
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Finding
Bounded-Length
Cycles in
Decentralised
Networks under
Privacy Constraints
Consumer-Friendly
Transaction Monitoring

CSE3000: Thesis Project
Juno Jense

Finding
Bounded-Length

Cycles in
Decentralised

Networks under
Privacy Constraints

Consumer-Friendly
Transaction Monitoring

by

Juno Jense

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday July 11th, 2024 at 01:30 PM.

Student number: 4565541

Project duration: November, 2023 – July, 2024

Thesis committee: Dr. Z. Erkin, TU Delft, supervisor

F. W. Dekker TU Delft, daily supervisor

Dr. J. G. H. Cockx TU Delft

This thesis is confidential and cannot be made public until December 31, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

My curiosity manifested itself while I was doing my bachelor’s degree, during a group project on multi-party
computation. The supervisor for the project ended up becoming the supervisor for this thesis. During the master’s
degree I started following more and more courses on security. I was most captivated by cryptography, and security
of programming languages. After following a course on privacy-enhancing technologies, I realised I wanted to do a
thesis on cryptography and privacy.

First, I would like to thank my supervisor, Dr. Zeki Erkin, for exposing me to cryptography all those years ago,
and their continuous support during the past nine months. Thanks to their guidance and feedback I developed a
passion for cryptography. Their expertise and enthusiasm encouraged me to learn as much as I did, far exceeding
my expectations. I am especially thankful for the constant encouragement, positivity, and setting a high standard
without imposing much stress. This helped me tremendously in setting goals and boundaries for myself, and gave
me the confidence to overcome my perfectionism.

Next, I want to express my appreciation and gratitude towards my daily supervisor, Florine W. Dekker. There has
not been a single time where they were not ready to discuss and challenge my ideas. Each discussion left with new
insights and gave me motivation to continue my research. My sincere thanks also goes out to the PhD students
Jelle Vos, Jorrit van Assen, and Tianyu Li, as well as the master students Chelsea Guan, Davis Sterns, Vojta Crha
and Prakhar Jain, who contributed a significant amount to my thesis experience.

I am thankful towards my friends who shaped my life as a student in Delft, and towards my family. Special thanks
go out to my partner, Lukas, and to my parents. Their unconditional love and support is what got me this far.

Juno Jense
Delft, July 2024

i

Summary

Financial crime has seen a surge in complexity over the past decades as a result of digitisation.

This required better tools for detecting financial crime, creating a cat-and-mouse game between law

enforcement and criminals. Anti-money laundering (AML) is the collective term describing these tools,

as well as financial regulations designed to combat money laundering. The detection of fraud is done

through data analysis. Typically, the financial data is a large set of transactions between accounts.

Transactions have a sender, receiver, and an amount that is transferred from sender to receiver. This can

be represented by a directed graph where nodes represent accounts and edges transactions between

accounts. Methods for finding fraudulent transactions in transactional graphs are widely studied in

both literature and industry. This usually assumes a centralised entity with full access to the data. At an

international scale, the centralised approach is not suitable. Besides its massive scale posing a challenge,

it is hard to imagine a global agreement on what capabilities such an entity should have. At the same

time, organisations sharing financial data for analysis raises privacy concerns. We limit our scope to

transactional cycles. These typically occur when criminals send money through a series of international

bank accounts back to the original account. This lowers the chance of the money being traced back to its

illicit source.

We propose a privacy-preserving decentralised protocol which takes as input a parameter ℓ from

any node and outputs all cycles of at most length ℓ containing the node. The protocol relies on the

decisional Diffie-Hellman assumption, and we show the protocol is secure against a polynomially

bounded adversary within our security model. The communication complexity of an instance is 𝑂(𝑛ℓ),
multiple instances can be ran in parallel. We implement the protocol and measure its performance on

scale free graphs in terms of communication and computational costs. Lastly, we discuss our results

and suggestions for future work.

ii

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Emergence of Money Laundering . 1

1.2 Transaction Graphs . 2

1.3 Research Objective . 4

1.4 Contribution . 5

1.5 Outline . 5

2 Preliminaries 6
2.1 Graph Theory . 6

2.2 Cycle Detection Algorithms . 6

2.3 Shortest Path Algorithms . 7

2.4 Decentralised Networks . 7

2.5 Security Model . 9

2.6 Multi-Party Computation . 9

2.7 Number Theory . 9

2.8 Cryptographic Primitives . 10

3 Related Work 12
3.1 Private Cycle Detection in Financial Transactions . 13

3.2 Pattern Matching . 13

3.3 Graph Algorithms with MPC . 14

3.4 Secure Shortest Path Algorithms . 15

3.5 Anomaly Detection . 15

3.6 Topology Hiding Communication . 16

4 Decentralised Cycle Detection 17
4.1 Protocol Architecture . 17

4.2 Initiating Instances . 18

4.3 Propagating Forward Messages . 18

4.4 Echoing Responses . 19

4.5 Tracing Cycles . 19

5 Analysis 22
5.1 Security Analysis . 22

5.2 Complexity Analysis . 25

5.3 Performance Evaluation . 27

6 Discussion 30
6.1 Revisited Research Objective . 30

6.2 Future Work . 31

6.3 Concluding Remarks . 31

References 32

iii

List of Figures

1.1 Decentralised transaction cycle . 4

2.1 Diffie-Hellman key exchange . 11

4.1 Protocol instance visualised . 21

5.1 Results of performance evaluation . 28

iv

List of Tables

2.1 Bit complexity of modular operations . 10

3.1 Comparison of contributions . 12

5.1 Breakdown of complexity . 27

v

Nomenclature

Abbreviations
Abbreviation Definition

ABB Arithmetic Black Box

AML Anti-Money Laundering

AMLA Authority for Anti-Money Laundering and Counter-

ing the Financing of Terrorism

DDH Decisional Diffie-Hellman

DFS Depth-First Search

DLP Discrete Log Problem

EU European Union

FATF Financial Action Task Force

FIU Financial Intelligence Unit

GDP Gross Domestic Product

MPC Multi-Party Computation

ORAM Oblivious Random Access Memory

PPT Probabilistic in Polynomial Time

TTL Time-To-Live

UB Unbounded

vi

List of Tables vii

Symbols
Symbol Definition

ℓ Hop Distance, TTL, Search Depth

𝐺 Graph 𝐺 = (𝑉, 𝐸)
𝑉 Vertex Set

𝐸 Edge Set

𝑣 Vertex 𝑣, Node 𝑣
(𝑣𝑖 , 𝑣 𝑗) Edge 𝑣𝑖 to 𝑣 𝑗
𝑛 Total Nodes in 𝐺, Size of 𝑉
𝑒 Total Edges in 𝐺, Size of 𝐸
𝜋 Path (𝑣1 , . . . , 𝑣𝑘) of Length 𝑘
𝜎 Cycle (𝑣1 , . . . , 𝑣𝑘−1 , 𝑣1) of Length 𝑘

𝑁(𝑣) Neighbours of 𝑣
𝑁+(𝑣) Outgoing Neighbours of 𝑣
𝑁−(𝑣) Incoming Neighbours of 𝑣
𝑑, 𝑑𝑖 Degree, Size of 𝑁(𝑣), 𝑁(𝑣𝑖)
𝑑𝑖𝑛 Indegree, Size of 𝑁+(𝑣)
𝑑𝑜𝑢𝑡 Outdegree, 𝑁−(𝑣)
𝑝 Prime (1024-3072 bits), Modulus

𝑞 Prime (160-256 bits), Order

𝑟 Integer (864-2816 bits)

ℎ Integer (0 < ℎ < 𝑝)

𝑔 Generator

𝜅𝑝 , 𝜅𝑞 , 𝜅𝑟 Security Parameters for Public Keys, Nonces

Z∗𝑝 Multiplicative Group of Integers Modulo 𝑝

G𝑞 Cyclic Subgroup of Z∗𝑝 with order 𝑞

𝑔𝑥 Public Key

𝑥, 𝑥𝑖 , 𝑥𝑖 , 𝑗 , 𝑦 Secret Key

𝑘𝑖 , 𝑗 Partial Key

𝑟𝑖 , 𝑟𝑖 , 𝑗 Nonce

𝑚, 𝑚′, 𝑚′′ Message

keys Established Keys

pending Partial Keys Awaiting Response

routes Tuple with Key and Two Pairs (Nonce, Node)

retrace Tuple with (Nonce, Key, Key) and (Nonce, Node)

𝒜 , 𝑣𝐴 Adversary, Adversarial Node

𝑀 All Messages over Multiple Instances

𝑀𝐴 Messages in 𝑀 Received by 𝑣𝐴
𝑀 𝑓 , 𝑀𝑒 , 𝑀𝑡 Message Set (Forward, Echo, Trace)

𝑚0 , 𝑚1 Parameters Scale-Free Graphs Generation

𝑐 Total Cycle Edges Σ|𝜎𝑖 |
𝑡𝑎𝑣𝑔 Average Execution Time

𝜎𝑎𝑙𝑙 All Cycles in the Graph

1
Introduction

Criminals obfuscate funds obtained through illicit means by running them through a complex series of

financial transactions. By integrating their illegal proceeds into the legitimate banking system, they

can disguise the true nature of their activities and make their money appear to be from legal sources.

The Russian invasion of Ukraine and its associated funding are a prominent example showcasing the

scale and global impact of money laundering. Russia has an estimated $1 trillion hidden abroad, of

which a quarter is controlled by Putin and his associates [8]. The origin of these funds often involve

the extortion of private businesses, or are straight up stolen from state budget [40]. Once the money is

laundered and moved abroad, it can be used for espionage, propaganda, bribery, and other nefarious

purposes [11], while keeping the true origin hidden.

Anti-money laundering (AML) is an umbrella term for the laws, regulations and procedures which are

designed to combat the generation, concealment, and integration of illicit funds. Financial institutions

are obliged to proactively monitor and report suspicious activity to the authorities. Detection of money

laundering requires a sophisticated approach, as financial data is under heavy regulation. At the same

time, organisations may want to share data, such as suspicious transactions, for a joint analysis. Due to

the sensitive nature of the data, the exchange should reveal no more private information than strictly

necessary. For this reason coordination between financial organisations is not straightforward, and

remains unconventional within the industry [46]. Criminals exploit this by setting up accounts at

different banks across multiple countries to avoid getting caught by law enforcement agencies. Since

countries and their governments are largely independent in the creation of their legislative policies

that regulate the exchange of such data, expecting them to consistently report to a central authority is

unrealistic. Performing international data analysis, without sacrificing confidentiality nor the autonomy

of countries, requires a privacy-preserving and decentralised approach.

1.1. Emergence of Money Laundering
The use of the phrase money laundering for describing the process in which criminals obscure their

earnings has its roots in the 1970s, when a major political scandal in the United States resulted in the

resignation of former president Nixon [60]. In the scandal, a large amount of cash was deposited in

Mexican banks, which was later transferred back to the United States, thus hiding the origin of the

money. At the same time, criminals were setting up feign businesses which seem legitimate, which were

used to make their winnings appear to be from legal activities. Back in 1989, the financial action task

force (FATF) was formed as a response to the increase in money laundering. The task force consisted of

16 members at time of founding and was given responsibility to examine and combat money laundering

techniques [28]. The standards they set out became more relevant as a result of the terrorist attacks

which took place in 2001; their mandate was expanded to combat terrorist funding [29]. Since then, an

increasing number of countries made efforts to collaboratively tackle money laundering, and the FATF

now consists of 39 members. At the same time, threats evolved further and traditional systems started

falling behind [52], which led to regulations becoming more strict.

1

1.2. Transaction Graphs 2

The regulations of the European Union require financial institutions to report suspicious activity to the

financial intelligence unit (FIU) of their respective country [25][26]. These units operate independently

from organisations which are subject to AML reporting, and are typically integrated into law enforcement

agencies or governmental administrative bodies. Based on these reports, information might be relayed

to the authorities if necessary. This suffices at a national level, however, fraudulent chains of transactions

often span multiple countries [41]. For this reason, the European Commission has made significant

efforts to improve cooperation and coordination between FIUs. The FIU.net project [25] is one of

such efforts. Initially funded by the European Commission since 2002, the project facilitates secure

international exchange of financial intelligence between EU member states. Its underlying technology

relies on ma
3
tch [9][39], an anonymous type of analysis. Ma

3
tch makes use of an anonymisation

algorithm which takes as input a set of sensitive records, and outputs an extremely minimised filter

which captures its characteristics without leaking any sensitive information. To achieve this, ma
3
tch

leverages space efficient probabilistic data structures, hashing, fuzzy logic and approximation techniques.

This procedure produces a uniform anonymised filter, and is also referred to as hashing the hash. While

this seems promising, the ongoing efforts to standardise cross-border dissemination of suspicious

transaction reports via FIU.net have not yet led to a wide adaptation across EU member states [46].

This is a worrying statistic, especially since the past decade has seen a surge in money laundering and

terrorist financing [52].

Cost of Compliance
To combat this the EU introduced numerous new anti money-laundering directives between 2015 and

2022 [25]. Alongside these rapid developments, a survey by Reuters done in 2017 showed that the cost

of maintaining compliance has been growing as well [36]. Their results show that organisations struggle

to keep up, and the degree to which compliance is maintained varies across organisations. Naturally,

individuals partaking in illegal activities aim to minimise their chances of being caught, and set up

accounts at banks which provide them with the highest chances of staying undetected. For example,

investigations into which countries are most involved in money laundering schemes have shown that

there is a clear skew towards banks established in eastern European countries [41]. Detecting money

laundering is a complex task, especially due to its massive scale. The United Nations Office on Drugs

and Crime estimated that between 2 and 5% of the global GDP is laundered each year [22]. Not only are

a lot of funds involved, the transactions are also distributed across many parties; in Europe alone there

are well over five thousand banks registered [57]. Currently, transactional data is only shared between

two FIUs if the transactions are flagged as suspicious [46]. In an ideal world, we are able to include all

cross-border transactions, from more than two parties, in one single analysis. This analysis would bring

cases of fraud to light with high accuracy, without loss of privacy for individuals not involved.

1.2. Transaction Graphs
The amount of financial data which is generated each day has been steadily increasing. As a result, big

data technologies and artificial intelligence contribute to better accuracy in detecting fraud compared to

traditional approaches, and became a central part in modern AML systems [16]. Even though every

system is different, they do share a common goal: distinguishing fraudulent transactional patterns from

legitimate ones. Money laundering has a consistent definition, and consists of three stages: placement,

layering, and integration. In the placement stage, illicitly obtained assets are obtained from or placed

into a set of source accounts. As an example, banking credentials may be stolen, or criminals may run a

business and forge financial documentation to make illicit proceeds seem like legitimate profit earned

through the business. The next phase, layering, consists of transactions that have no purpose besides

hiding the true source of funds. The last stage integrates the assets into the legal economy, such that

other investments and purchases can be made [56]. The focus of this thesis is on the central component

of money laundering, the layering stage.

Transactional data can be modelled as a graph, such that nodes represent accounts and the edges the

flow of funds from one party to another. The layering stage can be defined using the same model. Funds

originate from a set of source nodes, are moved through one or more middle accounts, before eventually

being deposited into a set of target accounts. In practice, source nodes are mules or compromised victim

accounts, middle accounts are mules or feign businesses, and targets have high spendings and may

invest in legitimate assets. To give a concrete example, Starnini et al. [56] use this representation to

1.2. Transaction Graphs 3

identify two subtypes of money laundering known as smurfing. This is a money laundering technique

in which large sums of money are broken up into multiple small transactions. The first smurf-like motif

they identified has multiple nodes in its source and target sets, which are all connected through the

same singular middle node. The second pattern has only a single source and single target node, both

which are connected through multiple middle accounts.

Cyclic Cash Flow
Laundering activities often produce special subgraphs in the transactional graph representation. Some

elementary fraudulent patterns are cliques, stars, and cycles. While during the past few decades

schemes have taken on more sophisticated forms, transactional cycles in particular remained as a strong

indication of potential money laundering [35]. For a more extensive overview of fraud patterns, we

refer to the overview provided by Dumitrescu et al. [23] in their work on anomaly detection. In this

thesis, we study the problem of privacy-preserving cycle detection in distributed networks. Cycles

represent a flow of cash in which one account, belonging to the criminals, is both the source and target

node. Middle nodes are legitimate accounts used to hide the illicit origin of funds. Nearly all modern

laundering schemes involve criminals recruiting money mules; non-involved individuals who give

access to their account for a monetary reward. Another popular strategy that is often employed is the

use of feign businesses to make intermediate accounts seem legit.

