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Sampling in Parametric and Nonparametric
System Identification: Aliasing, Input

Conditions, and Consistency
Rodrigo A. González , Max van Haren , Tom Oomen , Senior Member, IEEE,

and Cristian R. Rojas , Senior Member, IEEE

Abstract—The sampling rate of input and output signals
is known to play a critical role in the identification
and control of dynamical systems. For slow-sampled
continuous-time systems that do not satisfy the
Nyquist-Shannon sampling condition for perfect signal
reconstructability, careful consideration is required when
identifying parametric and nonparametric models. In this
letter, a comprehensive statistical analysis of estimators
under slow sampling is performed. Necessary and
sufficient conditions are obtained for unbiased estimates
of the frequency response function beyond the Nyquist
frequency, and it is shown that consistency of parametric
estimators can be achieved even if input frequencies
overlap after aliasing. Monte Carlo simulations confirm the
theoretical properties.

Index Terms—Frequency-domain system identification,
undersampled systems, frequency response function.

I. INTRODUCTION

THE EXACT reconstruction of continuous-time signals
based on their samples is crucial when designing data-

driven methods for estimating dynamical systems. According
to the Nyquist-Shannon theorem, such reconstruction is pos-
sible if and only if the sampling rate is at least twice the
bandwidth of the signal [1]. If the Nyquist-Shannon condition
is not met, there exists an overlap of frequency components,
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known as aliasing. Since aliasing causes a loss of information
for frequencies above the Nyquist frequency, system identi-
fication methods typically minimize the reconstruction error
by using a small sampling period to ensure that the relevant
dynamics remain below the Nyquist frequency [2].

When small sampling periods are not feasible, one way
to mitigate aliasing effects is by multi-rate system identifica-
tion. Methods have been developed to identify fast-dynamics
models in multi-rate settings by exploiting the fast sampling
of inputs [3], [4]. Polynomial transformation techniques [5]
and state-space approaches [6] for dual-rate systems have also
been proposed. These methods are inherently designed for
discrete-time multi-rate models, and do not directly address
continuous-time systems under slow sampling conditions.

For uniformly-sampled continuous-time systems, evidence
suggests that slow sampling does not necessarily pose a
fundamental limitation for the identification of stochastic
differential equations [7]. However, slow sampling can degrade
performance of transfer function identification methods due
to inaccuracies in estimating output derivatives [8]. Moreover,
existing statistical analysis [9], [10] assume that the sampling
period is fast enough to allow for a bijective transformation
between continuous-time and discrete-time models [11], which
may not hold in slow sampling scenarios.

Several methods for frequency-response function estimation
beyond the Nyquist frequency have been developed. A prac-
tical nonparametric identification method beyond the Nyquist
frequency is proposed in [12], which requires careful selection
of input signals to avoid aliasing. Similarly, [13] develops a
local polynomial approach to allow for disentanglement of
the aliased contributions for slow-sampled systems assuming
a smooth frequency response. While promising, these methods
lack a rigorous statistical foundation, such as explicit condi-
tions on the input signals for well-posedness of the methods,
and optimality guarantees.

Although important developments have been made, a
comprehensive statistical analysis of continuous-time system
identification methods when the sampling violates the Nyquist-
Shannon condition is still needed. This gap is addressed
through our main contributions, which are as follows.

2475-1456 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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C1 We prove that the least-squares estimator of the
frequency response function is unbiased even when
the Nyquist-Shannon sampling condition is violated,
provided the input frequencies remain distinct after
accounting for aliasing. We compute the covariance of
this estimator, and provide an alternative interpretation
of it as the quotient of output and input discrete-time
Fourier transforms, evaluated at the input frequencies.

C2 Using the least-squares estimator analyzed in
Contribution C1, we provide an explicit relation, valid
for finite sample size, between frequency domain and
time domain identification in the slow-sampling regime.

C3 We prove that the time-domain prediction error method
is a consistent estimator of the parametric model
under mild identifiability conditions, even if the input
frequency lines are aliased, or if they overlap after
aliasing.

The remainder of this letter is organized as follows. Section II
introduces the identification setup. Section III presents the
unbiased least-squares frequency response estimator, and
Section IV links this estimator to parametric estimators and
provides conditions for consistency. Simulation results are
provided in Sections V and VI concludes this letter.

