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Abstract
In this work, we describe our decisions made to perform the FluidFlower simulation study 
and discuss various aspects of the benchmark that are different from our usual subsurface 
simulation practice. We will discuss the impact of various modeling choices on the 
outcomes of the simulation models, such as gridding, discretization, and solver strategies, 
and the lessons learned, taking into account the different conditions of the FluidFlower 
study compared to conditions commonly dealt with in subsurface simulation. We will start 
with a brief description of the DARTS framework utilized for compositional simulation, 
the thermodynamic and physical modeling related to the atmospheric CO

2
-brine system, 

and the modeling workflow used in our benchmark submission. Additionally, we describe 
a custom nonlinear solver developed for the atmospheric benchmark conditions to improve 
convergence including the linear solver strategy since our default two-stage preconditioner 
does not perform effectively. To make meaningful comparisons between each of the 
modeling choices, we define a baseline model which is a simplified version of our setup 
in the main FluidFlower benchmark. The baseline model is then used to study the effect 
of Cartesian and unstructured meshes and a two-point flux approximation compared with 
a multi-point flux approximation for capturing the physics at play. We conclude our work 
with lessons learned and future recommendations.

Keywords  FluidFlower · CCUS · Operator-based linearization · Unstructured grids · 
TPFA · MPFA · Linear solver

1  Introduction

The development of methods for geological sequestration of CO2 is of major importance 
toward realizing lower levels of atmospheric greenhouse gases. In modeled pathways 
that limit global warming to 2 ◦ C, the cumulative global amount of 170–900 GtCO2 is 

 *	 Denis Voskov 
	 d.v.voskov@tudelft.nl

	 Michiel Wapperom 
	 m.b.wapperom@tudelft.nl

1	 Department of Geoscience and Engineering, Delft University of Technology, Delft, Netherlands
2	 Department of Energy Resources Engineering, Stanford University, Stanford, CA, USA

http://orcid.org/0000-0003-3432-4233
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-023-01984-8&domain=pdf


	 M. Wapperom et al.

1 3

accounted for geological sequestration over 2020–2100 (Shukla et  al. 2017). Permanent 
subsurface storage of CO2 relies on a range of trapping mechanisms, which involve 
different physical aspects related to the characteristics of reservoirs and fluids: structural 
trapping (Ajayi et al. 2019; Ringrose 2020), residual trapping of immobile free gas CO2 
due to capillary forces, dissolution trapping in brine and mineral trapping (Pruess and 
Nordbotten 2011; Fan et al. 2012; Delshad et al. 2013).

The dynamic behavior of the CO2 plume in sequestration processes involves buoyancy-
driven convective migration, chemical interactions, diffusion of CO2 with brine, reservoir 
heterogeneity, and chemical rock alteration. Several analytical models and semi-analytical 
approaches were developed to quantify some of these effects (Nordbotten and Celia 2006; 
Hesse et  al. 2008; Juanes et  al. 2010). Riaz and Tchelepi (2004) presented the analysis 
based on perturbation theory, which predicts the convective instability of dissolved CO2 
and enhanced dissolution rates for a small-scale homogeneous domain. This model was 
further improved and validated against experimental results in Neufeld et  al. (2010). 
Another attempt to connect simulation with experiments has been performed in Farajzadeh 
et  al. (2009). Subsequently, the analytical model was enhanced to account for capillary 
transition effects (Elenius et al. 2014), realistic density (Nomeli et al. 2014), and viscosity 
variations (Daniel and Riaz 2014). Moreover, the influence of a simplified layer cake 
heterogeneity was addressed in Ghorbani et al. (2017).

These models attempt to address the important geological and residual trapping 
mechanisms linked to CO2 sequestration at relatively short time scales after injection (tens 
to hundreds of years) but have been hampered to date by the lack of geologically realistic 
input models that capture key heterogeneities of interest across length-scales. Furthermore, 
it is infeasible that any combined analytical model will be capable of representing 
all phenomena together for a range of realistic parameters relevant to industrial CO2 
sequestration projects with realistic geological heterogeneity. Numerical modeling is 
essential for such representation. At longer time scales (hundreds to thousands of years), 
however, numerical models, too, only approximately represent the dissolution trapping 
that dominates in the reservoir. This is a concern given the discrepancies between different 
modern simulation approaches, as reported in the benchmark study by Nordbotten et  al. 
(2012). This benchmark study also illustrates the high sensitivity of the existing models to 
the physical assumptions even under conditions of simplified geological properties.