European and Commercial Instruments
Tighter regulations have led to financial crime detection becoming a high priority among organisations

subject to AML audits. GraphS [50], a tool developed by the e-commerce platform Alibaba, is one

such large-scale industry solution based on cycle detection. The system monitors the graph of all

transactions and identifies bottlenecks for its optimisation. Even though the system is not suitable for

sensitive financial data, they did make an important observation on cycle properties. They found that

cycles rarely exceed a length of six, and have a near-constant value across their transactions. Hajdu

et al. [35] developed a cycle-based fraud detection system for a Hungarian bank, and observed the

same property while performing experiments on real financial data. Additionally, they found short

cycles to be extremely uncommon in legitimate transfers and are thus strong indicators of fraud. Nearly

all money laundering schemes involve more than one organisation, and almost always span across

multiple countries [41, 26]. Such schemes are hard to detect because the transactional data does not

belong to a single central entity. The recent collaboration between five Dutch banks addresses this issue

at a national level by anonymising and aggregating transactions to a single database. Not only did this

raise controversy and privacy concerns [48], its multi-year development is also associated with a high

cost [47]. This type of approach becomes an even bigger challenge at an international scale. To mitigate

risks of cyberattacks, privacy invasion, and potential abuse of power, international monitoring has to be

decentralised across multiple parties.

Current Status
In Europe there have been ongoing efforts to standardise cross-border cooperation through introducing

a decentralised network, which FIUs of member states are legally obliged to use. Each FIU manages

their own database containing suspicious transactions, and share information proactively or by request.

Yet, as this imposes a high workload on the FIUs and requires them to take a proactive stance, many

reports are never forwarded to other member states. As a result, the lack of cooperation persists [46].

Since January 2016, Europol has been made responsible for maintaining the FIU.net project in an

attempt to improve the situation. They integrated FIU.net into their existing AML and terrorist funding

monitoring landscape [1]. While the intent was to create more synergy between financial intelligence, a

2019 report [27] from the European Data Protection Supervisor concluded that Europol failed to comply

with data protection regulations. At the same time, in an effort to further enhance collaboration between

member states, the European Commission passed a proposal to establish AMLA, an authority for

anti-money laundering and countering the financing of terrorism [26, 17]. This authority is decentralised

across European member states, and is purposed to enhance coordination between the respective

national authorities of members participating. One of the responsibilities of this authority will be

hosting the FIU.net infrastructure, while respecting data protection laws. Its activities are expected to

start mid-2025 [18], and reach full staffing in 2027.

1.3. Research Objective 4

1.3. Research Objective
The current system in Europe does not make use of graph data and only compares two transactions at a

time. To find more sophisticated patterns such as cycles, especially in the upcoming decentralised setting,

a different approach is needed. Expressing the European transactions in the graph model produces a

rather large transactional graph. Nodes and transactions are partitioned among the participants, or in

graph terminology, participants have partial knowledge of the topology. The full topology is not known

though, nor do participants know which external accounts may have been flagged for suspicious activity.

By definition decentralised networks have autonomous nodes which exchange information with only

their neighbours. For a network of financial intelligence organisations to be considered decentralised

each party must be honest, does not perform centralised computation, and independently controls each

node as unique entity. We give an example of a decentralised network in Figure 1.3 which is partitioned

between two banks. In practice, any decentralised protocol can be made suitable for a network in which

any number of overarching entities may own multiple nodes. The required computational power can be

significantly reduced if initiating is only done over edges that have their respective nodes in different

partitions. For a set of nodes belonging to only one organisations standard tools can be used to find the

transactional cycles. Besides, criminals typically employ cross-organisation strategies for their schemes.

From the decentralised perspective, nodes only have knowledge of their direct neighbours. Privacy

implies that topology unrelated to the node has to stay hidden, unless a cycle is found and shared among

the network. The ability to infer existence of transactions between other accounts leads to leakage of

sensitive information.

Figure 1.1: Decentralised view of a transaction cycle between accounts in different banks.

We consider a generalised setting in which an arbitrary real-life application is modelled as a decentralised

directed graph. Besides finance, a few examples of where this model can be applied are transport,

logistics, and social networks. Work on privacy-preserving cycle detection in the decentralised setting

is limited. To the best of our knowledge, only the work of Porsius [49] achieves similar goals without

scaling quadratically on the number of vertices in the graph. However, their proposed protocol is

vulnerable to attacks as it re-uses a one-time pad. We show how an attack on this protocol can be

constructed in chapter 3. This leads us to our main research question:

“How do privacy and efficiency scale when finding bounded length cycles in decentralised networks?”

Current literature on financial fraud detection can be classified into subgraph detection, graph queries,

statistical functions and learning approaches. To briefly elaborate, subgraph detection targets special

topologies such as stars, cycles, cliques and various dense subgraphs. For graph queries two subtypes

are considered, the point-to-point reachability and shortest path queries. Statistical functions use the

global distribution of one or more features to compute a normality measure over neighbourhoods. This

measure is used to assess whether a particular neighbourhood shows anomalous behaviour. Lastly,

approaches based on learning optimise a global objective function that characterises deviation from the

norm. Learning algorithms build a generalised model on historic data which can predict or classify

unseen transactions. This abstraction removes the need to manually define rules and makes learning the

most dissimilar to our approach. Our work can be considered as a decentralised approach to subgraph

detection.

1.4. Contribution 5

1.4. Contribution
Our motivation is in part due to a discovered vulnerability in the current state-of-the-art. Therefore,

our first contribution is an adversarial construction on an existing protocol. This steered us to our

primary contribution; a novel privacy-preserving decentralised protocol which detects cycles in the

local neighbourhood of nodes. The remainder of our contribution consist of a security definition

and subsequent proof, followed by a performance evaluation of our implementation of the proposed

protocol.

1. We highlight a security vulnerability in the current state-of-the art. We first construct a scenario in

which an honest-but-curious adversary can deduce which messages belong to the same instance.

Next, we show how this information can be used to imply the existence of non-neighbouring

edges. Lastly, we show how a significant part of the graph topology can be obtained when the

adversary controls multiple nodes.

2. We propose a protocol based on the Diffie-Hellman key exchange. In this exchange, two parties

establish a shared secret over a public network, which can be used to encrypt communication

after the initial exchange. We extend this concept to more than two parties by involving the local

neighbourhood of nodes. As nodes are autonomous, the protocol is ran at node-level and can be

ran in parallel. Nodes interested in learning which cycles they are in perform a key exchange with

each node that it can reach within a specified hop distance ℓ . The intuition behind our protocol is

that an initiating node exchanges a key with itself iff it is in a cycle of at most length ℓ . The output

for a particular instance is the set of all cycles of at most length ℓ the initiating node of the instance

is part of.

3. After stating our cryptographic assumptions, we define two objectives that form the basis of our

security definition. First, we prove that an adversary cannot derive whether any pair of public

keys belong to the same instance. Secondly, we consider an adversary controlling multiple nodes,

and prove that the topology unknown to the adversary remains hidden using a formulation based

on node contraction. Finally, we show these properties hold in the context of our protocol such

that our privacy requirements are fulfilled.

4. We provide theoretical worst-case upper bounds on communication, computational, and storage

complexity. Following this, we implement the protocol and run experiments to evaluate its

performance. We use the resulting empirical data to verify the efficiency of the protocol for low

values of ℓ , and discuss the execution time and total exchanged messages in relation to the average

degree and the number of cycle edges.

1.5. Outline
The remainder of this thesis is divided as follows. In chapter 2 we formally introduce the preliminaries

and notation. Chapter 3 provides an overview of existing techniques for cycle detection and adjacent

related work. We propose our solution in chapter 4 and describe its various components. Next, we

provide a formal security argument and share the results of our experiments in chapter 5. Lastly, we

discuss our findings in chapter 6 and provide some concluding remarks.

2
Preliminaries

This chapter we introduce the notation, definitions and concepts used throughout the remainder of this

thesis. First, the graph model and its components are introduced. Next, we discuss graph problems

related to finding cycles and a closely related problem, finding shortest paths in graphs. We then turn to

properties of decentralised systems, and discuss the aforementioned graph problems in the decentralised

context. We continue by introducing multi-party computation, our mathematical foundation, and

cryptographic primitives.

2.1. Graph Theory
We denote a graph 𝐺 as the pair 𝐺 = (𝑉, 𝐸), where 𝑉 contains elements, and 𝐸 contains edges which

connect elements. We refer to the elements of 𝑉 as vertices or nodes. The solution is a general algorithm

not specific to the financial setting, nodes and edges can be thought of as accounts and transactions

in spirit. Within our framework 𝐺 is a simple directed graph. By this definition, given two vertices

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , the edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 connects a source 𝑣𝑖 to target 𝑣 𝑗 . The term simple restricts 𝐺 from

containing self-loops (i.e. 𝑖 = 𝑗 for (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸) and ensures there are no two edges with the same source

and target nodes. The set of vertices which a node 𝑣𝑖 ∈ 𝑉 shares edges with are called neighbours, and

is given by 𝑁(𝑣𝑖) ⊂ 𝑉 . The size of this set is equivalent to the degree 𝑑𝑖 of 𝑣𝑖 . We denote 𝑁+(𝑣𝑖) as the

neighbours to which 𝑣𝑖 has an outgoing edge, and use 𝑁−(𝑣𝑖) for neighbours 𝑣𝑖 has incoming edges

with. The respective sizes of these sets are the outdegree and indegree of the node. The path 𝜋 is a set

of 𝑘 connected vertices, where 𝜋 = (𝑣1 , 𝑣2 , . . . , 𝑣𝑘) for distinct vertices 𝑣1 , 𝑣2 , 𝑣𝑘 ∈ 𝑉 . Cycles of length 𝑘
are a type of path denoted by 𝜎 = (𝑣1 , . . . , 𝑣𝑘−1 , 𝑣𝑘) such that 𝑣1 , 𝑣2 , 𝑣𝑘−1 ∈ 𝑉 are distinct vertices and

𝑣1 = 𝑣𝑘 holds. We use 𝜋(𝑖) (or 𝜎(𝑖)) to refer to the edge (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸.

2.2. Cycle Detection Algorithms
Functions that find cycles play an important role in the domain of graph theory. The most primitive

implementation takes as input a graph 𝐺 = (𝑉, 𝐸) and outputs true if a cycle exists within the graph,

and false otherwise. Extended variants of the algorithm may be given an upper bound on the cycle

length, or search for cycles with certain characteristics. For example, typical search algorithms can

be adapted to detect cycles containing a particular node. Depth-first search (DFS) is a well-known

algorithm which takes as input a root node and target node. Starting from the root node, it explores as

far as possible along each branch before backtracking. This process is repeated until the target node is

found or no more paths can be traversed. Cycles can be detected by starting the search with the same

root and target node. Graph algorithms which can only detect the presence of a cycle are useful when

the cycle is not a relevant output. Finding the actual vertices and edges that make up the cycle requires

a more advanced class of algorithms which generally have a higher run-time.

Methods that find strongly connected components implicitly find all cycles in the graph. Directed

graphs are said to be strongly connected if each vertex can be reached from every other vertex, which is

a property that holds for all cycles. The only strongly connected components that are not cycles are

6

2.3. Shortest Path Algorithms 7

nodes in isolation, with a degree of zero. These similarities are reflected in the overlap between the

approaches used for cycles and strongly connected components. For example, Tarjan’s algorithm [58]

partitions the graph into its strongly connected components using an approach based on depth-first

search. Nodes are assigned a unique incremental index and are placed on a stack in the same order

in which they were visited. Additionally, nodes each initialise a lowlink variable equal to their index

indicating their smallest reachable index. Each time a new node is visited its non-visited descendants

are recursed on. After all neighbours of a node have been visited, its lowlink value is compared to its

index. If these values are identical, the node is part of a strongly connected component and becomes a

root. The connected component is then popped off the stack and the call is returned. The algorithm

terminates if all reachable vertices have been explored.

2.3. Shortest Path Algorithms
The shortest path problem in graph theory involves determining the path between a pair of vertices that

minimises the total weight of its edges. For paths that do not exist in the graph the length is typically

set to infinite. The presence of a cycle can be derived from the output by checking whether a shortest

path exists with the same source and endpoint. The shortest path in unweighted graphs is the path

containing the least amount of edges, which is equivalent to a weighted graph with weight equal to

1 for each edge. For scenarios where the objective is to find more than one shortest path, one could

naively run the same algorithm for each node pair. However, there are specialised algorithms that use

significantly more efficient methods. Many solutions have been proposed in literature, however, we

are only interested in algorithms for which privacy-preserving counterparts exist. These are Dĳkstra,

radius stepping, and Floyd-Warshall. Dĳkstra’s algorithm is a well-known algorithm for finding the

shortest path from a given node 𝑣 ∈ 𝑉 to all other nodes in the graph. The algorithm follows an iterative

bottom-up approach [21]. The first iteration of Dĳkstra marks the shortest path to each node as infinity,

and marks the starting node as visited with distance zero. Then, at each subsequent iteration, the

nearest unvisited node is marked visited and distances are updated accordingly. One way to detect

cycles using this algorithm, is to check during each iteration whether any new reachable nodes are the

starting node. The fastest known single-source shortest path algorithm for arbitrary directed graphs is

an implementation of Dĳkstra which runs in Θ(|𝐸 | + |𝑉 | log |𝑉 |) and is based on Fibonacci heaps [32].

The downside of Dĳkstra is that it is sequential, which may yield long execution times. The radius

stepping algorithm [12] is a parallel alternative for the single-source shortest path problem. Where

Dĳkstra’s algorithm considers one node at a time, the radius stepping algorithm visits all nodes within

a certain radius simultaneously. At each iteration the radius is incremented based on predetermined

rules. The process is repeated until all nodes are visited.

All-Pairs Shortest Paths
The Floyd-Warshall algorithm [30] is one of the most popular algorithms for solving the all pairs

variant of the shortest path problem. The algorithm is implemented using three nested for loops and a

two-dimensional array representing vertex pairs, which we refer to as the routing table. Values in this

array represent the known shortest paths between vertex pairs and are only initialised if there is an edge

connecting the vertices. The outer loop iterates over all vertices, and considers each vertex as pivot point.

The middle and inner loops iterate over all pairs of vertices, and update values in the array if the path

through the pivot point is shorter than the current known shortest path between the two vertices. With

slight modifications, such as keeping track of visited nodes, the algorithm can be used to detect cycles.

2.4. Decentralised Networks
Decentralised networks have no single point of control or authority. Nodes are modelled to be

autonomous entities with unique identifiers, which compute independently and share no common

storage nor computational power. Nodes exchange information through a message-passing framework.

To compare performance we make use of complexity measures. These state how various types of

resource consumption scale with the size of the input. Bachmann-Landau notation [38] is used to

express the asymptotic bounds. Distributed algorithms consume resources in several ways, namely

(i) bandwidth or total message count, (ii) the number of bits exchanged, (iii) execution time, and (iv)

memory usage. We primarily focus on the message count and time complexity. The time complexity is

tied to the bit-size of underlying cryptographic primitives and is explained in section 2.7. We revisit

2.4. Decentralised Networks 8

complexity in section 5.2.

To make the exchange we use in our protocol possible a node 𝑣 needs the ability to respond to

a message they receive. To enable this, each directional edge has a corresponding bidirectional

communication channel. This is possible because edges in 𝐺 represent context-based relations such as

social infrastructure or financial transactions and have no relation to the communication architecture.

Communication methods in the distributed setting are often aimed at reaching the whole network. The

two primary examples we discuss are broadcasts and echoes. Broadcasts allow a node to announce

information to the rest of the network. Decentralised broadcasting produces a wave of messages

propagating through the network until all reachable nodes received the message at least once [31]. As

the graph may be cyclic, there is a chance messages are indefinitely propagated. For scenarios with

only a single broadcast this can be prevented by not letting nodes transmit if they already received the

message. To allow multiple broadcasts in parallel while still guaranteeing termination of the protocol,

messages can be given a unique session key such that nodes can discard messages containing a session

key they have already seen before. Alternatively, the initiating node may opt to only broadcast to

nodes within a certain distance. To achieve this, it picks a value ℓ which is included in the message as

time-to-live (TTL) parameter. The TTL is decremented each time a message is forwarded until a node

decrements it to zero, at which it halts the propagation. The time-to-live restricts the overhead and may

be needed to achieve reasonable performance in large networks. a cycle

Mutual decision making is an essential part of distributed computing and is facilitated by traversal

algorithms. Similar to broadcasts, a message is sent to each node in the network. Additionally, each

node submits a response to the initiator. The initiator sends a message, or token, to its neighbours. The

token proceeds to traverse the whole graph and incites each node to reply to the initiator. The echo

algorithm [31] is such an algorithm and forms a stepping stone to a more complex class of distributed

algorithms and shares similarities with our approach. After an initiator sends a message to all its

neighbours, each other node that receives a message for the first time, marks the sender as its parent.