Notation: The Heaviside operator satisfies px(t) = dx(t)
dt . All

vectors, matrices, and multivariate signals are written in bold,
and vectors are column vectors, unless transposed. The con-
jugate transpose of a vector x is denoted as xH, and the
diagonal matrix diag(x) or diag(x1, . . . , xn) is formed by the
elements in x = [x1, . . . , xn]�. The identity matrix of size m
is denoted as Im, and the null space of a matrix A is denoted
as Ker(A). The Kronecker delta centered at n = 0 is denoted
as δ(n), and b mod m denotes the modulo operation. The
expression E{x(kh)} = limN→∞ 1

N

∑N
k=1 E{x(kh)} denotes the

expectation of a quasi-stationary signal x(kh).

II. PROBLEM FORMULATION

Consider a single-input single-output, linear time-invariant
(LTI), asymptotically stable, continuous-time system

x(t) = G0(p)u(t), (1)

where x(t) ∈ R is the output of the LTI system G0(p) when
subject to the input u(t) ∈ R. We are interested in estimating
G0(p) from input and output data. Thus, we excite the system
with a continuous-time multisine input of the form

u(t) = a0 +
M∑

�=1

a� cos(ω�t + φ�), (2)

where the angular frequencies ω� are positive and sorted in
strictly increasing order, and {a�}M

�=0 are all different from
zero. We assume perfect knowledge of the continuous-time
input signal and the absence of a hold device between the
input source and the system, which implies that u(t) is a band-
limited signal with bandwidth ωM .

We retrieve a noisy measurement of the output x(t) at
equidistant time points t = h, 2h, . . . ,Nh:

y(kh) = x(kh)+ v(kh), k = 1, . . . ,N, (3)

where v(kh) ∈ R is a zero-mean i.i.d. white noise of variance
σ 2. The key assumption in this letter is that the sampling
period h does not satisfy the Nyquist-Shannon criterion for
perfect reconstructability of the input signal based only on

its samples, i.e., h ≥ π/ωM . We refer to this experimental
condition as the slow-sampling scenario.

Our goal is to obtain necessary and sufficient conditions
for the identifiability of G0(p), and to derive consistent
nonparametric and parametric estimators for this sampling
regime.

Remark 1: A similar analysis to the one presented in this
letter can be performed if a zero-order hold device is present,
where a discrete-time formulation, not covered here, would be
preferred.

III. A LEAST-SQUARES ESTIMATE FOR THE FREQUENCY

RESPONSE FUNCTION

A nonparametric model for the system G0(p) can be
obtained via the estimation of its frequency response func-
tion [14]. Since the input in (2) only excites the frequencies
ω = 0,±ω1, . . . ,±ωM , we focus on estimating the frequency
points contained in the vector

Gf
0 := [

G0(0) ,G0(−iω1),G0(iω1),

. . . ,G0(−iωM),G0(iωM)
]� ∈ C

2M+1. (4)

We assume the output is measured in a stationary regime, i.e.,
after all distortions caused by transient effects have decayed
to zero. Then, the noiseless output x(kh) is given by

x(kh) = G0(0)a0 +
M∑

�=1

a�|G0(iω�)| cos
(
ω�kh + φ� + ∠G0(iω�)

)

= ζH(kh)Gf
0, (5)

where

ζ (kh) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0
a1
2 ei(ω1kh+φ1)

a1
2 e−i(ω1kh+φ1)

...
aM
2 ei(ωMkh+φM)

aM
2 e−i(ωMkh+φM)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

Thus, the following least-squares estimator to compute the
frequency response vector Gf

0 is considered:

Ĝf =
[

N∑

k=1

ζ (kh)ζH(kh)

]−1[ N∑

k=1

ζ (kh)y(kh)

]

. (7)

A. Statistical Properties of the Least-Squares Estimator
For the least-squares estimator in (7) to be well-defined in

the slow-sampling scenario, we require the input frequencies
{ω�}M

�=1 to not overlap after accounting for aliasing. This key
condition is made explicit in Assumption 1.

Assumption 1 (Non-Overlapping Condition): The input
frequencies {ω�}M

�=1 satisfy
{
ω� ± ωτ �= 2nπ

h for all �, τ = 1, . . . ,M; � �= τ ; n ∈ Z,

ω� �= nπ
h for all � = 1, . . . ,M; n ∈ Z.

