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Abstract—Surrogate-based Optimization is a useful approach 

when the objective function is computationally expensive to 

evaluate, compared to Simulation-based Optimization. In the 

surrogate-based method, analytically tractable "surrogate 

models" (also known as "Response Surface Models - RSMs" or 

"metamodels"), are constructed and validated for each 

optimization objective and constraint at relatively low 

computational cost. They are useful for replacing the time-

consuming simulations during the optimization; quickly locating 

the area where the optimum is expected to be for further search; 

and gaining insight into the global behavior of the system. 

Nevertheless, there are still concerns about the surrogate model 

accuracy and the number of simulations necessary to get a 

reasonably accurate surrogate model. This paper aims to unveil: 

1) the possible impacts of problem scale and sampling strategy on 

the surrogate model accuracy; and 2) the potential of Surrogate-

based Optimization in finding high quality solutions for building 

envelope design optimization problems. For this purpose, a series 

of multi-objective optimization test cases that mainly consider 

daylight and energy performance were conducted within the 

same time frame. Then, the results were compared, in pair, based 

on which discussions were made. Finally, the corresponding 

conclusions were obtained after the comparative study. 

Keywords—surrogate-based optimization; problem scale; 

sampling strategy; response surface model; design of experiments;  

multi-objective optimization 

I. INTRODUCTION 

Computational Design Optimization (CDO) is a rising field 
of research in sustainable building design. It has been applied 
to many aspects including building envelope design, building 
service system, and renewable energy generation, etc. [1]. In 
this context, simulation-based optimization is frequently 
employed by architects and engineers to assist the early design 
decision-making. However, building performance simulations 
are usually time-consuming, for instance, annual hourly 
daylight and energy simulations or computational fluid 
dynamics simulations. This hinders the efficient application of 
simulation-based optimization in the building design practice, 
within the feasible time frames of projects. 

Instead, surrogate-based optimization is a promising 
solution to this problem, in which surrogate models (also 
known as Response Surface Models - RSMs or metamodels) 
are utilized during the optimization. Basically, the surrogate 
model method is an approximation approach that mimic the 
behavior of the original simulation model at a reduced 
computational cost. It contains a group of mathematical and 
statistical techniques used to explore the functional relationship 
between input and output variables. In this method, the time-
consuming simulations are replaced by the surrogate models 
during the optimization, which helps to improve the 
optimization efficiency. But, a reasonably accurate and valid 
surrogate model should be ensured before using it. This is the 
most challenging and crucial aspect of the method. 

In the literature of sustainable building design, various 
types of surrogate models have been applied in the prediction 
of energy performance [2] and indoor environmental quality, 
such as thermal, daylighting [3] and ventilation performance 
[4]. In the applications, computationally expensive simulations 
(e.g. annual dynamic energy and daylight simulations, or CFD 
simulations) were replaced by validated surrogates during the 
optimization. Nevertheless, there are still concerns regarding 
the surrogate model accuracy and thus the applicability of the 
surrogate-based optimization. Because, in some cases, the 
number of simulations necessary to get a reasonably accurate 
surrogate may be approaching the number of simulations 
needed for the simulation-based optimization, as reported in [5]. 

In general, the paper aims at evaluating the applicability of 
the surrogate-based optimization to the building envelope 
design optimization problem that mainly considers daylight 
and energy performance. Specifically, the work investigates 
how, and to what extent, 1) different problem scales and 
sampling strategies may affect the accuracy of RSMs, and 2) 
the potential of RSMs in finding high quality solutions for the 
multi-objective optimization problems in question.  

This paper is organized as follows. Section 2 introduces the 
method used in the study and relevant background knowledge; 
Section 3 describes the test cases, including the optimization 
problem formulation and the computational setup; Section 4 
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reports and discusses the results obtained; Finally, Section 5 
presents conclusions and future research. 

II. METHODOLOGY 

A. Comparative Study 

In order to achieve the research goal, a series of multi-
objective optimization tests are arranged, based on two 
different problem scales, sampling strategies and optimization 
approaches respectively, as shown in Table I. By conducting 
comparative studies in pair (i.e. 1 vs 2; 2 vs 3; 2 vs 4), possible 
impacts of the each factor are investigated. 

