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Abstract

High-precision systems often comprise many individual systems, each operating at its own frequency.
However, the vibrations from one system can be transmitted to another, which yields a response. In
high-tech applications where precision is crucial, such as compliant transmission systems, these responses
are undesired as they result in a loss in precision. Topology optimization can be employed to directly
include these unwanted vibrations in the design process of compliant mechanisms. However, the current
literature only concerns simple beam structures and suffers from issues such as premature convergence and
large intermediate-density areas. This thesis aims to employ topology optimization to design compliant
transmission systems whilst simultaneously attenuating the effects of unwanted external vibrations in the
form of base excitations. This is done by using an objective function capable of minimizing the displacement
response of a structure whilst not suffering from the aforementioned issues. The found objective function
relies on the principle of global minimization, which minimizes the largest displacements inside the structure
resulting from the applied excitation. An extension of the current research is done by only minimizing a
subset of the domain, obtaining a localized minimization whilst other areas of the domain are allowed to
exhibit larger responses. These two minimization principles are then applied to the design of a compliant
inverter mechanism, with local minimization considering two areas of interest: the entire mechanism area
and the regions around the input and output of the mechanism. The results show that global minimization
is able to obtain discrete results for a large range of frequencies. Local minimization of the mechanism
area yields lower displacement responses and, for higher frequencies, resulting topologies with displacement
behaviour similar to the principles of vibration absorption and vibration isolation. Decreasing the response
area to be minimized only to cover the input and output regions of the mechanism yields inconclusive results
in terms of obtaining lower displacement responses compared to local minimization of the mechanism
area. A proof of concept for designing a compliant transmission system whilst minimizing the response to
harmonic base excitations is established, demonstrating potential benefits for future research in this domain.
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1
Introduction

This report details the work of my Master of Science thesis. The goal of this research is to utilize topology
optimization to design compliant transmission systems that simultaneously mitigate the effects of unwanted
external vibrations in the form of harmonic base excitations. First, a background is presented to establish
the context and define the problem for this thesis. Next, a short overview of the research gaps in the current
literature is provided, which results in the motivation and goals of this thesis. Lastly, an outline is given for
the remaining part of this thesis.

Background
In this modern age, almost all equipment in high-tech engineering applications requires an increasing
amount of precision to manufacture new technologies at an increasingly smaller scale. The mechanisms
employed in these high-precision applications are often compliant mechanisms, such as compliant
transmission systems, which rely on elastic deformation to achieve motion or force transmission instead of
traditional joints and hinges [1]. This property allows them to provide highly accurate and repeatable motion
or force transmission, making them well-suited for precision instrumentation. High-precision systems,
which are used in, for example, the semiconductor industry or space applications, are often made up of a large
number of individual systems. Each of these individual systems operates at their own specified frequency.
These systems, however, are also connected to each other, which means that inevitably, the vibrations from
one system can be transmitted to another system. These vibrations can lead to a loss in precision, which
is why high-speed machinery sometimes suffers efficiency losses due to the need to wait for vibrations
to die out [2]. Mitigating or even eliminating the effects of unwanted vibrations is, therefore, a crucial
aspect of the design of mechanisms for high-precision environments. Common methods for mitigating
vibrations in such environments include vibration isolation, dynamic balancing, and vibration absorption.
Designing compliant transmission systems for these environments often involves problems that have several
constraints and might also conflict with each other. A design method for compliant mechanisms capable
of handling multiple constraints is that of structural optimization. In this thesis, the method of structural
optimization, specifically topology optimization, is employed. Topology optimization is the process of
determining the optimal placement of material within a given design domain in order to obtain the best
performance given a certain objective function. A common objective function is to optimize the structure to
obtain maximum stiffness given a certain load.

Research gaps
Whilst the current literature on topology optimization of compliant transmission systems is extensive, the
research on topology optimization of structures in dynamic environments often only concerns simple beam
structures. An extension to the design of compliant transmission systems in environments which are
disturbed by external vibrations is therefore missing. Furthermore, the research that is done also suffers
from several issues. The method of eigenfrequency optimization, for example, is computationally costly and
does not take into account the excitation source. Furthermore, objective functions that take into account
the excitation source often suffer from issues such as premature convergence when the excitation frequency
is higher than the first resonance of the initial domain or have resulting topologies that still contain a large
number of intermediate densities.
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2 1. Introduction

Motivation and goals
Mitigating or even eliminating the effects of external unwanted vibrations is a crucial aspect of the design
of mechanisms for high-precision environments and topology optimization is a promising design method of
directly incorporating these external vibrations into the design process.

The goals for this thesis will, therefore, be to utilize topology optimization to design compliant
transmission systems that simultaneously mitigate the effects of unwanted external vibrations. The
presented issues will, however, have to be overcome first, which will require the introduction of an objective
function which does not suffer from excitation frequency issues and has a minimized occurrence of
intermediate densities in the final result. For simplification, the external vibrations are applied as a harmonic
base excitation, and the problem is defined in a two-dimensional setting.

Outline
The remaining part of this thesis will include a more in-depth discussion of the information introduced in
this section, and the outline of this thesis is as follows: Chapter 2 will introduce the working principles of
compliant mechanisms, their applications, and their common design methods. To include the attenuation
principles directly into the design of compliant mechanisms, topology optimization is employed, the working
principles of which are introduced in Chapter 3. Chapter 4 outlines the state of the art of topology
optimization of both static and dynamically excited systems, which reveals a gap in the current research.
This gap is addressed in Chapter 5, where the scope of this thesis is outlined as well. Chapter 6 covers the
objective function employed to fill the research gap, after which several case studies are done in Chapter 7.
Lastly, chapters 8 and 9 contain the discussion and conclusion, respectively.
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Compliant Mechanisms

In this modern age, almost all equipment in high-tech engineering applications requires more and more
precision to manufacture new technologies at an increasingly smaller scale. State-of-the-art instruments
such as motion stages contain a vast number of moving parts, each of which can cause issues to occur during
operation, such as backlash, hysteresis, and unwanted vibrations. This is where compliant mechanisms come
in, a term popularized by Howell [1], which describes mechanisms that achieve motion or force transmission
by utilizing flexible members such as springs or beams that undergo elastic deformation instead of traditional
joints or hinges. In this chapter, the state of the art regarding compliant mechanisms in both static and
dynamic applications are introduced, together with their common design methods. The work of Howell et
al. [1] already provides several example applications, but as there are hundreds if not thousands of works
considering the applications of compliant mechanisms, only several examples will be provided.

Due to the lack of joints and hinges, compliant mechanisms offer several advantages over traditional
mechanisms. Firstly, these mechanisms can be designed to be more compact with fewer components,
resulting in reduced costs in both assembly and maintenance processes. Secondly, the absence of moving
parts eliminates sources of friction and wear, eliminating the need for lubrication and improving reliability
and lifespan. Moreover, compliant mechanisms can be designed to provide highly accurate and repeatable
motion or force transmission, making them exceptionally well-suited for precision instrumentation [1].

An example of a compliant mechanism is given in figure 2.3 [3], where the image on the left provides
the schematics of a displacement amplifier considering a ’classical’ design. The term ’classical’ denotes that
the movement of the joints is facilitated by rotational joints, as represented in the diagram by the circular
connections. On the right, the compliant equivalent of this mechanism, which is now a monolithic structure,
is given. The motion of the structure is then facilitated by the thin, flexible members located at similar
points to the classical mechanism. These members are also called flexures, and the deforming ability of these
members allows the mechanism to achieve the desired movement.

(a) The rigid-body version with rotational joints
.
.

(b) The mechanism of figure 2.1a but as a monolithic
structure, with flexure hinges instead of rotational joints

Figure 2.1: A mechanism with a fixed support at the bottom, which converts forces or displacements from the
input to the output which is in an orthogonal direction [3].

3



4 2. Compliant Mechanisms

Despite compliant mechanisms offering several advantages over conventional mechanisms, they do,
however, also have some disadvantages [1]. In order to provide sufficient motion inside the mechanism,
flexure joints are often made as thin as possible. This comes with a drawback, however, of becoming a
location of stress concentration, which is not desired as, when a force is applied to the structure, the input
energy will be consumed and stored as elastic strain energy, which in turn reduces mechanical efficiency [4].

2.1. Static applications
Compliant mechanisms have found applications in various fields, presenting their versatility and benefits.
Examples of these are fields such as adaptable structures, medical applications, tools, transportation
components, micro-electro-mechanical systems (MEMS), or robotics [5]. Some notable examples are the
applications of compliant mechanisms in soft robotic systems [6], a compliant solar array mechanism that
can be packaged using limited space during launch and deployed in space [7], and a six-degree of freedom
positioning system capable of micrometer positioning developed by Park and yang [8]. Images of these
applications are given in figure 2.2.

(a) A compliant soft robotic gripper [6]
.

(b) A compliant solar array [7]
.

(c) A compliant precision positioning
system [8]

Figure 2.2: Several examples of static applications of compliant mechanisms found in literature.

2.2. Dynamic applications
The previous examples considered static applications of compliant mechanisms, where the excitation load
remains constant in magnitude and does not change over time. Compliant mechanisms have, however, also
found applications for problems where a periodic load is applied, where the magnitude remains constant,
but the load changes at equal time intervals. Examples of such applications are given in this section.

2.2.1. Dynamic displacement amplification
The displacement amplifier given in figure 2.3 considers an excitation force that is constant, but this load can
also be changed to a periodic load. This is exactly what Le Letty et al. [9] did to construct a positioning
stage actuated by piezoelectric actuators, an image of which is given in figure 2.3a. Tanksale et al. [10]
also considered a compliant mechanism designed to amplify the dynamic input displacement, but used an
intermediate mass which was actuated close to or at its natural frequency. This allowed for the use of the
vibration absorber effect, which resulted in an amplification of the output displacement. This effect was
conventionally used to reduce vibrations in a system [11], but was in this case employed to amplify the input
displacement. A schematic of the mechanism designed by Tanksale et al. [10] is given in figure 2.3b.
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(a) A positioning stage containing three compliant
dynamic displacement amplifiers [9]

(b) A compliant dynamic displacement amplifier utilizing
an intermediate mass [10]

Figure 2.3: Examples of compliant dynamic displacement amplification found in literature.

2.2.2. Frequency amplification
Besides amplifying input displacements, compliant mechanisms can also be designed to manipulate the
relation between input and output frequencies. In Farhadi et al. [12], a compliant transmission mechanism is
designed to multiply the frequency of a reciprocating input motion. The obtained design managed to double
the input frequency at the output, and the concatenation of this mechanism also provided another doubling
in output frequency, yielding a multiplication ratio of four.

Figure 2.4: A double slider mechanism capable of amplifying the output frequency with respect to the input
frequency (a) and the accompanying input-output displacement relationship (b) [12].

The way this mechanism works is by taking advantage of the singularity properties of a double-slider
mechanism, an image of which is shown in Figure 2.4. Once the output block reaches its vertical limit, the
kinematic chain reaches the boundary of the workspace, the specific configuration of which is called limb
singularity [13].

2.2.3. Adjusting eigenfrequencies
The previous sections provided examples of systems that exploited the natural frequencies of the system in
order to achieve their desired performance. For a lot of high-performance systems, however, it is actually
more important to ensure that the natural frequencies of the system do not coincide or lie too close to the
bandwidth at which the system is required to operate. If the natural frequencies of the system align with the
operating frequency range, resonance can occur, which could cause the system to fail drastically if the system
is not designed for the resulting load intensity.

Designing compliant mechanisms for specific eigenfrequencies or mode shapes can be done during
the design process using methods such as the Pseudo Rigid Body Modelling method (PRBM) [14] [15]
which will be outlined in section 2.3, or using a Finite Element Analysis (FEA) as a modelling method [16].
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Compared to the PRBM method, the FEA method is still the most accurate method, although it does cost
more computational effort [17]. FEA is most often used after the mechanism has been developed; however, by
utilizing commercially available finite-element software such as ANSYS, the eigenfrequencies of the system
can be determined.

2.2.4. Handling disturbances
Chapter 1 mentioned that vibrations produced by one system can be transmitted to another system. Figure
2.5 gives a visualization of this vibration transmission.

Figure 2.5: An example of how structures in the same system are not rigidly connected but always contain a
certain amount of stiffness and damping. This allows for the transmission of vibrations at a frequencyω from
one structure to another.

This behaviour can occur when the system is in use or when it is stationary. When the system is in
use, a loss in precision will occur. In the worst case, the disturbance frequency matches a resonance of the
system, which yields a displacement response that might damage the system. Shifting the resonances of
the mechanism, however, does not necessarily minimize the displacement response of the system at a given
frequency. The objective of this thesis will, therefore, be to investigate whether a mechanism that transmits
forces or displacements can be designed whilst simultaneously optimizing the mechanism against unwanted
vibrations in the form of base excitations. Several principles can be applied to mitigate these vibrations,
which will be discussed in this section.

Vibration isolation
The principle of vibration isolation can be broadly defined as the process of minimizing the transmission
of vibrations from one component to the other. The capability of a system to do this is also often defined
as ’transmissibility’. To visualize this, a simple one-degree-of-freedom mass-spring-damper system can be
constructed as given in figure 2.6a. This system is excited by a harmonic excitation y(t ). The transmissibility
is then defined as x(t )

y(t ) , and its resulting frequency response is given in figure 2.6b.

The initial straight line indicates that all vibrations are transmitted one-to-one to the system. As the
frequency approaches a resonance frequency, the transmissibility increases, and these are maximal at the
resonance frequency, being only limited by the amount of damping in the system. Next, a sharp decline in
transmissibility follows, showing that the transmission of vibrations is minimized for higher frequencies. In
order to maximize the effectiveness of the isolation, the resonance frequency of this system is preferred to be

as low as possible to minimize the transmissibility over a large frequency range. Given that ωn =
√

k
m , this

can be achieved by a combination of having a relatively low stiffness k between the mass and the base and
a relatively high mass m for the mass itself. The extent to which this resonance frequency can be lowered
is often limited for passive vibration isolation systems such as this, but active vibration isolation systems
[19], which include actuators which are actuated by a control sequence, can often achieve much better
performance. Active vibration isolation is, however, beyond the scope of this thesis.
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(a) Mass-spring-damper system (b) Transmissibility plot [18]

Figure 2.6: A mass-spring-damper system and its accompanying transmissibility plot. The decaying response
defines the principle of vibration isolation.

Dynamic balancing
Dynamic balancing can be considered the process of designing, or sometimes modifying, a mechanism in
such a manner that vibrations caused by an imbalance in rotating components are reduced or eliminated.
This imbalance might be created due to the centre of mass of the mechanism not aligning with the axis of
rotation, which will result in a centrifugal force that generates vibrations. These unwanted vibrations will
then, in turn, affect the accuracy of the system if its application is based on precision.

There are several methods to achieve dynamic balancing in compliant mechanisms. One commonly used
approach is the duplicate mechanism principle. This method adds a second mechanism that is identical to
the first but rotates in the opposite direction. By connecting these two mechanisms, the shaking forces and
moments cancel each other out, resulting in dynamic balancing [20]. An example of this method is shown in
figure 2.7, where a double pendulum is dynamically balanced using axial and mirror-symmetric mechanism
duplicates. Another method is the principle of the counter mass, where a counter-rotating mass is added to
create a counter-inertia effect. This counterbalance helps achieve dynamic balance in the mechanism [21].

Figure 2.7: A double pendulum system which is dynamically balanced by means of an identical but inverted
double pendulum system [20].
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Vibration absorption
Whereas dynamic balancing mostly concerns rotating systems, a similar principle to the counter mass
method is found for linear motion systems. This principle is known as vibration absorption, which involves
an added mass designed to ’absorb’ the vibrations of the mass of interest. An example of a vibration absorber
is given in figure 2.8a.

(a) A double mass-spring system containing a main mass
of interest and an absorber mass

(b) The frequency response of the system of figure 2.8a
with and without the absorber mass [22]

Figure 2.8: An example diagram and frequency response of a vibration absorption system.

In figure 2.8a, the mass of interest is the main mass mm. This mass contains a resonance which is
represented in figure 2.8b by the red dashed line. In order to suppress the vibrations of this mass of interest
at this resonance frequency, an absorber mass ma is added to the system. The mass and stiffness of this
absorber are tuned such that the response of the mass of interest produces an anti-resonance at the frequency
of interest instead of a resonance. The resulting response is given by the black line in figure 2.8b and shows a
zero displacement response at the same resonance frequency. In practical systems, the inclusion of damping
will not yield a zero displacement response but will result in minimized displacements.

All of these methods, however, do come with the drawback of adding mass and inertia to the system. This
increased mass and inertia will require more power to drive and control the mechanism, as well as increase
the material costs [23]. Among these methods, the duplicate mechanism principle generally adds the least
mass to the initial system according to Van der Wijk et al. [20]. Van der Wijk et al. [24] attempted to mitigate
this drawback by introducing a method of designing a mechanism where all elements contribute to both
the motion of the system as well as the dynamic balance. This approach eliminates the need for additional
masses or counterbalances and was named the inherently dynamically balanced mechanism method. The
common way of designing a dynamically balanced mechanism is to analyze the kinematics of the system first
and determine the balancing of the system afterwards. This results in the issue where a part or even the entire
design process has to be started anew if the balancing solution is not applicable. In Van der Wijk et al. [24],
two methods are derived for the synthesis of inherently dynamically balanced mechanisms. One with the
method of linearly independent linear momentum, and one with the method of principal vector linkages.

Considering dynamic balancing compared to vibration isolation, dynamic balancing does have an
advantage. According to Weeke et al. [25], the principle of dynamic balancing is considered superior over
vibration isolation when considering oscillating systems subjected to environmental disturbances due to
being independent of both the frequency and amplitude of the external motion. Vibration isolation, on the
other hand, focuses on reducing the transmission of vibrations from one component to another but may not
address the inherent unbalance in the system.
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2.3. Compliant mechanism design methods
With the applications and advantages of compliant mechanisms presented, the design methods used to
construct these mechanisms can be outlined. The process of designing compliant mechanisms can be
approached in various ways, depending on the specific goals and requirements of the mechanism. Gallego
and Herder [26] summarized the synthesis of compliant mechanisms in three main approaches: the
structural optimization approach, the building blocks approach, and the kinematic approach. The structural
optimization approach will be discussed further in section 3.

Regarding the other two approaches, the building block approach is a conceptual design procedure
that is based on the instant centres [27]. This method concatenates basic building blocks to construct a
working mechanism. This does mean, however, that this design becomes quite large relatively fast, as a lot of
individual parts are connected together. The kinematic approach can be further divided into the Rigid-Body
Replacement method and the Freedom and Constraint (FACT) method. The FACT method is a synthesis
method that maps a set of geometric entities in the freedom space into a set of geometric entities in the
constraint space to find solutions for the design problem [28]. However, both methods are rarely or never used
in the dynamic analysis of compliant mechanisms due to the inability to handle the complexity of dynamics.
Therefore, only the Rigid-Body Replacement method will be discussed in this section.

2.3.1. Rigid-Body Replacement method
The Rigid-Body Replacement Method is a procedure that works by, as is evident from the name, constructing
a rigid-body mechanism that satisfies the desired functionality and replacing it with its compliant
counterpart. This replacement can be done using flexure joints or the Pseudo-Rigid Body Model (PRBM).
When considering compliance within compliant mechanisms, there are two types: lumped compliance and
distributed compliance. In lumped compliance, the deformation is concentrated in one particular part of the
mechanism, and in distributed compliance, the deformation is distributed among a larger part of or even the
entire element.

Flexure joints
Lumped compliant flexure joints can be defined as a region in a material that allows for large deflections
relative to the other stiffer adjacent regions, normally acquired by geometrical characteristics [26]. Simple
flexures consist of notches of various profiles and represent hinges. Figure 2.9a shows an example of different
profiles. These notch-type flexure hinges are commonly used for small displacements but can also be
designed for large deformations. In distributed compliant flexure joints, the designs can be much more
complex, which allows them to behave as other mechanisms such as revolute joints, prismatic joints, or
universal joints, as shown in figure 2.9b.

(a) Notch-type flexure hinges: (a) corner fillet, (b) circular,
(c) parabolic, (d) hybrid

(b) Complex flexure joints: (a) universal joint, (b) revolute
joint, (c) and (d) prismatic joints

Figure 2.9: An overview of flexure joints commonly used in the design of compliant mechanisms [26].

Pseudo-Rigid Body Model (PRBM)
The Pseudo-Rigid-Body Model (PRBM) is a method that emulates the behaviour of a compliant mechanism
as a rigid-body mechanism. The kinematics of this rigid-body model can then describe the path of the system,
and the force properties can be approximated by a spring, which represents the compliant mechanisms’
stiffness. This method provides a quick and easy way to test multiple concepts in the early stages of the
design, due to the simpler analysis based on kinematics. While this simplification allows for easier analysis, it
does have some disadvantages, such as neglecting local stress concentrations. Furthermore, the accuracy of
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this method can be limited due to the simplified material behaviour. An example for both lumped compliance
and distributed compliance is shown in figure 2.10, where it can be clearly seen that the compliant member
is modelled as a combination of a link and a spring.

(a) Lumped compliance cantilever (left). PRBM equivalent
(right)

(b) Distributed compliance cantilever (left). PRBM
equivalent (right)

Figure 2.10: Examples of the Pseudo-Rigid-Body Model (PRBM) equivalents of both lumped and distributed
compliant cantilever beams [29].

2.4. Concluding remarks
This chapter presents the properties and applications of compliant mechanisms in static and dynamic
environments, together with common design and analysis methods. Compliance mechanisms have a distinct
advantage over traditional link and joint systems, especially in precision mechanism applications. Compliant
mechanism design is, therefore, highly relevant to this thesis. Despite its advantages, however, their inherent
property of being thin and compact allows for local stress concentrations to appear. Using Finite Element
Analysis, these issues can be identified and mitigated where necessary. This does, however, add additional
steps to the design process.

For the applications in dynamic environments, there seems to be a clear distinction between utilizing
and preventing vibrational behaviour. Amplifying the dynamic displacement utilizes resonance behaviour
to amplify the output displacement, while vibration isolation attempts to minimize resonance behaviour as
much as possible. Frequency amplification, on the other hand, utilizes a specific kinematic relation to achieve
its goal. Finally, the dynamic balancing method seems to be more advantageous to vibration isolation.

The PRBM method has been presented as an effective method for designing compliant mechanisms for
static applications and for dynamic properties such as eigenfrequencies. This effectiveness comes from the
simplification of the material behaviour inside the mechanism. While this greatly reduces computational
effort, it is less accurate than finite element methods and will struggle with complex designs that have more
intricate layouts or are subjected to more requirements. The mentioned third synthesis method of structural
optimization is a technique which is able to overcome these disadvantages for compliant mechanism design,
which will be discussed in the following chapter.
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Topology optimization: formulation

Structures in engineering applications these days are getting more and more complex. There is an increasing
demand for performance measures in both static and dynamic environments, on which multiple constraints
such as size or weight can be subjected. In the high-tech industry, semiconductors are getting smaller and
smaller, thus requiring increased precision of the equipment used to construct them whilst simultaneously
increasing in size to increase production efficiency. For these problems with multiple constraints, topology
optimization offers a structured method of providing an optimal design.

In the early stages of the design process, the design space and performance requirements of the
mechanism are usually known, but coming up with a preliminary design is sometimes difficult. For compliant
mechanisms, as explained in section 2.3.1, a kinematic analysis can be done using the PRBM method.
This process, however, is often trial and error, which can be time-consuming and increase costs. Also,
it may be that some or even several requirements are in conflict with each other. These conflicts might
be solvable by a designer, but the problem might be too difficult, for example, when static and complex
dynamical requirements start conflicting. Furthermore, assuming these issues do not occur, it might be
that a certain constraint is added later in the design process due to a change or overlooked problem.
Adding an extra constraint often requires a restart of a large part of or even the entire design process.
Topology optimization offers engineers a systematic method to achieve an optimal design for a given problem
subjected to constraints in the early stages of the design process. Having this preliminary design can speed
up the design process tremendously, increasing efficiency and reducing costs.

In the general sense, topology optimization is the process of determining the optimal distribution of
material within a given design space to obtain the maximum desired performance. It was first introduced by
Bendsøe and Kickuchi [30] as the homogenization method and was popularized by Bendsøe and Sigmund
[31]. Before the introduction of topology optimization, this area of structural optimization was mainly
focused on size optimization. Currently, the area of structural optimization can be categorized into three
categories: size, shape, and topology optimization. These are visualized in figure 3.1.

Figure 3.1: The three categories of structural optimization: size optimization, shape optimization and
topology optimization for their initial structure (left) and optimized structure (right) [31].

11
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In figure 3.1, size optimization is defined as optimizing the cross-sectional area of the utilized truss
members. Shape optimization covers the shape of the holes of the initial structure. These cannot change
in number or area, but their shape defines the optimized solution. Shape optimization, therefore, has a fixed
topology, but the domain varies. Lastly, there is topology optimization which changes the entire design space
to arrive at an optimum topology. In most optimization problems, the structure is not fixed a priori, which
means that an optimal topology and shape are often required. Dealing with these constraints during the
design process is often challenging, which is where topology optimization comes in.

As for the methods of performing topology optimization, the most prominent design parametrization
approaches are density-based topology optimization and level-set-based topology optimization. Density-
based topology optimization is a method where the design domain is divided into small cells, and
each cell is assigned a density value indicating the material distribution. Level-set-based topology
optimization represents structural boundaries using level-set functions, which require careful initialization
and manipulation. Considering vibration problems, a recent study done by Keur [32] on minimizing
eigenfrequencies of a beam structure suggests that the density-based approach holds the advantage over the
level-set approach. While the level-set approach is capable of handling more intricate vibration problems, it
requires more time and effort to set up properly. On the other hand, the density-based approach does trade
performance, in this case, the capability of achieving lower eigenfrequencies, but offers a reduction in overall
time and effort needed to achieve results. On top of that, the density-based approach offers a significant
advantage in terms of computational efficiency. Due to these advantages, this thesis will utilize the method
of density-based topology optimization.

3.1. Design parametrization
The design parametrization approach of density-based topology optimization method was first introduced
by [33], and has gained significant popularity over time. As the name implies, this method revolves around
the density of the material and, specifically, the density of each of the individual elements. Figure 3.2 provides
a visualization to better understand this method.

(a) Design domain (b) Finite element grid (c) Final topology

Figure 3.2: Design parametrization using density-based topology optimization. The state of the domain is
expressed as a function of the individual element densities within the finite element grid, which allows for
the definition of ’solid’ and ’void’ regions.

As an example, an arbitrary design domain is given in figure 3.2a. This domain is constrained at the
left boundary and has a force with magnitude f̂ applied to it in the middle of the right edge. Next, the
domain is discretized into a grid of finite elements as shown in figure 3.2b. Each element can now be given
its own density, which can vary between the values 0 and 1, where 0 indicates a void (no material), and 1
represents a fully solid element. The densities between these defined solid and void values however, or the
so-called intermediate densities, do not have a direct physical meaning as a material can not have only half
density. Therefore, this thesis refers to these pseudo-densities as the design variables xe . Figure 3.2c shows
the resulting topology if the objective is to maximize the stiffness of the structure to support the applied static
load. It can be noted that several of these design variables are still at intermediate densities, represented in
grey. Preferably, a binary design is obtained, which only contains void or solid elements as these have direct
physical meaning, or in other words, an interpretable design is preferably obtained. In the coming sections,
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however, it will be explained that this is not always obtainable, yet measures can be taken to come close to a
binary result.

Furthermore, the white circles visible on the intersections between the elements in figure 3.2b are referred
to as nodes. Each node then contains two degrees of freedom, one in the x-direction and one in the
y-direction. The displacements of these individual degrees of freedom ui combined result in the global
displacement vector u, which describes the displacement of the structure as a whole. Figure 3.3 gives a
visualization of these degrees of freedom.

Figure 3.3: An example visualization of the degrees of freedom present for every node in the 2-dimonsional
system utilized in this thesis.

3.2. Optimization problem formulation
To solve an optimization problem, the problem must be formulated with an objective function and possibly
additional constraints. In engineering and optimization problems, the objective function represents the
quantity that needs to be maximized or minimized to achieve the desired optimized result. A typical objective
function used commonly in literature for topology optimization of structures subjected to a static force is
the objective of minimum compliance. The goal of this objective function is to optimize the topology of a
structure to acquire maximum stiffness properties in a specified direction. This higher stiffness will then, in
turn, result in smaller displacements of the structure when subjected to the applied static load. This objective
function is often used in the minimization sense as the compliance can be seen as the weighted average
displacement in the direction of loads [34]. The compliance is a function of the design variables x mentioned
in section 3.1, and its formulation is given in equation 3.1.

min
x

: C (x) = fT u(x) (3.1)

As can be seen, the force vector f is commonly not a function of the design variables. The vector
u(x) represents the displacement vector which contains all displacements of the degrees of freedom of the
structure. Another common objective function is that of minimum displacement of a certain single or a set
of degrees of freedom un . These degrees of freedom are often retrieved from the displacement vector u(x) by
using a selection vector l which is a vector full of zeros and only values of one at the indices of the degrees of
freedom of interest. The formulation for this objective function is given in equation 3.2

min
x

: un(x) = lT u(x) (3.2)

Note that this objective function is independent of the magnitude of the force that is applied to the
structure. The objective function formulation is not limited to single objective functions however, as weighted
linear combination functions are often used to combine several functions to obtain a multi-objective
optimization [35] [36] [37].

Using only an objective function, however, is not a ’well-defined’ problem definition. Nothing is stopping
the optimization from, for example, adding a substantial amount of material to resist deformations or
removing all material when the objective is to maximize the displacements. Therefore, there is a need for
constraint functions that impose certain limitations on the design problem. The most common constraint
that is used in practically all topology optimizations is the volume constraint. This constraint ensures that
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the design variables, which vary from 0 to 1, do not exceed a certain threshold when added together. In other
words, the volume constraint determines the amount of solid material and void space allowed in the design.
This is often defined by a volume fraction V̄ . Furthermore, a minimum value xmin is added to ensure that
the design variables do not become zero, which will make the system matrices singular. Using the objective
of minimum compliance from equation 3.1, a generalized formulation for a topology optimization including
these constraints is given in equation 3.3.

min
x

: C (x) = fT u(x)

subject to : V (x) ≤ V̄

g (x) ≤ ¯g (x)

0 ≤ xmin ≤ x ≤ 1

with u(x) obtained from : K(x)u(x) = f

(3.3)

It can be noted that an extra function g (x) is present in this formulation. This is to represent additional
constraints which may come in any form. The mentioned static compliance, for example, can also be
implemented as a specific requirement constraint, so as not to exceed a certain value.

3.3. Design regularization
Simply defining a design domain, dividing it into elements and starting the optimization, however, will not
necessarily yield properly defined topologies. If the objective is, for instance, to maximize the stiffness of a
structure, the optimizer will create regions with alternating solid and void elements, which is also known as
’checkerboarding’ due to its checkerboard-like structure [38] [39] [40]. These regions will have artificially high
stiffness, which satisfies the goal of the optimizer yet yields designs which would not be feasible to produce.
Figure 3.4a shows a topology which exhibits this checkerboarding behaviour.