Several numerical models covering the enhanced dissolution of CO2 in brine have been 
proposed in the literature. Riaz et al. (2006) introduced an enhanced dissolution model in 
a small domain (a few tens of meters) to validate analytical results. This model is based 
on a high-order approximation and applied to a wide range of Rayleigh numbers. Pau 
et  al. (2010) and Farajzadeh et  al. (2011) demonstrate convective dissolution studied in 
homogeneous 2D and 3D small domains based on a conventional finite-volume scheme. 
More recently, this analysis was extended for hysteretic systems (Wang et al. 2022). Elenius 
and Gasda (2013) investigated how horizontal barriers affect the convective mixing of 
CO2 . Elenius et al. (2015) present numerically converged solutions for a small 2D domain 
with a different type of capillary transition zone validated against analytical solutions. 
For the first time, they obtain a numerically converged solution for a large-scale plume 
migration problem with a wide range of dominant physical phenomena. Later, the same 
simulation framework has been extended for more advanced thermodynamics treatment 
with chemistry (Voskov et al. 2017).

An attempt to assess the predictive capabilities of simulation models has been made in the 
FluidFlower benchmark study (Flemisch et  al. 2023). In the study, a modeling benchmark 
for CO2 sequestration was created based on physical experiments, although conducted at 
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atmospheric conditions. A small-scale heterogeneous geometry based on typical North Sea 
reservoirs was constructed in a meter-scale rig, filled with unconsolidated sands of different 
sand types (Nordbotten et al. 2022). CO2 was injected into the system for a few hours, and 
the evolution of the CO2 plume throughout the reservoir was recorded over several days. 
Numerical simulation groups were provided with geometrical, petrophysical, and operational 
information. The reported forecasts from numerical simulation groups could be analyzed in 
the presence of physical ground truth, provided by a series of repeated physical experiments 
on the experimental rig. Numerical models have been able to capture the relevant physical 
processes with reasonable accuracy. However, the limited nature of the information provided 
in this benchmark study and the unfamiliar simulation conditions under which the experiments 
were conducted, presented a wide range of modeling decisions and raised a number of relevant 
questions from the perspective of subsurface simulation. Faced with time constraints, many 
decisions could not be thoroughly addressed during the blind phase of the benchmark study.

In hindsight and with knowledge of the results of the physical experiments, we can reflect 
on decisions and issues regarding physical and numerical modeling. The aim of this study is to 
address the questions that arose during our attempts in the main benchmark study, examine the 
effects of different modeling choices and relate our findings in the benchmark to experiences 
in subsurface simulation. We will start with a brief description of our open-source DARTS 
simulation framework and the predictive modeling workflow utilized in the benchmark 
study. Then, we describe the time-step heuristics used for the conditions of the benchmark, 
followed by a discussion of linear solver strategies. Following up, the impact of modeling 
decisions regarding grid structure and resolution will be examined, as well as a comparison 
between two-point and multi-point flux approximations. Some of the issues encountered here 
originate from the contrast between reservoir and benchmark conditions. We will illustrate this 
difference in results and performance and draw the lessons learned from the perspective of 
reservoir simulation.

2 � Methodology

In this section, an outline of the DARTS submission to the FluidFlower benchmark is 
given. The description guides the reader through the modeling choices that we made. First, 
the assumptions made in the physical modeling of the system at atmospheric conditions are 
described, as well as the choices for modeling the most representative physics with sufficient 
accuracy in a reasonable time. Following this, a baseline model is developed from which the 
effect of different numerical modeling choices can be investigated.

The FluidFlower study considers the injection of CO2 into brine-saturated formations close 
to atmospheric conditions. The dominating trapping mechanisms under these conditions rely 
to a large extent on capillary effects and properties related to a mutual dissolution of CO2 and 
water: solubility, density differences, and diffusion. The accuracy of the modeling of these 
physical phenomena and the corresponding computational grid determines to what extent the 
dynamics of the FluidFlower can be captured in simulation.

2.1 � Mathematical Model

In our mathematical model of the FluidFlower setup, we used a compositional formulation 
under isothermal conditions. The system of equations describing such formulation can be 
written in the following form
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where Ω is the control volume, Γ is the interface, Mc is the accumulation term for the cth 
component ( c = 1,… , nc , index of the mass components; for the benchmark it is water and 
CO2 ), F

c is the flux term of the cth component and n is the unit normal direction pointing 
outward to the domain boundary.

The accumulation term Mc for a given component c is written as:

where � is porosity, sj is the saturation of phase j, �j is the density (kmol∕m3) of phase j, 
and xcj is the molar fraction of component c in phase j.

The mass flux of each component is represented by the summation over np fluid phases,

Here the velocity uj follows the extension of Darcy’s law to multiphase flow,

where K is the permeability tensor (mD), krj is the relative permeability of phase j, �j is 
the viscosity of phase j (mPa s), pj is the pressure of phase j (bar), γj = ρjg is the specific 
weight (N/m3) and z is the depth (m). The Jcj is the diffusion flux of component c in phase 
j, which is described by Fick’s law as

where Dcj is the tensor of diffusion coefficients (m2/day).
The governing equations are discretized using the finite volume approximation and 

fully implicit method. The resulting system of algebraic equations is highly nonlinear and 
it is linearized using the Operator-Based Linearization (OBL) approach (Voskov 2017). 
This approach significantly simplifies the implementation of the simulation framework 
by introducing algebraic operators that capture all complex physics and nonlinear terms. 
The physical terms in the conservation equations are separated into thermodynamic 
state-dependent and discretization-dependent operators. The state-dependent operators 
are parameterized in the physical space and during the course of a simulation, they are 
evaluated by multi-linear interpolation. Moreover, the derivatives required for the assembly 
of the linear system are readily obtained through the interpolation coefficients. In this 
work, we utilize the formulation of mass balances from Lyu et al. (2021) which was later 
generalized in Lyu and Voskov (2023).

