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Abstract 
In this study, vortical structures are detected on sparse Shake-The-Box data sets using the Coherent-Structure Colouring 
(CSC) algorithm. The performance of this Lagrangian approach is assessed by comparing the CSC-coloured tracks with 
the baseline vorticity field. The ability to extract vortical structures from sparse data is accessed on two Lagrangian particle 
tracking data sets: the flow past an Ahmed body and a swirling jet flow. The effects of two normalized parameters on the 
identification of vortical structures were defined and studied: the mean track length and the mean inter-particle distance. 
The accuracy of the vortical-structure detection problem through CSC is shown to improve with decreasing inter-particle 
distance values, whereas little dependence on the mean track length is observed at all. Overall, the CSC algorithm showed to 
yield accurate detection of coherent structures for inter-particle distances smaller than 15% of the characteristic dimension 
of the structure. However, the results quickly deteriorate for sparser Lagrangian data.
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Graphic abstract

List of symbols
rij	� Mean distance between the i-th and j-th tracks
rij	� Instantaneous distance between the i-th and j-th 

tracks
Rx,y	� Cross-correlation between x and y
�	� Average inter-particle distance
L	� Track length
V 	� Mean particle velocity
|V|	� Mean flow velocity
D	� Characteristic length of the flow
�	� Vorticity field
A	� Adjacency matrix
L	� Laplacian matrix
D	� Degree matrix
T	� Temporal track length

t	� flow time
aij	� Components of the second-order tensor A
dij	� Components of the second-order tensor D
X	� Eigenvector of the maximum eigenvalue �max
�	� Eigenvalues of the spectral-clustering problem
xi	� Components of the first-order tensor X
�	� Eulerian field
�	� Function of formalized parameters
C	� Particle concentration, [N∕Dd]|d = 2, 3

l	� Mean radius of large-scale structures
�	� Mean characteristic period of large-scale structures, 

� = l∕VT

VT	� Mean tangential velocity of large-scale structures
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1  Introduction

Lagrangian particle tracking (LPT) is increasingly used 
due to its ability to quantity fluid-parcel trajectories in 
three-dimensional volumes. LPT is in principle suitable 
for the identification of Lagrangian coherent structures 
(LCS), i.e. repelling, attracting and shearing material 
surfaces can be extracted directly (Haller 2000; Haller 
and Yuan 2000). The identification of LCSs allows for 
a simplified assessment of a flow’s topology, presenting 
a complete quantitation of material transport within an 
evolving fluid system (Haller 2015). In contrast, well-
known Eulerian vortex detection methods are based on the 
decomposition of the velocity gradient tensor (Jeong and 
Hussain 1995), relying on the existence of relatively dense 
experimental data. Lagrangian methods are, however, not 
necessarily constrained by such requirements (Schlueter-
Kuck and Dabiri 2017). This last feature drives the devel-
opment of new post-processing strategies for the detection 
of coherent structures with data obtained from large-scale 
applications (Neamtu-Halic et al. 2019; Wei et al. 2019).

Lagrangian (trajectory-based) analysis allows for 
improved understanding of various processes that take 
place in the ocean, atmosphere and even in the lab, among 
other problems, which often suffer from poor spatial 
resolution (Mathur et al. 2019). In most of these cases, 
high spatial resolution is either impractical or impossi-
ble (Schmale and Ross 2015), resulting in incomplete and 
unreliable diagnostic fields. Resulting low signal-to-noise 
ratios motivate the development of alternative approaches 
that allow for accurate feature-detection in sparse data. 
Some of these studies concerning alternative approaches 
propose an Eulerian framework based on data assimila-
tion (DA) (Ghil and Malanotte-Rizzoli 1991; Rodell et al. 
2004), relying on the mix between numerical models and 
experimental data to create hybrid fields that generally 
have reduced uncertainty when compared to the original 
data sets. DA has been extensively adopted in weather 
forecasting, and has proved to be successful in detecting 
flow features in many complex system such as the ocean-
atmosphere coupling model (Schiller et al. 1997) and the 
Arctic polar-vortex phenomenon (Swinbank and O’Neill 
1994). Other examples where underlying flow dynam-
ics have been revealed include oceanic, geophysical and 
atmospheric phenomena; see (Rodell et al. 2004; Cum-
mings 2005; Bocquet et al. 2010). Notwithstanding, due to 
the necessity of a physical model, DA may not yet be pos-
sible for a variety of complex engineering, environmental 
and biological problems, e.g., the transport of pathogens in 
atmospheric flows (Schmale and Ross 2015) or the advec-
tion of micro organisms (Tallapragada et al. 2011). In such 
cases, the existence of a physical model is limited and the 

scales of the flows, up to thousands of kilometres, would 
make the task of detecting LCSs using DA challenging if 
not impossible.