(a) Without density filtering (b) Including density filtering

Figure 3.4: Topology optimization of a minimum compliance problem with and without density filtering.

In order to remedy this problem, the design variables can be filtered using a density filter. The result of
this filter is shown in figure 3.4b, which is the same problem as figure 3.4a but now produces a topology which
is feasible to produce. The way the density filter works is similar to the commonly used Gaussian blur used
in image processing [41]. The main principle behind this function is to modify the design variables xe to be
a weighted average of the design variables within a certain neighbourhood radius r . This method was first
introduced by Bruns and Tortorelli [42] and its formulation is given in equation 3.4. Note that the density
filter radius r also defines the minimum member size of the structure.

x̂e =
∑

i∈Ne Hei xi∑
i∈Ne Hei

, (3.4)

where Hei is a weight factor given by:

Hei = max(0,rmin −∆(e, i )), (3.5)

where ∆(e, i ) is the center to center distance from element i to element e and rmin the filter radius. From
equation 3.5 it is clear that the weighting is linearly decaying. As the elements within the specified radius are
further away from element i , the weighting effect becomes smaller. A visualization of this effect for filter radii
r = 2 and r = 3 is given in figure 3.5.
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(a) Initial domain (b) Density filtering with r = 2 (c) Density filtering with r = 3.

Figure 3.5: A visualization of the impact of the density filter radius r on a single element.

From these figures, it is clear that the value of the initial solid design variable gets spread out across
the region defined by the filter radius. It can be noted that for both results, the centre element is not fully
solid anymore as the total volume fraction in this filter domain is kept similar, and the material is spread out
linearly over the filter radius.

The minimum value for the density filter r needed to remedy the checkerboarding behaviour is r =2. In
this thesis, it will be desirable to provide the optimizer with as much freedom of design as possible. Therefore,
a larger filter radius will not be necessary, as this will also influence the minimum member design which
might hinder some interesting intricate design properties. One last important aspect to note is that these
obtained ’filtered design variables’ are the variables x̂e for which the optimum is found and are, therefore,
also the variables which are plotted to show the obtained topology.

3.4. System matrices
To solve for the objective functions as given in section 3.2, almost every case requires some form of solving
for the displacements within the system. To solve for these displacements, the equation of motion can be
constructed, of which its most general form is given in equation 3.6. A further explanation of how the second
equation is obtained is given in section 4.2.

K(x,ω)u(ω) = f(ω)

K(x,ω) = K(x)+ jωC(x)−ω2M(x)
(3.6)

The matrices K(x), C(x) and M(x) represent the stiffness matrix, damping matrix and mass matrix
respectively. For the static case, ω will be equal to zero, and the damping and mass terms will disappear
from the equation. Neglecting the damping matrix for now, equation 3.6 reveals that the stiffness and mass
matrices are required to solve for the displacements, unless ω=0 where only the stiffness matrix is required.
This section will elaborate on the methods used to construct these matrices and how these methods have
developed over time.

As stated earlier, the design domain is divided up into a finite element mesh, which conveniently uses
identical elements which will have the same material properties such as an element stiffness matrix K0

e and
element mass matrix M0

e . What this allows for is to construct the stiffness and mass matrices of the entire
design domain as a sum of all the filtered design variables x̂e from section 3.3 multiplied by the element
stiffness matrix and element mass matrix respectively. This formulation is given in equation 3.7.

K(x) =
NE∑
e=1

x̂e K0
e , M(x) =

NE∑
e=1

x̂e M0
e , 0 < x̂min ≤ x̂e ≤ 1, (3.7)

The condition x̂min ≤ x̂e is added to ensure that the design variables do not achieve the value of zero, as
this will make the system matrices singular. A typical value of x̂min is 1e−3. Using this formulation in topology
optimization, however, will yield a large number of design variables, which will remain at a value between
0 and 1, as they are not ’forced’ towards a binary 0-1 design. Areas which contain large amounts of these
so-called intermediate densities are also known as grey areas. In equation 3.7 the element densities are used
in a linear fashion, but they can also be replaced by some arbitrary function f (x̂e ). These functions are called
material interpolation functions, and several of them will be discussed in the next section.
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3.5. Material interpolation schemes
In order to obtain a binary design which contains only material and void elements, the design variable x̂e in
equation 3.7 can be replaced with some arbitrary function f (x̂e ) which penalizes the design variables in order
to force the intermediate densities to either material or void. A generalized version of equation 3.7 is given in
equation 3.8.

K(x) =
NE∑
e=1

f (x̂e )K0
e , M(x) =

NE∑
e=1

f (x̂e )M0
e , 0 < x̂min ≤ x̂e ≤ 1, (3.8)

Throughout the years, several of these material interpolation functions have been introduced and the
most common methods used in topology optimization considering harmonics will be mentioned in the
coming subsections. Note that all interpolation functions can be used for either the stiffness interpolation
or the mass interpolation and these do not necessarily have to be the same interpolation function.

3.5.1. SIMP method
One of the most popular interpolation methods is the method of Solid Isotropic Material with Penalization
(SIMP) method which was introduced by Rozvany et al. [43]. To enforce the binary representation of solid
and void, a penalization term p is introduced. This yields the formulation given in equation 3.9, which will
be henceforth referred to as ’standard SIMP’.

f (x̂e ) = x̂p
e , p = 3 (3.9)

The most common value for p is also given, which is p=3. If this this function is used for the mass
interpolation function, the parameter p is often exchanged for the letter q to create distinction between the
two. Without the specification of x̂min ≤ x̂e however, this method is allowed to reach a value of 0.

3.5.2. Conditional SIMP
As the design variables are penalized and come close to zero, one can note from equation 3.6 that the resulting
low stiffness will also yield a resulting high displacement when subjected to the same force excitation
magnitude. Pedersen [44] therefore introduced a conditional function for the stiffness interpolation, which
limits the design variables once a certain threshold value has been reached. This function is given in equation
3.10.

f (x̂e ) =
{

x̂3
e for 0.1 ≤ x̂e ≤ 1

x̂e /100 for xmin ≤ x̂e ≤ 0.1
(3.10)

The threshold value for this function is set at 0.1 for this problem, but this value is often chosen by trial
and error. This threshold however, also creates a discontinuity at the value of 0.1, which was not found by
Pedersen to result in any issues, but other design problems might exist where this discontinuity is not desired.
A similar function was adopted by Tcherniak [45] but used for the mass interpolation instead, where the mass
of the element was set to zero as the design variable crossed a certain threshold x̂ethr . This function is given
in equation 3.11.

f (x̂e ) =
{

x̂e for x̂e > x̂ethr

0 for x̂e ≤ x̂ethr

(3.11)

One last version of the conditional SIMP function which will be introduced is the one from Du and
Olhoff [46], who introduced a mass interpolation function based on the version of Tcherniak [45] due to the
aforementioned issue of discontinuity present at the threshold value x̂ethr for the conditional SIMP method.
Du and Olhoff, therefore, introduced a function which would provide a continuous interpolation model for
these lower values of intermediate densities. This function is given in equation 3.12. Whilst a negligible
influence on the final 0-1 design was found for this approach, the discontinuity issue was resolved with this
function.

f (x̂e ) =
{

x̂e for x̂e > 0.1

c1x̂6
e + c2x̂7

e for x̂e ≤ 0.1
, c1 = 6e5, c2 =−5e6 (3.12)
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3.5.3. Modified SIMP
In order to address the issue of element density approaching zero in the standard SIMP method, Sigmund
[47] proposed a modified version of this method which includes the minimum value x̂min. Including this term
ensures that the design variables remain nonzero to avoid a singularity of the system matrix. The formulation
is given in equation 3.13.

f (x̂e ) = x̂min + (1− x̂min)x̂p
e , p = 3, ∈ [0,1] (3.13)

3.5.4. SIMPlin
Another version of SIMP, which is essentially a modification of the modified SIMP version, is the function
proposed by Zhu et al. [48], which adds a small linear part to the higher-order SIMP function. For the stiffness
interpolation, this ensures that there is still stiffness present as compared to the mass of the same element
(given that a linear function is used for the mass interpolation) for very small values of the filtered design
variables x̂e . In this thesis, this function is defined as SIMPlin, and the formulation is given in equation 3.14.

f (x̂e ) = x̂min + (1− x̂min)(0.1x̂e +0.9x̂p
e ), p = 3, ∈ [0,1] (3.14)

3.5.5. RAMP
The Rational Approximation of Material Properties (RAMP) was introduced by Stolpe and Svanberg [49] as an
alternative to the standard SIMP method from equation 3.9. They concluded that the standard SIMP function
does not necessarily result in a concave function no matter how large the penalization factor p is chosen. For
this reason, a new method was devised, which is given in equation 3.15.

f (x̂e ) = x̂e

1+p(1− x̂e )
, p = 3 (3.15)

This function actually contains a non-zero slope for design variables approaching zero. This prevents
them from rapidly approaching zero, which could, in turn, lead to numerical instabilities or the same problem
mentioned in section 3.5.2.

3.5.6. PIS
One last interpolation scheme which will be introduced is the one presented by Zhu et al. [48], who
introduced a Polynomial Interpolation Scheme (PIS). This is a polynomial function which does not rely on a
conditional property and, therefore, does not contain any discontinuities. Furthermore, this scheme contains
a penalization factor p and an adjustable parameter α which allows for more control over the interpolation
model if the penalization factor is increased. In this thesis, the value ofα is set at 16, and the resulting function
is given in equation 3.16.

f (x̂e ) = α−1

α
x̂p

e + 1

α
x̂e = 15

16
x̂p

e + 1

16
x̂e , p = 5 (3.16)

3.5.7. Comparison of methods
Whilst many more interpolation schemes exist, or can be constructed, the goal of this thesis will not be to
provide an in-depth study of the differences between the used material interpolation function and which
performs best for the given problem. Furthermore, there is no one ideal material interpolation method
which works best for all design problems, and therefore a choice of material interpolation will have to be
made. This is especially the case since the final case study proposed in chapter 7 will contain various forms
of excitation which not all have been used in combination with all presented functions. This study on which
material interpolation function will be used in this thesis is conducted in chapter 6. The performance of each
function is measured by its ability to obtain discrete designs for the given design problem. It was found that
the combination of PIS (equation B.1) for the stiffness interpolation and Standard SIMP (equation 3.9 are the
most appropriate choices for the introduced case study.
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3.6. Optimizer
The optimization approach adopted in this thesis is a gradient-based optimization. This means that the rate
of change of the objective function is utilized in order to find optima. This works specifically well for topology
optimization given that it scales well for many design variables, as often found in topology optimization, and
specifically continuous design variables, which are obtained by using the interpolation methods mentioned
in the previous section.

Using these gradients, several optimization algorithms exist which can be exploited. The focus of this
thesis does, however, not lie in the optimization strategy itself, but more on the optimization problem
formulation and, therefore, will make use of the widely adopted Method of Moving Asymptotes (MMA).
Introduced by Svanberg [50], the Method of Moving Asymptotes (MMA) is a method which is capable of
handling a large number of design variables as well as multiple constraints, making it very suitable for the
type of optimization employed in this thesis.



4
Topology optimization: state of the art

With the methodology behind topology optimization outlined, the state of the art of topology optimization
applications for both static and dynamic problems can be examined. This chapter will discuss the
methodology for statically loaded compliant mechanism design using topology optimization, as well as
provide the adaptations needed to solve problems which consider dynamic excitation loads. Furthermore,
the types of dynamic excitation problems and their challenges will be outlined as well. By understanding the
principles and challenges of topology optimization in both static and dynamic environments, the gaps in the
literature, together with the scope of this thesis, can be identified.

4.1. Static applications
Since its introduction, topology optimization has been applied to a wide range of structural design problems.
The simplest example, however, is that of the minimization of static compliance. The formulation for this
objective was already given in equation 3.3 and the goal is to optimize the topology of a structure in order to
acquire maximum stiffness properties in a specified direction by minimizing the static compliance (equation
3.1). This can be done for multiple forms of static excitation loads as shown in figure 4.1.

(a) Single force (b) Multiple forces (c) Distributed force

Figure 4.1: Examples of a static compliance minimization under multiple forms of static excitation loads.

These load types show the most basic examples of how topology optimization considering a static
load can be used. A real-world application for the distributed force load, for example, is the soft robotics
application mentioned in section 2.1. Due to the fragility of the objects, the soft robotic grippers often
cannot work with the point loads that are commonly used in topology optimization. A distributed pressure
load is therefore required for this optimization problem. Modelling for unknown objects, however, can be
challenging [51].

19
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4.1.1. Force-based inverter
The examples of the previous section presented the use of topology optimization for simple clamped beam
structures subjected to static loads. In order to construct compliant mechanisms using topology optimization
as mentioned in section 2.4, a more complex problem condition needs to be formed. For the final case study
in this thesis it will be preferable to have a simple problem which contains all necessary components in terms
of load applications and boundary conditions, without much more. The most common example regarding
topology optimization of compliant mechanisms which satisfies these criteria is the inverter problem [52]
[53] [31].

The inverter problem is characterized by an input excitation, which results in an output motion in the
inverse direction. The advantage of this problem specifically is that it contains the most basic requirements
for a compliant mechanism, being a fixed boundary, an input excitation point and an output excitation point.
These excitations can then be defined in different forms, such as either a displacement or a force. Figure 4.2
gives the design domain for the topology optimization a force-excited inverter mechanism in its most basic
form as proposed by Bendsøe and Sigmund [31].

(a) Load case 1 (b) Load case 2

Figure 4.2: The two load cases required for the topology optimization of a force-excited inverter mechanism.

As can be seen from this figure, there are two design domains present, and thus two problems to solve.
Each of these individual problems requires a single solve for Ku=f and contains a description of the boundary
conditions, stiffness and loading; they will henceforth be referred to as ’load case’ 1 and 2 respectively. Both
load cases share the same fixed boundaries, but the first load case only involves the input force, and the
second load case only considers the output force. The subscripts 1 and 2 denote the respective load cases
1 and 2. The static excitation force is defined by f̂1(0), with accompanying displacement u1. The static
output force f̂2(0) is a pseudo force which represents an equivalent load on the output of the mechanism.
The magnitudes of f̂1(0) and f̂2(0) are similar for this problem.

Next, the optimization problem can be formulated. In order to obtain an inverter mechanism, the goal
is to maximize the output displacement resulting from the input force in the opposite direction as the
input displacement. This can also be interpreted as minimizing the negative of the output displacement.
Conveniently, the force vector f2 can be used as a location vector to locate the output displacement in load
case 1. Simultaneously, a constraint is placed on both the input and output by means of a limit on static
compliance. These compliances are obtained using the forces and accompanying displacements of each
individual load case. The optimization formulation is given in equation 4.1, note the subscripts 1 and 2
denoting the load cases 1 and 2.

min
x

: −uout =−fT
2 u1(x)

subject to : fT
1 u1(x) ≤ C̄1

fT
2 u2(x) ≤ C̄2

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with u1(x) obtained from : K1(x)u1(x) = f1

and u2(x) obtained from : K2(x)u2(x) = f2

(4.1)
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Where C̄1 and C̄2 define the maximum allowed static compliance for the input and the output of the
mechanism respectively. Using this formulation with the given design domain yields the topology given in
figure 4.6. Together with the obtained topology, a visualization done in Paraview of the vertical displacements
in the mechanism is given, showing the desired inverting behaviour.

(a) Resulting topology
.

(b) Static displacements of the mechanism resulting from
the applied input force visualized in ParaView

Figure 4.3: The resulting mechanism of the optimization formulation from equation 4.1 and a visualization
of its displacements resulting from the applied input load which confirms the working inverting function.

The formulation given in equation 4.1 can also be reversed in order to minimize the sum of the input and
output compliances whilst constraining the ratio between the input and output displacements. This does,
however, require an additional load case, which is given in figure 4.4.

(a) Load case 1 (b) Load case 2

(c) Load case 3

Figure 4.4: The updated load cases required for the topology optimization of a force-excited inverter
mechanism which includes a third load case constaining the desired displacement.

This third load case now contains a desired value of the output displacement ν. This is typically linked
to the input displacement and results in the vector ν = [u3,in, u3,out] = [1, -ν]. As actuating a compliant
mechanism with a force will not only yield an output motion but will also store kinetic energy in the structure,
the value of ν is often set larger than 1. The formulation can then be adapted in order to incorporate this
added load case, as given in equation 4.2.

min
x

: C1 +C2 = fT
1 u1(x)+ fT

2 u2(x)

subject to : C3 =νT Kν≤ C̄ν

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

(4.2)
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4.1.2. Displacement-based inverter
As mentioned earlier, this problem can also be defined with a prescribed displacement input as the
excitation source. Using a displacement as the excitation source results in the right-hand side of the system
equation Ku=f being set to 0. To solve for these prescribed displacements, the displacement field needs
to be subdivided into free displacements u f and prescribed displacements up [54]. This also yields an
accompanying subdivision in the force vector of the applied loads f f , which are not present in this case,
and reaction loads fp . The resulting system equation from this subdivision is given in equation 4.3.[

K f f K f p

Kp f Kpp

][
u f

up

]
=

[
f f

fp

]
=

[
0
fp

]
(4.3)

u f =K−1
f f

(−K f p up
)

fp =Kp f u f +Kpp up

(4.4)

The resulting prescribed displacement vector up can then be filled with the desired excitations, and the
resulting free displacement vector u f and reaction loads fp can be solved for as given by equation 4.4. The
design domain for this problem given by Koppen [54] is shown in figure 4.5.

(a) Load case 1 (b) Load case 2

Figure 4.5: The two load cases required for the topology optimization of a displacement-excited inverter
mechanism [54].

This design domain now contains a set of prescribed displacements for each load case. In the first load
case, both the prescribed displacement on the input and the output are in the same direction, whilst in the
second load case, the prescribed displacements are in the desired inverting direction. In order to obtain an
inverter with this problem definition, the goal is to achieve a desired limited stiffness between the input and
output for the inverted direction (load case 2) whilst simultaneously retaining maximum stiffness between
the input, output and ground. This can be achieved by maximizing the compliance values from the first
load case, which are calculated with the prescribed displacements and their respective reaction forces, whilst
simultaneously limiting the compliance values of the second load case in the desired inverted direction. The
formulation for this problem yields an inverter mechanism, and its formulation is given in equation 4.5.

max
x

: C1,in +C1,out = f1,inu1,in + f1,outu1,out

subject to : C2,in +C2,out = f2,inu2,in + f2,outu2,out ≤ C̄2

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with f1,in, f1,out obtained from : fp,1 = Kp f ,1u f ,1 +Kpp,1up,1

and f2,i n , f2,out obtained from : fp,2 = Kp f ,2u f ,2 +Kpp,2up,2

(4.5)



4.2. Harmonics 23

It can be noted that the previous paragraph mentioned maximizing compliance instead of minimizing
compliance, as well as the constraint having a maximum compliance value instead of a minimum compliance
value. This is due to the implementation of the prescribed displacements, and for a detailed explanation of
why this is necessary, the reader is referred to the work of Koppen [54]. The topology which is obtained when
using this formulation is given in figure 4.6 along with a visualization of its vertical displacements. There are
some slight differences in topology from the force-excited case, but the same inverting behaviour is achieved.

(a) Resulting topology
.

(b) Static displacements of the mechanism resulting from
the applied input force visualized in ParaView

Figure 4.6: The resulting mechanism of the optimization formulation from equation 4.5 and a visualization
of its displacements resulting from the applied input load which confirms the working inverting function.

4.1.3. Discussion on inverter formulations
Comparing the formulations given above, there seem to be two general principles: maximizing the
displacement given a certain stiffness or maximizing the stiffness given a certain displacement. Of these
two, the latter one is considered better conditioned, given that the output displacement of the former will
not necessarily be in the negative direction given a large amount of stiffness and will, therefore, not yield an
inverter mechanism.

The formulations for obtaining an inverter mechanism are not limited to the formulations introduced in
this section, as demonstrated by Cao et al. [55], who provide an overview of a large number of formulations
introduced in literature. This thesis will, however, be limited to the formulations introduced here due to
the function of the mechanism itself not being the subject of this thesis. For the final case study, the most
important aspect will be to have control over the obtained mechanism. This would ensure that all results
will obtain an inverter mechanism with similar properties which in turn allows for a fair comparison of the
results.

4.2. Harmonics
As mentioned, this thesis will focus on topology optimization considering dynamic problems. Most
commonly, dynamic problems can be solved either in the time domain or in the frequency domain. Time
domain problems often consider loads which change over time (transient loads) and, as such, require
integration over a finite time span[56] [57] [58]. The response which is solved for is then called the transient
response and considers the time span over which is integrated. This thesis, however, will consider periodic
loading conditions and the accompanying steady-state response, or in other words, harmonic problems. This
allows for an easy conversion of the time domain governing equation to the frequency domain, which will be
done in this section.

The harmonic governing equation was already presented in equation 3.6, but in this section, the
derivation will be provided. For any given system, the general equation of motion can be defined as in
equation 4.6.

M(x̂)ü(t )+C(x̂)u̇(t )+K(x̂)u(t ) = f(t ) (4.6)

In this equation, M(x̂), C(x̂) and K(x̂) represent the mass matrix, damping matrix and stiffness matrix
respectively. Note that these matrices are dependent on the filtered design variables x̂, but this notation will
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be omitted in the coming section to provide clarity. Consider now a harmonic load written as a set of complex
numbers using Euler’s formula as given in equation 4.7.

f(t ) =λ f̂ e jωt =λ f̂
(
cosωt + j sinωt

)=λ(ω) f̂ (4.7)

Note that the load vector f is now defined in terms of a directional vectorλwith unit length multiplied by
the magnitude of the applied force f̂ . This notation is chosen in order to provide a better distinction between
static and harmonic forces in later sections. The displacements resulting from this harmonic load will have a
similar form, which, together with its time derivatives, is given in equation 4.8.

u(t ) = ue jωt

u̇(t ) = jωue jωt

ü(t ) =−ω2ue jωt

(4.8)

Bothλ and u are arrays with complex numbers, i.e. u = Re(u) + j Im(u) andλ = Re(λ) + j Im(λ) (Im(λ)=0).
If the results from equation 4.8 and 4.7 are substituted in equation 4.6, the complex system of dynamic
equations given in equation 4.9 is obtained.

−ω2ue jωt M+ jωue jωt C+Kue jωt =λ f̂(
K+ jωC−ω2M

)
ue jωt =λ f̂ e jωt ,

(4.9)

since e jωt ̸= 0 for all t ∈ ℜ. If the dependencies are then inserted again, the final harmonic equation of
motion given in equation 4.10 is obtained. The newly defined stiffness matrix K(x,ω) is often referred to as
the ’dynamic stiffness matrix’. Note also that this equation now solves for the magnitude of the displacements
u.

K(x,ω)u(ω) =λ(ω) f̂

K(x,ω) = K(x)+ jωC(x)−ω2M(x)
(4.10)

For all subsequent sections which cover forced vibration problems, a frequency-dependent harmonic
system is considered to which the generalized equation of motion of equation 4.10 applies. Furthermore, the
frequencyω, which is used in the computation of the harmonic equations of motion, has the unit of rad/s. In
all problem definitions presented in this thesis, however, the excitation frequency ωexc is always presented in
Hz. The relation between radians and hertz is given in equation 4.11.

ω= 2π[rad/s] = 1[Hz] (4.11)

Using the harmonic equations, several interesting properties can be exploited. Instead of having only one
applied force at one specific frequency, multiple forces at multiple frequencies can be applied to the system
through the use of the superposition principle. Due to the linear nature of the harmonic equations of motion,
the total displacement utot can be obtained by superposing the solution ui for each individual load case k.

utot =
k∑

i=1
ui , (4.12)

where i represents a single load case of the total load cases k.
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4.3. Frequency response
In order to analyze the behaviour of harmonic systems, the frequency response is commonly employed. This
response provides the magnitude of the displacement of a chosen degree of freedom for a range of excitation
frequencies which allows for the study of the frequency behaviour of the system. If a system is excited close
a a resonance frequency, the resulting displacement magnitudes will rise in order of magnitudes rapidly,
resulting in behaviour which is defined as resonance. For most structures, this resonance is undesired, which
means that having information on the location of these resonance frequencies is crucial. More information
on resonance will be provided in later sections.

One of the most influential responses for topology optimization considering harmonic excitations is the
response of the initial uniform design domain. This response is often used to obtain the initial resonances
of the system and subsequently define one or multiple frequencies of interest which are to be examined.
Detailed reasoning behind why this is important will be given in section 4.6. One aspect which is missed or
never mentioned in all current literature however, is that the response which is used is often actually not the
response of the initial domain but actually the response of the initial domain after material interpolation.
What this means exactly is discussed in this section.

The initial uniform design domain such as the grid shown in figure 3.2b is comprised of all design variables
xe . Most commonly, the initial value of these design variables is chosen as x0=0.5, which is an intermediate
density. If a frequency response of the initial uniform design domain is provided, it is implied that this is the
domain where all design variables are set to this value of 0.5. However, this is not the case depending on the
used material interpolation. Before this response is performed, the design variables are filtered, which will
have no influence on the uniform design field but is still important to keep in mind. Next, the filtered design
variables x̂e are inserted into a chosen interpolation function, such as given in section 3.5. Depending on the
interpolation function, the penalized filtered design variables x̄e can become vastly different. The results of
the material interpolation functions given in section 3.5 are given in table 4.1. Conditional SIMP (equation
3.10) is left out of this comparison due to the value 0.5 being above the common threshold values.

Interpolation function x̂e x̄e = f (x̂e )
Linear (equation 3.7) 0.5 0.5000

Standard SIMP (equation 3.9) 0.5 0.1250
Modified SIMP (equation 3.13) 0.5 0.1250

SIMPlin (equation 3.14) 0.5 0.1625
RAMP (equation 3.15) 0.5 0.2000

PIS (equation 3.16) 0.5 0.0605

Table 4.1: Filtered design variables after material interpolation

From these results, it is evident that all material interpolation functions have a substantial amount of
influence on the filtered design variables. This is important as these penalized filtered design variables x̄e

are used to construct the stiffness matrix K(x) and mass matrix M(x), which in turn are used to compute the
eigenfrequencies and obtain the undamped frequency response. To visualize the influence of the chosen
functions, two frequency responses of the design problem of figure 4.7a are provided in figure 4.8 (the design
problem associated with this response is fully defined in section 4.4). Figure 4.8a provides the responses when
the mass interpolation function is kept linear and the stiffness interpolation function is varied, and figure 4.8b
presents the opposite case.

(a) Initial state x0 = 0.5 (b) Initial state x0 = 1.0

Figure 4.7: The design domain of the example problem given for two different initial states: the commonly
adopted intermediate state x0 = 0.5 and a fully solid state x0 = 1.0.
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(a) Varying stiffness interpolation function varying, linear
mass interpolation function

(b) Linear stiffness interpolation function linear, varying
mass interpolation function

Figure 4.8: Frequency response comparison of the initial uniform design domain with an initial state of
x0 = 0.5 after the application of various material interpolation functions for both the stiffness and mass
interpolation.

From these responses it is clear that the frequency response is dependent on the used material
interpolation functions, with different results for each interpolation function. For the mass interpolation,
it seems that the standard SIMP response is not visible, but this yields the same response as modified SIMP.
While there is an appropriate material interpolation function for every problem, the response of the initial
uniform domain after penalization is highly relevant, as will be explained in section 4.6. One option to
circumvent the dependence on the material interpolation function is to set the initial design variables to
x0=1.0. This is shown in figure 4.7b, and the response which is obtained by doing this is given in figure 4.9.

Figure 4.9: Frequency response of the initial uniform design domain after the application of various material
interpolation functions for an initial state of x0=1.0.

This response shows how the obtained response is now independent of the material interpolation
functions. Interestingly, the same response is obtained as setting the material interpolation functions for
the stiffness and mass interpolation identical to each other for the x0=0.5 case. This shows that primarily
having the same penalization on the filtered design variables gives the same result. In order to have other
combinations of interpolation functions however, the choice is made for this thesis to set the initial design
domain to x0=1.0, which should remove all influence from the material interpolation functions. The design
domains and load cases given in the coming sections will, however, be presented in grey instead of black for
clarity purposes and do not indicate that the initial state of the system is an intermediate density.
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4.4. Damping
Whilst the earlier works of topology optimization of structures subjected to harmonic excitations omitted
damping for the sake of simplicity [59] [36] [4], all structures exhibit some form of damping in practice. In
order to incorporate damping inside the equations of motion, linear viscous damping is often used, which is
mathematically convenient due to taking the form of a constant coefficient matrix, which is multiplied by the
velocities of the degrees of freedom in a structure.

The effects of damping are simply visualized within the frequency response as it limits the magnitude of
the response at the resonance frequencies. The way that these effects of damping are usually quantified is by
means of the so-called damping ratio. This ratio represents the factor with which the resonance frequency
is damped in terms of response magnitude. A visualization of this effect is given in figure 4.10, which shows
an arbitrary response with a single resonance frequency and the effects of different damping ratios. As the
damping ratio increases, the resulting magnitude of the response becomes lower.

Figure 4.10: A visualization of the effects of different damping ratio’s on a resonance frequency [60].

A particular form of damping which is most commonly found for topology optimization problems which
include damping is Rayleigh damping. Though often used without argumentation, Rayleigh damping is
actually a convenient form of damping due to its linear dependency on the mass and stiffness matrix. The
equation for this type of damping is given in equation 4.13.

C(x) =αM(x)+βK(x) (4.13)

As the matrices K and M used in topology optimization of linear harmonic problems are often sparse, this
property is also acquired by the Rayleigh damping matrix due to its simple dependency on these matrices. If
a formulation of linear viscous damping is used which does not have this sparse property, the computational
effort required to solve the equations of motion will increase drastically [61]. As for the parameters α and β,
these are two parameters which specify the proportional influence of the mass and stiffness on the damping
characteristics, respectively. To understand the influence of these parameters, the relation between the
Rayleigh damping parameters and the damping ratio introduced by Cook et al. [62] can be examined, which
is given in equation 4.14.

ζn = α+βω2
n

2ωn
= α

2ωn
+ βωn

2
= 1

2

(
α

ωn
+βωn

)
(4.14)

From this relation, it is evident that the damping ratio is dependent on the magnitude of the considered
eigenfrequency for Rayleigh damping. To visualize this, the resulting damping ratio is plotted in figure 4.11
against the frequency as done by Zerwer et al. [63]. The parameters α and β are represented in this graph by
η1 and η2 respectively.
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Figure 4.11: The effects of the proportional stiffness damping and mass damping on the damping ratio vs
frequency for Rayleigh damping [63].

For lower eigenfrequencies ωn , the damping ratio is determined more by the parameter α, and for higher
order eigenfrequencies, the ratio is determined mostly by the parameter β. As the values of the stiffness
matrix K(x) are often much larger than those of the mass matrix M(x) the damping ratio is increased for
higher order eigenfrequencies. This increase in the damping ratio for higher eigenfrequencies also results in
higher damping ratios for higher excitation frequencies ωexc . Given a set of excitation frequencies which are
spread out over a certain frequency range, using fixed values for the parametersα and βwould yield different
amounts of damping for each excitation frequency. In order to compare the results of different excitation
frequencies, it is desired to have comparable damping parameters for each of the excitation frequencies of
interest. In this thesis, the excitation is considered to be known and of a single frequency, and therefore it is
desirable to have this behaviour.