2.2 � Physical Properties

We consider a binary system with H2 O and CO2 that distributes between a vapor and an 
aqueous phase in which the effect of salinity is neglected. A fugacity-activity approach 

(1)
�

�t ∫
Ω

McdΩ + ∫
Γ

Fc
⋅ ndΓ = 0,

(2)Mc = �

np
∑

j=1

xcj�jsj, c = 1,… , nc,

(3)Fc =

np
∑

j=1

xcj�juj + sj�jJcj, c = 1,… , nc.

(4)�j = −�
krj

�j

(∇pj − �j∇z),

(5)Jcj = −�Dcj∇xcj,
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is applied to a negative flash procedure with successive substitution (Michelsen and 
Mollerup 2007). For the vapor phase, fugacities are evaluated from the Peng-Robin-
son equation of state (Peng and Robinson 1976), and for the aqueous phase, an activity 
model is used (Ziabakhsh-Ganji and Kooi 2012). The results of this approach and prop-
erties of the separate fluid phases at atmospheric conditions are displayed in Fig. 1. In 
addition, the figure shows density and viscosity models for CO2-saturated brine and the 
gas mixture at atmospheric conditions in comparison with experimental data. A remark 
on the use of the OBL technique under these conditions; with the low solubility of CO2 
in water, it is crucial to apply an OBL resolution that is sufficiently fine to capture the 
solubility limit of CO2 in brine (Lyu and Voskov 2023).

For capillary pressure curves, data on entry pressures at residual water saturation 
were provided for the different sand facies. The model response is extremely sensitive 
to capillary pressure curves, as the injected gas rapidly migrates upwards due to large 
density differences, leading to low gas saturation reaching the capillary barrier. The 
coarse resolution of the grid is then unable to impose the capillary trapping mechanism, 
leading to a CO2 plume that is crossing the capillary barriers. In our initial submission, 
we applied a constant capillary pressure function, equal to the reported values of entry 
pressure in Nordbotten et al. (2022) and we keep the same strategy in this study.

Fig. 1   Phase properties of aqueous phase (upper) and CO
2
-rich phase (lower) at atmospheric pressure 

( p = 1.01325 bar). a Solubility of CO
2
 in the aqueous phase and d H

2
O in the CO

2
-phase, b brine density 

(Spivey et  al. 2004; Garcia 2001) and e CO
2
-phase density (Peng and Robinson 1976), c brine viscosity 

(Islam and Carlson 2012) and f CO
2
-phase viscosity (Fenghour et al. 1998). Blue lines for density and vis-

cosity are pure phase properties, green lines are saturated phase properties. Data from Carroll et al. (1991); 
Spycher et al. (2003); Lemmon et al. (2022); Islam and Carlson (2012)
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Lastly, diffusion is an important driver behind gravitational instabilities at the interface 
between CO2-saturated brine and pure brine, followed by the development of density-driven 
fingering. Consequently, diffusion coefficients are a determining factor for finger onset time 
and wavelength (Riaz et al. 2006) (see also Appendix 1). However, data on binary diffusion 
coefficients for CO2 and water in the aqueous phase under atmospheric conditions are not 
well studied. We included the uncertainties around reported binary diffusion coefficients 
into the uncertainty quantification, described in Sect. 2.4.

2.3 � Computational Grid

The FluidFlower rig comprises a heterogeneous sand pack assembled within a thin, slightly 
curved filled Hele-Shaw cell of 2.8 m wide by 1.3 m high. A digitized version of the 
geometry, displayed in Fig. 2, constructed from high-resolution images in Nordbotten et al. 
(2022), contains the coordinate data. The setup contained variations in thickness from the 
intended constant 25 mm, as reported by the experimental group. The boundaries of the rig 
are closed on the bottom, left, and right sides, and the top is open and in contact with the 
atmosphere, with a free water table at a fixed level.

The rig has been filled with six different sand types, from finest to coarsest labeled as 
ESF, C, D, E, F, and G, subdivided into four regions with specific Corey-related parame-
ters. In addition, we accounted for the anisotropy in some layers (ESF, C, and D) for which 
internal layering, due to the manual filling of the rig, is observable in the images. The prop-
erties of the separate layer types are estimated through a history matching procedure and 
the uncertainty quantification described in Sect. 2.4. Finally, two ports for CO2 injection, 
referred to as I1 and I2, are installed in the reservoir. The location of the injection ports, 
as well as that of two pressure sensors and three boxes, which are related to the compari-
son metrics related to CO2 distribution used in the benchmark study, are marked in Fig. 2. 
During the experimental runs, CO2 was injected from the first injection port for 5:00 h at a 
constant rate of 10 mL/min; injection from the second well starts after a 2:15 h delay and 
runs for 2:45 h, at the same volumetric rate.

