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Abstract

Managing credit risk is a vital part of financial institutions. While the research into credit
risk models is extensive, transaction data is a relatively untapped data source in these
models. We investigate the explanatory value of transaction data for the Bank by developing
default classification models for their small medium enterprises (SME) portfolio. We develop
measures that summarize the transaction behaviour on a client level for different time
windows. Variables that are included into traditional models are positive income shocks,
balance returns, zero transactions (indicating rejected direct debits), and relative cash
expenditure. By combining these variables with client characteristics and loan behaviour
information, we develop a hierarchical logistic regression model which has a good overall
classification performance, reflected by an area under curve (AUC) of 0.850. Tolerating 2
out of 3 false warnings, the model identifies more than 50% of the defaults on average. We
investigate relational classification methods, which classify clients according to similarity in
terms of their transaction behaviour. The relational neighbour classifier achieves an AUC
of 0.768, using similarity between to clients that are determined according to a flexible
weight function of the number of shared entities. By combining this approach with the
aggregated transaction variables, we develop a model which is solely based on transaction
data. The strong performance of this model is reflected by an AUC of 0.804, illustrating the
effectiveness of transaction data in default classification.

keywords: credit scoring, monitoring, transaction data, default classification, relational
neighbour, hierarchical logistic regression
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1Introduction

1.1 Motivation

In this research we investigate the explanatory power of transaction data on the credit risk
of small and medium-sized enterprises (SME) clients of a medium sized Dutch Bank (the
Bank). Currently, in the loan application process at the Bank, client characteristics are used
in order to decide whether an applicant is considered creditworthy. If a loan is granted to a
client, the performance of this loan is monitored. This is done in a qualitative fashion by for
example client visits, and in a quantitative manner by using an internal credit risk model.
This model provides monthly updates of the well-known credit metrics such as Probability of
Default (PD), Exposure at Default (EAD), Loss Given Default (LGD), and Expected Loss (EL).
By closely monitoring these metrics, the Bank is able to keep track of the performance of
their loans and take preventive measures if needed. In this research, we focus on default
classification for monitoring purposes.

We investigate monitoring, rather than the acceptance decision of the loan. If a new client
applies for loan, the Bank has little information available about the applicant’s financial
situation or payment behaviour. Transaction data could fill this gap and provide a better
informed decision. However, for this decision, the transaction data of a client before their
loan application is needed. In contrast, a research on monitoring requires the transaction
data after a loan has been accepted. The former data is limited in comparison to the latter
and insufficient to construct a proper model. It must be noted however that if this research
shows the benefits of using transaction in monitoring, it immediately serves as a preliminary
research for including transaction data in the acceptance decision.

Current credit risk models of the Bank use a combination of company characteristics, credit
behaviour, and external ratings. Company characteristics consist of the client’s industry,
region, and size, yearly revenue, etc. This information is acquired through annual reports.
Loan payment behaviour is gathered by the Bank itself and essentially contains the client’s
behaviour with respect to their existing loan(s). For example, late payments and an amount
of overdraft lower the creditworthiness of a client. The external rating is a credit assessment
of the client, which is provided by an external rating agency. These ratings are essential to
many credit risk models and widely accepted in the financial sector.

Transaction data is a relatively untapped data source within the Bank. The data contains
information of the financial behaviour of the client, which means it is potentially useful in
default classification. For every client with an active bank account, all incoming and outgoing
transactions are available on a (nearly) live basis. This immediate inflow of information
means that financial distress can potentially be spotted earlier. Additionally, by including
more financial knowledge of the client into existing models, classification accuracy might be
improved. As a result, preventive measures can be taken more effectively, and thus more
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defaults (and therefore credit losses) can be averted. Furthermore, the credit risk buffer of
the Bank can also be lowered. Hence, monitoring improvements by means of transaction
data would be in favour of both the client as well as the Bank.

We formulate the following research question:

• In what way can transaction data effectively be used for default classification models?

We attempt to answer this question by means of the following sub questions:

• How can we incorporate transaction data into traditional modelling techniques?
• Which novel default classification techniques can be applied to the transaction data?
• Can we develop an effective default classification model that is solely based on transaction

data?

This paper is organised as follows: In chapter 2, we discuss the data that is provided by
the Bank. Chapter 3 describes how we translate this data into mathematical measures.
Modelling techniques that incorporate these measures as modelling variables are explained
in chapter 4, and the results of these models are evaluated. In chapter 5, a relational
classification approach is explained and applied to the transaction data. Naturally, the
predictive performance of this model is also analysed. Chapter 6 combines the traditional
approach of chapter 4 with the relational approach of chapter 5, and investigate the potential
of a combined modelling approach. Furthermore, we assess the performance of a model
which is solely based on transaction data. Finally, in chapter 7, summarize our findings and
make suggestions for further research.

1.2 Literature

As managing credit risk is a vital part of many financial institutions, there is a big interest in
developing quantitative techniques for this purpose. Consequently, in literature there is a
growing number of researches that investigate credit scoring approaches. These approaches
aim to accurately make a distinction between good and bad borrowers, which is done
by identifying and analysing borrower’s characteristics. This distinction is useful for the
loan application as well as monitoring purposes on both consumer and corporate level. In
Louzada et al. (2016), the number of published credit scoring researches in the past two
decades is illustrated over time. This shows a strong growing interest in the topic, which
is attributed to the Basel II (credit risk) regulations introduced in 2004. As a result of this
growing interest, as well as improvements in computational power, the number of techniques
has grown significantly. Some techniques that are often encountered in literature (Brown
and Mues, 2012,Louzada et al., 2016), are: logistic regression (LR), linear discriminant
analysis (LDA), support vector machines (SVM), and neural networks (NN).

The LDA and LR are comparable techniques that are both based on regression. The indepen-
dent variables are assumed to linearly relate to the dependent variable. The benefit of these
approaches is that they are simple to implement and provide interpretable results (Gurný
and Gurný, 2013). The main difference is that LDA assumes normality of the independent
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variables, which is why LR is preferred if this assumption is unreasonable (Press and Wilson,
1978). The logistic regression can be extended to an hierarchical logistic regression (HLR),
also known as mixed-effect or multi-level modelling. The HLR allows for modelling depen-
dent observations within the portfolio and is applied in McNeil and Wendin (2003). The
HLR requires more modelling effort than the LR but is useful for handling group specific
effects in the portfolio.

While the LR is considered to be the industry’s practice (Lessmann et al., 2015), the technique
is currently used as a benchmark for more sophisticated approaches. As a result of increased
computing power and data size, machine learning techniques such as SVM and NN have
become popular in the field of classification. These techniques are able to capture complex,
non-linear patterns in the data and have proven to be accurate in default classification (West,
2000, Huang et al., 2007). Despite this success, these approaches have severe drawback for
practical purposes. The algorithms are considered ’black box’, meaning that insight of the
algorithm’s inner workings is lacking (Martens et al., 2008). This is an important aspect for
financial institutions, because regulations require them to use explainable and transparent
models.

In consumer credit risk, it is common practice to use socio-demographic variables (such as:
age, income) and previous loan behaviour (Crook et al., 2007). Corporate credit assessment
is mainly based on company characteristics, financial ratios (such as loan-to-balance), and
loan behaviour (Wilson et al., 2000). The use of transactional data is still uncommon in
credit risk literature, which is likely due to the private nature of this data. However, the
development of the FinTech1 industry and the introduction of Payment Service Directive II
(PSDII) has resulted in a growing interest in transaction data (Romānova et al., 2018). There
are some examples in which transaction data is analysed for a credit scoring purpose. In
Khandani et al. (2010), individual transactions of credit card issuers are used for predicting
consumer creditworthiness by classifying each transaction into a certain category. On
a corporate level, checking account information and credit usage are used a modelling
variables in Norden and Weber (2009). While the use of transaction data is novel in these
researches, the applied techniques are still (relatively) traditional.

Recently, there have been several studies in which the transaction data is used in a fine-
grained, non-aggregated manner. In these researches, a relational network is constructed
in which clients are connected if they have transacted with each other or the same entity
(Martens et al., 2016). Highly connected clients in the network are classified to the same class
by means of various relational classifiers (Macskassy and Provost, 2007). In Tobback and
Martens (2017), relational classification through transactional data shows promising results
on a large consumer portfolio, whereas relationships between managers is an informative
bankruptcy predictor on an SME level (Toback et al., 2017). These approaches are inspired by
social networks, in which friendships or shared hobbies can indicate similarity in properties
of interest (Cnudde et al., 2015). To our best knowledge, there are no studies which apply
relational classification based on transactional data to an SME portfolio.

1Spotcap is an example of a FinTech company that issues loans based on transaction data.
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2Data

In this chapter, we describe and analyse the data that is used in our research. The source of
this data is extensive, containing all information about the SME portfolio of the Bank. As not
all information is representative for our monitoring purpose, we set requirements that limit
number of clients in scope. First, we introduce these requirements. The resulting data in
scope is divided in three datasets which are described in detail. An exploratory analysis is
performed, which provides insight in the data. The main contribution of this research lies in
researching the explanatory value of the transaction data. Therefore, we provide a separate
analysis of the transaction data.

The content of this chapter is confidential.
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3Covariates

In chapter two, we have discussed the available data. We illustrated the transaction as well
as the loan behaviour of clients. The next step is to translate this information into modelling
variables. In section 3.1, we construct measures that summarize the data in certain time
frames. Section 3.2 describes which measures are considered as potential modelling variables
and specifies the time frames. We summarize all developed modelling variables in section
3.3, and briefly assess their significance with respect to the default event.

3.1 Mathematical measures

3.1.1 Transactional measures

Before we construct the measures, we introduce some notation. Let t = 1, 2, . . . , T denote
the time in days. The set Xj contains all transaction amounts xit(j) for client j. In this
formulation i ∈ N represents the i-th transaction and t indicates the day the transaction
occurred. The following three subsets are defined, which distinguish positive, negative, and
zero transactions.

X+
t (j) = {xit(j) ∈ Xj |xit(j) > 0} (3.1)

X−t (j) = {xit(j) ∈ Xj |xit(j) < 0} (3.2)

X0
t (j) = {xit(j) ∈ Xj |xit(j) = 0} (3.3)

The size of each set corresponds to the number of positive, negative, and zero transactions
per day. We denote these sizes as ct(j) and define them in 3.4.

c+
t (j) = |X+

t (j)|, c−t (j) = |X−t (j)|, c0
t (j) = |X0

t (j)| (3.4)

A distinction is made between the positive and negative transaction volume per day. The
aggregated daily volumes are denoted by Y +

t (j) and Y −t (j) for positive and negative volumes
respectively, and defined as follows:

Y +
t (j) =

∑
x∈X+

t (j)x

(3.5)

Y −t (j) =
∑

x∈X−t (j)x

(3.6)
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Using the daily transaction volume, we define the balance at time t as Bt(j), in which B0(j)
is the starting balance of the client j.

Bt(j) = B0(j) + Y +
t (j) + Y −t (j) (3.7)

Based on these definitions, we construct several covariates that capture the transaction
information in varying time windows. For notational simplicity, we drop the j, and keep in
mind that we focus on the transactions on a client level.

Log balance return

The balance of a client is easily interpretable from a risk perspective. Generally, a decreasing
balance means an increasing risk, and inversely. Note that the time window in such trends
is important. A client can have an increasing balance in the past month, but a strongly
decreasing balance in the past three months.

We consider relative changes in the balance rather than absolute, i.e. returns. For mathe-
matical convenience, it is common practice in finance to consider log returns rather than
discrete returns. Equation 3.8 defines the log returns rt of the balance.

rt = log
(

Bt
Bt−1

)
(3.8)

A problem arises in case a clients’ account allows for negative amounts. If either Bt or Bt−1

is negative, the log of a fraction between the two is negative and therefore does not exist. To
deal with this, we introduce an absolute shift value a. We set the shift value equal to 1.25
times the credit limit. Consequently, the balance is always larger than zero. The absolute
shift method is crude, however does not have any severe consequences in this research. More
sophisticated and refined approaches to deal with returns of negative prices are discussed by
Fries et al. (2017).

Thus, we use the log returns of the shifted balance r∗t as defined in equation 3.9.

r∗t = log
(

Bt + a

Bt−1 + a

)
(3.9)

in which a = 1.25 · |mintBt|.

To capture trends rather than the point-in-time returns, we calculate the τ -day average in
equation 3.10.

Rτ = 1
τ

T∑
t=T−τ

r∗t (3.10)

in which τ is the size, and T the end-day of the time window.
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Volatility of balance returns

The volatility of the balance returns provides an indication of the stability of the balance. We
determine the volatility by calculating the standard deviation of of the log (shifted) balance
returns. Again, we introduce τ to measure the log return volatility of a certain time period.

σRτ =

√√√√1
τ

T∑
t=T−τ

(Rt −Rτ )2 (3.11)

Frequency volatility

Stability in the number of transactions is an interesting property of the transaction behaviour.
Hence, we also examine the volatility of the number of transactions. We distinguish between
positive and negative transactions.

We define the average number of transactions in a given time window:

K+
τ = 1

τ

T∑
t=T−τ

c+
t (3.12)

K−τ = 1
τ

T∑
t=T−τ

c−t (3.13)

Using these averages, we define the volatility as the standard deviation of the number of
transactions. The formulas are as follows:

σK+
τ

=

√√√√1
τ

T∑
t=T−τ

(
c+
t −K+

τ

)2
(3.14)

σK−τ =

√√√√1
τ

T∑
t=T−τ

(
c−t −K−τ

)2
(3.15)

Return shocks

Shocks are sudden sharp spikes or drops in the balance returns. These extreme events can
have a big impact on the financial situation of a client. We measure both positive, as well as
negative shocks. We define:

E+
τ = 1

τ

T∑
t=T−τ

1 {rt −Rτ > α} (3.16)

E−τ = 1
τ

T∑
t=T−τ

1 {rt −Rτ < α} (3.17)

3.1 Mathematical measures 9



These variables denote the average number of shocks in the time window [τ, T ]. The
boundary value α gives the threshold a return needs to surpass in order to be marked as an
extreme.

Zero transactions

The occurrence of a zero transaction is an interesting event. We measure the total number
of zero transactions in the time window [τ, T ] as follows:

K0
τ = 1

τ

T∑
T−τ

c0
t (3.18)

Rather than considering the absolute value, we examine the number of zero transactions
relative to the number of total transactions in the period. The formula is given in equation
3.19.

Zτ = K0
τ

(K0
τ +K+

τ +K−τ )
(3.19)

Categories

The relative frequency and volume of transactions of a certain category is summarized
for different time windows. Let us define Y +

t (c) and Y −t (c) as the incoming and outgoing
volume of transactions of category c at day t. We construct the following measures for a
category c.

J+
τ (c) = 1

τ

T∑
t=T−τ

Y +
t (c)
Y +
t

(3.20)

J−τ (c) = 1
τ

T∑
t=T−τ

Y −t (c)
Y −t

(3.21)

Similarly, we define c+
t (c) and c−t (c) as the incoming and outgoing number of transactions.

The frequency measures per category are given by:

H+
τ (c) = 1

τ

T∑
t=T−τ

c+
t (c)
c+
t

(3.22)

H−τ (c) = 1
τ

T∑
t=T−τ

c−t (c)
c−t

(3.23)

Using these measures, we construct modelling variables of the transactions of a client on a
category level.
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3.1.2 Credit measures

The formulas in the previous section consolidate the transactional data into mathematical
measures. In this section, we achieve the same for credit data. To develop the measures, we
assume that a client has a credit limit M∗j . Note that this value is negative, as it represents
the most negative value a client’s account is allowed to reach. Again, we omit the j in the
formulas, and remember that we focus on one particular client. These measures are only
valid in case the client has a dynamic credit product.

