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Controllability of Bandlimited Graph Processes Over
Random Time Varying Graphs

Fernando Gama , Student Member, IEEE, Elvin Isufi , Member, IEEE, Alejandro Ribeiro , Member, IEEE,
and Geert Leus , Fellow, IEEE

Abstract—Controllability of complex networks arises in many
technological problems involving social, financial, road, commu-
nication, and smart grid networks. In many practical situations,
the underlying topology might change randomly with time, due to
link failures such as changing friendships, road blocks or sensor
malfunctions. Thus, it leads to poorly controlled dynamics if ran-
domness is not properly accounted for. We consider the problem of
controlling the network state when the topology varies randomly
with time. Our problem concerns target states that are bandlimited
over the graph; these are states that have nonzero frequency content
only on a specific graph frequency band. We thus leverage graph
signal processing and exploit the bandlimited model to drive the
network state from a fixed set of control nodes. When controlling
the state from a few nodes, we observe that spurious, out-of-band
frequency content is created. Therefore, we focus on controlling
the network state over the desired frequency band, and then use
a graph filter to get rid of the unwanted frequency content. To
account for the topological randomness, we develop the concept of
controllability in the mean, which consists of driving the expected
network state towards the target state. A detailed mean squared
error analysis is performed to quantify the statistical deviation
between the final controlled state on a particular graph realization
and the actual target state. Finally, we propose different control
strategies and evaluate their effectiveness on synthetic network
models and social networks.

Index Terms—Graph signal processing, random graphs,
network controllability, graph signals, graph process, linear
systems on graphs.

I. INTRODUCTION

THE controllability of complex networks plays a fun-
damental role in our understanding of natural and
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Fig. 1. Zachary’s Karate club network. The nodes represent club members
and the edges capture social relationships between the members.

technological systems. Relevant examples involve the control
of social, biological, financial, road, communication, and smart
grid networks. Different works have highlighted the importance
of the network structure when controlling a system evolving on
top of that network [2]–[4]. Other works controlled said system
from a few control or driving nodes [5]–[7]. As an illustrative
example, consider the Zachary’s Karate club social network in
Fig. 1 [8]. The network state may be an opinion profile (e.g.,
members’ thoughts on a topic) and controlling, or driving, the
network amounts to shaping those opinions towards a desired
or target state. The social relationships between members affect
the ability to control the opinion profile and the objective is to
sway all members opinions from a few influencing members (the
driving nodes).

While providing seminal contributions on network control-
lability, the works in [2]–[7] ignore the coupling between
the underlying topology and the target state (a.k.a. the graph
signal). Recent evidence from graph signal processing (GSP)
[9]–[11] has shown that this coupling can bring substantial
benefits in graph signal sampling [12], interpolation [13], [14],
adaptive reconstruction [15], and observability of diffusion
processes [16]. A common point that unifies [10]–[16] is the
so-called graph Fourier transform (GFT). The GFT expands the
network state onto an orthonormal basis related to the underlying
topology—formed by the eigenvectors of a matrix that rep-
resents the network, such as the adjacency or the Laplacian
matrix— akin to how the discrete Fourier transform expands a
time signal on the complex exponential orthonormal basis. The
GFT basis vectors can be linked to different variability modes
across the graph through the concept of total variation [10], [17];
hence, named the graph oscillating modes.

A particular class of graph signals is that of bandlimited graph
signals, i.e., signals that can be expressed by only a few graph

1053-587X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 13:49:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0003-4230-9906
https://orcid.org/0000-0001-8288-867X
mailto:fgama@seas.upenn.edu
mailto:aribeiro@seas.upenn.edu
mailto:e.isufi-1@tudelft.nl
mailto:g.j.t.leus@tudelft.nl


GAMA et al.: CONTROLLABILITY OF BANDLIMITED GRAPH PROCESSES OVER RANDOM TIME VARYING GRAPHS 6441

oscillating modes. The number of active modes forms the graph
signal bandwidth. Likewise for time signals, purely bandlimited
graph signals rarely exist. But the bandlimitedness prior poses
a powerful and parsimonious model to develop practical tools.
This prior is exploited in GSP for sampling [10], [11], [18],
where signals arising in economic [19], handwritten digits [12],
[14] or brain functional imaging [20], are approximately ban-
dlimited. In the Zachary’s Karate club example, a bandlimited
network state corresponds to opinions polarized into a few
clusters of like-minded members [12]. Therefore, controlling the
system to a bandlimited state implies imposing a similar opinion
profile to members that influence each other; this influence is
captured by the edge weight.

Network control towards a bandlimited graph signal is consid-
ered in [21]. The control signal is fed to a few driving nodes and
is percolated through the graph until the target state is reached.
The authors determined the trade-off between the control time
and the number of driving nodes, provided conditions to reach
any bandlimited state, and designed the control signals.

The work in [22] studied the challenge of controlling the
network towards a bandlimited state with control signals of
limited energy. The main result is the trade-off between the
number of driving nodes and the control signal energy. But
conditions to drive the network to any bandlimited state were
not derived in this limited energy setting.

Along these lines, and in parallel with the shorter version
of this paper [1], the work in [23] used GSP to formulate the
linear quadratic controller as an autoregressive moving average
(ARMA) graph filter [24]. This ARMA formulation is used to
control independently each graph mode to the desired state. But
these control strategies require all nodes to act as driving nodes.

Altogether, the above works concern network control over
time-invariant topologies. But in practice the network structure
may change randomly over time due to link losses, or nodes that
disappear with a given probability. This might be the case of:
i) members that are not present a given day in the Zachary’s
Karate club; ii) communication links that are random in sensor
networks; iii) power lines and buses that go down in smart grids
due to local failures. In these situations, the graph structure is
random and can be characterized by an expected graph with
a variance around this expectation. Network controllability be-
comes, therefore, challenging since some connections cannot be
exploited; hence, the derivations obtained in the deterministic
setting may lead to a completely different state.

Motivated by the above observations, we study the possibil-
ities to perform open loop control over random time varying
networks. By exploring GSP tools as in [21]–[23], we propose
a framework that accounts for the graph randomness in the
analysis. Our main contributions are:

1) We study the problem of controlling dynamics over deter-
ministic networks from a few driving nodes (Section III).
We provide conditions on network controllability that
relate the minimum number of driving nodes to the tar-
get control bandwidth and the control time. This result
encompasses the three strategies proposed in [21].

2) We formulate the problem of controlling dynamics over
random time varying networks from a few driving nodes.
(Section IV). We develop the concept of controllability in

the mean to drive the expected state towards a graph signal
with a target bandwidth content on the expected graph. We
also extend the conditions on network controllability from
the deterministic to the stochastic setting.

3) We perform a mean squared error analysis to quantify the
statistical deviation of the controlled state from the target
state on a particular graph realization (Section IV-B). This
analysis illustrates the role of the random graph model,
the target state bandwidth, and the control signal.

4) We propose two control strategies to drive the expected
state to the desired bandlimited state with the minimum
mean squared error (Section V).

5) We corroborate the developed framework and study its
performance on synthetic (Erdős-Rényi and geometric
graphs) and real-world social networks (Facebook sub-
graph and Zachary’s Karate club) (Section VI).

To the best of our knowledge, this is the first contribution that
approaches network controllability over random time varying
topologies. We remark that while this work relies on the bandlim-
ited prior to select the driving nodes, the reader might find of in-
terest other parsimonious models [18], [25], [26] for such a task.

The remaining part of the paper proceeds as follows: Section II
sets down the preliminary concepts and Section III contains our
formulation of network controllability on deterministic graphs.
Section IV formulates the controllability on random graphs.
Section V develops the control strategies, while Section VI
presents the numerical experiments. Finally, Section VII pro-
vides the concluding remarks. The proofs are collected in the
appendix.