Fig. 2   Digitized FluidFlower geometry. High-resolution images and layer labeling are presented in Nord-
botten et al. (2022). I refers to injection ports, S refers to pressure sensors and the boxes are used in the 
reporting of various comparison metrics
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From the digitized geometry, we generated unstructured grids of different resolutions, with 
refinement around the well locations. A thickness correction was applied to the unstructured 
mesh according to a spline interpolation of the provided thickness map in the benchmark 
description. The constant pressure boundary condition at the top was mimicked by placing a 
production well connected to the top cells at atmospheric pressure.

2.4 � Modeling Choices and Original Benchmark Submission

One of the aims of the benchmark study was to assess the predictive capabilities of the 
reservoir simulation community. The workflow we put up for making such predictions was 
threefold. From the tracer test data provided by the experimental group, we performed a 
history-matching procedure in order to populate the different sand facies with permeabilities 
and anisotropy (Tian et al. 2023). Then, a most representative model run, with best estimates 
of physical properties and (relatively) fine resolution, had to be defined and reported through 
a series of spatial distributions and other metrics over the course of the simulation, and finally, 
an estimate of the uncertainty around the reported metrics had to be given.

For the forward modeling, we considered three resolutions of the unstructured grids of 
approximately 14,000, 45,000, and 100,000 degrees of freedom (DOFs), respectively. Taking 
into account the prohibitive runtime of the finest grid, we took the intermediate resolution 
as a trade-off between the resolution and performance. According to analytic evaluation (see 
Appendix 1 for details), our discretization is not fully resolving the analytic wavelength of 
the first unstable mode which means that our results cannot be considered as numerically 
converged. For the purpose of quantifying the uncertainty, we performed a series of model 
runs with varying input for the most uncertain of all parameters, as summarized in Table 1. 
The permeabilities for each layer have been history matched based on the tracer test 
experiments; see details in Tian et al. (2023).

The results of a limited uncertainty quantification with only 100 realizations can be seen 
in Fig. 3. Here we show the dissolution of CO2 in boxes A and B defined in Fig. 2 with P10, 
P50, and P90 quantiles for the dissolution in box A. A corresponding CO2 concentration can 
be seen in Fig. 4 after 24, 48, and 72 h of simulation. You can clearly see that the character 
of CO2 propagation and dissolution strongly depends on the variation of physical parameters 
assumed for the simulation. Besides, you can see a backward correlation between boxes A and 
B: the more CO2 dissolves in box A the less it dissolves in box B. However, the dissolution of 
CO2 in box B is almost an order of magnitude lower compared to box A due to the complex 
buoyancy-driven propagation of CO2 into box B along the fault.

In our initial submission, we encountered some other relevant numerical issues. We used a 
two-point flux approximation (TPFA) with upstream weighting. Since the numerical scheme 
based on TPFA is inconsistent for non-K orthogonal unstructured grids, we considered Carte-
sian grids. These grids are K-orthogonal by definition but not suitable for capturing the com-
plex geometry of the FluidFlower rig. A multi-point flux approximation (MPFA) is a fully 
consistent choice for an unstructured grid. However, MPFA is usually more expensive to solve 

Table 1   Ranges for input 
parameters in uncertainty 
quantification

Parameters Units Distribution Mean Std

Temperature (T) oC Normal 23 2
Diffusion coefficient (D) m2 / s Log-normal 7 ⋅ 10

−10
5 ⋅ 10

−10

Corey parameters – Normal See Table 2 5–50 %
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and can significantly add to the already prohibitive time of the simulation. In addition, per-
forming simulations under the atmospheric benchmark conditions required us to adjust our 
linear solver and time-step strategies. More discussion on discretization and solver issues fol-
lows in later sections.

2.5 � Baseline Model and Metrics for Comparison Study

To address the effect of discretization in this comparison study (resolution, Cartesian/
unstructured grid, approximation of the fluxes), a baseline model is established. In 
this version, a few simplifications have been made compared to the geometries and 
petrophysical properties used in our original submission. We use the layer properties 
reported in Table  2. Furthermore, the rig is assumed to be of a constant thickness with 

Fig. 3   CO
2
 dissolution in box A (a) and box B (b) for 100 realizations with P10, P50, and P90 quantiles

Fig. 4   Concentration of CO
2
 for P10 (a), P50 (b), and P90 (c) realizations at 24, 48, and 72 h in simulation
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no curvature and the injection ports consist of a well perforating the cell at the location 
reported in the benchmark description, contrary to our cylindrical well treatment in the 
original submission. The aim of this part of this study is primarily to investigate the effects 
of different gridding strategies, so any differences in outcomes between our contributions 
to the main simulation study and this baseline model are not a topic of discussion.