Credit use

The credit limit indicates the maximum amount a client can withdraw. By comparing this to
the withdrawn credit, we determine the percentage of credit that is used by the client at any
point in time. Clearly, a client with a positive balance has a credit use of zero. The credit use
at time t is given by:

mt =

0 if Bt ≥ 0

Bt/M
∗ if Bt < 0

(3.24)

We focus on time windows rather than the point-in-time values of mt. Hence, we define,

Mτ = 1
τ

T∑
t=T−τ

mt (3.25)

The value for Mτ represents the average limit use in the period [τ, T ].

Limit exceedances

It can occur that the maximum credit limit is exceeded by a client. These limit exceedances
are important events for the credit issuer because it indicates that the current credit agree-
ment is not sustained. We define these exceedances as follows:

Oτ = 1
τ

T∑
t=T−τ

1 {mt > 1} (3.26)

The variable Oτ corresponds to the average number of limit exceedances in the period
[τ, T ].

3.2 Covariate choices

To further specify the introduced measures into modelling variables, we make two decisions.
First, we discuss which categories are included as potential candidates. Then, we select an
appropriate time frame for each of the measures.

3.2 Covariate choices 11
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Fig. 3.1.: Log ratio of incoming transaction volume between default and non-default.

3.2.1 Selection categories

The transaction categories as presented in chapter 2 are further analysed. We investigate
whether defaulting clients have a significant different relative volume in certain categories. If
so, these categories are considered as risky or safe from a default perspective, and modelling
variables are constructed from them. We focus on transaction volume rather than frequency.
While the two are similar, relative transaction volume contains more interesting information
in our opinion.

We distinguish the portfolio in a default and a non-default group. The average relative
transaction volume of both groups is calculated for each category. By dividing these averages,
we find a ratio which indicates the riskiness of the categories. For illustrative purpose, we
take the log of this ratio. A ratio higher than zero indicates that the relative volume in a
category is larger among defaulting clients, a ratio lower than zero means the category has
higher volume among non-defaulting clients.

Figures 3.1 and 3.2 show the resulting log-ratios for every category for incoming and
outgoing transactions respectively. In addition to the observed ratio, a 95% confidence
interval is also constructed via bootstrap sampling. If zero falls outside a confidence bound,
we conclude that the corresponding category is regarded as either ’safe’ (lower than zero) or
’risky’ (higher than zero). All other categories are considered neutral.

For every variable that we include into the model, it is important that it is intuitive explainable
for the risk expert. Therefore, we introduce categories as potential covariates that have both
quantitative as well as intuitive support. Together with experts from the Bank, it is decided
to include the following categories as potential modelling covariates: cash, mortgage, bank
costs, gambling, and charities.

We consider the relative outgoing volume for these categories. Figure 3.2 shows that the
log-ratio of the cash, mortgage, and bank costs category are significantly above zero. For
these categories, the purpose of the transaction is also clear. Cash transactions are ATM
machine withdrawals, mortgage reflect property loan payments, and bank costs are costs
associated with any bank. The latter can consist of interest payments, additional loans,

12 Chapter 3 Covariates
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Fig. 3.2.: Log ratio of outgoing transaction volume between default and non-default.

or fees, which explains the observed quantitative risk. The other two categories are not
significantly different from zero. However, both have a very intuitive association. The
gambling category is associated with risk, regarding the opportunistic nature of this activity.
Expenses in charities is regarded as reliable, as it indicates that there is both room and
incentive to provide financial assistance.

3.2.2 Selection time windows

As stated in ??, Tj denotes the last date of relevant information for each client j. Based on
Tj , we determine three different time windows, namely: short, medium, and long term.
Together with experts from the Bank, we determine time windows to correspond to three,
six, and twelve months respectively. We define these windows as follows:

τ3 = [Tj − 91, Tj ] (3.27)

τ6 = [Tj − 182, Tj ] (3.28)

τ12 = [Tj − 365, Tj ] (3.29)

For each of the constructed measure, we choose one of these time windows. Table 3.1
shows these choices. Shocks, exceedances, and zero transactions are distinctive events,
that possibly have an immediate effect on the financial situation. Therefore, we choose to
analyse these variables within the short term. The balance returns and all category measures
are considered within the long period. This choice is made to include important yearly
transactions. To find a balance between a too stable and an overly sensitive volatility, the
volatility measures are chosen to be measured on a medium term.

Last, we define the threshold for which a balance return is seen as an extreme event. We
choose α = 2 · σR6 , which means that a balance return is labelled as an extreme if it exceeds
the short term mean by twice the medium term standard deviation.

3.2 Covariate choices 13



3.3 Analysis covariates

The purpose of constructing the covariates is to develop a model to predict defaults. Due to
the different nature of fixed and dynamic credit products, we aim to develop two separate
models. Hence, the portfolio is split into two groups, clients with a dynamic credit (DC),
and clients with a fixed credit (FC) product. To develop these models the DC and FC set are
divided into a training and a test part according to the ratio 2:1. The training part is used for
model building, whereas the test part is used to evaluate the final model. Note that the final
model depends on the partitioning between training and test data. We analyse this effect in
chapter 4.

The model building process consists of selecting independent variables that are important
in terms of explanatory value. A standard approach to do this is stepwise regression. The
stepwise regression consists of selecting predictors in a iterative manner, based on model
performance criteria. However, stepwise regression is often criticized for being susceptible
to overfitting (Tibshirani, 1996). This is caused by the greedy strategy of the approach,
which can result in locally optimal predictors. An other approach is to use regularization
techniques such as Ridge regression (L1), LASSO (least absolute shrinkage and selection
operator) (L2), or the elastic net (Hoerl and Kennard, 2000). The latter is a combination of
the former two techniques. These techniques are based on adding penalizing terms to the
likelihood function. A drawback of these penalizing terms is that the resulting coefficient
values lose interpretability.

To have full control of the model-building process, we prefer to use a manual step-by-step
approach as presented Hosmer and Lemeshow (2005). The first step of this approach is
to perform a univariable analysis on all possible variables. In this section, we analyse all
discussed variables in such a manner. This includes the client characteristics (as discussed
in chapter 2), and the credit and transaction behaviour variables as developed in the
previous section. A full overview of variables is given in table 3.2. We only include linear
predictors into our model and neglect any higher order, or interaction terms. These terms
are generally difficult to interpret and significantly complicate the model. We have many
variables available and there are no intuitive non-linear relations present. Thus, we assume
that a model without higher order terms should be sufficient.

With the univariable analysis, we assess whether a covariate has a direct effect on the
independent variable. For categorical variables, we use Pearson’s chi-squared test for
independence as discussed in appendix B.1. We test the null hypothesis that the different

Short Medium Long

zeros sd returns balance
positive shocks sd incoming cat: cash
negative shocks sd outgoing cat: mortgage
limit exceedances cat: bank costs
limit use cat: gambling

cat: charities
Tab. 3.1.: Time window choices for the mathematical measures.
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Fig. 3.3.: Univariable analysis of the covariates for the credit models. The blue bars represent the
calculated p-values, whereas the green line illustrates the cut-off point of 0.20.

levels of the categorical covariate follow the same distribution with respect to the dependent
variable. Rejection of the null hypothesis suggests that the covariate is a candidate for the
final regression model.

For continuous variables, there is no direct statistical test to assess the effect on the dependent
variable. Instead, we fit a univariable logistic regression with the continuous covariate as the
only independent variable. With the resulting estimated coefficient and standard deviation,
we use Wald’s test to evaluate whether the coefficient is significant. If so, the continuous
covariate is a potential candidate to include in our model. The use of a logistic regression is
motivated in the chapter 4.

The decision to include covariates in the next step of our covariate selection process is based
on the p-values of the analyses. Figure 3.3 presents these, and further statistics can be found
in the appendix C.1. Mickey and Greenland (1989) have shown that using a traditional
significance level of 0.05 as a cut-off point often disregards variables known to be important.
Hence, we follow the suggestion of Hosmer and Lemeshow (2005) and consider variables
with a p-value lower than 0.20 as potential candidates.

Figure 3.3a shows 6 variables that are significant on a 0.20 level. These variables are
potential candidates for the fixed credit model. The dynamic credit model has 9 variables
that are significantly smaller than 0.20, which is illustrated in figure 3.3b. The two models
have 4 variables in common, namely: arrear months, size, DB rating, and positive shocks.
Besides traditional covariates such as the client characteristics and arrear months, both
models also show transactional variables at a significant level. This is promising for our
research.

This analysis provides the first step into determining important variables for our models. In
the next chapter, we will take the next steps of the model building strategy.

3.3 Analysis covariates 15



Covariate Description Levels

region location of the client region 1, region 2, region 3
industry branche in which the client oper-

ates
industry 1, industry 2, industry 3

size size of the company, based on the
yearly revenue

small, medium, large, extra large

DB rating credit rating by the external bu-
reau Dun & Bradstreet

unrated, minimal, low, above average,
and significant risk

liability indicator of personal liability
within the legal form

liable, non-liable

volume yearly transaction volume continuous
frequency yearly transaction frequency continuous
balance (1 year) average balance returns continuous
zeros (3 month) percentage of zero transactions continuous
sd returns standard deviation of balance re-

turns
continuous

sd incoming standard deviation of number of
incoming transactions

continuous

sd outgoing standard deviation of number of
outgoing transactions

continuous

arrear months months a client has been in ar-
rears in the past 24 months

continuous

shocks (pos) positive income shocks continuous
shocks (neg) negative income shocks continuous
cat: cash relative expenditure in cash continuous
cat: mortgage relative expenditure in mort-

gage/rent
continuous

cat: bank costs relative expenditure in banking
costs

continuous

cat: gambling relative expenditure in gambling continuous
cat: charities relative expenditure in charities continuous
limit exceedances exceedances of credit limit continuous
limit use percentage of credit continuous
Tab. 3.2.: Summary of all variables that can be included in the models. A short description is given

for each variables, and the possible levels of categorical variables are described.
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4Traditional Modelling

In the previous chapter we discussed the covariates that summarize the available information
of the clients. We construct models for the classification of defaults with these covariates.
These models are traditional in the sense that the dependent variable is predicted via multiple
independent variables. In this chapter, we describe the model building process and show the
results of the constructed models. In section 4.1, we develop a logistic regression model, and
asses its performance according to several introduced evaluation measures. We distinguish
between clients with a different credit type and create separate models for these groups.
Section 4.2 extends the logistic regression to a hierarchical version which is applied to the
full portfolio.

4.1 Logistic regression

In credit scoring, the logistic regression is considered the industry’s practice. The logistic
regression (and the similar probit regression) belong to the family of generalized linear
models (GLM). Fox (2008) describes the GLM as consisting of three main components:

• A random component, specifying the conditional distribution of the response variable.
• A linear predictor, i.e. a linear function of the covariates.
• A smooth and invertible link function, which transforms the linear prediction to the

expectation of the response variable.

GLMs specify linear regression models that allow modelling for response variables that are
not necessarily Gaussian. Rather than that, the response variable is assumed to be a member
of the exponential family. The clients in the portfolio are either in default or non-default,
which can be described by a binomial distribution.

To transform the linear predictor to the response variable a link function is used. The link
functions corresponding to a binomial family in the GLM are: the logit, probit, log-log, and
complementary log-log. We focus on the logit, which is the most commonly used due to
some practical advantages. One such an advantage is that the results of the linear predictor
directly correspond to the log-odds of a default event versus a non-default event.

4.1.1 Formulation

We formally describe the logistic regression and follow the notation of Hastie et al. (2001)
and Fox (2008). The objective is to model the distribution of Y conditional on a set of
covariates X1, . . . , XM . In other words, we want to find P(Y |X1, . . . , XM ). To achieve this,
we specify the linear predictor η, and a smooth, invertible link function g that maps η to the
expected value of Y .
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The linear predictor η is a linear function of the covariates X1, . . . , XM . These covariates
are described in chapter 3 and reflect the (possibly transformed) continuous variables,
and dummy-coded versions of the categorical variables. The linear predictor is defined as
follows:

η = β0 + β1X1 + · · ·+ βMXM (4.1)

E(Y ) = g−1(η) (4.2)

The density P(Y |X1, . . . , Xm) represents the class probabilities. For each realization Y = y,
the outcome is either default or non-default. We view the outcomes as the binomial
distribution with probability of success π. Thus, we write:

P(Y = y|π) = πy(1− π)(1−y) (4.3)

The probability π is restricted to have a value between 0 and 1. The linear predictor η
is theoretically defined between minus infinity to infinity and therefore we require a link
function that maps these values towards the range (0, 1). This is achieved via the logit link
function:

log( π

1− π ) = η (4.4)

By taking the inverse of this expression and inserting the linear predictor, we find the
following expression for the probability π.

π = eη

1 + eη
(4.5)

= eβ0+β1X1+···+βMXM

1 + eβ0+β1X1+···+βMXM
(4.6)

Altogether, the three components of the logistic regression are summarized in the following
equations:

η = β0 + β1X1 + · · ·+ βMXM (4.7)

π = eβ0+β1X1+···+βMXM

1 + eβ0+β1X1+···+βMXM
(4.8)

Y ∼ Binomial(1, π) (4.9)
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4.1.2 Parameter estimation

Now we have developed the framework for the logistic regression we have to fit the model,
i.e. determine the parameter estimates β̂ = (β̂0, . . . , β̂M ). The most common way to do this
is through the method of maximum likelihood. The available data consists of N observations
of the dependent variable yi, and N observations of the M variables xiM . The N × (M + 1)
design matrix X consists of a vector of ones and the vectors x1, . . . ,xM denoting the
observations of the independent variables. The likelihood of our parameters given the data
is given by:

Lik(β,X) = P(Y |X,β) (4.10)

=
N∏
i=1
P(yi|X,β) (4.11)

=
N∏
i=1

πyii (1− πi)1−yi (4.12)

This yields the following log-likelihood in which x′i represents the i-th row of the design
matrix X. Further details on the derivation are provided in the appendix A.1.1.

l(β, X) = log
(

N∏
i=1
P(yi|X,β)

)
(4.13)

=
∑
i

yix
′
iβ − log

(
1 + ex

′
iβ
)

(4.14)

The optimal parameters are found if the log likelihood is maximized. Therefore, we set
the derivatives to zero for each parameter βj . After some manipulations, we find for
j = 0, . . . ,M :

dl(β, X)
dβj

=
∑
i

yixij −
∑
i

xij
ex
′
iβ

1 + ex
′
i
β

= 0 (4.15)

By solving these equations, the parameter estimates (β̂0, . . . , β̂M) are determined. Since
there is no closed-form solution, a common technique is to numerically solve them using the
Newton Raphson technique. Details of this technique are found in appendix A.1.2.

4.1.3 Goodness of fit tests

We have described a methodology to construct a logistic regression model. After developing
such a model, it is important to check whether the model is appropriate. Goodness of fit
tests exists to assess the model quality. The test are developed to test for the following
misspecifications of the logistic model: missing higher order terms, missing interactions, and
a wrong link function.
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A well-known statistical test for categorical data is the Pearson chi-squared test (Agresti,
2006). The test is applicable if the data observations can be aggregated into unique cases, in
which each case has exactly the same predictor values. For each case, the difference between
the observed proportion and the expected proportion of events is calculated. The null
hypothesis is that these proportions are similar and under this hypothesis the corresponding
test statistic (equation 4.16) follows a chi-squared distribution with N −M degrees of
freedom (in which N and M are the number of observations and predictors respectively).
An intuition for the degrees of freedom is sketched in the appendix B.1.

X2 =
∑
j

∑
i

(Oij − Eij)2

Eij
(4.16)

in which Oij and Eij are the observed and expected proportions of an event i for the case
j.

