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Abstract—Non-interference is a program property that ensures
the absence of information leaks. In the context of programming
languages, there exist two common approaches for establishing
non-interference: type systems and program logics. Type systems
provide strong automation (by means of type checking), but they
are inherently restrictive in the kind of programs they support.
Program logics support challenging programs, but they typically
require significant human assistance, and cannot handle modules
or higher-order programs.

To connect these two approaches, we present SeLoC—a sep-
aration logic for non-interference, on top of which we build a
type system using the technique of logical relations. By building
a type system on top of separation logic, we can compositionally
verify programs that consist of typed and untyped parts. The
former parts are verified through type checking, while the latter
parts are verified through manual proof.

The core technical contribution of SeLoC is a relational form
of weakest preconditions that can track information flow using
separation logic resources. SeLoC is fully machine-checked, and
built on top of the Iris framework for concurrent separation logic
in Coq. The integration with Iris provides seamless support for
fine-grained concurrency, which was beyond the reach of prior
type systems and program logics for non-interference.

Index Terms—non-interference, logical relations, separation
logic, fine-grained concurrency, Coq, Iris

I. INTRODUCTION

Non-interference is a form of information flow control (IFC)
used to express that confidential information cannot leak
to attackers. To establish non-interference of modern pro-
grams, it is crucial to develop verification techniques that
support challenging programming paradigms and programming
constructs such as concurrency. Furthermore, to scale up
these techniques to larger programs, it is important that they
are compositional. That is, they should make it possible to
establish non-interference of program modules in isolation,
without having to consider all possible interference from the
environment and other program modules.

Much effort has been put into developing these verification
techniques. In terms of expressivity, techniques have been
developed that support dynamically allocated references and
higher-order functions [1]–[3], and concurrency [4]–[10].
Despite recent advancements, the expressivity of available
techniques for non-interference still lags behind the expressivity
of techniques for functional correctness, which have seen major
breakthroughs since the seminal development of concurrent
separation logic [11], [12]. There are several reasons for this.

First, a lot of prior work on non-interference focused on
type systems and type system-like logics, e.g., [1], [4], [6], [9],

[10]. Such systems provide strong automation (by means of
type checking), but lack capabilities to reason about functional
correctness, and are thus inherently restrictive in the kind of
programs they can verify. For example, it may be the case that
the confidentiality of the contents of a reference depends on
runtime information instead of solely static information (this
is called value-dependent classification [7], [13]–[16]).

Second, proving non-interference is harder than proving
functional correctness. While functional correctness is a prop-
erty about each single run of a program, non-interference is
stated in terms of multiple runs of the same program. One
has to show that for different values of confidential inputs, the
attacker cannot observe a different behavior.

To overcome the aforementioned shortcomings, we take a
new approach that combines program logics and type systems:
we present a concurrent separation logic for non-interference
on top of which we build a type system for non-interference.
Program modules whose non-interference relies on functional
correctness (and thus cannot be type checked) can be assigned
a type through a manual proof in our separation logic. This
combination of separation logic and type checking makes
it possible compositionally to establish non-interference of
programs that consist of untyped and typed parts.

Although ideas from concurrent separation logic have been
employed in the context of non-interference before [9], [10], we
believe that in the context of non-interference the combination
of typing and separation logic is new. Moreover, our approach
provides a number of other advantages compared to prior work:
• Our separation logic supports fine-grained concurrency.

That is, it can verify programs that use low-level atomic
operations like compare-and-set to implement lock-free
concurrent data structures and high-level synchronization
mechanisms such as locks/mutexes. In prior work, such
mechanisms were taken to be language primitives.

• Our separation logic is higher-order, making it possible
to assign very general specifications to program modules.

• Our separation logic is relational, making it possible to
reason about multiple runs of a program with different
values for confidential inputs.

• Our separation logic provides a powerful invariant mech-
anism to describe protocols on the shared state, making
it possible to reason about sophisticated forms of sharing,
as in value-dependent classifications.

In order to build our logic we make use of the Iris framework
for concurrent separation logic [17]–[20], which provides basic
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building blocks, including the invariant mechanism. To combine
typing and separation logic, we follow recent work on logical
relations in Iris [21]–[26], but apply it to non-interference
instead of functional correctness or contextual refinement.
Contributions. We introduce SeLoC, the first separation logic
for non-interference that combines typing and manual proof.
• We present a number of challenging examples that can

be verified using SeLoC (§ II).
• SeLoC supports a language with fine-grained concur-

rency, higher-order functions, and dynamic (higher-order)
references (§ III-A). SeLoC is sound w.r.t. a standard
timing-sensitive notion of non-interference—strong low-
bisimulations—by Sabelfeld and Sands [5] (§ III-B).

• To verify challenging programs, SeLoC features a rela-
tional version of weakest preconditions, which integrates
seamlessly with the powerful mechanism for invariants
and protocols of the Iris framework (§ IV).

• Using the technique of logical relations, we build a type
system on top of SeLoC. By building a type system on
top of separation logic, we can establish non-interference
of programs that consist of typed and untyped parts (§ V).

• To compose proofs of program modules that cannot be
type checked (because their interface relies on functional
correctness), we show how to express modular separation
logic specifications for non-interfence in SeLoC (§ VI).

• We prove soundness of SeLoC by constructing a bisimu-
lation out of a separation logic proof (§ VII).

• We have mechanized SeLoC, its type system, its soundness
proof, and all examples in the paper and appendix, in Coq
(§ VIII). The mechanization can be found online at [27].

II. MOTIVATING EXAMPLES

Before we proceed with the formal development of the
paper in § III, we present a number of challenging programs
to demonstrate the expressivity of SeLoC.

A. Modularity and data structures
To guarantee non-interference, one should prove that high-

sensitivity (i.e., confidential) information cannot leak via low-
sensitivity (i.e., publicly observable) outputs. Apart from such
explicit leaks, one has to prove the absence of implicit leaks that
arise from the timing behavior of the program. To avoid timing
leaks, Agat and Sands [28] outlined the “worst-case principle”:
a non-interfering algorithm operating on high-sensitivity data
should have the same best-case and worst-case execution time.
We apply this design principle to a set data structure that
stores high-sensitivity elements. The implementation can be
type checked using our approach, automatically providing a
proof of timing-sensitive non-interference.

To encapsulate the internal set representation, we first present
the interface of our data structure. This interface is given using
closures (i.e., higher-order functions):1

val new set : unit→

{
lookup : intH → boolH;

insert : intH → unit

}
1When using modules or classes, the same kind of considerations apply.

let new set () =

let k = ref(1) in
let arr = ref(new array 1 None) in

lookup x =

lookup loop (! arr) (! k) 0 (cap (! k)) x false
insert x = insert loop arr k 0 x


let rec lookup loop a k l r x is found =

if k = 0 then is found else
let i = (l + r)/2 in
let e = array get a i in
let lr1 = (i+ 1, r) in let lr2 = (l, i− 1) in
let (l , r) = if (e < x) then lr1 else lr2 in
lookup loop a (k − 1) l r x (is found ∨ (e = x))

let rec insert loop arr k i x = . . .

Figure 1. Implementation of a set using the “worst-case principle”.

The function new set allocates an empty set, and returns a
record with functions that operate on the set. The function
lookup takes a high-sensitivity integer—typed as intH, where
H refers to the high-sensitivity of the data— and returns a high-
sensitivity Boolean—typed as boolH—that signifies whether
the argument is in the set or not. The function insert takes a
high-sensitivity integer, and adds it to the set.

Figure 1 shows an implementation of our set interface using
a sorted dynamic array.2 To implement the function lookup, we
make use of binary search—but with a twist to avoid timing
leaks. An ordinary version of binary search would terminate
once it has found the element, making it possible to observe
if the element is in the set via timing. Our implementation
ensures that lookup takes the same time regardless of whether
the element is in the set. To achieve that, we represent the set
using an array whose size n satisfies cap(k) = n, for some k:

cap(0) = 0 cap(k + 1) = 1 + 2 · cap(k)

This guarantees that the array can be recursively partitioned
into two sub-arrays of the same size and a pivot element in
the middle. If the number of actual elements in the set is less
than cap(k), the array is padded with a dummy element.3

If at some iteration of lookup loop we find that the element
x is present in the array, we make note of that fact but still
continue with the recursion until the array is no longer splittable.
Thus, the function lookup is always executed with k levels of
recursion for an array of size cap(k). In the implementation
of lookup loop we pass the parameter k and decrease it on
every recursive call.

2The full implementation can be found in the Coq mechanization. The full
implementation moreover makes use of locks to obtain thread-safety.

3For comparisons < and equality = checks we assume that the dummy
element None is the greatest element and that it is not equal to any actual
element in the array, which are of the form Some(x).
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The function insert traverses the whole array and is thus
always executed with cap(k) levels of recursion. If the array
is full, then it is dynamically resized to the size cap(k + 1).
In summary, both lookup and insert operations employ a low-
sensitivity termination condition.

We use our type system (described in § V) to type check the
implementation against the interface. Of special note here is
the type checking of the if branching. In the implementation
of lookup loop and insert loop we branch on high-sensitivity
data. Notably, in lookup loop we compare the argument x with
the pivot e (both are high-sensitivity integers), and descend into
one of the partitions of the array depending on this comparison.
Branching on high-sensitivity data is not secure in general,
but in this case the branching is secure. This is because both
branches simply return variables (lr1 and lr2 ), i.e., they do not
perform any computations, and thus do not leak information
about the high-sensitivity condition via timing.4

B. Typing via manual proof

The example in the previous section made use of various
operations on arrays: array make , array get , and array set .
When reasoning about the set data structure, we assumed that
these array operations are safe and secure, i.e., when one tries
to access an out-of-bounds index, array get returns a dummy
element, instead of reading arbitrary memory.

The programming language that we consider does not have
safe arrays as a primitive construct. Instead, safe arrays are
implemented as a library: an array is stored together with its
length, and the unsafe operations are protected by dynamic
checks. Naturally, such operations cannot be type checked
in an ML-style type system [29], because their safety and
security depends on functional correctness. However, one of
the core features of our approach is that such functions can
be assigned types through a manual separation logic proof in
SeLoC. Such a manual proof takes functional properties (e.g.,
that the index is within the array bounds) into account. Once
we manually verify that the array library satisfies the desired
typing, we can compose it with the type checked example from
the previous section to obtain a library that guarantees safety
and non-interference for its clients.5

The combination of typing and manual proof is important
for compositionality and scalability: challenging library code
whose security relies on functional correctness (such as the
library for safe arrays) can be manually verified using separation
logic, and then used to automatically type check other libraries
(such as the set data structure).