1) Problem Scale 
To investigate the possible impacts of the problem scale on 

the accuracy of RSMs (by comparing test 1 and 2), two cases 
with different numbers of design variables are shaped based on 
a similar building envelope design optimization problem. Case 
1 has two design variables, while Case 2 includes forty-one 
design variables. The increase of design variables usually 
represents the increase of complexity and design freedom; 
while, a large number of design variables is common, 
especially in the conceptual design stage. (more details in 
Section III) 

2) Sampling Strategy 
To investigate the possible impacts of the sampling strategy 

on the accuracy of RSMs (by comparing test 2 and 3), two 
sampling strategies are used, namely, "normal" and "adaptive" 
sampling strategies. Actually, they are differentiated from each 
other by the ways of generating sample points within the 
design space. The former selects all the sample points at once; 
while the later generates sample points iteratively by 
considering the information accumulated from the previous 
iteration. (more details in Section II - B) 

3) Optimization Approach 
To investigate the potential of RSMs in finding high quality 

solutions, RSM-based and simulation-base optimization 
approaches are compared (i.e. comparing test 2 and 4). In fact, 
the main difference between these two approaches lies in 
whether or not “shifting” (instead of eliminating) the 
computational efforts for simulations from within an 
optimization loop to a prior time. It is worth noting that 
running a certain number of simulations is required no matter 
whether RSMs are used or not. Simulations are used either for 
training response surfaces (in the RSM-based optimization), or 
for coupling directly with the optimization algorithm (in the 
simulation-based optimization).  

Moreover, in this comparison, the "normal" sampling 
strategy is used in the RSM-based optimization, while the 
random selection of design points for the initial generation is 
used in the simulation-based optimization. 

4) Time Frame for Comparison 
For the sake of comparison, the same time frame of 

implementing each test should be ensured, which is assumed 
within 24 hours. Considering that simulations account for a 
major portion of time spent in all the tests, the number of 
simulations to be run for each test is an important monitoring 
factor. Additionally, also due to the comparability, the 
selection of optimization algorithms should be the same as well, 
namely, NSGA-II [6] in this study. 

B. Normal and Adaptive Sampling Strategies 

The sampling strategy (or sampling plan) in design variable 
space is known as Design of Experiments (DoE) [7]; thus it is 
sometimes called DoE strategy. The experiments in this paper 
are referred to as "computer experiments" or "simulations".  

Basically, there are two types of DoE strategies or sampling 
strategies: space filling and adaptive sampling [8]. Hereby, we 
call them "normal DoE" and "adaptive DoE" respectively. The 
former selects a fixed number of samples uniformly covering 
the space or avoiding clusters, such as Latin Hyper Cube; while 
the later iteratively adjusts or leads the samplings to the 
complexity of the design space (i.e. the most irregular regions 
of the design space). In some cases, certain regions are much 
more complex than remaining regions, thus a more intensive 
exploration on those specific regions might be more efficient 
than a uniform space exploration [9]. By using a proper DoE 
strategy, a good sampling of design space can be obtained. 
This means that we could extract the most relevant information 
possible by making the smallest number of simulations. 

1) Application of Normal Design of Experiments 
Normal DoE is widely used in the surrogate-base 

optimization for training surrogate models [7, 10, 11, 12]. The 
traditional procedure of the surrogate-base optimization is a 
two-stage process [13], as shown in Fig. 1. The first stage is to 
generate surrogate models with the initial dataset obtained 
from running simulations. While in the second stage, the 
surrogate-base (or virtual) optimizations are run for searching 
promising areas where the optimum is expected to be globally; 
and decisions need to be made regarding the local accuracy of 
surrogates until valid optimal solution(s) are obtained. During 
the whole process, normal DoE is used in the first stage to 
generate the initial sample points for training surrogate models. 
Specifically, the two-stage process is described as follows: 

TABLE I.  TEST ARRANGEMENT AND COMPARATIVE STUDIES 

Test 

No. 