Currently, flow structures from LPT data are typically 
identified using an Eulerian framework, by mapping the 
sparse LPT data onto a Cartesian grid, either through inter-
polation (Stüer and Blaser 2000) or by enforcing compli-
ance with physical laws, e.g., by reconstructing scattered 
data using B-spline curves (Gesemann et al. 2016) or by 
interpolating particle track measurements using vortex mod-
els (Schneiders et al. 2017). Eulerian coherent structures are 
generally detected using diagnostic fields derived from the 
velocity gradient tensor. In such cases, cores of the vorti-
cal structures are defined as the connected regions in the 
flow where the velocity gradient tensor satisfies the product 
of the entries on its secondary diagonal being negative and 
smaller the product of the elements on the main diagonal 
(see (Chen et al. 2015)). Classical examples of Eulerian 
methods include the Q-, �2 - and �-fields (Zhan et al. 2019), 
all of those requiring that the velocity field exhibits a swirl-
ing pattern (Robinson 1991). But even though Eulerian tech-
niques have been extensively adopted for the diagnostics 
and quantification of material surfaces, dense data sets are 
necessary for accurate estimation of the velocity gradient 
tensor (Green et al. 2007). Eulerian approaches also suf-
fer from three major drawbacks: they are highly-sensitive 
to user-defined thresholds, the flow history is not taken 
into account in individual measurements (Rosi et al. 2015; 
Haller 2015), and observations conducted using Eulerian 
techniques change for non-inertial coordinate transforma-
tions (Jeong and Hussain 1995). Lagrangian descriptions 
of flow fields, on the other hand, allow for the observation 
of time-evolving flow features, and diagnostics are inde-
pendent of the reference frame (Peacock and Dabiri 2010). 
Figure 1 illustrates typical results obtained from Eulerian 
and Lagrangian approaches with both densely and sparsely 
reconstructed flow fields for the canonical flow behind a 
square cylinder. Although widely adopted, classical Eulerian 
detection mechanisms are highly sensitive to vector spacing, 
and can result in large errors due to the larger-scale grid 
spacing of readily available atmospheric model data or the 
lack of high-resolution measurements in biological problems 
(e.g. (Sutton et al. 1994)).

It is also important to highlight the fact that traditional 
Lagrangian analyses, in which a velocity field is needed, 
are also not readily appropriate at large spatio-temporal 
scales. Some examples include the application of the clas-
sical finite-time Lyapunov exponent, FTLE (Haller 2001) 
and the finite-size Lyapunov exponent, FSLE (Boffetta et al. 
2001). FTLE-fields have been extensively investigated in 
the past years to locate dynamical regions in geophysical 
flows (Peacock and Haller 2013; Pierrehumbert 1991; Toit 
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2010), and for the detection of transport barriers in canoni-
cal flows (Kasten et al. 2010; Brunton and Rowley 2010). 
Nonetheless, despite the number of successful applications 
of the FTLE approach, the use of chaos-theory-based tech-
niques for material-coherence detection presents several 
limitations, such as the fact that a discrete version of the 
flow field is naturally required. Furthermore, the analysis 
of the gradient tensor requires tracer trajectories to be suf-
ficiently close so that necessary linearizations of the local 
velocity field’s gradients remain accurate (Chu et al. 2003; 
Schlueter-Kuck and Dabiri 2017a). Owning to the obstacles 
of classical approaches for LCS-detection based on sparse 
data sets, new techniques that do not rely on the existence 
of dense data have recently been explored. Some of these 
approaches have been analysed by Hadjighasem et al. (2017) 
and motivate the current study.

Among these recently-developed approaches, the most 
promising technique for large-scale applications is the 
Coherent-Structure Colouring (CSC) algorithm proposed 
by Schlueter-Kuck and Dabiri (2017a), and applied in the 
present study. The CSC belongs to a category of Lagran-
gian methods that are based on spectral graph theory, 
originally proposed by Bezdek et al. (1984). The algorithm 
compares the spatial-evolution of an arbitrary number of 
tracer particles where tracks are colour-coded based on their 

dissimilarities. In practice, particle trajectories that present 
relatively small spatial deviation from each other are col-
oured with similar CSC values. Additionally, from a math-
ematical point-of-view, the kinematic dissimilarity between 
a pair of particles is not based upon the definition of a global 
coordinate system, making the CSC approach Lagrangian 
invariant (Haller 2015). Moreover, clustering techniques 
are not necessarily constrained by a minimum number of 
data points, meaning that the technique can still operate with 
indefinitely sparse data sets (Luxburg et al. 2008). Typical 
results obtained with the CSC approach are exemplified on 
the right-hand side of Fig. 1.