C. Fine-grained concurrency

As shown in § II-B, the ability to fall back to a manual proof
is useful to assign types to code that uses operations such as
array indexing whose safety and security relies on functional
correctness. This ability becomes even more pertinent for (fine-
grained) concurrent programs, where the safety and security

4In a low-level language like C the branching can be written using arithmetic.
5The proof of the array library and its integration in the type checking of

the set data structure can be found in the Coq mechanization.

let rec thread1 out r = (if ¬ ! r .is classified

then out ← ! r .data else ());

thread1 out r

let thread2 r = r .data ← 0;

r .is classified ← false

let prog out secret = let r =

{
data = ref(secret);

is classified = ref(true)

}
in thread1 out r || thread2 r

Figure 2. Lock-free value-dependent classification.

can depend on specific protocols on data that is shared between
threads.

To demonstrate the application to concurrency, we consider
the program prog in Figure 2, which is a lock-free version of
a similar lock-based program in [10]. The program runs two
threads in parallel, both of which operate on a reference r .data .
The data in this reference has a value-dependent classification:
the value of the flag r .is classified determines the sensitivity
of r .data . If the flag r .is classified is set to false, then the
data stored in r .data is classified with low-sensitivity, and if
it is set to true, the the data is classified with high-sensitivity.
The record r initially contains high-sensitivity data from the
integer variable secret . The first thread thread1 checks if the
record r is classified (i.e., the flag r .is classified is true), and
if it is not, it leaks the data r .data to an attacker-observable
channel out . The second thread thread2 overwrites the data
stored in r and resets the classification flag.

Due to the precise interplay of the two threads, the program
prog is secure, in the sense that it does not leak the data secret
onto the public channel out . Since our example does not use
locks, there are more possible interleavings than in the original
example in [10], and consequently there are more things that
could potentially go wrong in thread1 :

1) the data r .data can still be classified even if the bit
r .is classified is set to false;

2) the classification of the data stored in r might change
between reading the field is classified and reading the
actual data from the field data .

Notice that if we replace the second thread by the expression
below, where the two operations in thread2 have been swapped,
then we would violate the first condition:

let thread2 bad r = r .is classified ← false; r .data ← 0

To verify that both of these situations cannot occur, we have
to establish a protocol on accessing the record r . The protocol
should ensure that at the moment of reading r .is classified the
data r .data has the correct classification (ruling out situation 1).
The protocol should also ensure a form of monotonicity:
whenever the classification becomes low (i.e., r .is classified
becomes false), r .data is not going to contain high-sensitivity
data for the rest of the program (ruling out situation 2).
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The security of thread1 , and the whole program, depends
on the specific protocol attached to the record r and that the
protocol is followed by all the components that operate on it.
In particular, for this example the security depends on the fact
that classification only changes in a monotone way. We outline
the proof of safety and security of this example in § IV-D.

D. Higher-order functions and dynamic references

As shown in this section, higher-order functions are useful
for modularity—they can be used to model interfaces. However,
since they can operate on encapsulated state, they are difficult
to reason about. Fortunately, SeLoC’s protocol mechanism is
also applicable to proving non-interference of functions with
encapsulated state. Consider the program awk , a variation of
the “awkward example” of Pitts and Stark [30]:

let awk v = let x = ref(v) in λ f. x← 1; f(); !x

When applied to a value v, the program awk returns a closure
that, when invoked, always returns low-sensitivity data from
the reference x, even if the original value v has high-sensitivity.
Intuitively, awk v returns a closure that does not leak any data,
even if the original value v passed to awk had high-sensitivity.
The lack of leaks crucially relies on the following facts:
• the reference x is allocated in, and remains local to, the

closure, it cannot be accessed without invoking the closure;
• the reference x can be updated only in a monotone way:

once the original value v gets overwritten with 1, the
reference x never holds a high-sensitivity value again.

To see why second condition is important, consider awkbad ,
which violates the monotonicity, and is thus not secure:

let awkbad v = let x = ref(v) in λ f. x← v;x← 1; f(); !x

Let h = awkbad v for a high-sensitivity value v. Now, when
running h (λx. fork {h(id)}), an attacker could influence the
scheduler so that the first dereference !x happens just after the
assignment x← v in the forked-off thread, causing v to leak.

Pitts and Stark studied the “awkward example” to motivate
the difficulties of reasoning about higher-order functions and
state. They were interested in contextual equivalence, but as
we can see, similar considerations apply to non-interference.

III. PRELIMINARIES

In this section we describe the programming language that
we consider in this paper (§ III-A), and the non-interference
property that SeLoC establishes (§ III-B).

A. Object language and scheduler semantics

SeLoC is defined over an ML-like programming language
[29], called HeapLang, with higher-order mutable references,
recursion, and fork-based concurrency. HeapLang is the default
programming language that is shipped with Iris [31]. Its values
and expressions are:

v ∈ Val ::= rec f x = e | (v1, v2) | true | false | . . .
e, s, t ∈ Expr ::= x | rec f x = e | e1(e2) | fork {e}

| ref(e) | ! e | e1 ← e2 | CAS(e1, e2, e3) | . . .

We omit the usual operations on pairs, sums, and integers. The
atomic compare-and-set operation CAS(e1, e2, e3) checks if
the value stored at the location e1 is equal to e2, and, if so,
sets the value at e1 to e3. The fork {e} construct creates a
new thread, which will execute the expression e. The construct
rec f x = e is a recursive λ-function, whose body e can refer
to the function f itself and the argument x.

We use the following syntactic sugar: (λx. e) , (rec x =
e), (let x = e1 in e2) , ((λx. e2) e1), and (e1; e2) , (let =
e1 in e2), where we use as an anonymous binder, in place of
a variable name. HeapLang has no primitive syntax for records,
so they are modeled using pairs. Arrays are omitted in the
paper, but they are present in the Coq mechanization.

HeapLang features dynamic thread creation, so we can
implement the parallel composition operation using fork:

let rec join x = match !xwith Some(v)→ v

| None→ join x

let par(f1, f2) = let x = ref(None) in
fork {x← Some(f1())}
let v2 = f2() in (join x, v2)

e1 || e2 , par(λ . e1, λ . e2)

The operational semantics of HeapLang is split into three
reduction relations: thread-local head reduction →h, thread-
local reduction→t, and thread-pool reduction −→tp. The thread-
local head reduction is of the form (e1, σ1) →h (e2, σ2),
where ei is an expression, and σi is a heap, i.e., a finite
map from locations to values (State , Loc

fin−⇀ Val). Since the
security condition that we consider (§ III-B) is tailored towards
a deterministic thread-local semantics, we parameterize the
operational semantics by an allocation oracle A : State→ Loc:
a function from heaps to locations satisfying A(σ) 6∈ σ. With
the allocation oracle, the allocation head reduction is as follows:

(ref(v), σ)→h (A(σ), σ [A(σ)← v])

The other rules for the head reduction relation are standard
and can be found in the Coq mechanization.

The thread-local head reduction is lifted to the thread-local
reduction using call-by-value evaluation contexts:

K ∈ ECtx ::= [ • ] | K(v2) | e1(K) | ifK then e1 else e2 | . . .

The thread-local reduction is of the form (e1, σ1)→t (~e2, σ2).
The second component contains a list ~e2 of expressions to
accommodate forked-off threads as in STEP-FORK:
STEP-LIFT

(e1, σ1)→h (e2, σ2)

(K[ e1 ], σ1)→t (K[ e2 ], σ2)

STEP-FORK
~e = K[ () ] e

(K[ fork {e} ], σ)→t (~e, σ)

The thread-pool reduction −→tp is defined by lifting the
thread-local reduction to configurations (~e, σ). Here, ~e contains
all threads, including values for the threads that have terminated.
In the definition of −→tp we non-deterministically select an
expression to take a thread-local step:

(ei, σ1)→t (e′i~e, σ2)

(e0 . . . ei . . . en, σ1) −→tp (e0 . . . e
′
i . . . en~e, σ2)
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B. Strong low-bisimulations

To state the soundness theorem of SeLoC in §IV-C, we adapt
a timing-sensitive notion of non-interference for concurrent
programs known as strong low-simulations on configurations
by Sabelfeld and Sands [5]. To define this notion, we first fix
a set L ⊆ Loc of output locations, which we assume to be
low-sensitivity observable locations. For simplicity, we require
these locations to contain integers.

Definition 1. Heaps σ1 and σ2 are low-equivalent for output
locations L ⊆ Loc, notation σ1 ∼L σ2, if they agree on all the
L-locations, i.e., ∀` ∈ L. σ1(`) = σ2(`) 6= ⊥ ∧ σ1(`) ∈ Z.

Definition 2. A a strong low-bisimulation is a partial equiva-
lence (i.e., symmetric and transitive) relation R on configura-
tions such that:

1) If (v~e, σ1) R (w~s, σ2), then v = w;
2) If (~e, σ1) R (~s, σ2), then |~e| = |~s| and σ1 ∼L σ2;
3) If (e0 . . . ei . . . en, σ1) R (s0 . . . si . . . sn, σ2) and

(ei, σ1) →t (e′i~e, σ
′
1), then there exist an s′i, ~s and σ′2

such that:
• (si, σ2)→t (s′i~s, σ

′
2);

• (e0 . . . e
′
i . . . en~e, σ

′
1) R (s0 . . . s

′
i . . . sn~s, σ

′
2).

Notice that the first expression in the thread-pool is the main
thread. The first condition in Definition 2 thus states that the
return values of the main-thread should agree.

To model the input/high-sensitivity data we use free variables.
For simplicity we assume that the input data consists of integers.
We then arrive at the following top-level definition of security.

Definition 3 (Security). An expression e with free variables ~x
is secure if for any heap σ with σ ∼L σ, and any sequences
of integers ~i, ~j with |~i| = |~j| = |~x|, there exists a strong
low-bisimulation R such that (e[~i/~x], σ) R (e[~j/~x], σ).

