
Automatic Psychological Text Analysis using Recurrent Neural Networks

Suo Xian Zhang1 , Merijn Bruijnes1 , Willem-Paul Brinkman1

1TU Delft

Abstract
Schema therapy is a type of psychological treat-
ment for people suffering from personality disor-
ders. A schema is a core psychological state of
mind that influences external behaviour through the
development of coping styles. Current schema ther-
apy is human-processed and therefore time inef-
ficient. Enabling automatic schema classification
helps the overall goal of creating a chatbot that can
classify schema modes from conversations. The
goal of this research was to optimize a Recurrent
Neural Network (RNN) model to classify patient’s
schema modes from a dataset containing a recent
emotional story from participants and are labeled
with SMI questionnaire answers. Three RNN mod-
els were created: a binary classification Multilabel
RNN, a binary classification Per-Schema RNN and
a ordinal classification Per-Schema RNN. The re-
sults have shown that the binary classification Mul-
tilabel model scores an average F1-score of 0.48.
The binary classification Per-Schema model scores
an average F1-score of 0.49. While ordinal classifi-
cation Per-Schema model performs with an average
Spearman Coefficient of 0.15.

1 Introduction
A schema is a core psychological state of mind that in-

fluence external behaviour through the development of cop-
ing styles, which are strategical responses to certain schemas
[1]. Coping styles are behaviour based and part of response,
whereas schemas contain memories, emotions, bodily sensa-
tions, and cognition. Schema modes represent the momentary
emotional and cognitive states and coping responses that are
active at a given point in time. Emotional events can trigger
these schema modes. Additionally, an individual may shift
from one mode into another.

Schema therapy, introduced by Young in 2003 [1], is a
type of psychological treatment for people suffering from
personality disorders. The goal of this treatment is to help
patients deal with the unhealthy memories that create these
schemas and replace them with healthier patterns of thought
and behaviour [2]. However, there are some downsides to the
current schema therapy treatment.

First, the current schema therapy is time expensive.
Schema therapy requires the therapist to assess the patient’s
schema modes. To assess the patient’s schema modes Short
Schema Mode Index (SMI) is used. SMI is a 118 item ques-
tionnaire, which is scored using a 6-point scale ranging from
’never or hardly ever’ to ’always’. The 118 items on the ques-
tionnaire relate to 1 of the 14 schema modes [2]. The SMI
questionnaire takes 40 minutes to fill. In addition to the ques-
tionnaire, 3-6 sessions between the patient and the therapist
are necessary to establish the complete schema model. In
other words, schema therapy is time expensive.

Second, as the SMI questionnaire takes long, it is gener-
ally taken once. The SMI questionnaire tries to capture the
schema modes for a period of time. Therefore, the results
are a single static measurement of what is actually a dynamic
system of schema modes [3].

Third, it has been found that the technological state of e-
mental health systems is limited. Technology is often used
as a platform to deliver information to the patient or to the
therapist. When a patient is asked to provide textual informa-
tion to the system, this information is usually processed by a
human, by a guided system, or not at all. Human processing
is costly and offers no advantage over traditional paper-based
workbooks [4].

Automatically analyzing textual information and classi-
fying schema modes can help therapists by efficiently finding
the right treatment for patients. This is a step towards more
affordable and efficient mental healthcare.

This research should support the overarching goal 1 to
create a chatbot that holds conversations with patients. The
chatbot should be able to detect the schemas for a patient from
the conversation and suggest appropriate treatment options
when an unhealthy schema mode is detected.

1.1 Related work
Natural language processing for cognitive therapy: ex-

tracting schemas from thought records [4] shows that pre-
processed Natural Language Processing (NLP) can extract
schema modes from thought records. The thought record
utterances were manually labelled with schemas from the
schema rubric developed by Millings and Carnelley [5] with
some modifications. Burger used the Recurrent Neural Net-

1https://projectforum.tudelft.nl/course editions/39/projects/973

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://projectforum.tudelft.nl/course_editions/39/projects/973


works (RNN), Support Vector Machine (SVM) and k-Nearest
Neighbors (KNN) classifiers for the schema classification.
However, Burger did not aim for optimal classification as the
purpose of her research was to explore the possibilities for
automatically classifying mental health data.

Schema mode assessment through a conversational
agent [3] used the questions of the Short Schema Mode In-
dex (SMI) questionnaire for a conversational agent that in-
terviews persons. The conversational agent asked for a re-
cent emotional event, then followed with questions from the
SMI questionnaire corresponding to the schema modes that
the agent thinks are relevant. One of Allaart’s conclusions
stated that ”a schema mode that was confirmed by the conver-
sational agent was 5.20 times more likely to be confirmed by
the SMI questionnaire too.” However, Allaart mentions that
the text analysis algorithm of his research is currently lack-
ing.

Combating Depression in Students using an Intelli-
gent ChatBot: A Cognitive Behavioral Therapy [6] used a
chat-bot that asks persons a view questions and identifies the
emotions of the persons to calculate the percentage of nega-
tivity in the chat. Finally, the mental status of the person is
classified to normal, stressed or depressed. Patel used Convo-
lutional Neural Network (CNN), Recurrent Neural Network
(RNN), and Hierarchical Attention Network (HAN). How-
ever, Patel also mentioned that the text classification methods
could use accuracy.

Understanding the relationship between patient lan-
guage and outcomes in internet-enabled cognitive be-
havioural therapy: A deep learning approach to auto-
matic coding of session transcripts [7] The aim of this re-
search was to determine the association between utterances
and clinical outcomes by developing a deep learning model to
automatically categorize patient utterances during text-based
internet-enabled Cognitive Behavioural Therapy into one or
more of five categories. The research concluded that the deep
learning model provided an effective means of automatically
classifying patient text utterances.