Problem 

 Scales 

Sampling 

Strategies 

Optimization 

approaches 

Impacts of  

Problem Scales 

Impacts of  

Sampling Strategies 

Impacts of  

Optimization approaches 

1 Case 2 (41 vars) Normal DoE -  
  

2 Case 1 (2 vars) Normal DoE RSM-based    

3 Case 1 (2 vars) Adaptive DoE - 
 

 
 

4. Case 1 (2 vars) Random  Simulation-based 
  

 



Step 1: Define design space and parameterize geometry; 

Step 2: Select sample points from the design space by using 
"normal DoE"; 

Step 3: Run simulations for the selected sample points to 
obtain a database; 

Step 4: Construct or train surrogate models based on the 
database, by selecting a proper type of surrogate model (e.g. 
Kriging); 

Step 5: Run surrogate-base optimizations to quickly locate 
the promising areas where the optimum is expected to be 
globally (i.e. optimal regions of the design space); 

Step 6: Check and verify the local accuracy of the surrogate 
models by comparing the simulation results and approximation 
results (to see if objective functions have been adequately 
approximated by the surrogate models) 

Step 7: If no, then go back to step 2 (to manually select the 
sample points from the promising areas, run update simulations 
and update the surrogate models), and iterate until accurate 
enough optimal solution(s) are obtained. 

Although this process has been widely used, there are still 
limitations. For instance: how many simulation runs will be 
needed for generating good initial surrogate models, and/or for 
updating them? Actually, it cannot be predicted in advance. In 
case of heavy simulations, this will be a very time-consuming 
procedure. More than this, it heavily relies on the experience of 
engineers in iteratively and manually updating the surrogate 
models.  

2) Application of Adaptive Design of Experiments 
The strategy of adaptive DoE is slightly different, but the 

goal is to have an automated procedure. It is meant to minimize 
the number of simulation runs needed to generate a good 
surrogate model that can be used for the virtual optimizations. 
Specifically, the process is shown in Fig. 2. 

The main difference between normal DoE and adaptive 
DoE lies in the incorporation of the Adaptive Space Filler 
(ASF) [14]. It is an adaptive DoE algorithm which iteratively 
adds new points to an existing database, and iteratively 
validates and trains the surrogate models until the required 
accuracy level (or the maximum number of iterations) is 
reached. The stopping criterion is defined by users, e.g. mean 
and max absolute error, relative error, normalized error, or R-
squared (i.e. the coefficient of determination). 

III. CASE STUDY 

In order to perform the comparative study, two test cases 
are shaped based on a similar building envelope design 
optimization problem that mainly considers daylight and 
energy performance. 

A. Test Case Description 

The two hypothetical test cases are assumed to be one-story 
sports halls with rectangular floor plans and spherical roofs, 
located in Guangzhou, in south China, as shown in Fig. 3 and 4. 

 
 

Fig. 1. Traditional surrogate-base optimization procedure 

 
 

Fig. 2. Surrogate-base optimization procedure by using adaptive DoE 



The floor plan sizes of the both cases are the same and fixed 
(i.e. 40m*70m); while both roofs are changeable in height 
within certain ranges. The skylights are allocated to the "cells"  
of the roofs (i.e. 40 cells in total in each case); and the window-
to-roof ratio(s) are also changeable in both cases. 

Basically, the optimization problems of these two cases are 
similar, namely, figuring out the optimal roof configurations 
(i.e. roof heights and window-to-roof ratios) for both daylight 
and energy performance. 

B. Optimization Problem  Formulation 

1) Design Variables 
Case 1 and Case 2 share one common design variable - 

"Roof Height (RH)" which is defined as the vertical height 
from the bottom of the roof to the top. But, they are 
differentiated by their numbers of design variables needed for 
characterizing "Window-to-Roof Ratios (WRR)". In both cases, 
WRR(s) are defined as the ratio(s) between glazing area and 
roof area in each cell. Specifically, in Case 1, only one design 
variable is needed for characterizing it, because each cell has 
the same WRR. While in Case 2, forty design variables are 
needed in total, because all the cells are free to have an 
independent WRR respectively. This increases the degree of 
design freedom and enlarges the design space as well. In 
addition, considering that the focus here is the application of 
surrogate models, possible design variables regarding shading 
devices and/or constructions are not discussed in this paper for 
the sake of simplicity.  

As for the ranges of design variables, it is important to 
make sure that they are meaningful for the specific cases. The 
range of Roof Height is between 1m to 15m; and the interval is 
0.1m. By adding the fixed height below the roof (i.e. 15m, 
which is also the minimum height requirement for many sports 
activities), the overall variation of the total height of the 
building is between 16m to 30m. This matches the normal 
volume of a 40m*70m sports hall. For the range of Window-
to-Roof Ratio(s), they vary from 0.01 to 0.50 and the interval is 
0.01. The reason for this is that they are sensitive to the 
objective functions and meet the accuracy requirement of the 
research.  