The convergence of coherent structures detected with 
CSC for an increasing number of tracer particles is to be 
expected, and has been verified by Schlueter-Kuck and 
Dabiri (2017b) in both two-dimensional flows and for syn-
thetic data (see also Husic et al. (2019)). However, results 
obtained in these studies do not represent realistic data from 
large-scale, three-dimensional measurements. The ability to 
detect LCSs using CSC has only been tested with a rela-
tively high concentration of synthetic tracer particles, pre-
cluding the findings of the original papers (Schlueter-Kuck 
and Dabiri 2017a, 2017b) to be extrapolated to real or com-
plex atmospheric, oceanic or biological applications. Other 
questions still remain: for a realistic, three-dimensional flow, 

Fig. 1   (left) Eulerian and (right) Lagrangian descriptions of the flow 
behind a square cylinder. Q-criterion fields show vortical structures 
defined as convex topologies of Q > 0 (in red). In the top row, results 
obtained with a fine grid are shown. In the bottom row, the same 
results are extracted with a coarser grid spacing. In the latter, key 

flow features are not detected using the Eulerian description. In the 
Lagrangian description, the quality of the results is not necessarily 
constrained by the number of data points, allowing for the extraction 
of key flow features even with very sparse data.
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what is the minimum recommended particle concentration 
that would still allow for coherent structure identification in 
CSC? What is the impact of track length on the overall qual-
ity of feature extraction? How does the CSC approach com-
pare to classical Eulerian coherent-structure identification? 
What are important flow parameters to guarantee consistent 
results when using the CSC algorithm? In this paper, we 
address these above questions by using Shake-The-Box data 
from two benchmark flows: the flow-past the Ahmed body 
and a swirling jet flow. Tracks colour-coded using CSC will 
be compared to the baseline vorticity field, and the cross-
correlation between features detected with both diagnostics 
are calculated and plotted versus flow parameters defined in 
the subsequent sections.

The current paper is organized as follows: In Sect. 2 we 
briefly introduce the mathematical background and notation 
for the implementation of CSC, and describe the adopted 
key normalized parameters. In Sect. 3, the experimental set-
ups for two benchmark flows are presented. In Sect. 4, the 
correlation analysis between CSC and the baseline vorticity 
field are revealed. Lastly, conditions and limitations for the 
use of the technique with three-dimensional Lagrangian data 
are established (Fig. 2).

2 � Methods

The following section is organized such that in Sect. 2.1 
the mathematical description of the CSC method and the 
adopted notation are presented succinctly. In Sect. 2.2, nor-
malized parameters for the investigation of the CSC method 
in realistic flows are developed and discussed.

2.1 � Mathematical formulation

This section summarizes the CSC algorithm as recently 
explored by Schlueter-Kuck and Dabiri (2017a). The approach 
relies on the concept of a graph, a mathematical structure that 
consists of a set of nodes that are interconnected by edges. 
Nodes generally represent entities, while the edges describe 
the relationship between these entities, by both informing 
rather a pair of nodes is connected or not and what is the 
weight of that connection. In the CSC framework, the adopted 
graph is defined such that its nodes represent the measured 
Lagrangian particles, whilst edges represent the relationship 
between pairs of particles, being weighted by the kinematic 
dissimilarity of the respective tracers’ trajectories. Such kin-
ematic dissimilarity is defined as the standard deviation of the 
distance between two tracer particles during the measurement 
time, t = (T − 1)Δt , where T and Δt represent the temporal 
track length (number of samples within a track) and the meas-
urement’s time step, respectively.

Considering that N fluid particles with temporal track 
length of T are known, the weighted adjacency matrix A can 
be defined as:

which contains the weight of the edge that connects the i-
th to the j-th particle. In Eq. 1, rij is the average distance 
between the two particles during the measurement time, 
whereas rij(tk) represents their instantaneous distance at the 
k-th time-step. The parameter aij is larger for particles that 
are kinematically dissimilar, whereas it is zero for particles 

(1)aij =
1

rijT
1∕2

[
T−1∑

k=0

(
rij − rij(tk)

)2
]1∕2

,

Fig. 2   Schematic of fluid domain with key normalized parameters. 
Fluid travelling at a mean velocity V  interacts with an obstacle of 
characteristic length D, resulting in a circulation region with struc-
tures of radius l and a potential (surrounding) flow. Tracer parti-
cles in different flow domains will move with dissimilar kinematic 

responses, thus being colour-coded accordingly. All tracks possess 
a temporal track length of T, but tracks braided in between the large 
coherent eddies inherit a mean tangential velocity VT and characteris-
tic period � . Track lengths L are related to the characteristic length of 
the flow and to the local flow velocity, such that L ∼ l ∼ D.
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that keep their distance constant over time. For instance, if 
a pair of particles (i, j) move along straight parallel trajecto-
ries at the same velocity, then aij = 0 . Contrarily, if the i-th 
particle moves along a straight trajectory whereas the j-th 
moves along a curvilinear one, then aij > 0.

Moreover, the degree matrix of a graph, D , defined as:

contains with the k-th diagonal element the sum of the k-
th row of the adjacency matrix A . Defining now the graph 
Laplacian as L = D −A , the graph colouring problem is 
such that node pairs with relatively large weights are asso-
ciated with dissimilar values. This problem is equivalent to 
maximizing the expression:

where X is a row vector containing the value of CSC of 
each particle, such that kinematically-dissimilar particles 
will be assigned largely varying z-values (Schlueter-Kuck 
and Dabiri 2017a). The problem of maximizing the expres-
sion in Eq. 3 is equivalent to that of finding the maximum 
eigenvalue �max of the associated eigenvalues/eigenvectors 
system, LX = �DX , such that X ≡ X(�max) . The components 
of the eigenvector X associated with the maximum eigen-
value �max represent the CSC of each particle. Particles with 
values of X similar in magnitude correspond to particles that 
are kinematically similar, and therefore that belong to the 
same Lagrangian coherent structure. The CSC is numeri-
cally implemented in MATLAB, and a synthetic pseudo-
code is given in the Appendix.