An alternative form of Rayleigh damping was introduced by Silva et al. [64], which approximately imposes
a fixed damping ratio ζ during the optimization by introducing an inverse proportionality to the excitation
frequency. To derive this damping scheme, the eigenfrequency ωn is replaced by the excitation frequency
ωexc in equation 4.14. Next, the parameter α is set to zero, and the relation is rewritten in terms of β. This
derivation is given in equation 4.15.

ζn = 1

2
βωexc → β= 2ζ

ωexc
(4.15)

The damping ratio ζ can now be chosen as desired, which will result in an approximately fixed damping
ratio at the excitation frequency ωexc. Furthermore, if the optimizer decides on a topology which contains
a resonance frequency at the specified excitation frequency, a properly damped system is still guaranteed.
For this thesis, a low damping coefficient of 0.05 is used [65]. As for why the parameter α is set to zero, Silva
et al. [64] reported that the inclusion of α yielded behaviour where material was removed from the load
application region in order to comply with the objective. This thesis will also consider structures subjected
to base excitations, and a study was done by Hall [61] on Rayleigh damping which also suggests removing the
mass proportional damping contribution for base excited problems and to bound the stiffness proportional
damping.

Whilst a choice is made for a specific damping scheme in this section, some of the examples in the
coming sections will still include fixed damping parameters in order to provide a better comparison to the
given literature. Furthermore, while this investigation into the effects of the damping parameters proposed
in literature is concluded here, further research needs to be conducted in order to provide a general approach
to choosing appropriate damping parameters which provide the desired influence for a given problem. This
is however not within the scope of this thesis.
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One last thing to note is the effect that damping has on the eigenfrequencies. Given in figure 4.12 is the
undamped frequency response of an arbitrary system which contains an undamped resonance frequency at
429Hz. Together with this undamped response is the damped response which utilizes the proposed damping
scheme.

Figure 4.12: A visualization of the effects of damping on the location of the resonance frequency versus the
undamped resonance frequency.

While hard to see, the maximum response of the damped response is actually shifted compared to the
original undamped resonance frequency. This means that a computation of the eigenfrequencies will not
necessarily reveal the actual damped resonance frequency of the system. There are methods to obtain these
damped resonance frequencies, such as the one given in equation 4.16 provided by Schmidt et al. [65].

ωd ,r =ω0

√
(1−2ζ2) (4.16)

This formulation will, however, not be used in this thesis, but is important to be aware of. A distinction
will, therefore, be made in the eigenfrequencies of the system, which are obtained from the undamped
response, and the resonance frequencies of the system, which represent the resonances in the damped
response.

4.5. Eigenfrequency optimization
As stated in section 2.2.3, exciting structures near or at their resonance frequencies is not beneficial for most
forced vibration problems. Within the realm of topology optimization, these eigenfrequencies of the designed
structure can be influenced by incorporating them in the objective function. This was already shown by
Diaz and Kikuchi in 1992 [66], who maximized the first eigenvalue λ1, and thus the first eigenfrequency
ω1 given that λn = ω2

n , of a truss structure (figure 4.13a). Du and Olhoff [67] achieved a similar result for
a clamped beam problem, but expanded the objective to any eigenvalue of choice λn together with being
able to maximize the distance between two consecutive eigenvalues λn and λn+1 (figure 4.13b). A notable
example of targeting the eigenfrequencies to actually induce resonance in the system is the optimization of
an atomic force microscope cantilever tip as done by Huigsloot [68] (figure 4.13c). In this section, several
versions of the eigenfrequency optimization formulation are given, together with an assessment of the use of
eigenfrequency optimization in general.
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(a) Eigenfrequency optimization
of a truss structure [66]
.

(b) Eigenfrequency optimization
of a clamped and double clamped
beam structure [67]

(c) Eigenfrequency optimization
of an AFM cantilever beam [68]
.

Figure 4.13: Examples of eigenfrequency optimization found in literature.

4.5.1. Eigenvalue problem
First, however, the eigenvalue problem needs to be defined. The equation of motion given in equation 3.6
will be used as a starting point. Ignoring the damping matrix C(x) and setting the applied load vector f(ω) to
0, the equation given in 4.17 is obtained.

(
K(x)−ω2M(x)

)
u(ω) = 0(

K(x)−ω2
n M(x)

)
φn (ω) = 0

(4.17)

The solution to equation 4.17 yields multiple values for ω2
n , which is often just used as λn (λn = ω2

n)
and the respective eigenfrequency is represented by ωn . The accompanying eigenmodes are given by the
accompanying eigenvector un(ω), which is changed in notation toφn (ω) to provide a distinct difference.

4.5.2. Eigenfrequency maximization
In the given example of Díaz and Kikuchi [66], the first eigenvalue λ1 was optimized for, which was the most
common form of eigenfrequency optimization. Du and Olhoff [69] however, expanded on this optimization
by formulation a generalized version which would allow for any nth eigenvalue to be optimized for. This
formulation is given in equation 4.18.

max
x

: λn

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with λn obtained from : (K(x)−λn M(x))φn (ω) = 0

(4.18)

In this formulation, λn represents the nth eigenvalue and φn is the nth eigenmode vector.

4.5.3. Eigenfrequency gap optimization
The second mentioned example covered the maximization of the distance between two consecutive
eigenvalues λn and λn+1. This was first covered by Bendsøe [70], who put forth the argument that by
maximizing this gap resonances and other instabilities in the system may be avoided for a wide range of
operating frequencies. The formulation is to that of eigenfrequency maximization and is given in equation
4.19
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max
x

: λ2
n+1 −λ2

n

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with λn obtained from : (K(x)−λn M(x))φn (ω) = 0

(4.19)

4.5.4. Weighted eigenfrequency optimization
Both of the mentioned methods focus on either a single eigenvalue or a pair of eigenvalues. In practice,
however, it is often the case that an optimization needs to be performed for multiple eigenvalues
simultaneously. One of the methods capable of handling this is the weighted eigenfrequency optimization
method introduced by Ma et al. [71] which is given in equation 4.20.

max
x

: λ̄+
m∑

i=1
wn

( m∑
n=1

wn

λn − λ̄

)−1

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with λn obtained from : (K(x)−λn M(x))φn (ω) = 0

(4.20)

In this formulation, wn are the weights associated with each nth eigenvalue λn and λ̄ is the desired
eigenvalue around which is being optimized. For equal weight factors, the eigenvalues closest to λ̄ will have
the most influence on the objective, which results in the eigenvalue closest to λ̄ being optimized for.

4.5.5. Mean eigenfrequency optimization
A simpler method of optimizing for multiple frequencies was the mean eigenfrequency function introduced
by Ma et al. [72]. This objective function optimizes for the harmonic mean of a subset of m eigenvalues. It
can be noted that this formulation is one of minimization instead of maximization.

min
x

:
m∑

n=1

1

λn

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with λn obtained from : (K(x)−λn M(x))φn (ω) = 0

(4.21)

4.5.6. Localized eigenmodes
One issue that can occur when using topology optimization for a performance measure that involves the
eigenfrequencies of the structure of interest is the appearance of localized eigenmodes. This happens when
there are regions in the domain with elements that have relatively high mass and low stiffness. Pedersen
[44] found this to be the case in the void areas (defined by xmin) specifically, where the adjacent solid
areas would act as a fixed boundary condition. Consequently, the lowest eigenvalues will correspond to
eigenmodes involving predominantly motion of the regions that contain void elements, as opposed to the
natural frequencies of the solid structure. An example of this behaviour is given in figure 4.14, in which a
solid beam structure (black) in a design domain is surrounded by void elements (white).
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(a) Expected first eigenmode (b) Computed first (local) eigenmode

Figure 4.14: A comparison of the expected first eigenmode, which is similar to the one found for the clamped
beam structure defined by the black solid region, and the actual computed first eigenmode, which is a local
eigenmode which only contains displacements in the white void region [44].

Figure 4.14a shows the expected first eigenmode of this domain, that is the eigenmode of the beam
structure. If the eigenfrequencies of this domain are computed, however, an eigenfrequency is found at a
much lower frequency. The accompanying eigenmode is given in figure 4.14b. This eigenmode occurs at
such a low frequency due to the relatively low stiffness and high mass of the void elements. When using
an objective function where this first eigenfrequency is incorporated, this eigenmode becomes a problem
due to the accompanying eigenfrequency becoming the used eigenfrequency in the objective function
instead of the desired first eigenfrequency. The same problem occurs for model order reduction methods,
where a set of eigenmodes is used to define the system. If there are local modes present in this subset,
inaccurate information is used in the optimization, and more eigenmodes are needed to properly represent
the behaviour of the system, which in turn increases computation time.

Most of these issues occurred using the SIMP (equation 3.9) interpolation method, which resulted in the
introduction of several of the material interpolation functions introduced in section 3.5 such as conditional
SIMP [44], RAMP [49] and PIS [48]. These all aimed to avoid the occurrence of localized eigenmodes by
providing a non-zero slope when the design variables approach zero.

For this thesis, the occurrence of localized eigenmodes is, however, not a problem as the eigenfrequencies
will not be a part of the objective function. Furthermore, localized displacement behaviour is even
encouraged. What is desired however, is that the regions which displace are not made up of intermediate
densities but rather solid material. The occurrence of intermediate densities in the resulting topologies in
this thesis is, therefore, undesired.

4.5.7. Discussion on the use of eigenfrequency optimization
In this section, several methods of optimizing for the eigenfrequencies of the structure have been presented
from literature. As mentioned, controlling the resonances of a structure can be crucial depending on the
loading conditions of the structure. If a structure is unintentionally excited at a resonance frequency that
it was not designed for, the resulting large displacements might inflict substantial amounts of damage to
the structure such that its material properties can no longer be guaranteed. There are, however, also cases
where this behaviour is actually desired, as was shown in the AFM cantilever example, but having control
of the eigenfrequencies in general is beneficial. Having control of the eigenfrequencies, however, does not
necessarily result in a minimization of the vibrations at a given frequency.

Another key issue with eigenfrequency optimization is that it does not fully translate to forced vibration
problems. The reasoning behind this was detailed in section 4.4, which introduced the influence of damping
on the frequency response of a structure. In the forced vibration problems in this thesis, damping will be
taken into account, which means that there will be a difference between the obtained eigenfrequencies
of the structure, and the resonance frequencies. While this difference will be small, optimizing for the
eigenfrequencies of a structure with damping will result in optimizing for different frequencies than the actual
resonance frequencies of the structure.
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Furthermore, the occurrence of localized modes might also hinder eigenfrequency optimization or
optimizations which make use of the eigenfrequencies in general. Whilst material interpolation functions
have been introduced that attempt to mitigate this behaviour, these might still occur. Lastly, the
computational costs of an eigenfrequency analysis are often overlooked. To perform an eigenfrequency
analysis, meaning obtaining both eigenfrequencies and corresponding eigenvectors, the computational cost
is around 10-100 times more expensive than a linear solve as multiple solves are needed per eigen-iteration
[73]. The amount of these iterations depends on the number of eigenfrequencies which are to be searched
for. Comparing this to the linear solution of evaluating equation 4.9 for a single frequency, the eigenvalue
analysis has a much higher computational cost.

4.6. Dynamic compliance
As optimization formulations which include the eigenfrequencies of a system do not seem to translate well to
forced vibration problems, a look can be taken at objective functions specifically considering forced vibration.
One such objective function is dynamic compliance, which is a concept which was introduced by Ma et al.
[72], which focuses on minimizing the structural displacement response to dynamic loads. This may seem
familiar, which would be true as the dynamic compliance can be considered as the dynamic equivalent of
the static compliance which was presented in section 3.2. By using dynamic compliance as the objective
function, the optimized design will result in the stiffest structure which can effectively resist harmonic
excitations with specified magnitudes and frequencies [74]. The most common form of objective function
formulation for dynamic compliance is given by Olhoff and Du [69] and is shown in equation 4.22.

Cd = |f(ω)T u(ω)| (4.22)

In this function, f(ω) and u(ω) represent the global force and displacement vectors respectively, which
both depend on the excitation frequencyω. The displacement vector u(ω) may be obtained from the equation
of motion presented in equation 3.6. One key difference from the static compliance, next to the frequency
dependency, is the inclusion of the absolute value in the function. This operation is added in order to avoid
the formulation becoming negative during the optimization [75]. In terms of what Cd actually represents, it
can be considered as the magnitude of the displacements weighted by the amplitudes of the corresponding
time-harmonic loading. It can be noted that as the excitation frequency for the load approaches zero, the
dynamic compliance function is reduced to the static compliance function.

4.6.1. Discussion on the use of dynamic compliance
One of the key arguments for using dynamic compliance is its similarity to the frequently used static
compliance formulation, together with its capability of optimizing the actual resonance frequencies of the
structure. As the excitation frequency approaches one of the resonance frequencies of the structure, the
dynamic compliance will drastically increase. This behaviour means that the objective function is able
to accurately represent the frequency behaviour of the structure. However, this does come with some
drawbacks, which will be presented in this section.

First of all, the behaviour of dynamic compliance can be analyzed with a simple example. Starting with
a simple clamped cantilever beam problem, a frequency-dependent problem can be formulated as given in
equation 4.23. The initial design domain is given in figure 4.15, together with the domain properties in table
4.2.

min
x

: Cd = |f(ω)T u(ω)|
subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with u(ω) obtained from : K(x,ω)u(ω) =λ(ω) f̂

(4.23)
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Figure 4.15: Design domain for the dynamic compliance
optimization example.

Property Value
lx , ly , lz 1.5, 0.5, 1.0 [m]
nx , ny 100, 50 [#]

f̂ 10 [kN]

Filter radius 2 [#]
Volume fraction 0.5 [-]

Table 4.2: Properties of the domain given
in figure 4.15.

The magnitude of the applied harmonic force f(ω) is f̂ =10kN. For the damping, Rayleigh damping
(equation 4.13) is used with α=1e−3 and β=1e−8. As for the material properties, the Young’s modulus is
set at 200GPa, the density at 7800 kg/m3 and the Poisson ratio at 0.3. Lastly, the material interpolation
functions used are the modified SIMP method (equation 3.13) for both the stiffness interpolation and the
mass interpolation. Next, the dynamic compliance can be computed for the frequency interval [0, 2000]Hz
with a resolution of 1Hz and plotted in figure 4.16. In this same plot, the resonances and anti-resonances of
the structure for this frequency interval are provided.

Figure 4.16: The dynamic compliance response of the initial design domain as given in figure 4.15.

To assess the behaviour of the dynamic compliance, the dynamic compliance is first optimized for
frequencies below the first resonance. As this resonance is located at 365Hz, the chosen frequencies are
0Hz (the static solution), 200Hz, and 350Hz. These frequencies should cover the behaviour of minimizing the
dynamic compliance up until the first resonance. The resulting topologies of these optimizations are given
in figure 4.17.

(a) ωexc = 0 Hz (static solution) (b) ωexc = 200 Hz (c) ωexc = 350 Hz

Figure 4.17: The obtained topologies for the minimization of the dynamic compliance for the design domain
given in figure 4.15 for a set of excitation frequencies below the first resonance of 363Hz.

From the resulting topologies alone, it is not quite clear what the objective function aims to achieve. The
topologies themselves however, do show several differences. For a higher frequency than the static solution,
it seems that the optimizer chooses to deposit less material near the excitation point. This behaviour is to be
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expected as less material will result in less mass, which will influence the dynamic stiffness matrix (equation
3.6) less, which in turn leads to smaller displacements at the specified frequency. If the excitation frequency
comes very close to the first resonance, however, the optimizer struggles to converge to a binary design, and
a lot of intermediate densities remain present in the topology. In order to assess what the objective function
actually aims to achieve, the dynamic compliance responses can be assessed for the obtained topologies.
These results are given in figure 4.18.

Figure 4.18: Dynamic compliance response comparison of the obtained topologies given in figure 4.17.

From these results, it is clear what the objective function aims to achieve. The static solution seems to
already provide an improvement with regards to the initial structure in terms of first resonance location, but
increasing the excitation frequency is where the behaviour really comes to light. For higher frequencies, the
first resonance is ’pushed’ further towards a higher frequency. This behaviour intensifies as the excitation
frequency increases, even though the topology still contains a lot of intermediate densities. Comparing
this with the eigenfrequency optimization methods given in section 4.5 this objective function does not
necessarily control the resonance frequencies directly, but manages to force them away from the excitation
frequency, resulting in minimized displacements at the specified frequency. This is highly beneficial as the
resonance frequencies can be controlled with an optimization which only requires a linear solution instead
of the computationally costly eigenfrequency analysis.

The results from above show the behaviour of the dynamic compliance for excitation frequencies below
the first resonance. Above this resonance however, an interesting issue occurs. This issue was first addressed
by Silva et al. [76], which presents the problem of the optimization suffering from premature convergence
when the excitation frequency is set at a value higher than the first resonance of the initial uniform structure.
In order to test this, two frequencies can be chosen from the frequency response in figure 4.16 which are
above the first resonance. For this test, the choice is made for 600Hz and 1250Hz, which provide insight into
the behaviour just beyond the first resonance and after the first anti-resonance. The resulting topologies for
these structures are given in figure 4.19.

(a) ωexc = 600 Hz (b) ωexc = 1250 Hz

Figure 4.19: The obtained topologies for the minimization of the dynamic compliance for the design domain
given in figure 4.15 for a set of excitation frequencies above the first resonance of 363Hz.
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These topologies clearly show the inability of the optimizer to converge to a binary design. In this case,
however, the optimization did not converge prematurely but was stopped by the maximum amount of 100
iterations being reached. There were, however, large oscillating steps in the objective function observed,
which might have been larger than the allowed tolerance between iterations. This would explain why there
was no premature convergence. As to why this behaviour occurs, the frequency responses of the obtained
topologies can again be examined. These are given in figure 4.20.

(a) ωexc = 600 Hz (b) ωexc = 1250 Hz

Figure 4.20: The dynamic compliance responses of the obtained topologies from figure 4.19.

By examining the frequency response it becomes evident why the model seems to suffer from premature
convergence. When the excitation frequency matches an anti-resonance during the optimization, the
resulting displacement response is at its lowest possible point. If the optimizer is not able to determine
why this is, it ’thinks’ that it has found the lowest possible value for the dynamic compliance. Therefore, the
responses in figure 4.20 both clearly show that there is an anti-resonance located precisely at the excitation
frequency. This is the exact behaviour which was described by Silva et al. [76].

It can be concluded from this examination that dynamic compliance works quite well as a way of
indirectly influencing the resonance frequencies without having to compute the eigenfrequencies every
iteration. However, this behaviour is limited to excitation frequencies below the first resonance of the initial
uniform structure, which makes it unsuitable for higher excitation frequencies. One last interesting thing to
note is that, as mentioned in 4.3, this initial resonance is not necessarily that of the initial uniform structure,
which has the design variables set to the desired volume fraction, but actually the initial design domain
after material interpolation. Therefore, the working range of the dynamic compliance can be increased by
choosing different material interpolation functions which yield higher first resonances. Choosing material
interpolation functions based on this advantage is, however, not recommended as issues like intermediate
densities have far more impact on the obtained topologies.

4.7. Harmonic base excitations
Most of the existing literature on topology optimization considering responses under forced harmonic
vibrations concerns harmonic force excitations. However, in most practical engineering structures,
excitations in the form of base excitations also commonly exist. Up till now, the base to which the structure
is connected was considered fixed, but external excitations which may originate from various sources can be
conducted to the structure through this connection.

Within the field of compliant mechanisms, this research area is commonly known as vibration isolation,
where the goal is to design the system in such a manner as to minimize the influence of the base-induced
vibrations. Several examples of this kind of goal being implemented in topology optimization can be found
in literature. Vijayan et al. [77] used the principle of vibration isolation with a discrete topology optimization
method to design a compliant isolator which was able to cancel undesired disturbances, resulting in
attenuated output amplitudes. Allahdadian et al. [78] optimized the bracing system of a multi-story structure
under harmonic base excitations. Furthermore, Zhu et al. [79] optimized the relative displacement amplitude
at a specified point with added mass along the excitation direction of a structure subjected to harmonic base
acceleration excitations. This last example is visualized in figure 4.21
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(a) Design domain (b) An example of the obtained topologies [79]

Figure 4.21: An example from literature as provided by Zhu et al. [79]. The design domain is excited by a
harmonic base excitation, and the displacement magnitude of the vertical degree of freedom of the mass
node is minimized, yielding the topology shown on the right.

In order to solve for the harmonic base excitations, the general equation of motion of equation 4.10 is
insufficient as there are no applied forces present in this problem. The manner in which such a problem
can be solved, however, is to directly apply an excitation to the degrees of freedom at the boundaries. A
visualization of a vertical excitation is given in figure 4.22.

Figure 4.22: A visualization of the base excitation being applied to the vertical degrees of freedom of the base.

This type of excitation is achieved by dividing the degrees of freedom into free degrees of freedom f and
prescribed degrees of freedom p, similar to what was done in section 4.1.2. For the subset p, all degrees
of freedom of the boundary nodes are then chosen, and for the given examples above, the magnitude of
the prescribed displacement is applied to the vertical degrees of freedom whilst constraining the horizontal
degrees of freedom to zero. Applying this to equation 4.10 yields the system of equations given in equation
4.24. For a full derivation of this equation, the reader is referred to Appendix A.[

K f f (ω,x) K f p (ω,x)
Kp f (ω,x) Kpp (ω,x)

][
u f

up

]
=

[
f f

fp

]
(4.24)

In this system of equations u f , f f and up , fp represent the displacements and forces of the free degrees
of freedom f and prescribed degrees of freedom p respectively. The matrices K(ω,x) represent the same
dynamic stiffness matrix from equation 4.10 for the free and prescribed displacements, respectively.

4.7.1. Discussion on harmonic base excitations
Similar to the dynamic compliance objective function for forced excitation, the objective function of
minimizing the displacement of a single degree of freedom, which is most commonly used, also suffers from
various issues. These will be outlined in this section.

First of all, it can be noted that an extra mass mb is added to the example problem given in figure 4.21. This
mass is added at the node which contains the degree of freedom of interest that is to have its displacements
minimized. This mass is an essential addition as it provides initiative for the optimizer to connect this point to
the base without resorting to intermediate-density members. The result of the same design problem without
the added mass is given in figure 4.23.
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Figure 4.23: The resulting topology from the design problem given in figure 4.21a without additional mass
added to the response point.

From this result it is clear that a similar topology is obtained, but the members which connect the point
of interest to the rest of the structures are made up of intermediate densities. This structure complies most
with the objective function as the degree of freedom of interest is able to move freely due to being only very
lightly connected to the rest of the structure. A connected topology is, however, desired, which results in the
need for mass to be added to this point. In order to provide insight into the effect of the added mass, figure
4.24 provides the result of a sweep over the mass mb for the values mb=1kg, 10kg and 100kg.

(a) mb = 1kg (b) mb = 10kg (c) mb = 100kg

Figure 4.24: The resulting topologies from the design problem in figure 4.21a for a parameter sweep over the
value of the mass mb added to the response point.

These results clearly show the effects of the added mass. As the magnitude of mb increases, the members
connecting the point of interest to the rest of the structures become thicker in order to support this mass
whilst subjected to the applied base excitations. In this case, if the objective is to maximize frequency
behaviour, an added mass of 10kg would be sufficient as it is able to provide a well-connected structure
without a large amount of extra material being deposited at the connecting members.

Furthermore, the excitation frequency issue, which is present for the dynamic compliance objective
function where an anti-resonance of the system will match the excitation frequency, is also present for the
base excited case. It is, however, the case that the initial first anti-resonance is located at a relatively higher
frequency than the force excited case. This can be seen by looking at the undamped frequency response given
in figure 4.25 of the problem given in figure 4.21a for an initial volume fraction of 1.0.

Figure 4.25: Undamped frequency response of the initial design domain given in figure 4.21a
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This graph shows that the first resonance is present around 450Hz and the first anti-resonance is only
present at around 4300Hz. To see how the optimization performs over a frequency range the resulting
topologies of an excitation frequency of 300Hz, 750Hz and 1250Hz are given in figure 4.26.

(a) ωexc = 300Hz (b) ωexc = 750Hz (c) ωexc = 1250Hz

Figure 4.26: The resulting topologies from the design problem in figure 4.21a of a parameter sweep over the
excitation frequency ωexc.

These topologies show that material is mostly being deposited near the point of interest for higher
excitation frequencies. The connection to the base, however, becomes decreasingly stiff, and the optimizer
resorts to a connection formed with intermediate densities. To see how these obtained structures perform at
their respective excitation frequencies, the undamped frequency responses are given in figure 4.27.

Figure 4.27: The undamped frequency responses for the obtained topologies given in figure 4.26

This response shows that the result of an excitation frequency of 300Hz still performs as expected by
moving resonances away from the excitation frequency. This is due to the excitation being below the
initial first resonance of 450HZ. At 750Hz, however, an anti-resonance is moved very close to the excitation
frequency, and the result of 1250Hz has an anti-resonance present exactly at the excitation frequency. This
shows that the same excitation frequency issue is present for the base excitation case.

4.8. Discussion on the state of the art
In this chapter, the state of the art on topology optimization of static mechanism design and structures
excited by harmonic excitations is presented. Mechanism design of compliant mechanisms considering static
excitation forces has been done quite extensively already, and several principles on how to perform such
an optimization were given. As for optimizations regarding frequency behaviour, these are done primarily
for clamped beam structures. One of the first optimizations considering frequency behaviour was that of
eigenfrequency optimization. While this works as desired, the issue remains that this optimization does
not consider an excitation which is applied to the structure. Furthermore, the occurrence of localized
eigenmodes can hinder the optimization by replacing the structural modes which are considered in the
objective.
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An objective function which does consider the response to an applied load is dynamic compliance. This
function works by moving the resonances away from the excitation frequency. However, this only works
for excitation frequencies which are below the first resonance of the initial uniform structure. For higher
excitation frequencies, the structure which is obtained contains a large number of intermediate densities,
and when the frequency response is examined, it can be seen that an anti-resonance of the structure has lined
up with the excitation frequency. This makes this objective function unsuitable for excitation frequencies
higher than the first resonance of the initial uniform structure. For structures considering a harmonic base
excitation, which have been studied far less than the dynamic compliance, a similar excitation frequency
issue occurs. A new objective function is therefore needed which does not suffer from these excitation
frequency issues and is capable of handling both force and base excitations.



5
Addressing the research gaps

Chapter 4 concluded that much research has been done in the individual areas of topology optimization
considering transmission systems design and frequency behaviour. Whilst compliant mechanism design
using topology optimization has been studied extensively, the study done on the state of the art of topology
optimization of eigenfrequencies and harmonically excited structures concluded that research in this area is
still lacking. Where eigenfrequency optimization does not consider an applied load and might be hindered
by the occurrence of localized eigenmodes, forced vibration problems often only consider clamped beam
structures.

Furthermore, the objective functions used for harmonically excited structures appear to suffer from
premature convergence issues when the frequency of an anti-resonance in the system matches with the
excitation frequency during the optimization. As far as the optimizer is concerned, this is a minimum result
which satisfies the objective. The accompanying topology, however, is often still filled with intermediate
densities, which is undesired as a discrete design is preferred. A possible solution to this problem would be
to incorporate a range of frequencies in the objective function as done by Zhu et al. [79], but solving for this
range of frequencies every iteration can become very computationally intensive.

From this research, it can be concluded that the current state of the art on topology optimization is
lacking in two areas: a computationally convenient objective function which optimizes a forced vibration
response whilst not suffering from premature convergence and the inclusion of externally induced vibrations
on compliant transmission systems design using topology optimization. The focus of this thesis will,
therefore, be to find an objective function which solves the presented issues and incorporate this function
within compliant transmission systems design to minimize the response to externally induced vibrations via
harmonic base excitations.

“Utilizing topology optimization to design compliant transmission systems which simultaneously mitigate
the effects of external unwanted vibrations.”

An objective function which is computationally convenient and solves the presented issues will be
outlined in chapter 6. The case study examined in this thesis will consider the design of a compliant inverter
mechanism which is disturbed by a harmonic base excitation, with the objective being to ensure that the
displacements within the obtained mechanism resulting from the applied disturbances are minimized. The
specific problem will be outlined in chapter 7, and the remaining part of this chapter will outline the scope of
this thesis.

41
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Scope
The design problem, which will be defined in chapter 7, is quite complex in nature. To solve this problem,
the modular topology optimization framework called pyMOTO [80], developed by Stijn Koppen and Arnoud
Delissen, is used. This framework allows for quick and easy changes to an optimization problem, and a more
detailed explanation of the working principle of pyMOTO is provided in Appendix E.

The optimization problems which can be solved for, however, are not limitless. A scope, therefore, has
to be set to determine what is achievable and what is not. First of all, the case study will be defined as
a harmonic problem, and the resulting displacements and their derivatives are defined in the frequency
domain. This eliminates the need for computationally costly time integrations, as only the steady-state
solution will be considered. For this same reason, the case study will only consider two dimensions, which
is sufficient to provide a proof of concept. As for the compliant mechanisms, the focus lies on compliant
mechanisms which have a range of motion that is considerably smaller than their respective dimensions,
which are also called short stroke compliant mechanisms [54]. These assumptions yield a linear elastic
harmonic system with small displacements and rotations and, consequently, small strains. Furthermore,
these assumptions also allow for the use of superposition principles mentioned in section 4.2, such that an
excitation ftot(ω) = f1(ω)+ f2(ω) will result in displacement xtot(ω) = x1(ω)+x2(ω).

Even though the problem is defined harmonically to reduce complexity, the frequency domain also has its
limits. The most common material used in literature is steel with a Young’s modulus of E=200GPa and density
ρ=7800 kgm3. Given an arbitrary steel plate of dimensions 20x10 cm clamped on two edges, the resulting first
three eigenfrequencies for the initial uniform structure become 1718 Hz, 3375 Hz and 3549 Hz, respectively.
In literature, however, larger sizes are more commonly used, such as 2x1 m. This results in the first three
eigenfrequencies of 172 Hz, 338 Hz and 355 Hz. As the eigenfrequencies of the optimized structures will
be lower than the initial structure, the range of frequencies considered in this thesis will, therefore, mostly
concern frequencies below 2000H z.
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Methods to fill the research gap

As was mentioned in chapter 5, a new objective function is needed which is capable of optimizing structures
subjected to both force and base excitations whilst also being unaffected by the excitation frequency issues
mentioned in chapter 4 which result in structures with a large number of intermediate densities. An objective
function which satisfies all of these requirements was introduced by Montero et al. [37]. In this chapter, the
proposed advantages of this objective function are given together with its derivation. Next, as this thesis
will utilize this objective function in a different manner from Montero et al. [37], a thorough examination
is performed of the behaviour of this objective function in order to establish which parameter values are
required for the final case study.