2) Objectives 
A modification of Useful Daylight Illuminance (UDI) and 

Energy Use Intensity (EUI) are selected as optimization 
objectives for daylight and energy performance in this study, 
respectively, forming a multi-objective optimization problem 

Useful Daylight Illuminance (UDI) is an annual, hourly 
metric for assessing daylight provision in buildings, devised by 
Mardaljevic and Nabil [15]. It uses hourly sun and sky 
condition data, providing more complete and accurate 
information than the traditional daylight factor approach. It is 
considered useful also because of the attempt to integrate the 
evaluation of daylight level and glare risk simultaneously. 

In order to adapt to the large-volume cases in question, a 
modification based on the original UDI metric is needed. The 
original UDI is defined as the annual occurrence of 
illuminances that are within a “useful” range considered by 
occupants across the work plane. To be specific, it refers to the 
percentage of time during the occupancy hours that a test point 
receives hourly illuminances between 100 and 2000 lux. 
However, in order to know the overall daylighting condition 
throughout the entire space (i.e. 40m*70m), more than one test 
points (i.e. 66, in this study) is needed and should be evenly 
spread at the work plane. Thus, a modification based on UDI is 
necessary for characterizing the overall condition of the whole 
space by using one single value. In this case, we define UDImod 
as the percent of test points across the whole analysis area with 
the original UDI value lager than 50%. To make it clear, it 
represents the percentage of floor area that receives "useful" 
illuminance (i.e. 100 - 2000 lux) for at least 50% of the 
occupancy hours. UDImod should be maximized in the multi-
objective optimization. 

Energy Use Intensity (EUI) is a basic approach to 
benchmark a building’s energy efficiency or performance. It is 
defined as the energy consumption per unit of floor area 
(kWh/m2) of a building over one year, thus facilitates direct 
comparison with other buildings, giving us a general idea of 
how energy efficient the building is. In this study, we only 
consider "site energy" instead of primary or secondary energy; 
and a Coefficient of Performance (CoP) value of 3 is set, 
assuming that only electricity was used. EUI should be 
minimized in the multi-objective optimization. 

C. Computational Setup 

Computational setup includes the integration of several 
tools used by the case studies; each of these tools is mainly 
responsible for a different task during the whole process. It also 
includes the setup of the parametric model, the coupled 
simulation and the automatic process (or mathematical 
optimization); while the coupled simulation setup is the focus 
of this section, due to its importance for the evaluations of 
objectives.  

 
Fig. 3. Case 1 with two design variables 

 
Fig. 4. Case 2 with forty-one design variables 



1) Tool Integration 
Programs involved in this study include: Rhinoceros [16] 

and Grasshopper [17]; Daysim [18] and EnergyPlus [19]; 
modeFRONTIER [20]. They are responsible for parametric 
modeling, numeric simulation and mathematical optimization 
(or process automation), respectively. The connection or data 
exchange between them mainly relies on the related plug-ins in 
Grasshopper, for instance, Honeybee and Ladybug [21] for 
connecting Daysim and EnergyPlus; and customized plug-ins 
for connecting modeFRONTIER. Generally, the integration 
between these tools is illustrated in Fig. 5, and a more detail 
description can be found in [22]. 

2) Coupled Simulation 
UDImod and EUI can be evaluated or simulated by the 

daylight simulation in Daysim and the energy simulation in 
EnergyPlus, "separately". But, this will lead to the result that 
energy saving by using daylight cannot contribute to or affect 
the total energy use. Thus, it requires a coupled daylight and 
energy simulation. 

Specifically, for the evaluation of UDImod, the annual, 
hourly dynamic daylight simulation is required; and Daysim is 
competent to manage this, which has been proved by many 
other works [23, 24, 25]. While, for the evaluation of EUI, a 
coupled simulation by integrating Daysim and EnergyPlus 
programs is recommended, because of the significant limitation 
regarding the daylighting module in EnergyPlus [26]. In this 
case, Daysim generates a report that describes the control of 
the electric lighting depending on the admission of daylight (i.e. 
electric lighting schedule), which is then used by EnergyPlus 
for calculating the final energy consumption. Thus, there is a 
coupling (i.e. data transfer) between Daysim and EnergyPlus; 
and they run in a sequential way. In short, the coupled 
simulation is required and applied in this study. 