2.2 � Normalized parameters

Considering a volume of fluid that scales with the charac-
teristic length of the flow, D, and a homogeneous seeding 
distribution, it has been conjectured that accurate identifi-
cation of LCSs is dependent on two key parameters: the 
track length L of the tracer particles; and the number N of 
particles present in the volume. The normalization of these 
parameters will be presented when considering a generic 
flow over a bluff body.

It is conjectured that the accuracy of the LCS identifica-
tion based on the CSC method is dependent on the amount of 
the Lagrangian information in the flow field, relative to the 
size of the coherent structures. Hence, two relevant param-
eters are expected to play a role in the LCS identification: 
L/D and �∕D , where D is the characteristic length of the 
flow, L is the track length ( L = V(T − 1) , being V  the par-
ticle mean velocity along the track), and � = [3∕(4�C)]1∕3 

(2)dij =

�
0, if i ≠ j∑N

k=1
aik, if i = j,

(3)z =
1

2

N∑

i=1

N∑

j=1

(
xi − xj

)2
aij = X�

LX,

is the average inter-particle distance, being C the tracers 
concentration. In general, L varies in space and time due to 
the flow non-uniformity. However, in the following analy-
sis, the average value of L is considered. Also, a uniform 
seeding concentration is assumed, so that local and average 
inter-particle distances approximately coincide. From this 
analysis, the correlation between the results obtained with 
the CSC approach, and a reference Eulerian field � , are a 
function of the following Π-groups:

where Π1 and Π1 refer to the normalized inter-particle dis-
tance and normalized mean track length, respectively.

The accuracy of the the CSC-based LCS identification 
is assessed by comparing the CSC with a standard Eulerian 
approach for vortex identification, namely the vorticity field. 
From preliminary results, it was concluded that the CSC 
approach holds strong correlation with the absolute-velocity 
and vorticity fields, but weak to null correlation with the Q 
or �2 criteria. The reasons for that will be further discussed 
in the the Results section of this work.

3 � Experimental set‑up and test cases

The first benchmark performed in this study is based on 
the flow behind a reference Ahmed body. Originally devel-
oped to investigate the features of flows around ground vehi-
cles (Ahmed 1983), this simplified car model comprises a 
rounded fore-body, a box-like middle section and a slanted 
surface (slant angle of 25◦ ) at the rear with rounded edges. 
The near-wake flow structure comprises two recirculation 
regions, and two longitudinal C-pillar vortices. The C-pillar-
like structures are the most dominant characteristic material 
surfaces present in the near-wake region of the flow behind 
the Ahmed body, and are generated by the pressure differ-
ence between the flow coming from the vertical (lateral) 
walls of the model and the flow over the slanted surface 
(Ahmed et al. 1984). The flow behind the Ahmed body is 
presented in Fig. 3.

Data for the flow behind the Ahmed body was collected 
in the Open Jet Facility (OJF) of the TU Delft Aerodynam-
ics Laboratories. The facility consists of a closed-loop, 
open test section wind tunnel with octagonal exit-section. 
The Ahmed body model is a 1 : 2 replica of the reference 
geometry, with slant angle of 25◦ , and rounded edges at 
the front face with radius of 50mm. The dimensions of the 
test model measure 522 × 194.5 × 144mm3 . The reference, 
free-stream velocity was set to 12m/s, leading to a Reyn-
olds number based on the model height, H = 144mm , of 
Re = 1.15 × 105 . The flow is seeded with neutrally buoyant 
helium-filled soap bubbles, with a seeding concentration 

(4)RCSC,� = �
(
Π1,Π2

)
= �

(
�

D
,
L

D

)
,



Experiments in Fluids           (2021) 62:69 	

1 3

Page 7 of 15     69 

estimated as 0.3 particles per cm3 , yielding 0.03ppp. Data 
is collected using the LaVision MiniShaker S probe, con-
sisting of four CMOS sensor cameras installed into a sin-
gle body, with a tomographic aperture of 4.3◦ . Lagran-
gian particle tracking via the Shake-The-Box algorithm 
is conducted with illumination provided by a Quantronix 
Darwin Duo Nd:YLF laser located at the center of the 
probe. Time-resolved data is obtained at 700Hz, in a meas-
urement volume of up to 130L, covering from the front of 
the model to approximately 2.2D downstream of the rear 
face. More detailed information concerning the conducted 
measurements are presented in Sciacchitano and Giaquinta 
(2019).