To compare the output of the different discretizations, we use a subset of the comparison 
metrics used in the main FluidFlower study (Flemisch et al. 2023): spatial distributions of 
gas saturation and CO2 concentration in the brine were reported every 24 h on a uniform 
grid consisting of 1 cm by 1 cm cells, and dense time series recorded accumulation of 
CO2 in different forms (free gas and dissolved) in boxes A and B (see Fig. 2) in 10-minute 
intervals.

3 � Solver and Time‑Step Strategies

The nonlinear solver in DARTS is based on the Newton–Raphson method and required the 
linearization of the original system of governing equations described by (1). The Jacobian 
assembly for the isothermal model requires a connection list, pore volumes, and initial 
reservoir state. For the thermal model, extra arrays for rock heat capacity and conduction 
are also required. In addition, the interpolation of operator values and derivatives should 
be applied as a preparatory step before Jacobian assembly which is performed based on 
vectorized interpolators. The interpolation is performed within the existing points in 
the parameter space of the physical problem and new points are generated adaptively on 
demand (Khait and Voskov 2018).

The linear solution of system (1) is implemented based on direct or iterative linear 
solvers. For the direct linear solver, DARTS uses the SUPERLU library (Grigori et  al. 
2007). The main iterative solver is the flexible generalized minimum residual (FGMRES) 
iterative method (Saad 1993) with constrained pressure residual (CPR) preconditioner 
(Wallis 1983; Wallis et  al. 1985). The CPR preconditioner includes two stages where at 
the first stage, the True-IMPES reduction to pressure equation produces an elliptic-like 
system solved with a single V-cycle of AMG solver. The second stage includes an ILU(0) 
preconditioner for the remaining hyperbolic-like part of the linear system. Both Jacobian 
assemble and iterative linear solver are implemented on both CPU and GPU platforms 
(Khait et al. 2020).

To improve the nonlinear convergence in the case of benchmark conditions, we also 
propose a special heuristic for the timestep choice. The conventional treatment of timestep 

Table 2   Porosity, permeability and petrophysical properties for different sand types

Type �(−) k (D) nw(−) ng(−) swc(−) sgc(−) krwe(−) krge(−) pe (mbar) kz∕kx(−)

ESF 0.43 44 2.0 1.5 0.11 0.06 0.80 0.85 15 0.75
C 0.44 473 2.0 1.5 0.12 0.08 0.93 0.95 3 0.8
D 0.44 1110 2.0 1.5 0.14 0.10 0.93 0.95 1 0.9
E 0.45 2005 2.0 1.5 0.32 0.14 0.71 0.75 – 1.0
F 0.45 4259 , , , , , , – ,
G 0.44 9580 , , , , , , – ,
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in reservoir simulation is based on starting with a relatively small timestep to fully resolve 
the initial transient regime and potential non-equilibrium initialization. In the process of 
simulation, the timestep is multiplied by a certain factor if nonlinear iterations converge 
in a predefined number of iterations or divided by this factor if not. When the simula-
tion reaches a maximum predefined timestep, it will be used for the rest of the simulation 
assuming nonlinear iterations are convergent. Some heuristics usually enhance this strat-
egy with sensitivity to variable changes, nonlinear convergence, and time truncation error 
(Aziz and Settari 1979).

Together with the linear update at every nonlinear iteration provided by the 
Newton–Raphson approach, the nonlinear solver in DARTS includes a simple timestep 
strategy and local and global chop of governing unknowns to preserve the convergence. For 
the benchmark, we adjusted the default timestep strategy and added the following heuristic:

•	 The ultimate maximum timestep in simulation is defined as equal to 1 min.
•	 Dynamic maximum timestep is adjusted based on the number of converged or 

failed nonlinear iterations in a certain time period (reporting time). For example, if 
the number of nonlinear iterations remains below 5 for more than 20 timesteps, the 
maximum timestep size will be doubled.

•	 In case there are more than 5 timestep cuts due to the non-converged iterations (with 
the maximum number of nonlinear iterations defined as 10), the maximum timestep 
will be reduced by a factor of 4.

•	 If L∞ normalized residual in the nonlinear update violates the limit of 106 or if the same 
residual is repeated in the same gridblock more than 3 times, the timestep will be cut.

This simple heuristic in the customized nonlinear solver allowed us to improve the 
simulation CPU by a factor of 2–3 times (depending on the resolution) in comparison with 
the conventional simulation strategy.

The default nonlinear strategy in DARTS proves its robustness for a wide range of 
industrial applications at reservoir conditions. However, for the FluidFlower benchmark, 
our default strategy failed mostly due to the linear preconditioner. Soon, after the 
simulation reaches the post-injection period, the iterative linear solution reaches the 
maximum number of iterations which indicates the failure of the CPR preconditioner. This 
behavior has been reported by most teams during benchmark exercises and we link it to the 
large difference between the scaling of equations representing brine and CO2 . Notice that 
the surface conditions change the ratio between Jacobian entries representing derivatives 
of conservation equation for gas and brine in respect to pressure by almost 3 orders of 
magnitude due to the changes in density and viscosity.