The test shows good properties if the number of observations per case is sufficient (McCullagh,
1985). However, we are working with continuous predictor values, resulting in one unique
case for every observation. Consequently, the test-statistic does not necessarily follow a
chi-square distribution under the null hypothesis, and the classic Pearson test can not reliably
be applied.

In a simulation study, Evans and Li (2005) show that goodness of fit tests on a logistic
model gives varying results. They advice to use multiple test to complement each other. We
follow this advice and introduce three tests with which we assess the goodness of fit of our
models.

Standardized Pearson

In case there is a unique case per observation the classic Pearson test statistic can be written
as in equation 4.17. A derivation is given in the appendix B.2.

X2 =
∑
i

(yi − π̂i)
π̂i(1− π̂i)

(4.17)

in which yi is the dependent variable, and π̂i the predicted probability that yi = 1 for
observation i.

In this standardized version, the number of groups is equal to the number of observations.
However, the problem with this statistic is that X2 does not have a chi-squared distribution
if the data is ungrouped (i.e. continuous). In Osius and Rojek (1992), it is shown that
the statistic has an asymptotic normal distribution with an approximated mean of ν and
standard deviation 2ν, where ν indicates the degrees of freedom. By subtracting the mean
and dividing by the standard deviation we find a test statistic that follows an asymptotic
standard normal distribution.

20 Chapter 4 Traditional Modelling



Hosmer and Lemeshow

Hosmer and Lemeshow (1980) introduce a goodness of fit test for logistic models. This
test is based on allocating the observations and corresponding predicted values to G unique
groups (ten is often recommended). Specifically, the predicted values are ordered from low
to high, and separated into groups of approximately equal size. For each group, the observed
and expected proportion of both defaults and non-defaults is calculated in each group. The
observed proportions are determined according to the class labels, whereas the expected
proportions are calculated using the predicted values.

To determine whether the model is calibrated well, the proportions are compared for each
group. Formally, the test statistic is defined as follows:

H =
G∑
g=1

(
(O1g − E1g)2

E1g
+ (O0g − E0g)2

E0g

)
(4.18)

in which O1g(E1g) and O0g(E0g) represent the observed (expected) proportions of defaults
and non-defaults of group g. Note that this is similar to the classic Pearson test statistic.

With the statistic H, we test the null hypothesis whether the actual and predicted event
rates are similar. If H is larger than some threshold, the null hypothesis is rejected and the
model should be altered. The threshold value is determined by considering the distribution
of the test statistic. It is shown in Hosmer and Lemeshow (1980) that H follows a chi-square
distribution with G− 2 degrees of freedom under the null hypothesis. A drawback of this
approach is pointed out by Homer and Lemeshow themselves. The the results of the test are
unstable under the number of considered groups (Hosmer et al., 1997). Consequently, the
test statistic may lack power.

Stukel test

Stukel (1988) introduces a generalization of the logistic regression model. This generaliza-
tion includes two additional variables which allow for deviations from the logistic curve.
The additional variables are constructed according to the results of the original model
according to equations 4.19 and 4.20. In these equations gi denotes the i-th row the matrix
X multiplied with the predicted estimators, i.e. gi = x′i · β̂.

zai =

g2
i if gi ≥ 0

0 if gi < 0
(4.19)

zbi =

0 if gi ≥ 0

g2
i if gi < 0

(4.20)

According to these formulas, the additional variable vectors za and zb are calculated. The
variables are added to the logistic regression model and the null hypothesis is tested that
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both their corresponding coefficients are zero. Failure of the test indicates deviations from
the link function.

4.1.4 Predictive power tests

The main reason to develop our model is to correctly classify unseen data. Hence, besides
the goodness of fit of the model, we also assess the predictive quality. In a linear model,
the predictive quality is often measured by using the coefficient of determination R2. The
estimates for hte logistic regression are determined by ML, and hence the R2 does not exist.
Alternatives have been developed, which are often referred to as pseudo-R2 measures. A
comparison between such measures is provided in Mittblöck and Schemper (1996). We
discuss two of these measures, namely the commonly used McFadden (McFadden, 1973)
and the more recent Tjur (Tjur, 2009). While the R2 values do measure predictive quality,
the results are not easily interpretable (Hu et al., 2006). It is stated by L. McFadden (1977)
that values between 0.2. and 0.4 for these measures represent an excellent fit. In addition to
the pseudo-R2, we also present methods to assess classification performance.

MCfadden

The MacFadden R2 compares the likelihood of the fitted model, to a model with only an
intercept. The formula is given by:

R2
MF = 1− log(Lc)

log(Lnull)
(4.21)

in which Lc is the likelihood of the current fitted model, and Lnull the likelihood of a fitted
model with only an intercept.

Tjur

A recent test measure of predictive quality is introduced by Tjur. The motivation behind this
measure is that labels of a certain class should have high estimated probabilities for this
class in case of a good fit. If this is the case, the model achieves its goal. Let us assume the
binary case in which we have the classes 0 and 1. The RTjur measure is given by:

RTjur = π̂1 − π̂1 (4.22)

in which π̂c denotes the average estimated probability of class c. A nice property is that this
measure is intuitive.

Classification measures

The output of our models are predictions of the probability of default π̂, which are continuous
values. Whether a client is classified as default or not, depends on a threshold value T . If
π̂i ≤ T , client i is predicted to belong to the non-default class and if π̂i > T , the prediction is
that the client defaults. The classification quality can be assessed by comparing the predicted
class labels with the actual ones. A client that has been correctly identifies as default is called
a true positive (TP), whereas a client that has been classified incorrectly is a false positive
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(FP). For different values of T , the true positive rate (TPR) and false positive rate (FPR) are
defined as in equations 4.23 and 4.24 respectively.

TPR(T ) = TP (T )
FP (T ) + TP (T ) (4.23)

FPR(T ) = FP (T )
FP (T ) + TP (T ) (4.24)

The TPR and FPR can be calculated for different values of T . The TPR is likely to be high if
the threshold is set close to 1. However, this is accompanied by a high FPR because it means
that almost all instances are labelled as default. Similarly, choosing T close to zero not only
results in a low FPR, but also a low TPR. The rate of classification (ROC) curve describes this
tradeoff by plotting the FPR and TPR for different values of T . Examples of a ROC curves
will be presented later in this chapter.

A measure that is directly associated with the ROC curve is the area under curve characteristic
(AUC). Like the name suggests, this value is equal to the area under the ROC curve. It
reflects the probability that a randomly chosen default client will be assigned a higher
predicted probability than a randomly picked non-default client. In general, a classifier that
randomly assigns a client to either default or non-default has an AUC of 0.5. According
to the definitions of the Bank we qualify the AUC performances as follows: bad: 0.5-0.6,
moderate: 0.6-0.7, sufficient: 0.7-0.8, good: 0.8-0.9, excellent: 0.9-1.0. We remark that
these judgements subjective and are domain dependent.

In addition to true and false positives, the classification quality is also measured by the
number false negatives (FN). A false negative means that a client is classified as non-default,
but actually does default. We evaluate the classification performance according to two
additional measures, namely recall and precision. Recall is defined in equation 4.25 and
reflects the recognized defaults as a fraction of the total number of default in the data
set. Precision is the fraction between correctly classified defaults and the total number of
classified defaults, and is defined in equation 4.26.

Recall : TP

TP + FN
(4.25)

Precision : TP

FP + TP
(4.26)

For every classification problem a balance between these two measures is determined
by the selected threshold T . In our problem of recognizing defaults, there is a trade-off
between false warnings and missing defaults. Practitioners should decide on this trade-off
by researching the financial impact of both events.
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Variable Coefficient Standard error p-value

Intercept -3.072 0.238 <0.001
Size M 0.381 0.311 0.221
Size L 1.325 0.405 0.001
Size XL 1.443 0.427 <0.001
DB rating 0 0.296 0.304 0.331
DB rating 1 -1.889 0.760 0.013
DB rating 3 0.657 0.380 0.083
DB rating 4 1.263 0.506 0.012
Arrear months 0.991 0.149 <0.001
Balance returns -0.174 0.105 0.097
Positive shocks -0.334 0.141 0.017
Zero trans. 0.237 0.111 0.032

Tab. 4.1.: Statistics for the preliminary and final FC model. The maximum likelihood estimates of the
coefficients, the standard errors, and the p-values are given. Significant variables

(p < 0.10) are shown in bold.

4.1.5 Estimation results

As discussed in chapter 3, a distinction is made between clients with a dynamic credit product
(DC) and clients with a fixed credit product (FC). Furthermore, the two data sets has been
split between a training and test set. Based on the training sets, we have identified variables
that are likely to be significant predictors in the final models for both client groups. The
next step in the model building process is to fit a multivariate logistic regression, containing
all identified candidates. We examine the coefficients of this fitted model and test for
significance using the Wald test (details in appendix B.3). To determine whether a variable
is significant we use a (relatively large) significance level of 0.10. Note that, the different
groups of categorical covariates are included in the model as dummy variables. The largest
group has been chosen as the reference group.

If there are any insignificant variables they are removed from the model and the model is
refitted. After refitting the model, it is important to check whether any remaining coefficient
has changed considerably. If so, this suggests that the excluded variable provides a needed
adjustment for the remaining variables, and is therefore essential. Following the approach of
Hosmer and Lemeshow (2005), a considerable change is defined as a coefficient change of
more than 20%. Furthermore, a likelihood ratio test (details in appendix B.4) is performed
to verify whether the full model is not significantly better than the reduced model.

Table 4.1 presents the model statistics of the preliminary FC model. The p-values indicate
that there are two non-significant variables, namely: size M and DB rating 0. These variables
can only be excluded from the model together with all other levels of the corresponding
categorical covariates, which are significant. Hence, we only exclude these variables if the
likelihood ratio test indicates that the removal does not significantly yield a worse model in
terms of likelihood. The test statistic for removal of DB rating is LR = 23.02, which with
four degrees of freedom, yields a p-value of < 0.001. Exclusion of size yields a test statistic of
LR = 16.80, which with three degrees of freedom, also results in a p-value of < 0.001. From
these results, we conclude that the full model performs significantly better than the reduced
model, and thus no variables are removed. If one would only allow significant variables
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Variable Coefficient Standard error p-value

Intercept -3.086 0.381 <0.001
Size M 0.409 0.388 0.291
Size L -0.888 1.056 0.401
Size XL -1.484 0.915 0.105
Industry 1 -1.997 1.003 0.047
Industry 2 -0.437 0.339 0.197
region 1 -0.536 0.448 0.200
region 3 -1.060 0.389 0.007
DB-rating 0 0.856 0.413 0.043
DB-rating 1 -0.409 0.774 0.470
DB-rating 3 -0.445 0.542 0.442
DB-rating 4 0.672 0.575 0.274
Arrear months 0.341 0.110 0.002
Positive shocks -0.442 0.192 0.017
Return volatility -0.152 0.299 0.611
Limit use 1.174 0.158 <0.001
Category: cash 0.271 0.098 0.005

Tab. 4.2.: Coefficient statistics for the preliminary DC model. The maximum likelihood estimates of
the coefficients, the standard errors, and the p-values are given. Significant variables

(p < 0.10) are shown in bold.

in the model, insignificant groups can be merged with other, similar groups. However, this
would decrease interpretability.

The same strategy is used for the DC model. First, the return volatility has the highest
p-value, namely 0.611. The likelihood ratio test yields LR = 0.286 and p = 0.593. Hence,
the variable is removed from the model. Second, none of the size groups are significant at a
0.10 level. The likelihood ratio test gives LR = 6.142 corresponding to p = 0.105, and thus
size is excluded from the model. Next, the DB-rating is only significant for DB rating 0, while
the other groups have high p-values. Exclusion from the model is supported by the statistics
LR = 6.760 and p = 0.149. The region variable has one significant and one insignificant
group. Test results are LR = 6.863 and p = 0.032, which means we keep the variable in
the model. Last, removal of the industry is supported by the test results LR = 5.647 and
p = 0.059. Note that during this iterative process the model is refitted after each removal.

Table 4.3 shows the coefficient values after removing the several variables. The largest
change is 14% for the coefficient of arrear months. This does not exceed our criterion of 20%
and hence no further alterations need to be made. The next step is to review the coefficient
values of the models and decide whether their effect is intuitive according to experts. If not,
the variable is removed from the model. The coefficients in tables 4.1 and 4.3 are in line
with experts’ expectation and thus none of the variables are removed from the model.

Last, we assess whether there is any collinearity present in these final models. If there
is collinearity between two covariates in the model, small data changes can drastically
influence the coefficient estimates. The correlation between variables is low and does not
exceed 0.4. Hence, we conclude that there is no collinearity between the variables.
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Variable Coefficient Standard error p-value

Intercept -3.263 0.292 <0.001
region 1 -0.669 0.407 0.100
region 3 -0.914 0.377 0.015
Arrear months 0.293 0.099 0.003
Positive shocks -0.452 0.181 0.012
Limit use 1.160 0.214 <0.001
Category: cash 0.265 0.102 0.009

Tab. 4.3.: Coefficient statistics for the final DC model. The maximum likelihood estimates of the
coefficients, the standard errors, and the p-values are given. Significant variables

(p < 0.10) are shown in bold.

Measure Fixed credit Dynamic credit

MacFadden 0.265 0.233
Tjur 0.258 0.174
AUC 0.868 0.887
Precision 0.552 0.240
Recall 0.561 0.667
Tab. 4.4.: Predictive performance of the models.

Now that we have developed two final models, we test their goodness of fit and assess their
predictive power. The goodness of fit tests assesses the adequacy of the models. All tests are
passed at a critical level of 0.05, which suggest that there are no reasons to revisit any of the
model choices we have made. Table 4.4 presents the Macfadden and Tjur for both models.
The FC model has a value of 0.265 and 0.258 for these measures respectively. Both values
are between 0.2 and 0.4, which represents an excellent fit. Both pseudo-R2 measures for
the DC model are lower, meaning the DC model fits the corresponding clients worse than
the LP model. The value for the Tjur measure is 0.174, meaning that the average difference
between PD predictions of defaults and non-defaults is 17.4 percent. The MacFadden of
0.233 still represents an excellent fit.

The previous statistics are all based on the training data. A measure that indicates the
performance of classifying the test data is the ROC curve. Figure 4.1a and 4.1b show the
ROC curves for the FC and DC model respectively. The curves present the false positive
rate versus the true positive rate of the models for different threshold values T . An increase
along the vertical axis means that more defaults are correctly classified, whereas an increase
with respect to the horizontal axis represents a rise in false positives. A model that perfectly
distinguishes defaults from non-defaults would have a curve with straight lines connecting
(0, 0) to (0, 1) and (0, 1) to (1, 1). The grey lines of 45 degrees in the figures represent the
ROC of a random classification model.

The AUC’s corresponding to the curves of the FC and DC model are 0.868 and 0.887, and
indicate a high overall classification performance. One can interpret these values as the
probability that a uniformly drawn random default is assigned a higher PD than a uniformly
drawn random non-default. As such, the performance of the models in distinguishing
defaults is good. Note that a random model and a perfect model have an AUC of 0.5 and 1
respectively.
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(a) Rate of classification curve for the fixed
credit model. The corresponding AUC is

0.868.
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(b) Rate of classification curve for the
dynamic credit model. The corresponding

AUC is 0.851.

Fig. 4.1.: Rate of classification curves for the fixed and dynamic credit model.

While the AUC gives a good indication of the overall quality, it does not fully capture the
performance of the models for a monitoring purpose. To illustrate this, let us consider point
on the curve in figure 4.1a where the FPR is approximately 35% and the TPR is around 88%.
To achieve this performance, the number of warnings signals corresponds to 40% of the
whole test set. It requires a lot of effort to analyse all warning signs. Therefore, it is useful
to investigate the recall and precision of the models.