The receiving node then forwards the message to all its other neighbours. After each of its neighbours

returned a response, the node sends a message to its parent containing an aggregate of the messages it

received from its other neighbours. Finally, the algorithm terminates when the initiator has received

messages from all its neighbours.

Decentralised Cycle Detection
The most straightforward way to detect cycles in this setting, without concern for privacy, is to perform

a token-based depth-first search. This is nearly identical to broadcasting messages to the complete

network. The only required change is that initiators store the session key. The message is propagated

in the same fashion as a standard broadcast. Given that there may be concurrent executions of the

protocol, the initiating node that receives a message checks whether the stored session key it initiated

with matches the session key of the message and concludes it is in a cycle if the comparison is true. The

bounded variant of this protocol initiates with ℓ as the TTL in messages and can detect cycles of at most

length ℓ .

Decentralised Shortest Path Algorithms
The algorithm proposed by Toueg [59] is a distributed generalisation of Floyd-Warshall. The distributed

setting poses two main challenges. First, the order in which pivots are selected must be consistent

across all participants. Secondly, pivots have to broadcast their routing table as any subsequent pivots

require this information to compute their distances over accumulated paths. The resulting worst-case

time complexity, given 𝑛 nodes and 𝑒 edges, is 𝑂(𝑛2) and the worst-case message complexity is 𝑂(𝑛𝑒).
Kanchi et al. proposed an alternative requiring less messages using spanning trees [37]. Their algorithm

assumes nodes to have unique identifiers which are unknown to other nodes in the graph. The first

step finds a spanning tree of the graph. Secondly, nodes determine the identifiers of their neighbours.

The main functionality is performed in the third step. Each node keeps track of a local distance matrix,

which at first only contains distances to direct neighbours. Then, leaf nodes send their distance matrix

along the tree edges to their parent node. The computation is continued by non-leaf nodes that received

information from all but one neighbour. This process repeats until one or two nodes contain the full

distance matrix. In the last step the matrix is propagated throughout the network. The time complexity

is 𝑂(𝑛) and the message complexity is 𝑂(𝑒 + 𝑛 log 𝑛), which are both proven to be optimal.

2.5. Security Model 9

2.5. Security Model
The security model of a system is a specification of potential threats, assumptions, requirements, and

the mechanisms put in place to maintain the confidentiality, integrity, and availability of private data.

Entities that pose a threat may have an interest in uncovering private information or disrupting the

functioning of a system. Such threats are often represented using the adversarial model. The adversary

is an entity that attempts to compromise the security and integrity of a protocol or system. The adversary

may take a passive role, and merely collect information without disrupting the protocol. This type

of adversary is also called semi-honest or honest-but-curious. Malicious or active adversaries may

tamper with secret data or interfere with the functioning of a system. Adversaries are classified based

on their available computational power. Unbounded adversaries (UB) have an unlimited amount of

computational power but do not exist outside the theoretical setting. Typically, we consider probabilistic

polynomial-time (PPT) adversaries, for which the probability of the adversary compromising the system

in polynomial time must be negligible for the system to be considered secure. There are many more

facets to modelling security, see [34] for a comprehensive introduction.

2.6. Multi-Party Computation
Multi-party computation (MPC) is a privacy-enhancing technology in which entities with separate

private inputs jointly compute a function while keeping those inputs private. Perhaps the most

well-known problem in MPC is the Millionaire’s problem [63] introduced by Yao in 1982. This problem

considers two millionaires, Alice and Bob, who want to learn which of the two is richer without revealing

their actual wealth. This involves a construction which takes as input two numbers and outputs a

boolean based on which of the numbers is higher. This was later extended by Goldreich et. al to

a setting with an arbitrary amount of parties [33]. One of the building blocks of MPC is Shamir’s

secret sharing [54], which we call a (𝑡 , 𝑛)-threshold scheme. The scheme considers as input a secret,

which is split up into 𝑛 shares and distributed evenly among 𝑛 parties in a way nobody can derive any

information about the secret. To reconstruct the secret, at least 𝑡 players are needed. Some constructions

consider a dealer and players, the dealer being responsible for generating shares for each player. Within

the scope of this thesis, other MPC building blocks are secure variants of arithmetic operations and

comparisons, such as secure multiplication and secure equality testing. We refer to [61] for an in-depth

introduction to these concepts.

2.7. Number Theory
Modular arithmetic and group theory are fundamental to cryptography [55]. Hence, we provide a brief

introduction to relevant topics within these domains. The defining feature of modular arithmetic is

a fixed integer 𝑁 ≥ 1 called the modulus. Given integers 𝑎, 𝑏, the equation 𝑎 = 𝑏 (mod 𝑁) holds if 𝑁
divides 𝑏 − 𝑎. Furthermore, we say the integers 𝑎 and 𝑏 are congruent modulo 𝑁 if the equation holds.

Or, in simpler words, computations that produce a value surpassing the modulus wraps around and

continues from zero. Within our cryptographic context, the set Z/𝑛Z = (0, . . . , 𝑁 − 1) is called the set of

remainders modulo 𝑁 . Groups are sets which have an associated operation (e.g. addition) and satisfy

the following four conditions: closure, associativity, presence of an identity element, and the existence of

inverse elements. Groups may be finite or infinite, and are called abelian groups if they are commutative.

Certain finite abelian groups are cyclic and contain an element 𝑔 called a generator. This element has

the special property that each other element of the group can be obtained by repeatedly applying the

group operation to 𝑔. Given a multiplicative cyclic group G with generator 𝑔, each element ℎ of G can

be expressed by ℎ = 𝑔𝑥 mod 𝑝. The integer 𝑥 is called the discrete logarithm of ℎ to the base 𝑔. Integers

in Z/𝑛Z that are coprime to 𝑁 form a group called the multiplicative group of integers modulo 𝑁 . For

a prime 𝑝, the group Z∗𝑝 is cyclic. Moreover, it has 𝑝 − 1 elements, which is referred to as the order of the

group. All arithmetic in this thesis is modular, the modulo is omitted for clarity. Now, let us finally

address the cryptographic relevance of the definitions that have been introduced so far. First, note

that for finding the discrete log no efficient algorithm exists. This makes cyclic groups of large order

suitable for cryptography because finding the discrete log is computationally infeasible for a selection of

these groups. The group Z∗𝑝 is not sufficient, because a function referred to as the Legendre symbol can

be used to determine whether 𝑔𝑎 is odd or even for arbitrary 𝑎. The Legendre symbol has different

outputs based on whether an integer is a quadratic residue modulo a large prime. See [44] for a formal

2.8. Cryptographic Primitives 10

definition. To avoid this vulnerability, we use a subset of Z∗𝑝 to construct a multiplicative subgroup G.

Modular Arithmetic Complexity
The hardness of solving problems such as discrete log and integer factorisation relies on the bit-length

of the underlying prime numbers. The 2019 cryptographic guideline published by the National Institute

of Standards and Technology [10], recommends picking a key size in the range of 128 to 3072 bits,

and considers key lengths of under 112 bits to be insecure. Performing computations on numbers

of this size makes simple arithmetic costly in terms of bit operations. For Z𝑛 , the bit complexity of

integer operations scales with 𝑛. Exponentiation is the most expensive operation [44], see table 2.1 for a

complete overview.

Table 2.1: Bit complexity of modular operations under modulo 𝑛.

Modular Operation Bit Complexity Notation

Addition Logarithmic 𝑂((log 𝑛))
Subtraction Logarithmic 𝑂((log 𝑛))
Multiplication Polylogarithmic 𝑂((log 𝑛)2)
Inversion Polylogarithmic 𝑂((log 𝑛)2)
Exponentiation Polylogarithmic 𝑂((log 𝑛)3)

2.8. Cryptographic Primitives
The Diffie-Hellman key exchange [20] is an asymmetric algorithm for communicating an encryption

key between two parties over an insecure channel without putting sensitive information at risk. The

exchange is shown in Figure 2.1. After the exchange, two parties share a symmetric key which is only

known to them. The likelihood of an adversary compromising the keys is dependent on the security

level of its underlying primitive, the discrete logarithm problem (DLP). The problem is intractable,

or rather, there exists no classical algorithm which can efficiently compute discrete logarithms. To

guarantee no real-life adversary can compute the discrete log, the key size (in bits) must be sufficiently

large. The decisional Diffie-Hellman (DDH) assumption is a computational hardness assumption related

to the discrete log problem [13], and is said to hold for certain cyclic groups [44].

Definition 2.8.1 (Decisional Diffie-Hellman Assumption). Consider the multiplicative cyclic group G
of order 𝑞, with generator 𝑔. The decisional Diffie-Hellman assumption states that, given uniformly

and independently picked 𝑥, 𝑦, 𝑧 ∈ Z∗𝑞 , the following two probability distributions are computationally

indistinguishable, (i) the DDH tuple (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑥𝑦), and (ii) a random tuple (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧).
Note that it is not proven that the assumption holds for the multiplicative group Z∗𝑝 with prime 𝑝 of

finite field Z/𝑝Z. Recall that the Legendre symbol can be used to determine whether 𝑔𝑎 is odd or even

for arbitrary 𝑎. Fortunately, there are various subgroups for which the DDH assumption is believed to

hold. We opted to work with Schnorr groups [44] because of their simplicity.

Definition 2.8.2 (Group Construction). To generate such a group G, we pick 𝑝, 𝑞, 𝑟 such that 𝑝, 𝑞 are

large primes and 𝑝 = 𝑞𝑟 + 1. Next, we select any ℎ ∈ {1, . . . , 𝑝} such that ℎ𝑟 ≠ 1(mod 𝑝). The value

𝑔 = ℎ𝑟(mod 𝑝) is a generator of the subgroup G (of order 𝑞) and is publicly known.

Prime 𝑝 should be large enough (say 3072 bits [14]) to resist attacks such as index calculus [53], and

prime 𝑞 should be sufficiently large (say 384 bits [42]) to resist the birthday attack [44] on discrete log

problems.

2.8. Cryptographic Primitives 11

Diffie-Hellman Key Exchange

Alice Bob
𝑝, 𝑔 𝑝, 𝑔

𝑎 ←$ Z∗𝑝 𝑏 ←$ Z∗𝑝

𝑥 = 𝑔𝑎 𝑦 = 𝑔𝑏

x

y

𝑘 = 𝑦𝑎 = 𝑔𝑎𝑏 𝑘 = 𝑥𝑏 = 𝑔𝑎𝑏

Figure 2.1: Diffie-Hellman key exchange for two parties.

Random Number Arithmetic
Our protocol relies on sampling random numbers for its security. The benefit of working in finite

structures is that the uniform distribution is the maximum entropy distribution. For a group G of order

𝑞 this means that each element has the same probability 𝑞−1
of being sampled from the distribution. The

order 𝑞 should be large enough to make the chance of collision negligible. Note that in Schnorr groups

each element is a generator, making it harder for an attacker to find weak points. Now, consider a pair

of random independent variables 𝑥, 𝑦 ∈𝑅 G and arbitrary 𝑧 ∈ G. The amount of (𝑥, 𝑦) pairs for which

𝑧 = 𝑥𝑦 holds is invariant of 𝑧. As 𝑧 and thus 𝑥𝑦 have the same uniform distribution, multiplication with

a newly sampled independent variable produces another uniformly distributed variable. We abuse this

property by repeatedly applying the product operation. This achieves our desired level of security.

3
Related Work

In this chapter we survey related work that meets two or more of the following criteria: (i) subgraph

detection is focused on cycles, (ii) the network is distributed and preferably decentralised, and (iii) the

setting considers (real) transactional graph data. As financial datasets are scarce, we also briefly touch

upon contributions with experimental outcomes based on real data. To the best of our knowledge, the

message passing protocol proposed by Porsius [49] is the only contribution that matches all criteria. We

discuss the protocol and its vulnerabilities in section 3.1. The rest of this chapter focuses on significant

contributions matching two of the three criteria. We provide a full overview of the works we discuss

in Table 3.1. In section 3.2 we discuss works on cycle detection and other types of pattern matching.

Contributions based on multi-party computation are covered in section 3.3. An adjacent problem to cycle

detection is finding shortest paths, we discuss this relation in section 3.4 alongside relevant literature.

section 3.5 highlights some state-of-the art contributions that can identify suspicious financial activity in

a real-world setting. Lastly, we discuss a contribution in section 3.6 which proposes topology-hiding

variants of common algorithms for general graphs.

Table 3.1: Comparison of contributions covered in this chapter. Adversarial capabilities may be probabilistic in polynomial time

(PPT), unbounded (UB), or may be assumed secure for arithmetic using the arithmetic black box (ABB) model from [19].

Work Pattern Ad. Se. Dy. Re. De. Co. Co. Bound Comp. Bound Technique

[49] ℓ -cycles PPT ◦ ✗ ✗ ✓ async 𝑂(𝑑ℓ) 𝑂(𝑑ℓ) token passing

[56] smurf-motifs - - ✗ ✓ ✗ - - - database filter-join

[35] ℓ -cycles - - ✗ ✓ ✗ - - 𝑂(𝑑ℓ) depth-first search

[50] all cycles - - ✓ ✓ ✗ - - - hot-point indexing

[61] ℓ -cycles ABB ✓ ✗ ✗ ✓ sync 𝑂(log log 𝑛) 𝑂(𝑛ℓ (ℓ + log 𝑛)) vertex removal

[62] even cycles PPT ✓ ✗ ✗ ✓ sync 𝑂(𝑛6) 𝑂(𝑛6) hungarian algorithm

[4] maximum flow UB ✓ ✗ ✗ ✓ async 𝑂(𝑛5) 𝑂(𝑛3) push-relabel

[6][5] shortest-path ABB ✓ ✗ ✗ ✓ sync 𝑂(𝑛2) 𝑂(𝑛2) dĳkstra

[61] shortest-path ABB ✓ ✗ ✗ ✓ sync - 𝑂(𝑛 log
2𝑛) dĳkstra

[7] shortest-path ABB ◦ ✗ ✗ ✓ sync - 𝑂(log 𝑛 + log 𝑚) radius-stepping

[45] communities - - ✓ ✓ ✗ - - - feature extraction

[24] communities - - ✗ ✗ ✗ - - - spectral analysis

[23] egonets - - ✗ ✓ ✗ - - - feature extraction

[2] any PPT ✓ ✗ ✗ ✓ sync 𝑂(𝜅𝑛5) 𝑂(𝜅𝑛3) random walks

adversary (ad.), security (se.), dynamic (dy.), real data (re.), decentralised (de.), communication (co.), computational (comp.)

12

3.1. Private Cycle Detection in Financial Transactions 13

3.1. Private Cycle Detection in Financial Transactions
Existing research on privacy-preserving cycle detection in the decentralised setting is limited. The work

by Porsius [49] is the closest to our solution, and to the best of our knowledge no other privacy-preserving

solutions have been proposed for the decentralised setting. Their proposed protocol is based on the

graph model and is tailored towards financial data. Accounts are represented by nodes, transactions by

edges, and a set of banks by a partitioning of the graph. Banks are semi-honest, they try and learn as

much information as possible without deviating from the protocol. The protocol is deemed secure iff

there is no bank which can learn about the existence of any nodes and edges it does not already know,

after the protocol has been executed an arbitrary amount of times.

Vulnerabilities
The algorithm proposed by Porsius [49] makes use of a one-time pad each time a message is forwarded

to hide the existence of transactions to entities not involved in the transaction. Their protocol relies on a

message following the same path twice, such that the one-time pad is applied twice and cancels out.

Re-using the one-time pad in such a way opens up the possibility for an attack.

Let Alice, Bob and Eve be three nodes within the network which form the cycle 𝜎 = (𝐴, 𝐸, 𝐵, 𝐴).
Eve is a honest-but-curious adversary. After the protocol has finished executing (assume ℓ = 3 for

simplicity), Eve has sent or received the messages ((6, 𝑅), (5, 𝑅𝑆𝐸), (3, 𝑅𝑆𝐸𝑆𝐵𝑆𝐴), (2, 𝑅𝑆𝐵𝑆𝐴)). Eve

can deduce that the messages (6, 𝑅) and (3, 𝑅𝑆𝐸𝑆𝐵𝑆𝐴) are part of the same instance by computing

𝑅𝑆𝐸𝑆𝐵𝑆𝐴 ⊕ 𝑅𝑆𝐵𝑆𝐴 ⊕ 𝑅𝑆𝐸 = 𝑅. As the difference in ℓ for the messages is exactly 3, Eve learns that there

exists an edge between Alice and Bob, which may not be desirable.