To illustrate the convergence issues at surface conditions, we run a coarse benchmark 
model using the iterative linear solver with CPR preconditioner in two regimes:

•	 At benchmark condition p = 1 bar and T = 293 K,
•	 And at real reservoir condition p = 100 bar and T = 320 K.

The statistics for two runs are shown in Table 3. Notice that the number of linear itera-
tions was limited by Nl = 200 and it was hit 766 times in the simulation at benchmark 
conditions while it was only reached 18 times in the simulation at reservoir conditions. 
As a result, while the simulator performs more timesteps (TS) and nonlinear iterations 
(NI) for reservoir conditions, there are twice more linear iterations per nonlinear iteration 
(LI/NI) for converged timesteps at surface conditions and about four times more wasted 
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timesteps. This comparison quite clearly demonstrates that the conventional linear/nonlin-
ear strategy in practical reservoir simulation is significantly challenged by runs in bench-
mark conditions.

4 � Effects of Discretization

In this section, we discuss different discretization techniques and compare them. 
First, a comparison between Cartesian and unstructured grids, with approximately the 
same number of DOFs, and sensitivity to grid resolution is assessed, with regard to the 
benchmark’s spatial and temporal reporting metrics. Following, the implications of two-
point and multi-point flux approximations are investigated.

4.1 � Cartesian Versus Unstructured Gridding

While Cartesian grids are often used in enhanced dissolution studies with certain 
convergence in the numerical results achieved (Elenius et al. 2015), it is still unclear how 
the structured nature of the grid affects the numerical results of enhanced dissolution 
problems. From one side, two-point flux approximation (TPFA) applied on a structured 
grid is fully consistent and K-orthogonal. However, a structured grid introduces a strong 
orientation grid effect which may in turn affect the numerical results.

We compare Cartesian and unstructured gridding using the conventional TPFA at 
different resolutions. We use the baseline grid with characteristic mesh size and a number 
of grid cells shown in Table  4, such that the number of degrees of freedom at the two 
resolutions is comparable. Finer resolution demonstrates a prohibitive run time and we 
decided to not include it in this study. It must be noted that, for all unstructured models, we 
keep a locally refined mesh near injection ports with a characteristic mesh size of 0.003 m. 
The Cartesian grids do not have this refinement.

The results for simulation after 1 day and 5 days on the unstructured and Cartesian 
grids for coarse and fine resolutions are shown in Fig. 5. It can be observed that on the 
unstructured grids, the coarse resolution is not able to capture the distribution from the fine 

Table 3   Parameters of simulation runs

Test case TS (wasted) NI (wasted) LI/NI (wasted) LI > 200 CPU, sec

Benchmark conditions 19,610 (484) 25,492 (4,237) 26 (66) 766 2664
Reservoir conditions 34,534 (814) 67,023 (7,523) 12 (16) 18 2597

Table 4   Grids and resolutions for 
comparison

Resolution Grid type Mesh, m # DOF

Coarse Cartesian 0.019×0.018 11,250
Fine Cartesian 0.0095×0.0091 45,000
Coarse Unstructured 0.03 11,250
Fine Unstructured 0.015 47,731
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grid, the CO2 plume extending less far into the domain. Remarkably, the final distribution 
of CO2 for the fine resolution resembles more closely the outcomes of the experimental 
runs, although we assumed a constant thickness for this setup as opposed to our efforts in 
the main benchmark where a variable thickness has been applied. On Cartesian grids, the 
distribution of CO2 deviates significantly from the results obtained on unstructured grids 
and from reported experimental outcomes. Coarse and fine resolutions show similar spatial 
distributions and a much finer resolution is required to converge to accurate results (see 
Appendix 1 for details).

Fig. 5   Spatial distribution of CO
2
 concentration in brine (kg/m3 ) on unstructured and Cartesian grids for 

coarse and fine resolutions, at t = 1 day and t = 5 days
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Another source of differences between unstructured and Cartesian grids is the pattern 
of gravity-driven fingers. On the unstructured meshes, the onset time of convective mixing 
and the wavelength of the fingers show less sensitivity to the resolution. On the other hand, 
there exists a notable difference in fingering patterns between coarse and fine resolutions 
for the Cartesian grids, which is most evident in wavelength.

In Fig. 6, the temporal evolution of the total quantities of CO2 in different forms (free gas 
and dissolved in brine) in Boxes A and B are shown. The amounts of CO2 accumulating in 
both boxes is often higher in the structured models. Furthermore, the inflow and outflow of 
CO2 , either through flow or dissolution of free gas into the brine, exhibits a smooth pattern 
in unstructured grids, while it is much less smooth in structured ones. This resembles the 
grid-dependent numerical effect reported by some groups that used a Cartesian grid in 
the benchmark study when the water-gas contact coincides with cell faces and bursts the 
dissolution (Flemisch et al. 2023).

