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Abstract: Distributed fault diagnosis has been proposed as an effective technique for monitoring
large scale, nonlinear and uncertain systems. It is based on the decomposition of the large
scale system into a number of interconnected subsystems, each one monitored by a dedicated
Local Fault Detector (LFD). Neighboring LFDs, in order to successfully account for subsystems
interconnection, are thus required to communicate with each other some of the measurements
from their subsystems. Anyway, such communication may expose private information of a given
subsystem, such as its local input. To avoid this problem, we propose here to use differential
privacy to pre-process data before transmission.
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1. INTRODUCTION

The problem of fault diagnosis and security for large
scale nonlinear systems such as critical infrastructures or
interconnected Cyber Physical Systems (CPS) have re-
ceived increasing attention in the recent years (Kyriakides
and Polycarpou (2014)). Indeed, one way to increase the
resiliency of such systems to faults or deliberate cyber
attacks is to endow them with architectures capable of
monitoring, detecting, isolating and counteracting such
anomalies and threats. Such systems being large scale,
centralized monitoring and diagnosing architectures are
rarely feasible, thus favoring distributed or decentralized
ones. While decentralized solutions do not require commu-
nication between diagnosis nodes, they are not able to ac-
count for interconnection effects between different parts, or
subsystems, of the large scale system being monitored. As
this may lead to unacceptable performances, distributed
methods, which instead do require communication, are
thus preferable (Ferrari et al. (2012); Zhang and Zhang
(2013); Zhang et al. (2013); Ge and Han (2014); Riverso
et al. (2016); Noursadeghi and Raptis (2017)). One unex-
plored issue about the implementation of such distributed
schemes, regards indeed the necessity of communication
between neighbouring nodes. In the case where such nodes
� This research was supported by the Uncertainty Reduction in
Smart Energy Systems (URSES) research program funded by the
Dutch organization for scientific research (NWO) and Shell under
the project Aquifer Thermal Energy Storage Smart Grids (ATES-
SG) with grant number 408-13-030, and by the European Union
H2020 program under the project “SURE: Safe Unmanned Robotic
Ensembles” with grant number 707546.

may be operated by different, possibly competing entities,
mutual communication may be opposed as it may lead
to leaking privacy-sensitive information. We may consider
as an example a smart grid where neighbouring diagnosis
nodes are each monitoring different subgrids with dis-
tributed energy sources and each is managed by its own
grid operator. The two grid operators must exchange data
about nodes on their respective boundaries in order to al-
low for grid balancing, but they would rather keep private
the way that they are allocating energy supply to their dif-
ferent energy sources and satisfying their energy demand
(Han et al. (2014b); Sankar et al. (2011)). A powerful and
mathematically rigorous concept for dealing with privacy
problems is differential privacy. This concept emerged in
the Computer Science community (Dwork et al. (2006,
2014)), but recently found applications in Control Systems
as well (see for instance Han et al. (2014b,a, 2017); Le Ny
and Pappas (2014); Mo and Murray (2017)). It assumes
that each piece of user data whose privacy must be pro-
tected is contained in a separate record in a database.
A trusted party, called curator, maintains such database
and answers queries posed by possibly adversarial, external
parties. Differential privacy aims at modifying the query
output to guarantee that no adversarial can guess whether
a single record is present or has been altered, either by
combining the results from several queries, or using side-
channel information. In the previous example, the role of
user data is taken by the local input applied to a sub-
grid, while the query corresponds to the communication
of a subsystem boundary values to adversarial neighbours,
such values being dependent on the subsystem local input
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Fig. 1. The proposed distributed fault detection architec-
ture. On the left side, the decomposition of the orig-
inal system SI is shown, where I = 1, 2, 3: thin black
lines represent causal dependency between variables.
On the right, the communication and the acquisition
of measurements by the agents LI is depicted, where
I = 1, 2, 3.

sequence and the subsystem dynamics. The original and
novel contribution of the present paper is the application
of a differential privacy mechanism to the distributed fault
diagnosis approach of Ferrari et al. (2012). In particular,
Theorem 1 will provide a connection between the privacy
level of the aforementioned subsystem boundary values
and the privacy of its local inputs. The distributed diagno-
sis problem formulation, based on Local Fault Detectors
(LFD) will be presented in Section 2, where we will extend
existing results by considering a probabilistic detection
threshold. In Section 3 we will introduce a privacy pre-
serving mechanism to be applied to boundary data that
neighbouring LFDs need to exchange. The paper will be
completed by a numerical study in Section 4, showing
the effectiveness of the proposed approach in the case of
a multi-tank network simulated example, and some final
remarks in Section 5.

2. PROBLEM STATEMENT

In this paper we will consider the case of a large-scale
dynamical system S, originating from the interconnection
of N smaller subsystems SI , I = 1, . . . , N . Following
Ferrari et al. (2012), we will allow each subsystem to be
monitored by a dedicated agent LI , called Local Fault
Detector (LFD), having access to locally available infor-
mation, coming from measurements on its subsystem, and
information from neighboring agents (see Fig. 1).