(8)

Note that for each pair of frequencies below the Nyquist
frequency, the inequalities in (8) are satisfied.

The well-posedness of the estimator defined in (7) and
its unbiasedness when the sampling period does not satisfy
the Nyquist-Shannon criterion are investigated in Theorem 1.
These results constitute Contribution C1 of this letter.
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Theorem 1: Consider the sampled input and output signals
{u(kh), y(kh)}N

k=1, where u(t) is given by (2), y(kh) is measured
in a stationary regime, h ≥ π/ωM , and N > 2M. Then, (7)
is well-defined and is an unbiased estimator of the frequency
response vector Gf

0 if and only if Assumption 1 holds. In such
case, its covariance is given by

Cov{Ĝf} = σ 2

[
N∑

k=1

ζ (kh)ζH(kh)

]−1

. (9)

Proof: The least-squares estimator (7) is well-defined if and
only if its associated normal matrix

Z :=
N∑

k=1

ζ (kh)ζH(kh) (10)

is nonsingular. Let w ∈ C
2M+1 be arbitrary. We have

wHZw = 0 if and only if Kw = 0, where K =
[ζ (h), . . . , ζ (Nh)]H. The matrix K can be decomposed as
K = Vdiag(ζH(h)), where V ∈ C

N×(2M+1) is a rectangular
Vandermonde matrix given by

V =

⎡

⎢
⎢
⎢
⎣

1 1 1 · · · 1 1
1 e−iω1h eiω1h · · · e−iωMh eiωMh

...
...

... · · · ...
...

1 e−iω1(N−1)h eiω1(N−1)h · · · e−iωM(N−1)h eiωM(N−1)h

⎤

⎥
⎥
⎥
⎦
.

Vandermonde matrices such as the one above are known to
have full column rank if N ≥ 2M+1 and the complex numbers
1, e±iω1h, . . . , e±iωMh are distinct [15, Section 0.9.11]. This
necessary and sufficient condition is equivalent to (8). Under
the assumptions in (8), K has full column rank and thus
Kw = 0 implies w = 0, which means that Z is positive
definite and hence nonsingular.

For the unbiasedness result, we compute the expected value
of the least-squares estimator in (7) as

E{Ĝf} = Z−1

[
N∑

k=1

ζ (kh)x(kh)

]

= Gf
0,

where the last equality is due to (5). Finally, by noting that

Ĝf − E{Ĝf} = Z−1

[
N∑

k=1

ζ (kh)v(kh)

]

,

we have, using the fact that {v(kh)} is white noise,

Cov{Ĝf} = Z−1
N∑

k=1

N∑

τ=1

ζ (kh)E
{
v(kh)v(τh)

}
ζH(τh) Z−1

= σ 2Z−1
N∑

k=1

ζ (kh)ζH(kh)Z−1

= σ 2Z−1.

Corollary 1: Consider the same experimental conditions as
in Theorem 1, and assume that Assumption 1 holds. Then, (7)
is a consistent estimator of Gf

0 in (4). Furthermore, the
frequency response estimates Ĝ(0), Ĝ(±iω�), � = 1, . . . ,M
are asymptotically mutually uncorrelated, and the asymptotic
covariance of Ĝf is given by

lim
N→∞ NCov{Ĝf} = σ 2diag

(
1

a2
0

,
4

a2
1

,
4

a2
1

, . . . ,
4

a2
M

,
4

a2
M

)

. (11)

Proof: An estimator is consistent if it is unbiased and its
covariance decays to zero [16, p. 54]. Unbiasedness follows
from Theorem 1. We now compute its asymptotic covariance.
From (9), the asymptotic covariance is given by σ 2Z̄−1, where
Z̄ = limN→∞ Z/N, with Z being defined in (10). Calculating
the entries of Z̄ij of Z̄, we find Z̄11 = a2

0 and Z̄(2�)(2�) =
Z̄(2�+1)(2�+1) = a2

�/4 for � ∈ {1, 2, . . . ,M}. Lastly, every non-
diagonal element of Z̄ is of the form

lim
N→∞

C

N

N∑

k=1

e
i
(
ω̃kh+ψ̃

)

(12)

for some real constants C, ψ̃ . Due to the condition in (8), the
constant ω̃, which is the difference or sum of frequencies ω�
(including the zero frequency), is not a multiple of 2π/h. The
following chain of inequalities is satisfied for N ≥ 2M + 1:

0 ≤
∣
∣
∣
∣
∣

C

N

N∑

k=1

e
i
(
ω̃kh+ψ̃

)∣∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

C sin
(

1
2 [N + 1]ω̃h

)

N sin
(

1
2 ω̃h

)

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

C

N sin
(

1
2 ω̃h

)

∣
∣
∣
∣
∣
∣
.