1.2 Research Question
The main question this research shall answer is:
How well can a schema be automatically classified

from a text using RNN?
The following sub-questions should help tackle the re-

search in a step-by-step manner.
1. What pre-processing steps on the data are necessary for

an optimal classification by RNN?
2. What are the optimal hyper-parameters in the RNN

model?
3. What are the differences between the results of three

methods, RNN, KNN and SVM?
The research in the Related Work section support the

possibility to create a chat-bot that can autonomously de-
tect schema modes from users. However, a better classifier
is needed [3] to be able to classify schema modes from con-
versations with a chatbot. In this research, a RNN classifier is
used to classify unstructured emotional stories of users to de-
tect their schemas. The classifier shall be trained, evaluated

and optimized on the data. The RNN classifier shall clas-
sify patient schema modes from stories to 7 schemas from
the SMI questionnaire [3].

Section 2 presents the Methodology, with background in-
formation on RNNs, word embeddings and the methods used.
Section 3 presents the Experimental Setup and Results. Sec-
tion 4 will discuss the results and compare them to research
from the Related Work section. Section 5 offers Concluding
Remarks with Limitations as well as Future Work. Lastly, in
Section 6, I will reflect on the ethical aspects of my research
and discuss the reproducibility of my methods.

2 Methodology
This section introduces background information on RNNs

and the methods used to answer the research question. First,
the background section is presented with a description of
RNNs and Long-Short Term Memory (LSTM). Followed by
an explanation of word embeddings. Second, the methods are
introduced with an introduction to the dataset, pre-processing
methods, RNN classifier and evaluation metrics.

2.1 Background
Recurrent Neural Networks

The task of classifying text utterances is also known as
a Natural Language Processing (NLP) problem. Recurrent
Neural Networks, or RNNs, were designed to work with NLP
and sequence prediction problems [8]. RNNs in general have
also received the most success in this area [9] [10].

A RNN is a classification model that uses a network con-
taining recurrent connections that allow the network’s hidden
units to see its own previous output, and the resulting behav-
ior can be influenced by previous responses. These recurrent
connections is what gives the network memory [11]. RNNs
must learn which past inputs have to be stored to produce the
desired output. The current error signal has to ”flow back in
time” over feedback connections to past inputs for building
up an adequate input storage[12].

However, RNNs have a downside. In the long-term the
weights changes can become very small, so small that the
weight does not change anymore. This phenomenon is there-
fore also known as the vanishing gradient . Long Short-Term
Memory (LSTM) [13] can solve this problem.

Long Short-Term Memory
To avoid the vanishing gradient phenomenon, LSTMs

are used for this research. They are particularly well-suited
to natural language tasks because they can encode context
and word order when they are important for the task [7]
and LSTMs do not suffer from the vanishing gradient phe-
nomenon.

The LSTM model is a type of RNN network with memory
cells as filters to capture the relevant previous state informa-
tion. While a normal RNN model only uses the input and
hidden state, the LSTM model has a forget gate, input gate,
output gate and cell state.

Word embedding
For the RNN to be able to process the data, the textual

data needs to be transformed into something that the model



can understand. This way the deep learning model can learn
hidden patterns in the textual data [14]. This can be done
by transforming each word to a word embedding, that cap-
tures the semantics of the word in a general sense [7]. Word
embeddings give us a way to use an efficient, dense repre-
sentation in which similar words have a similar encoding.
Word embeddings are created by first creating a vocabulary
of the dataset. This is done by first mapping each word to
their unique integer index. Lastly, each word index in the
vocabulary is mapped to their word vector, resulting in a two-
dimensional embedding matrix. Word vectors can be man-
ually created and trained or pre-trained word vectors can be
used. Afterwards, each word is mapped to their word vector.

2.2 Methods
Dataset

The dataset contains a recent emotional story from the
participants and are labelled with the answers to related ques-
tions from the SMI questionnaire that the participants filled
in afterwards. The participants answered the questions with a
score on a 1-6 scale. The questions for the 7 schema modes:
Angry, Detached, Happy, Healthy, Impulsive, Punishing and
Vulnerable, were used. Each schema has 10 questions related
to it. Besides Impulsive, which has 8 questions and Detached
which as 9 questions. In total there were 67 questions. There-
fore, each text utterance contains a total of 67 answers relat-
ing to the questions from the SMI questionnaire, as well as
the binary label confirming the schema.

For this research the data is classified to the 7 schema
modes. First, binary classification (does or does not reflect
schema) will be performed. The reason for binary classifica-
tion is motivated by the dataset, which contains binary labels
for each schema. Afterwards, ordinal classification (0 - 3)
will be performed. Where 0 stands for nothing to do with
the schema and 3 stands for perfect fitting with the schema.
For each text utterance, the questions for each schema are av-
eraged and rounded up. This results in stories with 7 labels
relating to the 7 schema modes.

The dataset is split as follows: 72% train, 8% validation
and 20% test.

Pre-processing
Before the model classifies data, it is common to first pre-

process the data. Pre-processing is one of the most important
steps in any machine learning or deep learning task [14]. One
of the first steps is to remove sentences in the dataset that
add no value to the prediction of schema modes (e.g.: Good
bye, stupid bot) and response words (e.g.: OK, yes, no, quit).
Furthermore, the following pre-processing steps are applied
as well: [15] [4]:

• Lower-casing

• Splitting of contractions, using the contractions package.

• Removal of stopwords, using the stopwords list from
NLTK(Natural Language Toolkit).

• Removal of unnecessary white space.

• Lemmatization, using the WordNetLemmatizer from
NLTK.

Word embedding
For this research project the word vectors that are used

were pre-trained by Mikolov on 100 billion words of Google
News. The word vectors were trained with the Continuous
Bag-Of-Words (CBOW) model. Each vector has a dimen-
sionality of 300. Due to the training of high dimensionality
word vectors on a large amount of data, the resulting vec-
tors can be used to notice subtle relationships between words
[16]. In other words, the pre-trained word vectors are of high
quality and will ensure maximum accuracy.