2.1 Large-scale System Dynamics

We will assume S to be described by the following nonlin-
ear uncertain discrete time system{

xk+1 = g(xk, uk, wk, fk)

yk = xk + vk
, (1)

where xk ∈ Rn, uk ∈ Rm and yk ∈ Rn are the
state, the input and the output of S at discrete time
index k ∈ N, respectively, while g : Rn × Rm × Rp ×
Rq �→ Rn models the state dynamics. The variable wk ∈
Rp, instead, represents unavoidable modeling uncertainties

affecting eq. (1), while fk ∈ F ⊆ Rq represents a
parametrization of the whole class of faults that can
affect S. Such formulation is purposely as general as
possible, and comprises the cases where wk and fk affects
the dynamics g as additive or multiplicative terms, or
where they affect one or more parameters that appear
in the definition of g: we conventionally assume anyway
that for wk = 0 and fk = 0 the nominal and healthy
behavior of S, that is in the absence of uncertainties and
faults, is obtained. Furthermore, g will be assumed to be
differentiable and Lipschitz with respect to u, as detailed
in Ass. 3. Finally, for the sake of simplicity here the full
state is assumed to be available, up to a measurement
uncertainty vk ∈ Rn: the extension to general input-
output systems could be addressed similarly to Ferrari
et al. (2008).

Assumption 1. No faults act on the system, that is fk = 0,
for 0 ≤ k < kf , with kf being the anomaly occurrence
time. Moreover, the variables xk and uk remain bounded
before and after the occurrence of an anomaly, i.e., there
exist some stability regions S = Sx × Su ⊂ Rn ×Rm, such
that (xk, uk) ∈ S, for all k. �

Assumption 2. wk and vk are random variables defined on
some probability spaces (W,B(W),PW), and (V,B(V),PV),
respectively, where W ⊆ Rp, V ⊆ Rn, B(·) denotes a
Borel σ-algebra, and PW, PV are probability measures
defined over W, V, respectively. Furthermore, wk and vk
are not correlated and are independent from xk, uk and
fk, ∀ k. �

2.2 Sub-systems Dynamics

We assume that S can be described through a non-
overlapping decomposition D into N subsystems SI , with
I ∈ {1, . . . , N}, each defined via an extraction index nI -
tuple II (see Ferrari et al. (2012)). It is then possible to

define a local state xI,k ∈ RnI , where xI,k := col(x
(i)
k :

i = I(j)
I , j = 1, . . . , nI), and similarly a local output yI,k

and a local measurement uncertainty vI,k. The local input
uI,k is instead built with all the components of uk that
structurally affect at least one component of xI,k+1, and
similarly for building the local wI,k and fI,k.

Definition 1. A variable c structurally affects a variable
a = b(c, d) through a multi-input function b, and is written

c
b−→ a, if there exists at least a pair of distinct values c̄

and c̄′ and a value d̄ such that ā = b(c̄, d̄) is distinct from
ā′ = b(c̄′, d̄).

Remark 1. It is important to stress that here we are only
assuming that we have a structural knowledge of the effect
of wk and fk on each component of g. This does not
preclude the capability for our problem formulation to
capture the case where the uncertainty, or the anomaly,
are non parametric and arbitrary. For instance, we could
assume in this case the dynamics to be decomposable
as g(xk, uk, wk, fk) = g�(xk, uk) + wk + fk, where g�

represents the nominal dynamics, and wk and fk are
arbitrarily varying signals, but respecting Assumptions 1
and 2.

We can proceed further and describe the dynamics of the
generic subsystem SI as
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{
xI,k+1 = gI(xI,k, uI,k, xNI ,k, wI,k, fI,k)

yI,k = xI,k + vI,k
, (2)

where the local dynamics function gI : RnI × RmI ×
RnNI ×RpI ×RqI �→ RnI can be simply obtained by taking
in the right order the components of g that are contained
in the index tuple II . In general we cannot assume that
all the resulting subsystems SI are decentralized, i.e. their
dynamics depend only on the local state xI , therefore we
introduced the interconnection variable xNI ,k as in Ferrari
et al. (2012)

Definition 2. The interconnection variable xNI ,k ∈ RnNI

of the subsystem SI is the vector xNI ,k := col(x
(j)
k : x

(j)
k

g−→
x
(i)
I,k+1, i ∈ {1, . . . , nI}, j ∈ {1, . . . , n}).

The role of xNI ,k is to describe the functional dependence
of the local dynamics gI on state components from other
subsystems, which we will call neighboring subsystems or
simply neighbors. The set of all the neighbors of SI will be
denoted by NI .

Remark 2. As Assumption 1 holds for the original system
S, then it will continue to do so for every subsystem and
we can introduce a stability region SI for each one, where
the local state xI and input uI are assumed to always
belong. Similarly, we can easily build the domains VI , WI ,
FI and VNI

of, respectively: the local measurement and
modeling uncertainties, the local fault parameters, and the
measurement uncertainties of the interconnection variable.

2.3 Residual Generator

For fault detection purpose each LFD LI shall compute a
residual rI,k := yI,k − ŷI,k and compare it to a dynamic
detection threshold. In this subsection the residual will
be addressed. As a direct extension of Rostampour et al.
(2017), it shall be obtained as the output estimation error
of the following nonlinear estimator{

x̂I,k+1 = gI(yI,k, uI,k, yNI ,k, 0, 0) + Λ(ŷI,k − yI,k)

ŷI,k = x̂I,k
,

(3)
where x̂I , ŷI ∈ RnI are, respectively, the local state and
output estimates, yNI ,k ∈ RnNI are the measurements

of the interconnection variables xNI ,k, Λ � diag(λi, i =
1 . . . nI) is a diagonal matrix, and λi ∈ (0, 1) denotes some
filtering parameters chosen to guarantee the stability of the
estimator.