6.1. Density-Weighted norm objective formulation
The proposed objective function makes use of the resulting displacements in the structure, which means
that the objective function is independent of the applied harmonic excitation. The displacements resulting
from the excitation, however, can have both positive and negative values and might switch from iteration
to iteration. This is undesired as the optimizer will struggle with continuously switching from positive to
negative values. A function which is always positive is the absolute value, which defines the magnitude of
a displacement, without its direction. This is also convenient as the resulting displacements of harmonic
excited structures, which include damping, are complex values. For an arbitrary degree of freedom j , the
absolute value of the complex displacement u j is given in equation 6.1.

|u j (ω)| =
√

u j (ω)2
real +u j (ω)2

imag = (u∗
j (ω)u j (ω))

1
2 (6.1)

where u∗
j denotes the complex conjugate. In a given structure, however, the location of the degree of

freedom with maximum displacement at the specified excitation frequency, or in other words, the dominant
mode, varies from iteration to iteration. If the objective is to minimize the displacements in the entire
structure, the formulation above can be expanded in order to incorporate all the degrees of freedom in the
structure with the use of a norm function as given in equation 6.2.

∥u∥m(ω) =
(

n∑
i=1

|u j (ω)|m
) 1

m

(6.2)

For a single degree of freedom, this norm function has no influence. When all degrees of freedom of the
structure are taken into account, however, the parameter m will influence the outcome of this function based
on the magnitude of the displacements of each degree of freedom. If, at a given frequency, there is one degree
of freedom uk , which has the largest displacement, the rest of the displacements will naturally have lower
values. If these are taken to the power m, the larger displacement uk will exponentially rise above the other
displacements and eventually for m →∞:

∥u∥∞(ω) ≈ |uk (ω)| (6.3)
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This way, the objective function accounts for the shifting locations of the degree of freedom of maximum
displacement. This function is, however, not limited to only a single degree of freedom or all degrees of
freedom in the system, and therefore, a subset S can be defined in order to allow for selection of degrees of
freedom. This results in the norm function defined as Nm given in equation 6.4.

Nm(u(ω)) =
(∑

jϵS

(
u∗

j (ω)u j (ω)
) m

2

) 1
m

(6.4)

In order to visualize how this objective function performs, the frequency response of an arbitrary simple
two-degree of freedom system can be examined. Taking the stiffness matrix, mass matrix, damping matrix
and force vector as:

K =
[

300 −200
−200 200

]
, M =

[
2 0
0 1

]
, C = 0.4264K+0.004264M, f =

[
0

10

]
(6.5)

respectively. In figure 6.1a, the frequency response of the magnitudes of the displacements of both
degrees of freedom is plotted, together with the norm function Nm for the value of m=2. In figure 6.1b, the
same frequency response is given, this time with the norm function for m=12.

(a) m=2 (b) m=12

Figure 6.1: The frequency responses for the two degrees of freedom of the system given in equation 6.5,
together with the norm function response for two different values of the parameter m.

From these responses, one additional benefit of this objective function directly becomes clear: the
proposed objective function does not contain any anti-resonances. For every frequency the system is
excited at, both degrees of freedom in the system have a displacement response. The magnitude of these
responses varies for every frequency, but one of the two always displays a higher magnitude than the other.
What the norm function tries to achieve, is to represent the frequency response of the system for each of
these dominant magnitude values. This means that where the second degree of freedom presents an anti-
resonance, the first degree of freedom does not, and the norm function will follow this response as it is the
dominant response at this magnitude. This results in anti-resonances not being present in the frequency
response.

Figure 6.1a does, however, show that the norm function does not exactly represent the frequency response
and is only an approximation of the true response. Increasing the parameter m to the value of 12, however,
gives the resulting function shown in figure 6.1b, which is a much better approximation. The value of the
parameter m, therefore, represents the extent to which the true system is approximated. Larger values
of m do seem to be advantageous from these results, but this is not necessarily true when this function
is used in a topology optimization. These large values of m introduce quite some non-linearity into the
system, which may lead to numerical instabilities. These can, in turn, actually decrease accuracy or lead
to unwanted topologies, for example, in the form of asymmetric topologies where symmetry is expected.
Therefore, for each problem for which this function is utilized, the appropriate value of the parameter m
must be determined individually.
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For topology optimization considering vibrating structures, a common issue which might occur is found
in the behaviour of the void regions. As these regions have almost negligible stiffness, they can present very
high displacements. If the goal is to minimize the overall or global displacements of the system, these low-
density high-displacement areas could become the focus of the optimizer, which will work to minimize the
displacements of these regions by adding material, which then results in less severe displacements. These
less severe displacements, however, do not contribute enough to the objective to become relevant and have
more material added to the accompanying elements, resulting in a loop where the optimizer gets stuck on
choosing which region to optimize for, which in turn results in areas with intermediate densities, also known
as ’grey areas’. A similar issue might occur for maximization problems, where the very high displacements
might be considered beneficial for the optimizer, and the optimization is ended prematurely.

In order to suppress the displacements of void regions, Montero et al. [37] suggest adding a weight to each
of these displacements based on the density values of the surrounding elements. This way, the displacements
of the degrees of freedom which are surrounded by void regions, or low-density regions, receive lower weights
than those surrounded by regions with material or high-density regions. The formulation given in equation
6.4 can therefore be altered with by incorporating a density weight a j , as given in equation 6.6.

Nmw (u(ω)) =
(∑

jϵS

(
u∗

j (ω)a j u j (ω)
) m

2

) 1
m

, (6.6)

where the weight a j is defined by:

a j =
( ∑

vϵS j

xw
v

) 1
w

(6.7)

In equation 6.7, a similar norm function to equation 6.2 can be found, this time being a w-norm function.
S j is a subset which represents the elements surrounding a degree of freedom j . xv then represents the value
of the design variable xe of one of the surrounding elements. With this function, the weight a j is defined by
the w-norm of the surrounding element densities, or in other words, a density-weighted filter. To provide a
better understanding of how this density-weighted filter works, a visual representation is given in figure 6.2.

(a) Surrounded by solid elements (b) Surrounded by void elements

Figure 6.2: A visualization of the area of elements considered for the density-weighted filter weight a j .
Two examples are given, one where the node is surrounded by solid elements and one where the node is
surrounded by void elements.

In figure 6.2a, an arbitrary finite element grid is given, with a diagonal of non-void density elements. If
the degree of freedom of interest j is located on the node represented in black, the subset S j is defined by
the yellow region. This region contains the elements directly surrounding the degree of freedom j . As can
be noted, the weight for both degrees of freedom of any node will be identical. The resulting weight for this
region will be determined by the density of these elements, and as material is present, the weight will be
relatively high and the displacement of this degree of freedom will be relevant for the objective function.
If the degree of freedom of interest j is surrounded by void elements as shown in figure 6.2b however, the
resulting weight a j will be relatively low due to the low-density values of the surrounding elements, which
in turn results in the displacements of this degree of freedom being less relevant for the objective function.
What the parameter w in equation 6.2 represents is the penalization factor of these element density values.
As the value of w increases, the weights a j for a degree of freedom j become lower for degrees of freedom
surrounded by low-density elements and similarly higher for those in high-density element regions.
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The values Nmw obtained from equation 6.6, however, can vary tremendously in terms of orders of
magnitude during the optimization. This also results in large differences in the orders of magnitude of the
sensitivities, which will be difficult for the optimizer to deal with as the differences in sensitivities might
become negligible. In order to prevent this behaviour, a logarithmic scaling can be applied to the objective
function to allow for these small differences to be manageable. The applied operation to achieve this scaling
is given in equation 6.8. For the experiments which will be done later in this chapter, a value of c0=100 was
found to be sufficient.

NmwdB = c0 +10log10(Nmw ) (6.8)

As will be seen later in this section, the objective function above allows for a topology which is
disconnected from the defined boundaries. Therefore, an additional component is added, which is static
compliance. To define static compliance, some generalized system definitions can be set up first. For any
system excited by a certain force at a certain frequency ω, the force vector can be defined as:

f =λ(ω) f̂ , (6.9)

where f̂ represents the magnitude of the force, and λ(ω) represents a directional unit vector with
accompanying excitation frequency ω. For a static case, or in other words, ω=0, this is represented by λ(0).
This same principle can be extended to the system matrices, where the stiffness matrix can be given by
(section 4.2):

K(x,ω) = K(x)+ jωC(x)−ω2M(x), (6.10)

For any ω ̸=0 the stiffness matrix is equal to the so-called ’dynamic stiffness matrix’, and for ω=0, this
definition results in the static stiffness matrix K(x,0) = K(x). Respectively, these matrices can be used to
obtain the dynamic displacements u(ω) and static displacements u(0) With these terms covered, the static
compliance can be defined as:

CS = uT (0)K(x,0)u(0) = uT (0)λ(0) f̂ (6.11)

With the static compliance defined, the complete objective function can be formulated. As the order
of magnitude of the density-weighted norm function and the static compliance can vary substantially, they
are normalized by their initial values N 0

mwdB and C 0
s , respectively. Lastly, two weight factors γ1 and γ2

are incorporated into the objective formulation. These are used to define the contribution of the static
compliance to the objective and satisfy |γ1| +γ2 = 1. It can be noted that the absolute value of γ1 is used
for the satisfaction criteria. This is due to the fact that this value can also be negative, which transforms
the objective of this formulation entirely. Instead of the norm function being minimized, it will instead be
maximized (in other words, the negative will be minimized) whilst still minimizing the static compliance.
The full formulation is given by:

min
x

: Ntot(x) = γ1
NmwdB (x)

N 0
mwdB (x)

+γ2
CS (x)

C 0
S (x)

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

with u(ω) obtained from : K(x,ω)u(ω) =λ(ω) f̂

(6.12)

With the objective function formulated, its behaviour can be examined. Montero et al. [37] studied the
cases of global minimization and local maximization for a harmonic force excited system. Local minimization
was not covered under the premise of not wanting other regions of the domain to exhibit large displacements
in order to minimize displacements in the region of interest. This exact principle, however, covers areas
such as vibration isolation and dynamic balancing mentioned in section 2.2.4. The interest of this thesis will,
therefore, be to investigate the applications of both global and local minimizations of a compliant mechanism
design domain disturbed by harmonic base excitations.
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6.2. Parameter study
To determine how the proposed objective function can be used in the final case study, a parameter study will
have to be conducted, which expands on the research of Montero et al. [37] in order to study the behaviour
of this objective function. The goal will be to first confirm the behaviour found by Montero et al. [37] and
then check whether the ability to obtain well-defined topologies for high frequencies without premature
convergence or a large number of intermediate densities still persists for local minimization.

As the investigation is quite extensive, the entire study can be found in Appendix B, and this section will
only provide a discussion of the results. The load cases which are used for global minimization of the force
and base excited case are given in figure 6.3. It can be noted that an additional load case is required for static
compliance in both cases.

(a) Force excitation load case 1 (b) Force excitation load case 2

(c) Base excitation load case 1 (d) Base excitation load case 2

Figure 6.3: The load cases required to solve for the global minimization of a double-clamped beam structure
under a force and base excitation.

As for the used material interpolation functions, a study was done on what function would perform best
in terms of intermediate density occurrence for both the force and base excited case. This study can be found
in Appendix C and yielded that the Polynomial Interpolation Scheme (PIS) (equation 3.16) is preferred for the
stiffness interpolation, and standard SIMP (equation 3.9) for the mass interpolation.

6.2.1. Global minimization
Global minimization for both the force-excited and base-excited systems yielded well-defined results for a
large range of frequencies. It was found that the parameter γ1, which determines the amount of contribution
that the static compliance has to the final result, is a necessary part of the objective function, as was found
when setting the value of γ1 to 1.0, which yielded a structure which was disconnected from the base. The
values of γ1=0.90, 0.95 and 0.99 provided a clear distinction on this influence. For the parameter w , or the
density-weighted filter, it was found that its inclusion in global minimization provides the benefits of yielding
structures with little to no intermediate densities present for frequencies up to 1721Hz and 2947Hz for the
force excited and base excited case, respectively as can be seen in figure 6.4 for γ1=0.95. As for its appropriate
value, it was found that any w is valid, which results in the simplest choice of w=1. One thing which was
required however, was a forced symmetry over the y-axis in order to prevent the optimizer from yielding
asymmetric designs.

(a) Force excitation, ωexc=1721Hz (b) Base excitation, ωexc=2947Hz

Figure 6.4: The resulting topologies for the global minimization under both force excitation and base
excitation of the design domain given in figure 6.3 for their respective highest frequency of interest and
γ1=0.95.
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In the previous section, it was determined that a larger value of m would allow for a better approximation
of the actual system. In this study, however, contradicting results were found for the force-excited case and the
base-excited case. The force excited case did indeed improve for larger values of m, but showed diminishing
returns for m ≥ 2. The base excited case, on the other hand, seemed to show better performance for lower
values of m. For global minimization, the parameter m was therefore suggested to be set at m=2.

6.2.2. Local minimization
The influence of the density-weighted norm objective function on local minimization subjected to force and
base excitations was explored for two subsets: a single degree of freedom and an area of interest L. The single
degree of freedom considers the vertical degree of freedom of the mass point mb given in figure 6.3c.

(a) Force excitation load case 1 (b) Force excitation load case 2

(c) Base excitation load case 1 (d) Base excitation load case 2

Figure 6.5: The load cases required to solve for the local minimization of a double-clamped beam structure
under a force and base excitation. The second

For force-based local minimization, the density-weighted filter’s impact was found to be negligible for
both cases, leading to its removal (w=0) across all experiments. While the density-weighted filter played
a significant role in preventing intermediate density regions in global minimization, static compliance
contribution seemed more important for force-based local minimization. Specifically, it was observed that
a lower static compliance contribution (γ1=0.99) led to topologies with intermediate density regions. As for
the parameter m for force-based local minimization, this had no impact on a single degree of freedom by
definition, and its influence on a local area was also limited, resulting in the choice for m=2.

In the case of a single degree of freedom, all results exhibited an anti-resonance present at the excitation
point matching the excitation frequency, which is similar behaviour to what was found in section 4.6. In
this case, however, all results converged and yielded well-defined topologies due to the static compliance
contribution. For an area L, low excitation frequency results exhibited collective anti-resonance behaviour
among the degrees of freedom within the area; this effect diminished at higher frequencies, however, due
to the modes becoming more complex. Nevertheless, other regions of the domain still displayed larger
displacements in order to minimize those of the area of interest.

Similarly, for base excitation-based local minimization, the density-weighted filter (w=0) yielded limited
impact, while parameter m exhibited different behaviour compared to the force-excited case. Although
response measurements at the point of interest did not vary significantly, higher values of m resulted in the
second eigenfrequency ω2 moving further from the excitation frequency. This behaviour diminished quickly
for m ≥ 4, however, and therefore the choice was made for m=4.

For a single degree of freedom, the resulting topologies contained large amounts of intermediate
densities, except at the lowest examined frequency of 340Hz. Surprisingly, increasing the static compliance
contribution did not remedy this issue, unlike in the force-excited case. For an area L, the results were a
lot more defined but still contained intermediate-density members. Both subsets demonstrated minimized
results across all frequencies, however, with higher values of γ1 correlating with improved frequency
performance. Figure 6.6 shows two examples for the minimization of the area of interest L for the highest
frequencies of 1721Hz and 2947Hz for force-based and base excitation-based excitations, respectively.
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(a) Force excitation, ωexc=1721Hz (b) Base excitation, ωexc=2947Hz

Figure 6.6: The resulting topologies for the local minimization under both force excitation and base excitation
of the design domain given in figure 6.3 for their respective highest frequency of interest and γ1=0.95.

6.2.3. Conclusions
Overall, the force-excited global minimization case yielded results which were similar to those found in
Montero et al. [37], confirming the observations found by Montero et al. Base excited global minimization
also showed similar results, only with slightly different behaviour. As for the extension to local minimization,
an area of interest appears necessary in order to obtain results which are limited in the number of
intermediate densities they present, specifically for the base excited case. To investigate this further, the
final case study will include more than one size of the area of interest in order to assess its influence.





7
Case studies

As mentioned in chapter 5, the case study for this thesis will consider the design of a compliant mechanism,
specifically an inverter mechanism, which is disturbed by a harmonic base excitation. The aim is to obtain an
inverter mechanism which is capable of achieving desired inverting behaviour, whilst presenting a minimized
displacement response resulting from an applied harmonic base excitation at a specified frequency.

To achieve this goal, several intermediate steps will be taken, which will allow for a comparison of
the resulting topologies. First, an inverter mechanism will be designed within a smaller domain than the
proposed case study. The unused part of the full domain for this step can then be used in the next step to
design an isolator which minimizes the displacements at the connection points of the obtained mechanism.
These two steps consider the process of ’classical’ mechanism design, where a mechanism is designed, after
which a separate isolator is constructed, which is connected to the design in order to minimize disturbances.

Next, the formulation introduced in chapter 6 will be used to perform a combined optimization, where
a mechanism is obtained which contains the inherent property of minimized displacements at a specified
frequency. This will be done by first designing a static mechanism for the full-sized domain, which can be
used to identify a selection of frequencies of interest. Lastly, the principles of global and local minimization
subjected to a base excitation are utilized in order to obtain the final optimized mechanisms to complete this
case study.

7.1. Step 1: Stitched mechanism
The first step consists of two intermediate steps, which are the design of the mechanism and the design of the
isolator. After these designs are obtained, they can be stitched together to form the full domain mechanism,
which can be examined in order to see whether the desired minimized vibration behaviour is achieved.

7.1.1. Step 1a: Mechanism design
Section 4.1 outlined the currently used methods of designing an inverter mechanism using topology
optimization, where the presented designs considered a one on one inversion. For this case study, the
magnitude of the actual inversion, or in other words, the obtained geometrical advantage, will be a
performance indicator but will not be the goal itself. This is due to the fact that the steps, which include the
density-weighted norm function, will incorporate a weighted objective function where the static performance
of the mechanism might be altered in order to improve dynamic performance. Therefore, the most important
aspect is to obtain a mechanism which exhibits an inverted output direction. To outline the problem
formulation for this step, the design domain and accompanying load cases are visualized first and provided
in figure 7.1. For this visualization and all subsequent visualizations, the threshold is set at a design density
of 0.48 unless mentioned otherwise. This will take into account some of the contours created by the density
filter.

51
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(a) Design domain (b) Load case 1

(c) Load case 2 (d) Load case 3

Figure 7.1: The design domain and three load cases required to solve the optimization problem for step 1a of
this case study as given in equation 7.1.

The design domain is defined by a rectangle of 0.6 × 0.3m, with the thickness of the domain set at 0.01m.
The domain is constrained at both the left and right boundary in all directions, and the input and output
locations are marked. The black rectangles represent a non-design domain, which will be needed later once
the base excitations are introduced, considering the results of section B.5. The first load case only considers
a force on the input of the domain, and the second load case only a force on the output. The magnitudes
of these of these forces are set at a similar value of 1kN. The accompanying displacements are also provided
in these figures and are not to be confused with prescribed displacements. The third load case specifies the
desired displacement directions for this problem, which in this case is set at ν = [u(3)

in ,u(3)
out] = [1,−2]. The

value of the output displacement is set higher than the input displacement in order to account for the strain
energy stored in the structure when actuated as was also mentioned in section 4.1.1.

With the design domain specified, the optimization formulation can be constructed. The superscripts (1),
(2) and (3) represent the first, second and third load cases, respectively, as given in figure 7.1.

min
x

: C (1)
in +C (2)

out

subject to : C (3)
ν ≤ C̄ν

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

(7.1)

The objective of this minimization is to minimize the force-based compliances C (1)
in and C (2)

out of the input
and output respectively, whilst simultaneously constraining the compliance of the motion pattern of the
desired geometrical advantage. This formulation allows for the maximization of the stiffness of the input and
output locations whilst satisfying the desired geometric advantage and accompanying maximum stiffness
of this deformation pattern, all for a given amount of material usage. The definitions of the compliances in
equation 7.1 are given in equation 7.2.

C (1)
in = f(1)

in ·u(1)
in

C (2)
out = f(2)

out ·u(2)
out

C (3)
ν = ν(3) ·K(3)ν(3)

(7.2)
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As for further domain properties, the finite element mesh consists of 60×30 4-node quadrilateral
elements, the density-filter radius is set at 2 and the desired volume fraction at 2.0. The material interpolation
functions which are used are the Polynomial Interpolation Scheme (PIS) from equation B.1 for the stiffness
interpolation and the standard SIMP function from equation 3.9 for the mass interpolation. The mass
matrix is not used yet in the optimization for this step, but is used to determine the eigenfrequencies and
accompanying eigenmodes of the system. The optimizer used is the MMA optimizer, where the tolerance
is set at 1e−4, and the maximum iterations are limited to 100. Lastly, a minimum value for xmin=1e−3 is
implemented in order to avoid the system matrices from becoming singular. Using the formulation given
in equation 7.1, the optimization can be performed, and the resulting topology is given together with a
visualization of its vertical displacements done in ParaView in figure 7.2.

(a) Resulting topology (b) Vertical displacements of the mechanism visualized in ParaView

Figure 7.2: The resulting topology of the inverter optimization problem given in equation 7.1 together with
a visualization done in ParaView of the vertical displacements resulting from the applied static input force
which confirms the working inverting function.

As can be seen from these results, a mechanism is obtained that exhibits the desired inverting motion
behaviour. Specifically, if a force of 1kN is applied to the input port, the accompanying input displacement
and resulting output displacement values in table 7.1 are obtained.

Property Value
uin 9.6473e−5 [m]

uout -1.1745e−4 [m]
G A -1.2175 [-]

Table 7.1: An overview of the values of the respective input and output displacements resulting from the
applied input force for the topology given in figure 7.2a together with the obtained geometrical advantage.

Next, the eigenmodes of the obtained resulting topology can be analyzed in order to determine its
frequency behaviour. If an eigensolve is performed on the resulting structure, the eigenfrequencies can be
obtained, of which the first four are given in table 7.2.

Computed Eigenfrequencies ω1 ω2 ω3 ω4

394Hz 397Hz 846Hz 1222Hz

Table 7.2: An overview of the first four computed eigenfrequencies of the resulting topology given in figure
7.2a

As seen in chapter 6, not all eigenmodes will have influence in the direction of interest. In this case, the
desired inverting occurs in the vertical direction, and as such, the vertical directions of the eigenmodes are
of interest. To visualize the four eigenmodes which accompany the eigenfrequencies given in table 7.2, their
vertical displacements are given in figure 7.3.
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(a) ω1 = 394Hz (b) ω2 = 397Hz

(c) ω3 = 846Hz (d) ω4 = 1222Hz

Figure 7.3: A ParaView visualization of the vertical displacements within the obtained structure for the first
four eigenmodes of which the respective eigenfrequencies are given in table 7.2.

From this visualization, it is clear that only the first eigenfrequency of this subset affects the vertical
displacements of the input and output. This will affect the displacement output of the mechanism, which
therefore makes it a frequency of interest. to confirm this, a harmonic base excitation with a magnitude of
100m/s2 is applied to the vertical degrees of freedom of the boundaries. The resulting frequency response of
the vertical displacements of the input and output is given in figure 7.4, together with a visualization of the
vertical displacements of the mechanism when excited by the base excitations at the first eigenfrequency.

(a) Frequency response of the vertical displacements of
the input and output

(b) Vertical displacement response of of the mechanism at
the first resonance frequency of 394Hz

Figure 7.4: The frequency response of the respective vertical displacements of the input and output together
with a visualization of the displacement response of the structure resulting from the applied base excitation
at the first resonance.

From the frequency response, it is clear that the first resonance indeed contains large displacements of
the input and output of the mechanism, with the output having larger displacements than the input. This is
confirmed by looking at the vertical displacements in figure 7.4b, where the displacements given in table 7.3
are obtained.

For this first step, the objective will, therefore, be to minimize the response to the base excitations at the
input and output port by designing for this first resonance of 394Hz specifically. This will be done in the next
step by designing an isolator for this frequency of interest.
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ωexc =394Hz Response
uin 6.5345e−5 [m]

uout 1.3259e−4 [m]

Table 7.3: An overview of the values of the respective input and output displacements resulting from the
applied base excitations.

7.1.2. Step 1b: Isolator design
The next step is to develop an isolator for the mechanism obtained in the previous step. This isolator however,
is designed considering only the boundaries to which the mechanism is attached. This means that the isolator
which is designed is technically independent of the already-designed mechanism. What will, however, be
taken into account is the connection boundary and the mass of the mechanism, which are determined by the
dimensions and volume fraction used in the previous step.

The design domain which is used is the same 0.6 × 0.3m rectangle, which results in a 1.8 × 0.3m domain
once the isolator is connected to the obtained mechanism at both sides. The left boundary is, therefore,
constrained in both directions, while the right boundary is left unconstrained. The domain is provided in
figure 7.5, together with the two load cases which are used for this problem. The first load case contains the
applied base excitation, which is an acceleration excitation of 100 m/s2 to the left boundary in the vertical
direction. Furthermore, it can be noted that a non-design domain is added to the upper right side of the
domain in order to provide a base to which the mechanism from figure 7.2a can connect. This non-design
domain is also given a distributed mass mm, which represents the mass of the obtained mechanism. This
mass is obtained using the dimensions of the domain of step 1 multiplied by the used density and volume
fraction. As the density-weighted norm function from chapter 6 is used for this problem, a static compliance
load case is required, and as such the second load case contains two forces added in the upper right corner,
which represent the forces exerted by the mechanism when actuated, in order to provide the static stiffness
contribution. Lastly, other properties considering material interpolation functions and optimizer settings are
kept similar as well.

(a) Design domain (b) Load case 1

(c) Load case 2

Figure 7.5: The design domain and two load cases required to solve the optimization problem for step 1b of
this case study as given in equation 7.3.
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As already mentioned, this problem will make use of the density-weighted norm function, specifically in
a local minimization sense. The local area to be minimized is the non-design domain shown in figure 7.5.
The appropriate parameters w and m for local minimization subjected to a base excitation of an area L were
determined in section B.5 to be w=0 and m=4 respectively. For this case study, the static compliance factor
γ1 is set at 0.95, which is adequate for a lower excitation frequency such as 394Hz as examined in section B.5.
The formulation for this problem is given in equation 7.3.

min
x

: γ1
NmwdBL(x)

N 0
mwdBL(x)

+γ2
CS (x)

C 0
S (x)

subject to : V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

(7.3)

Using this formulation, the optimization can be performed. The previous step determined the frequency
at which this isolator is to be designed, which was determined to be 394Hz. Using this frequency, the resulting
topology is given together with a visualization of its vertical displacements done in ParaView in figure 7.6.

(a) Resulting topology
.

(b) Vertical displacements of the obtained isolator
visualized in ParaView

Figure 7.6: The resulting topology of the inverter optimization problem given in equation 7.3 together with a
visualization done in ParaView of the vertical displacements resulting from the applied base excitations.

The resulting structure exhibits larger displacements in other areas in order to minimize the
displacements in the area of interest. This is in line with the results found in section B.5. Specifically, the
vertical displacements at the connection point are reduced to 2.0140e−6 m under the applied base excitation.
In the next step, the obtained mechanism and isolator will be combined in order to assess their performance.

7.1.3. Step 1c: Stitched design
Finally, the resulting mechanism from step 1a and the isolator from step 1b can be stitched together in order
to form the final structure. The resulting topology of this stitching is given in figure 7.7.

Figure 7.7: The structure obtained when the resulting inverter mechanism and isolator of figure 7.2a and 7.6a
respectively are stitched together.

Next, the same base excitation with a magnitude of 100m/s2 at the frequency of interest of 394Hz can be
applied to this mechanism. A visualization of the resulting vertical displacements is given in figure 7.8.

From the resulting visualization in figure 7.8, it might seem that there are still large displacements present
due to the applied base excitations. This is, however, due to the scaling of the colour scale, and the actual
results of the displacements of the input and output due to the applied base excitations are given in table 7.4
together with the results of step 1a.
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Figure 7.8: A visualization of the resulting vertical displacement magnitudes within the obtained structure
under the applied base excitations.

ωexc=394Hz Step 1a Stitched
uin 6.5345e−5 4.6855e−5 [m]

uout 1.3259e−4 5.3237e−5 [m]

Table 7.4: A comparison of the values of the respective input and output displacement magnitudes resulting
from the applied base excitations for the mechanisms given in figure 7.2a and 7.7 respectively.

It can be seen that there is indeed a minimization of the displacements in the mechanism. It can be
argued, however, whether these results are actually comparable, considering the difference in the design
domain. As the base excitation is not provided at a similar location, the comparison might be unfair. This
is, however, not the largest discussion point for this stitched mechanism. If the same input force of 1kN is
applied to this combined mechanism, the inverter property is actually lost. The static displacements resulting
from this input force are visualized in figure 7.9.

Figure 7.9: A visualization of the displacements within the stitched structure resulting from the same applied
static input force as in step 1a.

From this visualization, it seems that the entire mechanism now moves in the positive vertical direction,
with no visible inverting direction of the output of the mechanism. This can be confirmed by looking at the
resulting vertical displacements of the input and output, which are provided together with the results of step
1a in table 7.5. It can again be argued whether these values are comparable, but the most important part is
the lack of negative direction for the output displacement, which indicates a loss in inverter function.

Step 1a Stitched
uin 9.6473e−5 4.4697e−7 [m]

uout -1.1745e−4 3.0925e−7 [m]
G A -1.2175 0.6919 [-]

Table 7.5: The displacement values of the vertical input and output degrees of freedom resulting from the
applied static input force together with the obtained geometrical advantage for both the resulting topology
found in step 1a as well as the stitched mechanism of step 1c.

These results show that the method of separately designing an inverter mechanism and an isolator does
not necessarily yield the desired results. Whilst the resulting displacements from the applied base excitations
might be minimized, the inverting function of the mechanism is lost in the process. A combined formulation
is therefore needed, which takes both optimizations into account concurrently. This will be done in the
coming steps.
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7.2. Step 2: Static mechanism in a larger design domain
In order to provide a comparative basis for the upcoming optimizations, a new static inverter mechanism
which spans the full design domain has to be designed. The frequency behaviour of this mechanism will
be analyzed, and several frequencies of interest will be chosen which this mechanism will be optimized for.
First, the same design domain and load cases from step 1a are modified to accommodate this problem and
are given in figure 7.10.

(a) Design domain (b) Load case 1

(c) Load case 2 (d) Load case 3

Figure 7.10: The design domain and three load cases required to solve the inverter optimization problem for
step 2 of this case study as given in equation 7.4.