C. Non-determinism and non-interference

The semantics presented in § III-A is deterministic on the
thread-local level, but we can still account for non-determinism
arising from a scheduler. Consider the program rand , which
uses intrinsic non-determinism of the thread-pool semantics to
return either true or false:

let rand () = let x = ref(true) in fork {x← false} ; !x

This program is secure w.r.t. Definition 3 (we will prove this
in § IV using SeLoC).

It is worth pointing out that if we modify the program and
insert an additional assignment of a high-sensitivity value h to
x, then the resulting program is not secure:

let randbad () = let x = ref(true) in
fork {x← h} ; fork {x← false} ; !x

The program is not secure because an attacker can pick a
scheduler that always executes the leaking assignment, or, even
simpler, can run the program many times under the uniform
scheduler. Because the program is not secure, we cannot prove
it in SeLoC. In SeLoC, we would verify each thread separately,

and we would not be able to verify the forked-off thread x← h
(precisely because it makes the non-determinism of assignments
to the reference x dangerous).

IV. OVERVIEW OF SELOC

We provide an overview of SeLoC by presenting its proof
rules for relational reasoning (§ IV-A), its invariant mechanism
(§IV-B), its soundness theorem (§IV-C), and finally its protocol
mechanism (§ IV-D), which we apply to the verification of the
program prog from § II-C. The grammar of SeLoC is:

P,Q ∈ Prop ::= True | False | ∀x. P | ∃x. P | P ∗Q
| P −∗ Q | ` 7→θ v | awpθ e {Φ} (θ ∈ {L,R})
| dwpE e1 & e2 {Φ}

| P N | .P | �P | |VE1 E2P | . . .

SeLoC features the standard separation logic connectives like
separating conjunction (∗) and magic wand (−∗). Since SeLoC
is based on Iris [17]–[20], it incorporates all the Iris connectives
and modalities, in particular the later modality (.) for dealing
with recursion, the persistence modality (�) for dealing with
shareable resources, and the invariant connective ( P

N
) and

the update modality ( |VE1 E2 ) for establishing and relying on
protocols. We will not introduce the Iris connectives in detail,
but rather explain them on a by-need basis. An interested reader
is referred to [20], [32] for further details. Various connectives
are annotated with name spaces N ∈ InvName and invariant
masks E ⊆ InvName to handle some bookkeeping. When the
mask is omitted, it is assumed to be >, the largest mask. We
let |VE denote |VE E . Readers who are unfamiliar with Iris can
safely ignore the name spaces and invariant masks.

A selection of proof rules of SeLoC is given in Figure 3.

Each inference rule
P1 . . . Pn

Q
in this paper should be read

as an entailment P1 ∗ . . . ∗ Pn ` Q. In the subsequent sections
we explain and motivate the rules of SeLoC.

A. Relational reasoning

The quintessential connective of SeLoC is the double weakest
precondition dwpE e1 & e2 {Φ}. It intuitively expresses that any
two runs of e1 and e2 are related in a lock-step bisimulation-
like way, and that the resulting values of any two terminating
runs are related by the postcondition Φ : Val→ Val→ Prop.
We refer to e1 (resp. e2) as the left-hand side (resp. the right-
hand side). The double weakest precondition is defined such
that if ∀~i~j ∈ Z. dwp e[~i/~x] & e[~j/~x] {v1 v2. v1 = v2} (with ~x
the free variables of e), then e is secure. We defer the precise
soundness statement to § IV-C.

A selection of rules for double weakest preconditions6 are
given in Figure 3. Some of these rules are generalizations of
the ordinary weakest precondition rules (e.g., DWP-VAL, DWP-
WAND, DWP-FUPD, DWP-BIND). The more interesting rules are the
symbolic execution rules, which allow executing the programs

6Some of the SeLoC rules involve the later modality ., which is standard
for dealing with recursion and impredicative invariants [20, Section 5.5]. The
occurrences of . can be ignored for the purposes of this paper.
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DWP-VAL
Φ(v1, v2)

dwpE v1 & v2 {Φ}

DWP-WAND
dwpE e1 & e2 {Ψ} (∀v1 v2.Ψ(v1, v2) −∗ Φ(v1, v2))

dwpE e1 & e2 {Φ}

DWP-FUPD
|VE dwpE e1 & e2 {v1 v2. |VEΦ(v1, v2)}

dwpE e1 & e2 {Φ}

DWP-BIND
dwp e1 & e2 {v1 v2. dwp K1[ v1 ] &K2[ v2 ] {Φ}}

dwp K1[ e1 ] &K2[ e2 ] {Φ}

DWP-PURE
e1 →pure e

′
1 e2 →pure e

′
2 . dwp e′1 & e′2 {Φ}

dwp e1 & e2 {Φ}

DWP-FORK
. dwp e1 & e2 {True} .Φ((), ())

dwpE (fork {e1}) & (fork {e2}) {Φ}

DWP-AWP
awpL e1 {Ψ1} awpR e2 {Ψ2} (∀v1, v2. (Ψ1(v1) ∗Ψ2(v2)) −∗ .Φ(v1, v2))

dwpE e1 & e2 {Φ}

AWP-STORE
` 7→θ v1 (` 7→θ v2 −∗ Φ())

awpθ `← v2 {Φ}

AWP-LOAD
` 7→θ v (` 7→θ v −∗ Φ(v))

awpθ ! ` {Φ}

AWP-ALLOC
∀`. ` 7→θ v −∗ Φ(`)

awpθ ref(v) {Φ}

DWP-INV-ALLOC

P ( P
N −∗ dwp e1 & e2 {Φ})

dwp e1 & e2 {Φ}

INV-DUP

P
N

P
N ∗ P N

DWP-INV

P
N

(.P −∗ dwpE−N e1 & e2 {v1 v2. P ∗ Φ(v1, v2)}) atomic(e1) atomic(e2) N ∈ E
dwpE e1 & e2 {Φ}

Figure 3. A selection of the proof rules of SeLoC.

on both sides in a lock-step fashion. If both sides involve a pure-
redex, we can use DWP-PURE. The premises e→pure e

′ denote
that e deterministically reduces to e′ without any side-effects
(e.g., (if true then e else t) →pure e). If both sides involve a
fork, we can use the rule DWP-FORK, which is a generalization
of Iris’s fork rule to the relational case. To explain SeLoC’s
rules for symbolic execution of heap-manipulating expressions,
we need to introduce some additional machinery:

• Due to SeLoC’s relational nature, there are left- and right-
hand side versions of the points-to connectives ` 7→θ v,
where θ ∈ {L,R}, which denote that the value v of
location ` in the heap associated with the left-hand side
program and the right-hand side program, resp.

• To avoid a quadratic explosion in combinations of all
possible heap-manipulating expressions on the left- and the
right-hand side, SeLoC includes a unary weakest precondi-
tion awpθ e {Φ} for atomic and fork-free expressions. The
rules for unary weakest preconditions (e.g., AWP-STORE,
AWP-LOAD, AWP-ALLOC) are similar to those of Iris, but
each rule is parameterized by a side θ ∈ {L,R}.

The rule DWP-AWP connects dwp and awpθ. For instance,
using DWP-AWP, AWP-STORE, and AWP-LOAD, we can derive:

`1 7→L v1 `2 7→R v2
(`1 7→L v1 ∗ `2 7→R v

′
2) −∗ dwp v1 & () {Φ}

dwp ! `1 & (`2 ← v′2) {Φ}

B. Invariants

Let us demonstrate, by means of an example, how to use the
symbolic execution rules together with the powerful invariant
mechanism of Iris. Recall the rand example from § III-C. We
can use invariants to prove the following:

Proposition 4. dwp rand () & rand () {v1 v2. v1 = v2}.

Proof. First we use DWP-PURE to symbolically execute a β-
reduction. We then use DWP-BIND to “focus” on the ref(true)
subexpression, leaving us with the goal:

dwp ref(true) & ref(true) {Φ}
where Φ(`1, `2) , dwp let x = `1 in . . . &

let x = `2 in . . . {v1 v2. v1 = v2}

We then symbolically execute the allocation, using DWP-AWP

and AWP-ALLOC, obtaining `1 7→L true and `2 7→R true:

`1 7→L true ∗ `2 7→R true
` dwp fork {`1 ← false} ; ! `1 &

fork {`2 ← false} ; ! `2 {v1 v2. v1 = v2}

It is tempting to use DWP-FORK; but in both the main thread
and the forked-off thread we need `1 7→L − and `2 7→R − to
symbolically execute the dereference and assignment to `1 and
`2. To share the points-to connectives between both threads,
we put them into an Iris-style invariant.

Iris-style invariants are logical propositions denoted as P
N

,
which express that P holds at all times. Unlike in other logics,
Iris-style invariants are not attached to locks. Rather, one can
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explicitly open an invariant during an atomic step of execution
to get access to its contents. To create a new invariant we
use the DWP-INV-ALLOC rule, which transfers P into the an
invariant P

N
with a name space N ∈ InvName. The transfer

of P into an invariant makes it possible to share P between
different threads (using INV-DUP). To access an invariant we
use the rule DWP-INV. It allow us to open an invariant during
an atomic symbolic execution step. The masks E ⊆ InvName
on dwp are used to keep track of which invariants have been
open. This is done to prevent invariant reentrancy.

Returning to our example, we can use DWP-INV-ALLOC to
allocate the invariant I , ∃b ∈ B. `1 7→L b ∗ `2 7→R b

N
. This

invariant not only allows different threads to access `1 and `2
(via INV-DUP), but it also ensures that `1 and `2 contain the
same Boolean value throughout the execution.

The proof then proceeds as follows. We apply DWP-FORK

and get two new goals:

1) I ` dwp `1 ← false & `2 ← false {True};
2) I ` dwp ! `1 & ! `2 {v1 v2. v1 = v2}.

The invariant I can be used for proving both goals (INV-DUP).
The first goal involves proving that the assignment of false to
`1 and `2 is secure. We verify this via DWP-INV, and temporarily
opening the invariant I to obtain `1 7→L b and `2 7→R b. We
then apply DWP-AWP, and symbolically execute the assignment
to obtain `1 7→L false and `2 7→R false. At the end of this
atomic step, we verify that the invariant I still holds.

The second goal is solved in a similar way. When we
dereference `1 and `2 we know that they contain the same
value because of the invariant I .

C. Soundness

We now state SeLoC’s soundness theorem, which guarantees
that verified programs are actually secure w.r.t. Definition 3.

As we have described in § III-B, we fix a set L of output
locations that we assume to be observable by the attacker. We
require these locations to always contain the same data in both
runs of the program. To reflect this in the logic, we use an
invariant that owns the observable locations and forces them
to contain the same values in both heaps:

IL ,∗`∈L ∃i ∈ Z. ` 7→L i ∗ ` 7→R i
N .(`,`)

When we verify a program under the invariant IL, we are forced
to interact with the locations in L as if they are permanently
publicly observable. With this in mind we state the soundness
theorem, which we prove in § VII.

Theorem 5 (Soundness). Suppose that:

IL ` ∀~i,~j ∈ Z. dwp e[~i/~x] & e[~j/~x] {v1 v2. v1 = v2}

is derivable, where ~x are the free variables of e, and ~i and ~j
are lists of integers with |~i| = |~j| = |~x|, then:

• the expression e is secure, and,
• the configuration (e[~i/~x], σ) is safe (i.e., cannot get stuck)

for any list of integers ~i, and any heap σ with σ ∼L σ.

D. Protocols

Now that we have seen the basics of Iris-style invariants in
SeLoC, let us use the protocol mechanism SeLoC inherits from
Iris to verify the example prog from Figure 2. We prove the
following proposition, which serves as a premise for Theorem 5,
and therefore implies the security of prog .

Proposition 6. For any integers i1, i2 ∈ Z, we have I{out} `
dwp prog out i1 & prog out i2 {v1 v2. v1 = v2 = ((), ())}.

Proof. We first need a derived rule for parallel composition
(which we defined in terms of fork in § III-A). The parallel
composition operation satisfies a binary version of the standard
specification in Concurrent Separation Logic [11]:

DWP-PAR
dwp e1 & s1 {Ψ1} dwp e2 & s2 {Ψ2}(
∀v1, v2, w1, w2. (Ψ1(v1, w1) ∗Ψ2(v2, w2)) −∗

Φ((v1, w1), (v2, w2))
)

dwp (e1 || e2) & (s1 || s2) {Φ}

Second, we need to establish a protocol on the way the values
in the record r may evolve. We identify three logical states
State , {Classified, Intermediate,Declassified} the record r
can be in; visualized in Figure 4-a:

1) Classified, if the data stored in the record is classified,
and r .is classified points to true;

2) Intermediate, when the data stored in the record is not
classified anymore, but r .is classified still points to true;

3) Declassified, when the data stored in the record is not
classified and r .is classified points to false. This state is
final in the sense that once the state of the record becomes
Declassified, it forever remains so.

The idea behind the proof is as follows: we use an invariant to
track the logical state together with the points-to connectives
for the physical state of the record. This way, we ensure that
the protocol is followed by both threads.

To model the protocol in SeLoC, we use Iris’s mechanism for
user-defined ghost state. The exact way this mechanism works is
described in [17], [20], but is not important for this paper. What
is important is that via this mechanism we can define predicates
in stateγ , state tokenγ : State → Prop that satisfy the rules
in Figure 4-b. The predicate in stateγ will be shared using an
invariant, while thread2 will own the predicate state tokenγ .
Rule STATE-AGREE states that the predicates in stateγ and
state tokenγ agree on the logical state. If a thread owns both
predicates, it can change the logical state using STATE-CHANGE,
but only in a way that respects the transition system. Rule
DECLASSIFIED-DUP states that once a thread learns that the
record is in the final state, i.e., Declassified, this knowledge
remains true forever. The predicates are indexed by a ghost
name γ to allow for different instances of the transition system
using STATE-ALLOC. Figure 4-c displays the invariant that ties
together the ghost and physical state. It is defined for the
records r1 and r2 on the left- and the right-hand side, resp. We
verify each thread separately with respect to this invariant,
which we open every time we access the record.
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a) The protocol as a transition system:

Classified Intermediate Declassified

b) The rules for ghost state:

STATE-ALLOC
|VE ∃γ. in stateγ(Classified) ∗ state tokenγ(Classified)

STATE-AGREE
in stateγ(s1) state tokenγ(s2)

s1 = s2

STATE-CHANGE
s1 s2 in stateγ(s1) state tokenγ(s1)

|VE in stateγ(s2) ∗ state tokenγ(s2)

DECLASSIFIED-DUP
state tokenγ(Declassified)

state tokenγ(Declassified) ∗ state tokenγ(Declassified)

c) The invariant:(
in stateγ(Classified) ∗ ∃i1, i2. r1.is classified 7→L true ∗
r2.is classified 7→R true ∗ r1.data 7→L i1 ∗ r2.data 7→R i2

)
∨
(
in stateγ(Intermediate) ∗ ∃i. r1.is classified 7→L true ∗
r2.is classified 7→R true ∗ r1.data 7→L i ∗ r2.data 7→R i

)
∨
(
in stateγ(Declassified) ∗ ∃i. r1.is classified 7→L false ∗
r2.is classified 7→R false ∗ r1.data 7→L i ∗ r2.data 7→R i

)

N

Figure 4. Value-dependent classification.

Proof of the complete program: We symbolically exe-
cute the allocation of the records r1 and r2, giving us the
resources r1.is classified 7→L true, r2.is classified 7→R true,
r1.data 7→L i1, and r2.data 7→R i2. We then use STATE-ALLOC

to obtain in stateγ(Classified) and state tokenγ(Classified).
With these resources at hand, we use DWP-INV-ALLOC to estab-
lish the invariant in Figure 4-c, which can be shared between
both threads. We use DWP-PAR with Ψ1(v1, v2) , Ψ2(v1, v2) ,
(v1 = v2 = ()), and use the token state tokenγ(Classified) for
the proof of the second thread.

Proof of thread1 : We use the symbolic execution rules for
dereferencing r1.is classified and r2.is classified until both
of them become false. At that point, the invariant tells us that
we are in the Declassified state. Subsequently, when using the
symbolic execution rule for dereferencing r1.data and r2.data ,
we use a copy of the predicate state tokenγ(Declassified) to
determine that the last disjunct of the invariant must hold.
From that, we know that both r1.data and r2.data contain the
same value. Using this information we can safely symbolically
execute the assignments to the output location out .

Proof of thread2 : We start the proof with the initial
predicate state tokenγ(Classified) and update the logical state
with each assignment. The complete formalized proof can be
found in the Coq mechanization.

TYPED-IF-LOW

Γ ` e : boolL Γ ` t : τ Γ ` u : τ

Γ ` if e then t else u : τ

TYPED-IF-HIGH

Γ ` e : boolH Γ ` v : τ Γ ` w : τ
v, w are values or variables in Γ τ is flat

Γ ` if e then v elsew : τ

TYPED-STORE
Γ ` e : ref τ Γ ` t : τ

Γ ` e← t : unit

TYPED-OUT
` ∈ L

Γ ` ` : ref intL

Figure 5. A selection of the typing rules.

V. TYPE SYSTEM AND LOGICAL RELATIONS

We show how to define a type system for non-interference as
an abstraction on top of SeLoC using the technique of logical
relations. While logical relations have been used to model
type systems and logics for safety and contextual refinement
in (variants of) Iris before [21]–[26], we—for the first time—
use logical relations in Iris to model a type system for non-
interference (§ V-A). We moreover show how we can combine
type-checked code with code that has been manually verified
using double weakest preconditions in SeLoC (§ V-B).

The types that we consider are as follows:

τ ∈ Type ::= unit | intχ | boolχ | τ×τ ′ | ref τ | (τ → τ ′)χ

Here, χ, ξ ∈ Lbl range over the sensitivity labels {L,H} that
form a lattice with L v H. While any bounded lattice will do,
we use the two-element lattice for brevity’s sake.

The typing judgment is of the form Γ ` e : τ , where Γ is
an assignment of variables to types, e is an expression, and τ
is a type. Some typing rules are given in Figure 5, and the rest
can be found in Appendix A. The rule TYPED-OUT shows that
every output location ` ∈ L is typed as a reference to a low-
sensitivity integer. By τ t ξ we denote the level stamping, e.g.,
intχ t ξ = intχtξ. See Appendix A for the full definition.

To type check the set data structure from § II, we need to
support benign branching on high-sensitivity Booleans. For
that purpose we use the rule TYPED-IF-HIGH. In the rule, both
branches should either be values or variables, ensuring that they
do not perform any computations. In addition, both branches
should be of a flat type—intH, boolH, or a product of two
flat types. Function types are not flat because they can leak
via timing behavior outside the if branch itself.

Notice that our type system has no sensitivity labels on
reference types, and no program counter label on the typing
judgment. While such labels are common in security type
systems for languages with (higher-order) references [1]–[3],
[33], a direct adaptation of such type systems is not sound with
respect to the termination-sensitive notion of non-interference
we consider. A counterexample is provided in Appendix A-B.
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JunitK(v1, v2) , v1 = v2 = ()

JintχK(v1, v2) , v1, v2 ∈ Z ∗ (χ = L→ v1 = v2)

JboolχK(v1, v2) , v1, v2 ∈ B ∗ (χ = L→ v1 = v2)

Jτ × τ ′K(v1, v2) , ∃w1, w2, w
′
1, w

′
2.

v1 = (w1, w
′
1) ∗ v2 = (w2, w

′
2) ∗

JτK(w1, w2) ∗ Jτ ′K(w′1, w
′
2)

Jref τK(v1, v2) , v1, v2 ∈ Loc ∗

∃w1 w2. v1 7→L w1 ∗
v2 7→R w2 ∗ JτK(w1, w2)

N .(v1,v2)

J(τ → τ ′)χK(v1, v2) , �
(
∀w1, w2. JτK(w1, w2) −∗

Jτ ′ t χKe(v1 w1)(v2 w2)
)

JτKe(e1, e2) , dwp e1 & e2 {JτK}

Figure 6. The logical relations interpretation of types.

LOGREL-IF-LOW

dwp e1 & e2
{
JboolLK

}
dwp t1 & t2 {Φ} dwp u1 & u2 {Φ}

dwp if e1 then t1 else u1 & if e2 then t2 else u2 {Φ}

LOGREL-STORE
dwp e1 & e2 {Jref τK} dwp t1 & t2 {JτK}

dwp (e1 ← t1) & (e2 ← t2) {JunitK}

Figure 7. A selection of compatibility rules.

A. Logical relations model

We give a semantic model of our type system using logical
relations. The key idea of logical relations is to interpret each
type τ as a relation on values, i.e., to each type τ we assign an
interpretation JτK : Val× Val→ Prop where Prop is the type
of SeLoC propositions. Intuitively, JτK(v1, v2) expresses that
v1 and v2 of type τ are indistinguishable by a low-sensitivity
attacker. The definition of JτK is given in Figure 6. We will
now explain some interesting cases in detail.

The interpretation JintLK contains the pairs of equal integers,
while JintHK contains the pairs of any two integers. This
captures the intuition that a low-sensitivity attacker can observe
low-sensitivity integers, but not high-sensitivity integers.

The interpretation Jref τK captures that references `1 and
`2 are indistinguishable iff they always hold values w1 and
w2 that are indistinguishable at type τ . This is formalized by
imposing an invariant that contains both points-to propositions
`1 7→L w1 and `2 7→R w2, as well as the interpretation of τ that
links the values w1 and w2. Notice that our interpretation of
references does not require the locations `1 and `2 themselves
to be syntactically equal. This is crucial for modeling dynamic
allocation (recall that the allocation oracle described in § III-A
may depend on the contents of the heap).

The interpretation J(τ → τ ′)χK captures that functions v1

and v2 are indistinguishable iff for all inputs w1 and w2

indistinguishable at type τ , the behaviors of the expressions
v1 w1 and v2 w2 are indistinguishable at type τ ′ t χ. To
formalize what it means for the behavior of expressions (in this
case v1 w1 and v2 w2) to be indistinguishable, we define the
expression interpretation JτKe : Expr×Expr→ Prop by lifting
the value interpretation using double weakest preconditions.

The interpretation of functions is defined using the persis-
tence modality � of Iris [20, Section 2.3]. Intuitively, �P states
that P holds without asserting ownership of any non-shareable
resources. Having the persistence modality in this definition
is common in logical relations in Iris [21]—it ensures that
indistinguishable functions remain indistinguishable forever.

The interpretation of expressions J Ke generalizes to open
terms by considering all well-typed substitutions. A (binary)
substitution γ is a function Var→ Val× Val. We write γi(e)
for a term e where each free variable x is substituted by
πi(γ(x)). A substitution γ is well-typed, notation JΓK(γ), iff
∀x. JτK(γ(Γ(x))). We define the semantic typing judgment as:

Γ |= e : τ , ∀γ. (JΓK(γ) ∗ IL) −∗ JτKe(γ1(e), γ2(e)).

Here, IL is the invariant on the observable locations (§ IV-C).

Theorem 7 (Soundness). If x1 : intH, . . . , xn : intH |=
e : intL is a derivable in SeLoC, then e is secure, and the
configuration (e[~i/~x], σ) is safe (i.e., cannot get stuck) for any
list of integers ~i, and any heap σ with σ ∼L σ.

Proof. This a direct consequence of Theorem 5.

The fundamental property of logical relations states that any
program that can be type checked is semantically typed.

Proposition 8 (Fundamental property). If Γ ` e : τ , then
Γ |= e : τ is derivable in SeLoC.

Proof. This proposition is proved by induction on the typing
judgment Γ ` e : τ using so-called compatibility rules for each
case. A selection of these rules is shown in Figure 7.

B. Typing via manual proof

When composing the fundamental property (Proposition 8)
and the soundness theorem (Theorem 7) we obtain that any
typed program is secure. For instance, it allows us to show
that the rand program is secure by type checking it, instead
of performing a manual proof as done in Proposition 4.

However, semantic typing gives us more—it allows us to
combine type-checked code with manually verified code. Let us
consider the examples from § II, which are not typed according
to the typing rules, but which we can prove to be semantically
typed by dropping down to the interpretation of the semantic
typing judgment in terms of double weakest preconditions.

Proposition 9. |= prog : ref intL → intH → unit×unit.

Proof. This is a direct consequence of Proposition 6.

Proposition 10. |= awk : intH → (unit→ unit)L → intL.

Proof. The proposition boils down to showing that for any
i1, i2 ∈ Z and f1, f2 with J(unit→ unit)LK(f1, f2), we have

9



dwp awk i1 f1 & awk i2 f2 {v1 v2. v1 = v2 = 0}. We verify
this by establishing a monotone protocol similar to the one
used in the proof of value-dependent classification in § IV-B.
The full proof can be found in the Coq mechanization.

After establishing the semantic typing for, e.g., prog we can
use it in any context where a function of the type ref intL →
intH → unit× unit is expected. For example:

h : intH, f : ref intL → intH → unit× unit

` let x = ref(0) in fork {f x h} ; !x : intL

Using the fundamental property (Proposition 8) we obtain
a semantic typing judgment for the above program. Using
Proposition 9 we establish that if we substitute prog for f , the
resulting program will still be semantically typed, and thus
secure by the soundness theorem (Theorem 7).

The same methodology can be used to assign the types to
the safe array operations from § II-B via manual proof, and
compose them with the type checked set data structure from
§ II-A. The proof can be found in the Coq mechanization.

VI. MODULAR SEPARATION LOGIC SPECIFICATIONS

Types provide a convenient way to specify program modules,
but are not always strong enough to enable the verification
of sophisticated clients. This is particularly relevant if the
specification of a program module is to be used in a manual
proof or relies on function correctness. We show that in addition
to specifications through types, SeLoC can also be used to
prove modular specification in separation logic. We demonstrate
this approach on dynamically created locks (§ VI-A) and
dynamically classified references (§ VI-B).

A. Locks
The HeapLang language we consider does not provide locks

as primitive constructs, but provides the low-level compare-and-
set (CAS) operation with which different locking mechanisms
can be implemented. Figure 8 displays the implementation and
specification of a spin lock. The specification makes use of
a relational generalization of the common lock predicates in
separation logic [34]–[36]. The predicate isLock(lk1, lk2, R)
expresses that the pair of locks lk1 and lk2 protect the resources
R, and the predicate locked(lk1, lk2) expresses that the pair
of locks is in acquired state.

To verify that the spin lock implementation conforms to the
lock specification, we define the lock predicates using Iris’s
mechanism for invariants and user-defined ghost state. The
proof (and invariant) are generalizations of the ordinary proof
(and invariant) for functional correctness in Iris.

The rules of our lock specification are similar to the rules
in logics with locks as primitives constructs, such as [6], [10].
There are two notable exceptions. First, in loc. cit. one needs to
fix the set of locks and associated resources upfront, whereas in
SeLoC one can create locks dynamically and attach an arbitrary
resource R to each lock during the proof. Second, since locks
are not primitive constructs in SeLoC, the specification also
applies to different lock implementations, e.g., a ticket lock,
as we have shown in the Coq mechanization.

a) Implementation of a spin lock:

let new lock () = ref(false)

let rec acquire lk = if CAS(lk , false, true) then ()

else acquire lk

let release lk = lk ← false

b) Modular separation logic specification of locks:
NEWLOCK-SPEC

R

dwp new lock () & new lock () {lk1 lk2. isLock(lk1, lk2, R)}

ISLOCK-DUP
isLock(lk1, lk2, R)

isLock(lk1, lk2, R) ∗ isLock(lk1, lk2, R)

ACQUIRE-SPEC

isLock(lk1, lk2, R)

dwp acquire lk1 & acquire lk2 {R ∗ locked(lk1, lk2)}

RELEASE-SPEC
isLock(lk1, lk2, R) R locked(lk1, lk2)

dwp release lk1 & release lk2 {True}

Figure 8. Dynamically allocated locks in SeLoC.

B. Dynamically classified references

We consider a program module that encapsulates and gener-
alizes dynamically classified references7 as used in § II-C. This
program module generalizes to clients with multiple threads
and different sharing models. For example, clients in which
multiple threads read and write to the dynamically classified
reference, or in which the data gets classified again. The Coq
mechanization contains such an example. The implementation
and specification8 of the module for dynamically classified
references is shown in Figure 9.

The main ingredient of the specification is the representation
predicate val dep(τ, r1, r2), which expresses that the dynam-
ically classified references r1 and r2 contain related data of
type τ at all times. Since val dep(τ, r1, r2) expresses mere
knowledge instead of ownership, it is duplicable (VALDEP-DUP).
With the representation predicate at hand we can formulate
weak specifications for some operations. For instance, the rule
READ-SAFE over-approximates the sensitivity-level of the values
returned by the read operation, and dually, the rule STORE-SAFE

under-approximates the sensitivity-level of the values stored
using the store operation. Of course, at times we want to track
the precise sensitivity-level. For that we use a fractional token
class(r1,r2)(χ, q) with q ∈ (0, 1]Q. This token is reminiscent
of fractional permissions in separation logic. The proof rules

7In this context declassification refers to changing the dynamic classification
of the reference. It is thus unrelated to static declassification policies [37], and
the declassify function is unrelated to the eponymous function from [38].

8The specification in Figure 9 is derived from a more general HOCAP-style
logically atomic specifications [39], which can be found in Appendix B and
the Coq mechanization.
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a) Implementation of dynamically classified references:

let new vdep v =

{
data = ref(v);

is classified = ref(false)

}
let classify r = r.is classified ← true

let read r = ! r.data let declassify r v = r.data ← v; r.is classified ← false
let store r v = r.data ← v let get classified r = ! r.is classified

b) Modular separation logic specification of dynamically classified references:
NEW-VDEP

Jτ t χK(v1, v2)

dwp new vdep v1 & new vdep v2
{
r1 r2. val dep(τ, r1, r2) ∗ class(r1,r2)(χ, 1)

}
VALDEP-DUP

val dep(τ, r1, r2) ` val dep(τ, r1, r2) ∗ val dep(τ, r1, r2)
CLASS-SPLIT

class(r1,r2)(χ, q1) ∗ class(r1,r2)(χ, q2) a` class(r1,r2)(χ, q1 + q2)

READ-SAFE
val dep(τ, r1, r2)

dwp read r1 & read r2 {v1 v2. Jτ tHK(v1, v2)}

READ-SEQ

val dep(τ, r1, r2) class(r1,r2)(χ, q)

dwp read r1 & read r2
{
v1 v2. Jτ t χK(v1, v2) ∗ class(r1,r2)(χ, q)

}
STORE-SAFE

val dep(τ, r1, r2) JτK(v1, v2)

dwp store r1 v1 & store r2 v2 {True}

STORE-SEQ

val dep(τ, r1, r2) class(r1,r2)(χ, q) Jτ t χK(v1, v2)

dwp store r1 v1 & store r2 v2
{

class(r1,r2)(χ, q)
}

CLASSIFY-SEQ

val dep(τ, r1, r2) class(r1,r2)(χ, 1)

dwp classify r1 & classify r2
{

class(r1,r2)(H, 1)
} DECLASSIFY-SEQ

val dep(τ, r1, r2) class(r1,r2)(χ, 1) JτK(v1, v2)

dwp declassify r1 v1 & declassify r2 v2
{

class(r1,r2)(L, 1)
}

GET-CLASSIFIED-SEQ

val dep(τ, r1, r2) class(r1,r2)(χ, q)

dwp get classified r1 & get classified r2
{
b1 b2. (b1 = b2) ∗ class(r1,r2)(χ, q) ∗ ((b1 = false)→ (χ = L))

}
c) The transition system used for the proof:

Classified (b = false, χ = H) Intermediate (b = true, χ = L) Declassified (b = true, χ = L)

Figure 9. Dynamically classified references in SeLoC.

for declassify and classify (DECLASSIFY-SEQ and CLASSIFY-
SEQ) require the full fraction (q = 1) since they change the
classification. The precise rules for read and store (READ-SEQ

and STORE-SEQ) do not change the classification, and thus
require an arbitrary fraction. The token is splittable according
to CLASS-SPLIT so it can be shared between threads.

Since the rules for declassify and classify require a full
fraction (q = 1), they do not allow for fine-grained sharing9,
i.e., they cannot be used to verify a program that runs declassify
in parallel with classify . It is good that this is impossible—
running these operations in parallel results in a race-condition,
making it impossible to know what the final classification
would be. However, it is possible to verify a program that
runs declassify in parallel with read or store (using precise
rules for these two operations) by sharing the token via an

9We can still achieve sharing by storing the token class(r1,r2)(χ, 1) in a
lock, as outlined in § VI-A.

invariant. To access such a shared token one has to use the more
general HOCAP-style logically atomic specifications found in
Appendix B and the Coq mechanization.

Proof: In order to verify the implementation, we follow
the usual approach of defining the representation predicate
val dep(τ, r1, r2) and token class(r1,r2)(χ, q) using Iris’s in-
variant and protocol mechanism. The invariant expresses that,
at all times, the fields is classified of both records contain
the same Boolean value b, and that the data in the records are
related by Jτ t χK. The relation between the Boolean values b
and the security label χ, and the way it evolves, are expressed
using a protocol visualized as the transition system in Figure 9.

VII. SOUNDNESS

To prove soundness of SeLoC (Theorem 7), we give a model
of double weakest preconditions in Iris (§ VII-A), and then
construct a bisimulation out of this model (§ VII-B). We only
give a high-level overview, the details are in Appendix C.
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A. Model of double weakest preconditions

The model of the Iris logic [19], [20] consists of three layers:
• The Iris base logic, which contains the standard separation

logic connectives (e.g., ∗ and −∗), modalities (e.g., ., �),
and the machinery for user-defined ghost state.

• The invariant mechanism, which is built as a library on
top of the Iris base logic.

• The Iris program logic, which is built as a library on top
of the Iris base logic and invariant mechanism. It provides
weakest preconditions for proving safety and functional
correctness of concurrent programs.

We reuse the first two layers of Iris (the base logic and
the invariant mechanism), on top of which we model our new
notion of double weakest preconditions. This model is inspired
by the model of ordinary (unary) weakest preconditions in
Iris and the product program construction [40]. Intuitively,
dwp e1 & e2 {Φ} captures that the expressions e1 and e2 are
executed in lock-step. This is done by case analysis:
• Either, both expressions e1 and e2 are values that are

related by the postcondition Φ.
• Otherwise, both expressions e1 and e2 are reducible, and

for any reductions (e1, σ1) →t (e′1, σ
′
1) and (e2, σ2) →t

(e′2, σ
′
2), the expressions e′1 and e′2 are still related by dwp.

If e1 and e2 fork off threads ~e′1 and ~e′2, then all of the
forked-off threads are related pairwise by dwp.

B. Constructing a bisimulation

The main challenge of constructing a strong low-bisimulation
lies in connecting double weakest preconditions, at the level
of separation logic, with strong-low bisimulations, at the meta
level. The construction is done as follows:

1) We define a relation R that “lifts” double weakest
preconditions out of the SeLoC logic into the meta-level.

2) We then show that the relation R satisfies a number of
bisimulation-like properties.

3) The relation R is not a bisimulation because it is not
transitive. To fix this, we take its transitive closure R∗.

Finally, we show that the dwp predicate is sound w.r.t. the
relation R: if IL ` dwp e& s {v1 v2. v1 = v2} can be derived
in SeLoC, then (e, σ1) R (s, σ2) for σ1 ∼L σ2.

VIII. MECHANIZATION IN COQ

We have mechanized the definition of SeLoC, the type
system, the soundness proof, and all examples and derived
constructions in the paper and the appendix in Coq. The
mechanization has been built on top of the mechanization
of Iris [18]–[20], which readily provides the Iris base logic,
the invariant mechanism, and the HeapLang language.

To carry out the mechanization effectively, we have made
extensive use of the tactic language MoSeL (formerly Iris Proof
Mode) for separation logic in Coq [21], [41]. Using MoSeL
we were able to carry out in Coq the typical kind of reasoning
steps one would do on paper. This was essential to mechanize
the SeLoC logic (1818 line of Coq code), the type system
(1355 lines), and all the examples (3223 lines).

IX. RELATED WORK

A. Security based on strong low-bisimulations

The security condition we use, a strong low-bisimulation
due to Sabelfeld and Sands [5], has been studied in a variety of
related work. In loc. cit. the notion of a strong low-bisimulation
is applied to a first-order stateful language with concurrency. It
is also shown that this notion implies a scheduler-independent
bisimulation known as ρ-specific probabilistic bisimulation.
Sabelfeld and Sands presented both strong low-bisimulation
on thread pools and configurations. We use the bisimulation
relation on configurations because it allows for a flow-sensitive
analysis and readily supports dynamic allocation.

Strong low-bisimulations are highly compositional: if a
thread e is secure w.r.t. a strong low-bisimulation, then the com-
position of e with any other thread is secure. Unfortunately, this
property makes it non-trivial to adapt strong low-bisimulations
for analyses that are flow-sensitive in thread composition. We
work around this issue by composing the components at the
level of the logic (as double weakest preconditions), and not at
the level of the bisimulations, despite the fact that we use strong
low-bisimulations as an auxiliary notion in our soundness proof.
By performing the composition at the level of the logic, we can
use Iris invariants and modular specifications to put restrictions
onto which threads can be composed.

Another way of enabling flow-sensitive analysis was devel-
oped by Mantel et al. [4], who relaxed the notion of a strong
low-bisimulation to a strong low-bisimulation modulo modes.
Their approach enables rely-guarantee style reasoning at the
level of the bisimulation. Notably, using the notion of strong
low-bisimulations modulo modes one can specify that no other
threads can read or write to a certain location.

Based on the notion of strong low-bisimulations modulo
modes, the Covern project [6], [7], [42] developed a series of
logics for rely/guarantee reasoning. Notably, Murray et al. [6]
presented the first fully mechanized program logic for non-
interference of concurrent programs with shared memory, which
is also called Covern. While Covern is not a separation logic,
it has been extended to allow for flexible reasoning about non-
interference in presence of value-dependent classifications [7].
In terms of the object language, Covern does not support fine-
grained concurrency, arrays, or dynamically allocated refer-
ences. Since Covern does not support fine-grained concurrency,
locks are modeled as primitives in the language and logic,
while they are derived constructs in our work. As a result of
that, Covern’s notion of strong low-bisimulations is tied to the
operational semantics of locks, i.e., it is considered modulo
the variables that are held by locks. The set of locks, and the
variables they protect, has to be provided statically. Hence
their approach does not immediately generalize to support
dynamically allocated locks, nor to reason about locks that
protect other resources than permissions to write to or read from
variables. Value-dependent classifications are also primitive in
Covern [7], while they are derived constructs in our work.
Covern has two separate primitive rules for assignment to
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“normal” variables and for assignment to “control” variables
(i.e., variables that signify the classification levels).

B. Program logics for non-interference

Early work by Beringer and Hofmann [43] established a
connection between Hoare logic and non-interference. They
did so for a first-order sequential language with a simple non-
interference condition. Non-interference was encoded through
self-composition and renaming, making sure that both parts of
the composed program operate on different parts of the heap
(something that one gets by construction in separation logic).
Notably, they proved the non-interference property of two type
systems by constructing models of the type systems in their
Hoare logic. They also showed how to extend their approach
to object-oriented type systems.

C. Separation logics for non-interference

Karbyshev et al. [9] devised a compositional type-and-effect
system based on separation logic to prove non-interference
of concurrent programs with channels. Their system is sound
w.r.t. termination-insensitive non-interference allowing for races
on low-sensitivity locations. They consider security for arbi-
trary (deterministic) schedulers, and allow for a rescheduling
operation in the programming language to prevent scheduler
tainting. To achieve that, their logical rule for rescheduling
treats the scheduler as a splittable separation logic resource,
allowing one to share it between threads. In terms of the object
language, they consider a first-order language without dynamic
memory allocation, and the concurrency primitives are based
on channels with send and receive operations rather than our
low-level fine-grained concurrency model. They do not provide
a logic for modular reasoning about program modules.

The recently proposed separation logic SecCSL [10] enables
reasoning about value-dependent information flow control
policies through a relational interpretation of separation logic.
One of the main advantages of the SecCSL approach is its
amenability to automation. However, to achieve that, they
restrict to a first-order separation logic with restricted language
features, i.e., a first-order language with first-order references,
and a coarse-grained synchronization mechanism. SecCSL
does not support dynamically allocated references out of the
box. However, we believe that it can be extended to support
dynamic allocation, as long as the semantics for allocation are
deterministic and do not depend on the global heap.

The security condition in SecCSL [10] is non-standard, and
is geared to providing meaning to the intermediate Hoare triples.
Because of that, their formulation of non-interference is closely
intertwined with the semantics of the logic.

Costanzo and Shao [44] devised a separation logic for
proving non-interference of first-order sequential programs. One
of the novelties of their system is the support for declassification
in the form of delimited release [38]. While we do not study
declassification policies in this paper, we believe that the
approach of Costanzo and Shao can be adapted to our setting,
provided that we are willing to relax the notion of a strong
low-bisimulation.

D. Type systems for non-interference

As discussed in the introduction (§ I), a lot of work on non-
interference in the programming languages area has focused on
type-system based approaches. Such approaches are amendable
to high degrees of automation, but lack the ability to reason
about functional correctness. Due to an abundance of prior
work on in this area, we restrict to directly related work.

Pottier and Simonet developed Flow Caml [1], a type
system for termination-insensitive non-interference for sequen-
tial higher-order language in the spirit of Caml. Soundness
w.r.t. non-interference is proven with the product programs
technique. This kind of self-composition was an inspiration
for our model of double weakest preconditions, although we
avoid self-composition of programs at the syntactic level.

Terauchi [33] devised a capabilities-based type system for
observational determinism [45]. Observational determinism
is a formulation of non-interference for concurrent programs
that is substantially different from the strong low-bisimulation
considered in this paper. In particular, under observational
determinism, no races on low-sensitivity locations are allowed,
ruling out e.g., the rand function from § III-C.

E. Logical relation models

The technique of logical relations is widely used for proving
the soundness of type systems and logics. The work on step-
indexing [46], [47] made it possible to scale logical relations
to languages with higher-order references and recursive types.
Notably, Rajani and Garg [2] describe a step-indexed Kripke-
style model for two information flow aware type systems for a
sequential language with higher-order references. While they do
not consider concurrency and their notion of non-interference
is different from ours (their notion is termination- and progress-
insensitive), their model is similar in spirit. However, we make
use of the “logical” approach to step-indexing [48] in Iris to
avoid explicit step-indexes in definitions and proofs.

The relational model of our type system is directly inspired
by a line of work on interpretation of type systems and logical
relations in Iris [21]–[26], but this previous work focused on
reasoning about safety and contextual equivalence of programs,
while we target non-interference. For that purpose we developed
double weakest preconditions.

The idea of using logical relations to reason about the
combination of typed and manually verified code has been
used before in the context of Iris. Jung et al. [25], [26] use
it to reason about unsafe code in Rust, and Krogh-Jespersen
et al. [22] use it in the context of type-and-effect systems.

X. CONCLUSIONS AND FUTURE WORK

We have presented SeLoC—the first separation logic for non-
interference that combines type checking and manual proof. It
supports fine-grained concurrency, higher-order functions, and
dynamic (higher-order) references. The key feature of SeLoC is
its novel connective for double weakest preconditions, which in
combination with Iris-style invariants, allows for compositional
reasoning. We have proved soundness of SeLoC with respect
to a standard notion of security.
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In future work we want to develop a more expressive type
system. To develop such a type system, we want to transfer
back reasoning principles from SeLoC into constructs that can
be type checked automatically. Moreover, we would like to
study declassification in the sense of delimited information
release and static declassification policies [37], [38], [44], [49].
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APPENDIX A
TYPE SYSTEM

A. Typing rules

The subtyping and typing rules can be found in Figure 10;
the compatibility rules can be found in Figure 11. The level
stamping function is defined as:

unit t ξ , unit (τ × τ ′) t ξ , (τ t ξ)× (τ ′ t ξ)
intχ t ξ , intχtξ (ref τ) t ξ , ref τ

boolχ t ξ , boolχtξ (τ → τ ′)χ t ξ , (τ → τ ′)χtξ

Flat types are defined inductively as:

unit is flat intH is flat boolH is flat

τ1 is flat τ2 is flat

τ1 × τ2 is flat

B. Sensitivity labels on references and aliasing

Most type systems for non-interference for languages with
(higher-order) references annotate reference types with sensi-
tivity labels, and annotate the typing judgment with a program
counter label [1]–[3], [33]. These annotations are used to
prevent leaks via aliasing, while allowing more programs
to be typed. Our type system (§ V) does not have such
annotations because some programs that are typeable using
such annotations are not secure w.r.t. a termination-sensitive
notion of non-interference (e.g., strong low-bisimulation). For
example, termination-insensitive type systems usually accept
the following program as secure:

(if h then f else g) ()

Here, h is a high-sensitivity Boolean, and f and g are functions
of type (unit→ unit)L. Under a termination-sensitive notion
of security, the program is not secure because f and g can
examine different termination behavior.

Despite this, let us examine why exactly we do not need
labels on reference types to prevent leaks via aliasing, and argue
that our approach still allows for benign aliasing of references.
A classic example of an information leak via aliasing is:

let p1 r s h = r ← true; s← true;

let x = (if h then r else s) in
x← false; ! r

Both r and s contain low-sensitivity data, but by aliasing one
or the other with x, the program leaks the high-sensitivity value
h. In previous approaches such leaks are avoided by tracking
aliasing information through sensitivity labels on references.
The variable x would be typed as (ref intL)H because it
was aliased in a high-sensitivity context (branching on h). The
consequent assignment x← false is then prevented by the type
system since the label on the reference (H) is not a below the
label of the values that are stored in the reference (L).

In SeLoC, the variable x will not be typeable at all. To see
why that is the case, suppose we want to prove that the program
is secure. For this, we let h1 and h2 denote high-sensitivity
inputs for two runs of the program, and r1, s1 (resp. r2, s2)
denote the low-sensitivity references arguments for the left-
hand side program (resp. right-hand side program). Under these
high-sensitivity inputs, we need to prove that the bodies of the
let-expressions are indistinguishable, i.e.,

dwp if h1 then r1 else s1 & if h2 then r2 else s2
{
Jref intLK

}
Proving this proposition, would in particular require proving
dwp r1 & s2

{
Jref intLK

}
, which is impossible in SeLoC.

If we remove the trailing assignment x← false the resulting
program p2 becomes trivially secure, and many termination-
insensitive type systems accept it as such:

let p2 r s h = r ← true; s← true;

let x = (if h then r else s) in
! r

Our type system cannot be used to type check this example:
as we have just explained, we cannot type the let-expression
at all. Despite this, we can fall back on the double weakest
preconditions to verify the security of p2, i.e., we can prove:

Jref boolLK(r1, r2) ∗ Jref boolLK(s1, s2) ∗
JboolHK(h1, h2) ` dwp p2 r1 s1 h1 & p2 r2 s2 h2 {JunitK}

by symbolic execution. Using our logic, we can perform a case
distinction on the Boolean values h1 and h2, which amounts
to proving dwp p2 r1 s1 true & p2 r2 s2 true {JunitK},
dwp p2 r1 s1 true & p2 r2 s2 false {JunitK}, etc. We solve all
these goals by symbolic execution. This example demonstrates
the advantages of combining typing with manual proofs.

We believe that the restriction on the typing of the let x-
binding is not unreasonable in case of termination-sensitive and
progress-sensitive security condition. As we have mentioned,
if we take termination and timing behavior into account, the
liberal compositional reasoning that is enjoyed by termination-
insensitive type systems is no longer sound. In presence of
higher-order functions and store, we can write the counterex-
ample from the beginning of this section in the form of p2 to
obtain the program p3 below:

let p3 f g h = r ← f ; s← g;

let x = (if h then r else s) in
(!x)()

The variable x now aliases a reference to a function. If f and
g exhibit different termination behavior, then the value of h
can be observed by invoking !x.

C. Generalized rule for branching

The notion of security that we use (strong low-bisimulation)
allows for branching on high-sensitivity data, provided that the
timing behavior of the branches is indistinguishable. However,
if we branch on a high-sensitivity Boolean, it is insufficient

15



a) Subtyping rules:
τ <: τ

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

χ1 v χ2

intχ1 <: intχ2

χ1 v χ2

boolχ1 <: boolχ2

χ1 v χ2 τ ′1 <: τ1 τ2 <: τ ′2
(τ1 → τ2)χ1 <: (τ ′1 → τ ′2)χ2

τ1 <: τ ′1 τ2 <: τ ′2
τ1 × τ2 <: τ ′1 × τ ′2

b) Typing rules:

τ <: τ ′ Γ ` e : τ

Γ ` e : τ ′
Γ(x) = τ

Γ ` x : τ

` ∈ L

Γ ` ` : ref intL
Γ ` () : unit

i ∈ Z
Γ ` i : intχ

b ∈ B
Γ ` b : boolχ

Γ ` e : intχ Γ ` s : intξ

Γ ` e+ s : intχtξ
f : (τ → τ ′)χ, x : τ,Γ ` e : τ ′ t χ

Γ ` rec f x = e : (τ → τ ′)χ
Γ ` e : (τ → τ ′)χ Γ ` s : τ

Γ ` e s : τ ′ t χ

Γ ` e : boolL Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ

Γ ` e : boolH Γ ` v : τ Γ ` w : τ

v, w are values or variables in Γ τ is flat

Γ ` if e then v elsew : τ

Γ ` e : τ

Γ ` fork {e} : unit

Γ ` e : τ

Γ ` ref(e) : ref τ

Γ ` e : ref τ

Γ ` ! e : τ

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1 ← e2 : unit

Γ ` e1 : ref intχ Γ ` e2 : intχ

Γ ` FAA(e1, e2) : intχ

Figure 10. Typing rules of the SeLoC type system.

to verify that each individual branch is secure, we also have
to verify that the two different branches are indistinguishable
for the attacker. This kind of condition is present in the rule
LOGREL-IF in Figure 11. We can speak of two different branches
being indistinguishable because we have moved from a unary
typing system to a binary logic.

Recall, that our inference rules are interpreted as an sep-
arating implication, where the premises are joined together
by a separating conjunction. To prove each premise, the user
of the rule has to distribute the resources they currently have
among the premises. The last four premises in LOGREL-IF,
however, are joined by a regular intuitionistic conjunction (∧).
The user still has to prove both of those premises if they wish
to apply the rule, but this time they do not have to split their
resources, i.e., they are able to reuse the same resource to
prove all the premises. This corresponds to the fact that there
are four possible combinations of branches, but only one of
the combinations can actually occur.

APPENDIX B
HOCAP-STYLE MODULAR SPECIFICATIONS

We provide modular logically atomic specifications for
the module of dynamically classified references (§ VI-B) in
Figure 12. These specifications are stronger than the ones given
in Figure 12 in the sense that they are logically atomic, i.e., they
allow one to open invariants around operations. This is achieved
using the HOCAP [39] approach to logical atomicity. Note
that the weaker specifications in Figure 9 (from § VI-B) can
be derived from the HOCAP-style specifications in Figure 12.

APPENDIX C
SOUNDNESS

Figure 13 contains the formal model of dwp e1 & e2 {Φ} as
a definition in the Iris framework. Recall that this definition
captures that the expressions e1 and e2 are executed in a lock-
step manner. Since this definition is inspired by the definition of
ordinary weakest preconditions in Iris and the product program
construction [40], instead of Iris’s state interpretation S :
State→ Prop, we have a state relation SR : State× State→
Prop that keeps track of both the left and right-hand side heaps.

We now provide the details of the construction of a strong
low-bisimulation out of a double weakest precondition proof.

Definition 11. We define the relation R on configurations of
the same size to be the following:

(e0e1 . . . em, σ1) R (s0s1 . . . sm, σ2) , ∃n : N.

True `
(
|V> ∅

. |V∅ >
)n
|V>SR(σ1, σ2) ∗ IL ∗

dwp e0 & s0 {v1 v2. v1 = v2} ∗

∗1≤i≤m. dwp ei & si {True}

Note that R is defined at the meta-level, i.e., outside SeLoC;
in particular the existential quantifier ∃n : N is at the meta-level.
The relation R relates two configurations if all the threads are
related by a double weakest precondition, and execution of
the main threads furthermore result in the same value. The
invariant IL (which has been defined in § IV-C) guarantees that
the output locations L always contain the same data between
any executions of the two configurations. The existentially
quantified natural number n bounds the number of times the
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INTERP-SUB
τ1 <: τ2 Jτ1K(v1, v2)

Jτ2K(v1, v2)

LOGREL-SUB
τ1 <: τ2 dwp e1 & e2 {Jτ1K}

dwp e1 & e2 {Jτ2K}

LOGREL-INT-LOW
i ∈ Z

dwp i& i {JintχK}

LOGREL-INT-HIGH
i1, i2 ∈ Z

dwp i1 & i2
{
JintHK

}
LOGREL-BOOL-LOW

b ∈ B
dwp b& b {JboolχK}

LOGREL-BOOL-HIGH
b1, b2 ∈ B

dwp b1 & b2
{
JboolHK

} LOGREL-BINOP

dwp e1 & e2 {JintχK} dwp s1 & s2
{
JintξK

}
dwp e1 + s1 & e2 + s2

{
JintχtξK

}
LOGREL-REC

�∀f1 f2 v1 v2. J(τ1 → τ2)χK(f1, f2) ∗ Jτ1K(v1, v2) −∗ dwp e1[v1/x][f1/f ] & e2[v2/x][f2/f ] {Jτ2 t χK}
dwp (rec f x : = e1) & (rec f x : = e2) {J(τ1 → τ2)χK}

LOGREL-APP
dwp e1 & e2 {J(τ1 → τ2)χK} dwp s1 & s2 {Jτ1K}

dwp e1 s1 & e2 s2 {Jτ2 t χK}

LOGREL-IF
dwp e1 & e2 {JboolχK} dwp t1 & t2 {Φ} ∧ dwp u1 & u2 {Φ} ∧ (χ 6v L→ (dwp u1 & t2 {Φ} ∧ dwp t1 & u2 {Φ}))

dwp (if e1 then t1 else u1) & (if e2 then t2 else u2) {Φ}

LOGREL-IF-LOW

dwp e1 & e2
{
JboolLK

}
dwp t1 & t2 {Φ} dwp u1 & u2 {Φ}

dwp if e1 then t1 else u1 & if e2 then t2 else u2 {Φ}

LOGREL-IF-HIGH

dwp e1 & e2
{
JboolHK

}
dwp v1 & v2 {JτK} dwp w1 &w2 {JτK} τ is flat

dwp if e1 then v1 elsew1 & if e2 then v2 elsew2 {JτK}

LOGREL-FORK
dwp e1 & e2 {Φ}

dwp fork {e1} & fork {e2} {JunitK}

LOGREL-ALLOC
dwp e1 & e2 {JτK}

dwp ref(e1) & ref(e2) {Jref τK}

LOGREL-LOAD
dwp e1 & e2 {Jref τK}
dwp ! e1 & ! e2 {JτK}

LOGREL-STORE
dwp e1 & e2 {Jref τK} dwp t1 & t2 {JτK}

dwp (e1 ← t1) & (e2 ← t2) {JunitK}

LOGREL-FAA
dwp e1 & e2 {Jref intχK} dwp t1 & t2 {JintχK}

dwp FAA(e1, t1) & FAA(e2, t2) {JintχK}

Figure 11. Compatibility rules of the SeLoC type system.

definition of double weakest preconditions has been unfolded.
It is needed to show that R is closed under reductions.

The relation R allows one to “lift” double weakest precon-
dition proofs from inside the logic:

Proposition 12. If IL ` dwp e & s {v1 v2. v1 = v2} is
derivable in SeLoC, then (e, σ1) R (s, σ2) for any σ1 ∼L σ2.

Proof. For showing (e, σ1) R (s, σ2), pick n = 0. Because
σ1 and σ2 agree on the L-locations (i.e., σ1 ∼L σ2), we can
establish the state relation SR(σ1, σ2) and the invariant IL.

Lemma 13. The following properties hold:
1) R is symmetric;
2) If (v~e, σ1) R (w~s, σ2), then v = w;
3) If (~e, σ1) R (~s, σ2), then |~e| = |~s| and σ1 ∼L σ2;

4) If (e0 . . . ei . . . , σ1) R (s0 . . . si . . . , σ2) and (ei, σ1)→t

(e′i~e, σ
′
1), then there exist an s′i, ~s and σ′2 such that:

• (si, σ2)→t (s′i~s, σ
′
2);

• (e0 . . . e
′
i~e . . . , σ

′
1) R (s0 . . . s

′
i~s . . . , σ

′
2).

By the above lemma, we now know that R has all the
properties of a strong low-bisimulation (cf. [5, Definition 6]),
short of being a partial equivalence relation. Since R is not
transitive, we consider its transitive closure R∗, and verify that
all the properties of a strong low-bisimulation hold for R∗.

Theorem 14. The relation R∗ is a strong low-bisimulation on
configurations.

The theorem Theorem 14 in combination with Proposition 12
implies the soundness of SeLoC (Theorem 7).
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VALDEP-PERSISTENT
val dep(τ, r1, r2)

� val dep(τ, r1, r2)

CLASSIFICATION-AGREE
class(r1,r2)(χ1, q1) class(r1,r2)(χ2, q2)

χ1 = χ2

CLASSIFICATION-OP

class(r1,r2)(χ, q1) ∗ class(r1,r2)(χ, q2) a` class(r1,r2)(χ, q1 + q2)

CLASSIFICATION-1-EXCLUSIVE
class(r1,r2)(χ, 1) class(r1,r2)(χ, q)

False

CLASSIFICATION-AUTH-AGREEE
class auth(r1,r2)(χ1) class(r1,r2)(χ2, q)

χ1 = χ2

CLASSIFICATION-UPDATE
class auth(r1,r2)(χ) class(r1,r2)(χ, 1)

|Vclass auth(r1,r2)(χ
′) ∗ class(r1,r2)(χ

′, 1)

READ-SPEC
val dep(τ, r1, r2) (∀χ v1 v2. class auth(r1,r2)(χ) ∗ Jτ t χK(v1, v2) ≡−∗ class auth(r1,r2)(χ) ∗ Φ(v1, v2))

dwp read r1 & read r2 {Φ}

WRITE-SPEC
val dep(τ, r1, r2) (∀χ. class auth(r1,r2)(χ) ≡−∗ class auth(r1,r2)(χ) ∗ Jτ t χK(v1, v2) ∗ Φ((), ()))

dwp store r1 v1 & store r2 v2 {Φ}

IS-CLASSIFIED-SPEC
val dep(τ, r1, r2) (∀χ b. class auth(r1,r2)(χ) ≡−∗ class auth(r1,r2)(χ) ∗ ((b = false→ χ = L) −∗ Φ(b, b)))

dwp get classified r1 & get classified r2 {Φ}

DECLASSIFY-SPEC
val dep(τ, r1, r2) class(r1,r2)(χ, q)

(class auth(r1,r2)(χ) ∗ class(r1,r2)(χ, q) ≡−∗ class auth(r1,r2)(L) ∗ class(r1,r2)(L, q) ∗ (class(r1,r2)(L, q) −∗ Φ((), ())))

dwp declassify r1 v1 & declassify r2 v2 {Φ}

CLASSIFY-SPEC
val dep(τ, r1, r2) class(r1,r2)(χ, q) (class auth(r1,r2)(χ) ∗ class(r1,r2)(χ, q) ≡−∗ class auth(r1,r2)(H) ∗ Φ((), ())

dwp classify r1 & classify r2 {Φ}

NEW-VDEP-SPEC
Jτ t χK(v1, v2) (∀r1 r2. val dep(τ, r1, r2) ∗ class(r1,r2)(χ, 1) −∗ Φ(r1, r2))

dwp new vdep v1 & new vdep v2 {Φ}

Figure 12. HOCAP-style specifications for dynamically classified references.

dwp e1 & e2 {Φ} ,



|V>Φ(e1, e2) if e1, e2 ∈ Val

|V>False if e1 ∈ Val xor e2 ∈ Val

∀σ1 σ2. SR(σ1, σ2) −∗ |V> ∅
red(e1, σ1) ∗ red(e2, σ2) ∗

∀e′1 σ′1 ~e1 e′2 σ′2 ~e2. (e1, σ1)→t (e′1 ~e1, σ
′
1) ∧ (e2, σ2)→t (e′2 ~e2, σ

′
2) −∗

|V∅ ∅
. |V∅ >

SR(σ′1, σ
′
2) ∗ dwp e′1 & e′2 {Φ} ∗∗(e′′1 ,e

′′
2 )∈ ~e1× ~e2 .dwp e′′1 & e′′2 {True} otherwise

Figure 13. The model of double weakest preconditions.
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