IV. RESULTS AND DISCUSSION 

A. Impacts of Problem Scale on RSM Accuracy 

In order to investigate possible impacts of the problem 
scale on the surrogate model accuracy, test 1 and test 2 are 
carried out by using two cases with different problem scales 
(i.e. number of design variables). Some common settings 
shared by the both cases are described below. 

First, Uniform Latin Hypercube [27] sampling strategy - a 
frequently used normal DoE, is applied here for the both cases 
to guarantee a relatively uniform distribution of design points 
over each dimension. Then, 360 sample points are selected at 
once to run the simulations (i.e. 21.5 hours). Moreover, five 
types of surrogate models are trained for UDImod and EUI 
respectively by using 330 sample data; and the remaining 30 
sample data are used for surrogate model validation.  

The five surrogate model types considered include 
Polynomial Singular Value Decomposition (SVD); Stepwise 
Regression (STEP); Kriging (KR); Shepard K-Nearest (KN) 
and Radial Basis Functions (RBF). Detailed descriptions of 
these types can be found in [27]. Moreover, the surrogate 
model accuracy is expressed by means of the Mean Absolute 
Error (MAE), Mean Normalized Error (MNE) and R-squared 

(R2) [20].  In general, the lower the value of MAE and MNE, 
the better the surrogate accuracy; while R2 should be as close 
as possible to 1, indicating the model fits the data well. 

TABLE II.  RESULTS ON THE ACCURACY OF GENERATED SURROGATES 

IN TEST 1, 2 AND 3 

Objectives 
Type of 

Surrogate 
Model 

Mean 
Absolute 
Error (*) 

Mean 
Normalized 

Error 
R-squared 

Test 1 (Case 2, forty-one design variables, normal DoE) 

UDImod 

SVD 4.70E0 7.39E-2 8.48E-1 

RBF 4.83E0 7.59E-2 8.65E-1 

STEP 4.85E0 7.63E-2 8.57E-1 

KR 5.79E0 9.10E-2 8.30E-1 

KN 1.28E1 2.02E-1 3.59E-1 

EUI 

SVD 2.11E-1 1.47E-2 9.88E-1 

STEP 2.23E-1 1.55E-2 9.88E-1 

RBF 2.73E-1 1.90E-2 9.84E-1 

KR 3.32E-1 2.32E-2 9.79E-1 

KN 1.97E0 1.37E-1 3.57E-1 

Test 2 (Case 1, two design variables, normal DoE) 

UDImod 

RBF 3.56E0 3.56E-2 9.59E-1 

KN 5.11E0 5.11E-2 9.22E-1 

STEP 1.86E1 1.86E-1 6.52E-1 

SVD 1.89E1 1.89E-1 4.76E-1 

KR 3.79E1 3.79E-1 -1.86E0 

EUI 

RBF 7.53E-1 1.99E-2 9.76E-1 

KN 1.30E0 3.43E-2 9.49E-1 

STEP 3.43E0 9.07E-2 7.85E-1 

SVD 4.25E0 1.12E-1 5.84E-1 

KR 3.11E1 8.21E-1 -3.14E1 

Test 3 (Case 1, two design variables, adaptive DoE) 

UDImod KR 3.96E0 3.96E-2 9.65E-1 

EUI KR 9.36E0 2.47E-1 1.95E-1 

 
 

Fig. 5. Tool integration 



The results on the surrogate model accuracy in test 1 and 2 
(shown in Table II) are compared within each case and 
between cases. In order to facilitate the comparison, all the 
results are sorted by Mean Absolute Error in ascending order. 
Within each case, we found that the approximation abilities of 
the five surrogate models are different in varying degrees. 
Considering the performance of all the listed accuracy indices, 
SVD (marked in Blue) and RBF (marked in Yellow) are 
eventually selected out of the five surrogate models for Case 2 
and Case 1, respectively. By further comparing the selected 
surrogate models within each case, we also found that the 
surrogate model for EUI is more accurate than that for UDImod. 
Moreover, by the comparison between cases, UDImod is 
approximated relatively better in Case 1 than that in Case 2 
(due to the relatively large difference in R2); while EUI is 
approximated equally well in both cases (because of similar 
values for all accuracy indices).  