This design domain considers the full domain, which is defined by a rectangle of 1.8 × 0.3m, with the
thickness of the domain set at 0.01m. The same boundary constraints at both edges are present, and the loads
are applied at similar respective locations. Furthermore, the magnitude the applied load is the same 1kN,
and the desired displacements directions are again set at ν= [u(3)

in ,u(3)
out] = [1,−2]. The formulation is similar

to the one given in 7.1, but this time two extra constraints are added to the input and output compliance.
This may seem counter-intuitive given that both these values are minimized, but this will allow for each of
the inverters in the coming steps to be comparable as they will all contain similar compliance values. The
updated formulation is given in equation 7.4.

min
x

: C (1)
in +C (2)

out

subject to : C (3)
ν ≤ C̄ν

C (1)
in ≤ C̄in

C (2)
out ≤ C̄out

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

(7.4)

For the mechanism compliance constraint, the value C̄ν is used as in step 1a. Considering now that the
design domain is much larger, it is expected that the resulting geometrical advantage will be lower as the
larger structure is able to store more strain energy. The definitions of the compliances are again given by:

C (1)
in = f(1)

in ·u(1)
in

C (2)
out = f(2)

out ·u(2)
out

C (3)
ν = ν(3) ·K(3)ν(3)

(7.5)

Lastly, all optimization properties are kept similar to step 1a except for the maximum amount of iterations,
which is increased to 300, and the same material interpolation functions are used. The resulting topology,
together with a visualization of its vertical displacements resulting from the applied static input load done in
Paraview, is given in figure 7.11.
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(a) Resulting topology (b) Resulting static displacements visualized ParaView

Figure 7.11: The resulting topology of the inverter optimization problem given in equation 7.4 together with
a visualization done in ParaView of the vertical displacements resulting from the applied static input force
confirming the working inverting function.

The resulting topology presents an inverter mechanism which differs substantially from the mechanism
found in step 1. However, this was to be expected for the larger design domain, given the same mechanism
compliance constraint. For this larger domain, the mechanism is located in the centre of the domain and
is connected to the boundaries through an intermediate structure. This connecting structure appears to
consist of a structure similar to what would be obtained from a simple clamped cantilever static compliance
optimization and a flexure which connects to the mechanism itself. The visualization given in figure 7.11b
shows that the mechanism exhibits the desired inverting behaviour. The resulting displacement values of the
input and output, together with the obtained geometrical advantage, are given in table 7.6.

Property Value
uin 1.2000e−4 [m]

uout -1.0667e−4 [m]
G A -0.8889 [-]

Table 7.6: The displacement values of the vertical input and output degrees of freedom resulting from the
applied static input force together with the obtained geometrical advantage for both the resulting topology
given in figure 7.11a.

Compared to step 1a, a higher input displacement is achieved and a lower output displacement. The
resulting geometrical advantage is, therefore, drastically lower given its definition. This was to be expected
however, and the magnitude of the inverting behaviour is less relevant for this case study. The important
part is that similar inverter performance is yielded such that the results obtained from the upcoming
optimizations are comparable.

Next, the frequency behaviour of the obtained structure can be examined. An eigensolve can be
performed on the topology of figure 7.11a, but as was already found in chapter 6, the eigenmode
accompanying a given eigenfrequency does not necessarily have to show displacements in the regions of
interest, which in this case are the input and output regions, specifically in the vertical direction. To see which
modes will contribute the most to the displacements of these points of interest, the undamped frequency
response of the vertical displacements of the input and output for the structure subjected to the applied base
excitation with a magnitude of 100 m/s2 can be examined. This response is given in figure 7.12.

Figure 7.12: The frequency response of the respective vertical displacements of the input and output under
the applied base excitation.
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In this response the eigenfrequencies ω2, ω3, ω7 and ω10 are plotted as well, as the input and output of
the mechanism appear to exhibit the largest displacements at these resonance frequencies. The resonance
appearing at ω8=1630Hz could be included as well, but the higher frequency resonance will be of more
interest in this case to provide a broader picture of the frequency behaviour. For each of these chosen
resonances, it differs whether the input or output has a larger displacement, but both are affected. A
visualization of the resonance which occurs when the structure is excited by the applied base excitations
at these frequencies is given in figure 7.13.

(a) ωexc = 363Hz (b) ωexc = 471Hz

(c) ωexc = 1242Hz (d) ωexc = 1823Hz

Figure 7.13: A visualization of the vertical displacement magnitudes within the structure resulting from the
applied base excitation at the four respective frequencies of interest visualized in ParaView.

These results clearly show how either the input or the output exhibits a larger displacement than the
input for a given resonance. For the results of the higher frequencies 1242Hz and 1823Hz, relatively large
displacements are also present in other parts of the mechanism. The specific displacements of the input and
output at these four frequencies are given in table 7.7.

Property ω2=363Hz ω3=471Hz ω7=1242Hz ω8=1823Hz
uin 1.7763e−4 2.6846e−5 5.0102e−7 1.3258e−6 [m]

uout 1.9988e−4 2.7723e−4 8.2329e−6 1.4209e−6 [m]

Table 7.7: An overview of the values of the respective input and output displacement magnitudes resulting
from the applied base excitations for the four respective frequencies of interest as given in figure 7.13.

These four frequencies will serve as the frequencies of interest for the upcoming steps, where the goal
will be to apply the proposed minimization principles in order to minimize the large displacements in the
structure occurring due to the applied base excitations at these frequencies. It is to be noted, however, that
this case study represents a worst-case scenario, where the mechanism is excited at a resonance frequency.
Practically, this would not necessarily be the case, but this scenario will provide a good insight into how the
proposed objective function performs in the hardest optimization scenario.

7.2.1. Defining the design domain and load cases for global and local minimization
In the coming sections, a similar inverter to the one obtained in this step will be optimized for the applied
base excitations at the frequencies of interest. As the inverter mechanism formulation remains identical, the
required load cases for each of these optimizations are also identical. Figure 7.14 therefore defines the design
domain and load cases for steps 3, 4 and 5. Note that these are the same as those in figure 7.10, only with
different numbering.

Figure 7.14a defines the design domain, which is the same 1.8m × 0.3m domain as defined in step 2.
Figures 7.14b, 7.14c and 7.14d then provide load cases 2, 3 and 4 respectively. Note that the first load case is
left out, as this is the only load case differing for the coming steps. This load case will be defined separately
for each step, whilst the rest of the load cases remain the same as those given in figure 7.14.
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(a) Design domain (b) Load case 2

(c) Load case 3 (d) Load case 4

Figure 7.14: The design domain and three of the four load cases required to solve the inverter optimization
problem for step 3, 4 and 5.

7.3. Step 3: Global minimization
In order to minimize the displacements at the resonance frequencies found in the previous step, the density-
weighted norm objective function from chapter 6 will be utilized. First, the principle of global minimization is
applied. given that the global minimization principle targets the largest displacements present in the design
domain, it is expected that topologies are obtained which minimize or do not display the large input and
output displacements found in figure 7.13 at the specified excitation frequency. As the base excitations are
now included in the problem formulation, an extra load case containing these excitations needs to be added.
Given that the design domain and inverter load cases were already defined in section 7.2.1, only the first load
case, containing the base excitations, is given in figure 7.15.

Figure 7.15: Load case 1 used for global minimization. Note that the other load cases which are required for
this optimization problem were defined in section 7.2.1

All domain properties, optimizer properties and mechanism properties are kept similar to those defined
in step 2. The static compliance contribution needed for the density-weighted norm function is conveniently
covered by the compliance minimization already present for the mechanism optimization. Furthermore,
while a non-design domain is added at the input and output, which has mass, no additional masses are
added to this problem. The formulation for this problem is given in equation 7.6, where the the superscripts
(1), (2), (3) and (4) represent the respective load cases.

min
x

: γ1
N (1)

mwdB (x)

N (1)
mwdB

0(x)
+γ2

 C (2)
in (x)

C (2)
in

0
(x)

+ C (3)
out(x)

C (3)
out

0
(x)


subject to : C (4)

ν (x) ≤ C̄ν

C (2)
in ≥ C̄in

C (3)
out ≥ C̄out

V (x) ≤ V̄

0 ≤ xmin ≤ x ≤ 1

(7.6)

As for the properties of the norm function, it was determined in section B.2 that the density-weighted
filter is to be included with a value of w=1 and the parameter m set at 2. Furthermore, the same constraint



62 7. Case studies

values for C̄ν, C̄in and C̄out from step 2 are used.

The only parameter of the objective function which then remains is the parameter γ1. Its definition
specifies the contribution of static compliance to the objective function. In this case study, however, the
input and output compliances are also constrained to a minimum value, which would make this parameter
redundant. The optimizations conducted for this case study, however, showed otherwise. It seems that
the influence of this parameter is present during the optimization, where it leans more towards the norm
function or the static compliance as the optimization progresses. While similar compliance values are found
for different values of γ1, these are all considered different local minima with varying frequency performance.
The parameter γ1 is therefore also taken into account in this case study and examined for the same values of
γ1=0.90, 0.95 and 0.99 as was done in chapter 6.

Using this formulation, the harmonic base excitation with a magnitude of 100 m/s2 can be added with
the excitation frequencies of interest of 363Hz, 471Hz, 1242Hz and 1823Hz, as determined in the previous
section. The topologies which result from these optimizations for the different values of γ1 are given in figure
7.16.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.16: The topologies obtained with the global minimization formulation given in equation 7.6 for the
four respective frequencies of interest as well as the three values of interest for the parameter γ1.

Whilst all results appear to have obtained an inverter mechanism, their topologies are vastly different.
One important thing to confirm is that the obtained inverters still actually provide an inverted displacement
and that this function is not lost as it was for the stitched design in Step 1. A visualization of the displacements
resulting from the applied static input load can be found in Appendix D.1, which confirms that the inverter
function is still present for all obtained topologies. As for the resulting topologies, a behavioural pattern can
be observed. For lower values of γ1, more material is deposited in the centre part of the domain, often being
added to the members of the inverter mechanism. This does not seem to influence the mechanism itself
as the compliant joints still seem to be of similar thickness for different values of γ1. Comparing the lowest
frequency of 363Hz with the highest frequency of 1823Hz, the main difference can be found in the connection
to the base, which is quite slender for the high frequency and a lot thicker for the low frequency. In between
these frequencies there is a gradual shift in material being deposited away from the boundaries, with the only
exception being the result of γ1=0.99 for 1823Hz. Why this might be can be determined by looking at both the
inverter performance, as well as the frequency performance. The quantitative analysis will be done in section
7.6, but a visualization of the frequency performance is given in figure 7.17.
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(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.17: The vertical displacement magnitudes resulting from the applied base excitations for each of the
respective topologies given in figure 7.16 visualized in ParaView.

For the excitation frequency of 363Hz, it seems that a large part of the mechanism still exhibits substantial
displacements. The magnitudes of these displacements, however, are much lower than those found for
the eigenmode, which was present at this frequency for the statically optimized inverter. For the result
of γ1=0.90 for 471Hz, the patches of material which were added to the mechanism appear to contain the
largest displacements. Overall, for all frequencies except the highest excitation frequency of 1823Hz, the
largest displacements are still present at the input or output regions, albeit with much lower displacement
magnitudes than for the statically optimized inverter. For the excitation frequency of 1823Hz, however, the
largest displacements are found at the previously mentioned slender members connecting the structure to
the base. This is similar behaviour to what was found in chapter 6 for high excitation frequencies, and yields
minimized displacements in the rest of the structure. Overall, the resulting displacement fields found in figure
7.17 appear to minimize the displacements in a seemingly random sense, which is to be expected considering
the objective function targets the maximum displacements present in the structure at a given iteration.

7.4. Step 4: Local minimization of the mechanism area
The next step will consider the principle of local minimization to investigate whether lower displacement
magnitude responses can be obtained compared to global minimization. Chapter 6 already showed that this
principle allows for higher displacements in other regions of the domain than the specified area of interest.
For local minimization, a point of interest or an area L has to be specified, which is to be minimized. For
this case study, two different areas of interest will be examined, of which one will be used in this step, and
the other in the last step. This step will consider the entire mechanism area as it was defined in Step 1, being
the middle third of the domain. From this minimization, it is expected that the resulting topologies display a
more even minimization of the mechanism area and larger displacements outside this area, whereas global
minimization still had the largest displacements present within the mechanism. The design domain and
inverter load cases are the same as defined in section 7.2.1, and the modified first load case, which includes
the area of interest, is given in figure 7.18.
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Figure 7.18: Load case 1 used for local minimization of the mechanism area. Note that the other load cases
which are required for this optimization problem were defined in section 7.2.1

The non-design domain areas for the input and output are still present, and again no mass is added to
the area of interest. Furthermore, all domain properties, optimizer properties and mechanism properties are
kept similar to those defined in step 3. Only the optimization formulation is altered slightly in order to now
denote the use of an area of interest L. This formulation is given in equation 7.7.
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(7.7)

In section B.5 it was determined that the density-weighted filter is to be removed for this kind of
optimization (w=0), and the parameter m is set at a value of 4. The topologies which are obtained with this
formulation for the respective frequencies of interest and values of the parameter γ1 are given in figure 7.19.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.19: The topologies obtained with the local minimization formulation considering the mechanism
area as given in equation 7.7 for the four respective frequencies of interest as well as the three values of interest
for the parameter γ1.

The obtained topologies all exhibit the desired inverting function, as can be seen by looking at the vertical
displacements resulting from the applied input load is given in Appendix D.2. The resulting topologies for
the excitation frequency of 363Hz, together with the γ1=0.90 and 0.95 results for 471Hz, are very similar to
those found for global minimization. This is likely due to most of the contribution of the norm function in
global minimization considering this same area. The resulting topologies of γ1=0.90 and 0.95 for 1242Hz
and 1823Hz appear to construct connecting structures with some intricate members. For the high value of
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γ1=0.99 the connecting members seem to become very slender and the mechanism itself is given a relatively
large amount of mass. This is similar to the vibration isolation behaviour found in chapter 6. The results
of γ1=0.95 and 0.99 for 1823Hz do, however, seem to contain some intermediate densities. To examine the
frequency behaviour, the vertical displacement magnitudes resulting from the applied base excitations are
given for each topology in figure 7.20.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.20: The vertical displacement magnitudes resulting from the applied base excitations for each of the
respective topologies given in figure 7.19 visualized in ParaView.

For the lower frequencies of 363Hz and 471Hz, similar behaviour is found for global minimization, where
displacements of the input and output regions are still present but with lower magnitudes. For the higher
excitation frequencies of 1242Hz and 1823Hz however, some interesting behaviour is found. It appears that
for all values of γ1, the displacements of the mechanism area specifically are minimized. This is exactly what
was desired from this objective function formulation. The manner in which this is achieved differs for each
value of γ1, however. For γ1=0.90, the member which connects the mechanism to the base structure seems to
exhibit the largest displacements, whereas for γ1=0.99 this same member is very slender and the entire base
structure exhibits the largest displacements. The result of γ1=0.95 for 1242Hz shows the most interesting
behaviour, however. It appears that the two lobes of material which are added to the structure exhibit the
largest displacements in order to minimize the displacements of the mechanism area. This can be seen as
the vibration absorption principle explained in section 2.2.4.

7.5. Step 5: Local minimization of the input and output area
For the last step of this case study, the area of interest is reduced to only the input and output area. Compared
to the previous step, having even smaller specified areas of interest will give the optimizer more room inside
the design domain to come up with designs that minimize the input and output area specifically. Section
B.5 determined that a local minimization subjected to a base excitation presents topologies containing large
amounts of intermediate densities for single degrees of freedom of interest at higher excitation frequencies.
Therefore, a local area L is needed, which will conveniently be the non-design areas added to the input and
output earlier. The updated first load case is given in figure 7.21.
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Figure 7.21: Load case 1 used for local minimization of the input and output area. Note that the other load
cases which are required for this optimization problem were defined in section 7.2.1

In this case, no additional mass is again added to the system, and all domain, optimizer and mechanism
properties remain identical to those of previous steps. The same formulation given in equation 7.7 is used,
only considering the now different area of interest L. As for the parameters w and m, the density-weighted
filter is again removed for local area minimization (w=0) and the parameter m is set at m=4. The topologies
which are obtained for the respective frequencies of interest and parameter values for γ1 are given in figure
7.22.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.22: The topologies obtained with the local minimization formulation considering the input and
output area for the four respective frequencies of interest as well as the three values of interest for the
parameter γ1.

The resulting topologies for the excitation frequency of 363Hz for all values of γ1 and the results of 471Hz
for γ1=0.90 and 0.95 again show similar resulting topologies to the previous global and local minimizations
with only slight differences. The results of higher frequencies also seem similar, with the difference being
primarily in the material deposition on the mechanism. The resulting topologies of γ1=0.99 however, do
seem to contain large amounts of intermediate densities for higher frequencies, and as can be seen in the
resulting static displacements in Appendix D.3, the inverter function is lost for the result of γ1=0.99 at 1823Hz.
As for the frequency behaviour, the vertical displacement magnitude fields resulting from the applied base
excitations are given in figure 7.23. The results for γ1=0.99 at 1823Hz had their threshold value lowered in
order to visualize the displacements of the intermediate density fields.

Given that the topologies for 363Hz showed similar results compared to the minimizations of the previous
steps, it is to be expected that the displacement field looks similar as well. For 471Hz, the results of γ1=0.90
and 0.99 show similar results to the previous step, but with much more focus on the minimized displacements
of the areas of interest. For the results of γ1=0.90 and 0.95 for higher frequencies, similar results to those in
the previous step are found as well, but also with the same added behaviour of parts within the mechanism
being allowed to displace in order to minimize the displacements of the areas of interest. For 1242Hz and
1823Hz, similar mass lobes are also formed, which contain large displacements, but these are connected to
the rest of the structure via very low-density members. The results of γ1=0.99 show the desired behaviour
of displacing other parts of the structure in order to minimize the displacements in the area of interest, but
these large displacements are mainly found in the large intermediate-density areas.
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(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure 7.23: The vertical displacement magnitudes resulting from the applied base excitations for each of the
respective topologies given in figure 7.22 visualized in ParaView.

To clearly see the difference between the results of the local minimization conducted in this step
compared to global minimization, figure 7.24 provides a comparison of the results of the excitation frequency
at 471Hz for γ1=0.90. The result of global minimization is coloured in blue, and the result of the local
minimization of the input and output regions is coloured in black.

Figure 7.24: A visualization of the difference between the displacement magnitudes of the topologies
obtained for global minimization (blue) and local minimization of the input and output area (black) for the
excitation frequency ωexc=471Hz and γ1=0.90.

The structure obtained with global minimization aimed to achieve minimized displacements in a global
sense, which can be seen by the connecting members showing smaller displacements than the local result.
The displacement of the input is quite similar, but the displacement of the output is indeed minimized for
the local result.
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7.6. Quantitative comparison
Next, the displacement performance resulting from the applied base excitations can be examined. First,
however, the inverter performance of each obtained structure must be assessed. Table 7.8 provides the
geometrical advantage values for each of the topologies given in figure 7.16, 7.19 and 7.22. As several values
do not match the desired geometrical advantage, a colour scheme is applied where the values within a 5%
margin are marked orange, and values beyond this margin are marked red.

Geometrical Advantage 363Hz 471Hz 1242Hz 1823Hz
γ1=0.90
Global -0.8889 -0.8889 -0.8889 -0.8889

Local mechanism -0.8889 -0.8889 -0.8888 -0.8857
Local input output -0.8889 -0.8889 -0.8888 -0.8668

γ1=0.95
Global -0.8888 -0.8885 -0.8888 -0.8888

Local mechanism -0.8889 -0.8873 -0.8153 -0.7236
Local input output -0.8889 -0.8888 -0.8699 -0.7654

γ1=0.99
Global -0.8110 -0.7134 -0.7889 -0.6506

Local mechanism -0.8243 -0.5814 -0.4505 -0.2874
Local input output -0.8358 -0.2600 -0.3776 0.1087

Table 7.8: The values of the geometrical advantages of the obtained structures of figure 7.16, 7.19 and 7.22.
Values within the range of 5% of the geometrical advantage found in step 2 are marked orange, and values
beyond this margin are marked red.

These results show that not all obtained topologies contain the same geometrical advantage, and the
result of the last step for γ1=0.99 at 1823Hz even lost its inverting function. It is, therefore, debatable whether
these results are comparable, given that a different inverter is obtained, which will also impact the frequency
performance. This impact could be beneficial or even hindering, but it will have an influence nonetheless.
The results which will be compared in this section will therefore primarily consider the γ1=0.90 results and
the γ1=0.95 results will be examined keeping these static results in mind.

Figure 7.25 contains the displacement magnitudes for the input and output, respectively, resulting from
the applied base excitations for each of the obtained topologies for γ1=0.90 compared with the displacements
of the original structure from step 2. The results are split into the input and output displacements due to the
results found in figure 7.13, which displayed the displacement magnitudes of the original structure at the
chosen resonance frequencies. For most results, mainly the output contained high displacements, and the
input contained high or similar displacements only for 363Hz and 1823Hz. The optimized results could,
therefore, contain input displacements which are higher than the original structure but improved on the
displacements of the output.
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(a) γ1=0.90, uin (b) γ1=0.90, uout

Figure 7.25: A graphical representation of the vertical displacement responses under the applied base
excitations at each of the frequencies of interest for both the input and the output given γ1=0.90.

What stands out immediately from these results is that almost all optimized structures have lower
displacement values than those found for the original structure. The only time this is not the case is the
input displacement at 1242Hz of the global and local mechanism optimizations. As mentioned, however, the
input displacement of the original structure was comparatively low. It is hard to see the 363Hz results, but
it appears that the method of local minimization achieves lower displacement magnitudes than those found
for global minimization, except for the highest frequency of 1823Hz. Looking at the result of figure 7.17j, this
might be explained by the fact that the highest displacements are present near the edges of the structure.
Comparing both methods of local minimization, however, yields inconclusive results as the results vary from
frequency to frequency. To see whether this also holds for other values of γ1, the results of γ1=0.95 are given
in figure 7.26.

(a) γ1=0.95, uin (b) γ1=0.95, uout

Figure 7.26: A graphical representation of the vertical displacement responses under the applied base
excitations at each of the frequencies of interest for both the input and the output given γ1=0.95.

These results show that local minimization of the input and output areas does indeed yield lower
displacement magnitudes for the output displacements but achieves this at the cost of higher input
displacements. The results of global minimization however, do show consistent improvement of the results,
apart from the expected difference in input displacement at 1242Hz. The higher frequency results for local
minimization also show lower displacement magnitudes, but these results are not comparable due to the
resulting different geometrical advantages as given in table 7.8. For the same reason, the results of γ1=0.99
will not be compared.
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7.7. Discussion
Comparing global and local minimization, the local minimization problem formulation generates designs
in which the areas of interest have a lower displacement magnitude than global minimization. This is also
exactly where an argument can be made whether this comparison is justified, given that global minimization
did not specifically target the input and output regions. This same argument applies to the comparison of
the frequency response values. Given that global minimization considers all the degrees of freedom inside
the structure, n frequency responses would have to be examined in order to assess the full behaviour. Such a
comparison, however, would be impossible to perform. The frequencies of interest were chosen by examining
the frequency response of the vertical degrees of freedom of the input and output of an inverter mechanism
which did not consider the applied base excitations. Four frequencies that presented resonances were then
chosen as the frequencies of interest in order to simulate a worst-case scenario. It is, therefore, to be expected
that global minimization would yield a topology that at least has minimized displacements compared to the
original structure, but without prejudice for a specific area, simply the overall minimized result. This same
argument holds for local minimization, which is, in turn, expected to yield a lower displacement magnitude
response compared to global minimization due to specifically targeting these areas. Comparing the results
of local minimization of the two considered areas of interest, it appeared that decreasing the area of interest
only to cover the input and output regions resulted in improved displacement responses in some cases but
also showed decreased performance in other results. Whether the minimization of a smaller area of interest
yields better performance, therefore, remains inconclusive.

For the case study where the area of interest considers the mechanism area, the results show behaviour
that could be considered similar to the principles of vibration absorption and vibration isolation. The
resulting topology of γ1=0.95 for 1242Hz contains lumps of mass with high displacement magnitudes in order
to minimize the displacements in the mechanism area. This could be considered an example of vibration
absorption, where the lumps of mass act as an absorber mass. This mass was, however, located at the
boundary of the design domain, begging the question of whether the same problem definition in a larger
design domain would allow for more room to create these counter masses. For the higher value of γ1=0.99,
the resulting topology contains a large amount of material added to the mechanism members and very thin
flexures which connect the mechanism to the base. This is in line with the principle of vibration isolation
given the thin flexures allow for a low stiffness connection between the large mass to the base. Why this
behaviour is only found for high excitation frequencies is also quite logical. In section 2.2.4, it was determined
that effective vibration isolation can be accomplished by having a large amount of mass and a low amount
of stiffness in order to obtain a low eigenfrequency. For the design domain considered in this case study,
this mass and stiffness is limited however, and therefore, this behaviour is obtained more easily for higher
excitation frequencies. While the geometrical advantage of these results is lower than the rest of the results,
the inverter function is still present for these topologies. This does, however, yield incomparable results.
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Discussion

This thesis focuses on utilizing topology optimization to design compliant transmission systems whilst
simultaneously designing them against unwanted vibrations in the form of base excitations. This is achieved
in two ways: minimizing the overall vibrations in the structure and minimizing the vibrations in one area of
the structure by allowing other areas in the structure to vibrate instead. In the results of this thesis, similar
principles to the currently used methods of attenuating unwanted vibrations, such as vibration isolation and
vibration absorption, are found.

Chapters 2, 3 and 4 contain a literature study on the current state of the art of compliant mechanisms
and topology optimization of compliant mechanisms and dynamic environments. Specifically, the topology
optimization of structures in dynamic environments presented several issues. Eigenfrequency optimizations
do not fully translate to forced vibration problems due to the influence of damping and require a significant
amount of computational effort. Furthermore, eigenfrequency optimization only moves the eigenfrequency
to a desired value but does not necessarily minimize the vibrations for a certain frequency. A better alternative
would be the principle of dynamic compliance, which does take into account the excitation source, but this
objective function is unable to optimize for excitation frequencies above the first resonance of the initial
structure without suffering from premature convergence and containing large amounts of intermediate
density areas. This same issue occurs for base excited problems, which presents the need for a new objective
function which can minimize vibrations for a large range of excitation frequencies.

The density-weighted norm objective function, introduced by Montero et al. [37], is presented in Chapter
6 to remedy these issues. The original work, however, only considers a force-excited global minimization
problem, and therefore, a parameter study is done with an extension to base excited problems, which yielded
similar results to the force-excited case. Comparing the global minimization results to the work of Montero
et al., however, does not show similar performance, especially in terms of the impact of the density-weighted
filter. Originally introduced to prevent the occurrence of localized modes, the density-weighted filter appears
to minimize the occurrence of intermediate density areas, which could result in such localized modes, but
with a much less defined impact as found in the original work. The influence that is present, however, has
a positive impact, and as such, the density weights are still included. The resulting intermediate densities
for local minimization can, therefore, not be fully allocated to the absence of the density-weighted filter.
Appendix C presents a study done one the use of different interpolation functions for the example problem
used in the parameter study on the density-weighted norm function. Several of the resulting topologies in
this appendix presented large amounts of intermediate-density areas, therefore suggesting that the material
interpolation functions have the largest influence on the occurrence of intermediate densities. It does,
however, not appear that there is a one-size-fits-all function. Therefore, the recommendation is to assess
each design problem individually to determine the appropriate interpolation function.

On top of an expansion of the original work done on global minimization to base excitations, an extension
was also made to local minimization, where only a selection of degrees of freedom of interest is minimized,
and the rest of the domain is allowed to portray higher displacements. The parameter study shows that
this optimization problem, especially when considering a single degree of freedom for the base excited
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case, yields a large number of intermediate densities present in the final topology. The density-weighted
filter was excluded for local minimization due to not showing a significant influence on local minimization
problems, but as mentioned, the occurrence of intermediate densities cannot fully be accredited to its
removal. Increasing the size of the area of interest to be minimized, however, does seem to aid in minimizing
the occurrence of intermediate densities. This might be due to the added mass of the non-design domain
being more distributed over the domain, given that the added mass of the area of interest was equal to the one
added to the single degree of freedom case, but this influence was not examined further due to the parameter
values needed for the final case studies being established.

In the case studies, the principles of global and local minimization using the density-weighted norm
objective function are applied to the design of a compliant inverter mechanism. The goal of minimizing
the displacement response of the mechanism as a result of the applied harmonic base excitations for a set of
excitation frequencies is achieved for both minimization principles. As for the displacement behaviour of the
obtained topologies, the global minimization and both local minimization principles perform as expected.
Where global minimization yields minimized displacement results without prejudice, the local minimization
principles clearly target the chosen areas of interest and allow parts of the structure outside these areas to
displace to minimize displacements in the area of interest. Global minimization appears to obtain topologies
for all excitation frequencies and values of γ1, which display little to no presence of intermediate densities.
Local minimization, however, shows an increase in the amount of intermediate densities present in the final
topology, especially for the smaller areas of interest when only the input and output regions are considered.
This is in line with the results found in the parameter study and shows that a smaller area of interest is
undesired. For the lowest excitation frequency of 363Hz, the results of both global and local minimization
yield a similar topology. This is expected due to the more complex local modes needed for local minimization
being present at higher frequencies.

To obtain comparable results for each minimization principle, it is important for the static compliance
values of the input and output to be similar. The input and output compliance can conveniently be used in
the density-weighted norm objective function for the static compliance contribution, but this leads to a lack
of control. These compliances are, therefore, also constrained, which is a bit counterintuitive, and it can,
therefore, be argued whether another formulation would be more adequate given that lower contributions of
the static compliance and higher excitation frequencies yield a loss in geometrical advantage or, in other
words, the inability to conform to these constraints and yielding incomparable results. Whilst the other
inverter formulation introduced in section 4.1.1 would be more advantageous due to its benefit of already
including static compliance constraints, testing found that this formulation could not be implemented in the
density-weighted norm function.

Another discussion point in this thesis is the assumption of a single disturbance frequency. To make
the system more robust, however, it would be better to consider a range of frequencies, as it will make
the system more capable of withstanding a larger range of disturbance frequencies. Incorporating this
range of frequencies does, however, increase the computational effort, which the inclusion of reduced-order
modelling methods could partly alleviate. However, including these reduced order model methods would
allow issues with localized modes to occur.

Due to the assumptions of a linear harmonic system as given in section 5, the resulting mechanism acts
as an inverter for a static input load and as an isolator for the applied base excitation. Given the assumption
of linearity and superposition, the inverter will still work when excited with a static force at this frequency.
However, this is not necessarily the case for larger deformations, as the resulting deformations within the
structure will affect the performance of the mechanism. If the mechanism is actuated and a base excitation
is applied to this deformed structure, it might behave very differently from the results presented in this
case study. Optimizing the mechanism for its deformed state would, however, require a more complex
optimization, which includes non-linear physics.



9
Conclusions & recommendations

The objective of this thesis was to utilize topology optimization to design compliant transmission systems
whilst simultaneously designing them to minimize their response to unwanted external vibrations. The
research on the state of the art of topology optimization showed the shortcomings of the current methods
of minimizing forced vibrations which resulted in the introduction of the density-weighted norm objective
function.
This thesis showed that this objective function can be used in conjunction with the design formulations of
compliant mechanisms to simultaneously minimize them for their response to harmonic base excitations at a
specified frequency. Two principles for the objective function were examined: global minimization and local
minimization. Global minimization considers all degrees of freedom in the design domain and minimizes
the maximum displacement response inside the structure. Local minimization, on the other hand, only
minimizes a specified area of the design domain. It is shown that global minimization is capable of obtaining
topologies for a large range of frequencies, even higher excitation frequencies than those found in literature.
The inclusion of the density-weighted filter aids in preventing the occurrence of intermediate densities, but
the largest contributor to this occurrence is the chosen set of material interpolation functions for the stiffness
and mass interpolation, respectively. Local minimization allowed for an improvement in the displacement
response for both considered areas of interest. If the mechanism area is considered, the obtained results
display displacement responses similar to the principles of vibration absorption and vibration isolation for
high excitation frequencies.
In general, it can be concluded that the density-weighted norm objective function can be effectively used
to design a compliant transmission system whilst simultaneously minimizing the response to harmonic base
excitations. A proof of concept has been provided in this thesis, but further research is required. The following
section will provide some research directions and recommendations.