By using eqs. (1) and (3), we can then write the residual
dynamics as

rI,k+1 = Λ rI,k + δI,k , (4)

where the total uncertainty δI,k is a stochastic process
representing the uncertain part of the residual dynamics:

δI,k := gI(xI,k, uI,k, xNI ,k, wI,k, fI,k)

− g(yI,k, uI,k, yNI ,k, 0, 0) + vI,k+1

= gI(yI,k − vI,k, uI,k, yNI ,k − vNI ,k, wI,k, fI,k)

− g(yI,k, uI,k, yNI ,k, 0, 0) + vI,k+1 . (5)

Thanks to Ass. 1, 2 and eq. (5), it follows that, given yI,k,
uI,k, and yNI ,k, δI,k is a conditioned random variable on
a probability space (∆I,k,B(∆I,k),P∆I,k

), where ∆I,k is a
time varying set defined as follows.

Definition 3. The time varying total uncertainty set ∆I,k⊂
RnI at time index k is defined as

∆I,k := {δI,k | yI,k, yNI ,k, uI,k, wI,k ∈ WI , fI,k ∈ FI ,

vI,k ∈ VI , vI,k+1 ∈ VI , vNI ,k ∈ VNI
} ,

with δI,k being computed according to (5).

As a special case of Definition 3, we introduce the uncer-
tainty set corresponding to a healthy plant as follows.

Definition 4. The time varying healthy total uncertainty
set ∆0

I,k ⊂ RnI at time index k is defined as

∆0
I,k := {δI,k |wI,k ∈ WI , fI,k ∈ {0}, vI,k ∈ VI ,

vI,k+1 ∈ VI , vNI ,k ∈ VNI
} ,

where δI,k is computed according to (5).

Remark 3. The role of ∆I,k and ∆0
I,k is to quantify the

range of possible values that δI,k can take, respectively,
corresponding to situations when a fault may be present,
and in a healthy situations where a fault is absent. Apart
from simple cases, no closed form is available for comput-
ing such sets, and numerical approximations techniques
such as those in Dabbene et al. (2015) may be used.

We can now introduce a compact notation for the residual
generator described by eqs. (3),(4),(5), through a mapping
function ΣI : RnI ×RnI �→ RnI defined as

rI,k+1 = ΣI(rI,k, δI,k) := Λ rI,k + δI,k . (6)

Remark 4. While at time index k the residual rI,k can
be computed from yI and ŷk and is thus a deterministic
quantity, from (4), (6) it follows that the next value rI,k+1

is a random variable on the same probability space as δI,k.

Given these preliminaries, it is now possible to write the
following two fundamental definitions (see Fig. 2).

Definition 5. The time varying residual set RI,k+1 at time
index k+1 is defined as the image of the set ∆I,k through
ΣI , that is

RI,k+1 :=ΣI(rI,k,∆I,k)

={rI,k+1 | rI,k+1 = ΣI(rI,k, δI), δI ∈ ∆I,k}.

Definition 6. The time varying healthy residual set R0
I,k+1

at time index k+1 is defined as the image of the set ∆0
I,k

through ΣI , that is

R0
I,k+1 :=ΣI(rI,k,∆

0
I,k)

={rI,k+1 | rI,k+1 = ΣI(rI,k, δI), δI ∈ ∆0
I,k}.

For ease of notation, when there is no ambiguity, in the
rest of the paper we will drop the index I to denote that a
quantity refers to the generic subsystem SI or the generic
LD agent LI . The index N will be retained to indicate the
neighbor set of the generic subsystem or agent.

2.4 Fault Detection Threshold Design Problem

In order to reduce the detrimental effects on fault de-
tectability of deterministic thresholds, which in practice
can be overly conservative, in this paper we will seek a
probabilistically robust threshold instead (see Rostampour
et al. (2017)). In particular, by extending Boem et al.
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of the interconnection variables xNI ,k, Λ � diag(λi, i =
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filtering parameters chosen to guarantee the stability of the
estimator.

By using eqs. (1) and (3), we can then write the residual
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rI,k+1 = Λ rI,k + δI,k , (4)

where the total uncertainty δI,k is a stochastic process
representing the uncertain part of the residual dynamics:

δI,k := gI(xI,k, uI,k, xNI ,k, wI,k, fI,k)

− g(yI,k, uI,k, yNI ,k, 0, 0) + vI,k+1
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Thanks to Ass. 1, 2 and eq. (5), it follows that, given yI,k,
uI,k, and yNI ,k, δI,k is a conditioned random variable on
a probability space (∆I,k,B(∆I,k),P∆I,k

), where ∆I,k is a
time varying set defined as follows.

Definition 3. The time varying total uncertainty set ∆I,k⊂
RnI at time index k is defined as

∆I,k := {δI,k | yI,k, yNI ,k, uI,k, wI,k ∈ WI , fI,k ∈ FI ,

vI,k ∈ VI , vI,k+1 ∈ VI , vNI ,k ∈ VNI
} ,

with δI,k being computed according to (5).

As a special case of Definition 3, we introduce the uncer-
tainty set corresponding to a healthy plant as follows.

Definition 4. The time varying healthy total uncertainty
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I,k ⊂ RnI at time index k is defined as
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range of possible values that δI,k can take, respectively,
corresponding to situations when a fault may be present,
and in a healthy situations where a fault is absent. Apart
from simple cases, no closed form is available for comput-
ing such sets, and numerical approximations techniques
such as those in Dabbene et al. (2015) may be used.

We can now introduce a compact notation for the residual
generator described by eqs. (3),(4),(5), through a mapping
function ΣI : RnI ×RnI �→ RnI defined as

rI,k+1 = ΣI(rI,k, δI,k) := Λ rI,k + δI,k . (6)

Remark 4. While at time index k the residual rI,k can
be computed from yI and ŷk and is thus a deterministic
quantity, from (4), (6) it follows that the next value rI,k+1

is a random variable on the same probability space as δI,k.