Since ω̃ �= 2nπ/h, n ∈ Z, the denominator of the upper
bound is nonzero. The squeeze theorem [17, Theorem 3.3.6]
then implies that the limit in (12) is equal to zero. This
means that all the off-diagonal elements of Z̄ are zero, leading
to (11). Finally, since the covariance of (7) decays to zero, it
is consistent, concluding the proof.

In summary, unbiased estimates of the frequency response
function beyond the Nyquist frequency π/h can be obtained if
the input frequencies do not overlap after aliasing, as indicated
by the condition in (8). Frequencies equal to integer multiples
of the Nyquist frequency, i.e., ω� = nπ/h, alias to the zero
frequency if n is even, or a single frequency line if n is
odd. In the latter case, after minor adjustments to the proof
of Theorem 1, it can be shown that only the real part of
G0(inπ/h) can be estimated unbiasedly. Note that only one
experiment is needed for the least-squares estimator in (7) to
be computed, and no assumptions on the smoothness of the
frequency response of the system are required.

B. Frequency-Domain Interpretation

The least-squares estimator in (7) has a frequency-domain
interpretation. Via Parseval’s theorem [1], (7) is equivalent to

Ĝf =
[

N∑

n=1

�
[
ei 2πn

N

]
�H

[
ei 2πn

N

]
]−1[ N∑

n=1

�
[
ei 2πn

N

]
Y
[
e−i 2πn

N

]
]

,(13)

where the discrete-time Fourier transforms (DTFTs) of ζ (kh)
and y(kh) are respectively given by

�
[
eiωh

]
=

N∑

k=1

ζ (kh)e−ihkω,Y
[
eiωh

]
=

N∑

k=1

y(kh)e−ihkω. (14)

To obtain an explicit formula for Ĝf, we introduce the
following assumption.

Assumption 2 (No Spectral Leakage): There is no spectral
leakage when computing �[eiωh], i.e., Nh is a multiple of the
least common multiple of {2π/ω�}M

�=1.
Theorem 2: Consider the sampled input and output signals

{u(kh), y(kh)}N
k=1, where u(t) is given by (2), y(kh) is measured

in a stationary regime, h ≥ π/ωM , and N > 2M. Assume
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that Assumptions 1 and 2 hold. Then, the least-squares
estimator (7) can be computed as

Ĝf =
[

Y
[
ei0
]

U
[
ei0
] ,

Y
[
e−iω1h

]

U
[
e−iω1h

] ,
Y
[
eiω1h

]

U
[
eiω1h

] ,

. . . ,
Y
[
e−iωMh

]

U
[
e−iωMh

] ,
Y
[
eiωMh

]

U
[
eiωMh

]

]�
, (15)

where the DTFT of y(kh) is given by (14), and

U
[
ei0
]

= Na0,U
[
e±iω�h

]
= N

a�
2

e±iφ�, � = 1, . . . ,M.

Furthermore, the frequency response estimates
Ĝ(0), Ĝ(±iω�), � = 1, . . . ,M are mutually uncorrelated for
any N ≥ 2M + 1.

Proof: The discrete Fourier transform of ζ (kh) is a
N-periodic function described in one period by

�
[
ei 2πn

N

]
= N

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0δ(n mod N)
a1
2 eiφ1δ

((
n − Nhω1

2π

)
mod N

)

a1
2 e−iφ1δ

((
n + Nhω1

2π

)
mod N

)

...
aM
2 eiφMδ

((
n − NhωM

2π

)
mod N

)

aM
2 e−iφMδ

((
n + NhωM

2π

)
mod N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where we have used Assumption 2. Since (8) also holds, the
matrix being inverted in (13) admits the expression

N∑

n=1

�
[
ei 2πn

N

]
�H

[
ei 2πn

N

]
= N2diag

(

a2
0,

a2
1

4
,

a2
1

4
, . . . ,

a2
M

4
,

a2
M

4

)

. (17)

Via Parseval’s theorem applied to (17), we find that Z in (10)
is also a diagonal matrix, and thus the correlation between
frequency response estimates is zero.