Recommendations
As mentioned, several research directions can be determined from the research gaps that arose during the
writing of this thesis.

• Change the mechanism optimization formulation. This might again consider an inverter mechanism,
but it could also be any other mechanism, such as a resonator or an amplification mechanism. Having
a formulation that provides more control over the desired mechanism might limit the performance of
the norm function but will allow for better insights into its influence and behaviour. One option might
be to use the geometrical advantage in the objective function, which would yield γ1 NmwdB +γ2 (G A-
Ḡ A), where Ḡ A is the desired geometrical advantage. The stiffness of the input and output could then,
in turn, be added as constraints.

• One aspect that was included in the original goal of this thesis was the examination of this objective
function for mechanisms that were excited by a harmonic excitation instead of a static excitation.
Due to time constraints, this was not included, but the density-weighted norm parameter study also
contains force-based excitations for this reason. Future research could, therefore, adapt this research
to harmonically excited mechanisms, which might, for example, act as a resonator for the excitation
frequency and as an isolator for the specified disturbance frequency.
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• The current designed mechanism has been optimized for a single disturbance frequency. In order to
make the system more robust, however, it is preferable to have a minimized response for a range of
frequencies. This thesis showed a proof of concept that can be expanded in order to include a range of
frequencies. This does, however, require more computational effort, and a study will have to be done
on model order reduction methods to alleviate this.

• Another aspect is the size of the design domain. Some results of local minimization portrayed material
distributions at the edges of the domain. Therefore, the design domain might be increased in order
to see whether local minimization can benefit from this extra space. This will, however, increase the
computational cost, given the increase in grid size required.

• Lastly, the expansion can be made to experimental testing. However, this requires some extra steps.
First, the problem must be modelled in three dimensions rather than two in order to capture a more
accurate representation. Furthermore, incorporating manufacturing principles becomes essential,
especially in the context of 3D printing. This transition to 3D would also allow for an analysis of stress
concentrations in the obtained mechanism.



A
Derivation of the system of equations for

harmonic base excitations

To solve for systems subjected to harmonic base excitations, the original forced vibration equation of motion
given in equation A.1 is insufficient. The base excitations cannot be represented by a force vector and,
therefore, have to be directly inserted into the equation of motion.(

K(x)+ jωC(x)−ω2M(x)
)

u(ω) = f(ω) (A.1)

To achieve this, the degrees of freedom in the systems can be divided into free degrees of freedom f and
prescribed degrees of freedom p. The subset p of the displacements of the degrees of freedom can then be
filled with the desired magnitudes of the prescribed displacements. This is done by taking the original time
domain equation of motion from equation 4.6 and describing it in terms of the free and prescribed degrees
of freedom, which yields the system of equation given in equation A.2.[
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üp

]
+

[
C f f C f p

Cp f Cpp

][
u̇ f

u̇p

]
+

[
K f f K f p

Kp f Kpp

][
u f

up

]
=

[
f f

fp
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(A.2)

In all literature on harmonic base excitations [79] [81] [82], a certain amount of mass m is added to a
specific node of interest in the system. The superscripts * shown on the mass matrices concerning the free
degrees of freedom denote that the matrices may be augmented by the additional mass. Next, the same
harmonic load and displacement solution from equations 4.7 and 4.8 can be inserted into equation A.2, which
results in the frequency-dependent system of equations in equation A.3. The dependencies are omitted for
this derivation. (
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Rewriting equation A.3 yields:[−ω2M∗
f f + iωC f f +K f f −ω2M∗

f p + iωC f p +K f p

−ω2M∗
p f + iωCp f +Kp f −ω2Mpp + iωCpp +Kpp

][
u f
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]
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[
f f

fp

]
, (A.4)

Which finally yields the simplified system of equations, including dependencies given in equation A.5.[
K∗

f f (ω,x) K∗
f p (ω,x)

K∗
p f (ω,x) Kpp (ω,x)

][
u f (ω,x)
up (ω,x)

]
=

[
f f (ω)
fp (ω)

]
(A.5)

Lastly, the system of equations above can also be written out as:

K∗
f f (ω,x)up (ω,x)+K∗

f p (ω,x)up (ω,x) = f f (ω)

K∗
p f (ω,x)u f (ω,x)+Kpp (ω,x)up (ω,x) = fp (ω)

(A.6)
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B
Density Weighted norm objective function

parameter study

This appendix contains the extensive study done on the behaviour of the density-weighted norm function
proposed in chapter 6 for its use case in both global and local minimization problems. Furthermore, both a
system excited by a force excitation and a base excitation are considered. The goal of this study is to study
the behaviour of the objective function and determine the parameters required to minimize the amount of
intermediate densities present in the obtained topology such that it can be implemented in the case study
done in chapter 7. As mentioned, the parameter study is structured as follows: Global minimization subjected
to a force excitation, global minimization subjected to a base excitation, local minimization subjected to a
force excitation, and lastly, local minimization subjected to a base excitation.

B.1. Global minimization subjected to a force excitation
First, the behaviour of global minimization subjected to a force excitation is examined. As this is also done by
Montero et al. [37], the results can be compared to confirm the objective function behaves similarly. A direct
comparison will not be made; however, to study this behaviour in a relevant manner for the final case study,
a different design problem will be tackled.

B.1.1. Problem definition
The chosen problem is a simple double-clamped cantilever beam problem. The design domain is defined by
a 1.8 x 0.3 m rectangle, with the domain thickness set at 0.01 m. The finite element mesh consists of 180x30 4-
node quadrilateral elements. A visual representation is given in figure B.2. Both the left and right boundaries
are constrained in all directions, and a force with a magnitude of 10kN is added at the middle bottom node in
the negative y-direction.

(a) Load case 1

(b) Load case 2

Figure B.2: The two load cases required for global minimization
subjected to a force excitation including the used dimensions.

Property Value
lx , ly , lz 1.8, 0.3, 0.01 [m]
nx , ny 180, 30 [#]

f̂ 10 [kN]

Filter radius 2 [#]
Volume fraction 0.4 [-]

Table B.1: An overview of the properties
of the used design domain.
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An overview of the used dimensions is given in table B.1, together with the filter radius used for the density
filter and the desired volume fraction. The reasoning behind the filter radius was provided in section 3.3,
and as for the choice of volume fraction, a look can be taken at some arbitrary results from the coming
section. Given in figure B.3 are the results for the same problem for the volume fractions 0.3, 0.35, 0.4 and
0.5. Comparing the results based on the material distribution, it is evident that the volume fraction impacts
the obtained topology substantially. For a small volume fraction such as 0.3, however, the extent to which the
topology can vary will be limited due to the relatively small amount of material that can be used. This would
shift the focus of the optimization from being on the objective function to being a volume minimization,
which is unwanted. For a large volume fraction such as 0.5, there seems to be an excess of material spread
evenly throughout the domain. This excess material could have been added arbitrarily as floating material,
but in this case, it will introduce extra stiffness, which might, in turn, hinder some dynamic properties which
the topology otherwise could achieve. Looking at the intermediate values for the volume fractions, 0.35 and
0.4, two different results are presented. The result of 0.3, however, does show some gaps within the structure,
whereas the result of 0.4 presents a structure with well-defined yet intricate members. Therefore, the volume
fraction used for this problem will be set at 0.4.

(a) Volume fraction 0.3 (b) Volume fraction 0.35

(c) Volume fraction 0.4 (d) Volume fraction 0.5

Figure B.3: Example topologies of the design problem given in figure B.2 for a parameter sweep over the
desired volume fraction.

As for the material properties used for this problem, these are given in table B.2. The optimizer which will
be used is the Method of Moving Asymptotes (MMA), where the tolerance is set at the most common value
of 1e−4. This means that the stopping criteria for the optimization will be met if the difference in objective
function from one iteration to the next is smaller than this tolerance value. If this stopping criterion is not
met after 300 iterations, however, the optimization will be terminated as well. Lastly, a minimum value for
xmin is introduced to avoid the system matrices becoming singular if one of the design variables achieves a
value of 0. These optimizer properties are summarized in table B.3.

Property Value
Young’s modulus 200 [GPa]

Density 7800 [kg/m3]
Poisson ratio 0.3 [-]

Table B.2: The material properties used for this
parameter study.

Property Value
Maximum iterations 300 [-]

Tolerance 1e−4 [-]
xmin 1e−3 [-]

Table B.3: Properties of the MMA optimizer used for
this parameter study.

Regarding material interpolation functions, Montero et al. [37] utilized a standard SIMP function
(equation 3.9) for the stiffness interpolation, together with a mass interpolation scheme introduced by Du
and Olhoff [46]. For this parameter study, however, two different interpolation schemes are used to obtain
proper results for both the force excited and the base excited case. For a more detailed description of the
reasoning behind this choice, the reader is referred to appendix C. For the stiffness interpolation, the scheme
suggested by Zhu et al. [48] is utilized (equation 3.16):

f (xe ) = 15

16
xp

e + xe

16
, p = 5 (B.1)

For the mass interpolation function, a standard SIMP model (equation 3.9) is used and defined by:

f (xe ) = xq
e , q = 3 (B.2)
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With the interpolation functions for the mass and stiffness matrices defined, only the damping is left to
be defined. As mentioned in section 4.4, stiffness proportional Rayleigh damping will be used. The Rayleigh
damping scheme is given in equation 4.13, and the damping parameters used are:

α= 0, β= 2ζ

ωexc
, (B.3)

where ωexc represents the excitation frequency, and the imposed constant damping coefficient is ζ=0.05.

B.1.2. Initial uniform design domain
In order to examine the influence of the excitation frequency ωexc on the proposed objective function,
a set of frequencies of interest can be defined which will best represent its behaviour. As mentioned
in 4.6, the dynamic compliance given equation 4.22, which is commonly used for topology optimization
of harmonic force excited structures, suffers from premature convergence problems caused by an anti-
resonance matching the excitation frequency [76]. The frequency response normally used for dynamic
compliance can, therefore, be used to determine the frequencies of interest. Figure B.4a shows the undamped
frequency response of the initial design domain, together with the norm function response Nm for the values
m=2, m=4, m=8, m=12 and m=20. Figure B.4b shows the same response, only including the mentioned
stiffness proportional damping, which varies with the excitation frequency. The degree of freedom of interest
is chosen to be at the force excitation point.

(a) Undamped frequency response (b) Damped frequency response

Figure B.4: The undamped and damped frequency response of the initial design domain given in figure B.1b
for the displacement response as well as the norm function response Nmw for a sweep over the parameter m.

From figure B.4b it is evident that even in a damped case, the system still has anti-resonances. Considering
now the response of the global norm function Nm for both the undamped and the damped case, it is clear that
the response does not show any anti-resonances as was explained in section 6.1. Furthermore, it is evident
that the norm function approximates the original frequency response, achieving a better representation as m
increases. For low values of m it can also be noted that the resulting graph is substantially higher in magnitude
than the other graphs. This is due to the nature of the norm function, and this should not influence the
resulting performance as it is only a scaling of the response. It seems that the norm function approximates
the original response best as m->∞. The appropriate value of this parameter for each problem, however, will
be examined later.

From figure B.4 several frequencies of interest can be extracted. These frequencies will be determined
by any frequency leading to convergence issues for an objective function such as dynamic compliance. First
and foremost, the first resonance frequency is chosen as this is the classical ’boundary’ frequency at which the
dynamic compliance will fail to converge. Next, the first anti-resonance frequency is chosen, which for the
dynamic compliance would yield a fast convergence as the starting point would be close to a local minimum.
To cover the behaviour between these two frequencies, a frequency halfway between these frequencies is
chosen. Lastly, the second resonance frequency is chosen to examine whether the same performance of
optimizing for the first resonance can be found at higher frequencies. The values of these frequencies are
429Hz, 700Hz, 986Hz and 1721Hz, respectively and are plotted in figure B.5.
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Figure B.5: The chosen frequencies of interest for the parameter study on global minimization subjected to a
force excitation.

One last thing to note, however, is that whilst the frequencies of interest have been extracted from the
frequency response concerning the force excitation point, these are not the actual eigenfrequencies of the
system. The computed eigenfrequencies are given in table B.4, and it is immediately clear that the second and
third eigenfrequency ω2 and ω3 are not present in the frequency response in figure B.4a. Further inspection,
however, reveals the reason why this is the case. In figure B.6, the vertical displacements of the eigenmodes
corresponding to these eigenfrequencies are visualized using ParaView. From these figures, it is clear that
the force excitation point exhibits no movement in the vertical direction at these eigenfrequencies, and these
frequencies are, therefore, not present in the obtained frequency response.

Computed Eigenfrequencies ω1 ω2 ω3 ω4

429Hz 1013Hz 1483Hz 1721Hz

Table B.4: An overview of the first four eigenfrequencies computed for the initial uniform design domain
given in figure figure B.1b.

(a) Eigenfrequency w2 (b) Eigenfrequency w3

Figure B.6: A visualization of the vertical displacements present for the eigenmodes accompanying the
second and third eigenfrequency of the initial design domain.

This begs the question of whether the chosen degree of freedom of interest is an appropriate choice for
representing the behaviour of the system. As one of the main goals of this objective function is to overcome
the shortcomings of an objective function such as dynamic compliance, it is reasonable to compare the same
responses which would be used if this function was employed. Furthermore, the degree of freedom of interest
is also the force application point, which is the point where maximum deformation is expected. However, it
has to be kept in mind that orthogonal modes such as those mentioned above can present themselves.

B.1.3. Influence of γ1 on global minimization
For a global minimization, all degrees of freedom are used in the computation of the norm function of
equation 6.6. This means that the overall response of the structure to the applied force will be minimized,
or in other words, the global response will be minimized. This subsection will examine the influence of the
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static compliance contribution γ1 and determine its value for the subsequent optimizations.

The parameter γ1 determines the extent to which the static compliance contributes to the objective
function. For low values of γ1, the parameter γ2 (|γ1| + γ2 = 1) has a high value which results in the
optimization being more focused on incorporating the minimization of the static compliance and vice versa
for higher values of γ1. Setting the excitation frequency at the first frequency of interest of 429Hz, the results
for the values γ1=0.0 (static compliance minimization), γ1=0.95, γ1=0.99 and γ1=1.0 are given in figure B.7.
As the values of the parameters w and m will be examined later, these are set at w=1 and m=2, respectively.

(a) γ1 = 0.0, Cs = 2.6613 (b) γ1 = 0.95, Cs = 3.4032

(c) γ1 = 0.99, Cs = 4.5239 (d) γ1 = 1.0, Cs = 0.9136

Figure B.7: The topologies found for a parameter sweep over the parameter γ1 for global minimization
subjected to a force excitation together with the accompanying static compliance values.

One thing that immediately stands out from these results is the result from γ1=1.0, which yields a
disconnected topology. This shows that the inclusion of the static compliance factor remains a necessary
component of this objective function in order to obtain connected results. Comparing the static compliance
values Cs for all structures, this value decreases as γ1 decreases, as is to be expected. This is not the case for
γ1=1.0, but this can be explained by the disconnected topology. In order to comply with the minimization
of the global norm part of the objective function, it seems the goal is to construct more flexible connecting
structures which connect the middle section to the boundaries. For the value γ1=0.99, the optimization does
seem to suffer with the occurrence of intermediate densities, however. A more in-depth analysis can be taken
by examining the frequency response of the obtained structures. The undamped frequency response of the
force excitation point is given in figure B.8.

Figure B.8: The undamped frequency response comparison of the resulting topologies given in figure B.7 and
the initial uniform domain, showcasing the influence of the parameter γ1 on global minimization subjected
to a force excitation.

This graph clearly shows that as the parameter γ1 increases, the first eigenfrequency and first anti-
resonance is moved further away from the excitation frequency of 429Hz. For the static minimization γ1=0.0,
this behaviour does not occur at all, showing the direct influence of the global norm function. It should
also be noted that the resulting topology for γ1=0.99 contains an eigenmode at 408Hz, which is close to the
excitation frequency. Further inspection revealed a similar mode as was found in figure B.6a. This reveals
that, even though the global minimization takes into account all degrees of freedom, the force application
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point is prioritized, and as such even a mode which contains displacements at all degrees of freedom except
this point is considered complying with the objective function. This prioritization could be explained by
the fact that the excitation point presents the highest displacements, which then become the priority for the
norm function.

B.1.4. Discussion on the influence of γ1 on global minimization
From these results it can be concluded that the static compliance factor is still required in the formulation of
the objective function. Increasing this contribution, however, limits the frequency response properties of the
obtained structures. Even though the optimizer appears to allow eigenmodes to be present at the excitation
frequency for γ1 = 0.99, this behaviour is interesting to observe and therefore, the parameter γ1 will be set
at γ1 = 0.99 for optimizations where this parameter is fixed. This will allow for the observation of the global
norm function without much influence from the static compliance factor. For optimizations where a set of
γ1 values is examined, the subset is shifted towards γ1=0.99, γ1=0.95 γ1=0.90 as γ1=1.0 yields a disconnected
topology.

B.1.5. Influence of the parameter w on global minimization
Next, the influence of the parameter w on a global minimization can be examined. As w has a direct influence
on the weighting factor assigned to each degree of freedom (equation 6.7), and all degrees of freedom are
taken into account, this parameter is expected to have a visible influence.

For these optimizations, the excitation frequency is again set at 429Hz, the parameter m at 2 and γ1 at 0.99
so as not to hinder dynamic properties whilst still obtaining connected topologies. The parameter values of
interest will be w=0, w=2, w=4 and w=8. This first value of w=0 is, however, technically not possible due to
1/w = 1/0 in equation 6.7 being undefined. Therefore, w=0 refers to the use of the original norm objective
function without the added density weights as given in equation 6.4. The results are given in figure B.9.

(a) w = 0 (b) w = 2

(c) w = 4 (d) w = 8

Figure B.9: The topologies found for a parameter sweep over the parameter w for global minimization
subjected to a force excitation.

From the obtained topologies, it does not appear that the parameter w has much influence on the
topology apart from the result of w=0. This is similar to the results presented by Montero et al. [37], which
also showed only subtle differences apart from w=0. What is interesting is the fact that the density weights
were introduced to prevent intermediate densities from appearing, yet these results show the exact opposite,
with fewer intermediate densities being present when the density weights are not utilized. Further analysis
can be done by examining the frequency response, the undamped version of which is given in figure B.10.
This figure also includes the response for an extreme case of w=20, the topology of which is not given due to
showing no visible difference to the results from lower values of w .
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Figure B.10: The undamped frequency response comparison of the resulting topologies given in figure B.9 and
the initial uniform domain, showcasing the influence of the parameter w on global minimization subjected
to a force excitation.

The frequency response presents the same result, showing very little difference between the performance
of the obtained topologies for different values of w . Only the result of w=0 seems to be vastly different. Upon
further inspection, however, it seems that there is a slight asymmetry visible near the force excitation point.
To confirm this, the magnitudes of the displacements can be examined in ParaView, a visualization of which
is given in figure B.11.

(a) The resulting topology for w = 0
.
.

(b) A visualization of the displacement magnitudes
resulting from the applied force excitation done in
ParaView

Figure B.11: The resulting topology and displacement magnitudes for w=0, showing an asymmetry present
in the resulting topology and displacement magnitudes where symmetry is expected.

This clearly shows that asymmetry is present within the obtained topology. The cause of this asymmetry
might be numerical errors occurring during the optimization. As the used MMA optimizer (section 3.6)
works with a specified tolerance, all values below this tolerance might sustain rounding errors, which could
introduce asymmetry. To prevent this from happening, the optimization is performed again, but this time
with a forced symmetry added on the y-axis. This is a valid operation as the problem formulation for this
optimization is symmetric, which is expected to yield a symmetric result. This result is given in figure B.12.

(a) The resulting topology for w = 0 including a forced
symmetry over the y-axis
.

(b) A visualization of the displacement magnitudes
resulting from the applied force excitation done in
ParaView

Figure B.12: The resulting topology and displacement magnitudes for w=0 including a forced symmetry over
the y-axis.

The optimization now yields an expected symmetric result. The frequency response comparison from
figure B.10 can, therefore, be plotted again with the results from this newly obtained topology. This
comparison is given in figure B.13.



84 B. Density Weighted norm objective function parameter study

Figure B.13: The undamped frequency response comparison of the resulting topologies given in figure B.9,
the forced symmetry result given in figure B.12a and the initial uniform domain.

The performance of the result, including forced symmetry, is now vastly different and more in line with
the other results. However, when comparing them, there seems to be little difference in the inclusion of the
parameter w for the first resonance. If the goal is to ’push’ the resonance frequencies as far away from the
excitation frequency as possible, then the inclusion of the parameter w is favourable comparing the location
of the first resonance. The opposite appears to be true for the first anti-resonance, but given that the objective
function does not measure the anti-resonance, this is likely coincidental. The inclusion of the density weights,
therefore, seems problem-dependent but, overall, does not seem to have a large influence.

B.1.6. Discussion on the influence of w on global minimization
From the results found, the impact of the parameter w seems minimal. Including the density-weighted filter
does seem to increase performance in terms of moving the first resonance further away from the excitation
frequency, yet only slightly. When removing the density-weighted filter (w=0) it seems that a forced symmetry
is necessary to prevent the optimizer from obtaining asymmetrical designs. In the coming sections, the use
of forced symmetry will be assessed on a case-by-case basis, and it will be mentioned when this is necessary.
For the examination of the influence of the parameter m however, the parameter w will be included to study
the influence of m combined with the density-weighted filter. Considering the results, the value of w chosen
does not seem to make a difference, so therefore, the choice is made for simply w=1.

B.1.7. Influence of the parameter m on global minimization
With the influence of the parameter w established, the influence of the parameter m can be examined. In
order to ensure that the derivative of the complex norm function from equation 6.4 remains defined, the
parameter m must remain even. Therefore, the values m=2, m=4, m=8 and m=12 are chosen to be examined.
For these experiments, the excitation frequency is again set at 429Hz, the parameter w at 1 and γ1 at 0.99.
The results are given in figure B.9.

(a) m = 2, Mnd = 27.70% (b) m = 4, Mnd = 25.26%

(c) m = 8, Mnd = 25.67% (d) m = 12, Mnd = 21.11%

Figure B.14: The topologies found for a parameter sweep over the parameter m for global minimization
subjected to a force excitation without forced symmetry together with the accompanying measure of non-
discreteness values.
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Comparing these results to those from the parameter sweep of parameter w , the parameter m seems
much more pronounced. Particularly, this influence is found in the connecting structure between the
boundary and the larger centre structure. For m ≥ 2, the intermediate structure within this connecting
structure disappears and changes completely for m=12. The result for m=8, however, does seem to present
some asymmetry, which might be caused by the sensitivities becoming very small when the power operation
1/m is performed. Interestingly, this behaviour does not occur for the even higher values of m=12. Comparing
the measure of non-discreteness values, it is clear that a larger value of m yields better black-and-white
designs, which are traded for numerical stability. The undamped frequency response of these topologies
is given in figure B.15, which also contains the response for m=20, which showed little topological difference
to the m=12 result.

Figure B.15: The undamped frequency response comparison of the resulting topologies given in figure
B.14 and the initial uniform domain, showcasing the influence of the parameter m on global minimization
subjected to a force excitation without forced symmetry.

One thing that immediately stands out is the little resonance spike from m=12 at around 509Hz. This can
probably be explained by the clearly different topology of this design. Comparing the responses, yields that
the distance between the resonance, anti-resonance and excitation frequency increases as m increases. For
m=2 however, the behaviour is vastly different. To assess whether this is due to an asymmetry being present,
forced symmetry can be added to the design problem, and the same parameter sweep can be performed
again. The resulting topologies are given in figure B.16.

(a) m = 2 (b) m = 4

(c) m = 8 (d) m = 12

Figure B.16: The topologies found for a parameter sweep over the parameter m for global minimization
subjected to a force excitation including forced symmetry over the y-axis.

Interestingly, these results show little differences in topology between each other apart from m=2
when compared to the results from figure B.14. The inner structures that were semi-present or contained
intermediate densities in the previous case are now either not present or fully defined. This shows that the
added symmetry yielded an improvement in the obtained topology. To see how the frequency response has
changed due to the forced symmetry, the undamped frequency response is given in figure B.17.
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Figure B.17: The undamped frequency response comparison of the resulting topologies given in figure
B.16 and the initial uniform domain, showcasing the influence of the parameter m on global minimization
subjected to a force excitation including forced symmetry over the y-axis.

These results show very different behaviour compared to what was found in figure B.17. There is now
little difference in response to be found apart from the result from m=2. This result, however, is also in line
with the response found for the initial design domain in figure B.4. Therefore, it seems that any value of m ≥2
is sufficient. One other aspect that proves this is the location of the second eigenfrequency. It was already
established that an eigenmode could occur near the excitation frequency, which contains no displacements
at the force excitation point as given in figure B.6. The values of these second eigenfrequencies ω2 for the
structures of figure B.16 are given in table B.5. These show that as the parameter m increases, this eigenmode
is also moved further away from the excitation frequency, showing that a value of m ≥ 2 is beneficial.

Second eigenfrequency ω2 m=2 m=4 m=8 m=12 m=20
ωexc = 429Hz 412Hz 386Hz 383Hz 379Hz 363Hz

Table B.5: An overview of the second eigenfrequencies computed for the topologies given in figure B.16.

Lastly, to also fully define the influence of the parameters w and m together, the forced symmetry results
can be obtained again, but this time without the inclusion of the density weights (w=0). These results are
given in figure B.18.

(a) m = 2 (b) m = 4

(c) m = 8 (d) m = 12

Figure B.18: The topologies found for a parameter sweep over the parameter m for global minimization
subjected to a force excitation including forced symmetry over the y-axis and excluding the density-weighted
filter (w=0).

Without the density-weighted filter, it seems that the occurrence of ill-defined members with
intermediate densities has returned. This shows that even though the influence of the density weights seemed
minimal in section B.1.4, it has a defined influence on these results. The undamped frequency response is
given in figure B.19 for further analysis.
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Figure B.19: The undamped frequency response comparison of the resulting topologies given in figure
B.18 and the initial uniform domain, showcasing the influence of the parameter m on global minimization
subjected to a force excitation including forced symmetry over the y-axis and excluding the density-weighted
filter (w=0).

The resulting frequency response now shows quite some differences from the response found in figure
B.17. The difference seems to be mainly in the location of the first anti-resonance of the structure, which is
likely due to the absence of the density-weighted filter, which results in an increase in intermediate densities.
As the parameter m increases, however, these intermediate densities seem to diminish, and the resulting
response seems to represent the one found in figure B.17. Lastly, looking at the second eigenfrequency ω2

of the obtained structures as given in table B.6, it seems that an increase in the parameter m yields a second
eigenfrequency which is closer to the excitation frequency of 429Hz. This is the opposite behaviour of what
was found in table B.5, which included the density-weighted filter.

Second eigenfrequency ω2 m=2 m=4 m=8 m=12 m=20
ωexc = 429Hz 258Hz 490Hz 441Hz 417Hz 408Hz

Table B.6: An overview of the second eigenfrequencies computed for the topologies given in figure B.18.

B.1.8. Discussion on the influence of m on global minimization
The previous section provided insight into both the parameter m as well as the parameter w and yielded some
interesting results. It seems that without the inclusion of a forced symmetry over the y-axis, the response
of the obtained structures varies drastically without a clear trend. Including forced symmetry, however,
the parameter m does not seem to have a large influence for m ≥2, which is beneficial as a higher value
of m increases the nonlinearity of the system. A larger value of m does, however, increase the distance
between the second eigenfrequency and the excitation frequency. If the density-weighted filter is removed,
however, the occurrence of intermediate densities increases, and the responses vary drastically. The second
eigenfrequency behaviour also inverts, which is interesting.

Given the obtained results, it seems that an appropriate value of m is any m ≥2, and to limit the
nonlinearity of the system, the value of m=4 is chosen for subsequent optimizations of global minimization
subjected to a force. As for the density-weighted filter, its inclusion seems to improve performance in terms
of the occurrence of intermediate densities, which then leads to the final parameter choice of w=1 and m=4.
As for the forced symmetry, it appears it has to be included in the optimization.
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B.1.9. Influence of the density-weighted filter radius RDW on global minimization
Another study which can be done for global minimization is to assess the influence of the filter radius of the
density-weighted filter. The filter definition of Montero et al. [37] given in equation 6.7 considers a subset S j

which only contains the elements directly surrounding j th the degree of freedom. However, this radius can
also be increased to incorporate a larger or smaller area for the weight calculation. To compare the differences
of these filter radii, however, a new density-weighted filter has to be created, which is given in equation B.4.

a j =
(∑

vϵS j
xw

v

#S

) 1
w

(B.4)

The only difference between this filter and the original is that the sum of the penalized surrounding
elements is now normalized by the number of elements which are taken into account. This allows for the
results of different filter radii to be compared to each other. The radii which will be assessed are the original
RDW=1, RDW=2, RDW=3 and RDW=6. The parameters w and m are set at w=1 and m=4, γ1 is set at 0.99, the
excitation frequency at 429Hz and the results are given in figure B.20.

(a) RDW = 1 (b) RDW = 2

(c) RDW = 3 (d) RDW = 6

Figure B.20: The topologies found for a parameter sweep over the density-weighted filter radius RDW for global
minimization subjected to a force excitation including forced symmetry over the y-axis and the parameter
values w=1 and m=2.

The obtained topologies seem to show little difference difference in topology apart from RDW=6, which
only differs slightly. A deeper delve can be done by comparing the frequency responses of the obtained
topologies. In figure B.21, the undamped frequency response is given, which also includes the results for
RDW=4. The topology of this value was not included as the topology showed no visible difference from RDW=3.

Figure B.21: The undamped frequency response comparison of the resulting topologies given in figure B.20
and the initial uniform domain, showcasing the influence of the density-weighted filter radius RDW on global
minimization subjected to a force excitation including forced symmetry over the y-axis and parameter values
w=1 and m=2.
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Comparing the results also shows little difference in the location of the first resonance. For the first anti-
resonance, however, it could be argued that an increase in RDW yields a decrease in performance as the anti-
resonance moves closer towards the excitation frequency. Furthermore, the computation time required to
obtain the topologies of figure B.20 increases by 20% from RDW=1 to RDW=6, which shows a further decrease
in performance when the density-weighted filter radius is increased. The initial RDW=1 is therefore sufficient.

B.1.10. Influence of the excitation frequencyωexc on global minimization
The last study, considering global minimization subjected to a force excitation, examines the influence of the
excitation frequency ωexc. In the previous sections, the excitation frequency was fixed at the first frequency
of interest of 429Hz. In this section, however, all frequencies of interest given in figure B.5 are examined.
This frequency sweep is performed together with a sweep over the static compliance factor γ1 to assess its
influence at higher frequencies. The parameters w and m are set at w=1 and m=4, forced symmetry is added
over the y-axis, and the results of this two-sided sweep are given in figure B.22.