Given these preliminaries, it is now possible to write the
following two fundamental definitions (see Fig. 2).

Definition 5. The time varying residual set RI,k+1 at time
index k+1 is defined as the image of the set ∆I,k through
ΣI , that is

RI,k+1 :=ΣI(rI,k,∆I,k)
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For ease of notation, when there is no ambiguity, in the
rest of the paper we will drop the index I to denote that a
quantity refers to the generic subsystem SI or the generic
LD agent LI . The index N will be retained to indicate the
neighbor set of the generic subsystem or agent.

2.4 Fault Detection Threshold Design Problem

In order to reduce the detrimental effects on fault de-
tectability of deterministic thresholds, which in practice
can be overly conservative, in this paper we will seek a
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rI,k+1 = ⌃I(rI,k, �I,k)
rI,k

�I,k

�I,k
rI,k+1

RI,k+1

FI
fI,k

(yI,k, uI,k, yNI ,k)

eq. (5)

WI
wI,k

vI,k
VI

vNI ,k

VNI

Fig. 2. The residual set RI,k+1 can be thought of as
the image obtained by computing the output ΣI by
letting δI,k vary over its domain ∆I,k and fixing the
residual rI,k to its actual value. The domain ∆I,k in
turn is computed through eq. (5) by letting vI,k, wI,k,
fI,k and vNI ,k vary over their respective domains,
and fixing the local output and input yI,k and uI,k,
as well as the interconnection variables measurement
yNI ,k, to their actual values. The healthy residual set
R0

I,k+1 can be obtained similarly, but by fixing the

value fI,k ∈ {0}.

(2015) and Ferrari et al. (2017), we propose the following
residual evaluation logic and threshold for fault detection

dM (rI,k+1) ≤ d̄M �
nI

α
⇒ SI is healthy (7)

based on the Mahalanobis distance of the residual

dM (rI) �
√
(rI − µrI )

′C−1
rI (rI − µrI ) (8)

where µrI � E[rI ] ∈ RnI and CrI � Cov[rI ] ∈ RnI×nI are
the expected value and covariance matrix of the random
variable rI . Indeed, thanks to the Multivariate Chebyshev
Inequality (see Chen (2007)), we can bound the probability
of false positives during healthy conditions as

P
[
dM (rI) > d̄M

]
< 1− α , (9)

where α ∈ (0, 1] is a user defined constant representing
the desired probabilistic robustness of the threshold d̄M
and P denotes probability.

Remark 5. While the detection logic (7) employs a static
threshold, it must be noted that it is equivalent to testing
whether rI,k+1 belongs to a time varying ellipsoid centered
in µrI,k+1

and whose orientation and size are described
by CrI,k+1

. Indeed the moments of rI,k+1 depend via the
mapping ΣI on those of δI,k, which are not assumed to
be time invariant unless gI is a linear function and v and
w are stationary processes. In such case and also when gI
is bilinear the techniques proposed in Ferrari et al. (2017)
can be employed.

Remark 6. For the general nonlinear case we will assume
that the moments can be approximated by their corre-
sponding sample moments by generating a number N of
samples rjI,k+1, with j = 1 . . . N , as in Boem et al. (2015)

and Rostampour et al. (2017).

3. DIFFERENTIALLY PRIVATE FRAMEWORK

The distributed fault detection scheme outlined in the pre-
vious section requires every agent LI to have the following

quantities communicated by its neighbours: their output
components appearing in yN , which are needed to update
the nonlinear estimator (3) and thus generate the residual
r; and N samples of the measurement uncertainties ap-
pearing in vN , such that the sample moments of r can be
computed by repeated evaluation of eqs. (4) and (5), and
used to evaluate the residual according to (7).

The goal of this section is indeed to show how, relying on
concepts from Differential Privacy (DP), an agent LI and
its neighbours may communicate with each other without
exposing private information on their local input. The next
subsection will introduce the basics of DP.

3.1 The Concept of Differential Privacy

Differential privacy “addresses the paradox of learning
nothing about an individual while learning useful informa-
tion about a population” (Dwork et al. (2014)). The initial
concern that drove its development is in fact protecting the
privacy of human individuals, for instance when personal
health data is collected and used in medical studies.

As a preliminary notion, we need to introduce the concepts
of database and of query.

Definition 7. A database D of length n is a set D =
{d1, d2, · · · , dn} taking values in D, where D is the uni-
verse of all possible databases.

Definition 8. A query q is a mapping q : D → Rnq , where
nq is the size of the result provided by the query.

In DP it is assumed that data contained in a database D
can be accessed only through the results of queries, which
are answered by the subject holding D, called curator.
Protecting the privacy of an element di in D can thus
be obtained by making the results of any query run on
D insensitive enough to the single di. This can also be
expressed by ensuring that two adjacent databases are
nearly indistinguishable from the answers to a query.

Definition 9. (Han et al. (2017)) Two databases D =
{d1, · · · , dn} and D′ = {d′1, · · · , d′n} are said to be ad-
jacent, and it is written as adj(D,D′), if there exists
i ∈ {1, · · · , n} such that dj = d′j for all j �= i.

This is enforced by introducing so-called mechanisms,
which are randomized mappings from the universe D
to some subset in Rnq , and letting the curator use the
mechanism in lieu of the query. A mechanism that acts on
a database is said to be differentially private if it complies
with the following definition from Dwork et al. (2006).