RNN classifier
Inspiration for the LSTM model has been taken from

Burger’s research [4]. The LSTM model for this research
will have one input embedding layer, one bidirectional hidden
layer, a dropout layer and one output layer. First, all mod-
els will be run with identical parameters, then Talos hyper-
parameter optimization will be run on the models to find the
best parameters for the best results.

1) Embedding Layer The Embedding Layer can learn
word embeddings for the input. However, it is quite ineffi-
cient. Therefore, it will be seeded with the embedding ma-
trix and the word embeddings will not be updated. The layer
will take as arguments: the input dimension, output dimen-
sion and the weights, input length of the input vectors and a
trainable parameter.

2) Bidirectional LSTM Hidden Layer The LSTM Layer
takes as an argument the number of nodes the layer should
have. This layer transforms the inputs that are entered for the
final classification with regard to the error rate [13].

3) Dropout Layer The Dropout Layer takes an argument
between 0-1 and randomly drops the input units to 0 with the
given frequency. This helps prevent overfitting.

Evaluation metrics
Binary For evaluation on the binary labels, the accu-

racy score2 method from scikit-learn is used. This function
computes the overall effectiveness of a classifier: the set of
labels predicted for a sample must exactly match the corre-
sponding set of labels in y true. Furthermore, the F1-score is
used, which describes system performance using a scale from
zero to one. F-score itself is derived from precision and recall.
Precision describes the proportion of entities which a system
returns that are correct. Recall describes the proportion of all
entities that potentially should be found, that a given system
actually returns [17]. For the F1-score calculation, the classi-
ficiation report3 method from scikit-learn is used. This report
also returns: precision, recall, micro average, and macro av-
erage. Micro average will aggregate the contributions of all
classes to compute the average metric, this means that the
micro average takes a bias to more populated classes. Macro
average will compute the metric independently for each class
and then take the average, treating each class equally, mean-
ing it biases the least populated classes.

2https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.accuracy score.html

3https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.classification report.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html


In addition, confusion matrices are used to visualise the
false/true positives and false/true negatives.

Lastly, ROC-curve is used as well. ROC graphs are two-
dimensional graphs in which true positive rate is plotted on
the Y axis and false positive rate is plotted on the X axis. An
ROC graph depicts relative tradeoffs between benefits (true
positives) and costs (false positives) [18].

Both the ROC-curve and the F1-score are considered a
standard nowadays [19].

Ordinal For evaluation on the ordinal labels the Spearman
rank-order correlation coefficient is used. Spearman [20] rank
correlation is a non-parametric statistic that allows an inves-
tigator to describe the strength of an association between two
variables X and Y. The Spearman coefficient was picked as it
was also used in Burger’s research[4].

3 Experimental Setup and Results
This section describes the experimental setup, followed

by the discussion of results. Experiments are performed to
evaluate the RNN model for multi-label prediction of the
schema classification problem on text utterances.

3.1 Dataset
The pre-processing step of removing sentences that added

no value to the classification, resulted in a reduction of rows
in the dataset. The dataset was reduced from 1793 rows to
1375.

3.2 Word Embedding
First, the vocabulary was created. The data was tokenized

and padded. Resulting in a max vector of size 500. Therefore,
all vectors were padded to a length of 500. In total there are
4553 unique words in the vocabulary.

The embedding matrix was created by mapping each
word in the vocabulary to its word embedding. This resulted
in an embedding matrix of shape: (4554, 300). Words that
were not in the pre-trained word2vec vectors were mapped to
a null embedding. In total there were 184 null embeddings.

3.3 LSTM Setup
For the RNN modeling the Tensorflow implementation of

Keras is used. provides an implementation of Keras4, which
is one of the most used deep learning frameworks. Specifi-
cally Sequential from Keras is used, which can stack layers
to create a RNN model. First, the binary Multilabel model,
binary Per-Schema model and ordinal Per-Schema model will
be created as follows:

1) Embedding Layer The Embedding Layer was given
the following parameters: as input dimension the vocabulary
size, as output dimension the size of the word2vec vectors,
as weights the embedding matrix, as input length the max
length of the input vectors and trainable was be set to false,
so the word embeddings were not be updated. The param-
eters for the Embedding Layer were identical for the Binary
Multilabel Model, Binary Per-Schema Model and the Ordinal
Per-Schema Model.

4https://keras.io/

2) Bidirectional LSTM Layer For the Bidirectional LSTM
Layer 300 units were selected.

3) Dropout Layer For the Dropout Layer a dropout value
of 0.5 was selected.

4) Compile The compile function from Sequential config-
ures the model for training. For the compile function from
Sequential, the arguments: optimizer, loss and metrics were
used. For the optimization argument: ’Adam’ was selected.

5) Fit For fitting the model, the fit function for Sequential
was used. For the batch size argument: 32 was used.

3.4 Talos Hyperparameter optimization
Talos hyper-parameter optimization was run on the Bi-

nary Multilabel Model, Binary Per-Schema Model and the
Ordinal Per-Schema Model. The following parameters were
optimized: for the hidden layer units 100, 200 and 300 units
were considered; for the dropout layer, the dropout values 0.1,
0.2, 0.5 were considered; for compiling, the optimization ar-
gument: ’rmsprop’ and ’Adam’ were considered; for fitting,
batch size 32 and 64 were considered.

3.5 Binary Multilabel Model
Talos hyperparameter optimization was run on the model.

The following parameters were the most optimal with a mean
absolute error (MAE) of: 0.004137 for 300 hidden layer
units, a dropout value of 0.1, optimization function rmsprop
and a batch size of 32. Furthermore, the output layer has
7 output nodes. For the compiling, the loss function binary
crossentropy was used and for metrics the mean absolute er-
ror.