Similarly, using (16) and the N-periodicity of Y[ei 2πn
N ],

N∑

n=1

�
[
ei 2πn

N

]
Y
[
e−i 2πn

N

]
= N

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0Y
[
ei0
]

a1
2 eiφ1 Y

[
e−iω1h

]

a1
2 e−iφ1 Y

[
eiω1h

]

...
aM
2 eiφM Y

[
e−iωMh

]

aM
2 e−iφM Y

[
eiωMh

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

The computation of (13) via (17) and (18) leads to (15), which
is what we aimed to prove.

Theorem 2 states that an unbiased estimate of the frequency
response at the frequencies above the Nyquist frequency can
be computed directly from the empirical transfer function
estimate (ETFE) [18], evaluated at the aliased frequencies.
This insight provides a theoretical basis for interpreting the
ETFE beyond the Nyquist frequency when the input suffers
from aliasing.

Remark 2: The proof of Theorem 2 shows that Z in (10) is
a diagonal matrix when Assumption 2 holds. Thus, for a fixed
sample size, the variance of the frequency response function
estimates does not increase with increasing sampling periods,
as long as no spectral leakage is introduced.

The frequency response function estimator in (7) or (15)
can be used to compute parametric estimators that are accurate
above the Nyquist frequency, as seen next.

IV. NONPARAMETRIC TO PARAMETRIC ESTIMATORS

Once the frequency response function estimate (7) has
been computed, we propose a parametric model G(p, θ) for
the system G0(p), where θ ∈ R

nθ contains the coefficients
associated with, e.g., numerator and denominator polynomials
of an unfactored rational transfer function, or coefficients
associated with a modal parametrization of the system [19].
Throughout this section, we assume that there exists a unique
vector θ0 ∈ R

nθ such that G(p, θ0) = G0(p).
For the sequel, we define the vector of frequency responses

of the parametric model as

Gf(θ) := [
G(0, θ),G(−iω1, θ),G(iω1, θ),

. . . ,G(−iωM, θ),G(iωM, θ)
]�
. (19)

A parametric model can be obtained from the least-squares
estimate (7) by curve fitting in the frequency domain. This
method, when weighted correctly, corresponds exactly to
the time-domain prediction error method with a multisine
predictor that suffers from aliasing. This result, contained in
Theorem 3, constitutes Contribution C2 of this letter.

Theorem 3: Consider the sampled input and output signals
{u(kh), y(kh)}N

k=1, where u(t) is given by (2), y(kh) is measured
in a stationary regime, h ≥ π/ωM , N > 2M, and assume that
Assumption 1 holds. The following two cost functions share
the same global minima:

Vf(θ) = (
Gf(θ)− Ĝf)H[Cov{Ĝf}]−1(Gf(θ)− Ĝf), (20)

Vt(θ) =
N∑

k=1

(
y(kh)− ŷ(kh, θ)

)2
, (21)

where Ĝf is from (7), and the predictor ŷ(kh, θ) is given by

ŷ(kh, θ) = G(0, θ)a0

+
M∑

�=1

a�|G(iω�, θ)| cos
(
ω�kh + φ� + ∠G(iω�, θ)

)
. (22)

Proof: When analyzed as a function of θ , except for an
additive constant, Vf(θ) is proportional to

Vf(θ) ∝
[
Gf(θ)

]H
ZGf(θ)− 2Re

{(
Ĝf
)H

ZGf(θ)
}
, (23)

where we used the fact that Cov{Ĝf} = σ 2Z−1, with Z defined
as in (10). First, by leveraging the result in (5),

[
Gf(θ)

]H
ZGf(θ) =

N∑

k=1

|ζH(kh)Gf(θ)|2 =
N∑

k=1

ŷ2(kh, θ).

On the other hand, the identity (Ĝf)HZ = ∑N
k=1 y(kh)ζH(kh)

leads to

Re
{(

Ĝf
)H

ZGf(θ)
} =

N∑

k=1

y(kh)ŷ(kh, θ).