Similar attacks can be devised for more complex topologies and larger values of ℓ . In particular, when

messages are propagated to Eve through a cycle which the initiating node is not apart of, they may gain

knowledge about edges that are not in a cycle. This becomes especially problematic in settings where

nodes collude or are owned by the same adversary. Additionally, the more instances are ran which

Eve is a part of, the more they can potentially learn about the network by observing throughput and

estimating their centrality.

3.2. Pattern Matching
Compared to graph analytics for fraud detection, traditional rule-based methods fail to encompass

features of the full transaction graph. As such, finding structural patterns in large transactional graphs

has gained traction as a complement to existing monitoring systems. The significance of this trend

is demonstrated by the massive study performed by Starnini et al. [56] on a real dataset containing

180 million transactions and 31 million bank accounts. Using a filter-join approach they were able

to identify four new motifs rule-based methods failed to identify. The problem of finding specific

structures in graphs is also referred to as subgraph matching. Solutions to this problem generally

enumerate all subgraphs that match the specified pattern. Cycle detection can be interpreted as a type

of subgraph matching. For transactional graphs, there are only few of publications that have results

based on non-synthetic data.

The proposed method from [35] uses a DFS-based approach to find cycles in a static dataset. The

crux of DFS-based approaches is that the search space explodes when a vertex with high outdegree is

encountered. To keep the runtime reasonable the authors introduce a parameter 𝛼, which limits the

maximum difference in weight (i.e. transaction amount) between the edges that make up the cycle. The

algorithm takes a few hours to run and is able to detect 2 to 4 new fraudulent transactional patterns a

month. The approach described in [50] can detect cycles in dynamic graphs, and is deployed on the

e-commerce platform Alibaba. Their system identifies vertices with high outdegree, referred to as

hot-points, and keeps an index of length constraints between each pair of hot-points such that these do

not need to be traversed during the search. The index is kept relatively small such that it can be updated

quickly in a dynamic setting. While these approaches are not decentralised nor privacy-preserving,

their relevance stems from their results. Both contributions show that nearly all cycles are of length 6 or

lower. This has significant implications for the complexity of our proposed solution.

3.3. Graph Algorithms with MPC 14

3.3. Graph Algorithms with MPC
In this section we discuss MPC-based contributions. We first discuss a cycle detection algorithm that

uses secret sharing to hide the adjacency matrix representing the graph. The second contribution is

tailored to goods bartering, and abstracts a problem within this domain to cycle detection in bipartite

graphs. The last work addresses maximum flow problems, and is unique in the sense that parties may

control one or multiple nodes. This is of interest as banks within the financial domain control multiple

nodes (accounts) as well.

Cycle Detection through Vertex Removal
The algorithm proposed by Vorstermans [61] uses the incoming edges 𝑁 − (𝑣) to find cycles. On each

iteration, all vertices that have no incoming edges are removed. This process is continued until no

vertex is removed in the current iteration. The remaining structure contains only cycles, and is empty

if no cycles exist. The MPC implementation makes use of a secret-shared adjacency matrix and uses

an auxiliary list of decision bits to indicate which bits have been removed. The output is a boolean

denoting whether the graph contains a cycle. For enumerating cycles of a fixed size 𝛼 they propose a

round-based algorithm which iterates over all possible paths of length 𝛼. To determine the product

of edge existences a log-depth multiplication tree is employed. Paths that form a cycle are stored.

While this keeps the round complexity reasonable, the computational complexity is exponential for

𝛼. This approach requires a set of nodes to collectively have knowledge about the relevant part of the

adjacency matrix for a particular node. On top of that, nodes are expected to be fully connected in their

communication graph.

Cycle Detection for Bipartite Graphs
Wüller et al. proposed a method for finding trade cycles between parties bartering for goods [62]. They

construct a weighted bipartite graph in such a way that finding the maximum weight matching encodes

an optimal bartering opportunity. To find such matchings in a conventional setting they adapt a function

called the Hungarian algorithm. The proposed privacy-preserving protocol consists of three steps. First,

parties compute an encrypted bi-adjacency matrix such that no party learns anything about the inputs

of other parties. The second step utilises a modified variant of a function called the Hungarian protocol

to compute encrypted maximum (perfect) matchings. In the third and last step the optimal bartering

opportunities for each party are extracted in a cooperative manner. This is achieved in a way parties

are able to learn only their own trade partners. The (𝜏, 𝜄)-threshold Paillier cryptosystem is used to

achieve security. This variant of the Paillier cryptosystem splits and distributes the private key among 𝜄
parties. Ciphertexts can only be decrypted if 𝜏 parties cooperate in the decryption. The protocol relies

on the additive homomorphic property of Paillier. This property states that given a public key and

two ciphertexts, one can compute the sum of the plaintexts by taking the product of their ciphertexts.

Matchings can be used to find even-length cycles in bipartite graphs by searching for self-intersecting

paths that alternate between matched and unmatched edges. The main limitation with respect to our

objective is that an upper bound on the maximum trade cycle length cannot be specified.

Network Flow Problems
The maximum flow problem takes as input a directed weighted graph, a source node, and a sink node.

Weights represent capacity, and each edge can receive a non-negative flow { that is at most equal to its

capacity. The objective is to maximise the flow of each edge, such that the flow between the source and

sink is maximised. Besides the capacity, the incoming and outgoing flow of each node must be equal.

The maximum flow is equal to both the total flow of outgoing edges of the source and the total flow of

incoming edges of the sink. The approach by Aly in [4] describes a privacy-preserving push-relabel

algorithm, which considers a group of players that each only know a part of the network. Their goal

is to compute the maximum flow while keeping their inputs private. The intermediate steps of the

algorithm push flow through edges that still have residual capacity, even if that violates the in-out flow

balance of a node. Nodes for which {𝑖𝑛 > {𝑜𝑢𝑡 are said to be active. Generally speaking, the algorithm

consists of the following steps:

1. Identify active nodes that are not source nor sink.

2. Select some active node 𝑣.

3.4. Secure Shortest Path Algorithms 15

3. Push and relabel flow in node 𝑣.

4. If any active nodes remain, repeat from step 2.

The privacy-preserving adaptation has some changes that do not affect the logic of the protocol. The

first difference is that the operations in the push-relabel step are made identical for active and non-active

nodes. Secondly, iteration is performed over all vertices or all edges, for which the order has been

agreed upon in advance. The time complexity of the algorithm is 𝑂(𝑛4) for general graphs. Besides

maximum flow, Aly describes various other graph-related algorithms with equal or worse complexity

in their dissertation [4].

3.4. Secure Shortest Path Algorithms
There is a line of research on solving the shortest path problem in MPC settings. Securely finding

shortest paths may yield information about cycles in the graph depending on the implementation. The

naive approach to use MPC for this purpose is to encrypt or secret share the input before passing it to

conventional algorithms. However, this approach still leaks information. This flaw arises from the fact

that conventional algorithms branch conditionally and thus leak structural information in their outputs.

Aly et al. proposed a handful of secure implementations of popular shortest path algorithms [6]. The

lowest worst-case complexity was achieved on their optimised secure implementation of Dĳkstra’s

algorithm. In [6] they made two significant changes to the basic Dĳkstra algorithm: (i) iteration is

performed over all vertices rather than the neighbours of the current vertex when considering the next

vertex, and (ii) to update a vector in a shared list all elements have to be iterated over even though

only one value is updated. This changes the computational complexity from quadratic to cubic. They

optimised the initial version of their secure Dĳkstra [5] to a run-time of 𝑂(𝑛2) by applying an oblivious

permutation to the input matrix. This removes the link between rows and vertices during the execution

of the protocol and lets the algorithm directly explore the most suitable vertex rather than having to

iterate over the entire set of vertices.

Another approach was described in [61] and uses an oblivious random access memory (ORAM), this

is a paradigm frequently used to obfuscate access patterns in the client-server setting such that no

adversary can derive information from observing access behaviours. To make it work for the shortest

path algorithm, ORAM is first adapted for the MPC setting and then used to construct oblivious data

structures. To understand why this may be of use for implementing Dĳkstra’s algorithm, consider that

the algorithm relies on selecting the lowest weight path on each iteration, updating it, and picking the

new lowest weight path on the next iteration. Fast implementations of Dĳkstra usually rely on an efficient

data structure called a priority queue for keeping the list of paths dynamically sorted. Min-priority

queues provide this exact functionality as they are dynamically sorted, such that the lowest element is

at the front of the queue. The shortest path algorithm suggested in [61] is Dĳkstra-inspired and makes

use of an ORAM-based oblivious queue. The resulting complexity depends on both 𝑛 and the number

of edges 𝑚. The ORAM implementation outperforms state-of-the-art non-ORAM alternatives in sparse

graphs with a complexity of 𝑂(𝑛 (log 𝑛)2), but remains slower for general and dense graphs.

Secure Radius Stepping
The radius stepping algorithm has also been studied in the MPC setting. The secure adaptation in [7]

uses the same basic structure as the standard algorithm, but encodes all variables as secret-shared vectors

to acquire its privacy guarantees. The time complexity depends on the radius 𝑟. For 𝑟 = 0 the complexity

is 𝑂(𝑛 + log 𝑚) and for 𝑟 = 𝛿, where 𝛿 is the current mapping, the complexity is 𝑂(log 𝑛 + log 𝑚).
The algorithm stands out as it is resistant against semi-honest and malicious adversaries. There is a

small amount of information leakage, though. The number of iterations the algorithm performs conveys

information about the underlying graph structure and used radii.

3.5. Anomaly Detection
Both researchers and financial organisations have created tools for analysing transactional financial data

in the form of a graph such that suspicious activities can be singled out. These kind of activities are also

called anomalous, as they present itself as patterns that differ from normal transactional data. Anomaly

detection is primarily researched in the financial setting. The discussed contributions are thorough or

3.6. Topology Hiding Communication 16

novel in how they use different properties to find anomalies. Two of the works were also given access

to real financial data for their experiments. There has been a lack of research in this domain for the

distributed and privacy-preserving setting. We discuss one method for detecting of anomalies that

makes use of egonets, and two methods based on local community analysis.

Local Community Properties
Molloy et al. proposed a fraud detection method [45] which assumes that account holders perform

trusted transactions within their local neighbourhood, and considers other transactions to be suspicious.

They explore various ways to construct communities using purely graph properties, with the purpose

of reducing false positives in existing systems. The analysis considers on transaction at a time and

constructs a graph containing the transactions itself and the ones preceding it. The identified properties

are the shortest distance between source and target, their page rank, and whether they share the same

strongly connected component. Additionally, accounts are clustered through various means and an

estimation is made on the likelihood of a transaction occurring between the source and target account.

The evaluation is performed on a real-life dataset and shows a reduction upwards of 30% of false

positives compared to existing methods.

Feature Extraction
The pipeline proposed in [24] combines various anomaly detection approaches which are based on

spectral localisation, community properties and node connectivity. Spectral localisation is a mathematical

abstraction of centrality which appertains to the idea that nodes are central in a network when they are

connected to other central nodes. This concept is mathematically encoded in the eigenvectors of the

adjacency matrix representing the graph. Returning to the context of fraud detection, high eigenvalues

that are concentrated on a small subset of nodes are flagged as anomalous. Additionally, the pipeline

integrates a network comparison methodology called NetEMD, which makes use of small subgraph

degree distributions to assess similarity between (parts of) networks. The authors discuss two ways of

combining outputs of all components. The first aggregated output is an unweighted sum of the features,

and the second is based on a learning model and feature extraction.

Reduced Egonets
Dumitrescu et al. [23] proposed a set of features based on reduced egonets. For some node 𝑣, its egonet

𝑒 𝑔𝑜(𝑣) of radius 1 is defined as node 𝑣 and all its direct neighbours. The reduced egonet 𝑒 𝑔𝑜𝑟𝑒𝑑(𝑣) is
the egonet 𝐸(𝑣) from which all nodes that are only connected with 𝑣 have been removed. The authors

show that there are fraud patterns in which the features of the respective egonets and its reduced

variant diverge from normal nodes. These are the in- and outdegrees, total and average transaction

amounts sent and received, and the ratio between the number of nodes and edges. The implementation

complements existing anomaly detection techniques, and the experimental results show competitive

results on both synthetic and real data. The approach only makes use of the direct neighbourhood of a

node, though, and the authors note that from the perspective of a single bank, extending the radius of

egonets produces a more distorted view since the connections between clients of other banks are not

available.

3.6. Topology Hiding Communication
Distributed protocols with partial communication graphs are said to be topology hiding if no information

is revealed about the graph topology beyond what the output may reveal. The protocol in [2] shares

many similarities with our protocol, but assumes a public-key infrastructure to be in place. Their main

contributions are a proof that topology hiding computation is feasible for every network topology under

the DDH assumption and a two-phase protocol based on random walks. The first phase propagates a

message forward using a random walk. Homomorphic encryption is used to aggregate a secret bit for

each node a message passes through. Upon forwarding the message, nodes add an encryption layer.

The second phase traces back the walk, such that each node removes the layer of encryption added in

the first phase. To obtain the complexities for general graphs, consider the input 𝑛, 𝜅, where the input

size is polynomial in the security parameter 𝜅. The round and communication complexity are 𝑂(𝜅𝑛3)
and 𝑂(𝜅𝑛5) respectively. This makes the random walk approach infeasible for graphs with large 𝑛.

4
Decentralised Cycle Detection

We propose a privacy-preserving protocol for detecting cycles in decentralised networks. Each node in

the network owns a copy of the protocol, which consists of four algorithms that the node can execute, as

well as three types of messages. The first algorithm is initiate, which may be executed at any time by

any node. The propagate, echo, and trace routines are executed when a node receives a corresponding

forward, echo or trace message. The basic idea is that messages are first propagated to each node

within range ℓ . Each node receiving a forward message responds with an echo, and propagates forward

messages to its other neighbours. After the initiating node becomes aware of a cycle, it may call the

trace to determine the path that makes up the cycle. Once the nodes that make up the cycle have been

found, the initiating node broadcasts the cycle and it becomes public information. In the remainder

of the chapter we first by introduce our building blocks, container structures and parameters. Next,

we present the algorithms as pseudocode and walk through them step-by-step. Lastly, we provide a

visualisation of an instance of the protocol.

4.1. Protocol Architecture
Consider a directed graph 𝐺 = (𝑉, 𝐸), and a Schnorr group G as subgroup of Z∗𝑝 . The construction of

G is discussed in section 2.8. The protocol is based on message exchange between nodes. Messages

consist of a set of values depending on the type, and have one source and one target. Each instance

of the protocol has exactly one initiating node 𝑣𝑖 ∈ 𝑉 . The goal for a particular instance is to find all

cycles of at most length ℓ containing 𝑣𝑖 . As we do not allow self-loops, the parameter ℓ should be at

least 2. To initiate the protocol, 𝑣𝑖 sends out a forward message containing both a partial key and the

parameter ℓ − 1 to each of its neighbours. The receiving node propagates the forward message with ℓ − 1

to each of its outgoing neighbours. Nodes do not propagate a message when they receive a message

with ℓ = 0, or when they have no available neighbours to forward the message to. For each forward

message a node receives, it computes the full shared key and sends back an echo with their partial

component of the key. Echoes are relayed back following the same path (but in reverse) back to the

initiator. When the initiator receives an echo back, it computes the full shared key using the partial key

from the echo and the secret value it initiated with. When there is a cycle, the node will have received a

propagated message from itself, to which it responded with an echo. In other words, it (anonymously)

performed key exchange with itself. Cycles can be detected by the initiator by checking whether a key

has already been established upon receiving an echo. For an instance where the graph contains only a

path 𝜋 = 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑛 , the protocol terminates after the key exchange because no cycles were found. When

𝑣𝑛 is replaced by 𝑣𝑖 the key exchange is performed in the same way. Nodes receiving a forward message

do not know the identity of the initiating node. For echoes received by the initiator, the unknown node

in the key agreement is revealed to be the node itself only iff a cycle exists, and remains anonymous

otherwise. When the initiator learns a cycle exists, it will start a trace by sending a message with a path

containing only the initiator to the node it received the last partial key from. This node receives the

message and adds its identifier to the path, after which it sends the message to the next node in the

cycle. This continues until the trace, now containing 𝜎, reaches the initiator again.