However, Talos showed a MAE of 0.004420 for a dropout
value of 0.1, 200 hidden layer units and activation function
rmsprop, a MAE of 0.004481 for a dropout value of 0.1, 200
hidden layer units and activation function Adam, and a MAE
of 0.004564 for a dropout value of 0.1, 300 hidden layer units
and activation function Adam. The difference in MAE is very
small. The complete results are available on GitHub.

3.6 Binary Per-Schema Model
For every schema, Talos hyperparameter optimization

was run on the related model. For each parameter, the value
that was presented the most in the results was selected for
the final model. The complete best parameter results for each
schema will be included in Appendix A. The final optimized
model used 200 hidden layer units, a dropout value of 0.1, ac-
tivation function rmsprop and a batch size of 32 was selected.

3.7 Ordinal Per-Schema Model
For hyper-parameter optimization, the results from

Burger’s paper have been used. This means 300 units for the
hidden layer, a dropout value of 0.1, optimization function
Adam and a batch size of 32 was picked.

3.8 Results
This section presents the results for the Binary Multilabel

Model, the Binary Per-Schema Model and the Ordinal Per-
Schema model. For the Binary models, accuracy, F1-score,
confusion matrices and ROC curves are presented. See the
Appendix B and C for the confusion matrices and the full

https://keras.io/


classification report. For the Ordinal model, the Spearman
Correlation is calculated and the output table will be in the
Appendix D.

Binary Multilabel Model

Schema Before After
Vulnerable 0.64 0.59
Angry 0.59 0.59
Impulsive 0.75 0.76
Happy 0.63 0.62
Detached 0.55 0.58
Punishing 0.74 0.74
Healthy 0.92 0.91

Table 1: Accuracy Multilabel Model Optimization

Table 1 shows the accuracy calculated with the accuracy
method from the scikit-learn package before and after hyper-
parameter optimization. The accuracy increased slightly for
the impulsive schema and increased for the detached schema.
On the other hand, the accuracy decreased significantly for
the vulnerable schema and the accuracy decreased slightly for
2 schemas: happy and healthy. The accuracy stayed identical
for 2 schemas: angry and punishing. The results show an
accuracy of 59% for vulnerable, 59% for angry, 76% for im-
pulsive, 62% for happy, 58% for detached, 74% for punishing
and 91% for healthy.

Schema Before After
Vulnerable 0.39 0.33
Angry 0.45 0.43
Impulsive 0.23 0.15
Happy 0.75 0.74
Detached 0.30 0.37
Punishing 0.32 0.27
Healthy 0.96 0.95
Micro avg 0.64 0.63
Macro avg 0.49 0.46
Weighted avg 0.62 0.61
Samples avg 0.66 0.65

Table 2: F1-Score Multilabel Model Optimization

Table 2 shows the F1-score before and after hyper-
parameter optimization calculated with classification report
from scikit-learn. The F1-score increased only for the de-
tached schema. While, the F1-scores decreased significantly
for 3 schemas: vulnerable, impulsive and punishing. The
F1-scores decreased slightly for 3 schemas: angry, happy,
healthy. The results show an F1-score of 0.39 for vulnera-
ble, 0.45 for angry, 0.23 for impulsive, 0.75 for happy, 0.30
for detached, 0.32 for punishing and 0.96 for healthy. From
the confusion matrices it appears that the TN and FN rate
increased for most schemas. While, the TP and FP rate de-
creased for most schemas. Therefore, it can be assumed that
the model after hyper-parameter optimization increased the
false classification, while the true classifications decreased.

Figure 1: ROC curves, after hyper-parameter optimization

Lastly, Figure 1 shows the ROC curves as well as micro
and macro average of all schemas after hyper-parameter opti-
mization. After hyper-parameter optimization the AUC value
increased for 4 schemas: vulnerable, impulsive, happy and
detached. While it decreased for 1 schema: punishing schema
and stayed identical for 2 schemas: angry and healthy. Both
micro and macro average increased after hyper-parameter op-
timization. The results show that the AUC values are 0.69 for
the micro-average, 0.55 for the macro-average, 0.57 for vul-
nerable, 0.58 for angry, 0.55 for impulsive, 0.52 for happy,
0.53 for detached, 0.55 for punishing and 0.51 for healthy.

Based on the accuracy and F1-score, the model before
hyper-parameter optimization is the most optimal. Although
the AUC value increases for the macro and micro ROC curve,
it increases with only 0.02 for both macro and micro.

Binary Per-Schema Model

Schema Before After
Vulnerable 0.64 0.63
Angry 0.64 0.62
Impulsive 0.79 0.73
Happy 0.73 0.65
Detached 0.66 0.61
Punishing 0.79 0.77
Healthy 0.92 0.91

Table 3: Accuracy Per-Schema Model Optimization

Table 3 shows the accuracy calculated with the accuracy
method from the scikit-learn package before and after hyper-
parameter optimization. The accuracy decreased for all 7
schemas. The final results conclude that the accuracy for clas-
sifying schemas from the text utterances is 63% for vulnera-
ble, 62% for angry, 73% for impulsive, 65% for happy, 61%
for detached, 77% for punishing and 91% for healthy.

Table 4 shows the F1-score calculated with classifica-
tion report from scikit-learn before and after hyper-parameter
optimization. After hyper-parameter optimization the F1-



Schema Before After
Vulnerable 0.36 0.38
Angry 0.15 0.48
Impulsive 0.00 0.17
Happy 0.84 0.77
Detached 0.00 0.36
Punishing 0.03 0.34
Healthy 0.96 0.95
Micro avg 0.66 0.66
Macro avg 0.33 0.49
Weighted avg 0.54 0.63
Samples avg 0.70 0.66

Table 4: F1-Score Per-Schema Model Optimization

score increased for 5 schemas: vulnerable, angry, impul-
sive, detached and punishing. While, the F1-score decreased
slightly for the healthy schema and significantly the happy
schema. The final results conclude that the F1 score for
schema classification is 0.63 for vulnerable, 0.62 for angry,
0.73 for impulsive, 0.65 for happy, 0.61 for detached, 0.77
for punishing and 0.91 for healthy. Although the accuracy
decreased for all schemas, the F1-scores did increase.