To determine the recall and precision, we must select a threshold T . We choose T such that
the number of warnings is 10% of the size of the test set. Table 4.4 presents the precision and
recall of this approach. The recall of the FC model is 56.1%, which indicates the percentage
of defaults are detected by the warnings system. Furthermore, the precision is approximately
50%, which means that 1 in 2 warnings is a false alarm. The precision for the DC model is
lower, having 3 out of 4 false alarms. This does result in a recall of 66.7%. The high false
alarm rates are not optimal. However, it must be taken into account that the prevalence
of defaults is low (in particular for the DC set), making it difficult to distinguish defaults.
The FC and DC model respectively score 5.5 and 6.7 times better on precision than random
classification.

We have presented results on the performance of the two models. Next, we investigate the
stability of these results.

4.1.6 Stability

The data is randomly partitioned into a training and a test part according to the ratio 2:1.
The data sets in scope are relatively small, and hence it is likely that the proposed models are
dependent on the split choice. It is therefore important to examine the stability of the models
for different partitions of training and test set. To test this stability, we use a simulations. For
1000 random partitions we calculate the predictive measures and perform all 4 goodness of
fit tests.

Table 4.5a shows average and standard deviation of the classification measures and the
Pseudo-R2. The average AUC is 0.827, which corresponds to a good overall performance.
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Measure Result

AUC 0.827 (0.028)
Precision 0.432 (0.061)
Recall 0.510 (0.054)
MacFadden 0.298 (0.023)
Tjur 0.293 (0.026)

HL 1.000
Pearson 1.000
Stukel 0.645

(a) Average AUC and GoF pass rates for
the FC model. These statistics are

based on 1000 random partitions of
the training and test set.

Measure Result

AUC 0.844 (0.037)
Precision 0.242 (0.053)
Recall 0.527 (0.086)
MacFadden 0.257 (0.029)
Tjur 0.184 (0.028)

HL 0.999
Pearson 1.000
Stukel 0.932

(b) Average AUC and GoF pass rates for
the DC model. These statistics are

based on 1000 random partitions of
the training and test set.

Tab. 4.5.: Stability analysis of the GoF tests and the AUC for the FC and DC model. The tables present
averages of 1000 random partitions of the training and test set.

The precision and recall are 0.432 and 0.510 respectively, meaning that 50% of the defaults
are identified with a false alarm rate of 57.8%. The Macfadden and Tjur are both close
to 0.3, indicating an excellent fit of the model to the data. The Homer & Lemeshow and
standardized Pearson test are both passed for all 1000 partitions. Stukel’s test is rejected
35.5% of the time. This indicates that in the corresponding partitions, deviations from the
link function result in a more appropriate fit. The results for the DC model are presented
in table 4.5b. The AUC of 0.844 represents a good overall classification performance and
the recall and precision show that 50% of the defaults are identified with a 75% false alarm
rate. The goodness of fit tests are rejected in almost none of the partitions, indicating that a
proper model is specified. The pseudo-R2 provide acceptable values, close to 0.20.

Overall, the models yield stable results for the different partitions. The overall classification
quality is good, having AUC’s above 0.8. The judgement whether or not the precision and
recall are satisfactory are very dependent on the practitioners’ trade-off between false alarms
and unidentified defaults. However, taking the low prevalence of defaults (in particular for
DC clients) into account, the results are acceptable. The rejection decision of Stukel’s test
for a large number of partition suggest that the FC model can be improved. However, the
classification performance is good and the other tests are satisfied. Therefore, we decide not
to revisit modelling choices.

4.2 Hierarchical logistic regression

In the previous section we developed two separate classification models. We have constructed
a model for both the FC and DC set. Because of the different nature of the type of credit there
are differences in the model regarding the variables and the coefficients. One difference is
that the DC model contains limit variables which are not defined for the FC model. However,
besides the models also contain similarities such as the variables arrear months and positive
shocks. For the Bank it is favourable to have one model rather than two. Therefore, in this
section we investigate the possibility to combine the two separate models into one model
that is applicable to the entire portfolio.
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To construct this model we use the hierarchical generalized linear models (also: mixed effects
model, multi-level model). In particular, we focus on the hierarchical logistic regression.
Hierarchical models are popular for modelling data that arises from a clustered structure
(Levy, 2011) and are used in the field of credit risk by McNeil and Wendin (2003). There are
two natural clusters in the data set, namely client with a fixed credit product and clients with
a dynamic credit product. The clients in both clusters share variables with which we perform
default classification. Besides these shared variables, the clusters also exhibit cluster-specific
variables. These cluster-specific variables are present to a lesser extent (or absent) in the
other cluster(s). Within the hierarchical framework it is possible to model using variables on
both a shared and a cluster-specific level.

4.2.1 Formulation

Let us develop the hierarchical framework for the logistic model we have reviewed in section
4.1. The formulas, which form the hierarchical logistic regression are given in 4.27-4.30. The
parameter vector β are still present in the linear predictor and are referred to as fixed effects.
Random, cluster-specific effects are also included in the linear predictor and denoted by bj
for cluster j. The vector b consisting of bj ’s is generally assumed to follow a multivariate
normal distributions with a mean vector of all zeros, and covariance matrix Σb. The random
effects can be considered as deviations from the fixed effects within a cluster. Together, the
fixed and random effects result in a cluster-specific linear predictor vector ηj . Through the
inverse logit function, this is linked to a cluster-specific probability vector πj . The class
distribution of the cluster j follows a binomial distribution with parameters πj , and cluster
size mj .

b ∼ N(0,Σb) (4.27)

ηj = β0 + b0j + (β1 + b1j)X1 + · · ·+ (βM + bMj)XM (4.28)

πj = eηj

1 + eηj
(4.29)

yj ∼ Binomial(mj , πj) (4.30)

Figure 4.2 shows a plate representation of the structure of the model. This representation
is typically used in illustrating the hierarchical set-up of the model. The circles represent
the ingredients of the model, containing data and parameters. The arrows represent the
dependencies that are in place. The figure shows boxes, which we refer to as plates. The
plate around the b parameter represents the parameters for M clusters. The other plate
indicates the N events for which we have corresponding data and the cluster identity.

4.2.2 Parameter estimation

Parameter estimation for the hierarchical logistic models requires some effort than the
non-hierarchical. The structure of the covariance matrix needs to be determined beforehand.
We do not have any assumption on the covariation between the two clusters and therefore
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Fig. 4.2.: Plate representation of hierarchical modelling set-up.

assume they are independent. The likelihood includes the cluster specific terms bj . Before
we state the likelihood function, we define:

f(yj |bj ,β) =
nj∏
i=1

π
yij
ij (1− πij)(1−yij) (4.31)

in which nj denotes the number of observations in cluster j. The likelihood is now given by
equation 4.32.

Lik(β,Σbj ) = P(yj |β,Σbj ) =
J∏
j=1

∫
f(yj |bj ,β)r(bj ,Σbj )dbj (4.32)

This likelihood can not be evaluated exactly, and therefore an approximating technique is
used. By means of this approximation, we determine the parameters for the fixed effects
β, and the covariance matrix Σbj , which reflects a diagonal matrix containing the standard
deviation of the M estimated random effects. A further explanation on the derivation of the
likelihood can be found in the appendix A.1.3.

The optimization process yields estimates for β and Σbj . As we are interested in the size of
the cluster-specific effects, we infer the bj ’s by using the point estimates β̂, and Σ̂bj :

b̂j = arg maxP(bj |β̂, Σ̂bj ,yj) (4.33)

4.2.3 Estimation results

For the hierarchical model we require one data set which contain all clients. Some clients
have both a FC and DC product, which means the corresponding data sets have overlapping
entries. Hence, combining the two sets would results in non-independent observations in
the full set. To correct for this, we preserve the entry of the DC data set and discard the FC
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Variable Coefficient Standard error p-value

Intercept -3.182 0.188 <0.001
Arrear months 0.681 0.124 <0.001
Positive shocks -0.341 0.130 0.009

Tab. 4.6.: Statistics of the estimated fixed effect parameters for the hierarchical logistic regression
model. The estimates of the coefficients, the standard errors, and the p-values are given.

entry in case of overlapping entries. This decision results in the most balanced data set in
terms of credit product.

The FC and DC model share two variables, namely arrear months and positive shocks.
Besides these shared variables, both models have additional model-specific variables. The
hierarchical model includes the shared variables as fixed effects, whereas the additional
variables of both models are incorporated as cluster-specific effects. By construction, two
clusters in the full set are the FC and the DC product type.

We split the data into a training and test set according to the ratio 2:1. In results not shown,
the random effects for the balance returns are not significant in any cluster. The likelihood
ratio test supports removal with the test statistic of LR < 0.001 and a corresponding p-value
of p = 1.000. Table 4.6 and 4.7 show the parameter estimates of the final hierarchical
model fitted on the training set. Table 4.6 contains statistics for the fixed effects (or shared
variables) of the fitted model. The results in the table show that the fixed variables are
significant. The coefficient values are in the same range as the values in table 4.1 and 4.3,
indicating similar, and intuitively correct effects.

Table 4.7 shows the statistics of the estimated cluster-specific parameters per cluster. It is
important to note that the limit use does not exist for the clients from the FC cluster (as they
do not have a limit). To account for this, we set the limit use to zero for each client in this
cluster, which results in an estimated variable coefficient of zero. As the limit use effect is a
cluster-specific effect, the alteration of the data does not affect the estimate for the FC cluster.
The variables size and zero transactions are significant in the FC cluster, whereas they are
not in the DC cluster. Similarly, we find that the region, limit use, and cash expenditure
are significant in the DC cluster, whereas there are not in the FC cluster. This behaviour
corresponds to the selected variables in the separate FC and DC models. The DB-rating is
significant in both clusters.

Figure 4.3 present the rate of classification curve which illustrates the performance of the
model. The overall classification performance is excellent, having an AUC of 0.900. The
precision and recall are 0.374 and 0.620 respectively. Rather than focussing on the results
for this single partition, we again examine the average performance on multiple partitions
of training and test set.

4.2.4 Stability

By including the additional variables into the model, the possibility exists that we are
overfitting the training data. Therefore, we carefully examine the predictive performance
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Variable Cluster Coefficient Standard error p-value

DB rating 0 FC 0.182 0.181 0.315
DB rating 1 FC -1.718 0.557 0.002
DB rating 3 FC 0.782 0.302 0.010
DB rating 4 FC 1.174 0.397 0.003
region 1 FC 0.034 0.180 0.845
region 3 FC 0.426 0.283 0.132
Size M FC 0.842 0.260 <0.001
Size L FC 1.576 0.378 <0.001
Size XL FC 1.150 0.338 <0.001
Zero trans. FC 0.389 0.094 <0.001
Limit use FC 0.000 0.977 1.000
Cat. cash FC 0.011 0.129 0.933

DB rating 0 DC 0.366 0.182 0.044
DB rating 1 DC -0.569 0.395 0.150
DB rating 3 DC -0.273 0.318 0.390
DB rating 4 DC 0.479 0.283 0.090
region 1 DC -0.248 0.182 0.173
region 3 DC -0.658 0.305 0.031
Size M DC -0.035 0.300 0.907
Size L DC -0.653 0.527 0.216
Size XL DC -0.687 0.475 0.149
Zero trans. DC 0.065 0.073 0.369
Limit use DC 0.968 0.180 <0.001
Cat. cash DC 0.185 0.084 0.027

Tab. 4.7.: Statistics of the estimated random effect parameters for the hierarchical logistic regression
model. The estimates of the coefficients, the standard errors, and the p-values are given.

Significant variables (p < 0.10) are shown in bold.

on unseen data. Rather than testing the performance on the single partition, we simulate
the results for 100 partitions. Ideally, we would have run 1000 simulations, however the
parameter estimation of the hierarchical model is computationally too intensive for this.

The model has an average AUC of 0.850, indicating a good classification performance. The
precision and recall suggest that the model identifies 50% of the defaults in the set and 2 out
3 warnings are false. This indicates that the precision is approximately 5 times better than
random. Both pseudo-R2 measures are close to 0.3, indicating an excellent fit. Furthermore,
the HL and standardized Pearson test are passed in each partition. In contrast, Stukel’s test
rejects the null hypothesis of a correct model fit in all of the partitions.

The several models in this chapter show that we can develop effective classification models
in which transaction data plays a significant role. These models utilize the transaction data
in a traditional way, by including aggregated measures as modelling variables. In the next
chapter, we approach the transaction data in a fine-grained manner by using relational
classification techniques.
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Fig. 4.3.: Rate of classification curve for the dynamic credit model. The corresponding AUC is 0.900.

Measure Result

AUC 0.850 (0.024)
Precision 0.353 (0.038)
Recall 0.515 (0.049)
MacFadden 0.294 (0.021)
Tjur 0.298 (0.022)
HL 1.000
Pearson 1.000
Stukel 0.000

Tab. 4.8.: Statistics of the hierarchical logistic regression for 100 partitions of the training and test
set. The table shows the predictive performance measures with corresponding standard

deviation and average pass rates of the goodness of fit tests.
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5Relational Classification

The previous chapter describes the development of the default classification models. For
both credit product types, we have constructed a separate logistic regression model. This is
extended to a hierarchical logistic regression which allows for modelling all clients in the
portfolio. These techniques are traditional in the sense that the data is used as variables
for explaining the response variable. For this purpose, the transactions of a client are
summarized into modelling variables that describe quantitative properties (e.g. volume,
frequency). In this chapter, we approach the transaction in a non-aggregated manner. Section
5.1 describes a network approach to relate clients by means of their transaction similarity.
The properties of such a network are discussed in section 5.2 and 5.3. The constructed
network is used for a default classification model by using the relational classifiers defined
in section 5.4. The classification performance is investigated in section 5.5.

5.1 Network construction

In this section we explain the network approach through which we relate clients. Instead
of summarizing them in aggregated measures, we consider all individual transactions in
a fine-grained manner. By relating clients to each other that have transacted with the
same entities, a behavioural network can be constructed. In a recent paper, Tobback and
Martens (2017) use consumer transactions in this manner, to provide a credit score for
individuals. In marketing, transactions are used in order to develop targeted marketing
strategies (Martens et al., 2016). Looking beyond transactional data, a common example
of a behavioural data set is a network of social connections. For example in Cnudde et al.
(2015), Facebook connections are used to determine the creditworthiness of individuals.
These approaches originate from the assortativity theory in the sociological domain, which
assumes that people or companies with similar behavioural characteristics tend to cluster.
Our hypothesis builds upon this concept by assuming that clients with similar transactional
behaviour have comparable creditworthiness.

Two types of relational networks exists, namely a direct and an indirect network. In the
former, links are constructed if two clients have directly transacted with each other, whereas
the latter forms links if clients have transacted with the same entity. The portfolio is relatively
small, meaning the direct network will be very sparse. Hence, we focus on the indirect
network. Figure 5.1 shows how an indirect network is derived from transactional data. The
left figure shows an example of possible transactions, whereas the corresponding (indirect)
network is presented in the right figure.

To construct the network, let us introduce the following notation: Let I = {1, . . . , N}
represent the clients and let K = {1, . . . ,K} be the set of existing entities. We define the
binary variable eik as 1 if i ∈ I has existing transactions with k ∈ K, and 0 if not. Using
this variable, we construct the set Ki = {k ∈ K|eik = 1} representing all entities that i
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Fig. 5.1.: Example of how the indirect network is constructed from transactions between clients and
entities.

has transacted with. The degree dk is the number of clients that k is connected to, i.e.
dk =

∑
i 1{k ∈ Ki}.