Replacing [Gf(θ)]HZGf(θ) and Re{(Ĝf)HZGf(θ)} in (23) and
completing the square leads to Vf(θ) ∝ Vt(θ). Thus, these cost
functions share the same global minima.

Theorem 3 indicates that, provided the input frequency
conditions in (8) are satisfied and N ≥ 2M + 1, there is
an equivalence between frequency domain and time domain
parametric estimation for the slow-sampling scenario. The
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expressions also coincide with the standard prediction error
method and maximum likelihood estimators for the Gaussian
noise case when the sampling rate is higher than the Nyquist
frequency [2]. The parametric model can be obtained via
numerical minimization of (20) or (21). For example, the
minimization of (21) can be achieved using Gauss-Newton
(GN) iterations [2, Sec. 10.2]:

θ j+1 = θ j +
[

N∑

k=1

ϕ̂j(kh)ϕ̂�
j (kh)

]−1[ N∑

k=1

ϕ̂j(kh)εj(kh)

]

,

where ϕ̂j(kh) = (∂ ŷ(kh, θ)/∂θ)|θ=θ j and εj(kh) = y(kh) −
ŷ(kh, θ j), with ŷ(kh, θ j) being defined in (22). As in the
standard sampling case h < π/ωM , caution must be taken
when initializing the iterative procedure, as convergence to a
global minimum is not guaranteed [2].

Remark 3: Under Assumption 2 on the absence of spectral
leakage, applying the result in (17) in Vf(θ) gives

Vf(θ) ∝ a2
0

∣
∣Ĝ(0)− G(0, θ)

∣
∣2 +

M∑

�=1

a2
�

2

∣
∣Ĝ(iω�)− G(iω�, θ)

∣
∣2,

i.e., the least-squares cost function of the frequency response
estimates, weighted by the magnitude of the input spectrum.

In the slow-sampling scenario, the prediction error method
proposed in Theorem 3 provides consistent estimators of the
parametric model G(p, θ) under mild conditions. In other
words, the parametric estimator that minimizes (20) and (21)
converges to θ0 with probability 1. Interestingly, this property
holds even if the aliasing constraint in Assumption 1 is
not satisfied, i.e., if there are input frequencies that overlap
after aliasing. Theorem 4 formalizes this result, which is
Contribution C3 of this letter.

Theorem 4: Consider the sampled input and output signals
{u(kh), y(kh)}N

k=1, where u(t) is given by (2), y(kh) is measured
in a stationary regime, and h ≥ π/ωM . Assume that the model
satisfies the condition

Gf(θ)− Gf
0 ∈ Ker

(
�ζ

) =⇒ θ = θ0, (24)

where �ζ := E{ζ (kh)ζH(kh)}. Then, as N tends to infinity, the
parametric estimator that minimizes (21) among all asymptot-
ically stable models converges to θ0 with probability 1.

Proof: By [2, Lemma 8.2], the criterion Vt(θ)/N converges
uniformly and with probability 1 as N → ∞ to

V(θ) = E
{(

y(kh)− ŷ(kh, θ)
)2}
.

Due to (5) and ŷ(kh, θ) = ζH(kh)Ĝf(θ), we can compute

V(θ) = E
{(

x(kh)− ŷ(kh, θ)
)2}+ σ 2

= lim
N→∞

1

N

N∑

k=1

∣
∣
∣ζH(kh)

(
Gf(θ)− Gf

0

)∣
∣
∣
2 + σ 2

=
(

Gf(θ)− Gf
0

)H
�ζ

(
Gf(θ)− Gf

0

)
+ σ 2.

This cost function is bounded below by σ 2, with equality if and
only if �ζ (Gf(θ) − Gf

0) = 0. By the identifiability condition
in (24), the minimizer of V(θ) is unique and is equal to θ0,
concluding the proof.

Following similar steps from the proof of Corollary 1,
the matrix �ζ has a rank equal to the number of distinct
input frequency lines (after accounting for aliasing) within

Fig. 1. Bode plot of the system (blue), and the mean value of the
magnitude and phase of the estimated frequency response function via
least-squares, with its 95% confidence interval (red). The least-squares
approach provides an unbiased estimate of the system over the Nyquist
frequency.

the fundamental frequency band [ − π/h, π/h). If (8) is
satisfied, �ζ is nonsingular, and (24) reduces to the standard
identifiability condition Gf(θ) = Gf

0 =⇒ θ = θ0. Therefore,
when no input frequencies overlap after aliasing, nθ ≤ 2M+ 1
ensures identifiability for standard model parameterizations
and consistency of the prediction error method estimator. If
input frequency lines overlap, consistency is still guaranteed
as long as the dimension of θ does not exceed the number of
unique non-overlapping input frequency lines.