17

4.2. Initiating Instances 18

Before delving into the specifics of each algorithm, the following needs to be taken into account. Each

computation is performed under modulo 𝑝, unless stated otherwise. For simplicity we assume G to be

agreed upon before execution and known to all nodes in the network by the tupleG = (𝑝, 𝑞, 𝑟, ℎ, 𝑔). The

nonce and key sizes are controlled by the security parameters 𝜅𝑝 , 𝜅𝑞 and 𝜅𝑟 . These correspond to the bit-

lengths of the primes 𝑝, 𝑞 in G, and the bit-length of an arbitrary nonce 𝑟. The bit-length of private keys

is 𝜅𝑞 , whereas public and shared keys have a bit-length of 𝜅𝑝 . There is a bidirectional communication

channel between 𝑣𝑖 and 𝑣 𝑗 for each (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸. The channels are reliable and communication between

nodes is asynchronous. Nodes have access to the function send, which takes a receiver as input as well

as a tuple containing the message content.

4.2. Initiating Instances
Any node 𝑣𝑖 ∈ 𝑉 may initiate an instance by executing initiate at any given time. The pseudocode for

this routine is given in Algorithm 1. It takes ℓ as parameter and consists of a single loop, which iterates

over the outgoing neighbours of 𝑣𝑖 and sends each a forward message. For each 𝑣 𝑗 ∈ 𝑁+(𝑣𝑖), a private

key 𝑥 𝑗 and nonce 𝑟 𝑗 are uniquely picked. The private key is used to compute the (partial) public key 𝑔𝑥 𝑗 .
The forward message is given by the tuple (𝑟 𝑗 , 𝑔𝑥 𝑗 , ℓ − 1), which 𝑣𝑖 sends to 𝑣 𝑗 . As multiple instances

may be running at the same time, 𝑣𝑖 uses a datastructure called pending to keep track of key-nonce

pairs such that it can recognise responses to its own instance.

Algorithm 1 𝑣𝑖 initiating the protocol

initiate(ℓ)

1: for 𝑣 𝑗 ∈ 𝑁+(𝑣𝑖) do
2: 𝑥 𝑗∈𝑅Z∗𝑞
3: 𝑟 𝑗 ∈𝑅 {0, 1}𝜅𝑟

4: append (𝑥 𝑗 , 𝑟𝑗) to pending
5: send 𝑚 = (𝑟 𝑗 , 𝑔𝑥𝑗 , ℓ − 1) to 𝑣 𝑗 ⊲ forward message

6: end for

4.3. Propagating Forward Messages
Upon receiving a forward message, nodes execute the propagate routine, which we specify in Algorithm 2.

The resulting set of messages contains at least one echo message, and may contain forward messages to

each outgoing neighbour. Given is a node 𝑣 𝑗 which receives a forward message 𝑚 = (𝑟𝑖 , 𝑗 , 𝑔𝑥 , ℓ) from 𝑣𝑖 .
The routine takes the message 𝑚 as its only parameter. As in initiate, a secret value 𝑦 is picked from Z∗q
which 𝑣 𝑗 uses to compute 𝑔𝑥𝑦 , and the public key 𝑔𝑦

. The value 𝑔𝑥𝑦 is the secret key node 𝑣 𝑗 shares with

the initiator. The value 𝑔𝑦
is the partial key which will be echoed back to the initiating node, which can

use this value to compute the same shared key. The datastructure key is used to keep track of shared

secret keys with other nodes. Node 𝑣 𝑗 constructs the echo message 𝑚′ = (𝑟𝑖 , 𝑗 , 𝑔𝑦) and sends it to 𝑣𝑖 . For

a graph containing the nodes 𝑣𝑖 and 𝑣 𝑗 and only a single edge (𝑣𝑖 , 𝑣 𝑗), the key generation is identical to

the Diffie-Hellman key exchange [13].

Node 𝑣 𝑗 continues by checking if ℓ == 0 holds in received message 𝑚, and returns if this is true. If not,

node 𝑣 𝑗 still has to propagate forward messages to its neighbours. The node could naively construct a

message containing 𝑟𝑖 , 𝑗 and 𝑔𝑥 , but this makes it obvious that the messages belong to the same instance.

Instead, node 𝑣 𝑗 picks two random values for each node in 𝑁+(𝑣 𝑗). These are a new unique independent

nonce 𝑟 𝑗 ,𝑛 ∈𝑅 {0, 1}𝜅𝑟 , and an intermediate secret key 𝑘 𝑗 ,𝑛 ∈𝑅 Z∗q. As 𝑣 𝑗 should still be able to pass echo

messages back to the correct node, it utilises a datastructure routes to store a tuple for each 𝑣𝑛 ∈ 𝑁+(𝑣 𝑗).
This tuple contains 𝑣𝑖 and its associated nonce, as well as 𝑣𝑛 , the new nonce, and the intermediate key.

The node 𝑣 𝑗 proceeds by constructing the message (𝑟 𝑗 ,𝑛 , 𝑔𝑥𝑘 𝑗 ,𝑛 , ℓ − 1) and sending it to 𝑣𝑛 . Note that the

mapping between values in the received message and the sent message is only known to 𝑣 𝑗 . We further

explain this in section 5.1, where we show that an adversary cannot estimate the relatedness of these

messages with significant accuracy.

4.4. Echoing Responses 19

Algorithm 2 𝑣 𝑗 receives forwarded message from 𝑣𝑖
propagate(𝑚 = (𝑟𝑖 , 𝑗 , 𝑔𝑥 , ℓ))

1: 𝑦∈𝑅Z∗𝑞
2: append 𝑔𝑥𝑦 to keys
3: send 𝑚′ = (𝑟𝑖 , 𝑗 , 𝑔𝑦) to 𝑣𝑖 ⊲ echo message

4: if ℓ == 0 return
5: for 𝑣𝑛 ∈ 𝑁+(𝑣 𝑗) do
6: 𝑟 𝑗 ,𝑛 ∈𝑅 {0, 1}𝜅𝑟

7: 𝑘 𝑗 ,𝑛 ∈𝑅 Z∗q
8: append (𝑣𝑖 , 𝑟𝑖 , 𝑗 , 𝑣𝑛 , 𝑟𝑗 ,𝑛 , 𝑘 𝑗 ,𝑛) to routes
9: send 𝑚′′ = (𝑟 𝑗 ,𝑛 , 𝑔𝑥𝑘 𝑗 ,𝑛 , ℓ − 1) to 𝑣𝑛 ⊲ forward message

10: end for

4.4. Echoing Responses
The echo pseudocode is specified in Algorithm 3, and is invoked when a node 𝑣𝑖 receives an echo

message. First, 𝑣𝑖 checks pending to see whether it is the initiator of the instance the received message

belongs to. Node 𝑣𝑖 knows it is the initiator if pending contains a pair with a nonce matching 𝑟𝑖 , 𝑗 in

the received message. When 𝑣𝑖 is the initiator, it retrieves the associated pair 𝑥, 𝑟𝑖 , 𝑗 from pending and

computes 𝑔𝑥𝑦 as the shared key. Node 𝑣𝑖 proceeds by searching keys for this key. When the key is not

present, 𝑣𝑖 appends 𝑔𝑥𝑦 to keys. When the key is already present in keys, 𝑣𝑖 knows it performed key

agreement with itself, from which it concludes that a cycle exists. To determine which edges the cycle is

composed of, 𝑣𝑖 constructs a trace message (𝑟𝑖 , 𝑗 , 𝑔𝑦 , [𝑣𝑖]) containing the same nonce and partial key as

in the received message, together with an array representing the vertices currently known to be in the

cycle. The only value in this array is 𝑣𝑖 as this is the first trace message. The message is sent to node 𝑣 𝑗 ,
the same node 𝑣𝑖 received the echo from.

When there is no pair in pending which has a nonce matching 𝑟𝑖 , 𝑗 , the echo has not yet reached

the initiating node. Node 𝑣𝑖 searches routes for records containing 𝑟𝑖 , 𝑗 . This returns the tuple

(𝑣𝑛 , 𝑟𝑛 , 𝑣 𝑗 , 𝑟𝑖 , 𝑗 , 𝑘𝑖 , 𝑗), from which the node learns that 𝑣𝑛 should receive the next echo message with nonce

𝑟𝑛 . We use an additional structure retrace which is accessed upon tracing back cycles in Algorithm 4.

Lastly, 𝑣𝑖 constructs the echo message. During the propagation phase, 𝑣𝑖 added 𝑘𝑖 , 𝑗 to the exponent of

the public key. This operation is commutative; if each node adds the same exponent in the echoing

phase as it did in the propagation phase, irrespective of ordering, the resulting shared key will be

identical upon reaching the initiator. Node 𝑣𝑖 proceeds by sending (𝑟𝑛 , 𝑔𝑦𝑘𝑖 , 𝑗) to 𝑣𝑛 .

Algorithm 3 𝑣𝑖 receives an echoed message from 𝑣 𝑗
echo(𝑚 = (𝑟𝑖 , 𝑗 , 𝑔𝑦 , ℓ))

1: if pending contains (_, 𝑟𝑖 , 𝑗) then
2: fetch (𝑥, 𝑟𝑖 , 𝑗) from pending
3: if keys contains 𝑔𝑥𝑦 then
4: send 𝑚′ = (𝑟𝑖 , 𝑗 , 𝑔𝑦 , [𝑣𝑖]) to 𝑣 𝑗 ⊲ trace message

5: else
6: append 𝑔𝑥𝑦 to keys
7: end if
8: else
9: fetch (𝑣𝑛 , 𝑟𝑛 , 𝑣 𝑗 , 𝑟𝑖 , 𝑗 , 𝑘𝑖 , 𝑗) from routes

10: append (𝑟𝑛 , 𝑣 𝑗 , 𝑟𝑖 , 𝑗 , 𝑘𝑖 , 𝑗 , 𝑔𝑦) to retrace
11: send 𝑚′′ = (𝑟𝑛 , 𝑔𝑦𝑘𝑖 , 𝑗) to 𝑣𝑛 ⊲ echo message

12: end if

4.5. Tracing Cycles
The trace function in Algorithm 4 is fairly straightforward. The trace is started in echo with a message

containing the nonce 𝑟𝑖 , 𝑗 , the public key 𝑔𝑥 , and the currently known path that makes up the cycle.

4.5. Tracing Cycles 20

The initiating node 𝑣𝑖 includes only itself in this path, after which it sends the message to 𝑣 𝑗 . Upon

receiving the trace message, 𝑣 𝑗 knows it is part of a cycle that has not been fully reconstructed yet.

During the earlier phases of the protocol 𝑣 𝑗 stored routing information, from which it can derive which

node is next in the cycle. The trace routine continues by iterating over the tuples in retrace that contain

𝑟𝑖 , 𝑗 as its first element. The nonce occurs in multiple tuples because the forward message 𝑣 𝑗 initially

received from 𝑣𝑖 was propagated to all its neighbours. The resulting echoes are all sent back over the

same edge with a nonce identical to the nonce in the initial forward message. For each matching tuple

(𝑟𝑖 , 𝑗 , 𝑣𝑛 , 𝑟𝑗 ,𝑛 , 𝑘 𝑗 ,𝑛 , 𝑔𝑦
, the value 𝑔𝑦𝑘 𝑗 ,𝑛

is computed. Because 𝑣 𝑗 generated a new intermediate secret key

for each neighbour, there is exactly one neighbour 𝑣𝑛 for which its tuple contains the same public key

𝑔𝑥 as the received message.

Node 𝑣 𝑗 appends its identifier to the path, and sends a message containing the updated path, the nonce

𝑟 𝑗 ,𝑛 and the public key 𝑔𝑦
from the tuple to 𝑣𝑛 . This process is repeated until the initiator eventually

receives a trace message which contains a path for which 𝜋(1) = 𝑣𝑖 . The initiator appends 𝑣𝑖 to the

path and completes the cycle, after which it broadcasts the newly found cycle to the rest of the network.

We do not provide an implementation for the broadcast function. Anonymous broadcasting has been

widely studied in literature and is beyond the scope of our protocol. For an overview of anonymous

communication techniques we refer to the survey performed by [51], which includes protocols that

provide both sender and receiver anonymity.

Algorithm 4 𝑣 𝑗 receives trace message from 𝑣𝑖
trace(𝑚 = (𝑟𝑖 , 𝑗 , 𝑔𝑥 , path[]))

1: if 𝑣 𝑗 == path[0] then
2: broadcast path++[𝑣 𝑗]
3: else
4: for (𝑟𝑖 , 𝑣𝑛 , 𝑟𝑗 ,𝑛 , 𝑘 𝑗 ,𝑛 , 𝑔𝑦) ∈ retrace do
5: if 𝑔𝑥 == 𝑔𝑦𝑘 𝑗 ,𝑛 and 𝑟𝑖 , 𝑗 == 𝑟𝑖 then
6: send 𝑚′′ = (𝑟 𝑗 ,𝑛 , 𝑔𝑦 , path++[𝑣 𝑗]) to 𝑣𝑛 ⊲ trace message

7: end if
8: end for
9: end if

Putting it all Together
We showcase an instance with messages indicated only by type in Figure 4.1. The instance is started by

𝑣𝑖 and uses the parameters 𝑛 = 7 and ℓ = 3. The topology has some dead ends and contains three cycles

each including 𝑣𝑖 , where 3, 4, 6 are their respective lengths. For parallel execution of multiple instances

one can imagine a similar construction with more messages being exchanged at the same time.

4.5. Tracing Cycles 21

vi

Propagate (ℓ = 2) | EchoInitiate (ℓ = 3)

vi

v1

v2

v3

v4v5

v6

v7

Topology

vi

v1

v2

v3

v4v5

v6

v7

vi

v1

v2

v3

v4v5

v6

v7

KEYS = {v2, v5}
Propagate (ℓ = 1) | Echo

v1

v2

v3

v4v5

v6

v7

KEYS = [v2, v5]

vi

Propagate (ℓ = 0) | Echo

v1

v2

v3

v4v5

v6

v7

KEYS = [v1, v2, v4, v5]

vi

Echo

v1

v2

v3

v4v5

v6

v7

KEYS = [v1, v2, v4, v5]

vi

Echo

v1

v2

v3

v4v5

v6

v7

vi

Trace

v1

v2

v3

v4v5

v6

v7

PATH = [vi]

vi

Trace

v1

v3

v4v5

v6

v7 v2

vi

Trace

v1

v2

v3

v4v5

v6

v7

vi

Broadcast

v1

v3

v4v5

v6

v7 v2

vi

Trace

v3

v4v5

v6

v7

v1

v2

KEYS = [vi, v1, v2, v3, v4, v5] PATH = [vi, v2]

PATH = [vi, v2, v1] CYCLE = [vi, v2, v1, vi] CYCLE = [vi, v2, v1, vi]

0 1 2

3 4 5

6 7 8

9 10 11

Figure 4.1: Visual representation of the flow of messages produced by the protocol for a small graph. The opaque nodes in each

step are the nodes which send messages. Dotted lines indicate communication in the opposite direction (echoes) of the

underlying edge. We discuss the protocol step-by-step, in practice however, the communication is asynchronous. Node 𝑣𝑖 is the

initiator in step 1. Propagation happens in step 0 − 3, and stops in 4 when 𝑣3 receives a message with ℓ = 0. All responses are

echoed back to 𝑣𝑖 in steps 2− 6. In step 6, 𝑣𝑖 receives a message containing a key it already knows. The resulting trace which finds

the cycle happens in steps 7 − 10. Lastly, the newly found cycle can be broadcast across a another (anonymous) network.

5
Analysis

We begin this chapter with a security argument and show our protocol is secure under the given

constraints. Next, we discuss the performance of the protocol in terms of time, communication and

storage. For each algorithm, we identify the factors that influence its performance and state the

theoretical asymptotic bounds for each of the metrics. We support this by implementing the protocol,

and benchmarking its performance for varying graph properties.

5.1. Security Analysis
We introduce our notion of security and discuss the capabilities of the adversary 𝒜. Given a set of

constraints, we show that the protocol has provable security iff 𝒜 is forced to solve the underlying

cryptographic primitive to break the security. The capabilities cover communication channels, set-up,

computational ability, and various restrictions on adversarial behaviour. As part of the set-up we assume

group G to be publicly known. We use the general framework for security models in [34] to define the

following constraints for𝒜,

• Communication channels are asynchronous and can be tapped.

• Network traffic is reliable and cannot be modified.

• Computational power is bounded such that DLP is intractable.

• Adversarial nodes are passive and execute the protocol honestly.

• Collusion is possible between any adversarial nodes.

• Honest nodes have hidden computations and memory.