5.1.1 Client similarity

The purpose of constructing a relational network is to describe the similarity between clients
in terms of their transaction behaviour. Before we formally define the similarity, we must
note that not every shared entity provides the same information. Most clients in the SME
portfolio have a shared entity, namely the government. The question arises whether a link
through the government provides much information. A link formed through an uncommon
entity, such as a local grocery store, provides more valuable information in terms of similarity.
To account for this we introduce a weight function wk which represents the weight of entity
k. The similarity between two clients i and j is defined as the summed weight over the
shared entities. Equation 5.1 formalizes this.

sij =
∑

k∈(Ki∩Kj)

wk (5.1)

The sij form the entries of the N ×N similarity matrix S. Next, we describe several weight
functions.

Degree based weight

A basic form of a weight function is the reciprocal function of the degree of an entity, given
in equation 5.2. A hyperbolic tangent function of the inverse degree is used in Tobback
and Martens (2017) and stated in equation 5.3. This function behaves similarly to the
reciprocal function, decreasing very rapidly as the degree increases. The difference is that
the hyperbolic tangent assigns a lower weight to entities with few connections compared to
the reciprocal function. Furthermore, Martens et al. (2016) propose a logarithmic function
as stated in 5.4. The logarithmic function has a more gradual descend then the other two
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(b) Weight functions of the entity degree.

Fig. 5.2.: The figures show a histogram of the entity degree (on a log-scale) and three possible weight
functions that require the degree as an input.

functions. Martens et al. (2016) also introduce a weighting function based on the pdf of the
beta distribution (fβ(a,b)) with parameters a and b as defined in equation 5.5. This offers a
flexible way of determining the weight function. However, the optimal a∗ and b∗ need to be
learned from the data, which increases the complexity of our problem significantly.

wk = 1
dk

(5.2)

wk = tanh
(

1
dk

)
(5.3)

wk = log10

(
maxk dk
dk

)
(5.4)

wk = fβ(a,b)

(
1
dk

)
(5.5)

To choose a proper weight function, we examine the degree distribution of the entities.
Figure 5.2a shows an histogram of the degree of the entities. Entities with a degree of 1
attribute nothing in terms of client connectivity and are therefore removed from the analysis.
For illustrative purposes, the frequency of the histogram is given in a log-scale. This shows
that the number of entities having a small degree is large compared to the entities with
a degree of 500 or larger. Figure 5.2b shows different weight functions that translate the
degree to a weight. The figure shows the log, tangent hyperbolic, and a beta(2,20)-function.
The first two assign a decreasing weight as the degree increases, in which the log function
has a more gradual decrease. The beta function also assigns a gradually decreasing weight,
however it also downweighs entities of low degree. One could argue that these connections
are formed by chance and are therefore uninformative. The beta function has the strength
of being flexible, and is able to represent such a belief.

Volume based weight

With the degree-based approach, the similarity between clients depends on the degree of
their shared entities. A client is either connected to an entity or not, depending on whether
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Fig. 5.3.: Example of how similarity can be determined through (volume or frequency)-weighted
entity connections.

a transaction has occurred at least once. This is a binary event and does not take any further
transaction information into account. Consequently, a client that has transacted an amount
of e0.01 to an entity once, has the same connection towards that entity as a client that has
transacted a total amount of e10.000 in several transactions. To account for this, we define
an approach that takes the transaction volume into account.

The strength of the connection of a client with the entity is determined via the relative
transaction volume. Let us denote ωik as the weight between a client i and an entity k as
follows:

ωik = mik

Mi
(5.6)

in which mik is the total transacted volume between m and k, and Mi =
∑K
k=1 mik. Instead

of using equation 5.1, the similarity is calculated as follows:

sij =
N∑

j<>i

K∑
k=1

ωikωjk (5.7)

For further explanation, figure 5.3 shows an example of this method.

Frequency based weight

An alternative to the volume based approach, is the frequency-based similarity. Rather than
considering the relative volume that is transacted with an entity, the number of transactions
is considered. In calculating the similarity, this is incorporated by replacing ωik in equation
5.6 by:

ωik = aik
Ai

(5.8)

in which aik is the total number of transactions between m and k, and Ai =
∑K
k=1 aik. To

construct the similarity matrix, formula 5.7 is used.

For the remainder of this paper, we refer to the different similarity matrices as follows:

• S1: hyperbolic tangent (degree-based)
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• S2: logarithmic (degree-based)
• S3: beta (degree-based)
• S4: volume-based
• S5: frequency-based

5.1.2 Implementation

To effectively calculate the similarity matrices we rely on matrix multiplications. Let us
introduce the client-entity adjacency matrix X. This is a N ×K matrix which denotes a
one if a client i is connected to an entity k and zero otherwise. The transactional data set
contains hundreds of thousands unique entities and most clients are adjacent to only a few
hundred of them. Thus the matrix X is sparse.

Performing the matrix multiplication S = X · XT would result in the number of shared
entities between two clients for each entry of the matrix S. To include the entity weight we
introduce Xw. For S4 and S5, the entries of Xw represent the volume and frequency that the
client has transacted with the entity. To constructXw for the degree-based similarity matrices,
the weight function wk is applied to the matrix X, and the square root is taken element-wise.
The similarity matrices are found by performing the multiplication S = XwX

T
w .

Proposition 1. The matrix S = X ·XT is symmetric.

Proof. We have constructed the similarity matrix S = X ·XT . For S to be symmetric, it must
hold that S = ST .

ST = (X ·XT )T = (XT )T ·XT = X ·XT = S

which concludes our proof.

All similarity matrices are constructed through a multiplication of a matrix with its transpose,
making them symmetric. Asymmetry could be reflected by introducing directed edges.
However, this would further complicate the network and future calculations.

5.1.3 Network example

The similarity matrices represent relationships between clients. These relationships can be
represented by a network, in which the nodes reflect clients and the edges the existence of a
connection between them. By including edge weights, the strength of the connection (i.e.
similarity) is captured. Figure 5.4 shows a subset of 15 (defaulted and non-defaulted) clients
of the total portfolio. The thickest edges, representing high similarity, are found between
the client 3,4, and 13, of which the former two are defaulted. The idea behind relational
classification is that this relation increases the default probability of client 13. Furthermore,
an interesting observation is that client 5 is disconnected from the network, meaning it has
no relation to the other 14 clients. Note that this sample only reflects a fraction of the full
network, and therefore no conclusions must be drawn from this.
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Fig. 5.4.: Network of a sample of 15 clients from the portfolio. The green and blue nodes represent
defaulted and non-defaulted clients. The thickness of the edge is respective to the similarity

between the clients.

In addition to the default status of clients, it also possible to illustrate different properties,
such as industry, region, or size. While these properties do not provide immediate information
on the default status, it is interesting for portfolio insight. For example, dependencies (or
non-dependencies) within certain industries could be discovered. On a larger scale, it is
difficult to see structure by eye. Therefore, we have to conduct quantitative tests in order to
draw conclusions. In the next sections we will conduct such tests.

5.1.4 Statistically validated network

In constructing the similarity matrices, the existence of all shared entities between clients
is taken into account. We assume that all client-entity connections provide information in
some way, which is represented by the several weight functions. Rather than assuming
that all connections are informative, it is possible that some connections merely contribute
noise to the system. As a result, client connections may exist merely as a result of random
occurrences of shared entities. Tumminello et al. (2011) propose a method to statistically
validate each client-entity connection in terms that they are not explainable by randomly
occurring connections. The resulting, statistically validated, network is represented by a
similarity matrix containing the number of statistically validated shared entities.

The method works as follows. Let us have the bipartite network B of all client-entity
connections. Consider the subset Kd = {k ∈ K|dk = d}, representing the subset of entities
that have degree d. We construct the subsystem Bd, which contains all entities in Kd and
the clients Id connected to them. Furthermore, let us denote Nd

i and Nd
j as the degree of

the client i and j in the subsystem Bd. Under the hypothesis that clients randomly form
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connections with entities in Kd, the probability that i and j share X entities in the system
Bd is given by a hypergeometric distribution as given in equation 5.9.

h(X|Nd
K , N

d
i , N

d
j ) =

(
Ndi
X

)(NdK−Ndi
Nd
j
−X

)
(Nd

K

Nd
j

) (5.9)

The actual number of shared entities between i and j in the subsystem is denoted by Nd
ij .

The distribution H allows us to construct a p-value representing the probability that, under
the assumption of randomly forming connections, a number of Nd

ij or more shared entities
between clients are observed. This probability is calculated as follows:

p(Nd
ij) = H(X ≥ Nd

ij) = 1−H(X ≤ Nd
ij − 1) (5.10)

= 1−
Ndij−1∑
X=0

h(X|Nd
K , N

d
i , N

d
j ) (5.11)

in which H(X) represents the cumulative distribution function corresponding to h(X).

If the p-value is lower than some threshold γ, we conclude that the number of shared entities
within the subsystem is different from random. Hence, the client similarity provided by
the entities in Kd are statistically valid. To validate all client connections in the network,
we repeat this method for all subsystems. There are 248 unique degrees within the set of
entities, meaning we analyse 248 subsystems.

We find that 48.2% of the client-entity connections are statistically valid at a 0.05 level of
significance. This indicates that more than half of the client-entity connections provide noise
and should not be included in client similarity calculations. However, we must note that as
a result of the large heterogeneity in entity degree, approximately 75% of the subsystems
have six or less entities. The minimum p-value in these systems is larger than 0.05 for all
combinations of Ni, Nj and Nij . Thus, none of the client-entity connections are significantly
different from random.

The statistical validation of the client entity connections shows that not all the similarity
between clients from shared entities is different from noise. However, due to the relatively
high heterogeneity in entity degree, the hypergeometric test is often rejected. The relational
classification approach we will incorporate benefits from a connected network. For this
reason, we focus on the full network (as represented by the similarity matrices), rather than
the statistically validated one. The downside is that we are likely to include noise into the
network.

5.2 Network topology

The previous section describes how the relational network is developed by means of client
transactions. The resulting transaction-based (TB) network represents the similarity between
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clients. Before we investigate the propagation of information through the network, we
examine the topological structure. We examine whether this structure resembles known
types of network and whether it differs from a randomly created network.

5.2.1 Network type

In Solé and Valverde (2004), real-life networks are discussed and categorized according
to their underlying properties. The most prominent types are random, scale-free, and
small-world networks (SWN). Random networks are generally constructed by randomly
generating edges between existing nodes. A network is considered to be scale-free if the
degree distribution follows a power law. These networks exhibit hubs that have a very
high node degree. SWNs are typical in social networks and exhibit properties such as high
clustering and low shortest path lengths (Bialonski et al., 2010). To compare the TB network
to these known types, we analyse three properties, namely: the degree distribution, the
(unweighted) clustering coefficient C, and the efficiency E.

There are several ways to define a random network. A basic form is the Erdös Rényi (ER)
network (Erdös and Rényi, 1960). Other possibilities are to construct conditional random
graphs, in which constraints on the edge selection are imposed (Squartini and Garlaschelli,
2011). In the TB network there are no natural constraints. Hence, we focus on ER networks,
which is defined in definition 1.

Definition 1. For a fixed number of nodes n and N edges, an Erdös Rényi (ER) network is
defined by choosing N of the possible

(
n
2
)

edges. Each edge is chosen with equal probability
namely 1

(n2) .

We examine the degree distribution of the TB as well as the ER network. Figure 5.5 presents
a histogram of the distribution of the node degree of these networks. The degree of the
ER network is normally distributed with mean of 1659, and does not exhibit a power law
tail. While the average degree in the TB network is also 1659, there is more heterogeneity
in the degree distribution. The degree of many nodes is higher than 2000, resulting in
a peak right of the ER histogram. Low node degrees are also present in the PB network,
resulting in a long tail as node degree decreases. The peak at degree 0 shows the existence
of approximately 200 unconnected nodes. The corresponding clients are special cases in the
relational classification. If we make a distinction in default status, we find that the average
degree among non defaulted clients is 1.2 times higher. Thus, defaulted clients seem less
connected.

Figure 5.6 shows a log-log (or zipf) plot of the node degree. The plot is used to detect power
law behaviour in the degree distribution. The cumulative distribution function of the Pareto
(type I) distribution is given by:

Fγ(x) =

1−
(
x
x0

)−γ
for x ≥ x0

0 for x < x0

(5.12)

42 Chapter 5 Relational Classification



Fig. 5.5.: Histogram of the node degree of the payment-based network (blue) and an ER network
(grey).

By taking the log of the survival function we find the following relation:

log(1− Fγ(x)) = log
((

x

x0

)−γ)
= γ log(x0)− γ log(x) = C − γ log(x) (5.13)

in which C and x0 are constants. Similar relationships can be derived for other types of
power law distributions.

Equation 5.12 implies the necessary condition that the log-log plot shows a linear relationship
as x increases. Figure 5.6 clearly shows that this relation is not present and hence we
conclude that there is no power law behaviour in the degree distribution. Consequently,
the PB network is not a scale-free network. This implies that the network has a relatively
homogeneous distribution, and that there are no nodes that have many more connections
than others (often called hubs). This is beneficial for our network analysis, as the absence of
hubs means that all clients are (more or less) equally influential. This is intuitively correct
as our portfolio does not contain clients on which a large portion of the portfolio is highly
dependent.

The shortest path length between two nodes i and j is the smallest number of edges needed
to reach i from j. The average shortest path length L is calculated by taking the mean
shortest path length between all pairs (i, j). The formula for calculating this value is given
in appendix D.4. A problem arises for unconnected nodes, which have a shortest path of
infinity to every other node. To resolve this, we replace L with the efficiency E, which is
defined in appendix D.5.

The clustering coefficient C is a measure of how tightly knit a network is and is defined
in D.1. It represents the number of closed triplets as a fraction of the total number of
connected triplets. Generally, C and L are both low in a random network, whereas a SWN
is characterized by a low L, and a high C (Bialonski et al., 2010). A network is often
characterized as small world if it satisfies the conditions L

Lr
≈ 1 and C

Cr
> 1, in which Lr
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Fig. 5.6.: The figure shows the degree vs the empirical distribution function on a log-scale. The blue
circles and the grey diamonds represent the payment based network and the ER network

respectively.

Measure Payment-based Erdös Rényi

Clustering (C) 0.865 0.667 (<0.001)
Efficiency (E) 0.834 0.756 (<0.001)
Betweenness (B) <0.001 <0.001 (<0.001)

Tab. 5.1.: Statistical measures of the PB network and the ER network. Averages and standard errors
(between brackets) of the 1000 randomly generated ER networks are given.

and Cr denote the measures for random networks. By replacing the shortest path length
with the efficiency, we find Er

E ≈ 1, which is equivalent to the former condition.

Table 5.1 shows the values for C and E for the PB and ER network. The maximum C

of a network is 1, which means that the clustering in the TB network is high. However,
the clustering in the ER network is also significant, which can be explained by the high
connectivity of the network. The average node degree is approximately 2/3 of the total node
degree, which results in a relatively high clustering coefficient. The efficiency of both the TB
as the ER network is high, indicating that the average path length is low. This is a result of
the fact that many nodes are directly connected, resulting in shortest paths of length 1.

The combination of a high heterogeneity in the degree distribution and a high clustering
coefficient indicate that TB network is different from random. Furthermore, the power law
behaviour of the degree distribution is absent, showing that the network is neither scale-free.
The network does show similarities to the small world network type. However, the high
average degree of the network results is uncommon in classic small world networks (Solé
and Valverde, 2004). The properties of a small world network are not needed in our further
analysis, therefore we remain indifferent in classifying the PB network as small world.