Figure 2: ROC curves for the Per-Schema Binary model, after hyper-
parameter optimization

Lastly, Figure 2 shows the ROC curves after hyper-
parameter optimization of all schemas, as well as micro and
macro average. After hyper-parameter optimization the AUC
value increased for 4 schemas: vulnerable, impulsive, happy
and detached. While it decreased for the punishing schema
and stayed identical for 2 schemas: angry and healthy. Both
micro and macro average increased after hyper-parameter op-
timization. The final results show that the AUC values are
0.70 for the micro-average, 0.55 for the macro-average, 0.56
for vulnerable, 0.59 for angry, 0.51 for impulsive, 0.53 for
happy, 0.54 for detached, 0.59 for punishing and 0.52 for
healthy.

Based on the results of the confusion matrices, the TP
and FP rate increases while the TN and FN rate decreases.

In addition the AUC value increases for the schemas that
also increase on TP. Therefore, it is assumed that the positive
classification increases and the the negative classifications de-
creases.

Ordinal Per-Schema Model

Schema Before After
Vulnerable 0.164 0.278
Angry NaN 0.176
Impulsive NaN 0.0418
Happy 0.075 -0.057
Detached 0.209 0.245
Punishing NaN 0.266
Healthy 0.112 0.092

Table 5: Spearman Rank-Order Coefficient Per-Schema Model

Table 5 presents the Spearman rank-order coefficient be-
fore and after hyper-parameter optimization.

Before optimization there were 3 schemas: angry, impul-
sive and punishing with NaN as value. A reason for this could
be that the standard deviation is 0, due to no variation in the
either the predicted labels or actual labels.

It is not possible to compare the performance for the
classes: angry, impulsive and punishing as these had NaN as
value before optimization. However, the performance for the
2 schemas: happy and healthy decreased. While the perfor-
mance for the 2 schemas: vulnerable and detached increased.
The final Spearman Coefficients are 0.278 for vulnerable,
0.176 for angry, 0.0418 for impulsive, -0.057 for happy, 0.245
for detached, 0.266 for punishing and 0.092 for healthy.

3.9 Comparison RNN, KNN and SVM

Schema SVM kNN RNN
Vulnerable 0.27 0.34 0.38
Angry 0.38 0.40 0.48
Impulsive 0.07 0.13 0.17
Happy 0.75 0.80 0.77
Detached 0.18 0.35 0.36
Punishing 0.2 0.22 0.34
Healthy 0.93 0.96 0.95
micro avg 0.63 0.66 0.66
macro avg 0.40 0.46 0.49
weighted avg 0.57 0.62 0.63
samples avg 0.66 0.68 0.66

Table 6: Comparison between SVM, kNN and RNN using F1 Score

The optimized Binary Per-Schema Model has been com-
pared to the Binary kNN and Binary SVM model. Table 6
compares the F1-scores. RNN outperforms the other mod-
els for 5 schemas: vulnerable, angry, impulsive, detached and
punishing. Although, RNN outperforms kNN for the schema
detached, it is only with a difference of 0.1. kNN outperforms
the other models for 2 schemas: happy with a F1-score of
0.8 and healthy with a F1-score of 0.96 . However, the kNN



outperforms RNN with a difference of 0.1 for the schema
healthy. The micro avg for kNN and RNN are both 0.66,
while the micro avg for SVM is 0.63. The macro avg as well
as the weighted average for RNN is ranked the highest be-
tween the three models with a value of 0.49 compared to 0.40
for SVM and 0.46 for kNN.

Appendix D presents the micro and macro averages of
RNN, kNN and SVM compared to eachother. The micro-
average of SVM is significantly better than RNN and kNN.
The macro-average of RNN is slightly better than the other
models. This means that SVM is better at classifying the most
populated classes, while it is not very good at classifying the
least populated classes.

Schema SVM kNN RNN
Vulnerable 0.078 0.13 0.28
Angry 0.023 0.08 0.18
Impulsive 0.0033 0.12 0.042
Happy 0.12 0.06 -0.057
Detached -0.090 0.08 0.24
Punishing 0.074 0.09 0.27
Healthy 0.020 0.06 0.09

Table 7: Comparison between SVM, kNN and RNN using Spearman
Correlation

The Ordinal Per-Schema Model has been compared to the
Ordinal kNN and Ordinal SVM model. Table 7 contains a
comparison of the Spearman rank-order correlation between
RNN, kNN and SVM. RNN outperforms the other models
for 5 schemas: vulnerable, angry, detached, punishing and
healthy. For the schema happy, SVM outperforms the other
models with a Spearman Correlation of 0.12, where RNN has
a value of -0.057 and kNN has a value of 0.06.

4 Discussion
This section will discuss the results presented in the pre-

vious sections and compare the results to the findings of some
papers from the related work section.

After hyper-parameter optimization for the binary clas-
sification Multilabel model, the performance accuracy, F1-
score and confusion matrices and has shown to be worse than
the model before hyper-parameter optimization. Other pa-
rameter values from Talos scored a MAE within a range of
0.0004 compared to the MAE of the model that was used.
Different parameters may have been more efficient, because
the MAE did not differ strongly.

After optimizing the hyper-parameters for the binary clas-
sification Per-Schema model, the accuracies for all 7 schemas
decreased. A reason for the lower accuracy could be be-
cause the optimal hyper-parameters for each schema were
logged and the majority value had been picked for each hyper-
parameter. However, these hyper-parameters may not have
worked together as optimal. Contrary to the accuracy, the
F1-score increased significantly for 5 schemas and only de-
creased for 2 schemas. The 2 schemas that were decreased
were healthy and happy. Based on the confusion matrices,
the conclusion can be drawn that the classification for the

2 schemas (happy and healthy) with the most data has de-
creased, but the classification for the schemas with less data
instances has increased.