• Broadcasting information can be done anonymously.

• Internal processes and memory of honest nodes are hidden.

Our security definition does not include attacks based on side-channels nor network traffic analysis.Some

of these threats may be mitigated by using anonymous networks and parallel execution. When there

are many instances running simultaneously timing attacks (e.g. by observing ℓ) become infeasible due

to the high volume of messages being sent over the network. Now that the constraints are clear, we

can construct our security definition. The goal of𝒜 consists of two objectives, namely (i) to determine

whether any two messages belong to the same instance and (ii) guess the existence of an arbitrary edge

with non-negligible accuracy. These two objectives pertain to linkability and edge existence respectively.

This leads us to the following definitions.

Definition 5.1.1 (Linkability). Any two messages (𝑚1 , 𝑚2) are linked iff they belong to the same instance.

From the perspective of the adversary, messages are unlinkable if there is no way to gain a significant

advantage over randomly guessing whether the messages belong to the same instance. If𝒜 does have

an advantage for a particular set of messages, we say the messages are linkable. We denote the set

of nodes 𝒜 controls by 𝑉𝐴 ⊆ 𝑉 . Consider the set 𝑀 as the set of all exchanged messages across an

22

5.1. Security Analysis 23

arbitrary amount of instances. The objective is fulfilled if no pair of messages 𝑚1 , 𝑚2 is linkable and

non-implied. Given an adversarial node 𝑣𝐴, links between messages are implied in the following cases,

(i) the set containing the input message to a function and the corresponding outgoing messages, (ii) any

forwarded message with its corresponding echoes. We can simplify our definition if we only consider

messages sent between honest nodes and adversarial nodes, as that is the only type of message which

increases the knowledge of𝒜.

The set of messages available to𝒜 is given as 𝑀𝒜 ⊆ 𝑀 and contains all messages that were sent and

received by nodes in 𝑉𝐴. Some messages have the same nonce. The re-use happens when nodes store

routing information such that echoes can be returned to the correct sender after they forward a message.

This is not a security flaw but rather a property inherent to the design of the protocol. Linkability is a

requirement for these messages, as otherwise a node receiving an echo is not able to determine which

neighbour it should propagate the echo to. In this scenario the messages have a known link. Links can

also be known if 𝒜 controls multiple nodes. For the unknown links we construct the definition as

follows.

Definition 5.1.2 (Unlinkability). Messages in 𝑀 are unlinkable if for any pair of messages (𝑚1 , 𝑚2) ∈
𝑀 × 𝑀 where 𝑚1 ≠ 𝑚2, the existence of an unknown link cannot be guessed by 𝒜 with significant

advantage.

The second objective follows from our definition of unlinkability. Assuming the first objective holds and

none of the messages are linkable,𝒜 cannot derive any information about edges that do not involve at

least one node in 𝑉𝐴.

Definition 5.1.3 (Edge Existence). Consider a game in which an adversary𝒜 is given all messages a

node 𝑣𝐴 received across an arbitrary amount of instances and is asked whether an unknown edge 𝑒
exists within the topology. 𝒜 wins if it guesses correctly, and is able to imply edge existence if it wins

the game with non-negligible advantage.

Combining the edge existence property with link guessing, we obtain our security definition. Note that

the definition requires messages from at least two instances, as otherwise the link between messages is

trivial.

Definition 5.1.4 (Security). The protocol is secure iff an adversary𝒜, given the set 𝑀 of all messages𝒜
received across an arbitrary number of instances, the following holds:

1. Existence of an unknown link between 𝑚1 , 𝑚2 ∈ 𝑀 cannot be guessed by 𝒜 with significant

advantage.

2. Edges unknown to𝒜 cannot be inferred by𝒜 with non-negligible accuracy.

Linking Messages
We start by proving that the first objective holds when the adversary is given 𝑀 instead of 𝑀𝒜 . Naturally,

if no messages are linkable in 𝑀 then the same holds for 𝑀𝒜 . The adversary has access to the pair

(𝑔𝑥𝑖 , 𝑗 , 𝑟𝑖 , 𝑗) for each message in 𝑀. When only the nonce 𝑟𝑖 , 𝑗 is involved, unlinkability is implied as the

nonce is picked at random for each new forwarded message. The argument for the remaining value,

𝑔𝑥𝑖 , 𝑗 , is based on similar reasoning. The main difference is that 𝑥𝑖 , 𝑗 is a product of factors and is not

always random. Factors of 𝑥𝑖 , 𝑗 are picked randomly, but contrary to 𝑟𝑖 , are repeated across messages.

This leads us to the statement that we are trying to prove.

Lemma 5.1.1. Consider an adversary 𝒜 with access to the messages 𝑀 = (𝑚1 , 𝑚2 , 𝑚3), which respectively
contain the elements (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧). Given are independently picked 𝑥, 𝑦, 𝑧 ∈𝑅 Z∗𝑝 and 𝑧′ = 𝑔𝛼 such that 𝛼 is a
linear combination of 𝑥 and 𝑦. The messages in 𝑀 are unlinkable iff𝒜 cannot differentiate between the probability
distributions (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧) and (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧

′).

Proof. If it were possible to efficiently compute discrete logarithms in G, one could efficiently compute

the discrete log of each element in the tuple (𝑔𝑥 , 𝑔𝑦 , 𝑧) and derive whether log𝑔𝑧 is a linear combination

of 𝑥 and 𝑦. However, as we covered in section 2.8, computing discrete logs is hard in G, thus leading to

a contradiction.

5.1. Security Analysis 24

Lemma 5.1.2. Given is an adversary𝒜 with access to 𝑛 messages 𝑀 = (𝑚1 , 𝑚2 . . . , 𝑚𝑛) and their corresponding
elements 𝑋 = (𝑔𝑥1 , 𝑔𝑥1𝑥2 , . . . , 𝑔𝑥1𝑥2 ..𝑥𝑛). The messages in 𝑀 are unlinkable iff, given independently picked
values {𝑧1 , 𝑧2 , . . . , 𝑧𝑛} ∈𝑅 Z∗𝑝 such that 𝑍 = (𝑔𝑧1 , 𝑔𝑧2 , . . . , 𝑔𝑧𝑛), the adversary𝒜 cannot differentiate between
the probability distributions 𝑋 and 𝑍.

Proof. Solving the discrete log for elements in G is computationally hard. The exact construction was

discussed in section 2.8. As G is cyclic by definition, enumerating the powers of 𝑔 for 0..𝜙(𝑝) (where

𝜙(𝑝) = 𝑝 − 1 is Euler’s totient function) gives all possible residues (modulo 𝑝) coprime to 𝑝 exactly once.

In other words, iff the exponents 𝑥1 , 𝑥1𝑥2 , . . . , 𝑥1𝑥2..𝑥𝑛 of 𝑔 in 𝑋 are unique, then the values in 𝑋 are

unique. Given the premise of the birthday paradox, the odds of duplicates in 𝑍 the set 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 is

negligible given that our group is large enough. Uniqueness for 𝑋 is implied as group multiplication is

a bĳection. As the uniform distribution is identical for each variable 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 , it follows that 𝑋 has

the same distribution as 𝑍.

Lastly, we need to show that this statement holds if and only if our protocol fulfills the first objective.

This is equivalent to proving that 𝑥𝑖 , 𝑗 is unique for each message. The first values are picked by the

initiating node 0, which picks a random value 𝑥0, 𝑗 for each neighbour 𝑗. When a node 𝑖 receives 𝑔𝑥𝑖 , 𝑗 , it

picks a random 𝑘𝑖 , 𝑗 and sends 𝑔𝑥𝑘𝑖 , 𝑗 to each neighbour 𝑗. As on each hop the exponent is multiplied by a

new random factor for each neighbour, we can obtain a set of public keys. The last node picks secret 𝑦
and computes the shared key, the partial key is returned to the initiator over the same path. For return

messages a similar set of public keys can be obtained.

Definition 5.1.5 (Public Key Sets). The propagation of forward messages over a path 𝜋 = (𝑣0 , . . . , 𝑣𝑛)
produces a set of messages each containing a public key. Upon each forward pass, node 𝑣𝑖 adds its

intermediate key 𝑘𝑖 , 𝑗 to the exponent of the public key. This produces the set 𝑋 = (𝑔𝑥 , 𝑔𝑥𝑘0,1 , . . . , 𝑔𝑥Π
𝑛 𝑘𝑖 , 𝑗).

For the corresponding echoes, 𝑦 is used and the intermediate keys are applied in reverse order. The set

𝑌 = (𝑔𝑦 , 𝑔𝑦𝑘𝑛,𝑛−1 , . . . , 𝑔𝑦Π𝑛 𝑘𝑖 , 𝑗) corresponds to the public keys of the echoed responses.

Messages in our protocol are unlinkable iff the occurrence of duplicates in 𝑋 ∪ 𝑌 is statistically

insignificant. As the initiating node must end up with the same key as the other node in the key

agreement, the values 𝑘 𝑖 , 𝑗 picked for a particular message in 𝑋 are re-used for corresponding return

message in 𝑌. This poses no security risk. Recall that the non-initiating node in the key agreement

picked 𝑦, which results in each element of 𝑌 having the same factor 𝑦 in the exponent, but none contain

the factor 𝑥. By the reasoning we gave in section 2.8, we know that even though some factors are

shared between elements in 𝑋 ∪ 𝑌, an adversary is unable to distinguish between elements in 𝑋 ∪ 𝑌
and randomly generated variables. As both the public keys and nonces of messages have this type of

indistinguishability, it follows any non-trivial pair of messages produced by our protocol are unlinkable

by an adversary.

Collusion
Under our security assumption, the second objective holds trivially when 𝒜 controls only one node

𝑣𝐴. We have shown messages are unlinkable if their relation is not trivial. The search depth ℓ may

give A some information on the topology besides its direct neighbours. When 𝑣𝐴 initiates, 𝒜 can

derive some information about the density and size of its local neighbourhood. This can even be done

by just observing the traffic produced by neighbouring nodes running the protocol. This is arguably

not a notable security concern because the functionality of the protocol relies on searching the local

neighbourhood. Running instances for increasingly large values of ℓ would be a suitable strategy

for an unbounded adversary, but is not feasible for a PPT adversary due to the complexity being

exponential in ℓ . The non-trivial scenario we consider is collusion. This typically involves multiple

adversaries exchanging information, or may involve a single adversary controlling multiple nodes. For

example, an adversary may own more than one bank account. Both scenarios require the same security

considerations to be made as data is shared between nodes in either case. We base our proof on the

following definition of vertex contraction.

Lemma 5.1.3 (Vertex Contraction). The vertex pair 𝑣𝑖 , 𝑣 𝑗 can be contracted to a node 𝑣 for which the set of
neighbours 𝑁(𝑣) = 𝑁(𝑣𝑖) ∪ 𝑁(𝑣 𝑗). Similarly, the sets 𝑁(𝑣)+ and 𝑁(𝑣)− can be obtained. Next, we alter the
graph 𝐺 = (𝑉, 𝐸) by first removing 𝑣𝑖 , 𝑣 𝑗 from the set of vertices and adding 𝑣, such that 𝑉′ = 𝑉 \ {𝑣𝑖 , 𝑣 𝑗} ∪ {𝑣}.

5.2. Complexity Analysis 25

Then, for each edge in 𝐸 we replace occurrences of 𝑣𝑖 and 𝑣 𝑗 with 𝑣 to obtain 𝐸′. This might as a consequence create
the edge 𝑣, 𝑣, which we remove from 𝐸′ as by our graph definition in section 2.1 self-loops are not allowed.The
result is the graph 𝐺′ = (𝑉′, 𝐸′). Larger sets of vertices can be contracted by sequentially contracting vertex pairs.

Contraction has interesting effects on paths and cycles. Paths can contain any combination of adversarial

(A) or honest (H) nodes. Each pattern AH∗A with an arbitrary number of adjacent honest nodes, becomes

a cycle upon contracting the adversarial nodes.

Corollary 5.1.3.1. Contracting 𝑣𝑖 , 𝑣 𝑗 to 𝑣 in a graph containing the path 𝜋 = (𝑣𝑖 , . . . , 𝑣 𝑗) produces the cycle
𝜎 = (𝑣, . . . , 𝑣) differing only in its first and last element from 𝜋.

From our perspective, there is a single adversary𝒜 which controls a set of at least two nodes, which we

denote by 𝑉𝐴. For a pair of adversarial nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝐴 connected only by a (short) path 𝜋,𝒜 is able to

find the path length quite easily. Starting with ℓ = 1,𝒜 initiates instances from 𝑣𝑖 and checks if 𝑣𝑖 and

𝑣 𝑗 perform key agreement. This is not the case until ℓ = |𝜋|, from which𝒜 learns the exact length of the

path.We show how to reduce an instance in which two nodes collude to a secure single-node scenario in

which the adversarial node possesses the same data. The reduction is based on vertex contraction, an

operation which merges two nodes and their edges. We finish the proof with an inductive argument,

and show that for arbitrary |𝑉𝐴 | the protocol does not reveal non-cycle edges that were previously

unknown to𝒜.

Lemma 5.1.4 (Collusion Resistance). No subset 𝑉𝐴 ⊆ 𝑉 exists which lets𝒜 infer the existence of edges beyond
what is collectively known by 𝑉𝐴. Contracting 𝑉𝐴 into a single node 𝑣𝐴 can be done without impacting security.
The reduced graph resulting from this operation has a single adversarial node for which we established inferring
edge existence to be infeasible.

Proof. Let us first consider a graph 𝐺 = (𝑉, 𝐸) which contains the adversarial nodes 𝑣𝑖 , 𝑣 𝑗 𝑖𝑛𝑉𝐴 and

the node 𝑣 ∈ 𝑉 . The graph contains no paths connecting 𝑣𝑖 to 𝑣 𝑗 nor does it contain any cycles. The

honest node 𝑣𝑛 does have a path to 𝑣 𝑗 , given by 𝜋 = (𝑣, . . . , 𝑣 𝑗). The goal of𝒜 is to verify the existence

of this path, and determine its length. We allow𝒜 to add exactly one edge to the graph. There are 2

possible edges which 𝒜 can add to achieve its goal. The first is (𝑣𝑖 , 𝑣), this edge completes the path

𝜋′ = (𝑣𝑖 , 𝑣, . . . , 𝑣 𝑗) and lets𝒜 derive |𝜋|. The other edge is 𝑣 𝑗 , 𝑣, which creates the cycle 𝜎 = (𝑣 𝑗 , 𝑣, . . . , 𝑣 𝑗).
Upon executing the protocol for sufficient ℓ , the cycle is found and made public. Either choice results in

the same adversarial knowledge. The nodes can be contracted to produce the single-node scenario in

which𝒜 cannot infer the existence of edges beyond its direct neighbourhood.

5.2. Complexity Analysis
We evaluate the performance and complexity of three aspects of our protocol, namely the (i) commu-

nication complexity, (ii) computational complexity and (iii) storage requirements. For each concept,

we first derive the asymptotic bound from the pseudocode. To validate our claims, we implemented

the protocol and carried out a performance evaluation on synthetic graphs. As we are analysing space

and computational complexity, recall that the subgroup G is of order 𝑞 and is a subgroup of Z𝑝 . The

private keys and intermediate keys are chosen from G and have a bit-length of at most 𝜅𝑞 . For the nonce

we consider a security parameter 𝜅𝑟 which denotes its bit-length. The public key 𝑔𝑥 , where 𝑥 ∈ Z𝑞 is

arbitrary, has a bit-length of 𝜅𝑝 .

Communication Complexity
The number of messages a particular instance generates is largely dependent on the search depth ℓ , and

the average degree of nodes participating in the instance. To find the worst-case upper bound on the

number of messages, each node should send a maximal amount of messages each time it forwards a

message. Maximising the number of neighbours for each node produces a fully connected graph of

size 𝑛, where 𝑛 − 1 is the outdegree of each node. Given an instance, the initialisation consists of the

initiator sending a message to 𝑛 − 1 other nodes. Each receiving node continues to forward the message

to another 𝑛 − 1 nodes, creating exponential growth in the number of forward and echo messages for

increasing values of ℓ . For example, consider two instances of the protocol for a fully connected graph

with ℓ = 1, 2. For ℓ = 1 the initiate routine sends 𝑛 − 1 messages which results in 𝑛 − 1 returned echoes.

The same messages are sent for ℓ = 2, but now propagate sends an additional (𝑛 − 1)2 forward messages.