Definition 10. Given ε ≥ 0 as the desired level of privacy,
a mechanism M preserves ε−differential privacy if for all
R ⊂ range(M) and all adjacent databases D and D′ in D,
it holds that

P [M(D) ∈ R] ≤ eε P [M(D′) ∈ R] . (10)

Remark 7. A smaller ε implies higher level of privacy.
By using differential privacy, one can hide information
at the individual level, no matter what side information
others may have. Definition 10 shows that DP is based
on randomization, but is independent on the contents of
databases, as long as they belong to D and are adjacent.
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A popular mechanism in the DP literature is the so-called
Laplace mechanism, that introduces a Laplacian additive
noise dependent on the query �p−sensitivity

Definition 11. (Han et al., 2017, Definition 10) For any
query q : D → Rnq , the �p−sensitivity of q under the
adjacency relation, adj, is defined as

σ := max{‖q(D)− q(D′)‖p : D,D′ ∈ D s.t. adj(D,D′)} .

It is worth mentioning that �p−sensitivity of q does not
depend on a specific database D. We now recall the
following results from (Han et al., 2014a, Theorem 9).

Proposition 1. Consider a query q : D → Rnq whose
�2−sensitivity is σ. Define the mechanism M as M(D) =
q(D)+ ν, where ν ∈ Rnq is a random vector whose proba-
bility density function is given by pν(ν) ∝ exp(−ε‖ν‖/σ).
Then the mechanism M preserves ε−differential privacy.

3.2 Privacy-Preserving Mechanism

The proposed privacy-preserving framework for distributed
fault detection will be now presented. To simplify the
notation and formulation, we will assume without loss of
generality the case of a given agent L having a single neigh-
bor LN, connected through an interconnection variable
xN ∈ RnN . We will also drop the time indexes to simplify
our notation whenever possible. As said previously, LN

should send to L at each time indexes its last interconnec-
tion variable measurement yN. From the point of view of
the DP formulation, agent LN is the curator of a database
that contains the local input uN,k−1, and that at time k is
answering a query from L by providing the measurement
yN, which depends on the previous local state of LN and
on uN,k−1 via its dynamics (2). In general it does not hold
that uN can be reconstructed from values of yN. Anyway,
in the DP setting a privacy breach does not require the
capability of fully reconstructing a piece of information,
but only the capability of determining whether it will cause
the query result to belong or not to a given set (Def. 10).
This, in turns, depends on the query sensitivity (Def. 11).
For these reasons, LN does want to replace such answer
with a mechanism that guarantees the privacy of uN.

Before proceeding further, we need an extended definition
of adjacency.

Definition 12. Two control actions uN, u′
N ∈ U ⊂ RmN

are two adjacent control inputs at time step k − 1 if and
only if ‖uN − u′

N‖0 ≤ 1, and it is written adj(uN, u′
N).

Such a distance between databases is referred to as the
Hamming distance, i.e., the number of rows on which they
differ. The set U is a compact set over which the input
sequence {uN,k}∞k=0 can take values.

Remark 8. Following Defin. 12, we can say that two adja-
cent control inputs belong to a bounded set U such that:

max
i∈{1, ...,mN}

|(uN)(i) − (u′
N)(i)| ≤ 2ζ ,

where ζ ≥ 0 is a positive constant number which depends
on the set U.

Since the query q(·) answered by LN is actually the output
of the generic subsystem SN, the constant σ that appears
in Definition 11 can be computed as

σNu
= max

uN,u′
N∈U

adj(uN, u′
N)

ψN∈Ψ

‖gN(ψN, uN)− gN(ψN, u′
N)‖p , (11)

where gN(ψN,k−1, uN,k−1) := yN,k represents a com-
pact notation for SN dynamics in (2). The new quantity
ψN ∈ Ψ represents the other variables, apart from the
input uN, which influence SN, and is defined as ψN :=
col(x, xN, w, f), with Ψ := Sx × SxN ×W× F. The bound
σNu can be seen as a bound on the global �p−sensitivity
of the mapping function gN(ψN, uN) with respect to the
control input uN at each time step k for all p ≥ 1. The
following assumption is needed to compute σNu .

Assumption 3. The nonlinear dynamics function gN(ψN,
uN) of the generic subsystem SN is measurable and differ-
entiable in uN such that at each sampling time k

∂gN(ψN, uN)

∂uN

�= 0 , ∀uN ∈ U , ψN ∈ Ψ ,

and there exists a constant L for all time step k, uN, u′
N ∈

U and ψN ∈ Ψ such that:

‖gN(ψN, uN)− gN(ψN, u′
N)‖ ≤ L‖ϕN − ϕ′

N‖ (12)

= L‖uN − u′
N‖ ,

where ϕN and ϕ′
N are two vectors obtained by concatenat-

ing ψN with uN and u′
N, respectively. We refer to L as the

Lipschitz constant of the nonlinear function gN(ψN, uN)
of the generic subsystem SN.

Remark 9. An essential factor is the differentiability of
gN(ψN, uN) in order to derive the sensitivity of the output
signal with respect to small variations (adjacent relations)
of input control signals. The key assumption is the Lips-
chitz condition (12). An approximation of the Lipschitz
constant L at time step k can be calculated from eq.
(2) using the available values of ψN ∈ Ψ and drawing a
sufficiently high number of samples of the uncertainties
vN and wN, following a Monte Carlo approach.

Proposition 2. The global �2−sensitivity of the output of
the generic subsystem SN is bounded by σNu

≤ 2ζL .