5.2.2 Robustness

Robustness is a measure of the sensitivity of the network to removal of edges or vertices.
If the network’s information propagation is dependent on a small set of nodes, removal
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or wrong information could disrupt the whole network (Ellens and Kooij, 2013). This
is especially important in scale-free networks, which are characterized by hubs of highly
connected nodes. We quantify the robustness through additional statistical properties.

We have already determined that the PB-network has a high clustering coefficient, which
indicates the existence of alternative paths. Furthermore, the high value for E and high
average degree all indicate that the network is highly interconnective. To further analyse
the robustness, we introduce the betweenness measure B (details can be found in appendix
D.3). For each node, this measure calculates the number of shortest paths between vertices
that contain that particular node. Hence, it determines the importance of nodes in the
network.

Table 5.1 shows that the average betweenness is very low for both the PB and the ER network.
This is related to the low average shortest path length in the graph. A shortest path of 1
means that two nodes are directly connected, meaning there are no other nodes on the
shortest path between them. As many pairs in the graph are directly connected, this results
in a low betweenness value for all nodes. Consequently, the average betweenness is also
low. A low betweenness means that removal of the node does not have a large effect on the
number of paths. Hence, it indicates a high robustness.

Together with the high C, and high E we conclude that the TB network is robust. Thus,
information propagation is not reliant on a subset of nodes.

5.3 Network properties

After discussing the topological structure of the network, we now examine the information
contained in it. For the purpose of credit scoring, we expect high similarity between
defaulting clients. It is also interesting to examine the similarity between clients among
properties such as industry, size, and region.

5.3.1 Homophily

The tendency of clients to connect with others with similar properties is called homophily
and can be measured for different characteristics. Social networks, for instance, have a
tendency to be strongly linked according to race and language (David and Jon, 2010). In
contrast, a network can also show inverse homophily. For example, romantic relationships
in a school would display strong inverse homophily with respect to gender. Naturally, we
investigate whether clients show homophily according to their default status. For portfolio
insight, we also consider other properties such as size, industry, region, and DB-rating.

To investigate the existence of homophily, the network is tested whether it shows a sig-
nificantly different structure than a random network. Let us illustrate a general example.
Consider a graphG with node set V and unweighted edges E. Every node has either property
c1 or c2. We test if there exists homophily with respect to c1. We make inferences via a
non-parametric approach. We construct several random networks by assigning class labels
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Fig. 5.7.: Homophily test for different client properties. The difference of cross-class edges between
TB network and a random network is presented, including a confidence interval.

randomly to each node, while respecting the proportions of the classes. After constructing
1000 samples, we infer the mean number of cross class edges in a random network, and
construct a 95% confidence interval. To test for homophily of a property, we investigate
whether the number of cross class edges in the TB network falls within the confidence
interval of the random networks.

Figure 5.7 shows the difference between the number of cross-class edges in the TB network
and the mean number of cross-class edges in the random samples, including the confidence
interval. There are significantly less cross-class edges than random if we consider the
properties: default, DB-rating of 0, or industry 3. Hence, the network exhibits homophily
w.r.t. these properties. In contrast, inverse homophily is displayed for the properties DB
rating 2 and industry 2.

The observation of homophily within defaults is promising for the credit scoring purpose.
It indicates that a relationship between defaults can be distinguished that is different from
non-defaulted clients. The other properties potentially provide interesting insights in the
portfolio.

5.3.2 Clustering

Homophily tests are based on the existence of a connection, i.e. the edges between clients.
These tests neglect the strength of a connection, which in the TB network represents the
client similarity. In section 5.2, the clustering coefficient is used. An extension to this
is the weighted clustering coefficient (WCC), which allows for networks with weighted
edges. Different approaches to calculating the WCC are discussed in Pahn et al. (2013). The
definition and calculation of the WCC is given in appendix D.2.

The WCC of the network is calculated through this formula. To determine whether clients
cluster according to specific properties, we calculate the WCC for subgraphs Gp. These
subgraphs are defined by Gp = (V p, Ep) in which V p = {i ∈ V |i has property p} and
Ep ⊆ E are the corresponding edges of this subset of nodes. The clustering coefficient for a
specific property WCCp, is found by calculating the WCC for the corresponding subgraph Gi.
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Fig. 5.8.: Average weighted clustering coefficient of defaulted clients for all five similarity matrices.

By comparing the WCC for a specific property with the WCCp, we can determine whether or
not the graph shows clustering amongst clients with that property. The higher the coefficient,
the stronger the clustering.

To assess the WCC of a property p, we compare it to the mean WCC of 1000 sample networks.
Similar to the homophily tests, these samples are constructed by randomly assigning nodes
the property p, accordingly create Gp and calculate the WCCp for each sample. From the
results, we infer a mean and a confidence interval. If the WCCp of the original graph falls
outside the confidence bounds, it means the property shows different clustering behaviour
from random.

Calculating the WCC and the confidence intervals is time-consuming, especially in large
networks. Additionally, the calculations need to be performed for all similarity matrices,
as these contain different weights. For this reason, we have chosen to only perform these
calculations for the default status. Figure 5.8 shows the WCC, for the five different similarity
matrices. The mean and confidence interval of the random samples are also presented.

Figure 5.8 shows that the WCC for all networks is significantly lower than random selections
of nodes in the network. This indicates that the similarity among the subgraph of all defaulted
clients is relatively low. This may affect the performance of the relational classification
approaches described in the next section. However, these approaches use the similarity
between clients on an individual, rather than a group level. In addition, the average degree
of defaulted directly lowers the WCC. Therefore, the relational classification may still be
effective.

5.4 Relational classification

By making use of the relationships in the network, information can propagate throughout
the network. Applied to credit scoring, clients that are known as defaults increase the
probability of default for strongly related neighbours. This technique is known as relational
classification. There are different relational classifiers. In Macskassy and Provost (2003),
the relational neighbour (RN) and probabilistic relational neighbour (pRN) are introduced.
The RN classifier uses the known class labels of neighbouring nodes to estimate the class
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probability of a node. Information of the unlabelled nodes is not taken into account. The
pRN does include unlabelled nodes and assigns a class prior to them. Smoothed versions of
the RN and pRN exists (Tobback and Martens, 2017; Toback et al., 2017), which are also
defined for unconnected nodes. The class distribution relational neighbour (cdRN) is used in
both Macskassy and Provost (2007) and Thuraisingham et al. (2016). In this classifier, class
probabilities are determined by learning a distribution of the class labels of neighbouring
nodes.

5.4.1 Classifiers

We provide the definitions of the mentioned classifiers. We have the similarity matrix S with
entries sij . In addition, let us introduce the following notation: The variable li denotes the
class label of node i and the nodes in the set N(i) = {j ∈ V |sij > 0} are the neighbours of i.
Note that i is not an element of N(i).

Relational neighbour

The relational neighbour is given in equation 5.14. The probability that the client i belongs
to class c is equal to the sum of the similarity of all neighbouring nodes that have known class
labels c. In this equation Zi =

∑
j sij represents a normalizing constant. The normalizing

constant ensures that the resulting probabilities lie within the interval [0, 1].

P(li = c|N(i)) = 1
Zi

∑
j|lj=c

sij (5.14)

If a node is disconnected, the neighbouring set is empty and the probability for all classes is
set to zero. Furthermore, the normalizing constant is zero and the fraction is undefined. To
resolve these issues, we introduce a smoothed version of the RN, given in equation 5.15.

P(li = c|N(i)) =
∑
j|lj=c sij + 2µc
Zi + 2 (5.15)

The smoothed version assures that unconnected clients are assigned the probability of the
class prior µc.

Probabilistic relational neighbour

The relational neighbour uses known class labels. Especially in situations of class imbalance,
the number of labelled neighbours might be limited, which means few neighbours are used
in determining the class probability of a node. By using probabilities rather than labels, all
neighbours are included in calculating the class probabilities. The pRN, defined in 5.16, is
based on this principle.
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P(li = c|N(i)) = 1
Zi

∑
j∈N(i)

sijP(lj = c|N(j)) (5.16)

Again, a smoothed version is used to allow for unconnected clients.

P(li = c|N(i)) =
∑
j∈N(i) sijP(lj = c|N(j)) + 2µc

Zi + 2 (5.17)

Class distribution relational neighbour

The cdRN uses the neighbouring class labels to determine a class distribution. Let us define
the class vector CV (i) for a node i in equation 5.18 and the reference vector RV (ck) in
equation 5.19. The class vector represents the total similarity to the various classes, whereas
the reference vector is the average of all class vectors known to be of class ck.

The reference vector needs to be trained. Hence, we divide the data into a training and test
part. For all nodes in the training set, CV (i) is calculated as follows:

CVk(i) =
∑

j∈N(i),lj=ck

sij (5.18)

in which k represents the k-th entry in the vector, corresponding to the class label ck. Then,
according to the vectors CV (i), we construct the reference vector.

RV (ck) = 1
|V Lck |

∑
i∈V Lck

CV (i) (5.19)

in which V Lck = {i ∈ V |li = ck}, i.e. the set of known nodes of class label ck.

Now, for the test set, we alter the definition of the class vector such that it includes the class
probabilities.

CVk(i) =
∑

j∈N(i),lj=ck

sijP(lj = ck|N(j)) (5.20)

Using these definitions, the class probabilities for the test set can now be estimated using the
cdRN, given in equation 5.21.

P (li = ck|N(i)) = D(CV (i),RV (ck)) (5.21)
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in which D is a vector distance measure, e.g. L1, L2, or the cosine. In this research, we use
the latter, which is defined as:

Dcos(A,B) =
∑
iAiBi√∑

iA
2
i

√∑
iB

2
i

(5.22)

in which Ai and Bi represent the i-th entry of the vectors A and B.

5.5 Results

In this section, we compare different classification approaches applied to the several similarity
matrices in order to estimate class probabilities. We investigate the classification techniques
for all five similarity matrices. The classes we consider are default and non-default. To
apply the classification techniques, we use the historical defaults in the combined data set
(containing FC and DC).

To test the performance of our relational classifiers, we split the data into a training and a
test set. The size of the training set is varied from 5 to 50 percent. The results are dependent
on the training/test partition of the data. To correct for this, we vary the partition 100
times and present the average performance. For the pRN, and cdRN, we assume that the
probability of default of the non-labelled instances is equal to the prior PD. We choose this
prior to be the overall default rate of the portfolio. This is a basic assumption which could
be extended to size or credit type specific priors.

Construction of S3 requires the most computational effort because of the tuning of the weight
function parameters. This is done as follows: For several a and b, the similarity matrix is
constructed. Next, the labelled instances are split into two equal subsets: a training, and a
validation set. Using a relational classifier, the classification performance of the validation
set is measured for all similarity matrices in terms of the AUC. The parameters that yield

Algorithm 1 Parameter Tuning
Given: Parameter sets A,B;

1: procedure OPTIMIZE(a, b)
2: for a ∈ A,b ∈ B do
3: w(dk)← fβ(a,b)(dk)
4: Construct S . Equation 5.1
5: Calculate P(li = c|N(i)) . Equations 5.14,5.16 or 5.21
6: Evaluate AUC of validation set
7: if AUC > AUC∗ then
8: AUC∗ ← AUC
9: a∗ ← a

10: b∗ ← b
11: end if
12: end for
13: return a∗, b∗

14: end procedure
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(a) Average AUC of the RN.
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(b) Average AUC of the pRN.

Fig. 5.9.: Average AUC of the RN and the pRN for multiple weight functions and different
percentages of labelled data. The average is calculated according to 100 partitions of the

training and test set for each percentage.
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Fig. 5.10.: Average AUC of the cdRN for multiple weight functions and different percentages of
labelled data. The average is calculated according to 100 partitions of the training and test

set for each percentage.

the best performance for the validation set are selected. This process is described in the
pseudo-algorithm 1.

Figures 5.9a, 5.9b, and 5.10 show the AUC of the RN, pRN, and cdRN classifier respectively.
With the RN classifier the AUC is the lowest for the frequency based similarity matrix. The
two weight functions that perform best are the 10-log and the beta function, having an
AUC that is consistently above 0.65. This performance gradually increases to 0.75 as the
percentage of labelled instances rises to 50%.

The performance of the pRN is significantly lower than the RN for all weight functions.
Only the AUC for beta function is consistently above 0.5, which is the AUC of random
classification. The pRN classifier includes all connected nodes in the classification process. A
possible explanation for the worse performance is that the probabilities are more similar to
the network’s average and therefore less distinctive in recognizing defaults.

Figure 5.10 shows that the cdRN is affected by the percentage of labelled instances. The AUC
decreases for all but the beta function similarity matrix as the information in the network
grows. The performance of the beta function significantly increases when more than 20% of
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Similarity matrix RN pRN cdRN

S1 (tanh) 0.725 (0.026) 0.423 (0.035) 0.361 (0.031)
S2 (10-log) 0.749 (0.030) 0.524 (0.036) 0.312 (0.024)
S3 (beta) 0.773 (0.022) 0.653 (0.043) 0.696 (0.039)
S4 (volume) 0.641 (0.035) 0.517 (0.039) 0.436 (0.036)
S5 (frequency) 0.589 (0.035) 0.469 (0.037) 0.420 (0.032)

Tab. 5.2.: Comparison of the average AUC for different combinations of weight function and
classifiers with 50% labelled data. The average and standard deviation are calculated for
100 random partitions. The best performing classifier for each similarity matrix is given in

bold.
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Fig. 5.11.: Rate of classification curve of the RN-beta relational model.

the labels are known. This shows that sufficient calibration is required before accurate class
distribution can be constructed.

Table 5.2 shows the statistics for the classifiers at 50% of labelled instances. Besides the
averages, these statistics also give an indication of the standard deviation of the AUC. In
addition to the best overall performance, the RN also has the lowest standard deviation.
Of all combinations of similarity matrices and classifiers, the relational neighbour with a
beta-weighted similarity function result in the best performance. With 50% labelled instances
we achieve an average AUC of 0.773 with a standard deviation of 0.022.

We further investigate this performance of this relational model. Figure 5.11 shows the
ROC curve on the same partition as for the hierarchical (figure 4.3). The corresponding
AUC is 0.794, which corresponds to a decent overall classification performance. Before a
FPR of 0.12 is reached, the model does not perform well. This can be explained by the
large number of disconnected clients, for which the model has no information other than
the class prior. The precision and recall suffer from this, having values of 0.115 and 0.200
respectively. This means that of all (10% of the test set) warning signals, 8 out of 9 are false
alarms. Furthermore, only 1 out of 5 of the total number of defaults would be detected.

From these results we conclude that the relational model would not suffice as a monitoring
model. However, the overall classification performance is promising, especially considering
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the fact that only relational connections in the data are used. These relational connections
are a data source that are currently untapped, which means we can combine it with the
traditional data. In the next chapter, we investigate this.
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6Combined model &
Applications

In chapter 4, we described models with which we make classification predictions. These
models constructed in a traditional manner, namely by estimating predictors based on the
given data. In chapter 5, we take a different approach, focussing on relational connections
between clients that are implicit in the payment data. Both approaches have shown promise
in predictive quality, while making use of different information in the data. Hence, a
combination of the models might further improve the predictive performance of the model.
This ensemble approach is discussed in section 6.1.1. The low customer effort required in
providing transaction information makes it interesting to develop a model which only uses
transaction data. Therefore, we develop such a model in section 6.1.2. In section 6.2 we
compare the PD estimates of the different (hierarchical) logistic regression models.

6.1 Additional models

6.1.1 Combined model

The approaches in chapter 4 and 5 use the transaction data in a different manner. A combi-
nation of these approaches could further improve the classification model. A way to combine
the approaches is to include network properties as a new covariate in the hierarchical logistic
regression. We examine the following three properties: client connectivity (degree), local
weighted clustering coefficient, and the RN PD estimations for the beta similarity matrix.
We have chosen the RN classifier in combination with the beta-weighted similarity as this
combination has achieved the best performance.