5.2. Complexity Analysis 26

Finding the number of messages for echoes is trickier, as a single forward message may lead to multiple

echoes that need to be returned over the correct path back to the initiator. For ℓ = 1 the same 𝑛 − 1

echoes are first returned. For the second instance with ℓ = 2, nodes receiving a message with ℓ = 0

cannot send an echo directly to the initiator. Instead, the echo traverses a path of length 2 before it is

received by the initiator. This results in an additional 2(𝑛 − 1)2 echoes compared to the first instance.

For small ℓ and large 𝑛, the worst-case upper bound for both propagate and echo is 𝑂(𝑛ℓ).
The last message type is sent by the trace routine. For each found cycle 𝜎𝑖 , trace sends exactly one trace

message per edge, for a total of |𝜎𝑖 | messages. The number of trace messages can be expressed as the

sum of all cycle lengths 𝑐 = Σ𝑖 |𝜎𝑖 |, resulting in a total message complexity of 𝑂(𝑛ℓ + 𝑐) for the whole

protocol. The worst-case bound may be too pessimistic, only few real-life processes can be modelled as

a fully connected graph. To find the exact performance, one could find the outdegree of nodes in the

local neighbourhood of the initiating node. Computing the average degree for each instance imposes a

lot of overhead. We considered using graphs in which the degree is constant as this fully eliminates

the overhead. The drawback is that these kind of graphs do not occur in practice. We find a midway;

we generate graphs using a consistent degree distribution. For each graph, we run one instance per

node and aggregate the results. We further elaborate on the experimental set-up and the results in

section 5.3. The main takeaway is that we can use the average degree to obtain a best-effort theoretical

bound of 𝑂(𝑑𝑙𝑎𝑣𝑔 + 𝑐). We emphasise that this is an approximation which works well for our small-scale

experiments. For large graphs, especially if the the degree distribution is highly divergent, this bound is

inaccurate. This is because the message complexity explodes whenever a node with high outdegree is

encountered. This phenomenon was the main motivation in [50] to base the approach on indexing such

nodes.

Computational Complexity
As discussed in section 2.7, exponentiation is the most expensive operation in modular arithmetic and

is dependent on the bit-length of the largest value in the computation. All exponentiations in our

protocol take as base 𝑔 and are performed modulo 𝑝. As 𝑝 has the largest size, the cost of the operation

depends on the associated bit-length 𝜅𝑝 . For one operation, the computational complexity is 𝑂(log
3𝜅𝑝).

Across our algorithms, if a routine performs a constant number of exponentiations the computational

complexity can be easily derived from the communication complexity. Exponentiation is performed a

linear number of times in the following cases: (i) any node calls initiate or (ii) if ℓ ≠ 0, propagate sends a

message to all outgoing neighbours. The total computational cost for each algorithm is determined

by the amount of modular exponentiations and the number of invocations. The computational cost

is closely tied to the message complexity, as all algorithms besides initiate are invoked upon a node

receiving one message. For the same reason, the worst-case topology is again the fully connected graph.

To find the computational complexity for the full protocol, we break down the communication complexity

by message type and for each type compute its product with the single-execution computational cost of

the corresponding algorithm it invokes. The complete overview is shown in table 5.1. The exception

is initiate, which is called only once per instance and performs at most 𝑛 − 1 exponentiations. For

propagate it depends on whether the node still needs to forward messages. If this is the case, it requires

𝑛 + 1 exponentiations, and when ℓ = 0, only 2 exponentiations are needed. For echo the initiating node

and non-initiating node perform different computations, but in either case only 1 exponentiation is

performed. Non-initiating nodes calling trace perform at most 𝑛 exponentiations because they have to

find the neighbouring node which corresponds to the key in the received message, while the initiator

performs none at all.

Storage Complexity
The storage bounds for a single instance are given in Table 5.1 and largely depend on the selection of

group parameters. The construction in section 2.8 uses two primes, 𝑝 and 𝑞. These must be sufficiently

large, as otherwise attacks may become feasible for an adversary. This poses a trade-off, a higher degree

of security requires larger key sizes which in turn consumes more computational power and storage.

Security parameters allow for balancing this trade-off. The security of our protocol can be tuned by the

security parameters 𝜅𝑝 , 𝜅𝑞 , which control the bit-size of 𝑝 and 𝑞 respectively. By definition, 𝑝 dominates

the storage requirements for a single variable as 𝜅𝑝 > 𝜅𝑞 by our group construction. We also use a third

parameter, 𝜅𝑟 , which controls the bit-length of nonces. This parameter is conventionally set to a much

5.3. Performance Evaluation 27

lower value than 𝜅𝑝 . To find the global worst-case upper bound storage complexity, we first determine

the maximum required amount of storage for a single invocation of each algorithm.

Extending this to the full protocol, recall the number of function calls corresponds roughly to the

number of sent messages. The exception is initiate, which is called only once. For the fully connected

graph, this routine is called only once and stores 𝜅𝑞 + 𝜅𝑟 bits for each of its 𝑛 − 1 neighbours. The other

algorithms do not always store the same amount of data. The propagate routine always uses 𝜅𝑝 bits to

store the public key. For each neighbour it propagates a message to it stores approximately 𝜅𝑞 + 2𝜅𝑟

in routes. When the initiator calls echo it stores the shared key of size 𝜅𝑝 in keys if it did not already

contain it. Other nodes calling echo store a tuple containing two nonces, a private key and the public

key, for a total size of 𝜅𝑝 + 𝜅𝑞 + 2𝜅𝑟 . The trace routine does not store any information. However, given

cycle 𝜎𝑖 , the initiator publishes 𝜎𝑖 by broadcasting |𝜎𝑖 | edges after the trace completes. Edges contain

two identifiers in the range 1 . . . 𝑛 which represent nodes. Accounting for the bit-length of 𝑛, storing

the set 𝜎 of all cycles and a total of 𝑐 edges requires 2𝑐 ⌈𝑙𝑜𝑔2(𝑛)⌉ bits. This is mostly insignificant as the

bit-length of keys is magnitudes larger than the bit-length needed to represent node identifiers. The

propagate routine requires the most storage, as it is called 𝑛ℓ
times and stores 𝑛 values of size 𝜅𝑞 for each

call. The storage complexity, for large 𝑛, is therefore 𝑂(𝜅𝑞𝑛
ℓ+1) under the assumption that 𝜅𝑟 is small.

Table 5.1: The number of function calls, together with the communication, computational, and storage complexity broken down

by algorithm. The propagate routine has two subcases based on ℓ , echo and trace both have different complexity bounds for the

initiator and non-initiator nodes. For each complexity type, we state the worst-case bound for one instance of the full protocol.

We omit 𝜅𝑟 because of its small size. For exponentiations we substitute 𝜆 = log
3𝜅𝑝 for readability.

Initialise Propagate Echo Trace Protocol
any ℓ ≠ 0 ℓ = 0 initiator other initiator other instance

Function calls 1 𝑛ℓ 𝑛ℓ 𝑛ℓ 𝑛ℓ |𝜎 | 𝑐

Communication 𝑂(𝑛) 𝑂(𝑛ℓ) 𝑂(𝑛ℓ) 𝑂(𝑛ℓ) 𝑂(𝑛ℓ) 𝑂(|𝜎 |) 𝑂(𝑐) O(nℓ + c)
Exp. per call 𝑛 − 1 𝑛 + 1 2 1 1 0 𝑛

Exp. per instance 𝑛 𝑛ℓ+1 𝑛ℓ 𝑛ℓ 𝑛ℓ
0 𝑛𝑐

Computational 𝑂(𝜆𝑛) 𝑂(𝜆𝑛ℓ+1) 𝑂(𝜆𝑛ℓ) 𝑂(𝜆𝑛ℓ) 𝑂(𝜆𝑛ℓ) 𝑂(1) 𝑂(𝜆𝑛𝑐) O(𝜆nℓ+1)
Bits per call 𝜅𝑞 𝜅𝑝 + 𝑛𝜅𝑞 𝜅𝑝 𝜅𝑝 𝜅𝑝 + 𝜅𝑞 0 0

Storage in bits 𝑂(𝜅𝑞𝑛
ℓ) 𝑂(𝜅𝑞𝑛

ℓ+1) 𝑂(𝜅𝑝𝑛
ℓ) 𝑂(𝜅𝑝𝑛

ℓ) 𝑂(𝜅𝑝𝑛
ℓ) 𝑂(1) 𝑂(1) O(𝜅qnℓ+1)

5.3. Performance Evaluation
The protocol is implemented in C++, and tested on synthetically generated graphs. For our graph

generation we use the Barabási-Albert model from [3]. The underlying principle of this model is

preferential attachment. New nodes tend to connect to nodes with high degree, and as the generation

method adds nodes one by one, this creates a scale-free distribution of degrees among the nodes.

Many real-world phenomenons, such as the world-wide web, social networks, biological processes, and

financial markets [43], are thought of to be scale-free. However, an empirical analysis performed in [15]

showed such networks are rare in the real-world setting. Yet, similarly to how [50] observed high-degree

nodes form bottlenecks, we consider the power-law distribution of degrees in our synthetic data to be

accurate enough for performing experiments with realistic outcomes.

The model specifies two parameters, 𝑚0 and 𝑚1 for which 𝑚0 ≤ 𝑚1. These form the basis for our

implementation, together with the desired size of the graph 𝑛. To start, we generate a fully connected

graph (i.e. each node has a node directed to every other node) of size 𝑚0. Then, we create a new node,

and probabilistically create 𝑚1 new edges to or from this node. These edges may only occur once, and

have an equal chance to be in either direction. This process is repeated until the desired graph size 𝑛 is

reached. The distribution arises from the fact that each node has an equal chance of being sampled by

any node in future iterations. In other words, the first 𝑚0 nodes are likely to have much higher degree

than nodes created in the last iterations. For our experiments we are interested in the average degree of

the graph. We generate graphs using 𝑚0 = 𝑚1, and perform measurements for increasing values of 𝑚0.

To find 𝑑𝑎𝑣𝑔 we first find the number of edges in the fully connected graph, which has size 𝑚0. There is

5.3. Performance Evaluation 28

one edge between each pair of nodes, this equates to 𝑚0(𝑚0 − 1) edges. The remainder of the nodes

together create 𝑚0(𝑛 − 𝑚0) new edges. The total number of edges is therefore equal to 𝑛𝑚0 − 𝑚0, which

lets us compute 𝑑𝑎𝑣𝑔 = 𝑚0(−𝑛−1 + 1) as the average degree.

Results
Before we evaluate the performance, we verify the correctness of our protocol by comparing our results

with those of standard non-secure cycle detection tools on the same inputs. The group parameters are

randomly generated, with 𝜅𝑝 = 60, 𝜅𝑞 = 𝜅𝑟 = 20 as bit-lengths. The goal of our experiments is to obtain

a benchmark which verifies the time and communication complexity stated in section 5.2. Verifying

the bound on the required storage was not part of our set-up, as it can be directly derived from the

communication complexity. For each value in the interval 𝑚 = [3, 9], we generate a new graph with size

𝑛 = 50 and record the total number of cycles |𝜎𝑎𝑙𝑙 |. For each value ℓ ∈ {2, 3, 4}, we execute the protocol

once for every node in the graph and record the measurements as an average of the 50 instances. For

each instance we sum the length of each found cycle, which we denote by 𝑐 = Σ|𝜎𝑖 |. Then, we measure

the average execution time of the protocol 𝑡𝑎𝑣𝑔 and record the total number of messages as |𝑀𝑡𝑦𝑝𝑒 | for

each type of message.

3 4 5 6 7 8 9
d_avg

100

101

102

103

104

t_
av
g

Average Degree vs Average Runtime
l=2
l=3
l=4

3 4 5 6 7 8 9
d_avg

0

50

100

150

200
n_
cy
c

Average Degree vs Number of Cycles
l=2
l=3
l=4

3 4 5 6 7 8 9
d_avg

102

103

104

fo
r_
ec
ho
_a
vg

Average Degree vs Average Sum of Total Forward & Echo Messages
l=2
l=3
l=4

0 5 10 15 20 25 30 35 40
c_edge_avg

100

101

102

103

pu
b_
av
g

Average Number of Edge Cycles vs Average Total Publish Messages
l=2
l=3
l=4

Figure 5.1: Results for 𝑛 = 50, clustered by ℓ . Top left: 𝑡𝑎𝑣𝑔 (log) and 𝑑𝑎𝑣𝑔 . Top right: number of cycles |𝜎𝑎𝑙𝑙 | and 𝑑𝑎𝑣𝑔 . Bottom left:

average amount of messages |𝑀 𝑓 ∪𝑀𝑒 | (log) and 𝑑𝑎𝑣𝑔 . Bottom right: average amount of messages |𝑀𝑡 | (log) and 𝑐.

Our results are split into clusters corresponding to different values of ℓ , and are shown in Figure 5.3.

The plots show the following relations: (i) 𝑡𝑎𝑣𝑔/𝑑𝑎𝑣𝑔 , (ii) |𝜎𝑎𝑙𝑙 |/𝑑𝑎𝑣𝑔 , (iii) |𝑀 𝑓 ∪ 𝑀𝑒 |/𝑑𝑎𝑣𝑔 , and (iv)

|𝑀𝑡 |/𝑐. The relation in (ii) is not related to the performance of the protocol as both axes are fixed graph

properties, but is included due its significance in the analysis of the other relations. The remaining three

plots show our measurements on a vertical log-scale for different graph properties on the horizontal

scale. For growing 𝑑𝑎𝑣𝑔 , (i) shows 𝑡𝑎𝑣𝑔 grows polynomially. Likewise, in (iii) the same growth rate can

be observed for the sum of forward and echo messages. The growth rate of |𝑀𝑡 | corresponds directly to

𝑐, as for each instance, each found cycle results in one trace message for each of its edges. Increasing the

5.3. Performance Evaluation 29

number of cycles in a graph increases 𝑐 as well. From the relation between |𝜎𝑎𝑙𝑙 | and 𝑑𝑎𝑣𝑔 in (ii) we can

conclude |𝑀𝑡 | grows for increasing 𝑑𝑎𝑣𝑔 . The rate at which |𝜎𝑎𝑙𝑙 | grows for larger 𝑑𝑎𝑣𝑔 is at least linear,

but may be of larger order for increasing ℓ and different types of graphs.

6
Discussion

We start this chapter with a comparison of our original objective in section 1.3 and the results we

obtained in chapter 5. After this, we address any findings with scientific significance that are not related

to the original research objective. We further discuss some potential changes to make the protocol more

efficient and suitable for the dynamic setting.

6.1. Revisited Research Objective
To answer the initial research objective, we decompose the original statement into four sub-objectives we

can give a clear answer to. We add a fifth objective regarding the accuracy of our complexity estimations.

The objectives are as follows.

1. Can the protocol find all cycles, when given unbounded computational power?

2. For what ℓ does the protocol become too infeasible, when given limited computational power?

3. Is the protocol privacy-preserving?

4. How is efficiency affected by security parameters?

5. Do our experiments show a growth rate matching the theoretical complexities?

The first objective can be answered rather easily. In the analysis in chapter 5 we stated that we verified

the correctness by verifying the results with non-secure tools. When running our experiments, we

performed a DFS on each graph we generated for our protocol to obtain all cycles. We compared this to

the cycles the protocol was enumerating and found the sets to be identical.

The second objective is trickier, because feasibility of running large experiments depends on the

capabilities of the machine running the protocol. When adapted for a real-life decentralised setting,

the computational load as well as the required storage is distributed across multiple parties. The main

bottleneck depends on the time it takes for a message to be sent from source to destination. The results

shown in Figure 5.3 at the end of chapter 5 show that increasing ℓ by one leads to the order increasing

by one for both run-time and number of messages. For example, the number of messages for a constant

𝑑𝑎𝑣𝑔 is in the order of 10
2 , 10

3 , 10
4

for ℓ = 2, 3, 4 respectively. For our experiments, we tried values

ℓ = 5, 6 which produced instances that timed out after running for 4 hours. Taking communication

overhead into account makes these instances run even slower.

The third objective has mostly been discussed in section 5.1 for PPT adversaries. The protocol is not

secure against UB adversaries because in this setting the DDH assumption fails to hold. Some other

adversarial behaviour for which our protocol is not secure include side-channel attacks, modifying

message content sent by either adversarial or honest nodes, and halting execution by blocking network

traffic or crashing nodes. Lastly, when the adversary gains access to the secret internal values of some

honest nodes, it can use these values to derive internal values of other honest nodes in the network.

The fourth objective has mostly been answered in section 5.3. The same section does fully answer the

30

6.2. Future Work 31

fifth objective. For a real-life setting, the size of messages can quickly lead to bandwidth becoming a

bottleneck, especially because the number of messages grows exponentially. Messages contain public

keys of 1024 − 3072 bits, we assume the best-case of 1024 bits and ignore the rest of the message content.