Proof. Following Defin. 12 and Rem. 8 together with Ass. 3,
the proof is straightforward by making use of eqs. (11) and
(12), from which we can derive the inequality

σNu ≤ max
uN,u′

N∈U

adj(uN, u′
N)

L‖uN − u′
N‖

= max
uN,u′

N∈U

adj(uN, u′
N)

L max
i∈{1, ...,mN}

|(uN)(i) − (u′
N)(i)| ≤ 2ζL .

The proof is completed. �

We are now ready to state the problem that we are going
to address in the present section.

Problem 1. Find a randomized mechanismMu such that it
preserves εu−differential privacy for the neighboring agent
LN under the adjacency relation described in Definition
12.

Proposition 3. The mechanism Mu(uN) = gN(ψN, uN) +
νuN

, where uN is the control input signal and νuN
∈

RnN is a noisy vector drawn from a probability density
function that is proportional to exp(−εu‖νuN

‖/2ζL), is
εu−differentially private.

Proof. The proof is the direct result of combining Propo-
sition 2 with Proposition 1. �
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A popular mechanism in the DP literature is the so-called
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N).
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max
i∈{1, ...,mN}

|(uN)(i) − (u′
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σNu
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uN,u′
N∈U

adj(uN, u′
N)

ψN∈Ψ
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Lipschitz constant of the nonlinear function gN(ψN, uN)
of the generic subsystem SN.

Remark 9. An essential factor is the differentiability of
gN(ψN, uN) in order to derive the sensitivity of the output
signal with respect to small variations (adjacent relations)
of input control signals. The key assumption is the Lips-
chitz condition (12). An approximation of the Lipschitz
constant L at time step k can be calculated from eq.
(2) using the available values of ψN ∈ Ψ and drawing a
sufficiently high number of samples of the uncertainties
vN and wN, following a Monte Carlo approach.

Proposition 2. The global �2−sensitivity of the output of
the generic subsystem SN is bounded by σNu

≤ 2ζL .

Proof. Following Defin. 12 and Rem. 8 together with Ass. 3,
the proof is straightforward by making use of eqs. (11) and
(12), from which we can derive the inequality
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L max
i∈{1, ...,mN}

|(uN)(i) − (u′
N)(i)| ≤ 2ζL .

The proof is completed. �

We are now ready to state the problem that we are going
to address in the present section.

Problem 1. Find a randomized mechanismMu such that it
preserves εu−differential privacy for the neighboring agent
LN under the adjacency relation described in Definition
12.

Proposition 3. The mechanism Mu(uN) = gN(ψN, uN) +
νuN

, where uN is the control input signal and νuN
∈

RnN is a noisy vector drawn from a probability density
function that is proportional to exp(−εu‖νuN

‖/2ζL), is
εu−differentially private.

Proof. The proof is the direct result of combining Propo-
sition 2 with Proposition 1. �
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Output Signal as Database By looking at mechanismMu

in Proposition 3 it can be seen that it is equivalent to a
mechanism My acting on a database containing yN, where
the query is an identity. Indeed this equivalence can be
easily shown. We first introduce the following

Definition 13. Two output signals yN, y′N ∈ Y ⊂ RnN are
two adjacent output signals if and only if ‖yN − y′N‖0 ≤ 1,
and it is written as adj(yN, y′N). The set Y is a compact set
over which the output sequence {yN,k}∞k=0 can take values,
and since two output signals belong to Y, we can have:

max
i∈{1, ..., nN}

|(yN)(i) − (y′N)(i)| ≤ 2ξ ,

where ξ ≥ 0 is a positive constant number which depends
on the set Y.

Since the query is an identity mapping, a bound σNy
on

the global �2− sensitivity of such a query can be obtained
from:

σNy = max
yN,y′

N∈Y

adj(yN, y′
N)

‖yN − y′N‖ ≤ 2ξ . (13)

The following proposition provides a randomized mecha-
nism My such that it preserves εy−differential privacy for
the agent LN under the adjacency relation of Definition
13.

Proposition 4. The mechanismMy(yN) = yN+νyN
, where

yN is the output signal and νyN
∈ RnN is a noisy

vector drawn from a probability density function that
is proportional to exp(−εy‖νyN

‖/2ξ), is εy−differentially
private.

Proof 1. It directly results from combining Proposition 2
with Proposition 1.

We next provide a theoretical connection between Mu(uN)
and My(yN).

Theorem 1. Let Mu(uN) and My(yN) be the two ran-
domized mechanisms introduced in Propositions 3 and
Proposition 4 for a generic nonlinear system dynamics
SN such that they preserve εu and εy level of differential

privacy with εy = εu
ξ
ζL , respectively. Given ζ in Remark 8

and ξ in Definition 13 with L in Assumption 3, if ξ ≤ ζL,
then,

P[Mu(uN) ∈ Ru]

P[Mu(u′
N) ∈ Ru]

=
P[My(yN) ∈ Ry]

P[My(y′N) ∈ Ry]
≤ eεy ≤ eεu .

Proof. Following Propos. 3 together with Propos. 4, let
puN

and pu′
N

denote the probability density function of

Mu(uN) and Mu(u
′
N), respectively, and let pyN

and py′
N

denote the probability density function of My(yN) and
My(y

′
N), respectively. We now compare puN

and pu′
N

at
some arbitrary point z ∈ RnN in order to show the first
inequality in the above assertion as follows:

puN
(z)

pu′
N
(z)

=
exp

(
−εu ‖gN(ψN,uN)−z‖

2ζL

)

exp
(

−εu ‖gN(ψN,u′
N
)−z‖

2ζL

)

=
exp

(
−εu ‖yN−z‖

2ζL

)

exp
(

−εu ‖y′
N
−z‖

2ζL

)

=
exp

(
−εy ‖yN−z‖

2ξ

)

exp
(

−εy ‖y′
N
−z‖

2ξ

) =
pyN

(z)

py′
N
(z)

where the second equality follows from choosing εy = ξεu
ζL .