The second data set consists of a swirling jet flow. 
Experiments were performed in the Jet Tomographic 
Facility at the Aerodynamics Laboratories of TU Delft. 
The fluid domain consists of an octagonal water tank 
with diameter of 600mm, and a height of 800mm. Time-
resolved data was collected in this volume of fluid at 
100Hz, with a seeding density equal to approximately 300 
particles per cm3 . The swirling jets emanate from nozzles 
of diameter 19.7mm, and have an average exit velocity 
of 0.05m/s, leading to a Reynolds number of Re = 1000 . 
Results investigated in the present work are based on a 
flow with swirl number of S = 0.2 . Lagrangian Particle 
Tracking via the Shake-The-Box algorithm is performed 
in LaVision DaVis 10. Other characteristics of the exper-
imental measurement system are further discussed by 
Ianiro et al. (2018). The swirling jet flow was chosen as a 
benchmark for the CSC approach primarily because of its 
simple flow topologies and stationary behaviour, contain-
ing a long-lasting four-lobed-jet core.

4 � Results and discussion

In the following, the performance of the CSC scheme is 
assessed on three-dimensional data based on comparison 
with the baseline vorticity field, � . Tracks coloured using 
the CSC are interpolated onto a two-dimensional Cartesian 
grid, and the performance of the approach is calculated on a 
cell-by-cell fashion. The reference flow fields are shown in 
Figs. 3 and 4 for comparison. For each test case, unique set 
of parameters � = �(�∕D,L∕D) was indirectly selected by 
filtering from the data sets N particles with temporal track 
lengths of T. In this study, N ranged from 50 to 30000 tracks 
for both benchmarks, while T ranged from 4 to 0.9Tmax time 
steps, where Tmax represents the maximum temporal track 
length present in the respective data set. For the flow past 
the Ahmed body, these ranges of T and N are equivalent to 
inter-particle distance values of �∕D ∈ [0.02, 0.4] and nor-
malized track lengths of L∕D ∈ [0.1, 1.6] . For the swirling 
jet flow, the parameter space consists of �∕D ∈ [0.015, 0.18] 
and L∕D ∈ [0.02, 0.18] . It is also important to emphasize 
that particle tracks in this study were randomly selected, 
which does not guarantee homogeneous seeding distribution, 
leading to broaden uncertainty in the estimation of the mean 
�∕D value. This issue has been addressed by computing high 
number of test cases for both benchmark flows.

Solutions of the CSC approach for the two benchmark 
flows were computed and resultant CSC-coloured tracks are 
illustrated in Fig. 5. Figure 5(a) and (b) show perspective 
views of N = 10000 colour-coded tracks of the Ahmed body 
and swirling jet flows, respectively. In each test case, tracks 
are represented in their entire extension. In these plots, 
solutions of the CSC approach are re-scaled to the interval 
CSC ∈ [−1, 1] , in which -1 is represented in dark blue and 

Fig. 3   (left) Time-averaged velocity distribution for the flow past the 
Ahmed body. Iso-contours of the Q-criterion (Q = 4000s−2) coloured 
by the streamwise vorticity, �x , highlight the two C-pillar vortices. 
(center) Normalized streamwise velocity field, u/|V|, interpolated onto 

the cross-flow plane 0.5D downstream of the rear wall, where D is 
the height of the Ahmed body. (right) Normalized cross-flow vorticity 
field, �xD∕|V| , at the same cross-section position. Reference fields 
calculated with N ∼ 6.2 × 106 tracks
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1, in dark red, in the selected colour map. For the flow past 
the Ahmed body, for which results are shown in Fig. 5(a), 
there are clear evidences of successful detection of the left 
C-pillar vortex at the center of the tracers’ trajectories. The 
core of the vortical structure is indicated by the tracks col-
our-coded in red. The C-pillar vortex is surrounded by green 
colour-coded tracks, representing the outer shear-layers of 
the coherent structure. Lastly, tracks laying inside the vorti-
cal material surface are surrounded by blue-coloured tracks, 
representing the transition to the potential-like flow. The 
test case shown in Fig. 5(a) contains instantaneous 10000 
tracer particles with temporal track lengths of T = 5 time 

steps (equivalent to �∕D ≈ 0.06 and L∕D ≈ 0.8 ), and only 
the left-hand side portion of the flow-field is represented, 
for clarity. In Fig. 5(b), results for the swirling jet flow are 
shown for a test case with N = 10000 particles of temporal 
track length of T = 30 time steps (equivalent to �∕D ≈ 0.05 
and L∕D ≈ 0.14 ). As for the flow past the Ahmed body, the 
coherent features of the swirling jet flow are also easily iden-
tifiable in the CSC-coloured field. The four-lobed jet stream 
at the center of the fluid domain is colour-coded in red. A 
narrow transition region, representing the material surface in 
between the four lobes and the surrounding potential flow, is 
highlighted in green. The coherent jet stream is surrounded 

Fig. 4   (left) Time-averaged velocity distribution of the swirling-jet 
flow. Jet-cores are highlighted by the iso-contours of the absolute-
velocity field at V∕|V| = 0.7 . (center) Normalized stream-wise 
velocity field, u/|V|, interpolated onto to the cross-flow plane 1D 

downstream of the nozzle-exits; and (right) Normalized cross-flow 
vorticity field, �xD∕|V| . Reference fields calculated with N ∼ 1 × 106 
tracks.