V. SIMULATION STUDIES

In this section we verify the main theoretical findings
via Monte Carlo simulations. The tests are conducted on a
benchmark system known as the Rao-Garnier system [20]:

G0(p) = −6400p + 1600

p4 + 5p3 + 408p2 + 416p + 1600
, (25)

with θ0 = [1600, 416, 408, 5, 1600,−6400]� as true parame-
ter vector. The parametric model we consider is given by

G(p, θ) = b1p + b0

p4 + a3p3 + a2p2 + a1p + a0
,

where θ = [a0, a1, a2, a3, b0, b1]�. The system in (25) is
excited with an input as in (2), and the noise variance
corresponds to an output signal-to-noise ratio of 10 [dB].

A. Nonparametric System Identification
To assess the statistical performance of the nonparametric

estimator in (7), we conduct 2000 Monte Carlo runs with
varying noise realizations. Each simulation generates N =
2000 output data samples using a fixed input with unit
amplitudes, random phases, and M = 13 nonzero frequencies
between 0.1 and 30 [rad/s]. The sampling period is set to h =
0.5 [s], which is 100 times larger than the typical sampling
period for this system [20]. Assumption 1 is satisfied under
these experimental conditions.

Figure 1 shows the Bode plot of the true system and the
mean value of the frequency response estimate at each input
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Fig. 2. Empirical means of the parameter estimates (blue), with
corresponding MSEs (log-log subplots, black lines). Parameters ai and
bi correspond to the denominator and numerator coefficients of G(p, θ),
respectively. All estimates converge to their true values (green dashed
lines), and MSEs decay as 1/N, indicating the consistency of the
estimator minimizing (21).

frequency. As a metric of dispersion of the estimates, we
have also plotted the 95% confidence intervals associated with
the magnitude and phase of the frequency response estimate.
The estimator exhibits no noticeable bias at any frequency,
including those above the Nyquist frequency.

B. Parametric System Identification
In this letter we verify the consistency of the estimator

derived from minimizing Vt(θ) in (21). Specifically, we exam-
ine the sample mean and mean-square error (MSE) of the
estimated parameters across 60 logarithmically spaced sample
sizes ranging from N = 2 · 103 to 2 · 105. For each N,
1000 Monte Carlo runs are performed using a fixed random-
phase multisine input with unit amplitudes and nonzero
frequencies π/3, π, 7π/2, and 5π [rad/s]. The frequency
5π [rad/s] overlaps with π [rad/s], violating Assumption 1.
The maximum number of GN iterations is set to 100, and the
initial parameter vector is randomly generated, deviating from
the true parameter vector by at most 10% in each entry.

The sample means for increasing sample sizes are reported
in Figure 2, where each plot contains a subplot with the
MSE of each estimated parameter. For increasing values of
N, all the parameter estimates converge to their true values,
and the sample MSEs decay to zero as 1/N. The estimator
is consistent despite the input suffering from aliasing and
frequency line overlapping, since the identifiability condition
in (24) applied to this example indicates that a maximum
number of 7 parameters can be estimated consistently. These
results align with the findings in Theorem 4.

VI. CONCLUSION

The results in this letter provide statistical guarantees
for nonparametric and parametric identification methods for
slow-sampled continuous-time systems. Unbiased frequency

response estimates can be obtained if the input frequencies
avoid overlap after aliasing. For a fixed sample size and
no spectral leakage, the covariance of these estimates does
not deteriorate for increasing sampling periods. For paramet-
ric modeling, the prediction error method is consistent if
the number of frequency lines below the Nyquist sampling
rate is not less than the number of model parameters. Our
methods and proofs extend to standard sampling rates (h <
π/ωM), where aliasing is absent, aligning with standard
identifiability conditions for the prediction error method [2].
Future work includes extending these results to MIMO system
identification, where multiple experiments must be considered
to identify the frequency response function at each input
frequency [14].
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