(a) γ1 = 0.90, ωexc=429Hz (b) γ1 = 0.95, ωexc=429Hz (c) γ1 = 0.99, ωexc=429Hz

(d) γ1 = 0.90, ωexc=700Hz (e) γ1 = 0.95, ωexc=700Hz (f) γ1 = 0.99, ωexc=700Hz

(g) γ1 = 0.90, ωexc=986Hz (h) γ1 = 0.95, ωexc=986Hz (i) γ1 = 0.99, ωexc=986Hz

(j) γ1 = 0.90, ωexc=1721Hz (k) γ1 = 0.95, ωexc=1721Hz (l) γ1 = 0.99, ωexc=1721Hz

Figure B.22: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.1.2 showcasing their influence
on global minimization subjected to a force excitation including forced symmetry over the y-axis and the
parameter values w=1 and m=4.

Whilst the influence of the parameter γ1 was already examined for 429Hz, its influence at higher
frequencies is clearly visible. For γ1=0.90, meaning quite substantial static compliance contribution, the
excitation frequency has limited influence on the obtained topology until the frequency is raised to 1721Hz.
For higher excitation frequencies in general, more focus is laid on distributing material in the centre
structure. This allows for more slender connecting structures, providing lowered stiffness. This lower stiffness
then allows the system to minimize the response at higher frequencies. As γ1 decreases for these higher
frequencies, however, more material is deposited on the connecting structure to provide more stiffness
to resist the applied static force. One last thing to note is that all obtained topologies contain almost no
intermediate densities, showing that the settings obtained from the studies of the previous sections are
appropriate for this set of frequencies. To observe the change in response of the obtained structures as
compared to the initial uniform domain, the undamped frequency response is given in figure B.23.

The result for 429Hz shows similar behaviour to the behaviour found in figure B.8 as is to be expected. For
700Hz, the first resonance seems to be moved away from the excitation frequency, which comes at the cost
of also moving the first anti-resonance closer. An increase in γ1 then yields a first resonance, which is further
away, and an anti-resonance, which is also relatively further away. For 986Hz, which initially contained an
anti-resonance, the optimizer seems to move the anti-resonance further away from the excitation frequency.
This is beneficial behaviour as this shows that the proposed objective function works well, even directly at
an anti-resonance. A consequence, however, is that higher order modes are ’pulled’ towards the excitation
frequency, but this behaviour seems to decrease as γ1 increases. Lastly, at 1721Hz, the influence of γ1

diminishes as there is hardly any difference between the lower resonance nearest to the excitation frequency.
For the first higher resonance however, tough γ1=0.90 and γ1=0.95 show similar behaviour, γ1=0.99 seems to
have a resonance present further away from the excitation frequency.



90 B. Density Weighted norm objective function parameter study

(a) ωexc=429Hz (b) ωexc=700Hz

(c) ωexc=986Hz (d) ωexc=1721Hz

Figure B.23: The undamped frequency response comparison of the resulting topologies given in figure B.22
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interestωexc on global minimization subjected to a force excitation including forced
symmetry over the y-axis and parameter values w=1 and m=4.

B.1.11. Discussion on the influence ofωexc on global minimization
First of all, it is evident that the proposed objective function works very well at all frequencies of interest,
showing almost no intermediate densities within all obtained results. This shows that the chosen values of
the parameters w and m are also appropriate for all excitation frequencies of interest. Furthermore, the
influence of γ1 remains similar over all frequencies, where an increase in the static compliance contribution
(or a decrease in γ1) limits the frequency response performance to increase the static compliance.

B.2. Global minimization subjected to a base excitation
With the behaviour of the global minimization function examined for a force excitation, the same study
can be performed considering a base excitation. For these studies, the same clamped beam problem with
dimensions 1.8 × 0.3 × 0.01m from figure B.2 will be utilized. For the static compliance contribution, the
same load case as for the force excited case will be used.

The first load case is shown in figure B.24a. The main difference is found in the boundary conditions.
Where these were fixed in both directions for the force excited case, both boundaries are now only fixed in
the x-direction. On the y-directional boundary degrees of freedom, the harmonic base excitation u(ω) with
a magnitude of 100 m/s2 is applied as explained in section 4.7.1. Furthermore, an additional mass mb is
added to the bottom middle node. Considering the mass of the total structure is 42.1kg (lx × ly × lz ×ρ), the
magnitude of this added mass is set at 10kg.
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(a) Load case 1

(b) Load case 2

Figure B.25: The two load cases required for global minimization
subjected to a base excitation including the used dimensions.

Property Value
lx , ly , lz 1.8, 0.3, 0.01 [m]
nx , ny 180, 30 [#]

f̂ 10 [kN]
û 100 [m/s2]

mb 10 [kg]

Filter radius 2 [#]
Volume fraction 0.4 [-]

Table B.7: An overview of the properties
of the used design domain.

The second load case contains the design domain for static compliance. In this case, the boundaries
remain fixed in both directions and a static force f(0) with the same magnitude as the force excited case
f̂ =10kN is applied. Regarding the material properties of the structure and the settings for the MMA optimizer,
these are similar as well and the same material interpolation functions are used, with PIS (equation 3.16) for
the stiffness interpolation and standard SIMP (equation 3.9) for the mass interpolation as was determined in
appendix C. Lastly, the same Rayleigh damping parameters given in equation B.3 are used.

B.2.1. Initial uniform design domain
Whilst the design domain is similar to the force excited case, it can be noted that an extra mass mb is
now added to the system, which will result in vastly different eigenfrequencies of the initial uniform design
domain. The frequency response of this domain is therefore examined again for the same vertical degree
of freedom of the bottom middle node as this node also contains the added mass. Figure B.26 shows the
undamped frequency response of the initial design domain, together with the norm function response Nm

for the values m=2, m=4, m=8, m=12 and m=20.

Figure B.26: The undamped frequency response of the initial design domain given in figure B.25 for the
displacement response as well as the norm function response Nmw for a sweep over the parameter m.

The location of the mass is chosen as the response point as the harmonic base excitation examples given
in section 4.7 endured excitation frequency problems limited by the resonance at the mass node. If the
frequency response would be examined for global minimization n of these graphs would have to be analyzed,
but this examination will only cover the vertical degree of freedom of the mass node. As can be seen from
the frequency axis, the response is given up till a frequency of 5000Hz. This is due to the fact that no anti-
resonances are present for this point of interest up until a frequency of 2947Hz.

From figure B.26, several frequencies of interest can be extracted. As mentioned in section 4.7, the
harmonic base excitation problem also suffers from convergence issues when optimizing for frequencies
above the first resonance. Therefore, the first resonance is again chosen as the first frequency of interest.
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Secondly, the first anti-resonance is chosen, together with the location of the second eigenfrequency, which
is not visible in the frequency response but is provided in table B.8. Lastly, a frequency is chosen such that a
broad frequency spectrum is covered. The resulting values of these frequencies of interest are 340Hz, 880Hz,
1377Hz and 2947Hz, and these are given together with the undamped frequency response in figure B.27.

Figure B.27: The chosen frequencies of interest for the parameter study on global minimization subjected to
a base excitation.

Computed Eigenfrequencies ω1 ω2 ω3 ω4

340Hz 880Hz 1155Hz 1377Hz

Table B.8: An overview of the first four eigenfrequencies computed for the initial uniform design domain
given in figure B.25.

B.2.2. Influence of γ1 on global minimization
The influence of the parameter γ1 can now be examined again for the base excited case. As this design
problem contains two load cases, the value of γ1=0 explored in section B.1.3 is not relevant due to the base
excitations being ignored entirely in this case. Therefore, the subset of values is shifted to γ1=0.90, γ1=0.95,
γ1=0.99 and γ1=1.0. The outcome of γ1=1.0 is also expected to produce a similar disconnected result as
observed in figure B.7d, but this will still be confirmed for this excitation case. The values of parameters w
and m are reverted back to w=1 and m=2, the excitation frequency is set at 340Hz, and the results are given
in figure B.28.

(a) γ1 = 0.90, Cs = 3.000 (b) γ1 = 0.95, Cs = 3.2573

(c) γ1 = 0.99, Cs = 5.4479 (d) γ1 = 1.0, Cs = 33071342.14

Figure B.28: The topologies found for a parameter sweep over the parameter γ1 for global minimization
subjected to a base excitation together with the accompanying static compliance values.

As was expected, the result of γ1=1.0 yielded a disconnected result. Furthermore, the static compliance
again decreases as the parameter γ1 decreases, and the topology obtained for γ1=0.99 again yields a topology
which contains some intermediate density areas. These results are very similar to those found in section
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B.1.3, and to confirm this, the undamped frequency response of the obtained topologies is given in figure
B.29.

Figure B.29: The undamped frequency response comparison of the resulting topologies given in figure
B.28 and the initial uniform domain, showcasing the influence of the parameter γ1 on global minimization
subjected to a base excitation.

These results show similar behaviour to those observed in figure B.8, where the first resonance is ’pushed’
away from the excitation frequency. This effect becomes more pronounced as γ1 increases, and is maximal
for γ1=1.0. A consequence of this effect, however, is that higher-order resonances are ’pulled’ towards the
excitation frequency. Furthermore, the first resonance of γ1=1.0 is hardly visible due to it being located
at 0.073Hz. Another thing to note is that the behaviour of the second eigenfrequency being close to the
excitation frequency in the force-excited case was not found here.

B.2.3. Discussion on the influence of γ1 on global minimization
The results shown above show that, similar to the force excited case, the static compliance factor remains a
necessary contribution to the objective function. The influence of the parameter γ1, however, is a lot more
pronounced for γ1=0.99, where higher order modes seemed to be ’pulled’ towards the excitation frequency
substantially more than for lower values of γ1. For the coming optimizations, the parameter γ1 will still be set
at 0.99 to limit the influence of the static compliance. If a set of γ1 values is examined, the subset will consist
of γ1=0.99, γ1=0.95 γ1=0.90 as γ1=1.0 again yielded a disconnected topology.

B.2.4. Influence of the parameter w on global minimization
In section B.1.5, it was concluded that the influence of the parameter w was minimal, yet section B.1.7 showed
it still had a positive influence. This parameter is, therefore, examined again for the base excited case. Setting
γ1 at 0.99, parameter m at 2 and the excitation frequency at 429Hz, the results in figure B.30 are obtained for
the parameter values w=0, w=2, w=4 and w=8. The value w=0 again refers to the case where the density-
weighted filter is removed.

(a) w = 0 (b) w = 2

(c) w = 4 (d) w = 8

Figure B.30: The topologies found for a parameter sweep over the parameter w for global minimization
subjected to a base excitation.
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These results again show that an asymmetric result is obtained for w=0. Furthermore, quite some
intermediate densities are present for the results of higher values of w , which also occurred in the force
excited case. These effects of these intermediate densities are also visible in the undamped frequency
response given in figure B.31. This response also includes the result of w=20, which had little visible difference
in topology form w=8.

Figure B.31: The undamped frequency response comparison of the resulting topologies given in figure
B.30 and the initial uniform domain, showcasing the influence of the parameter w on global minimization
subjected to a base excitation.

The frequency response shows how higher order modes are ’pulled’ towards the excitation frequency for
all values of w . The solution in section B.1.5 was to include a forced symmetry over the y-axis. As the base
excited problem is symmetrical, this principle can also be applied here. The same results, including the forced
symmetry, are given in figure B.32.

(a) w = 0 (b) w = 2

(c) w = 4 (d) w = 8

Figure B.32: The topologies found for a parameter sweep over the parameter w for global minimization
subjected to a base excitation including forced symmetry over the y-axis.

With the added forced symmetry, the result for w=0 still contains some intermediate densities. The other
results, however, show no intermediate densities in the design. This differs from the results found in the
force-excited case, which showed the opposite behaviour. It would seem, therefore, that the addition of the
density-weighted filter has the positive benefit of removing intermediate densities for a base excited problem.
Furthermore, it seems that without the density-weighted filter, more material is distributed near the mass
node, and with the density-weighted filter, mass seems to be removed from the mass node. Increasing the
value of the parameter w however, appears to hardly affect the topology. The undamped frequency response
of these results is given in figure B.33.

The issue of higher-order modes being ’pulled’ seems to have disappeared, showing that the included
forced symmetry is beneficial. Apart from the result of w=0, there seems to be little difference in response,
however. For higher-order resonances, the increase of w does seem to move the resonance further away from
the excitation frequency, but only slightly.
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Figure B.33: The undamped frequency response comparison of the resulting topologies given in figure
B.32 and the initial uniform domain, showcasing the influence of the parameter w on global minimization
subjected to a base excitation including forced symmetry.

B.2.5. Discussion on the influence of w on global minimization
Similar to the results from section B.1.5, the influence of the parameter w is minimal. Its inclusion, however,
meaning w ≥0, is still necessary to suppress the occurrence of intermediate densities in the obtained result.
On top of this, forced symmetry also seems required for the base excited problem. In the coming sections, the
value of the parameter w will, therefore, be set at w=1, and forced symmetry over the y-axis will be included.

B.2.6. Influence of the parameter m on global minimization
Next, the influence of the parameter m is examined. For the force excited case, it was determined that any
value higher than m ≥2 was sufficient and that the inclusion of the density-weighted filter improved the
results. In this section, however, the same parameter sweep will be performed again to establish whether
this same behaviour occurs in the force-excited case. A sweep will, therefore, also be done for the case where
the density-weighted filter is removed (w=0). Setting the parameter γ1 at 0.99, the excitation frequency at
340Hz, the parameter w at 1 and including forced symmetry over the y-axis, the results for m=2, m=4, m=8
and m=12 are given in figure B.34.

(a) m = 2, Cs = 5.3510 (b) m = 4, Cs = 5.0951

(c) m = 8, Cs = 4.7244 (d) m = 12, Cs = 4.5522

Figure B.34: The topologies found for a parameter sweep over the parameter m for global minimization
subjected to a base excitation including forced symmetry over the y-axis, together with their accompanying
static compliance values.

The resulting topologies show very different behaviour compared to the force-excited case, which had
little influence. For the base excited case, it seems to have a significant influence, however. As m increases, the
connecting structures which connect the centre structure to the base seem to get more material distributed
towards them, which yields a connecting structure with added inner members. It seems that the heavier
penalization yields structures which limit the displacements near the edges where the excitation takes place.
This yields stiffer structures, as noted from the lower static compliance values Cs given in figure B.34. The
result for m=8, however, yields added inner members, which are comprised of intermediate densities, when
compared to the result of m=12, which contains the same members but with higher density values. For this
case, a larger value of m is therefore not necessarily desired. Looking at the location of the second eigenmode
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ω2 given in table B.9 reveals that the result of m=4 yields a mode close to the excitation frequency. Next, the
frequency response, of which the undamped version is given in figure B.35, can be examined.

Second eigenfrequency ω2 m=2 m=4 m=8 m=12 m=20
ωexc = 340Hz 308Hz 321Hz 369Hz 366Hz 370Hz

Table B.9: An overview of the second eigenfrequencies computed for the obtained topologies as given in
figure B.34.

Figure B.35: The undamped frequency response comparison of the resulting topologies given in figure
B.34 and the initial uniform domain, showcasing the influence of the parameter m on global minimization
subjected to a base excitation including forced symmetry.

The frequency response shows a distinct pattern where higher order modes are pushed away from the
excitation frequency as m increases. This suggests that higher values of m are preferred, though it comes at
the cost of the first resonance moving slightly closer to the excitation frequency. It is hard to see in the graph,
but the lower values of m yield lower displacement magnitudes of the vertical displacement of the mass for
lower values of m. These improvements are, however, slight when compared to the fact that higher-order
modes are now much closer to the excitation frequency. combined with the observations from the resulting
topologies, it, therefore, seems that a high value of m such as m=12 is preferred as the result of m=20 differs
only slightly from the result of m=12. As mentioned, however, the influence of the parameter w will also be
examined again. The resulting topologies of the same parameter sweep but without the density-weighted
filter (w=0) are given in figure B.36.

(a) m = 2, Cs = 4.8730 (b) m = 4, Cs = 4.4411

(c) m = 8, Cs = 4.0291 (d) m = 12, Cs = 3.8687

Figure B.36: The topologies found for a parameter sweep over the parameter m for global minimization
subjected to a base excitation including forced symmetry over the y-axis and excluding the density-weighted
filter (w=0), together with their accompanying static compliance values.
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Without the density-weighted filter, the results of m ≥ 2 seem more in line with each other. The
intermediate densities also seem to only be present for m=2 and disappear for higher values of m. The
same effect of the static compliance decreasing, however, also appears in this case but with an even greater
effect given the lower values of Cs . This would suggest that the frequency performance is expected to show
higher displacement magnitudes as more emphasis is put on static compliance. To verify this, the undamped
frequency response is given in figure B.37.

Figure B.37: Undamped frequency response comparison influence of m on global minimization subjected to
a base excitation including forced symmetry

The resulting response now shows an even more distinctive pattern when compared to the result with
the density-weighted filter included. As the parameter m increases, the first resonance moves closer to the
excitation frequency, but the second resonance moves further from the excitation frequency. The choice of
the parameter m would, therefore, seem to depend on whether the first or second resonance has priority.
The magnitudes of the displacements at the excitation frequency, however, are much higher than in the case
where the density-weighted filter was included. This is likely due to the added emphasis on static compliance,
and it would therefore seem that the inclusion of the density-weighted filter is still preferred.

B.2.7. Discussion on the influence of m on global minimization
From these results, it seems that the inclusion of the density-weighted filter is still desired. As for the
appropriate value of the parameter m, this is still inconclusive as a lower value, such as m=2, provides a
lower displacement magnitude response at the excitation frequency but moves the second resonance closer
to the excitation frequency, and a higher value, such as m=12 does the exact opposite. Furthermore, the
intermediate values of m=4 and m=8 are not desired because they have a second eigenfrequency near the
excitation frequency and contain intermediate densities. The coming section will, therefore, examine the
results for both m=2 and m=12.
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B.2.8. Influence of the excitation frequencyωexc on global minimization
Lastly, the influence of the excitation frequency ωexc is examined for global minimization subjected to a
base excitation. The frequencies of interest were already provided in figure B.27 and will, as mentioned,
be examined for both m=2 and m=12. The density-weighted filter will be applied with w=1, and symmetry
is forced over the y-axis. The frequency sweep for m=2 over the frequency of interest and over the values
γ1=0.99, γ1=0.95 and γ1=0.90 is given in figure B.38.

(a) γ1 = 0.90, ωexc=340Hz (b) γ1 = 0.95, ωexc=340Hz (c) γ1 = 0.99, ωexc=340Hz

(d) γ1 = 0.90, ωexc=880Hz (e) γ1 = 0.95, ωexc=880Hz (f) γ1 = 0.99, ωexc=880Hz

(g) γ1 = 0.90, ωexc=1377Hz (h) γ1 = 0.95, ωexc=1377Hz (i) γ1 = 0.99, ωexc=1377Hz

(j) γ1 = 0.90, ωexc=2947Hz (k) γ1 = 0.95, ωexc=2947Hz (l) γ1 = 0.99, ωexc=2947Hz

Figure B.38: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.2.1 showcasing their influence
on global minimization subjected to a force excitation including forced symmetry over the y-axis and the
parameter values w=1 and m=2.

What immediately stands out is that there are almost no intermediate densities present apart from the
result of figure B.38i. This shows that the chosen parameters for w and m are appropriate choices. As for the
obtained topologies, the same behaviour as for the force excited case is visible, where more emphasis is put
on the structures which connect the centre structure to the base as γ1 decreases. One topology which stands
out, however, is the result from 2947Hz at γ1=0.99 in figure B.38l. It is hard to see that its connection to the
base is only defined by four single elements at the four corners, and on top of that, these elements consist
of an intermediate density. For this excitation frequency, it, therefore, seems that a certain amount of static
compliance contribution is still needed to yield a connected topology. For a more in-depth view into the
frequency performance, the undamped frequency for all topologies respective for each excitation frequency
of interest is given in figure B.39.

The effects of higher order modes being pulled towards the excitation frequency at high values of γ1

were already established for 340Hz. For 880Hz, it seems this behaviour is present as well, with the second
resonance and first anti-resonance even being moved below the excitation frequency for γ1=0.99. It does
appear that γ1 provides the lowest displacement magnitude by a margin, at the cost of resonances being very
close to the excitation frequency. At the excitation frequency of 1377Hz, something interesting happens.
Though γ1=0.99 again yields the lowest displacement magnitude, it has a resonance extremely close to
this frequency at 1392Hz, which is very undesirable behaviour. This might also explain the presence of
intermediate densities in this topology. For γ1=0.95 and γ1=0.90, it seems that this same resonance is moved
in front of the excitation frequency. Lastly, the result of 2947Hz shows all values of γ1 performing well in terms
of moving the resonances away from the excitation frequency, but as was already established, the result of
γ1=0.99 yields a not fully connected topology. As mentioned, the same sweep would be performed for m=12,
the results of which are given in figure B.40.

From these results, similar behaviour is found as for m=2, but there are some differences. The not fully
connected behaviour which was found for one topology of m=2 is now present for γ1=0.99 at 880Hz and
γ1=0.95 at 2947Hz, given in figure B.40f and B.40k respectively. The most interesting result, however, is that of
γ1=0.99 at 2947Hz given in figure B.40l, which is almost fully disconnected. This is hard to see in these images,
but the four corner elements have very low-density values for these cases, with the latter having the lowest
density. It would, therefore, seem that the higher value of m is not suitable for all excitation frequencies when
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(a) ωexc=340Hz (b) ωexc=880Hz

(c) ωexc=1377Hz (d) ωexc=2947Hz

Figure B.39: The undamped frequency response comparison of the resulting topologies given in figure B.38
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interestωexc on global minimization subjected to a force excitation including forced
symmetry over the y-axis and parameter values w=1 and m=2.

(a) γ1 = 0.90, ωexc=340Hz (b) γ1 = 0.95, ωexc=340Hz (c) γ1 = 0.99, ωexc=340Hz

(d) γ1 = 0.90, ωexc=880Hz (e) γ1 = 0.95, ωexc=880Hz (f) γ1 = 0.99, ωexc=880Hz

(g) γ1 = 0.90, ωexc=1377Hz (h) γ1 = 0.95, ωexc=1377Hz (i) γ1 = 0.99, ωexc=1377Hz

(j) γ1 = 0.90, ωexc=2947Hz (k) γ1 = 0.95, ωexc=2947Hz (l) γ1 = 0.99, ωexc=2947Hz

Figure B.40: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.2.1 showcasing their influence
on global minimization subjected to a force excitation including forced symmetry over the y-axis and the
parameter values w=1 and m=12.
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compared to the results of m=2. The frequency response can still be examined to confirm this, however, and
the undamped version is given in figure B.41.

(a) ωexc=340Hz (b) ωexc=880Hz

(c) ωexc=1377Hz (d) ωexc=2947Hz

Figure B.41: The undamped frequency response comparison of the resulting topologies given in figure B.40
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interestωexc on global minimization subjected to a force excitation including forced
symmetry over the y-axis and parameter values w=1 and m=12.

The frequency response also shows worse performing behaviour when compared to the results of m=2.
Whilst the result of 340Hz seems better, with the result of γ1=0.99 showing only one higher resonance in the
same frequency range, the results of the three other frequencies all show resonances being very close to the
excitation frequency. It would, therefore, seem that the value of m=12 is not an appropriate value.

B.2.9. Discussion on the influence of the excitation frequency ωexc on global
minimization

Combining the result from this examination with the previous results, it would seem that, first of all, the
density-weighted filter still is a positive addition to the optimization problem together with forced symmetry
over the y-axis. As for the value of m, a higher value might seem preferable for lower excitation frequencies,
but for higher excitation frequencies, the lower value of m=2 showed more beneficial results.
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B.3. Discussion on global minimization
From this study, it would seem that global minimization of both force-excited and base-excited problems
requires symmetry to be forced over the y-axis in order to prevent obtaining asymmetric topologies.
Furthermore, though it first seemed that the density-weighted filter had little effect, its inclusion greatly
influences the occurrence of intermediate densities, which is similar to what Montero et al. [37] found. As
for the appropriate value, any w is valid, and therefore, the lowest value of w=1 is the simplest choice. As
for the parameter m, it seems that any value m ≥2 is desired for the force excited case, whereas the higher
values of m are actually undesired for the base excited case. One thing that is to be noted, however, is that the
proposed objective function yielded topologies with very few intermediate densities present for a wide range
of frequencies.

B.4. Local minimization subjected to a force excitation
With the behaviour of the density-weighted norm objective function established for global minimization
problems, the behaviour of its use in local minimization can be examined. Montero et al. [37] did consider
a local optimization, but this was a maximization case and as such the behaviour of this objective function
for local minimization is still unknown. If the displacements of only a specific area within the domain are
minimized, nothing is stopping the optimizer from choosing to promote very high displacements in other
areas within the domain in order to compensate for the displacements of the region of interest. In Montero
et al. [37], this possible behaviour is labelled as ’unwanted effects’, but this thesis aims to investigate whether
this is something which can be taken advantage of. In this section, the influence of the density-weighted filter,
the parameter γ1 and the parameter m are therefore examined again, which is all done for various sizes of the
local area of interest L. As for the problem definition, the same design domain, parameters and frequencies
of interest are used as outlined in section B.1.

B.4.1. A single degree of freedom
For the first case, only a single degree of freedom is considered, the bottom centre vertical degree of freedom,
which is also the location of the applied force excitation. In contrast to the global minimization case, the
frequency response of this single degree of freedom will now be directly comparable.

For a single degree of freedom, the parameter w will only affect the surrounding elements, which,
considering that the considered degree of freedom is at the edge of the domain, is, in this case, only two
elements. Adding the density weights in this case would not benefit the optimization, and therefore, the
density-weighted filter is removed (w=0) for this case. As for the influence of the parameter m, this can be
derived from equation 6.6. For a subset L containing a single degree of freedom, this equation simplifies to
equation B.5.
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This shows that the parameter m disappears from the objective function and will, therefore, have no
influence on the optimization. What can also be noted is that without the density weights, the norm function
reverts to the magnitude of a single response point. Given how the norm function follows the maximum
response, this objective function will now contain anti-resonances due to only containing the response of a
single degree of freedom. This section will, therefore, determine whether the addition of static compliance
aids in avoiding premature convergence.

With the influence of the parameters w and m established, a sweep can be done over the frequencies of
interest to see whether the found behaviour is consistent over a range of frequencies. For this sweep, the
density-weighted filter is removed (w=0), the parameter m set at its lowest value of m=2, symmetry is forced
over the y-axis, and the two elements which contain the degree of freedom of interest have their density set as
a non-design domain with a value of 1. The resulting sweep over the frequencies of interest and γ1 are given
in figure B.42.
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(a) γ1 = 0.90, ωexc=429Hz (b) γ1 = 0.95, ωexc=429Hz (c) γ1 = 0.99, ωexc=429Hz

(d) γ1 = 0.90, ωexc=700Hz (e) γ1 = 0.95, ωexc=700Hz (f) γ1 = 0.99, ωexc=700Hz

(g) γ1 = 0.90, ωexc=986Hz (h) γ1 = 0.95, ωexc=986Hz (i) γ1 = 0.99, ωexc=986Hz

(j) γ1 = 0.90, ωexc=1721Hz (k) γ1 = 0.95, ωexc=1721Hz (l) γ1 = 0.99, ωexc=1721Hz

Figure B.42: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.1.2 showcasing their influence
on local minimization of a single degree of freedom subjected to a force excitation including forced symmetry
over the y-axis and the parameter values w=0 and m=2.

(a) ωexc=429Hz (b) ωexc=700Hz

(c) ωexc=986Hz (d) ωexc=1721Hz

Figure B.43: The undamped frequency response comparison of the resulting topologies given in figure B.42
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interestωexc on local minimization of a single degree of freedom subjected to a force
excitation including forced symmetry over the y-axis and the parameter values w=0 and m=2.

The influence of γ1 is clearly visible for γ1=0.99. Whilst a black and white topology is obtained for the
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lowest frequency of 429Hz, all higher frequency results contain intermediate density regions. Increasing the
static compliance contribution aids in the removal of these intermediate densities, withγ1=0.95 already being
sufficient, given that it provides topologies with limited to no intermediate densities present in the obtained
topology. To check whether the same anti-resonance behaviour is present at all frequencies, the undamped
frequency response for the obtained topologies respective of frequency are given in figure B.43.

As expected, all obtained topologies contain the same behaviour of an anti-resonance matching the
excitation frequency. Given that the resulting topologies showed intermediate density regions primarily for
high values of γ1, it seems that the contribution of the static compliance is the main factor for obtaining well-
defined topologies even though the objective function contains anti-resonances for local minimization of a
single degree of freedom subjected to a force excitation.

B.4.2. An area of interest L
Local minimization of a single degree of freedom yielded topologies which contained an anti-resonance at the
degree of freedom of interest. For a larger area of interest L, more degrees of freedom are taken into account,
which would provide the norm function with a maximum response to a selection of responses. Whether this
is the case for an area of interest which also contains a non-design domain remains to be seen. The chosen
area of interest is shown in the updated design domain given in figure B.44. All other parameters are kept
similar to those mentioned in section B.1.

(a) Load case 1 (b) Load case 2

Figure B.44: The two load cases required for local minimization of an area of interest L subjected to a force
excitation including the used dimensions.

This area of interest spans a rectangular 10% lx by 30% ly area in the centre of the design domain in order
to keep the same ratio as the design domain. It can be noted that the force application point has been changed
to be in the centre of the area L. This ensures that the applied force has no effects on the boundaries of the
area of interest. The static force with similar magnitude f̂ is also applied at the same location. In order to
avoid the issue of the optimizer removing material from the area of interest in order to improve its frequency
behaviour, a non-design domain is added. To visualize the relation between the non-design domain and area
of interest, an arbitrary example finite element grid is provided in figure B.45.

Figure B.45: An example visualization of the nodes of the area of interest (black) encapsulating the non-design
domain marked by the grey elements.

The grey elements represent the elements which are part of the non-design domain. The nodes which
are black contain the degrees of freedom considered in the subset L. It can be seen that the area of interest
encapsulates the non-design domain in this case. For this problem, both the x- and y-directional degrees
of freedom are considered as the degrees of freedom of interest. Whilst there are more degrees of freedom
considered here, the addition of the non-design domain could also ensure similar behaviour of all of the
degrees of freedom in this domain. This means that an anti-resonance can still appear in the frequency
response as long as all degrees of freedom portray the same behaviour. The parameter sweep of γ1 is given in
figure B.46, which includes the results ofγ1=0.0, γ1=0.90, γ1=0.95 andγ1=0.99. The result ofγ1=0.0 is included
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due to the new problem definition, and the result of γ1=1.0 is not examined due to leading to a disconnected
result.

(a) γ1=0.0,0 Cs = 2.8343 (b) γ1 = 0.90, Cs =3.1235

(c) γ1 = 0.95, Cs =3.5276 (d) γ1 = 0.99, Cs =7.0934

Figure B.46: The topologies found for a parameter sweep over the parameter γ1 for local minimization of an
area of interest L subjected to a force excitation together with the accompanying static compliance values.