Fig. 5   (a) Perspective view of the flow past the Ahmed body for �∕D ≈ 0.06 and L∕D ≈ 0.8 , and (b) the swirling jet flow, with �∕D ≈ 0.05 and 
L∕D ≈ 0.14 . CSC values range from 1 (dark red) to -1 (dark blue) in the plots
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by tracks coloured in blue, identifying the quiescent flow. 
Moreover, due to the considerably high particle concentra-
tion of the selected test case, the rain-drop-like shape of the 
convex lobes becomes evident in the CSC-coloured tracks.

4.1 � Effects of the normalized parameters

CSC-coloured tracks of the flow past the Ahmed body and 
the swirling jet flow are shown in Figs. 6 and 7, respec-
tively. Each figure illustrates the projection onto the cross-
flow plane of the instantaneous CSC values, with each 
particle being represented by a single point at the instant 
t = (T − 1)Δt∕2 . The top row shows the streamwise vorticity 
component obtained with the �∕D value of the respective 
column, for comparison. The first benchmark investigated in 
this work is the flow past the Ahmed body. The two longitu-
dinal coherent eddies are the dominant structures of the flow 
and their cores travel further downstream symmetrically 
relatively to the xz-plane. For that reason, only the left-hand 
side portion of the fluid volume is analysed in this study, 
similarly to what is illustrated in the same figure. The two 
C-pillar vortexes are also relatively stationary (Sciacchitano 
and Giaquinta 2019), being this the reasons for selecting this 
flow as the first benchmark of the present study. This aspect 
is crucial for the analysis of this flow field since all tracks in 
the time interval are analysed simultaneously (i.e., as if the 
flow was stationary).

Here we examine two-parameters cases, for 
L∕D ≈ [0.4, 1.0, 1.5] and �∕D ≈ [0.04, 0.09, 0.13] . Figure 6 
includes examples of baseline vorticity fields and CSC-
coloured tracks obtained in the analysis. Columns, left to 
right, show results for decreasing �∕D values (increasing 
particle concentration). Rows, top to bottom, show results 
for increasing L/D values. In Figs. 6(a) to 6(c), vorticity 
fields obtained with �∕D ≈ 0.04 , 0.09, 0.13 are shown for 
comparison (note that the reference velocity and vorticity 
fields are shown in Fig. 4). For increasing L/D values, barely 
any difference is noticed in the colouring pattern of the 
tracer particles. This result is most likely associated with 
the fact that the relatively parallel streamlines do not allow 
for considerable increments of the kinematic dissimilarity 
as the flow moves further downstream. Based on the math-
ematical description of the CSC algorithm, it is evident that 
the method benefits from strong divergence in the tracers’ 
trajectories, which is not sufficiently dominant in the data 
from flow past the Ahmed body. Another interesting remark 
is the fact that vortex detection is observed to work reason-
ably well independently of seeding gaps: the sparse seeding 
region centred at (y∕D, z∕D) ≈ (1,−0.5) did not prevent the 
algorithm from correctly distinguishing between particles (at 
the vicinity of the vortex’s boundary) that belong to the vor-
tex core from those at the potential-like flow. Non-uniform 
particle seeding is a common weakness among classical 

clustering techniques that rely on absolute particle positions 
(Bezdek et al. 1984) since tracers from distant regions of the 
flow would be mistakenly clustered together by the adja-
cency matrix due to the absence of tracks in between them.

In the second benchmark, the swirling jet flow, the flow 
features a four-sectors-jet divided by the shear-layers result-
ing from the interactions along the vane walls. The four jet 
cores rapidly develop a quasi-homogeneous inner momen-
tum distribution after the exit, featuring separation of their 
respective cores for increasing azimuthal distance due to 
the swirl number. In all test cases, the CSC approach was 
able to detect the existence of the four-lobed jet with some 
degree of accuracy, as it is shown in Fig. 7. Better feature-
extraction performance occurs for decreasing inter-particle 
distance values, while the benefits of longer normalized 
track lengths are hardly noticeable, agreeing with the find-
ings of Schlueter-Kuck and Dabiri (2017). It is also impor-
tant to highlight the fact that the CSC algorithm assigns 
arbitrarily large or small values to the coherent structures. 
For this reason, colour inversions e.g., between panels 7(k) 
and 7(l) , occur. Alternatively, since the magnitude of the 
CSC values have no physical meaning, one could artificially 
change the resultant colour-mapping by computing 1 − CSC 
so that LCSs are always coloured with the same side of the 
colour spectrum.