In summation, the above results indicate that (1) 
simultaneously comparing multiple types of surrogate models 
for a specific objective is helpful for obtaining a more accurate 
surrogate model; (2) EUI is relatively easier to be 
approximated compared to UDImod when using the number of 
training data; and (3) the problem scale has a larger impact on 
UDImod than EUI in this specific case study (i.e. the surrogate 
model accuracy for UDImod decreases obviously along with the 
increase of the number of design variables). The latter two 
indications may be associated with the complex input-output 
behavior of the original model. 

In order to have more informed knowledge of the input-
output behavior of the original model, visualization of the 
generated response surfaces is helpful. As examples, the 
response surfaces (i.e. RBF) for UDImod and EUI in test 2 are 
illustrated in Fig. 6. Specifically, as we can observe from the 
3D and 2D response surfaces for both UDImod and EUI, WRR 
(i.e. Y axis) is more sensitive than RH (i.e. X axis), because the 
slope along Y axis is much more steep than the slope along X 

axis. And, there is an obvious "flat area" in the response 
surface for UDImod, while the response surface for EUI is 
relatively smooth, which confirms that the input-output 
behavior of UDImod is more complex than that of EUI. 
Moreover, by observing the cross sections along X and Y axes, 
we can identify the most sensitive ranges of WRR, and have a 
general idea of how UDImod and EUI change along with WRR 
and RH and the corresponding variation ranges. The input-
output behavior obtained from Fig. 6 is also consistent with the 
educated guess in terms of building performance of this 
specific case, which in turn proves the correctness of the 
response surfaces. 

In short, apart from using response surfaces for the 
surrogate-based optimization, visualizing response surfaces 
gives us an easy way to understand the overall behavior of the 
original model. With this information, we could reformulate 
the design space in a more informed manner when it is needed.  

B. Impacts of Sampling Strategy on RSM Accuracy 

In order to investigate possible impacts of the sampling 
strategy on the surrogate model accuracy, test 2 and test 3 are 
carried out by using different DoE strategies (i.e. normal DoE 
and adaptive DoE). Different from the normal DoE in test 2, an 
adaptive DoE algorithm called "Adaptive Space Filler (ASF)" 
[14] is applied in test 3. The total simulation time for both 
daylight and energy is around 22.3 hours (similar with test 2); 
other settings for test 3 are described here below in Table III.   

TABLE III.  SETTINGS FOR ADAPTIVE  SPACE FILLER IN TEST 3 

 Iterations 
Sample 

Size 

Space 
Filling 

Algorithm 

Type of 
Surrogates 

Termination 
Criterion 

UDImod 43 
10 

Incremental 
Space 
Filler 

Kriging 
Mean 

Absolute 
Error < 0.5 EUI 21 

   
 

Fig. 6. Response surface for UDImod in test 2 (left); Response surface for EUI in test 2 (right) 



The results on the surrogate model accuracy in test 3 
(shown in Table II) are compared with that in test 2. As we can 
observe from the results, the surrogate model for UDImod in test 
3 has similar accuracy level with the one in test 2. However, 
we are aware that some small variations or fluctuations occur 
compared with the original smooth response surface in test 2. 
This could be interpreted as the ability of the adaptive DoE in 
exploring complex regions. Moreover, regarding the surrogate 
model for EUI in test 3, its approximation ability is much 
lower than the one in test 2 according to the current results, 
although the general trend of the overall behavior is similar. 
The low accuracy level achieved is far away from the 
expectation; possible reasons might be associated with some 
detail settings for ASF, which needs further research.  

In summation, the above results indicate that the adaptive 
DoE has potential to explore complex regions of design space, 
apart from the overall behavior of the original model. But, 
some settings for ASF need to be fine-tuned in further research. 

C. Impacts of RSM-based Approach on Optimization Results 

In order to investigate possible impacts of the RSM-based 
approach on the optimization results, both the RSM-based and 
simulation-based approaches are applied on the same case (i.e. 
Case 1) within the similar time frame. The settings for the both 
approaches are described here below in Table IV. 