Observe that εy ≤ εu holds for ξ ≤ ζL. The rest of the
proof follows the same steps as in (Dwork et al., 2014,
Theorem 3.6):

pyN
(z)

py′
N
(z)

=
exp

(
−εy ‖yN−z‖

2ξ

)

exp
(

−εy ‖y′
N
−z‖

2ξ

)

= exp

(−εy (‖yN − z‖ − ‖y′N − z‖)
2ξ

)

≤ exp

(
εy (‖y′N − yN‖)

2ξ

)

≤ exp (εy)

≤ exp (εu) ,

where the first inequality follows from the inverse triangle
inequality, the second follows from the definition of sensi-
tivity and the last is due to ξ ≤ ζL.

It is important to highlight that Theorem 1 is the first
result, to the best of our knowledge, toward privatizing
a desired database, e.g. the control input actions, using
another database, e.g. the output signals of a generic non-
linear system dynamics SN. Theorem 1 provides a theoret-
ical link between two randomized mechanisms Mu(uN) in
Proposition 3 andMy(yN) in Proposition 4. Strictly speak-
ing, one can consider the output signals of a generic dy-
namical system SN as a database to develop a randomized
mechanism My(yN) such that it preserves εy−differential
privacy together with achieving the εu−differential privacy
of the input control signals as the main desired privacy goal
by considering that εy = ξεu

ζL and ξ ≤ ζL.

4. NUMERICAL STUDY

In this section we are going to present the results of
a numerical study, in order to illustrate the effective-
ness of the proposed approach. The system under study
will be a multi-tank system (see Ferrari et al. (2012)
for details on modeling such a system), whose structural
graph contains 22 nodes, each representing a state vari-
able corresponding to the level of a tank, while edges
represent pipes interconnecting such tanks (Fig. 3). The
graph has been obtained by application of the Barabási-
Albert model Albert and Barabási (2002), which as known
leads to scale-free networks. After labeling the nodes ac-
cording to their degree, in descending order, two sub-
systems have been obtained by defining the extraction
index tuples I1 = [1, 2, 6, 8, 9, 13, 16, 17, 19, 21, 22] and
I2 = [3, 4, 5, 7, 10, 11, 12, 14, 15, 18, 20] of 11 elements each.
Finally, in order to make the interconnection between
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Fig. 3. The structural graph of the 22-tanks system chosen
for the numerical study. It will be decomposed into
two subsysystems: one comprising node 1 and all the
nodes to its left; the other comprising the remaining
nodes on its right. The interconnection between the
two susbsytems is represented by the two edges (1, 3)
and (1, 5), corresponding to two pipes.

the two resulting subsystems asymmetric and thus more
interesting, an edge between nodes 1 and 3 has been added,
on top of the edges produced by the Barabási-Albert al-
gorithm. The actual tanks’ cross section have been chosen
equal to 1m2, while pipes’ cross sections equal to 0.2m2.
Drains with the same section as interconnecting pipes have
been assumed to be connected to terminal nodes (i.e.
nodes with unitary degree). A single source pump, with
a sinusoidal time profile with a frequency of 0.1Hz, has
been connected to tank no. 1. All tank levels are assumed
to be measured, with a gaussian measurement uncertainty
with zero mean and a standard deviation equal to 0.15m.
When building the LFD estimators, a gaussian parametric
uncertainty is introduced, having zero mean and a variance
equal to 5% and 1.5%, respectively, of the tanks and pipes
cross sections. The privacy mechanism Mu will be used,
with the value ζ = 0.01; a number N = Ns = 512 of
samples is used by each LFD to compute the moments µr

and Cr appearing in the Mahalanobis distance definition
(8) and for generating the set XN that is communicated
to neighbouring LFDs.

The fault that is presented in the current study represents
a clogging in the pipe between tanks 1 and 3, reducing
its flow to 50% of its nominal value. The reason we have
chosen this kind of fault is that it affects exactly each
subsystem interconnection variable, and as such may be
hidden, that is made undetectable, by the introduction
of the privacy mechanism. The following figures present
the results obtained by simulating such fault occurring
at time Tf = 125 s. In particular, the effect on detection
performance of varying privacy levels, that is of a varying
parameter ε, were analyzed.

Fig. 4 shows the time behaviour of tank no. 3, which is
allocated to LFD no. 2 and is an interconnection variable
for LFD no. 1. It can be seen how, for the smallest value
of ε considered in this study (ε = 0.04), the privatized
version of its level can be dramatically different from the
real one. Nevertheless, its estimated value by LFD no. 2
can still be relatively close to the real one, and clearly
show its sensitivity to the fault happening at 125 s. In
particular, Fig. 5 shows how the residual computed by
LFD no. 2 is still sensitive to the fault and able to cross
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Fig. 4. Real level of tank no.3, along with its privatized
version (ε = 0.04) and its estimation by LFD no. 2.
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Fig. 5. Normalized Mahalanobis distance dM (r2)

d̄M
of LFD2

residual for ε = 0.04.