Results in the left-most column of Fig. 7 represent flows 
with sparse particle seeding, resulting in �∕D ≈ 0.09 . At this 
condition, the spatial particle density is sufficient to observe 
the existence of the vortices, which can be distinguished 
by the region of red-coloured particles, but the outer shear-
layers of the jets are still hardly noticeable. At �∕D ≈ 0.05 , 
at the center column, higher particle concentration values 
start to allow for the detection of both the existence of the 
four lobes and the stagnation region in between them. For 
�∕D ≈ 0.02 , at the right-most column, boundaries of the jet 
core start to become well defined and the characteristic four-
lobed jet is easily identifiable in the Lagrangian data. Moreo-
ver, Figs. 7(d) and 7(a) represent a case in which the CSC 
method outperformed the baseline Eulerian diagnostic field. 
While the sparse CSC-coloured tracks shown in Fig. 7(d) 
already exhibit evidences of the existence of four lobes, with 
a small blue-coloured region separating them, the equivalent 
vorticity field, shown in Fig. 7(a), presents only a single 
macro structure that surrounds the four cores. This effect 
is directly associated with the fact that the sparsely inter-
polated vorticity field filters small discontinuities out from 
the interpolated velocity field, i.e., it “ignores” the three or 
four tracks with different velocity magnitude at the center 
of the jet stream. Such sequelae is not observed in a track 
colouring approach.

Effects of the track lengths are somewhat more ambigu-
ous in comparison to those of the inter-particle distance. 
Comparing the results from L∕D ≈ 0.015 to L∕D ≈ 0.15 (top 
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to bottom rows of Fig. 7), no noticeable improvement in the 
identification of the Lagrangian coherent structures can be 
appreciated, even if the tracks length increases by one order 
of magnitude. Hence, it is concluded that the CSC results are 
mainly dependent on the inter-particle density, and therefore 
on the tracers concentration, whereas they are rather insensi-
tive to the track length. Overall, for the CSC approach, it is 
more valuable to have more tracks of shorter length, rather 
than less longer tracks. This result belongs to the maxima 
that, as for any other clustering technique, more data points 
act as to converge the solution toward the “ground truth” 
(Luxburg et al. 2008). Results should also improve based 
upon the quality of the data, which, in the case of the CSC 
algorithm, is not directly dictated by the amount of Lagran-
gian information tracks carry (i.e., tracks lengths), but by 
how divergence tracks are. In that sense, the CSC approach 
depends on the number of tracer particles and on the flow 
characteristics, but not on the track lengths, as proposed in 
the second section of this work.

4.2 � Correlation between the CSC and Eulerian 
diagnostics

The accuracy in detecting Lagrangian structures using 
the CSC approach was evaluated by computing the cross-
correlation coefficient between CSC-field mapped onto a 
Cartesian grid and the streamwise vorticity component, �x , 
RCSC,�x

 . Both the velocity and CSC-fields were interpolated 
into a Cartesian two-dimensional grid, projected onto the 
cross-flow plane. Flow parameters of each grid cell were 
computed using the average of the (u, v, w, CSC)-values of 
all particles that lay within it. The sparse velocity and CSC 
values are mapped onto a Cartesian bin by averaging their 
values within cubic bins of 0.02cm size, with 75% overlap, 
following the approach proposed by Aguera et al. (2016). 
The binning is conducted for varying values of the tracers 
concentration (viz. � ) and of the tracks length (L) to assess 
the effect of these two parameters onto the quality of the 
CSC results.

Figure  8 shows results of the CSC algorithm using 
increasing inter-particle distance values. For both flows, 
increasing inter-particle distance values leads to loss in 

the accuracy of the method, as expected. Schlueter-Kuck 
and Dabiri (2017a) obtained similar results, emphasising 
also that the method is dependent on prior knowledge of 
the size of the vortical structures in order to secure appro-
priate sparsification levels. In their work, Schlueter-Kuck 
and Dabiri (2017a) concluded that numbers of particles in 
the order of hundreds, equivalent to O(𝜆∕D) > 10−1 in the 
investigated flows, would be insufficient to accurately detect 
LCSs, agreeing with what is shown in Fig. 8. The trend of 
the results, on the other hand, is not monotonic. For the 
swirling jet flow, for example, there is a slight decrease in the 
overall cross-correlation values for low values of �∕D . This 
particular characteristic is most likely due to to the fact that 
the four-lobed convex jet stream goes from an ellipsoidal 
to a “raindrop-like” shape for 𝜆∕D < 0.05 when computed 
by the CSC (compare Figs. 7(e) and 7(f), for example). On 
the other hand, the vorticity or absolute-velocity fields tend 
to exhibit predominantly rounded-like jet-cores. Another 
remark observed in the same plots is the fact that the cor-
relation function converges to a single value for decreas-
ing values of �∕D independently of the track length. This 
characteristic allows for the technique to be considered 
spatially-convergent, part of the set of basic requirements 
that have proven necessary for self-consistent LCS results 
(Haller 2015).