TABLE IV.   SETTINGS FOR RSM-BASED AND SIMULATION-BASED 

OPTIMIZATION  IN TEST 2 AND 4 

 
Itera- 

tions 

Sample 
Size 

Optimization 
Algorithm 

Simulation 
Runs 

Time 
(hrs)  

RSM-
based 

500 

30 NSGA-II 

360 (for RSMs) 21.5 

Simulation-
based 

14 420 22.3 

As shown in the scatter plot charts of Fig. 8, it should be 
first noted that UDImod and EUI show a highly negative 
correlation between them. This means that, in general, both 
objectives change in the same direction, namely, EUI decreases 
along with the increase of UDImod as expected. It just matches 
the purpose of UDImod, as a metric that is meant to utilize 
daylight and prevent overheating simultaneously for energy 
saving. In this case, the optimal result(s) obtained from this 
multi-objective optimization can be either a unique solution or 
a very "short" Pareto Front consisted of a few solutions; plus, 
the optimal result(s) will appear on the top-left corner of the 
scatter plot charts. 

As shown in Fig. 9 (left), all the solutions in Fig. 8 are 
plotted in the same chart. We can find that a much larger 
number of solutions (i.e. 15,000 in this case) are obtained in 
very short optimization time (i.e. a few seconds) by using the 
RSM-based approach. This is the major advantage of the RSM-
based optimization over the simulation-based optimization. As 
we can see, in general, the overall distribution of the solutions 
from the RSM-based and simulation-based approaches matches. 
This proves the general correctness of the surrogate model used, 
to a certain extent. Thus, the RSM-based approach has the 
potential to search the overall design space sufficiently and 
locate the promising regions. Nevertheless, the surrogate 
models used may not be accurate enough locally. As shown in 
the blue ellipse, some approximate solutions exceed the valid 
range of UDImod (i.e. between 0% and 100%), due to the 
limited local accuracy of the surrogate models. Therefore, it is 
necessary to verify the local accuracy of the surrogate models 
at prefer regions and update the surrogate models locally. As 
shown in Fig. 9 (right), 20 design points are randomly selected 
to run the simulations. The verification result shows that most 
of the selected design points are approximated well, except the 
ones marked (by a boxed point and a circled point). 

In summation, the above results indicate that the RSM-
based optimization has the potential to search the overall 

   
 

Fig. 7. Response surface for UDImod in test 3 (left); Response surface for EUI in test 3 (right) 



design space sufficiently and locate the promising regions 
where the optimum is expected to be. However, due to the 
limitation on the local accuracy of the surrogate models, 
further local verification at prefer regions and surrogate model 
update are suggested. 

V. CONCLUSIONS 

Due to the time-consuming simulations in building design, 
the effectiveness of the simulation-based optimization tends to 
be limited. To conquer this obstacle, the surrogate-based 
optimization is suggested by many researchers. In this paper, a 
series of tests were designated to investigate the possible 
impacts of problem scale and sampling strategy on the 
surrogate model accuracy, and the potential of surrogate-based 
optimization in finding high quality solutions for multi-
objective optimization problems. Based on the observation of 
current results, some conclusions are summarized below. 

The problem scale has a larger impact on UDImod than EUI 
in this specific case study. The accuracy of the surrogate model 
for UDImod decreases obviously, along with the increase of the 
number of design variables; while the accuracy of the surrogate 
model for EUI remains similar. 

The adaptive DoE has potential to explore complex regions 
of design space, apart from the overall behavior of the original 
model. But, the accuracy of the generated surrogate model for 
EUI is low in this case. 

The RSM-based optimization has the potential to search the 
overall design space sufficiently and locate the promising 
regions where the optimum is expected to be. However, due to 
the limitation on the local accuracy of the surrogate models, 
further local verification at prefer regions and surrogate model 
update are suggested. Additionally, apart from using response 
surfaces for the surrogate-based optimization, they are also 
useful for gaining insight into the global behavior of the system. 

 
Fig. 8. RSM-based optimization (left); Simulation-based optimization (right) 

  
Fig. 9. Comparison between RSM-based and simulation-based optimization (left); Verification of randomly selected 20 design points (right) 

 



In future research, the surrogate-based optimization is 
expected to be applied in a more complex case, and detail 
settings for ASF need to be fine-tuned in order to improve the 
approximation accuracy of the generated surrogate models. 
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