For ℓ = 4 and 𝑑𝑎𝑣𝑔 there are about 10
4

messages exchanged per instance producing 1MB of messages. It

is easy to see that increasing ℓ = 5, 6, 7 produces traffic equal 10MB, 100MB, 1GB per instance. Similarly,

increasing 𝑑𝑎𝑣𝑔 produces polynomial growth. For real networks 𝑑𝑎𝑣𝑔 and 𝑛 are much larger compared

to our experimental set-up and there are often nodes with much higher degrees than the average. For

example, a node with 10
4

outgoing edges has to send 1MB of traffic for each forward message it receives.

6.2. Future Work
When the protocol is executed once for each node in a graph the same cycles are broadcast by multiple

nodes. For example, for a graph containing only the cycle 𝜎 = 𝑣0 , 𝑣1 , 𝑣2 , 𝑣0, each node will find the

cycle exactly once if ℓ = 3. The number of broadcasts becomes even larger for ℓ = 6. This is a result

of the unlinkability of messages. Say the initiator is 𝑣0, running an instance with ℓ = 6 finds the cycle

𝜎′ = 𝑣0 , 𝑣1 , 𝑣2 , 𝑣0 , 𝑣1 , 𝑣2 , 𝑣0. The initiator does not know if a cycle already occurred when receiving a

forward message. This can be solved by executing the protocol for each lower value first. This means

that the cycle 𝜎 was already found before the instance with ℓ = 6 is initiated. The initiator could use this

information to prevent 𝜎′ from being detected as a cycle.

Another improvement is related to the static topology of the model. We assume there is no known

cycles when initiating the protocol. If we assume all cycles have already been found, we can extend our

protocol to the dynamic setting quite easily. Cycles can only be formed when a new node or edge is

introduced, which will always be part of the new cycle if it exists. Thus, executing the protocol on the

newly introduced node, or the two connected nodes in the case of a new edge, is sufficient to maintain

the set of all cycles in the network.

6.3. Concluding Remarks
The importance of AML efforts has grown significantly over the part years as the increasing complexity of

financial crimes created new challenges for financial institutions. Traditional systems, which rely heavily

on centralised databases and extensive data sharing, cannot be adapted to the cross-organisational

scale of modern threats without raising privacy concerns. Our proposed decentralised protocol offers a

privacy-conscious addition to the existing AML landscape.

We base our construction on the Diffie-Hellman key exchange, and show how the exchange can be

extended to a decentralised setting with multiple intermediaries. The key exchange is used to determine

the presence of short cycles in the local neighbourhood of a node, which we efficiently reconstruct and

broadcast to other nodes in the network. We prove that the security of the protocol is sound by showing

messages are unlinkable and edges stay secret, even when nodes collude. Our performance evaluation

shows that the protocol is viable for small cycles and matches the growth of the theoretical complexity

bounds. Future research and development should focus on streamlining decentralised AML methods

and expanding their capabilities, while emphasising the right to privacy.

References

[1] European Counter Terrorism Centre (ECTC). “Europol joins forces with EU FIUs to fight terrorist

financing and money laundering”. In: Europol Media & Press (Jan. 2016). https://www.europol.
europa.eu/media- press/newsroom/news/europol- joins- forces- eu- fius- to- fight-
terrorist-financing-and-money-laundering.

[2] Adi Akavia, Rio LaVigne, and Tal Moran. “Topology-Hiding Computation on All Graphs”. In:

Journal of Cryptology 33.1 (Mar. 2019), pp. 176–227. issn: 1432-1378. doi: 10.1007/s00145-019-
09318-y.

[3] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In: Rev.
Mod. Phys. 74 (1 Jan. 2002), pp. 47–97. doi: 10.1103/RevModPhys.74.47.

[4] Abdelrahaman Aly. “Network flow problems with secure multiparty computation”. PhD thesis.

Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2015.

[5] Abdelrahaman Aly and Sara Cleemput. “A fast, practical and simple shortest path protocol for

multiparty computation”. In: European Symposium on Research in Computer Security. Springer. 2022,

pp. 749–755.

[6] Abdelrahaman Aly et al. “Securely solving simple combinatorial graph problems”. In: Financial
Cryptography and Data Security: 17th International Conference, FC 2013, Okinawa, Japan, April 1-5,
2013, Revised Selected Papers 17. Springer. 2013, pp. 239–257.

[7] Mohammad Anagreh, Eero Vainikko, and Peeter Laud. “Parallel Privacy-Preserving Shortest

Paths by Radius-Stepping”. In: 2021 29th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). 2021, pp. 276–280. doi: 10.1109/PDP52278.2021.00051.

[8] Anders Åslund and Julia Friedlander. Defending the United States against Russian dark money. Report.

Nov. 2020. url: https://www.atlanticcouncil.org/in-depth-research-reports/report/
defending-the-united-states-against-russian-dark-money/ (visited on 06/30/2024).

[9] Paolo Balboni and Milda Macenaite. “Privacy by design and anonymisation techniques in action:

Case study of Ma3tch technology”. en. In: Computer Law & Security Review 29.4 (Aug. 2013),

pp. 330–340. issn: 02673649. doi: 10.1016/j.clsr.2013.05.005. (Visited on 02/22/2024).

[10] Elaine Barker and Allen Roginsky. Transitioning the Use of Cryptographic Algorithms and Key Lengths.
Mar. 2019. doi: 10.6028/NIST.SP.800-131Ar2.

[11] BBC. “Russian oligarchs: Where do they hide their ‘dark money’?” In: BBC World (Mar. 28, 2022).

url: https://www.bbc.com/news/world-60608282 (visited on 06/30/2024).

[12] Guy E. Blelloch et al. “Parallel Shortest Paths Using Radius Stepping”. In: Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’16. Pacific Grove,

California, USA: Association for Computing Machinery, 2016, pp. 443–454. isbn: 9781450342100.

doi: 10.1145/2935764.2935765.

[13] Dan Boneh. “The Decision Diffie-Hellman Problem”. In: Algorithmic Number Theory, Third Interna-
tional Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings. Ed. by Joe Buhler.

Vol. 1423. Lecture Notes in Computer Science. Springer, 1998, pp. 48–63. doi: 10.1007/BFB0054851.

[14] Fabrice Boudot et al. Comparing the difficulty of factorization and discrete logarithm: a 240-digit
experiment. 2020. arXiv: 2006.06197 [cs.CR].

[15] Anna D. Broido and Aaron Clauset. “Scale-free networks are rare”. In: Nature Communications 10.1

(Mar. 2019). issn: 2041-1723. doi: 10.1038/s41467-019-08746-5.

[16] Zhiyuan Chen et al. “Machine learning techniques for anti-money laundering (AML) solutions in

suspicious transaction detection: a review”. en. In: Knowledge and Information Systems 57.2 (Nov.

2018), pp. 245–285. issn: 0219-1377, 0219-3116. doi: 10.1007/s10115-017-1144-z. (Visited on

02/29/2024).

32

https://www.europol.europa.eu/media-press/newsroom/news/europol-joins-forces-eu-fius-to-fight-terrorist-financing-and-money-laundering
https://www.europol.europa.eu/media-press/newsroom/news/europol-joins-forces-eu-fius-to-fight-terrorist-financing-and-money-laundering
https://www.europol.europa.eu/media-press/newsroom/news/europol-joins-forces-eu-fius-to-fight-terrorist-financing-and-money-laundering
https://doi.org/10.1007/s00145-019-09318-y
https://doi.org/10.1007/s00145-019-09318-y
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1109/PDP52278.2021.00051
https://www.atlanticcouncil.org/in-depth-research-reports/report/defending-the-united-states-against-russian-dark-money/
https://www.atlanticcouncil.org/in-depth-research-reports/report/defending-the-united-states-against-russian-dark-money/
https://doi.org/10.1016/j.clsr.2013.05.005
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://www.bbc.com/news/world-60608282
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1007/BFB0054851
https://arxiv.org/abs/2006.06197
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1007/s10115-017-1144-z

References 33

[17] European Commission. “Commission welcomes political agreement on the Regulation to establish

the new Anti-Money Laundering Authority (AMLA)”. In: Finance News (Dec. 2023). https:
//finance.ec.europa.eu/news/commission-welcomes-political-agreement-regulation-
establish-new-anti-money-laundering-authority-2023-12-13_en.

[18] European Commission. Frequently asked questions about the new EU Anti-Money Laundering Authority
(AMLA). 2024. url: https://finance.ec.europa.eu/financial-crime/amla/frequently-
asked-questions_en (visited on 06/13/2024).

[19] Ivan Damgård and Jesper Buus Nielsen. “Universally Composable Efficient Multiparty Compu-

tation from Threshold Homomorphic Encryption”. In: Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings. Ed. by Dan Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003,

pp. 247–264. doi: 10.1007/978-3-540-45146-4_15.

[20] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transactions on Information
Theory 22.6 (1976), pp. 644–654.

[21] Edsger W Dĳkstra. “A note on two problems in connexion with graphs”. In: Numerische mathematik
1.1 (1959), pp. 269–271.

[22] The United Nations Office on Drugs and Crime (UNODC). Money-Laundering and Globalization.

Archive. Aug. 2020. url: https://www.unodc.org/unodc/en/money-laundering/globalizati
on.html (visited on 02/21/2024).

[23] Bogdan Dumitrescu, Andra Băltoiu, and Ştefania Budulan. “Anomaly Detection in Graphs of Bank

Transactions for Anti Money Laundering Applications”. In: IEEE Access 10 (2022), pp. 47699–47714.

issn: 2169-3536. doi: 10.1109/ACCESS.2022.3170467.

[24] Andrew Elliott et al. “Anomaly Detection in Networks with Application to Financial Transaction

Networks”. In: CoRR abs/1901.00402 (2019). arXiv: 1901.00402.

[25] European Commission. Money laundering. English. Migration and Home Affairs. Feb. 2024. url:

https://home-affairs.ec.europa.eu/policies/internal-security/organised-crime-
and-human-trafficking/money-laundering_en (visited on 02/21/2024).

[26] European Commission, Directorate-General for Financial Stability, and Financial Services and

Capital Markets Union. Impact assessment SWD/2021/190 final. CELEX number 52021SC0190.

Brussels, July 2021. url: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%
3A52021SC0190&qid=1718281678724 (visited on 06/13/2024).

[27] European Data Protection Supervisor. Comprehensive Union policy on preventing money laundering
and terrorism financing. Opinion 5/2020. July 2020. url: https://www.edps.europa.eu/sites/
default/files/publication/20-07-23_edps_aml_opinion_en.pdf (visited on 06/13/2024).

[28] FATF. History of the FATF. English. June 2024. url: https://www.fatf-gafi.org/en/the-
fatf/history-of-the-fatf.html (visited on 06/13/2024).

[29] FATF. Terrorist Financing. English. June 2024. url: https://www.fatf-gafi.org/en/topics/
Terrorist-Financing.html (visited on 06/13/2024).

[30] Robert W. Floyd. “Algorithm 97: Shortest path”. In: Commun. ACM 5.6 (June 1962), p. 345. issn:

0001-0782. doi: 10.1145/367766.368168.

[31] W. Fokkink. Distributed Algorithms: An Intuitive Approach. The MIT Press. MIT Press, 2013. isbn:

9780262026772.

[32] M.L. Fredman and R.E. Tarjan. “Fibonacci Heaps And Their Uses In Improved Network Opti-

mization Algorithms”. In: 25th Annual Symposium on Foundations of Computer Science, 1984. 1984,

pp. 338–346. doi: 10.1109/SFCS.1984.715934.

[33] O. Goldreich, S. Micali, and A. Wigderson. “How to play ANY mental game”. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New York, New

York, USA: Association for Computing Machinery, 1987, pp. 218–229. isbn: 0897912217. doi:

10.1145/28395.28420.

[34] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Vol. 2. Cambridge

university press, 2001.

https://finance.ec.europa.eu/news/commission-welcomes-political-agreement-regulation-establish-new-anti-money-laundering-authority-2023-12-13_en
https://finance.ec.europa.eu/news/commission-welcomes-political-agreement-regulation-establish-new-anti-money-laundering-authority-2023-12-13_en
https://finance.ec.europa.eu/news/commission-welcomes-political-agreement-regulation-establish-new-anti-money-laundering-authority-2023-12-13_en
https://finance.ec.europa.eu/financial-crime/amla/frequently-asked-questions_en
https://finance.ec.europa.eu/financial-crime/amla/frequently-asked-questions_en
https://doi.org/10.1007/978-3-540-45146-4_15
https://www.unodc.org/unodc/en/money-laundering/globalization.html
https://www.unodc.org/unodc/en/money-laundering/globalization.html
https://doi.org/10.1109/ACCESS.2022.3170467
https://arxiv.org/abs/1901.00402
https://home-affairs.ec.europa.eu/policies/internal-security/organised-crime-and-human-trafficking/money-laundering_en
https://home-affairs.ec.europa.eu/policies/internal-security/organised-crime-and-human-trafficking/money-laundering_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021SC0190&qid=1718281678724
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021SC0190&qid=1718281678724
https://www.edps.europa.eu/sites/default/files/publication/20-07-23_edps_aml_opinion_en.pdf
https://www.edps.europa.eu/sites/default/files/publication/20-07-23_edps_aml_opinion_en.pdf
https://www.fatf-gafi.org/en/the-fatf/history-of-the-fatf.html
https://www.fatf-gafi.org/en/the-fatf/history-of-the-fatf.html
https://www.fatf-gafi.org/en/topics/Terrorist-Financing.html
https://www.fatf-gafi.org/en/topics/Terrorist-Financing.html
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1145/28395.28420

References 34

[35] László Hajdu and Miklós Krész. “Temporal network analytics for fraud detection in the banking

sector”. In: International Conference on Theory and Practice of Digital Libraries. Springer. 2020, pp. 145–

157.

[36] Mark D Harrop and Lemuel Brewster. Thomson Reuters 2017 Global KYC Surveys Attest to Even Greater
Compliance Pain Points. English. Oct. 2017. url: https://www.thomsonreuters.com/en/press-
releases/2017/october/thomson-reuters-2017-global-kyc-surveys-attest-to-even-
greater-compliance-pain-points.html (visited on 02/29/2024).

[37] Saroja Kanchi and David Vineyard. “An optimal distributed algorithm for all-pairs shortest-path”.

In: Information Theories and Applications 11 (Jan. 2004).

[38] Donald E Knuth. “Big omicron and big omega and big theta”. In: ACM Sigact News 8.2 (1976),

pp. 18–24.

[39] Udo Kroon. “Ma
3
tch: Privacy and knowledge: ’Dynamic networked collective intelligence’”. In:

2013 IEEE International Conference on Big Data. Silicon Valley, CA, USA: IEEE, Oct. 2013, pp. 23–31.

isbn: 978-1-4799-1293-3. doi: 10.1109/BigData.2013.6691683. (Visited on 02/22/2024).

[40] Miriam Lanskoy and Dylan Myles-Primakoff. “The Rise of Kleptocracy: Power and Plunder in

Putin’s Russia”. In: Journal of Democracy 29.1 (2018), pp. 76–85. issn: 1086-3214. doi: 10.1353/jod.
2018.0006.

[41] Rutger Leukfeldt and Jurjen Jansen. “Cyber Criminal Networks and Money Mules: An Analysis

of Low-Tech and High-Tech Fraud Attacks in the Netherlands.” In: International Journal of Cyber
Criminology 9.2 (2015). doi: 10.5281/ZENODO.56210.

[42] Yingxin Li, Fukang Liu, and Gaoli Wang. New Records in Collision Attacks on SHA-2. Cryptology

ePrint Archive, Paper 2024/349. 2024. url: https://eprint.iacr.org/2024/349.

[43] Felipe Lillo and Rodrigo Valdés. “Dynamics of financial markets and transaction costs: A graph-

based study”. In: Research in International Business and Finance 38 (Sept. 2016), pp. 455–465. issn:

0275-5319. doi: 10.1016/j.ribaf.2016.07.024.

[44] Alfred J Menezes, Paul C van Oorschot, and Scott A Vanstone. Handbook of Applied Cryptography.

1st ed. CRC Press, Dec. 1996.

[45] Ian M. Molloy et al. “Graph Analytics for Real-Time Scoring of Cross-Channel Transactional

Fraud”. In: Financial Cryptography and Data Security - 20th International Conference, FC 2016, Christ
Church, Barbados, February 22-26, 2016, