. We recorded our
results in Table 1.

method Unity FPS WebGL FPS

nerf2mesh 47 280
ours 200 800

Table 1: Results. Higher FPS is better

Within the specs used for this experiment, as seen in
appendix Table 3, this means a 3-4x FPS increase.

3.2 Pre-processing optimization
Our solution supports a few parameters:

• the output resolution of each octahedron map
• the number of clusters
• the number of points that create the identifying vectors

Increasing the output resolution means the step of generating
the final octahedron maps takes longer, but there are more
accurate results when sampling. Furthermore, the output size
of the final octahedron atlas will be bigger, more RAM will
be consumed when generating the map, and more VRAM
will be used when rendering the object.
Increasing the number of clusters should reduce the mean
absolute error and mean squared error of every pixel, but will

also mean clustering takes longer and will make the final
octahedron atlas bigger as well.
Increasing the number of points used to create the identifying
clusters should mean that the clusters are more representative
of the output space they are trying to map to, and therefore,
the final octahedron maps should be closer to the points we
are looking for when clustering.

To see the effects of these changes, we tested the general
visual resemblance. To do this, we take the mean absolute
error and mean squared error for the clustering directions for
every pixel in the source texture. To clarify, for a single color:

MAEpixel(p, cluster) =
1

|D|
∑
d∈D

|p− sample(cluster, d)|

MSEpixel(p, cluster) =
1

|D|
∑
d∈D

(p−sample(cluster, d))2

And for the entire texture:

MAEtexture =
1

|P |
∑
p∈P

MAEpixel(p, get cluster(p))

MSEtexture =
1

|P |
∑
p∈P

MSEpixel(p, get cluster(p))

where D is the list of directions we sample, P is the list of
pixels in the original input specular texture, get cluster is
a function that returns the corresponding cluster to a pixel,
and sample is a function that samples a cluster in a certain
direction. Doing this for our original 2048x2048 input
texture for varying numbers of clusters, with the individual
octahedron maps being 64x64 pixels and 100 points being
used as identifiers, gives the results in Table 2

Clusters MAE MSE Time to generate(s)

1 12.933 609.745 839
4 11.868 476.378 854

16 11.151 409.153 1176
64 10.789 379.223 1928

256 10.637 367.115 4723
1024 10.587 362.210 15289
2048 10.578 361.085 34509

Table 2: Results. Lower MAE and MSE is better

For our input texture, after even 64 clusters the extra pro-
cessing time and storage space a higher-cluster setup would
require seem to outweigh the benefit of higher accuracy for
most use-cases.

It is worth noting that the points used for evaluation are
evenly spaced, and therefore a higher texture resolution will
not necessarily generate better scores for the metrics used
here. A higher texture resolution does however greatly im-
prove visual clarity of the final result, but this effect is a lot
harder to measure in a reasonable timeframe.

4 Responsible Research
Under the M.I.T. License agreement provided within the
Nerf2Mesh repository, we can see that we are free to: ”deal in
the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so.”, given
that we include the license agreement in our version of the
project as well. This has been done, as well as us using the
same license ourselves.

Our code is shared on the github repository1, together with
instructions on how to download the dataset used and repro-
duce our results. The original used dataset, as well as all the
commands used to generate the results and the results itself
are located on this github as well.

5 Discussion
Section 3.1 focuses mainly on the worst-case scenario: the
largest screen size possible, looking at only pixels that require
our vertex shader to be run. We imagine in actual uses of
this technology, it will be mixed with other shaders in the
scene, and this will only be a small portion of what is being
viewed. However, we also believe that wherever possible, it
is worth making optimisations to reduce frame time, so that
other effects have sufficient GPU capacity left.

6 Conclusions and Future Work
With the current state-of-the-art research, exporting a NeRF
to a mesh has the side effect of having to evaluate a Multi
Layer Perceptron at render-time, causing a significant de-
crease in performance. We have found a way to use K-Means
clustering to pre-compute values for this MLP, storing them
in multiple octahedron maps for the GPU to fetch when it’s
time to render the object. This improves render times by a
factor of 3-4x.
For future work, one could look into using algorithms other
than K-Means clustering to see if this can create better clus-
ters or speed up clustering. Moreover, one could look at dif-
ferent ways to create the identifying vectors, rather than tak-
ing evenly spaced points on a sphere. Furthermore, one could
look into estimating material properties from these maps us-
ing a material model, enabling more freedom when modify-
ing the mesh afterwards.

1https://github.com/jurrejelle/nerf2mesh

https://github.com/jurrejelle/nerf2mesh

A Specifications used for experiments

Slot Component

CPU AMD Ryzen 7 7700X
GPU NVIDIA GeForce RTX 3070
RAM 4x16GBKingston FURY DDR5-5200

(Underclocked to 3600 MHz
because of CPU limitations)

Motherboard Gigabyte B650M DS3H

Table 3: Specifications used for experiments

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik,

Peter Hedman, Ricardo Martin-Brualla, and Pratul P.
Srinivasan. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. ICCV, 2021.

[2] Thomas Engelhardt and Carsten Dachsbacher. Octahe-
dron environment maps. 2008.

[3] Aristidis Likas, Nikos Vlassis, and Jacob J. Verbeek. The
global k-means clustering algorithm. 2000.

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,
and Christian Theobalt. Neural sparse voxel fields, 2021.

[5] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020.

[6] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi S. M. Sajjadi, Andreas Geiger, and Noha Radwan.
Regnerf: Regularizing neural radiance fields for view
synthesis from sparse inputs. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2022.

[7] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In International Conference on
Computer Vision (ICCV), 2021.

[8] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu,
Errui Ding, Jingdong Wang, and Gang Zeng. Delicate
textured mesh recovery from nerf via adaptive surface re-
finement. arXiv preprint arXiv:2303.02091, 2022.

	Introduction
	Method
	Nerf2mesh's method
	Our method

	Experimental Setup and Results
	Frametime measurements
	Pre-processing optimization

	Responsible Research
	Discussion
	Conclusions and Future Work
	Specifications used for experiments