Notation: Normal letters a (or A) denote scalars, bold low-
ercase letters a vectors, and bold uppercase letters A matrices.
The ith entry of a vector is [a]i while the (i, j)th entry of a
matrix is [A]i,j . Superscripts T and H denote the transpose and
the Hermitian, respectively. The N × 1 null vector is 0N , the
N × 1 vector of all ones is 1N and the N ×N identity matrix
is IN . The diagonal operator denoted as diag(·) is defined
such that a = diag(A) with [a]i = [A]i,i, and A = diag(a)
is a diagonal matrix with vector a on the main diagonal. The
expectation operator is denoted as E[·], the trace operator as
tr(·), the rank of A as rank(A), the Kronecker product as ⊗,
and the element-wise Hadamard product as ◦. The lp vector and
matrix norm is denoted as ‖ · ‖p. The ceiling operator is denoted
as �·� and the minimum and maximum operators as min{·} and
max{·}, respectively. If not otherwise stated, calligraphic letters
A indicate sets and the set cardinality is denoted as |A|.

II. DIFFUSION PROCESSES ON GRAPHS

In this work, we consider controlling a diffusion process
on random time varying graphs towards a desired state. To
achieve this, we model diffusion processes through graph signal
processing. We introduce the basics of GSP in Section II-A,
define the random time varying graph model in Section II-B,
and discuss diffusion processes in Section II-C.

A. Graph Signal Processing

LetG = (V, E ,W)denote a graph withV = {v1, . . . , vN} the
set ofN vertices, E ⊆ V × V the set of edges, andW : E → R+
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a function that assigns positive weights to the edges. The graph
serves as a mathematical representation of the network and its
structure is captured by the graph shift operator (GSO) matrix
S ∈ RN×N . The (i, j)th element of S, [S]i,j , is nonzero only
if i = j or if (vj , vi) ∈ E ; so that S respects the sparsity of
G. Standard choices for S are the weighted graph adjacency
matrix W [17], [27], the graph Laplacian matrix L [10], or
their respective generalizations [28, Chapter 8]. We consider
S admits an eigendecomposition S = VΛVH, where V =
[v1, . . . ,vN ] ∈ C

N×N collects the orthonormal eigenvectors
and Λ = diag(λ1, . . . , λN ) ∈ C

N×N contains the associated
eigenvalues. This holds for all undirected graphs on which the
graph Laplacian can be defined and also for the adjacency matrix
of some directed graphs [17], [19].

A graph signal is a mapping from the vertex set to the field
of real numbers, i.e., xi : vi → R, for vi ∈ V . An example of a
graph signal is the opinion of members in Zachary’s Karate club.
We collect all node signals in the vector x ∈ RN with [x]i = xi

being the value of node i [10].
The graph Fourier transform (GFT) is the projection of the

graph signal x on the eigenbasis V and is denoted by x̃ = VHx
[9], [10]. The elements [x̃]k = x̃k denote the graph Fourier
coefficients of x, whereas the eigenvectors vk form the basis of
graph oscillating modes. Likewise, the inverse GFT is x = Vx̃,
i.e., it writes x as a linear combination of the graph oscillating
modes weighed by the Fourier coefficients.

A graph signal is bandlimited if it has only a few nonzero
Fourier coefficients. Without loss of generality, assume the first
K elements of x̃ are nonzero; so, we can write x̃ = [x̃T

K ,0T
N−K ]T

where x̃K ∈ C
K and K ≤ N . Then, x is written in the compact

form

x = VK x̃K (1)

where VK ∈ C
N×K is the respective column-trimmed eigen-

vector matrix. The GFT x̃K of x̃ writes as x̃K = VH
Kx. This

representation connects the signal bandwidth with the sampling
and reconstruction strategies as shown in [12], [14], [15], [29],
[30]. We will also exploit bandlimitedness in Section IV to
control the network from a few driving nodes.

B. Random Time Varying Graphs

We consider the following random graph model.
Definition 1 (RES(p) graph model [31]): Given an underly-

ing graph G=(V, E), a random edge sampling (RES) graph
realization Gt=(V, Et) of G consists of the same set of nodes
V and assumes the edge (vi, vj) ∈ E is sampled at time t
(i.e., (vi, vj) ∈ Et) with a probability 0 < p ≤ 1. The edges are
sampled independently over both the graph and the temporal
dimension and are mutually independent from the graph signal
if the latter has a stochastic nature.

In other words, the RES(p) model states that the realization
Gt = (V, Et) is drawn from the underlying graph G = (V, E),
where the instantaneous edge set Et ⊆ E is generated via an
independent Bernoulli process with probability p. Let us from
now on denote with W and D = diag(W1N ) the adjacency
and degree matrix of G, respectively. If the graph is undirected,

we will also consider the unnormalized graph Laplacian matrix
L = D−W. To ease the exposition, denote with Wt, Dt, and
Lt the respective matrices of the instantaneous graphGt and with
W̄ = E[Wt], D̄ = E[Dt], and L̄ = E[Lt] those of the expected
graph Ḡ. Under the RES(p)model, it holds that W̄ = pW, D̄ =
pD, and L̄ = pL.

We assume the following.
Assumption 1: The GSO of the underlying graph G has an

upper bounded spectral norm ‖S‖2 ≤ � for some � <∞.
This assumption is generally met in practice and implies the

graphs of interest have finite dimension and edge weights.
We also remark that more complex models than the RES(p)

can be found in literature. In particular, many of these results can
be readily extended to the model in which each edge (vi, vj) is
sampled independently with a different probability pij . But for
clarity of exposition, we will focus only on the RES(p) model.

C. Diffusion on Graphs From a GSP Perspective

The continuous-time diffusion of a signal x0 on a graph
G with Laplacian matrix L is described by the differential
equation [32], [33]

dx(s)

ds
= −Lx(s), x(0) = x0. (2)

This equation can be discretized as [34]

xt = Axt−1, A = I− εL, t ∈ N (3)

which is stable if 0 < ε ≤ 1/‖L‖2. Alternatively, a diffusion
process on a graph can be interpreted as the discrete-time shift
of x0 through the graph edges [27], [35]

xt = Axt−1, A = W, t ∈ N. (4)

Model (3) is used when the process is defined over a con-
tinuous space that has been discretized, usually in the form
of a mesh, as for heat diffusion processes [33]. Model (4) is
employed when the underlying support is naturally a graph,
as for sensor network communications [35]. In essence, these
are two examples of processes that describe the network state
evolution by xt = Axt−1 and relate this state to the underlying
time-invariant topology (the transition matrix A depends on the
shift operator). In this paper, we consider the more general case
of random time varying topologies, i.e. xt = At−1xt−1, and we
abstract the relationship between the transition matrix and the
underlying topology as follows.

Assumption 2: Let At be the time varying transition matrix
of a diffusion process over a random time varying graph Gt ∈
RES(p). Then, E[At] and S share the same eigenvectors.

That is, we consider diffusions on random graphs such that the
eigenvectors of the expected transition matrix and the underlying
GSO coincide. The following lemma shows this is the case for
the diffusion models (3) and (4) on RES(p) graph realizations.

Lemma 1: Let G be a graph satisfying Assumption 1 and let
Gt be a RES(p) realization of it. For the diffusion models

i) S = L and At = I− εLt [cf. (3)],
ii) S = W and At = Wt [cf. (4)],
Assumption 2 and ‖At‖2 ≤ � hold.
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Other models that satisfy these conditions are the wave equa-
tion on graphs and graph-based ARMA models, see [16].

III. CONTROLLABILITY ON DETERMINISTIC GRAPHS

Consider the N -state linear system

xt = Axt−1 +But−1 (5)

where xt ∈ RN denotes the state value on all nodes at time t,
ut ∈ RM is the control signal injected on M ≤ N nodes, and
A ∈ RN×N andB ∈ RN×M are the transition and control input
matrix, respectively. The relationship between the network state
xt and the underlying topology is captured in (5) through the
transition matrix A; it shares the eigenvectors with S and this is
the case for models (3) and (4).

System (5) is controllable if and only if the controllability
matrix

Ω = [B,AB, . . . ,AT−1B] (6)

has full rank N [36, Section 6.2.1]. While full rank of Ω
guarantees the convergence of xt to any target signal x∗, we
focus on controlling the network state towards a bandlimited
graph signal x∗ = VK x̃∗K . Here, x̃∗K ∈ C

K determines the de-
sired frequency response over the K frequencies of interest; the
target bandwidth. We thus define the bandwidth controllability
as follows.

Definition 2 (Bandwidth controllability): An N -state sys-
tem on a graph is bandwidth controllable from M ≤ N nodes
if, for any initial state x0 and some final time T , there exists
a sequence of control signals {ut ∈ RM , t = 0, 1, . . . , T − 1}
acting on a fixed set of M nodes that drive the network state
to a value x∗ with any frequency content x̃∗K = VH

Kx∗ over the
K ≤ N target bandwidth.

Lead by the promising results of bandlimited graph signal
reconstruction from samples on a few nodes [12], [14], [15],
[29], [30], we aim to control xt through a fixed, time-invariant,
set of nodes S of cardinality |S| = M ≤ N . Let then B = CT

denote a binary matrix that selects these nodes. More formally,
C belongs to the combinatorial set

CM,N =
{
C ∈ {0, 1}M×N : C1N = 1M ,CT1M ≤ 1N

}

(7)
that selects M out of N different nodes and the ordering relation
≤ among vectors stands for the elementwise partial ordering [39,
Example 2.23]. Observe that CCT = IM and CTC = diag(c)
with c ∈ {0, 1}N , such that [c]i = 1 if and only if node vi
belongs to S .

With this in place, we write the linear system on graphs (5)
in the GFT domain as

x̃t = VHAVx̃t−1 +VHCTut−1

� Ãx̃t−1 +VHCTut−1 (8)

where Ã = VHAV is a diagonal matrix containing the eigen-
values of A [cf. Assumption 2]. For convenience, we write
Ã = diag(a) ∈ C

N×N with a ∈ C
N the vector containing the

eigenvalues of Ã, known also as the spectral response of A.

Then, by splitting (8) into the K frequencies of interest we have
[

x̃t,K

x̃t,N−K

]

=

[
diag(aK)x̃t−1,K

diag(aN−K)x̃t−1,N−K

]

+

[
VH

KCTut−1
VH

N−KCTut−1

]

(9)
where x̃t = [x̃T

t,K , x̃T
t,N−K ]T, a = [aT

K ,aT
N−K ]T and V =

[VK ,VN−K ].
For a system that is bandwidth controllable [cf. Def. 2], recur-

sion (9) can drive the network state xt to any signal xT that has
a desired frequency response x̃∗K over the target bandwidth K.
Thus, we can focus on the K frequencies of interest, determine
the driving nodes through matrix C, and design the control
signals {ut} such that the system

x̃t,K = ÃK x̃t−1,K +VH
KCTut−1. (10)

reaches x̃∗K at time T , i.e. x̃T,K = x̃∗K . But we observe that
focusing on these K frequencies leads to a non-zero value also
on the N −K remaining frequencies. One way to suppress this
undesired content is to force x̃t,N−K = 0N−K . This requires
the design of a sampling matrix C that satisfies VH

N−KCT =
0(N−K)×M [cf. (9)]. The latter might be infeasible or might
severely constraint the selection of driving nodes. Therefore, to
avoid the out-of-band frequency content, we use a frequency-
selective graph filter H = VKVH

K to force bandlimitedness on
the final network state x∗ = HxT . This filter can be imple-
mented locally through a polynomial in the shift operator S with
degree at most N [37].

Hereinafter, the design variables are the sampling matrix C
and the control signals ut ∈ RM for t = 0, . . . , T − 1. And,
since the initial state x0 is considered known, we fix, without
loss of generality, x0 = 0N as is common practice in control
literature [22], [36, Section 2.3.2], [38, Section 2.1]. With this
set down, we claim our first contribution, which we will also
exploit for controllability on random graphs in Section IV.

Proposition 1: Consider the linear system (10) describing a
process over a deterministic graph G. A necessary condition to
control the system in a finite time T towards a target frequency
content x̃∗K over the K frequencies of interest is to select M ≥
�K/T � driving nodes.

Proposition 1 provides a necessary condition on the minimum
number of nodes to control system (10) in T instants. It shows
the trade-off between the cardinality of the sampling set M , the
signal bandwidth K, and the control time T . Thus, for T ≥ K
there is the potential to control the network by acting on a single
node. But this is not sufficient since the system controllability
is affected by the network topology [2]–[4], i.e. the influence of
the driving nodes on the frequency content, see also [12], [19],
[21]. Hence, the driving nodes should be carefully picked to
guarantee the controllability of (10). In what follows, we show
the relation of Proposition 1 with [21] and [22].

a) Relation with [21]: Proposition 1 encompasses under a
single condition the three graph signal reconstruction strategies
of [21]. In fact, M ≥ K and T = 1 covers the multiple node-
single time seeding strategy; M = 1 and T ≥ K is a necessary
condition to control the signal for the single node-multiple time
seeding strategy; and M ≥ �K/T � covers the more involved
multiple node-multiple time seeding approach. This is expected,
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since graph signal reconstruction through percolation is a par-
ticular case of system (5).

b) Relation with [22]: Differently from our approach, [22]
focuses on designing the control signal u = [uT

T−1,
. . . ,uT

1,u
T
0]

T ∈ RMT×1 as a trade-off between sparsity in
the vertex domain and signal energy. This problem writes as

minimize
u

‖u‖22 + γ‖u‖0
subject to xt+1 = Axt +But t = 0, . . . , T − 1

x0 = 0N , xT = x∗ (11)

where the constant γ trades the control signal energy ‖u‖22 with
sparsity ‖u‖0. Problem (11) yields a sparse control signal u
across time, but the driving nodes are not necessarily fixed. In
this regard, Proposition 1 imposes a minimum dimension on u
such that controllability is possible from a fixed set S of driving
nodes.

IV. CONTROLLABILITY ON RANDOM GRAPHS

When the network topology is time varying, system (5) should
change to reflect the time dependency in the transition matrix.
When the time variation is random, the controllability of the
network state should follow a statistical approach. We propose
a statistical framework in this section, where in Section IV-A
we develop the concept of controllability in the mean and in
Section IV-B we perform the mean squared error analysis.

A. Mean Controllability

The dynamics of a time varying system on random graphs are
given by

xt = At−1xt−1 +CTut−1 (12)

where under the RES(p) model in Definition 1, {At} is a set of
i.i.d. random matrices with E[At] = Ā. The deterministic de-
sign variables are contained in the second term of (12), CTut−1.
The state xt depends on the random system matrices {Aτ}t−1τ=0,
which are independent from At and from the deterministic
design variables C and {uτ}t−1τ=0. Note also that Ā and S share
the same eigenvectors, i.e. Ā = V diag(ā)VH; thus, it captures
in statistics the relation between the underlying topology and
state xt. We can then write the mean evolution of (12) as

μt = Āμt−1 +CTut−1 (13)

where μt = E[xt]. System (13) is a deterministic and time-
invariant system analogous to (5). We develop the following
controllability concept.

Definition 3 (Bandwidth controllability in the mean): An N -
state system on a random graph of the form in (12) with mean
evolution in (13) is bandwidth controllable in the mean from
M ≤ N nodes if, for any initial state x0 and some final time T ,
there exists a sequence of control signals {ut, t = 0, . . . , T − 1}
acting on a fixed set of M nodes that drive the mean network
state to a valuex∗ with any frequency contentx∗K = VH

Kx∗ over
the K ≤ N target bandwidth.

Our goal is to control the mean system to a desired bandlimited
graph signal x∗ = VK x̃∗K in a finite time T from a few nodes.

We do so by designing the input signals {ut, t = 0, . . . , T − 1}
and the node driving set S (through matrix C). In analogy to
Section III, we focus on the K frequencies of interest of the
mean system [cf. (10)]

μ̃t,K = ǍKμ̃t−1,K +VH
KCTut−1 (14)

and drive it to the desired frequency content x̃∗K [cf. Def. 3], with

ǍK = ˜̄AK = diag(āK) ∈ C
K×K containing the eigenvalues

of Ā which determine the spectral response of the system evolu-
tion on the expected graph. Then, we apply a (deterministic) lin-
ear filterH = VKVH

K to keep only thoseK desired frequencies
such that the mean network state μ∗ = E[HxT ] = HμT = x∗

results in a bandlimited graph signal.
Similarly to Proposition 1, we claim the following.
Proposition 2: Consider the linear system (12) describing a

process over a sequence of RES(p) graphs Gt with in-band mean
evolution (14). A necessary condition to control the mean system
in finite timeT towards a target frequency content x̃∗K over theK
frequencies of interest is to select M ≥ �K/T � driving nodes.

Like Proposition 1, Proposition 2 establishes a necessary
condition to control a linear system, now, on random time
varying graphs. As such, the same trade-off between the number
of driving nodes M , the signal bandwidth K, and the control
time T applies here. The next corollary extends this result to a
sufficient condition under some restrictions on the eigenvector
basis.

Corollary 1: Under the hypothesis of Proposition 2, if there
exists a set of driving nodes S built by M nodes such that the
corresponding M rows of VK are linearly independent vectors,
then M ≥ K is a sufficient condition to control system (12) in
the mean.

An algorithm for finding such M nodes is readily available
in [12, Algorithm 1].

B. Mean Squared Error Analysis

In Section IV-A, we discussed that system (12) can be con-
trolled in the mean. Therefore, it is paramount also to quantify
the mean squared error (MSE) of the controlled state to gain
statistical insight into how close the filtered final state on a
specific graph realization HxT is to the actual desired signal
x∗. Towards this end, define Φb,a = AbAb−1 · · ·Aa+1Aa as
the state transition matrix between time instants b ≥ a. The
following theorem determines the MSE.

Theorem 1: Let Assumptions 1 and 2 hold and let xt be a
graph process defined over a sequence of RES(p) graphs Gt
described by linear system (12). Given also a set of driving
nodes S characterized by selection matrix C and a set of control
signals {ut}T−1t=0 with initial state x0 = 0N . The MSE between
the filtered signal HxT on a particular graph realization and the
actual desired signal is

MSE(T ) = E

[
‖HxT − x∗‖22

]

= α− 2

T−1∑

τ=0

βT
τC

Tuτ +

T−1∑

τ=0

T−1∑

τ ′=0

uT
τC Γτ,τ ′ C

Tuτ ′ (15)
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Algorithm 1: Constrained Greedy Approach.
Input: M : number of samples, T : time horizon
x̃∗K : desired frequency response
VK : frequency basis vectors of active frequencies
ǍK : GFT of transition matrix
MSE(·): function to compute MSE � See (15)

Output: C: selected nodes, {ut}: control signals
1: procedure GREEDY (M , T , x̃∗K , VK , ǍK , MSE(·))
2: Set S = ∅ � Selected nodes
3: SetR = V � Remaining nodes
4: Set bestMSE←∞
5: for m = 1 : M do
6: Set bestNode← ∅
7: for n = 1 : N −m+ 1 do
8: Select rn ∈ R � Choose a remaining node
9: Compute matrix C for S ∪ {rn}

10: Compute matrix Ω̃ � See (17)
11: if rank(Ω̃) = min{K,T min{K,m}} then
12: Solve Ω̃u = x̃∗K for u
13: Compute MSE(T ) � See (15)
14: if MSE(T ) < bestMSE then
15: Set bestNode← rn
16: Set bestMSE← MSE(T )
17: end if
18: end if
19: end for
20: Set S ← S ∪ {bestNode}
21: SetR ← R\{bestNode}
22: end for
23: end procedure

which is a quadratic form on CTuτ with coefficients
α = ‖x∗‖22 ∈ R, βτ = (ĀT−τ−1)THTx∗ ∈ RN×1 and Γτ,τ ′ =
E[ΦT−1,τ+1H

THΦT−1,τ ′+1] ∈ RN×N .
Given C and {ut}, the MSE in (15) holds for any system

described by (12), irrespective of their controllability. The MSE
in (15) is a quadratic function in the design variables CTuτ and
the corresponding coefficientsα,βτ , andΓτ,τ ′ depend on known
quantities: the graph filterH; the desired statex∗ = VK x̃∗K ; and
the statistics (first and second order moments) of the underlying
support through Ā and Γτ,τ ′ . This result highlights also the
impact the driving nodes have on the overall performance and
shows their connection with the underlying support and the
target bandwidth. More precisely, the coefficient α provides the
MSE floor if there is no control signal (i.e., given by the energy of
the target state);βτ takes into account the similarity between the
target signal and the controlled signal evolution over the mean
graph; andΓτ,τ ′ accounts for the variability of the random graph.
Finally, we note that the computation of Γτ,τ ′ in (15) might be
cumbersome for some transition matrices At. We thus provide
in the appendix two practical results that address this issue: first,
we provide a general upper bound; second, we show how to
exactly compute Γτ,τ ′ for undirected graphs for the diffusion
models in Lemma 1.

V. CONTROL STRATEGIES

In this section, we propose two control strategies (i.e., find
C and {ut}) for graph processes over random time varying
graphs, where, depending on the scenario, one can be preferred
over the other. In Section V-A we propose an unbiased control
strategy, while in Section V-B we introduce a control strategy
that leverages the bias-variance trade-off to minimize the MSE.

A. Unbiased Controller

The mean state in (14) for t = T can be expanded as

μ̃T,K =

T−1∑

τ=0

ǍT−τ−1
K VH

KCTuτ (16)

where ǍK = ˜̄AK = diag(āK) ∈ C
K×K and μ̃0,K = 0K . For

an unbiased controller, it must hold at final time T μ̃T,K = x̃∗K .
Combining (16) and μ̃T,K = x̃∗K , we obtain

Ω̃u =
[
IK , ǍK , . . . , ǍT−1

K

] (
IT ⊗VH

KCT)u = x̃∗K (17)

with in-band controllability matrix Ω̃ ∈ C
K×TM and input vec-

tor is u = [uT
T−1,u

T
T−2, . . . ,u

T
1,u

T
0]

TRMT×1. For Ω̃ being of
full rank K (i.e. a controllable system), system (17) has infinite
solutions on u. Also often exists more than one set of nodes
that guarantees controllability. We then select the set of nodes
and design the control signals to minimize the MSE(T ), while
guaranteeing the solution is unbiased.

Let C∗M,N = {C ∈ CM,N : rank(Ω̃) = K} be the set of se-
lection matrices that satisfy controllability. The optimal unbi-
ased control strategy can be posed as

min
C∈C∗M,N ,u∈RTM

MSE(T )

s.t. Ω̃u = x̃∗K

Ω̃ =
[
IK , ǍK , . . . , ǍT−1

K

] (
IT ⊗VH

KCT)

(18)

whereMSE(T ) is given in (15). Oftentimes, we are interested in
controlling the system with minimum energy [7], [22]. In such
cases, the minimum energy control signal is [39, Section 6.2]

u∗ = Ω̃
H
[
Ω̃Ω̃

H
]−1

x̃∗K . (19)

Then, within the minimum energy framework, we select the
nodes that minimize the MSE(T ) as follows

min
C∈C∗M,N

MSE(T )

s.t. u∗ = Ω̃
H
[
Ω̃Ω̃

H
]−1

x̃∗K ,

Ω̃ =
[
IK , ǍK , . . . , ǍT−1

K

] (
IT ⊗VH

KCT) . (20)

Problem (20) is non-convex due to the binary nature of the
optimization variable C. A heuristic solution is to follow a
constrained greedy approach as described in Algorithm 1. The
objective is to greedily select the nodes that improve the MSE
while satisfying controllability. Specifically, for each candidate
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driving node, we check rank(Ω̃) increases until we reach con-
trollability as indicated in line 11 [cf. Proposition 2]. Since we
are looking for the minimum energy controller, then line 12

entails computing u∗ = (Ω̃
H
Ω̃)−1Ω̃

H
x̃∗K if rank(Ω̃) = Tm,

and (19) if rank(Ω̃) = K. While this constrained greedy ap-
proach has no theoretical guarantees [40], our numerical results
in Section VI show that Algorithm 1 exhibits a performance
close to the optimal solution.

B. Biased Controller

When the requirement for an unbiased controller is not strict,
we can leverage the bias-variance trade-off to further reduce
the mean squared error of the controlled state. Given a fixed
sampling set C, the MSE(T ) (15) is a quadratic function on the
control signals {ut, t = 0, 1, . . . , T − 1}. Therefore, we express
ut as a function of C as follows.

First, the derivative of MSE(T ) in (15) w.r.t. ut is

∂MSE(T )

∂ut
= −2Cβt + 2

T−1∑

τ=0

CΓt,τC
Tuτ (21)

for t = 0, . . . , T − 1withβt andΓt,τ given in (15). By defining
β = [βT

T−1, . . . ,β
T
0]

T ∈ RNT ,

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ΓT−1,T−1 ΓT−1,T−2 · · · ΓT−1,0

ΓT−2,T−1 ΓT−2,T−2 · · · ΓT−2,0
...

...
. . .

...

Γ0,T−1 Γ0,T−2 · · · Γ0,0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
∈ RNT×NT

(22)

and by setting (21) to zero, we can write

ΓCu = (IT ⊗C)Γ
(
IT ⊗CT)u = (IT ⊗C)β = βC (23)

with ΓC ∈ RMT×MT and βC ∈ RMT×1. By construction ΓC

has rank MT since C ∈ CM,N . Then, for a sampling matrix C
such that rank(ΓC) ≥MT , ΓC is nonsingular and leads to the
(parameterized) minimum MSE(T ) control signals

u∗C = Γ−1C βC . (24)

From this relation between the control signal and the sampling
matrix, we consider a two-stage optimization approach [39,
Section 4.1.3] to find C that minimizes the MSE(T ). This
optimization problem writes as

min
C∈C∗M,N

α− 2 βT
Cu
∗
C + (u∗C)

TΓCu
∗
C

s.t. u∗C = Γ−1C βC

ΓC = (IT ⊗C)Γ(IT ⊗CT)

βC = (IT ⊗C)β. (25)

To deal with the non-convexity of (25), similarly to (20), we rely
on a constrained greedy approach analogous to Algorithm 1.
Specifically, we replace line 10 by the computation of ΓC and
βC , line 11 by rank(ΓC) ≥ mT , and line 12 by (24).

VI. NUMERICAL EXPERIMENTS

We evaluate the proposed control strategies on different sce-
narios to analyze the different trade-off when controlling the
network. We compare the unbiased minimal energy controller
(20) and the biased controller (25) with the Percolation control
strategy of [21] and with the Min. Energy approach of [22]. Next,
we consider synthetic network models, namely Erdős-Rényi
(ER) graphs [41] and geometric graphs, while in Section VI-B
we test the methods on real-world social networks, namely on
the Zachary’s Karate Club [8] and on a Facebook subnet [42].

A. Synthetic Network Models

The ER graph forms the edges between any two nodes
randomly and independently with probability pER and has an
average degree of pERN . The geometric graph draws nodes uni-
formly at random in the [0, 1]2 plane and computes the Euclidean
distance dij between any pair of nodes. We assigned a Gaussian
kernel edge weights wij =W(vi, vj) = e−d

2
ij and kept only the

kNN nearest neighbors per node; the parameter kNN controls the
average degree. For both models, we considered realizations that
result in connected graphs. To account for the randomness in
the generative models and in the edge loss, we averaged the
performance over 500 different underlying graphs where for
each of them we accounted also for 5000 RES realizations.

Unless otherwise specified, we set N = 100, pER = 0.5,
kNN = 5, and the RES link loss probability to pRES = 0.95.
The control time is T = 8, the number of driving nodes is
M = 8, and the initial state is x0 = 0N . The target state x∗

has a bandwidth of K = 10 with GFT coefficients x̃∗K decaying
linearly as [x̃∗K ]k = 1− (k − 1)/K for k = 1, . . . ,K. We mea-
sured the controllability performance between the bandlimited
controlled state and target one through the normalized MSE:
MSE(T ) = E[‖HxT − x∗‖2]/‖x∗‖2.

1) Time-Invariant Network: To set a baseline, we first com-
pared the biased (25) and the unbiased (20) controllers with
the Percolation [21] and Min. Energy [22] strategies on a fixed
time-invariant network. This is the same control scenario that is
considered in [21], [22] and is equivalent to setting pRES = 1.
We report the results for geometric graphs in Fig. 2. Fig. 2(a)
is a parametric simulation as a function of time horizon T and
Fig. 2(b) is a parametric simulation as a function of the number
of samples. In general, we observe that the biased estimator has
a performance similar to the Min. Energy and slightly better
than Percolation. The unbiased controller lags behind in terms
of MSE.

2) Graph Connectivity: In the first random time varying
experiment, we studied the impact of the graph connectivity
on the controllability performance. We accounted for the graph
connectivity by changing the average degrees, i.e., pERN for the
ER graph and kNN in the geometric graph. Fig. 3 shows the MSE
as the connectivity increases. From Fig. 3(a), we observe that
the control on geometric networks improves with the average
degree. This is intuitively satisfying since larger degrees lead
to a higher connectivity between nodes; hence, it renders them
more robust to the RES model. Contrarily, for the ER model in
Fig. 3(b) this behavior is not as much emphasized. We attribute

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 13:49:08 UTC from IEEE Xplore.  Restrictions apply. 



GAMA et al.: CONTROLLABILITY OF BANDLIMITED GRAPH PROCESSES OVER RANDOM TIME VARYING GRAPHS 6447

Fig. 2. Baseline for time-invariant networks on geometric graphs. (a) Parameter sweeping simulation as a function of time horizon T . (b) Parameter sweeping
simulation as a function of number of selected samples M . The biased controller has a performance similar to the Min. Energy and performs slightly better than
Percolation. The unbiased controller lags behind in terms of MSE. The error bars indicate the estimated standard deviation from the 500 graph realizations.

Fig. 3. Impact of graph connectivity measured by the average graph degree. (a) Geometric graph: note that when the average degree increases, the connectivity
is higher, and as such there are more communication paths through which the signal can flow, and thus is less affected by link losses. (b) ER graph: the increase
in connectivity does not lead to noticeable changes in the MSE since these graphs already have a large average degree (around 30). The error bars indicate 3×
the estimated standard deviation from the 500 graph realizations. We note that the y-axis limit has been set to MSE = 1 and that the Percolation method yields
MSE > 1 and therefore is not shown in (a).

this phenomenon to the large average degree of the ER graphs
(above 30) and to the relatively high value of pRES. That is, the
loss of a few edges does not impact the overall ability to control
the network.

3) Link Loss: In the second experiment, we analyzed the
impact of pRES for a fixed average degree. From Fig. 4, we note
that as pRES increases (fewer links are lost) the MSE reduces and
leads to an easier to control network. This is because a higher
pRES yields realizations with fewer edge losses, thus more similar
to the underlying (mean) graph.

4) Control Time: In the third and last experiment, we ana-
lyzed the impact of the control time horizon T . From Fig. 5, we
observe that the proposed strategies are not significantly affected
by changes in T as they only improve slightly.

From this set of experiments, we make three key obser-
vations. First, the proposed strategies offer the best perfor-
mance. Second, the biased controller achieves the lowest MSE.
This is expected since it levers the bias-variance trade-off to

minimize the overall MSE at expenses of a bias in the controlled
state. Third, not accounting for the graph randomness affects
seriously the performance, even for pRES = 0.999. In fact, the
deterministic alternatives of Percolation and Min. Energy have
a worse performance by orders of magnitude compared with the
proposed techniques. This contrast is particularly evident when
comparing with the simulations for a time-invariant network in
Fig. 2. This could be explained by the fact that losing a link has
a huge impact in the topology of the graph and severely affects
the eigenbasis, thereby, changing the subspace of signals that
are bandlimited on a given graph.

B. Real World Graphs

We consider the formation of opinion profiles on two social
networks, namely the Zachary’s Karate Club [8] in Fig. 1 of
N = 34 nodes and a Facebook subnetwork [42] of N = 234
nodes.
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Fig. 4. Impact of the link loss. (a) Geometric graph. (b) ER graph. When pRES increases, fewer links are lost and thus the network is easier to control, leading to
a lower MSE. The error bars indicate 3× the estimated standard deviation from the 500 graph realizations. We note that the y-axis limit has been set to MSE = 1
and that the Percolation method yields MSE > 1 and therefore is not shown in (a).

Fig. 5. Impact of the control time. (a) Geometric graph. (b) ER graph. For the proposed strategies, an increase in control time yields a slightly lower MSE since
there is more time to correct for the network evolution. The error bars indicate 3× the estimated standard deviation from the 500 graph realizations. We note that
the y-axis limit has been set to MSE = 1 and that the Percolation method yields MSE > 1 and therefore is not shown in (a).

We set the control time to T = 8, the number of selected
nodes to M = round(0.08 N), pRES = 0.95, and x0 = 0N . For
simplicity of presentation, we focus only on the biased controller
strategy which has consistently yielded the best performance.
Likewise, we do not compare it with the methods in [21], [22]
given their poor performance on random time varying graphs.
We again averaged the performance over 5000 different RES
realizations.

1) Bandwidth and Spectrum of the Desired State: In this
experiment, we analyzed the impact that the desired state
bandwidth and its GFT have on the controllability perfor-
mance. We considered four different GFTs for the desired
state, namely: (i) a step low-pass [x̃∗K ]k = 1 for k = 1, . . . ,K;
(ii) a step high-pass, where the active frequencies corre-
spond to the K eigenvectors with highest total variation;
(iii) a linear decay response given by [x̃∗K ]k = 1− (k − 1)/K
for k = 1, . . . ,K; and (iv) an exponential decay response
with [x̃∗K ]k = e1−k for k = 1, . . . ,K. For a fair comparison,

we normalized all desired states to unit energy and ana-
lyzed different values of K; a fraction of N between 0.15
and 0.27.

The results are depicted in Fig. 6. First, we observe that
controlling the system to a higher bandwidth state is harder
since the set of graph frequencies to guarantee controllability
increases. Second, we observe that the high-pass response is
harder to achieve and responses that decay to zero (like the
linear decay and the exponential decay) yield lower MSE. This is
because high-pass responses are translated in the vertex domain
as states having dissimilar values in adjacent nodes. They render
the control of network dynamics to such states more challenging.
Hence, we conclude that it is easier to drive the network state to a
signal that varies smoothly on the nodes compared with a signal
that has highly different values in connecting vertices; e.g., it
is easier to convince someone to vote a conservative candidate,
if she is surrounded by members that have the same political
inclination.
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Fig. 6. Impact of the bandwidth and the control signal shape. (a) Zachary’s Karate Club social network. (b) Subnet of Facebook social network. An increased
bandwidth (K) leads to a higher MSE, since these signals are harder to control for a fixed M and T . Higher graph frequency content signals are also harder to
control.

Fig. 7. Impact of the number of selected nodes and sampling strategy. More control nodes lead to a smaller MSE satisfying our intuition since the degrees of
freedom increase. The proposed greedy heuristic is close to the optimal combinatorial solution and represents a substantial improvement compared the random
node selection.

2) Sampling Heuristics: In the last experiment, we focused
on the impact of the control nodes. We compared the pro-
posed constrained greedy selecting heuristic in Algorithm 1
with the optimal combinatorial solution and a uniformly random
sampling scheme. We fixed K = 10 and considered the linear
decay desired state x̃∗K such that [x̃∗K ]k = 1− (k − 1)/K for
k = 1, . . . ,K. The obtained results are shown in Fig. 7. We
observe that the MSE decreases as more control nodes are
selected. We also observe that the greedy heuristic yields a
performance similar to the optimal solution and represents a
considerable improvement over random selection.

VII. CONCLUSIONS

In this paper, we studied the problem of controlling network
states. We considered a random time varying network to be
driven to a desired bandlimited state. To cope with the random-
ness in the underlying support, we introduced the concept of
controllability in the mean, where we postulated to control the
system as if it were running on the expected graph. We then
carried out a detailed mean squared error analysis to quantify

the deviation of the target signal, when the control is designed
for the expected graph but ran on any given random network
realization. We used this analysis to propose two different con-
trol strategies and evaluated their performance on both synthetic
graph models and real-world social networks. We concluded that
it is of paramount importance to take into account the random
nature of the underlying topology. We leave as future work
the analysis of more complex random network models, other
parsimonious graph signal models, and other control strategies
that involve spectral or energetic constraints. Another direction
worth investigating is the proposal of other heuristic solutions
to the respective optimization problems.

APPENDIX A
PROOF OF LEMMA 1

Proof: For model (i), S = L and the system transition ma-
trix is At = I− εLt for 0 < ε ≤ 1/‖L‖2. First, we prove that
‖Lt‖2 ≤ ‖L‖2 ≤ �. Note that Gt ⊆ G for every t and, therefore,
from the Laplacian interlacing property [43] this condition al-
ways holds. The proof of Assumption 2 is straightforward, i.e.,
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from E[At] = I− εE[Lt] = I− εpL, which means that E[At]
and L share the same eigenvectors. For the last condition, note
that ‖At‖2 = ‖I− εLt‖2 ≤ 1 since ε ≤ 1/‖L‖2 ≤ 1/‖Lt‖2.
Therefore, ‖At‖2 is upper bounded by some finite �.

For model (ii), S = W and the system transition ma-
trix is At = Wt. To prove that ‖Wt‖2 ≤ ‖W‖2, re-
call that for connected graphs, the largest eigenvalue is
positive and real [44, Theorem 0.2]. Then, since W
is considered to be normal and Assumption 1 holds,
‖W‖2 = λmax(W) ≤ maxdeg(G) ≤ � <∞. Likewise, since
Gt ⊆ G, then maxdeg(Gt) ≤ maxdeg(G) <∞ and therefore
‖Wt‖2 ≤ � <∞ for all t. The proofs of the last two conditions
are straightforward sinceE[At] = pW and ‖At‖2 = ‖Wt‖2 ≤
� <∞. This completes the proof. �

APPENDIX B
PROOF OF PROPOSITION 1 AND COROLLARY 1

Proof of Proposition 1: Recall thatS is the set of the selected
M nodes and that CTC = diag(c), where c ∈ {0, 1}N with
[c]i = 1 if vi ∈ S and [c]i = 0, otherwise. System (10) is equiv-
alent to

x̃t,K = ÃK x̃t−1,K +VH
K diag(c)ût−1 (26)

where ût ∈ RN×1 denotes the zero-extended control signal
such that [ût]i = [ut]i if vi ∈ S and [ût]i = 0, otherwise. Then,
system (26) is controllable iff the K × TN matrix

Ω̃ = [VH
K diag(c), ÃKVH

K diag(c), . . . , ÃT−1
K VH

K diag(c)]

= [IK , ÃK , . . . , ÃT−1
K ](IT ⊗VH

K diag(c)) (27)

is full rank. Observe that

rank(Ω̃) ≤ min{K, rank(IT ⊗VH
K diag(c))}

≤ min{K,T min{K,M}}
(28)

holds from rank(AB) ≤ min{ rank(A), rank(B)}. There-
fore, to ensure the full rank K of Ω̃, M ≥ �K/T � must hold,
for some T ≥ 1. This concludes the proof. �

Proof of Corollary 1: Recall that, for two matrices X ∈
RM×N and Y ∈ RN×K [45, Section 0.4.6]

if rank(Y) = N ⇒ rank(XY) = rank(X). (29)

The mean system (14) is controllable, iff

Ω̃ = [IK , ÃK , . . . , ÃT−1
K ]

(
IT ⊗VH

K diag(c)
)

(30)

has rank K with ÃK = diag(āK).
The first term in (30) has rank

X = [IK , ÃK , . . . , ÃT−1
K ] ∈ RK×TK

rank(X) = K (31)

while the second term has rank

Y = (IT ⊗VH
K diag(c)) ∈ RTK×TN

rank(Y) = T rank(VH
K diag(c)) (32)

since Y consists of the Kronecker product of VH
K diag(c) with

an identity matrix. Note that VH
K diag(c) selects indeed rows of

VK .
Now, if M ≥ K and the node set S are such that the selected

M rows ofVK form a set ofK linearly independent vectors, then
rank(VH

K diag(c)) = K. This implies that rank(Y) = TK
and in virtue of (29), we obtain

rank(Ω̃) = rank(XY) = rank(X) = K (33)

yielding that the mean system (14) is controllable. �

APPENDIX C
PROOF OF THEOREM 1

Proof: The MSE can be rewritten as

MSE(T ) = E [‖HxT − x∗‖2]
= E

[
xT
TH

THxT

]− 2(x∗)THE[xT ] + ‖x∗‖22 .
(34)

where each term is computed next.
First, to compute E[xT ] and E[xT

TH
THxt], note that xT can

be written as

xT =

T−1∑

τ=0

ΦT−1,τ+1Buτ (35)

where Φb,a = AbAb−1 · · ·Aa+1Aa is the state transition ma-
trix in the interval [a, b] for b > a. Since under the RES(p)model
At are i.i.d. matrices,E[Φb,a] = Āb−a+1. Thus, the expectation
of (35) is

μT = E[xT ] =

T−1∑

τ=0

ĀT−τ−1CTuτ . (36)

For the second order moment E[xT
TH

THxT ], denote by Q =
HTH and by substituting (35) we have

E
[
xT
TH

THxT

]
= E

[
xT
TQxT

]

=

T−1∑

τ=0

T−1∑

τ ′=0

uT
τC E

[
ΦT

T−1,τ+1QΦT−1,τ ′+1

]
CTuτ . (37)

Define Γτ,τ ′ = E[Φt−1,τ+1QΦt−1,τ ′+1] ∈ RN×N [cf. (15)], so
that (37) can be compactly written as

E
[
xT
TH

THxT

]
=

T−1∑

τ=0

T−1∑

τ ′=0

uT
τC Γτ,τ ′ C

Tuτ . (38)

Finally, by substituting (38) in the first term of the MSE (34)
and (36) in the second term, we obtain the claimed expressions.
This completes the proof. �

APPENDIX D
SPECIAL CASES: USEFUL COMPUTATIONS OF THE QUADRATIC

TERM Γτ,τ ′ IN THEOREM 1

Computation of the quadratic termΓτ,τ ′ in Theorem 1 can turn
out to be quite cumbersome for arbitrary graph shift operators
St or transition matrices At. In what follows, we offer two
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corollaries of Theorem 1 that address this issue. In particular,
Corollary 2 gives an upper bound on the MSE that does not entail
computation of second-order moments, while in Corollary 3
we show that, for the usually found case of undirected graphs,
diffusion models in Lemma 1 admit an exact computation.
Proofs follow after the statement of the corollaries.

Corollary 2: Under the same conditions of Theorem 1 and
from Lemma 1, the MSE (15) can be upper bounded by

MSE(T ) ≤ ‖x∗‖22 − 2

T−1∑

τ=0

(x∗)THĀT−τ−1CTuτ

+
T−1∑

τ=0

T−1∑

τ ′=0

�2(T−τ
′+1)〈uτ ′ ,uτ 〉. (39)

The result of Corollary 2 can be interpreted as the worst case
scenario to account for the variability in the topology. In fact,
(39) shows only first order dependence from the RES(p) model,
but it does not show dependence from the second order moment.
For the models in Lemma 1, we can consider for model (i) � = 1
(Ā = I− εpL), while for model (ii) � = maxdeg(G) (Ā =
pW). Further insight then on the role of the graph variability is
given by Corollary 3, which shows the explicit dependence on
the link activation probability p.

Corollary 3: Under the same conditions of Theorem 1 and
additionally given thatG is an undirected graph, for the diffusion
models in Lemma 1, the following holds:

Γτ,τ ′ = (Āτ ′−τ )TQT−τ ′−1

Qa = E
[
AT

T−aQa−1AT−a
]
, a = 1, . . . , T − τ ′ − 1 (40)

for τ ≤ τ ′, Q0 = HTH, and Āτ ′−τ = (E[At])
τ ′−τ .

For model (i) in Lemma 1 (Ā = I− εpL), Qa is

Qa = ε2p2WTQa−1W

+ ε2p(1− p)

· (WT ◦Qa−1 ◦W − diag(WT ◦Qa−1 ◦W)
)

+ ε2p(1− p) diag(WT diag(Qa−1)W)

+ 2εp(I− εpD) diag(Qa−1W)

+
(
(I− εpD)2 + ε2p(1− p)WTW

) ◦ diag(Qa−1).
(41)

For model (ii) in Lemma 1 (Ā = pW), Qa is

Qa = p2WTQa−1W

+ p(1− p)
(
WT ◦Qa−1 ◦W − diag(WT ◦Qa−1 ◦W)

)

+ p(1− p) diag(WT diag(Qa−1)W). (42)

Proof of Corollary 2: From the first term in (34), we have

E
[
xT
TH

THxT

]
= E

[
tr
[
HxTx

T
TH

T]] . (43)

The trace argument in (43) can be expanded as

HxTx
T
TH

T=

T−1∑

τ=0

T−1∑

τ ′=0

HΦT−1,τ+1C
Tuτu

T
τ ′CΦT

T−1,τ ′+1H
T.

(44)
From Lemma 1, we have ‖At‖2 ≤ �; so that, by the submulti-
plicativity of the spectral norm, we can write

‖Φb,a‖2=‖AbAb−1 · · ·Aa‖2≤‖Ab‖2 · · · ‖Aa‖2 ≤ �b−a+1.
(45)

Also, observe that for any square matrixX and positive semidef-
inite matrix Y, it holds that tr[XY] ≤ ‖X‖2 tr[Y] [46].