Like all variables in the model, the properties should have an intuitive effect in the model.
We have seen that the client connectivity among default clients is lower than for non-defaults.
Thus, we expect a negative coefficient for this covariate, reflecting that a low degree should
increase the default probability. The local weighted clustering coefficient is the weighted
clustering value for a particular node (further details can be found in appendix D.2). Figure
5.8 shows that the clustering among default clients is lower than a randomly selected
clients in the network. This could be an indication that default clients are less connected
to the entire network. Hence, we expect a negative sign for the coefficient corresponding
to the local WCC covariate. The interpretation of the RN estimations is clear, a higher RN
estimation should increase the PD of the ensemble model.

The network properties are included in the hierarchical logistic regression as follows. First,
the data is split into a training, and test set according to the ratio 2:1. Furthermore, the one
third of the training set is used as the validation set. Given the training data, the parameters
of the beta function are then tuned on this validation set. Based on the optimal parameters,
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Measure Significant Expected sign Both

Local node weighted clustering 0.32 1.00 0.32
Degree 0.00 0.40 0.00
RN estimates 1.00 1.00 1.00

Tab. 6.1.: Percentage of the 100 partitions in which the network properties are significant at a 5%
level in the combined model.

the similarity matrix and corresponding network are constructed. The properties of the
network are included in the hierarchical logistic regression as fixed effects and the model is
fitted on the training set (including the validation part). To examine whether the network
properties are a significant improvement to the hierarchical logistic regression, we randomly
generate 100 partitions of the training and test set and construct the combined model
for each network property. For each partition we examine whether the added property is
significant and has the expected coefficient sign. Table 6.1 shows the percentage of partitions
in which the network property is significant at a 10% confidence level, intuitively correct,
and both.

Based on these results we include the RN estimations to the hierarchical logistic regression.
We will refer to this combined model as the HLR-RN model. Table 6.3 presents the perfor-
mance of the HLR-RN for 100 random partitions. The table also includes the results the
hierarchical model (without RN) of chapter 4. By comparing the statistics of the HLR and
the HLR-RN, we find that the models perform very similar. The AUC, precision, and recall
are nearly equal. The averages of the pseudo-R measures are higher, indicating that the
combined model has a better fit. However, the standard deviation of both measures has also
increased, meaning that this does not hold for every partition. Furthermore, the average
pass rates for the HL, standardized Pearson are 100%, whereas Stukel’s test is never passed
in both models.

6.1.2 Transaction only model

The improvement of combining the network classification with traditional modelling is
marginal. In terms of average AUC, an improvement of 0.013 is not a persuasive result in
favour of adding the computationally intensive network analysis. An explanation for this is
that hierarchical logistic regression model is already refined, achieving good performance.
Hence, it is difficult to further improve the model and identify the most undistinguishable
defaults.

An other question is whether credit scoring models can rely on only transaction data.
In traditional models, external ratings, and client characteristics are important variables.
These variables are collected via an external party or annual client reports. Acquiring
them therefore requires money and customer effort. In contrast, the transaction data is all
available in-house, which means it requires no customer effort and is of low financial costs.
Therefore, it is interesting to examine the performance of a transactional only model.

The following transaction-based variables are significant in either the FC or DC model:
balance returns, positive shocks, zero transactions, cash volume. Furthermore, the network
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Variable Coefficient St. dev. p-value

Intercept -2.934 0.121 <0.001
Positive shocks -0.235 0.120 0.051
Zero 0.293 0.057 <0.001
Cash 0.259 0.068 <0.001
RN estimates 0.903 0.122 <0.001

Tab. 6.2.: Statistics for the transactional model. The maximum likelihood estimates of the
coefficients, the standard errors, and the p-values are given.
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Fig. 6.1.: Rate of classification curve of the relational, transactional, and combined model. The
corresponding AUC’s are 0.780, 0.804, and 0.903 respectively.

PD predictions has also shown predictive power. Analogous to the strategy in chapter 4,
we iteratively develop a logistic regression containing variables on the combined dataset
(containing both FC and DC).

After fitting the multivariate model, the balance variable is not significant at a 10% level.
The likelihood ratio test supports removal according to the test statistic LR = 0.025 and
corresponding p-value p = 0.875. There are no large (>20%) changes in the coefficient
value and no collinearity between the resulting variables. The final transaction based model
is presented in table 6.2.

Table 6.3 presents the results of the transaction model for 100 random partitions. For
comparison, we have also included the results for the relational model (of chapter 5).
Allowing 10% of the total set as the number of warnings, we find a precision of 0.230, and a
recall of 0.340. These values indicate that approximately 1/3 of the defaults is detected and
3 out of 4 warnings are false alarms. These are poor statistics for a monitoring model. This
performance can be attributed to the absence of the important variable arrear months. If a
client has overdue payments, its creditworthiness decreases drastically. The transactional
variables are more subtle and therefore defaults are less clearly distinguishable.
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Model Hierarchical HLR-RN Relational Transactional

AUC 0.850 (0.024) 0.860 (0.025) 0.768 (0.023) 0.804 (0.026)
Precision 0.353 (0.038) 0.355 (0.039) 0.151 (0.033) 0.230 (0.042)
Recall 0.515 (0.049) 0.519 (0.053) 0.226 (0.046) 0.341 (0.057)
MacFadden 0.294 (0.021) 0.390 (0.068) - 0.254 (0.093)
Tjur 0.298 (0.022) 0.385 (0.080) - 0.224 (0.102)
HL 1.000 1.000 - 0.800
Pearson 1.000 1.000 - 1.000
Stukel 0.000 0.000 - 0.000

Tab. 6.3.: Comparison of the average performance measures and GoF pass rates between different
models. The statistics are based on 100 random partitions. The best performances are

given in bold.

Figure 6.1 shows the ROC curve of the transactional model of the first partition. Furthermore,
it also shows the curves of the relational model (corresponding to figure 5.11), and the
combined model. The figure illustrates that model performance increases as more data
sources are utilized. The relational model uses the similarity between clients in terms of
their shared entities, resulting in an AUC of 0.780. The relational model is extended by
the transactional model, and includes aggregated transaction characteristics, which capture
trends or events that occurred in certain time windows. The model yields an AUC of 0.804.
The HLR-RN model is the most comprehensive model and adds client characteristics and
loan behaviour to the transactional model, achieving an excellent performance of 0.903.

The transactional model performs worse than the HLR-RN for all evaluation measures. While
the performance is not convincing for a monitoring model, the transactional model does
has potential for a loan acceptance model. An acceptance model requires a high overall
classification performance, but not necessarily high recall and precision on a subset of the
portfolio. The AUC of 0.804 indicates a good overall classification performance, and the data
can be acquired with low cost or customer effort. We elaborate this further in chapter 7.

6.2 Comparison probability estimates

The output of our (hierarchical) logistic regression models reflects P(Y = 1|X), i.e. the
conditional probability of Y being default given the data. The hierarchical, HLR-RN, and
transactional model are all logistic regression models. Table 6.4 gives a comparison of the
probability estimates of the three models for two defaulting and two non-defaulting clients
in our portfolio.

For all clients, the PD estimate of the HLR-RN is between the estimates of the hierarchical
and the transactional model. This behaviour can be explained by the fact that the HLR-RN
combines the hierarchical model with the RN approach, which is an important ingredient
of the transactional model. For client 1 and 3, the PD estimates of the hierarchical and the
combined model are high, given that the average default rate of the portfolio is approximately
7%. In comparison, the PD estimates of the transactional model are lower. It is therefore
likely that for the client has ’risky’ traditional characteristics, such as a high DB-rating, but
does not have financial distress indicators in its transaction behaviour. Client 3 defaulted,
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Model Hierarchical HLR-RN Transactional

Client 1 (ND) 0.160 0.134 0.048
Client 2 (ND) 0.010 0.049 0.307
Client 3 (D) 0.187 0.118 0.050
Client 4 (D) 0.042 0.071 0.141

Tab. 6.4.: Comparison of the output of the different (hierarchical) logistic regression models. The
estimates of two non-defaulting (ND) and two defaulting (D) client are presented.

which indicates that the traditional drivers are important for correctly classifying this
client. In contrast to client 1 and 3, clients 2 and 4 shows the highest PD estimates for
the transactional model. Thus, these clients show financial distress in their transactional
behaviour, rather than in the traditional variables. Client 4 defaulted, which shows the
effectiveness of the transactional variables in this case.
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7Conclusion & Discussion

7.1 Conclusion

In this research we have developed a default classification model for the purpose of credit
risk monitoring. We have developed several models that are able to accurately distinguish
defaults for the SME portfolio of the Bank. To construct these models, we have used
traditional techniques, such as the logistic regression. A more unconventional approach is to
identify defaults through relational classification. While the final models can be of practical
use, the main achievement of this research lies in the use of transactional data, which is
a relatively untapped data source. We contribute to current research in three-fold. First,
we introduce measures that allow transaction data to be used in current credit risk models.
Second, we develop an innovative transaction based relational classification approach that
use the transaction data in a fine-grained manner. Last, we have developed a model that is
solely based on transaction data.

To incorporate transaction data into traditional models, we develop mathematical measures
for different time windows. With these measures, we are able to capture trends and events
in the transaction behaviour of clients. The time windows of these measures are important,
and are determined together with experts. Our analysis has shown that zero transactions,
positive income shocks, and yearly balance returns are significant variables in classifying
defaults. Furthermore, we incorporate and analyse categories reflecting the purpose of
transactions. We found that a high expenditure in cash is related to a higher default rate.

Together with client characteristics and loan payment variables, these variables are included
in separate logistic regressions for the fixed credit (FC) and dynamic credit (DC) products.
Both models have a good overall classification performance with average AUC’s of 0.82 and
0.84 respectively. Allowing for a limited number of warnings, the recall of both models is
slightly above 0.5, meaning that more than 50% of the defaults are correctly identified. Due
to the limited number of defaults in the DC set, 3 out of 4 signals are false alarms. This
is almost twice as much as for the FC set. A hierarchical logistic regression combines the
two models, yielding results that are decent for a monitoring model, identifying 50% of
the defaults with 2 out of 3 false alarms. Due to the low prevalence of defaults in the data,
the precision is relatively low. However, we remark that it is 5 times higher than random
classification.

Rather than aggregating the transaction information into modelling variables, we also ex-
amine the transactions in a non-aggregated manner. We investigate different relational
classification methods, which classify clients according to similarity in terms of their transac-
tion behaviour. By using relationships between clients according to the number of shared
entities, and using a flexible beta weighing function, the relational neighbour achieves a
classification performance of 0.768. Merging this approach with the hierarchical logistic
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regression improves the performance marginally. We also construct a model which is solely
based on transaction data, by combining the relational approach and the (aggregated)
transaction variables. This results in a good AUC of 0.804, but a low recall and precision.
We conclude that these results are unsatisfactory for a monitoring model. However, the
transactional model does have potential as a loan acceptance model, as a good discriminatory
power is the most important requirement for loan acceptance.

To summarize, we conclude that transactional data can effectively be used in default classifi-
cation models. Transactions can be aggregated on a client level into modelling variables,
which are easily included in current modelling techniques. Furthermore, the transactions
can be analysed on an individual level to construct relation classification models. Combining
these two techniques leads to an effective transactional model that shows a good overall
classification performance.

7.2 Discussion & recommendations

The transaction data is a data source that is currently untapped by the Bank. Some of the
aggregated transaction variables have shown a significant effect in the constructed models.
These variables can be added to current models of the Bank without much effort. We
therefore recommend the Bank to investigate the added value of the aggregated transaction
variables into the models currently in use. We have demonstrated that 1 of the 34 categories
(relative expenditure in cash) is a significant variable in some of the models. To further
improve the use of the transaction categories, the internal algorithm should be designed
purposefully for credit risk in the SME portfolio. We recommend that the number of
categories is decreased, and the possible categories are chosen according to an intuition of
creditworthiness per category.

Research into an acceptance model is also of interest for the Bank. In general, little
information is known about a new applicant. For this reason, the application process
requires a lot of customer and employee effort to gather relevant data. Transaction data
is easily acquired and can be of value for both the efficiency and accuracy of the loan
application process. However, transaction data before one’s loan application is limited,
which is the reason we focussed on monitoring in this research. A possible solution for this
arises from the, recently introduced, Payment Service Directive II (PSDII). Roughly stated,
these regulations enable access to account information the client agrees upon, even if it is
stored at an other bank. Note, that not all transactions are electronic, meaning that access
to all accounts still not necessarily provides the complete financial behaviour of a client.
Besides transaction data, the Bank can also consider to include alternative data sources,
such as social media information or psychometric tests. 1 These data can also be used in
other applications, such as fraud detection. However, it is important to recognize the amount
of personal data that can be extracted from transaction data and these alternative data
sources. Therefore, there should be a high alertness on the protection of privacy (and legal
boundaries) if the data is indeed used.

1The use of these data has recently gained publicity as a result of the controversy regarding Cambridge Analytics.
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Further steps can be taken into researching relation classification for credit risk in general.
Rather than transaction data, similarity scores can be determined as a function of shared
client characteristics. Such an approach is used in Macskassy and Provost (2003) to predict
blockbusters based on movie characteristics such as: actors, producers, or genre. On a
portfolio scale, the relational network can be used to measure the interdependency of
regions or industries. By having insight in these dependencies, macro economic effects could
be studied. Furthermore, it would be interesting to study the network development over
time, and determine the speed at which new clients are connected. Models can be built from
this, which could predict the probability of a new client forming certain connections. This
would in turn reflect a growth model of the relational network. An important thing to note
is that the approach suffers from a lack of interpretability and hence can be classified as
‘black box’. Therefore, it is valuable to research information extraction techniques. This can
be achieved by identifying entities that are a contributing factor to the similarity between
clients. Such an analysis also provides more insight into the inner workings of relational
classification and hence is a valuable contribution to literature.

Even with proper information extraction, we remark that relational classification requires
additional attention before considering using it in practice. Hurley and Adebayo (2016)
elaborate on the development of credit scoring models in the recent decade and discuss
the concept of “creditworthiness by association". This concept entails that a credit rating is
determined by affiliations rather than one’s individual actions. To some extent, this is also
present in traditional regression models, in which regional or industry characteristics are
used. However, this is more immediate in machine learning models, which may include sig-
nificant variables that are intuitively unrelated to creditworthiness. Relational classification
is a perfect example of this and even completely based on the assumption of creditworthiness
by association. While this may have strong classification performance, the ethical question
arises whether credit eligibility should indeed be based on one’s affiliations.
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AParameter estimation
techniques

A.1 Maximum likelihood

A.1.1 Logistic Regression

In order to find estimates for the logistic regression, we use maximum likelihood estima-
tion.

Lik(β;X) = P(Y |X,β) (A.1)

=
N∏
i=1
P(yi|X,β) (A.2)

=
N∏
i=1

πyii (1− πi)1−yi (A.3)

Hence the log-likelihood is given by:
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in which x′i represents the i-th row of the design matrix X.

The optimal parameters are found if the log likelihood is maximized. Therefore, we set
the derivatives to zero for each entry βj of the parameter vector. By making use of the
substitution rule, we find the following equation for βj .

dl(β, X)
dβj

=
∑
i

yixij −
∑
i

xij
ex
′
iβ

1 + ex
′
i
β

= 0 (A.12)

By solving these equations for all j = 0, . . . ,M , the parameters estimates β̂ = (β̂0, . . . , β̂M )
are determined. There is no closed-form solution to these equations. Hence, we approximate
the solution. The most common technique to do this by using the Newton Raphson method,
which is described in section A.1.2. Furthermore, we need to verify whether this solution
represents a global maximum. To determine whether the solution is a maximum, we consider
the second derivative of the log-likelihood function w.r.t. βk. By making use of the quotient
rule, we find the following equations.

d2l(β, X)
dβjβk

= −
∑
i

xijxik
ex
′
iβ

(1 + ex
′
i
β)2 (A.13)

The solution β̂ is a maximum if the matrix of these second order partial derivatives is
negative definite.

A.1.2 Newton Raphson

The Newton Raphson approach is used to determine the roots of a function f by using the
Taylor series approximation. Given an initial starting point x0 in which f is differentiable at
least once, the value of f given x0 can be written as follows:

f(x) ≈ f(x0) + f ′(x0)
1! (x− x0)1 (A.14)

By setting this equation to zero, we find the following formula for x.

x = x0 −
f(x0)
f ′(x0) (A.15)

The value for x is the new approximation for the root. The Newton Raphson method is
based on using this formula in an iterative manner until there is convergence. We set x1 = x,
and use the formula (replacing x0 by x1) to determine the new estimate x2. If the series
converges, a solution is found.
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We describe the algorithm for finding the parameter estimates β̂ that fit the data best. Full
details can be found in Fox (2008)). To determine the parameter estimates, we have to solve
the system of equations consisting of:

dl(β,X)
dβj

=
∑
i

yixij −
∑
i

xij
ex
′
iβ

1 + ex
′
i
β

= 0 (A.16)

for j = 0, . . . ,M . These equations need to be solved simultaneously.

Let β(k) represent the estimates of the k-th step of the algorithm. We use the formula:

β(k+1) = β(k) +
(
−l′′(β(k))

)−1
l′(β(k)) (A.17)

The derivatives can be written as follows:

l′(β(k)) = XT (y − p(k)) (A.18)

−l′′(β(k)) = XTV (k)X (A.19)

in which p(k)
i = e

x′
i
β(k)

1+ex
′
i
β(k) and V (k) = diag(p(k)(1− p(k))), i.e. a diagonal matrix that varies

per iteration.

By inserting equations A.18 and A.19 into A.17, we find:

β(k+1) = β(k) + (XTV (k)X)−1XT (y − p(k)) (A.20)

which provides the solution to our system of equations if β(k+1) ≈ β(k) to some desired
degree of accuracy.

A.1.3 Hierarchical Logistic Regression

The probability density function for the hierarchical logistic regression is written as follows:

f(yj |bj ,β) =
nj∏
i=1
P(yij = 1|bj ,β)yijP(yij = 0|bj ,β)1−yij (A.21)

=
nj∏
i=1

π
yij
ij (1− πij)(1−yij) (A.22)

in which nj denotes the number of observations in cluster j. The vector yj is a nj × 1
response vector, and bj is a r × 1 vector containing the random effects.
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The random effects are unobserved. Marginalizing over them yields,

L(β,Σbj ) =
J∏
j=1

∫ ∞
−∞

f(yj |bj ,β)r(bj ,Σbj )dbj (A.23)

in which r(bj ,Σbj ) is the probability distribution of bj . We assume that bj follows a
multivariate normal distribution with covariance matrix Σbj , i.e.

bj ∼ N
(
0,Σbj

)
(A.24)

The formula A.23 is analytically intractable. Hence, the likelihood must be estimated in
order to find estimates for β and Σbj . This can be achieved using Laplace approximations.
The idea behind this is to approximate the marginal likelihood with Taylor Series such that
the integration can be performed. Others approaches are Gaussian quadrature and Penalized
quasi-likelihood approaches, for which the details can be found in McNeish (2016). The
benefit of using Laplace approximation is that the approach is relatively fast. A downside is
that the performance is dependent on the assumption of an independent cluster structure,
i.e. Σbj is a diagonal matrix.
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BEvaluation Measures

B.1 Classic Pearson test

The Pearson test statistic is defined as follows:

X2 =
n∑
i=1

(Oi − Ei
Ei

) (B.1)

In this formula, n denotes the number of cases and Ei and Oi represent the expected and
observed proportion of case i.

The classic Pearson test follows a chi-square distribution. We show that this holds for the
special situation of binary events and one case. The test statistic can be written as follows:

X2 = (O1 − E1)2

E1
+ (O0 − E0)2

E0
(B.2)

= (O1 − E1)2

E1
+ ((n−O1) + (n− E1))2

n− E1
(B.3)

= (n− E1)(O1 − E1)2

E1(n− E1) + E1(E1 −O1)2

E1(n− E1) (B.4)

= n(O1 − E1)2

E1(n− E1) (B.5)

in which O0 and E0 are the observed and expected proportions of the event 1 and non-event
0, and n is the number of observations. Let p the probability of an event under the null
hypothesis. The expected number of events is distributed as Binomial(n, p). Hence, we can
write:

X2 = n(O1 − E1)2

E1(n− E1) (B.6)

= n(O1 − np)2

np(n− np) (B.7)

= (O1 − np)2

np(1− p) (B.8)

=
(

O1 − np√
np(1− p)

)2

(B.9)
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For large n the binomial distribution can be approximated by the normal distribution with a
mean and variance equal to the first two moments of the binomial distribution. Thus,

E1 ∼ Binomial(n, p) ≈ N (np, np(1− p)) (B.10)

From this we can conclude that the test statistic as given in equation B.9 follows a chi-
squared distribution with one degree of freedom. This derivation lays the foundation for the
general case. A formal derivation of the general case can be found in Buonocore and Pirozzi
(2014).

B.2 Standardized Pearson test

The classic Pearson test statistic is given by:

X2 =
∑
j

∑
i

(Oij − Eij)2

Eij
(B.11)

in which Oij and Eij are the observed and expected proportions of an event i for the case
j.

Let us consider the binary case in which the independent variables are estimated through a
logistic regression. We show that the standardized Pearson can be written as follows:

X2 =
∑
i

(yi − π̂i)
π̂i(1− π̂i)

(B.12)

in which yi is the dependent variable, and π̂i the predicted probability that yi = 1 for
observation i.

Proof. In the binary case, the classic Pearson test is denoted as follows:

X2 =
∑
j

(O0j − E0j)2

E0j
+ (O1j − E1j)2

E1j
(B.13)

=
∑
j

((Nj −O1j)− (Nj − E1j))2

E0j
+ (O1j − E1j)2

E1j
(B.14)

in which Nj denotes the size of case j. We assume that each observation is its unique case,
and hence Nj = 1. Furthermore, we can write O1j = yj and O0j = 1− yj , where yj is the
observed binary value. The predicted values follow from a logistic regression meaning that
the expected proportions are binomially distributed with parameters Nj and πj . Hence, the
proportion E1g is equal to π̂j and E0j is equal to 1− p̂ij .
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Including this information in the formula yields.

X2 =
∑
j

((Nj −O1j)− (Nj − E1j))2

E0j
+ (O1j − E1j)2

E1j
(B.15)

=
∑
j

((1− yj)− (1− π̂j))2

(1− π̂j)
+ (yj − π̂j)2

π̂j
(B.16)

=
∑
j

(π̂j − yj)2

(1− π̂j)
+ (yj − π̂j)2

π̂j
(B.17)

=
∑
j

π̂j (yj − π̂j)2

π̂j(1− π̂j)
+ (1− π̂j) (yj − π̂j)2

π̂j(1− π̂j)
(B.18)

=
∑
j

(yj − π̂j)2

π̂j(1− π̂j)
(B.19)

which concludes our proof.

B.3 Wald’s test

The parameter coefficients β̂ are estimated via the maximum likelihood procedure. To test
the significance of an estimated coefficient βi we use Wald’s test. The test statistic for testing
if a coefficient is significantly different from zero is calculated as follows:

W = β̂i
σ̂β̂i

(B.20)

in which σ̂β̂i represents the estimated standard error of the coefficient estimate β̂i.

The Wald statistic W is asymptomatically distributed as a standard normal distribution.
Furthermore, for the logistic regression the variance of the residuals is related to the mean
and therefore we do not need to estimate it. As a result of these two properties, the
significance of the coefficient can be determine using the z-score. We test the null hypothesis
that the coefficient ˆbetai is zero. The null hypothesis is rejected if:

P(|W | > Zα/2) ≤ α (B.21)

in which α denotes the critical value, and Zα = F−1(α) in which F−1 denotes the inverse
cumulative distribution function of the standard normal distribution. If the test is rejected,
we conclude that the estimated coefficient is significantly different from zero.

B.4 Likelihood ratio test

The likelihood ratio test compares two different models and is used in practice to test whether
removal of parameters does not yield a significantly worse model. The alternative model
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represents the full model, and the null model represents the reduced model (with removed
parameters). These models are fitted on the data according to the maximum likelihood
procedure and the likelihoods are given by Lnull and Lalt. The test statistic is as follows:

D = −2 ln
(
Lnull
Lalt

)
(B.22)

= 2 ln
(
Lalt
Lnull

)
(B.23)

= 2 (ln(Lalt)− ln(Lnull)) (B.24)

The alternative model (with more parameters) will always have a likelihood that is at least
as high as the null model. We test whether it is also significantly higher. The test statistic
D approximately follows a chi-squared distribution with degrees of freedom equal to the
number of removed parameters p. We reject the null hypothesis if P(D > χ2

p(α)) ≤ α.
Rejection of the null hypothesis indicates that the null model is significantly worse than the
full model. Therefore, removal of the parameters is not supported in case of rejection.

72 Chapter B Evaluation Measures



CModelling results

C.1 Univariable analysis

Variable Test statistic p-value

region 0.854 0.653
industry 8.426 0.015
size 33.20 <0.001
DB rating 49.28 <0.001
liability 0.000 0.995

Tab. C.1.: Classic Pearson test results for the categorical variables of the fixed credit model. The test
statistic and p-value are presented. Significant variables (p < 0.20) are shown in bold.

Variable Coefficient Standard error p-value

volume -0.083 0.053 0.113
frequency -0.084 0.048 0.080
balance (1 year) -0.055 0.048 0.251
zero trans. (3 month) 0.633 0.091 <0.001
sd returns 0.028 0.048 0.559
sd incoming -0.049 0.055 0.364
sd outgoing -0.081 0.048 0.095
arrear months 3.808 0.249 <0.001
pos. shocks -0.118 0.048 0.015
neg. shocks -0.054 0.048 0.256
cat. cash 0.039 0.049 0.431
cat. mortgage 0.110 0.048 0.022
cat. bank costs 0.040 0.049 0.420
cat. gambling 0.047 0.053 0.371
cat. charities -0.016 0.050 0.747

Tab. C.2.: Statistics of the univariable logistic regressions for the continuous variables of the fixed
credit model. Significant variables (p < 0.20) are shown in bold.
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Variable Test statistic p-value

region 3.071 0.079
industry 3.843 0.146
size 2.338 0.505
DB rating 34.34 <0.001
liability 0.730 0.393

Tab. C.3.: Classic Pearson test results for the categorical variables of the dynamic credit model. The
test statistic and p-value are presented. Significant variables (p < 0.20) are shown in bold.

Variable Coefficient Standard deviation p-value

volume -0.022 0.052 0.681
frequency -0.028 0.052 0.609
balance (1 year) -0.023 0.052 0.662
zero trans. (3 month) 0.142 0.063 0.024
sd returns -0.070 0.052 0.177
sd incoming -0.023 0.052 0.654
sd outgoing -0.038 0.053 0.476
arrear months 1.743 0.305 <0.001
pos. shocks -0.067 0.051 0.192
neg. shocks -0.025 0.052 0.633
cat. cash 0.093 0.056 0.093
cat. mortgage 0.031 0.052 0.550
cat. bank costs 0.058 0.053 0.271
cat. gambling 0.042 0.053 0.436
cat. charities -0.010 0.052 0.849
limit exceedances -0.062 0.052 0.232
limit use 0.195 0.052 <0.001

Tab. C.4.: Statistics of the univariable logistic regressions for the continuous variables of the dynamic
credit model. Significant variables (p < 0.20) are shown in bold.

74 Chapter C Modelling results



DNetwork measures

This chapter describes the several measures used in the analysis of the network. The
definitions are based on Ellens and Kooij (2013), Opsahl and Panzarasa (2009), and Pahn
et al. (2013).

D.1 Clustering coefficient

Let us have the graph G = (V,E) with corresponding adjacency matrix A. The average
clustering coefficient is calculated by taking the average of the local clustering coefficients ci.
For i ∈ V , the ci is calculated as follows:

ci = 2
di(di − 1)ei (D.1)

in which di represents the degree of node i and ei the number of edges between neighbours
of i. Thus, ci represents the existing number of edges divided by the total possible number
of edges between neighbouring nodes, which is given by (di(di − 1))/2. Using the local
clustering coefficients, we calculate the average clustering coefficient C as follows:

C = 1
|V |

∑
i∈V |di>1

ci (D.2)

= 1
|V |

∑
i∈V |di>1

2
di(di − 1)ei (D.3)

= 1
|V |

∑
i∈V |di>1

1
di(di − 1)

n∑
j=1

n∑
k=1

aijajkaki (D.4)

= 1
|V |

∑
i∈V |di>1

1
di(di − 1)(A3)ii (D.5)

in which aij denotes the i-th row and j-th column of the adjacency matrix.

D.2 Weighted clustering coefficient

The weighted clustering coefficient (WCC) for the weighted graph G = (V,E) is defined
by:

WCC(G) = Total weight of closed triplets in G
Total weight of triplets in G

(D.6)
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The total weight is closed triangles (triples) is calculated as a proportional to the number of
unclosed triangles. To determine the value of the WCC, we take the average of the local
WCC for every node. Let A be the adjacency matrix of the graph G. The matrix S extends
A such that for every one in the adjacency matrix, the edge corresponding weight is given.
To calculate the weighted clustering coefficient we use the following formula:

wcc(i) = 1
Mi(di − 1)

∑
j∈V |aij=1

∑
k∈V |ajk=1

sij + sik
2 ∀i|di ≥ 1 (D.7)

in which aij and sij denote the entries of row i and column j of the matrices A and M . The
value Mi =

∑
j∈V sij represents the importance of the node i and is used as a normalizing

constant together with the degree di of the node. If the degree of i is smaller than 1, wcc(i)
is zero.

Using equation D.7 , the weighted clustering coefficient for the graph G is calculated by:

WCC = 1
|V |

∑
i∈V

wcc(i) (D.8)

D.3 Betweenness

For the graph G = (V,E), the betweenness of a node i ∈ V is defined by:

b(i) = 2
(|V | − 1)(|V | − 2)

∑
j 6=i 6=k

σjk(i)
σjk

(D.9)

in which σjk denotes the total number of shortest paths between j and k, and σjk(i) is the
number of those paths that contain i. The node betweenness is scaled according to the total
number of paths not including i, such that b(i) ∈ [0, 1].

To determine the betweenness B of the graph G, we use the formula:

B = 1
|V |

∑
i∈V

b(i) (D.10)

D.4 Shortest path length

For the graph G = (V,E), the average shortest path length L is defined as follows:

L = 2
|V |(|V |+ 1)

∑
i≤j

lij
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in which lij represents the shortest path length between nodes i and j. The value for lij is
defined between 1, representing a direct path, and infinity for unconnected nodes.

D.5 Efficiency

The shortest path length is infinity if there are any unconnected nodes in the graph G =
(V,E). To correct for this, we define the efficiency of G as follows:

L = 2
|V |(|V |+ 1)

∑
i≤j

1
lij

The value for L lies between 0 and 1, in which 1 represents high efficiency (and therefore
short paths). 0 corresponds to low efficiency, i.e. long average path lengths.
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