As expected, the parameter γ1 has the same influence on the static compliance. The interesting result,
however, is that of γ1=0.99, where it seems that the optimizer chose a topology which connects the area of
interest with the rest of the structure with members comprised of intermediate densities. This shows that a
higher amount of static compliance contribution is necessary for this problem, given that the result ofγ1=0.95
gives a well-connected result. As for the difference between γ1=0.90 and γ1=0.95, it seems that the former
contains a second eigenfrequency ω2 at 434Hz, which is close to the excitation frequency of 429Hz, while the
latter contains this same eigenfrequency at 323Hz. This is likely a mode which only contains displacements
in the x-direction, and as such, it is a valid choice from the perspective of the optimizer. This is interesting
as the x-directional degrees of freedom of the area of interest are also included in the subset L. For a deeper
delve into the frequency behaviour, the undamped frequency response of the vertical degree of freedom of
the centre of the area of interest (which is also the force application point) is given in figure B.47.

Figure B.47: The undamped frequency response comparison of the resulting topologies given in figure B.46
and the initial uniform domain, showcasing the influence of the parameter γ1 on local minimization of an
area of interest L subjected to a force excitation.

The resulting response shows an anti-resonance present at the excitation frequency for the results of
γ1=0.95 and γ1 0.99. This means that the hypothesis from earlier was correct, where all degrees of freedom
inside the area of interest obtain the same behaviour and collectively contain an anti-resonance at the
excitation frequency. The resulting topology of γ1=0.90 does not contain this behaviour but does maximize
the distance between the first resonance and first anti-resonance, being located exactly between them. The
added static compliance contribution then ensures a connected result, as can be seen from the γ1=0.99 result,
but may limit the anti-resonance behaviour, as can be seen from the γ1=0.90 result. To visualize this anti-
resonance behaviour, the magnitudes of the displacements are visualized in ParaView, the output of which is
given in figure B.48.
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Figure B.48: A visualization done in ParaView of the displacement magnitudes resulting from the applied
force excitation for the result of γ1=0.95 at 429Hz showcasing the minimization of the displacements in the
area of interest.

The resulting displacement field exactly encapsulates the behaviour which was expected from local
minimization, where other parts of the domain are allowed to have higher displacement magnitudes in
order to minimize displacements of the area of interest. In this case, specifically, the area of interest L, and
seemingly an even larger area, contains an anti-resonance at the excitation frequency, which allows for this
minimization behaviour whilst the static compliance contribution aids in obtaining a well-connected result.
Considering that this study aimed to achieve compensating behaviour without the presence of intermediate
densities, this is beneficial behaviour.

Next, the influence of the parameter w can be examined. Given that the area of interest covers the non-
design domain (figure B.44), the weights a j should not change much due to most of the design variables
which are incorporated in the weight determination being fixed. Setting the parameter γ1 at 0.95 obtain a
connected result, the parameter m at 2 and the excitation frequency at 429Hz, the resulting topologies for
w=0, w=2, w=4, and w=8. Similar to the global case, w=0 refers to the density-weighted filter being removed.

(a) w=0 (b) w=2

(c) w=4 (d) w=8

Figure B.49: The topologies found for a parameter sweep over the parameter w for local minimization of an
area of interest L subjected to a force excitation.

These results confirm that the parameter w has little visible influence on local minimization considering
an area L. To see whether the frequency response shows a distinct difference, the undamped frequency
response is given in figure B.50. This response also includes the result of w=20.

Even though there are small differences, these are so small they can be considered negligible. A change in
parameter w , therefore, has no positive or negative impact, but it still has a small impact. There is, therefore,
no reason to add the density weights to this optimization problem, and thus, the density-weighted filter will
be removed (w=0) for local minimization of an area of interest L.

Next, the influence of the parameter m is examined. Setting w=0, the excitation frequency at 429Hz and
the parameter γ1 at 0.95, the resulting topologies for m=2, m=4, m=8 and m=12 are given in figure B.51.

Again, no significant visible differences are found in the obtained topologies. This is to be expected as it
was already shown that the parameter m had no influence when the subset L contains one degree of freedom,
and, therefore, is expected to only have little influence if the subset L contains only a small set of degrees of
freedom, specifically when it was already shown that the area of interest portrays a collective response. A
deeper delve can be done by looking at the undamped frequency response given in figure B.52, which also
includes the result of m=20.

The resulting frequency response also shows only small differences. The first resonance seems to be
moved further from the excitation frequency as m increases at the cost of the second resonance moving closer.
This is irrelevant, however, as the behaviour is mainly characterized by the first anti-resonance matching
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Figure B.50: The undamped frequency response comparison of the resulting topologies given in figure B.49
and the initial uniform domain, showcasing the influence of the parameter w on local minimization of an
area of interest L subjected to a force excitation.

(a) m=2 (b) m=4

(c) m=8 (d) m=12

Figure B.51: The topologies found for a parameter sweep over the parameter m for local minimization of an
area of interest L subjected to a force excitation.

Figure B.52: The undamped frequency response comparison of the resulting topologies given in figure B.49
and the initial uniform domain, showcasing the influence of the parameter m on local minimization of an
area of interest L subjected to a force excitation.

the excitation frequency. For this behaviour, the parameter m has influence, but without a distinguishable
pattern. The result of whether a larger or smaller m is desired for local minimization of an area L is therefore
inconclusive.

To investigate the influence of the excitation frequency, the density-weighted filter will be removed (w=0),
and the parameter m will be set at the lowest value of m=2. Symmetry is forced over the y-axis, the degrees of
freedom in the subset L cover the non-design domain and the results of the sweep over both the frequencies
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of interest and the parameter γ1 is given in figure B.53.

(a) γ1 = 0.90, ωexc=429Hz (b) γ1 = 0.95, ωexc=429Hz (c) γ1 = 0.99, ωexc=429Hz

(d) γ1 = 0.90, ωexc=700Hz (e) γ1 = 0.95, ωexc=700Hz (f) γ1 = 0.99, ωexc=700Hz

(g) γ1 = 0.90, ωexc=986Hz (h) γ1 = 0.95, ωexc=986Hz (i) γ1 = 0.99, ωexc=986Hz

(j) γ1 = 0.90, ωexc=1721Hz (k) γ1 = 0.95, ωexc=1721Hz (l) γ1 = 0.99, ωexc=1721Hz

Figure B.53: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.1.2 showcasing their influence
on local minimization of an area of interest L subjected to a force excitation including forced symmetry over
the y-axis and the parameter values w=0 and m=2.

(a) ωexc=429Hz (b) ωexc=700Hz

(c) ωexc=986Hz (d) ωexc=1721Hz

Figure B.54: The undamped frequency response comparison of the resulting topologies given in figure B.53
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interest ωexc on local minimization of an area of interest L subjected to a force
excitation including forced symmetry over the y-axis and the parameter values w=0 and m=2.
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For the value of γ1=0.99, the same behaviour is found where the area of interest is connected to the
rest of the structure via intermediate densities. This indicates that a larger static compliance contribution
is necessary for local minimization of an area of interest L subjected to a force excitation. As for the other
results, it seems that little to no intermediate densities are present except for the γ1=0.95 result for 1721Hz.
To see how the resulting topologies compare with each other in terms of displacement performance near and
at the respective frequencies of interest, the undamped frequency responses are given in figure B.54.

The frequency responses of the obtained topologies show quite different behaviour, of which the result
of 429Hz was already discussed. It appears that, as the excitation frequency increases, the anti-resonance
seems to move further away from the excitation frequency for all values of γ1. What this means is that
the degrees of freedom in the area of interest portray other displacements which dominate the response in
the norm function. The resulting displacements are still minimized but are not fully represented by only
the frequency response of the force excitation point. To visualize the displacements at this frequency, the
resulting displacement magnitudes of the result of γ1=0.90 at 1721Hz are plotted with ParaView and given in
figure B.55.

Figure B.55: A visualization done in ParaView of the displacement magnitudes resulting from the applied
force excitation for the result of γ1=0.90 at 1721Hz showcasing the minimization of the displacements in the
area of interest.

The resulting displacement field shows that the displacement magnitudes of the degrees of freedom in
the area of interest are still minimized, but not exactly with an anti-resonance. There is, however, similar
behaviour where other parts of the structure display larger displacements to ensure that the area of interest
has minimized displacement magnitudes at the excitation frequency.

B.4.3. Discussion on the local minimization subjected to a force excitation
In this section, the influence of the density-weighted norm objective function is examined for its behaviour
considering local minimization subjected to a force excitation for two subsets: a single degree of freedom and
an area of interest L. It was determined that for both of these subsets, the influence of the density-weighted
filter became negligible, and it was removed (w=0) for all optimizations. Where the density-weighted filter
aided in preventing the occurrence of intermediate density regions for global minimization, it seems that the
static compliance contribution is of greater importance for local minimization as it was found that the value
of γ1=0.99, or in other words the lowest static compliance contribution, yielded topologies which contained
intermediate density regions. A similar result was found for the parameter m, which was therefore set at m=2.

When only a single degree of freedom was chosen, the results all showed how an anti-resonance in
the structure matched the excitation frequency. Considering the results found in section 4.7, it appears
that the premature convergence and excitation frequency issues were solved primarily by adding the static
compliance in the objective function. For an area of interest L, similar behaviour was found for low excitation
frequencies where the degrees of freedom inside the area of interest collectively obtained an anti-resonance
at the excitation frequency. This did not translate to higher frequencies, however, where more complex modes
are present, which limit this behaviour. What was found, however, is that other regions of the domain were
still given larger displacements in order to minimize the displacements of the area of interest.

B.5. Local minimization subjected to a base excitation
Lastly, the local minimization behaviour subjected to a base excitation can be examined. In contrast to the
force excited case, this problem is non-collocated, given that the response and excitation points do not share
the same location. The same behaviour is to be expected, however, where certain regions of the domain will
be allowed to have higher displacement magnitudes in order to minimize the displacement magnitudes of
the region of interest. To examine this behaviour, the same single degree of freedom and area of interest L
will be examined as in the previous section. The single degree of freedom problem will determine whether
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the excitation frequency issues present for harmonic base excitations can again be solved with the inclusion
of static compliance. The problem definition which is used is the same design domain, parameters and
frequencies of interest which are outlined for the global minimization case in section B.2.

B.5.1. A single degree of freedom
First, a single degree of freedom is considered again to determine whether the static compliance contribution
aids in obtaining well-connected results over a wide range of frequencies. The point of interest chosen is the
vertical degree of freedom of the node, which contains the added mass mb. This is also the same degree of
freedom where the force is applied for the static load case. As the parameter m was already shown to have
a negligible effect on the local minimization subjected to a force excitation of a single degree of freedom,
the parameters w and m are set to similar values of w=0 and m=2. Next, a parameter sweep over both the
frequencies of interest and the parameter γ1 can be done. Figure B.56 shows the resulting topologies from
this sweep.

(a) γ1 = 0.99, ωexc=340Hz (b) γ1 = 0.95, ωexc=340Hz (c) γ1 = 0.90, ωexc=340Hz

(d) γ1 = 0.99, ωexc=880Hz (e) γ1 = 0.95, ωexc=880Hz (f) γ1 = 0.90, ωexc=880Hz

(g) γ1 = 0.99, ωexc=1377Hz (h) γ1 = 0.95, ωexc=1377Hz (i) γ1 = 0.90, ωexc=1377Hz

(j) γ1 = 0.99, ωexc=2947Hz (k) γ1 = 0.95, ωexc=2947Hz (l) γ1 = 0.90, ωexc=2947Hz

Figure B.56: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.1.2 showcasing their influence
on local minimization of a single degree of freedom subjected to a base excitation including forced symmetry
over the y-axis and the parameter values w=0 and m=2.

The resulting topologies seem to contain a large amount of intermediate densities. Only the results of
the lowest frequency of 340Hz and the γ1=0.90 result of 800Hz appear to be free of intermediate densities.
The same behaviour of obtaining better-connected topologies when the static compliance contribution is
increased seems to be present but to a much lesser extent. For a more in-depth analysis, the response of each
of these topologies can be compared, and the undamped frequency responses are given in figure B.57.

These responses show that a minimized result is indeed obtained, with increased performance as the
static compliance contribution decreases. The resulting topologies, however, are still largely filled with
intermediate densities.
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(a) ωexc=340Hz (b) ωexc=880Hz

(c) ωexc=1377Hz (d) ωexc=2947Hz

Figure B.57: The undamped frequency response comparison of the resulting topologies given in figure B.56
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interestωexc on local minimization of a single degree of freedom subjected to a base
excitation including forced symmetry over the y-axis and the parameter values w=0 and m=2.

B.5.2. An area of interest L
The minimization of a single degree of freedom yielded topologies that contained large amounts of
intermediate densities, some of which were not even connected to the base. The subset L is therefore enlarged
to examine the influence of a larger subset of degrees of freedom L. The same area is used as in the force
excited local minimization case, and visualization is given in figure B.58. The rest of the parameters are similar
to the global minimization problem.

(a) Load case 1 (b) Load case 2

Figure B.58: The two load cases required for local minimization of an area of interest L subjected to a base
excitation including the used dimensions.

The area of interest is again centred in the middle of the domain, with the static force applied in the middle
of this domain for the second load case. The added mass mb is also added to the centre of this domain in the
first load case. Furthermore, a non-design domain is added to the area of interest and is encapsulated by the
degrees of freedom considered by the subset L. The density-weighted filter will not be included (w=0) in this
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examination as it was already determined in the force excited case that it has little influence on this design
problem. Firstly, the influence of the parameter γ1 is examined, and the results for γ1=0.90, γ1=0.95, γ1=0.99
and γ1=1.0 for an excitation frequency of 340Hz and m=2 are given in figure B.59.

(a) γ1=0.90, Cs = 3.1113 (b) γ1=0.95, Cs = 3.4802

(c) γ1=0.99, Cs = 7.1763 (d) γ1=1.0, Cs = 3423.47

Figure B.59: The topologies found for a parameter sweep over the parameter γ1 for local minimization of an
area of interest L subjected to a base excitation together with the accompanying static compliance values.

From these results, it is clear that the result of γ1=1.0 yields a disconnected topology, and γ1=0.99 yields a
topology with some members which consist of intermediate densities. The results of γ1=0.90 and γ1=0.95 do
not appear to contain much visible differences, but their respective static compliance values show otherwise.
To see how these topologies compare at the excitation frequency, the undamped frequency response of the
mass point is given in figure B.60.

Figure B.60: The undamped frequency response comparison of the resulting topologies given in figure B.59
and the initial uniform domain, showcasing the influence of the parameter γ1 on local minimization of an
area of interest L subjected to a base excitation.

The resulting frequency response shows the expected result of the displacement magnitude response
decreasing as the static compliance contribution decreases. For the extreme case of γ1, where the stiffness
between the base and the obtained centre mass is very low, similar behaviour to the principle of vibration
isolation explained in section 2.2.4 can be seen. This effect is limited for larger values of γ1, but the same
principle of obtaining a large centre mass which is connected to the base with minimized stiffness can
be seen in the obtained topology of γ1=0.99 in figure B.59. This same result, however, does contain some
intermediate densities, and therefore, the examination of the influence of the parameter m on this problem
will be performed using γ1=0.95. Keeping the same excitation frequency of 340Hz, the resulting topologies of
the parameter sweep for m=2, m=4, m=8 and m=12 are given in figure B.61.

The differences in the obtained topologies are slight, but there are differences. For larger values of m it
seems that the four members connecting the area of interest L to the rest of the structure are connected with
slightly thicker members. To see how this difference performs at the excitation frequency, the undamped
frequency response of these topologies is given in figure B.62. This also includes the result of m=20, the
topology of which showed no visible difference to the result of m=12.
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(a) m=2 (b) m=4

(c) m=8 (d) m=12

Figure B.61: The topologies found for a parameter sweep over the parameter m for local minimization of an
area of interest L subjected to a base excitation.

Figure B.62: The undamped frequency response comparison of the resulting topologies given in figure B.61
and the initial uniform domain, showcasing the influence of the parameter m on local minimization of an
area of interest L subjected to a base excitation.

The resulting frequency response also shows little difference, but there is a slight decrease in displacement
magnitude as the parameter m increases. The largest difference, however, is found in the second
eigenfrequency ω2. The respective second eigenfrequencies of the obtained topologies are given in table
B.10.

Second eigenfrequency ω2 m=2 m=4 m=8 m=12 m=20
ωexc = 340Hz 367Hz 375Hz 378Hz 378Hz 380Hz

Table B.10: An overview of the second eigenfrequencies computed for the obtained topologies as given in
figure B.61.

As m increases, this eigenfrequency seems to be moved further away from the excitation frequency, which
is beneficial. The largest increase in this movement is found for m=4, and higher values yield diminishing
returns. Therefore, for the parameter sweep of the excitation frequency ωexc, the parameter m will be set
at m=4. Figure B.63 provides this frequency sweep over both the excitation frequencies of interest and the
parameter γ1.

Compared with the results of the local minimization of a single degree of freedom, the minimization
of an area L does seem to yield only slightly fewer topologies which contain intermediate densities. The
results are, however, a lot more defined, with the intermediate density regions consisting of rather clear
members instead of seemingly random regions of material. For larger values of γ1, the same vibration
isolation principles can be found, where more mass is added to the centre of the domain, and the connection
to the base contains little stiffness due to the connecting members being made up of intermediate densities.
For higher frequencies, the main differences are found in the connecting structures, which seem to change
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(a) γ1 = 0.90, ωexc=340Hz (b) γ1 = 0.95, ωexc=340Hz (c) γ1 = 0.99, ωexc=340Hz

(d) γ1 = 0.90, ωexc=880Hz (e) γ1 = 0.95, ωexc=880Hz (f) γ1 = 0.99, ωexc=880Hz

(g) γ1 = 0.90, ωexc=1377Hz (h) γ1 = 0.95, ωexc=1377Hz (i) γ1 = 0.99, ωexc=1377Hz

(j) γ1 = 0.90, ωexc=2947Hz (k) γ1 = 0.95, ωexc=2947Hz (l) γ1 = 0.99, ωexc=2947Hz

Figure B.63: The topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest defined in section B.1.2 showcasing their influence
on local minimization of an area of interest L subjected to a base excitation including forced symmetry over
the y-axis and the parameter values w=0 and m=4.

(a) ωexc=340Hz (b) ωexc=880Hz

(c) ωexc=1377Hz (d) ωexc=2947Hz

Figure B.64: The undamped frequency response comparison of the resulting topologies given in figure B.63
and the initial uniform domain, showcasing the influence of the parameter γ1 for each of the four respective
excitation frequencies of interest ωexc on local minimization of an area of interest L subjected to a base
excitation including forced symmetry over the y-axis and the parameter values w=0 and m=4.
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into structures with less stiffness. To assess the performance of these topologies, the undamped frequency
response of the vertical degree of freedom of the mass node is provided in figure B.64.

It should be noted that these responses do not capture the full behaviour of the response now that an area
of interest is considered. It was, however, shown for local minimization under a force excitation that the area
of interest portrayed collective behaviour. For all responses, it seems that the resonances are moved far away
from the excitation frequency. For higher frequencies, an anti-resonance is still present near the excitation
frequency, but it does not necessarily seem like the optimizer is actively trying to place this anti-resonance
near the excitation frequency.

B.5.3. Discussion on the local minimization subjected to a base excitation
In this section, the influence of the density-weighted norm objective function is examined for its behaviour
considering local minimization subjected to a base excitation for the same subsets as for a force excitation:
a single degree of freedom and an area of interest L. The density-weighted filter was again removed (w=0),
but the parameter m showed different behaviour to the force excited case. Whilst the response measured at
the point of interest did not display much difference, the second eigenfrequency ω2 was moved further away
from the excitation frequency for higher values of m. This behaviour diminished quickly however for larger
m and as such this parameter value was set at m=4.

For a single degree of freedom, it was found that a large amount of intermediate densities were still
present in the system. Only the lowest examined frequency of 340Hz did not portray this issue, and an
increase in static compliance contribution did not solve this issue either. This is also different from the
results found for the force excited case, where an increase in static compliance contribution was beneficial
for suppressing intermediate densities. For an area of interest L, the results were much more defined, yet
still contained intermediate densities. Both subsets did show minimized results, however, for all frequencies,
with an increase in γ1 also yielding an increase in frequency performance.



C
Material interpolation functions

In this appendix, the different material interpolation functions presented in section 3.5 will be examined.
As was mentioned in this same section, there is no one ’best’ interpolation function for every problem.
Therefore, one can arbitrarily choose a material interpolation function, or a comparison can be made for
a sample problem. For the parameter study concerning the density-weighted norm function, the latter is
chosen.

To quantify which material interpolation scheme is the optimal choice for this problem, a measure
can be used, which was introduced by Sigmund [47]. This measure can determine the amount of ’black-
and whiteness’ of a topology. In other words, a topology scores better if it contains fewer intermediate
densities. For topology optimization considering dynamic excitations such as the frequency-dependent
problem presented in section B.1.1, the occurrence of intermediate densities is undesired as these low-
density areas might result in localized modes being formed as mentioned in section 4.5.6. This measure,
which is called the measure of non-discreteness, is given in equation C.1.

Mnd =
∑n

e=1 4xe (1−xe )

n
×100% (C.1)

The used problems are the force excited global minimization problem in section B.1.1 and the base excited
global minimization problem outlined in section B.2. Both of these problems are used in order to obtain a
combination of interpolation functions which will be able to cover both problems. The excitation frequency
is set at 429Hz, γ1 at 0.99 for maximum frequency influence, w at 1 and m at 2. Using the naming conventions
presented together with the different interpolation functions, the first results are given in figure C.1 and C.2,
which show the same interpolation function combinations for the force excited case and base excited case
respectively.

(a) Stiffness: Standard SIMP (equation 3.9),
Mass: Standard SIMP (equation 3.9), Mnd=42.37%

(b) Stiffness: SIMPlin (equation 3.14),
Mass: Standard SIMP (equation 3.9), Mnd=44.45%

(c) Stiffness: PIS (equation 3.16),
Mass: Standard SIMP (equation 3.9), Mnd=29.20%

(d) Stiffness: RAMP (equation 3.15),
Mass: Standard SIMP (equation 3.9), Mnd=50.90%

Figure C.1: Resulting topologies of the defined force-excited global minimization problem at an excitation
frequency of ωexc=429Hz for a range of stiffness interpolation functions and constant mass interpolation
function, together with their accompanying measure of non-discreteness value.
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(a) Stiffness: Standard SIMP (equation 3.9),
Mass: Standard SIMP (equation 3.9), Mnd=33.10%

(b) Stiffness: SIMPlin (equation 3.14),
Mass: Standard SIMP (equation 3.9), Mnd=58.60%

(c) Stiffness: PIS (equation 3.16),
Mass: Standard SIMP (equation 3.9), Mnd=26.84%

(d) Stiffness: RAMP (equation 3.15),
Mass: Standard SIMP (equation 3.9), Mnd=63.54%

Figure C.2: Resulting topologies of the defined base-excited global minimization problem at an excitation
frequency of ωexc=429Hz for a range of stiffness interpolation functions and constant mass interpolation
function, together with their accompanying measure of non-discreteness value.

Comparing the results, it is found that not all interpolation functions will work for both excitation forms.
While both RAMP and SIMPlin work for the excited case, they both contain many intermediate densities
for the base excited case. Standard SIMP and PIS, on the other hand, work very well in both cases, but PIS
does have a much lower non-discreteness score Mnd, which makes it the optimal interpolation function for
this case. These examples, however, all have the same mass interpolation function, which is standard SIMP.
Therefore, the functions Standard SIMP and PIS are examined again for stiffness interpolation, but this time,
they are examined with linear interpolation for mass interpolation. These results are given in figure C.3.

(a) Force excitation, Mnd=32.64%,
Stiffness: Standard SIMP (equation 3.9),
Density: Linear (equation 3.7)

(b) Force excitation, Mnd=34.57%,
Stiffness: PIS (equation 3.16),
Density: Linear (equation 3.7)

(c) Base excitation, Mnd=34.75%,
Stiffness: Standard SIMP (equation 3.9),
Density: Linear (equation 3.7)

(d) Base excitation, Mnd=35.10%,
Stiffness: PIS (equation 3.16),
Density: Linear (equation 3.7)

Figure C.3: Resulting topologies of the defined force-excited and base-excited global minimization problem
at an excitation frequency of ωexc=429Hz for Standard SIMP and PIS as stiffness interpolation functions and
a linear mass interpolation function, together with their accompanying measure of non-discreteness value.

This result should lead to a less complex problem, as there is no extra penalization present in the mass
interpolation. Without this penalization, however, it seems that the base excited case yields some extra
intermediate densities. This shows that penalization for mass interpolation benefits optimization in this
case. Comparing Standard SIMP and PIS again, however, now results in Standard SIMP being the optimal
interpolation function. Comparing this result with the previous result of PIS in combination with Standard
SIMP is still the optimal choice.

As removing complexity from the mass interpolation function does not seem beneficial, the mass
interpolation method used by Montero et al. [37] can be checked. This is the conditional SIMP function
from Du and Olhoff [46], which was given in equation 3.12, and the results are given in figure C.4.
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(a) Force excitation, Mnd=31.51%,
Stiffness: Standard SIMP (equation 3.9),
Density: Conditional SIMP (equation 3.12)

(b) Force excitation, Mnd=41.57%,
Stiffness: PIS (equation 3.16),
Density: Conditional SIMP (equation 3.12)

(c) Base excitation, Mnd=31.08%,
Stiffness: Standard SIMP (equation 3.9),
Density: Conditional SIMP (equation 3.12)

(d) Base excitation, Mnd=37.45%,
Stiffness: PIS (equation 3.16),
Density: Conditional SIMP (equation 3.12)

Figure C.4: Resulting topologies of the defined force-excited and base-excited global minimization problem
at an excitation frequency of ωexc=429Hz for Standard SIMP and PIS as stiffness interpolation functions
and the Conditional SIMP mass interpolation function, together with their accompanying measure of non-
discreteness value.

With this mass interpolation function, the Standard SIMP combination again seems to perform better
in terms of Mnd, but the optimal choice for this problem does still appear to be the PIS/Standard SIMP
combination for stiffness/mass interpolation. Whilst the different frequencies which are examined during the
experiments might yield other optimal material interpolation functions, it is important to remain consistent,
so a comparison for one of the frequencies of interest should be sufficient as most experiments will be
performed at this lowest frequency.





D
Case study static displacement results

This appendix contains a visualization of the displacements of the obtained topologies from sections 7.3, 7.4
and 7.5 resulting from the applied static input force.

D.1. Step 3: Global minimization
In figure D.1 a visualization of the vertical displacements resulting from the applied input force for the
topologies of figure 7.16 is given, confirming the working inverting function of the obtained mechanisms.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure D.1: A visualization done in Paraview of the vertical displacements resulting from the applied static
input force for the topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest as given in figure 7.16.
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D.2. Step 4: Local minimization of the mechanism area
In figure D.2 a visualization of the vertical displacements resulting from the applied input force for the
topologies of figure 7.19 is given, confirming the working inverting function of the obtained mechanisms.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure D.2: A visualization done in Paraview of the vertical displacements resulting from the applied static
input force for the topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest as given in figure 7.19.

D.3. Step 5: Local minimization of the input and output area
In figure D.3 a visualization of the vertical displacements resulting from the applied input force for the
topologies of figure 7.22 is given, confirming the working inverting function of the obtained mechanisms
except for the result of γ1=0.99 at 1823Hz.

(a) ωexc=363Hz, γ1=0.90 (b) ωexc=363Hz, γ1=0.95 (c) ωexc=363Hz, γ1=0.99

(d) ωexc=471Hz, γ1=0.90 (e) ωexc=471Hz, γ1=0.95 (f) ωexc=471Hz, γ1=0.99

(g) ωexc=1242Hz, γ1=0.90 (h) ωexc=1242Hz, γ1=0.95 (i) ωexc=1242Hz, γ1=0.99

(j) ωexc=1823Hz, γ1=0.90 (k) ωexc=1823Hz, γ1=0.95 (l) ωexc=1823Hz, γ1=0.99

Figure D.3: A visualization done in Paraview of the vertical displacements resulting from the applied static
input force for the topologies found for a two-sided parameter sweep over both the parameter γ1 and the
excitation frequency ωexc for the frequencies of interest as given in figure 7.22.



E
pyMOTO

For the topology optimizations done in this thesis, the modular framework known as pyMOTO, which
was developed by Arnoud Delissen and Stijn Koppen, is employed. This framework makes use of so-
called ’Signals’, which allow for the storage of data on both the variables and sensitivity information.
These signals can then be routed through so-called ’Modules’, which provide functionality and sensitivity
formulations. This appendix will provide a simple example to understand the basic working principles,
but for a more detailed explanation, the reader is referred to the original repository on GitHub
(https://doi.org/10.5281/zenodo.10600313) [80].

A simple example module can be constructed to explain the working principle of pyMOTO. The chosen
example is a module which constructs the Rayleigh damping matrix C(x) using the stiffness matrix K(x) and
the mass matrix M(x). A visualization of this module is given in figure E.1.

Figure E.1: A schematic of an example module which constructs the Rayleigh damping matrix, showing the
variables and sensitivities entering and exiting this module.

The entries of this module comprise of the stiffness matrix K(x) and mass matrix M(x), which are then
converted according to:

C(x) =αM(x)+βK(x) (E.1)

For a given final desired objective f (x), the sensitivity with respect to the design variables δ f (x)
δx is required.

This is done in pyMOTO by applying the chain rule for each module, which means that for every module, only
the sensitivity of the desired objective with respect to the input signals of the module is required. This allows
for the order of each module to be changed without having to worry about the sensitivity calculations. The
sensitivity derivation, which is then yielded, is given in equation E.2.

δ f (x)

δK(x)
= δC(x)

δK(x)

δ f (x)

δC(x)
δ f (x)

δM(x)
= δC(x)

δM(x)

δ f (x)

δC(x)

(E.2)

The second term now present in equation E.2 is the sensitivity input of the module, which means that
only δC(x)

δK(x) and δC(x)
δM(x) have to be implemented inside the module.
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Given in figure E.2 is an example of the implementation of a static compliance minimization (section
3.2) using the pyMOTO framework. Each grey block represents a module, and its given name aligns with
the naming conventions present in the pyMOTO framework. The notation ’pym.’ represents the pyMOTO
package, which is commonly imported as ’pym’ in a Python environment. The notations on each connecting
arrow represent each signal which enters or exits a module.

(a) Forwards (b) Backwards

Figure E.2: An example schematic of a static compliance minimization showing both the forward calculation
from the design variables to the static compliance and the backward calculation of the sensitivity of the static
compliance with respect to the design variables.

Figure E.2a provides the forward calculation of the static compliance. The final result is the desired
value of the static compliance, which enters the MMA module together with the volume constraint. The
sensitivities of these values with respect to the design variables can then be calculated using backpropagation,
an image of which is provided in figure E.2b. This is done in the same network, only backwards. The final
value is seeded with a value of 1, after which the modules are executed in reverse order. This is possible due
to the use of the chain rule, as mentioned earlier.
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