Given that the filter H does not amplify any frequency (i.e.
‖H‖2 = 1), then plugging back (44) and (45) into (43) yields

E

[
T−1∑

τ=0

T−1∑

τ ′=0

tr
[
HΦT−1,τ+1C

Tuτu
T
τ ′CΦT

T−1,τ ′+1H
T
]
]

=

T−1∑

τ=0

T−1∑

τ ′=0

E

[
tr
[(
ΦT

T−1,τ ′+1H
THΦT−1,τ+1

)(
CTuτu

T
τ ′C
)]]

≤
T−1∑

τ=0

T−1∑

τ ′=0

E

[
‖ΦT

T−1,τ ′+1‖2‖ΦT−1,τ+1‖2
]

tr
[
CTuτu

T
τ ′C
]

≤
T−1∑

τ=0

T−1∑

τ ′=0

�2(t−τ
′+1) tr

[
CCTuτu

T
τ ′
]

=

T−1∑

τ=0

T−1∑

τ ′=0

�2(t−τ
′+1)〈uτ ′ ,uτ 〉. (46)

Using (46) to bound (43) and replacing it in (15) yields (39). �
Proof of Corollary 3: Consider τ ≤ τ ′. From (15), we have

Γτ,τ ′ = E

[
(AT−1 · · ·Aτ+1)

T Q (AT−1 · · ·Aτ ′+1)
]

= E
[
AT

τ+1A
T
τ+2 · · ·AT

T−1QAT−1 · · ·Aτ ′+2Aτ ′+1

]
.

(47)

Then, since for two random matrices X,Y it holds that E[X] =
E[E[X|Y]] [47, Theorem 34.4], (47) becomes

Γτ,τ ′

=E
[
E
[
AT

τ+1 ···AT
T−1QAT−1 ···Aτ ′+1|AT−2, . . .,Aτ+1

]]

=E
[
AT

τ+1 ··· E
[
AT

T−1QAT−1|AT−2, . . .,Aτ+1

] ···Aτ ′+1

]

(48)

which under the RES(p) model (i.e., matrices Aa are i.i.d.) can
be written as

Γτ,τ ′ = E
[
AT

τ+1 · · ·E
[
AT

T−1QAT−1
] · · ·Aτ ′+1

]

= (Āτ ′−τ )T
E

× [AT
τ ′+1E

[· · ·E [AT
T−1QAT−1

] · · · ]Aτ ′+1

]
. (49)

Further, for a ≥ 1 and assuming for now (to be proven later on)
that Qa−1 is symmetric and positive semidefinite, we proceed to
compute the (i, j) entry of matrix Qa = E[AT

T−aQa−1AT−a].
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Towards this end, denote simply by [Qa−1]ij = qij and
[AT−a]ij = aij for i, j = 1, . . . , N .

For i �= j and since AT−a is symmetric, the (i, j) element of
Qa becomes

E
[
[AT

T−aQa−1AT−a]ij
]
=

N∑

k=1

N∑

�=1

E[akia�j ]qk�

=

N∑

k=1;k �=j

N∑

�=1;� �=i

E[aki]E[a�j ]qk� + E[ajiaij ]qji (50)

where we have used the independence of the distinct elements
in AT−a. The second term of (50) groups the element (i, j)
together with (j, i) due to symmetry of AT−a. Analogously, for
the diagonal elements i = j, we get

E
[
[AT

T−aQa−1AT−a]ii
]
=

N∑

k=1

N∑

�=1

E[akia�i]qk�

=

N∑

k=1

N∑

�=1;� �=k

E[aki]E[a�i]qk� +

n∑

k=1

E[a2ki]qkk. (51)

With this in place, let us fist consider the simpler model (ii)
in Lemma 1, where St = Wt and At = Wt. For this case, we
have [At]ij = Bwij , where B is a Bernoulli random variable of
parameter p and wij = [W]ij . Then, by substituting E[aij ] =
pwij and E[a2ij ] = (p2 + p(1− p))w2

ij in (50), we get

p2
N∑

k=1;k �=j

N∑

�=1;� �=j

wkiw�jqk�+
(
p2 + p(1− p)

)
w2

jiqji

= p2
N∑

k=1

N∑

�=1

wkiw�jqk� + p(1− p)w2
jiqji (52)

which can be written in the compact form

E
[
[AT

T−aQa−1AT−a]ij
]

= p2[WTQa−1W]ij + p(1− p)[WT ◦Qa−1 ◦W]ij .
(53)

Likewise, for i = j (51) becomes

p2
N∑

k=1

N∑

�=1;� �=k

wkiw�iqk� +
(
p2 + p(1− p)

) N∑

k=1

w2
kiqkk

= p2
N∑

k=1

N∑

�=1

wkiw�iqk� + p(1− p)

N∑

k=1

w2
kiqkk (54)

which can also be written compactly as

E
[
[AT

T−aQa−1AT−a]ii
]

= p2[WTQa−1W]ii + p(1− p)[WT diag(Qa−1)W]ii.
(55)

By combining (53) and (55) yields (42). Finally, note that if
Qa−1 is symmetric and positive semidefinite, then so is Qa. To
complete the proof, observe that Q0 = HTH is symmetric and
positive semidefinite, thus (42) holds for all a ≥ 1.

For model (i) in Lemma 1, we proceed in an analogous way.
In this case, St = Lt and At = I− εLt = (I− εDt) + εWt,
where Dt = diag(Wt1) is the degree matrix. This means
that [At]ij = aij = εBwij if i �= j and [At]ii = aii = 1−
ε
∑N

k=1 Bkwik with Bk being i.i.d. Bernoulli random variables
with probability p.

Then, for i �= j, from (50) we have

E
[
[AT

T−aQa−1AT−a]ij
]

=

N∑

k=1;k �=j,i

N∑

�=1;� �=i;j

E[aki]E[a�j ]qk�

+ E[ajiaij ]qji + E[aii]E[ajj ]qij

= ε2p2
N∑

k=1;k �=j,i

N∑

�=1;� �=i,j

wkiw�jqk�

+ ε2(p2 + p(1− p))w2
jiqji + (1− εpdi)qij . (56)

Now, recalling that wii = 0 (i.e., no self-loops), (56) becomes

E
[
[AT

T−aQa−1AT−a]ij
]
= ε2p2

N∑

k=1

N∑

�=1

wkiw�jqk�

+ ε2p(1− p)w2
jiqji + (1− εpdi)qij , (57)

which can be further written in the compact form

E
[
[AT

T−aQa−1AT−a]ij
]
= ε2p2[WTQa−1W]ij

+ ε2p(1− p)[WT ◦Qa−1 ◦W]ij + [(I− εpD)Qa−1]ij
(58)

For i = j, we start with (51)

E
[
[AT

T−aQa−1AT−a]ii
]

=

N∑

k=1;k �=i

N∑

�=1,� �=k,i

E[aki]E[a�i]qk�

+

N∑

k=1;k �=i

E[a2ki]qkk + 2E[aii]

N∑

�=1;� �=i

E[a�i]qi� + E[a2ii]qii.

(59)

Then, recalling that wii = 0, we replace the first and second
order moments for each aij and obtain

E
[
[AT

T−aQT−aAT−a]ii
]
= ε2p2

N∑

k=1

N∑

�=1;� �=k

wkiw�iqk�

+ ε2(p2 + p(1− p))

N∑

k=1

w2
kiqkk + 2(1− εpdi)εp

N∑

�=1

w�iqi�

+ qii

(

1− 2εpdi+ε2p2
N∑

k=1

N∑

�=1

wikwi� + ε2p(1−p)
N∑

k=1

w2
ik

)

.

(60)
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Finally, this can be rewritten as

E
[
[AT

T−aQa−1AT−a]ii
]

(61)

= ε2p2[WTQa−1W]ii + ε2p(1− p)[WT diag(Qa−1)W]ii

+ 2εp[(I− εpD) diag(Qa−1W)]ii

+
[(
(I− εpD)2 + ε2p(1− p)WTW

) ◦ diag(Qa−1)
]
ii

(62)

completing the proof. �
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