the threshold at about 148 s. In this figure the normalized

Mahalanobis distance of the residual, that is dM (r2)

d̄M
, is

plotted: a successful detection occurs when this quantity
gets larger than 1. Finally, Fig. 6 presents a boxplot
analysis of the effect of varying ε on the detection time of
LFD no. 2. In order to produce such plot, a Monte Carlo
approach has been used. For each value of ε 64 rounds were
simulated, where every source of uncertainty in the system
(that is v and w) and in the mechanism Mu have been
implemented thanks to the default Matlab/Simulink 1

random numbers generators. The seeds of the generators
have been independently initialized before each round
according to the system clock time, to avoid undesired
repetitions and correlations. In particular, a formula of
the type seed = round(s(clock) ∗ mult + off) has been
used, where s is an arbitrary monotone function, and mult
and off are real numbers that are unique for each source
of uncertainty. The end results, albeit a bit unexpected,
shows how, for the chosen range of values 2 of ε, the median
of the detection time is not significantly affected by the
addition of the privacy mechanism. This first result implies
that indeed the proposed privacy-preserving mechanism is
feasible and will not hamper fault detection performances.

1 Matlab/Simulink R2016a on Mac Os X 10.11.6
2 No successful detection was obtained for values smaller than 0.04
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Fig. 3. The structural graph of the 22-tanks system chosen
for the numerical study. It will be decomposed into
two subsysystems: one comprising node 1 and all the
nodes to its left; the other comprising the remaining
nodes on its right. The interconnection between the
two susbsytems is represented by the two edges (1, 3)
and (1, 5), corresponding to two pipes.

the two resulting subsystems asymmetric and thus more
interesting, an edge between nodes 1 and 3 has been added,
on top of the edges produced by the Barabási-Albert al-
gorithm. The actual tanks’ cross section have been chosen
equal to 1m2, while pipes’ cross sections equal to 0.2m2.
Drains with the same section as interconnecting pipes have
been assumed to be connected to terminal nodes (i.e.
nodes with unitary degree). A single source pump, with
a sinusoidal time profile with a frequency of 0.1Hz, has
been connected to tank no. 1. All tank levels are assumed
to be measured, with a gaussian measurement uncertainty
with zero mean and a standard deviation equal to 0.15m.
When building the LFD estimators, a gaussian parametric
uncertainty is introduced, having zero mean and a variance
equal to 5% and 1.5%, respectively, of the tanks and pipes
cross sections. The privacy mechanism Mu will be used,
with the value ζ = 0.01; a number N = Ns = 512 of
samples is used by each LFD to compute the moments µr

and Cr appearing in the Mahalanobis distance definition
(8) and for generating the set XN that is communicated
to neighbouring LFDs.

The fault that is presented in the current study represents
a clogging in the pipe between tanks 1 and 3, reducing
its flow to 50% of its nominal value. The reason we have
chosen this kind of fault is that it affects exactly each
subsystem interconnection variable, and as such may be
hidden, that is made undetectable, by the introduction
of the privacy mechanism. The following figures present
the results obtained by simulating such fault occurring
at time Tf = 125 s. In particular, the effect on detection
performance of varying privacy levels, that is of a varying
parameter ε, were analyzed.

Fig. 4 shows the time behaviour of tank no. 3, which is
allocated to LFD no. 2 and is an interconnection variable
for LFD no. 1. It can be seen how, for the smallest value
of ε considered in this study (ε = 0.04), the privatized
version of its level can be dramatically different from the
real one. Nevertheless, its estimated value by LFD no. 2
can still be relatively close to the real one, and clearly
show its sensitivity to the fault happening at 125 s. In
particular, Fig. 5 shows how the residual computed by
LFD no. 2 is still sensitive to the fault and able to cross
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the threshold at about 148 s. In this figure the normalized

Mahalanobis distance of the residual, that is dM (r2)

d̄M
, is

plotted: a successful detection occurs when this quantity
gets larger than 1. Finally, Fig. 6 presents a boxplot
analysis of the effect of varying ε on the detection time of
LFD no. 2. In order to produce such plot, a Monte Carlo
approach has been used. For each value of ε 64 rounds were
simulated, where every source of uncertainty in the system
(that is v and w) and in the mechanism Mu have been
implemented thanks to the default Matlab/Simulink 1

random numbers generators. The seeds of the generators
have been independently initialized before each round
according to the system clock time, to avoid undesired
repetitions and correlations. In particular, a formula of
the type seed = round(s(clock) ∗ mult + off) has been
used, where s is an arbitrary monotone function, and mult
and off are real numbers that are unique for each source
of uncertainty. The end results, albeit a bit unexpected,
shows how, for the chosen range of values 2 of ε, the median
of the detection time is not significantly affected by the
addition of the privacy mechanism. This first result implies
that indeed the proposed privacy-preserving mechanism is
feasible and will not hamper fault detection performances.

1 Matlab/Simulink R2016a on Mac Os X 10.11.6
2 No successful detection was obtained for values smaller than 0.04
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Fig. 6. Boxplot analysis of influence of privacy on detection
time. Lower ε corresponds to higher privacy. For each
value of ε, 64 Monte Carlo rounds were simulated.

5. CONCLUSIONS

This paper presented for the first time, to the best of
the authors’ knowledge, a differentially private approach
to distributed fault diagnosis of large scale, nonlinear
and uncertain systems. The data whose privacy must be
preserved was considered to be the local input of each
subsystem, which corresponds to protecting the privacy of
each subsystem control algorithms and policies. A novel
theoretical result linking the privacy level of the local
input, to the privacy level corresponding to a given pri-
vacy mechanism applied to the subsystem output, was
presented in Theorem 1. Simulation results were included,
where a Monte Carlo analysis was used to show the negligi-
ble influence of the privacy mechanism on the detectability
properties of the original diagnosis scheme.
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