It is obvious that the significant differences in spatial and temporal quantities in the 
results arise from several factors. They include gridding type, mesh resolution, and thick-
ness of the rig for the benchmark problem. That explains a significant divergence of 
reported values between different groups in the main simulation benchmark. Notice that 
these results do not even consider uncertainties in the physical modeling.

4.2 � Two‑Point Versus Multi‑Point Flux Approximation

As discussed in the previous section, the modeling on structured grids used in this 
paper may suffer from the grid orientation effect which can affect fingering and the 
resulting amount of CO2 trapped. On the other hand, the unstructured grids are not fully 
K-orthogonal which makes the numerical scheme based on two-point flux approximation 

Fig. 6   Evolution of total mass (g) of free gas CO
2
 and CO

2
 dissolved in brine in Box A (left) and Box B 

(right) for Cartesian and unstructured grids for coarse and fine resolutions over time
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(TPFA) inconsistent for these grids. To investigate the fingering process against these 
issues we perform a simulation with multi-point flux approximation (MPFA).

We run a simulation for the lower part of the benchmark geometry where the most of 
fingering is observed. The model geometry is shown in Fig. 7. We place a sink at the top 
of the most permeable layer to keep the same flow pattern as in the original geometry. The 
constant pressure is maintained at the sink while the injector is working under the con-
stant injection rate same as in the benchmark. We use a gradient-based variant of the aver-
agely weighted linear MPFA scheme (Vassilevski et al. 2020) which is sometimes called 
AvgMPFA (Schneider et  al. 2018). Both fluid flux and component diffusion are treated 
with AvgMPFA.

Figure  8 shows results obtained in the benchmark conditions. It can be seen that the 
MPFA scheme demonstrates a larger wavelength of the fingers very different from TPFA 
results and experimental observations. In-depth investigations of this behavior indicate that 
the non-locality of MPFA stencil expands the influence of small pressure perturbations in 
the model that ignites wider perturbations in concentrations and reflects in larger fingers. 
This effect is reduced with the resolution but is still significantly present at benchmark 
conditions.

To make consistent comparisons in more practical reservoir conditions, we scaled 
porosity, permeabilities, capillary pressure, and injection rates to in-situ conditions of 
typical subsurface aquifers. The corresponding parameters for each layer are specified in 
Table 5. Pressure and temperature have been scaled to p = 100 bar and T = 320 K similar 
to the linear solver comparison. Due to the different parameters of sand and fluids, the 
onset time becomes larger and simulation results are shown after 15 days.

Figure 9 shows the results of the simulation for these conditions. Here, local perturba-
tions in pressure are reflected in lower velocities which reduce the fluctuations present in 
MPFA discretization for benchmark conditions. That can be explained by a several times 
larger gradient in concentration for surface conditions which in combination with a larger 

Fig. 7   A cut of FluidFlower geometry. The injection well is located inside the blue circle while the produc-
tion well is placed in the orange rectangle

Fig. 8   Resolution study for the model cut in benchmark conditions. The comparison of the spatial distribu-
tions of CO

2
 concentration after 24 h was obtained with TPFA and MPFA schemes
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stencil in discretization for pressure and composition creates instabilities with a larger 
wavelength in comparison with benchmark results. Moreover, differences between results 
using TPFA and MPFA discretizations for realistic reservoir conditions are significantly 
reduced. Both schemes demonstrate similar instabilities and corresponding enhanced dis-
solution rates.

It is also important to notice that while TPFA discretization is only valid for the 
K-orthogonal grid, the default gridding with wedges usually introduces a very limited num-
ber of non-orthogonal interfaces. In Fig. 10 we show the statistical analysis of the coarse 
and fine grids with the distribution of angles deviating from 90 degrees for the smaller 
model and for the full benchmark model. The angles are measured for every interface in 
the grid between a line connecting the centers of adjacent cells and a line connecting the 
cell center and the center of an interface between the cells. According to the figure, we 
observe a lower deviation from orthogonality for finer mesh with more than 90% of inter-
faces within a very little (less than 5 degrees) deviation from orthogonality, making TPFA 
quite applicable for the simulation. Besides, the explicit orthogonalization procedure sug-
gested in Karimi-Fard (2008) can improve the orthogonality of unstructured grids even 
further.