In Allaart’s research [3] the accuracy is 42% for vulnera-
ble, 65% for angry, 34% for impulsive, 39% for happy, 66%
for detached, 47% for punishing and 80% for healthy. Aver-
aged it is 53% for all 7 schemas. Whereas for this research the
average accuracy for all 7 schemas is 72%. Furthermore, all
schemas have an accuracy higher than 60%. Therefore, this
research has managed to improve the classification Allaart’s
study.

The Spearman rank order correlation coefficient for the
Ordinal Per-Schema Model is a very low as none of the
schemas have a Spearman Correlation higher than 0.3. How-
ever, an ordinal model is more realistic as a patient can be
scored from 0-6 for a schema. It is not possible to compare to
Burger’s [4] as the schema modes are not identical. However,
Burger managed to achieve an F1-score of more than 0.5 for 6
classes. Whereas in this research the F1-score did not achieve
more than 0.3 for any schemas.

5 Conclusion and Future Work
1) What pre-processing steps on the data are necessary

for an optimal classification by RNN? Removing data in-
stances that do not contain information for classification,
lower-casing, splitting of contractions, removal of stopwords,
removal of unnecessary white space and lemmatization have
been selected for this research and have proven to increase
accuracy compared to Allaart’s study [3].

2) What are the optimal hyper-parameters in the RNN
model? The Binary Multilabel model before the hyper-
parameter optimization, with a hidden layer with 300 units,
a dropout value of 0.5, optimization function ’Adam’ and a
batch size of 32 is the most optimal.

For the Binary Per-Schema model the accuracy for all
schemas decreased after the Talos hyper-parameter optimiza-
tion. However, the F1-score increased for most of the
schemas, except happy and healthy. Therefore, a hidden layer
with 200 units, a dropout value of 0.1, optimization function
’rmsprop’ and a batch size of 32 is most optimal.

Lastly, for the Ordinal Per-Schema Model the Talos op-
timization output from Burger was used. A dropout rate of
0.1, optimization function ’Adam’ and a batch size of 32. Al-
though the Spearman Coefficient decreased for healthy and
happy, it increased for the other schemas. Therefore, the op-
timized model with a hidden layer with 300 units, a dropout
value of 0.1, optimization function ’Adam’ and a batch size
of 32 is most optimal.

3) What are the differences between the results of three
methods, RNN, KNN and SVM? Based on the results it can be
concluded that RNN classifies the best for schema with less
data instances. SVM classifies the best for healthy and happy,
based on the micro average. And kNN and RNN perform
similar based on the macro and micro average.

For the ordinal classification kNN performs the best for
the impulsive schema and SVM performs the best for the
happy schema. RNN performs the best for the other 5
schema. It should also be noted that before the optimiza-



tion of the RNN, the happy schema outperformed the other
models.

How well can a schema be automatically classified
from a text using RNN?

The Binary Multilabel Model has an overall accuracy of
70%. The model performs with an accuracy of 91% for the
healthy schema. Based on the F1-score, I can conclude that
the Binary Multilabel Model classifies the happy and healthy
schema well, with a F1-score of 0.74 for the happy schema
and a F1-score of 0.95 for the healthy schema. However, the
other schemas: vulnerable, angry, impulsive, detached and
punishing are classifying poorly with a F1-score of less than
0.5.

The Binary Per-Schema Model has an overall accuracy of
68%. The model performs with an accuracy of 91% for the
healthy schema. Whereas other schemas have an accuracy
below 80%. Based on the F1-score, I can conclude that the
Binary Per-Schema Model classifies the happy and healthy
schema well, with a F1-score of 0.77 for the happy schema
and a F1-score of 0.95 for the healthy schema. However, the
other schemas: vulnerable, angry, impulsive, detached and
punishing are classifying poorly with a F1-score of less than
0.5.

The Spearman rank order correlation coefficient performs
poorly with an average Spearman Correlation of 0.15. How-
ever, an ordinal model is more realistic as a patient can be
scored from 0-6 for a schema.

To summarize, this research has used a RNN classifier to
detect schema modes from stories. Results have shown that
the dataset is biased. This has limited the performance of
this research. The binary classification has proven to be quite
accurate regarding the accuracy for the Per-Schema model
with an accuracy of 72%. The F1-score is less, as the average
is 0.49. However, the ordinal classification performs poor
as none of the schemas achieved a Spearman Correlation of
higher than 0.3. This research has improved the classification
algorithm of Allaart’s study [3]. However, it did not manage
to outperform the classification of Burger’s study [4].

5.1 Limitations
This research has several limitations regarding the dataset

and the purpose of the SMI. This resulted in the classifica-
tion algorithm not performing as well as expected, regarding
the F1-scores, ROC curves and Spearman Rank-Order Coef-
ficient.

1) Biased dataset For the vulnerable and detached
schema, 33% is labelled as 1 and 67% is labelled as 0. For
the angry schema 38% is labelled as 1 and 62% is labelled
as 0. For the impulsive and punishing schema 21% is la-
belled as 1 and 79% is labelled as 0. For the schema happy
73% of the dataset is labelled as 1, the remaining is labelled
as 0. For the schema healthy 92% of the dataset is labelled
as 1, the remaining is labelled as 0. Thus, therefore a clas-
sifier that always predicts 1 can achieve 92% accuracy for
the schema healthy and a classifier that always predicts 0 can
achieve 60% accuracy for the other schemas.

2) Low Correlation The SMI captures a general schema
of the patient over a period of time. The data contains a story
about a momentarily event and labels reflecting the schema

of the patient based on the SMI questionnaire that was filled
in after the story. This can result in a low correlation between
the story and schema (see point 2), resulting in bad classifica-
tion. For some data instances the text utterance and label does
not reflect each other. See Appendix E for two examples.

3) Small dataset After cleaning the dataset there were
1375 instances left. However, this is not enough to create
a good classifier [21].

5.2 Future Work
This research can be improved in two areas. First of all

the dataset can be improved. First, the results can be more
reliable by ensuring a balanced dataset. This means that
there are equal negative and positive data instances for each
schema. Second, the data instances should be increased so
the classifier has more data to train upon. Third, the data can
be manually labelled. This way the story and schemas will
represent each other and errors such as in Appendix E will
not occur. Lastly, as mentioned in the limitations, the SMI
questionnaire represents schema modes for a period of time.
Instead of using one story to predict the schema for a patient.
It is possible to use several stories from several conversations
over time for a patient. This way the schema modes actu-
ally represent a period of time. The second area that could
be improved upon is the classifier. First, the models used in
this research can use different parameters from the Talos re-
sults in Appendix A. Second, additional pre-processing can
be explored.

6 Responsible Research
For this research project I indirectly worked together with

Budi Han, Jeongwoo Park, Jahson Binda and Jimmy Lam.
Our research is supporting an ”overarching goal to create
a chatbot that can autonomously detect schemas from users
through ‘casual conversation or storytelling’ and suggest ap-
propriate treatment options when an unhealthy schema mode
is detected.” 5 I have collaborated more tightly with the for-
mer two. The reason for this is because one of our sub-
question requires a comparison of our classification models.
Between the three of us, the performance results between the
models were shared. Part of the code for pre-processing is
also shared, as all three of us needed the same pre-processing
to ensure the performance comparison was made with equal
circumstances.

Furthermore, we all got provided the same data set by the
supervisors. The data was obtained from Allaart’s study [3].
The dataset is not shared outside of the research of me and
my peers. The data was shared on Microsoft Teams files in
the designated team for this project. The provided raw data
was transformed as mentioned in the methodology. For pre-
processing, it was necessary to take out data instances that
provided no use to the classification of schemas. No further
modifications have been done on the dataset. The final dataset
used for this research is available on GitHub 6. One impor-
tant issue was the fact that the dataset was biased to be la-

5https://projectforum.tudelft.nl/course editions/39/projects/973
6https://github.com/Mirijam1/Automatic Psychological Text

Analysis RNN

https://projectforum.tudelft.nl/course_editions/39/projects/973
https://github.com/Mirijam1/Automatic_Psychological_Text_Analysis_RNN
https://github.com/Mirijam1/Automatic_Psychological_Text_Analysis_RNN


belled as 1 for the healthy and happy schemas and labelled as
0 for the vulnerable, angry, impulsive, detached and punish-
ing schemas. This is also explained in the limitations section.
Therefore, the results may be biased towards either the 0 or 1
label depending on the schema.

Additionally, the work from Burger was provided by the
supervisors. A Jupyter notebook containing her code and re-
sults for KNN, SVM and RNN was shared. I have used the
RNN model from her Jupyter notebook as inspiration and im-
proved from there. None of Burger’s code has been directly
copied. The final RNN classification models are also shared
on GitHub.

Lastly, the Talos hyper-parameter optimization outputs
and all performance results for the Binary Multilabel Model,
Binary Per-Schema Model and the Ordinal Per-Schema
Model are included in the Appendix

6.1 Reproducibility
The modified dataset is available on GitHub. All RNN

models will be are available as a Jupyter Notebook and as a
Python file. To ensure reproducibility, it is recommended to
follow the experimental setup or to use the Jupyter Notebook
on GitHub. To make sure the correct dependencies are in-
stalled, a requirement.txt file is included. This will ensure the
right versions are installed and environment is created.

It is generally recommended to run the model many times
(30+) to get stable and reproducible results7. It is also rec-
ommended to compare the results of the models to be able to
draw conclusions on the variability between the results. How-
ever, this research has three models: Binary Multilabel RNN,
Binary Per-Schema RNN, Ordinal Per-Schema RNN. To run
each model for 30 times takes a very long time and it was not
possible to do this in time. As it was not possible to run the
model 30 times, all models have been run with epochs of 100
to make sure the models and results are stable.

References
[1] J. E. Young, J. S. Klosko, and M. E. Weishaar, Schema

Therapy: A Practitioner’s Guide. Guilford Press.
[2] J. Lobbestael, M. Vreeswijk, P. Spinhoven, E. Schouten,

and A. Arntz, “Reliability and validity of the short
schema mode inventory (SMI),” vol. 38, pp. 437–58.

[3] D. Allaart, “Schema mode assessment through a con-
versational agent.”

[4] F. Burger, M. A. Neerincx, and W.-P. Brinkman, “Nat-
ural language processing for cognitive therapy: extract-
ing schemas from thought records.”

[5] A. Millings and K. B. Carnelley, “Core belief content
examined in a large sample of patients using online cog-
nitive behaviour therapy,” vol. 186, pp. 275–283.

[6] F. Patel, R. Thakore, I. Nandwani, and S. K. Bharti,
“Combating depression in students using an intelligent
ChatBot: A cognitive behavioral therapy,” in 2019 IEEE
16th India Council International Conference (INDI-
CON), pp. 1–4. ISSN: 2325-9418.

7urlhttps://machinelearningmastery.com/reproducible-results-
neural-networks-keras/

[7] M. P. Ewbank, R. Cummins, V. Tablan, A. Catarino,
S. Buchholz, and A. D. Blackwell, “Understanding the
relationship between patient language and outcomes in
internet-enabled cognitive behavioural therapy: A deep
learning approach to automatic coding of session tran-
scripts,” vol. 31, no. 3, pp. 300–312.

[8] J. Brownlee, “When to use MLP, CNN, and RNN neural
networks.”

[9] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu,
“Recurrent neural networks for language understand-
ing,”

[10] J. Brownlee, “Crash course in recurrent neural networks
for deep learning.”

[11] J. L. Elman, “Finding structure in time,” vol. 14, no. 2,
pp. 179–211.

[12] S. Hochreiter, “The vanishing gradient problem during
learning recurrent neural nets and problem solutions,”
vol. 06, no. 2, pp. 107–116. Publisher: World Scientific
Publishing Co.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” vol. 9, pp. 1735–80.

[14] J. Hassan and U. Shoaib, “Multi-class review rating
classification using deep recurrent neural network,”
vol. 51.

[15] D. Can, D. C. Atkins, and S. S. Narayanan, “A dialog act
tagging approach to behavioral coding: A case study of
addiction counseling conversations,” p. 5.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” p. 9.

[17] L. Derczynski, “Complementarity, f-score, and NLP
evaluation,” in Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pp. 261–266, European Language Re-
sources Association (ELRA).

[18] T. Fawcett, “An introduction to ROC analysis,” vol. 27,
no. 8, pp. 861–874.

[19] A. Maratea, A. Petrosino, and M. Manzo, “Adjusted f-
measure and kernel scaling for imbalanced data learn-
ing,” vol. 257, pp. 331–341.

[20] C. Spearman, “The proof and measurement of asso-
ciation between two things. by c. spearman, 1904,”
vol. 100, no. 3, pp. 441–471.

[21] J. O’Dwyer Wha Binda, “Active learning in reducing
human labeling for automatic psychological text classi-
fication.”



Appendices
A Talos results
A.1 Binary Per-Schema

The schema Vulnerable had a MAE of 0.001820 with a dropout value of 0.1, 200 hidden layer units, activation function
rmsprop, and batch size of 32.
The schema Angry had a MAE of of 0.001760 with a dropout value of 0.1, 200 hidden layer units, activation function rmsprop,
and batch size of 32.
The schema Impulsive had a MAE of of 0.002297 with a dropout value of 0.1, 300 hidden layer units, activation function
rmsprop, and batch size of 32.
The schema Happy had a MAE of of 0.001769 with a dropout value of 0.2, 100 hidden layer units, activation function Adam,
and batch size 32.
The schema Detached had a MAE of of 0.001708 with a dropout value of 0.1, 200 hidden layer units, activation function
rmsprop, and batch size of 32.
The schema Punishing had a MAE of of 0.001661 with a dropout value of 0.5, 200 hidden layer units, activation function
rmsprop, and batch size of 32.
The schema Healthy had a MAE of of 8.785876e-09 with a dropout value of 0.1, 300 hidden layer units, activation function
rmsprop, and a batch size of 32.

B Binary Multilabel Model results
B.1 Confusion Matrices

Schema TP FP FN TN
Vulnerable 33 43 62 151
Angry 50 61 59 119
Impulsive 11 22 51 205
Happy 160 58 50 21
Detached 27 60 69 133
Punishing 18 32 44 195
Healthy 266 21 1 1

Table 8: Confusion Matrices Multilabel Model Before Optimization

Schema TP FP FN TN
Vulnerable 29 52 66 142
Angry 46 57 63 123
Impulsive 6 13 56 214
Happy 155 55 55 24
Detached 36 62 60 131
Punishing 14 26 48 201
Healthy 263 21 4 1

Table 9: Confusion Matrices Multilabel Model After Optimization



B.2 Classification report

Figure 3: Classification report before



Figure 4: Classification report after



B.3 ROC curve

Figure 5: ROC curves, before hyper-parameter optimization



C Binary Per-Schema Model results
C.1 Confusion Matrices

Schema TP FP FN TN
Vulnerable 30 40 65 154
Angry 9 4 100 176
Impulsive 0 0 62 227
Happy 199 66 11 13
Detached 0 1 96 192
Punishing 1 1 61 226
Healthy 267 22 0 0

Table 10: Confusion Matrices Per-Schema Model Before Optimization

Schema TP FP FN TN
Vulnerable 32 43 63 151
Angry 51 53 58 127
Impulsive 8 24 54 203
Happy 168 58 42 21
Detached 32 49 64 144
Punishing 17 22 45 205
Healthy 263 21 4 1

Table 11: Confusion Matrices Per-Schema Model After Optimization



C.2 Classification report

Figure 6: Classification report before



Figure 7: Classification report after



C.3 ROC curve

Figure 8: ROC curves for the Per-Schema Binary model, before hyper-parameter optimization



D Comparison RNN, KNN and SVM
D.1 ROC curves

Figure 9: Macro avg curves for RNN, KNN and SVM



Figure 10: Micro avg curves for RNN, KNN and SVM



E Wrongly labeled text utterances

Figure 11: Wrongly labelled text utterance 1

Figure 12: Wrongly labelled text utterance 2


	Introduction
	Related work
	Research Question

	Methodology
	Background
	Recurrent Neural Networks
	Long Short-Term Memory
	Word embedding

	Methods
	Dataset
	Pre-processing
	Word embedding
	RNN classifier
	Evaluation metrics


	Experimental Setup and Results
	Dataset
	Word Embedding
	LSTM Setup
	Talos Hyperparameter optimization
	Binary Multilabel Model
	Binary Per-Schema Model
	Ordinal Per-Schema Model
	Results
	Binary Multilabel Model
	Binary Per-Schema Model
	Ordinal Per-Schema Model

	Comparison RNN, KNN and SVM

	Discussion
	Conclusion and Future Work
	Limitations
	Future Work

	Responsible Research
	Reproducibility

	Talos results
	Binary Per-Schema

	Binary Multilabel Model results
	Confusion Matrices
	Classification report
	ROC curve

	Binary Per-Schema Model results
	Confusion Matrices
	Classification report
	ROC curve

	Comparison RNN, KNN and SVM
	ROC curves

	Wrongly labeled text utterances