Contrarily to what was observed for the normalized 
inter-particle distance, the cross-correlation function does 
not show any particular trend with varying normalized track 
lengths, as it is shown again in Fig. 9. Short track lengths 
will naturally lead to a less accurate estimation of the kin-
ematic dissimilarities between track pairs, but the recipro-
cal is not necessarily true for increasing track lengths. The 
comparison of cases 7(e) and 7(h) (see also Fig. 7) proves 
that the increment of L/D value by 500% did not result into 
an appreciable improvement of the estimated cross-correla-
tion coefficient. A similar conclusion can be drawn for the 
flow past the Ahmed body, for which results are shown in 
Fig. 9(a). Based on the results presented so far, it is con-
cluded that the results of the CSC algorithm are independent 
of the tracks length, as long as the latter exceeds a certain 
minimum. Based on the current results, such minimum is 
estimated to about 1% of the flow characteristic length.

As a final remark, it is also important to highlight one 
of the biggest drawbacks of the current description of the 
CSC: the method works in a binary fashion, by detecting 
that a single ensemble of tracer particles behaves differ-
ently from all the rest, regardless of the real number of 
vortical structures shed in the flow. This characteristic 
can be illustrated by analysing the CSC-coloured tracks 
of the swirling jet flow: in all test cases, its characteristic 
four-lobed jet is colour-coded in a single colour (e.g, red), 
while the remaining particles in the quiescent flow are 
colour-coded in blue, for example. If all flow features were 

Fig. 6   CSC-coloured tracks for the flow past the Ahmed body pro-
jected onto the cross-flow plane for x∕D ∈ [0.5, 1.0] . Rows, top 
to bottom, show results for L∕D ≈ 0.4 , 1.0 and 1.6, respectively. 
Columns, left to right, show results for �∕D ≈ 0.04 , 0.09 and 0.13, 
respectively. CSC values range in [−1, 1] , where -1 corresponds to 
blue and 1, to red, in the selected colour map. Results indicated as 
cases (d), (e), ..., (k) in Figs. 8(a) and 9(a) . Last row includes only 
the two right-most columns because selected L/D value would not 
allow achieving target density magnitude for the third column to be 
plot. Figures (a) to (c) show vorticity fields obtained with the corre-
sponding �∕D values

◂
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individually detected by the CSC approach, as hoped-for, 
one would expect to see the four lobes of the swirling jet 
coloured with four dissimilar CSC-values. In that sense, 
the CSC approach distinguishes rotational zones from the 
potential-like ones, but it is not meant for individual fea-
tures detection, per se.

This characteristic of the CSC approach is the key reason 
behind the fact that strong correlation is observed between 
the CSC-coloured tracks and the absolute-velocity field (up 
to 95% in the tests with the present benchmarks), but small 
correlation is obtained between the Lagrangian approach and 
the Q or �2 criteria (less than 20% with the present bench-
marks), for example. In the swirling jet flow, the four lobes 
of the jet travel at a similar mean velocity that is consider-
ably higher than that of the surrounding quiescent mean. The 
CSC approach detects the high congruence of the relative 
motion of particles inside the jet cores in comparison to the 
particles at the quiescent mean, and this result is very similar 

in nature to the definition of the absolute-velocity field. Both 
the Q and �2 criteria are, on the other hand, proper individual 
features detection mechanisms (Jeong and Hussain 1995), 
highlighting individual convex helical structures that rotate 
about the symmetry axis of the jet cores (see Dulin et al. 
(b)) and, therefore, are not strongly correlated to what the 
CSC-coloured tracks express.

5 � Conclusions

In this study, three-dimensional coherent flow structures 
were detected using sparse track data for the first time 
using the Coherent-Structure Colouring (CSC) algorithm. 
Three-dimensional PTV data of the canonical flow past the 
Ahmed reference body and a swirling jet flow were adopted 
as benchmarks. The accuracy in the detection of coherent 
eddies was evaluated using the cross-correlation between 
the CSC-field with the baseline vorticity field, based on the 
two-dimensional projection onto the cross-flow plane of both 
diagnostic fields. It was concluded that higher accuracy in 
the coherent structures identification is obtained for decreas-
ing inter-particle distance. Conversely, the CSC results were 
independent of track length, as long as the mean inter-parti-
cle distances did not exceed 15% of the characteristic length 
scale.

Fig. 7   CSC-coloured tracks for the swirling-jet flow projected onto 
the cross-flow plane for x∕D ∈ [−1.0,−0.5] . Rows, top to bottom, 
show results for constant L/D values of ≈ 0.015 , 0.08 and 0.015, 
respectively. CSC values range in [−1, 1] , where -1 corresponds to 
blue and 1, to red, in the selected colour map. Columns, left to right, 
show results for �∕D values of ≈ 0.09 , 0.05 and 0.02, respectively. 
Results obtained in cases (d), (e), ..., (l) are indicated in Figs. 8(b) and 
9(b) . Figures (a) to (c) show vorticity fields obtained with the cor-
responding �∕D values

◂

Fig. 8   Cross-correlation function versus normalized inter-particle dis-
tance for (a) the flow past the Ahmed body; and the (b) swirling jet 
flow. Reference cases for the respective benchmarks are highlighted 

by the dashed lines and refer to results shown in Figs. 6 and 7 . Thick 
dashed lines indicate the trend of the data points
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