5 � Lessons Learned

The proposed simulation framework allowed efficient modeling of the FluidFlower 
experiment using advanced numerical techniques. The robust thermodynamic library 
allowed for accurate modeling of fluid properties at various conditions ranging from 
benchmark to reservoir states. The advanced linearization approach in combination with 
the robust nonlinear formulation provides an efficient fully implicit solution which is 

Table 5   Absolute permeabilities, 
porosities and entry pressures for 
modeling

Facies Index l k (D) �(−) pe (bar)

ESF 1 0.5 0.18 0.1
C 2 1 0.2 0.03
D 3 5 0.22 0.01
E 4 20 0.25 0.0
F 5 1 0.2 0.0
G 6 20 0.25 0.0

Fig. 9   Resolution study for the model cut in reservoir conditions. The comparison of the spatial distribu-
tions of CO

2
 concentration after 15 days was obtained with TPFA and MPFA schemes
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extremely important for the evaluation of different uncertain conditions present in the 
FluidFlower benchmark study. Generic unstructured gridding allowed for flexibility 
in the representation of various important features present in the experimental setup 
starting from the layered heterogeneity and finishing with an approximation of injection 
ports.

The high nonlinearity of the benchmark model introduces computational challenges 
for both linear and nonlinear solvers. It results in timestep degradation and the use of 
local and global chops to preserve the convergence of the nonlinear solver. We used 
a heuristic timestep strategy to facilitate the pace of the simulation. The strategy 
is based on the adjustment of maximum timestep with the number of converged and 
failed nonlinear iterations. The failure of the CPR preconditioner for the benchmark 
conditions is a main factor significantly increasing the computational cost of benchmark 
simulation. In this study, we clearly demonstrate that this failure is directly related to the 
physical conditions of the benchmark study (a combination of pressure, temperature, and 
permeabilities) and not to the scale or geometry of the benchmark setup. While the main 
reason for such behavior can only be revealed by in-depth analysis of the corresponding 
linear matrices, we relate it with larger contrast between physical properties (mostly 
density and viscosity) between CO2 and brine at reservoir and surface conditions.

A study on the resolution and comparison of unstructured and Cartesian gridding 
reveals a high sensitivity of the overall distribution of CO2 throughout the domain to 
gridding choices. Based on these modeling decisions alone, large differences occur in 
the main benchmark’s reporting metrics, especially for box B. Overall, the physical 
phenomena associated with the main trapping mechanisms for CO2 sequestration can be 
captured relatively well. However, the wavelength of gravity-driven instabilities shows 
deviations between Cartesian grids of different resolutions. Furthermore, the shape of 
the fingers illustrates the grid orientation effect of the Cartesian grid, at least at early 
times. Concluding, it can be seen that the grid resolution plays quite an important role 
in FluidFlower modeling and the finer grid is needed for a fully numerically converged 
solution. This conclusion is also supported by an analytic evaluation of the first unstable 
wavelength mode at the benchmark parameters.

Fig. 10   Distribution density of angles deviated from orthogonality in log space plotted for the unstructured 
coarse and fine grids for the model cut (a) and for the full model (b). The angles are calculated for every 
interface in the grid between a line connecting the centers of adjacent cells and a line connecting the cell 
center and the center of an interface between the cells
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The use of MPFA for unstructured meshes allowed the grid orientation effect to be 
alleviated, keeping the consistency of approximation. However, the results obtained 
with MPFA demonstrate a remarkably higher wavelength of the fingers compared to the 
one observed in the experiment and in the TPFA modeling. The reasons for that are the 
higher gradient in concentration at benchmark conditions and the wider stencil of MPFA 
which expands the influence range of pressure perturbations and introduces non-physical 
fluctuations. At the same time, this mismatch is not observed in the modeling under 
realistic reservoir conditions where the gradient in concentration is reduced by almost 3 
times. It may also indicate the different source of perturbation which is more pronounced 
under lower fluid velocities. This issue requires further investigation that goes beyond the 
scope of this paper.

In conclusion, it is quite obvious that the benchmark conditions pose new challenges 
to the conventional reservoir simulation technique mostly used for modeling of CO2 
sequestration at realistic subsurface conditions. While the benchmark conditions are 
primarily derived from analog laboratory experiments like FluidFlower, they can 
potentially manifest in practical CO2 sequestration scenarios, such as the mineral trapping 
process in basaltic rock formations at shallow depths. Within our study, we have identified 
possible directions for analyzing this behavior. However, more effort should be put into 
a detailed investigation of these issues and developing innovative techniques to address 
and mitigate them effectively. By doing so, we can enhance our understanding of CO2 
sequestration and facilitate the development of more efficient and reliable methodologies 
in this field.

Appendix 1

Following the model proposed in Riaz et al. (2006); Elenius et al. (2014), the theoretical 
wavelength of the first unstable mode can be estimated using the following relation:

Following Riaz et al. (2006), the constant A1 = 0.07 when the rest of the parameters are 
defined in the benchmark conditions as

•	 �w = 10−3 Pa s,
•	 Δ�w = 0.3 kg / m 3,
•	 D = 10−9 m 2 / s,
•	 g = 9.8 m / s 2,
•	 � = 0.45,
•	 k = 2 ⋅ 10−10 m.

Using these parameters, the wavelength of instabilities is supposed to be around �c = 7 
mm. The fine discretization models use slightly coarser grid resolution so our numerical 
results cannot be considered as fully converged yet.
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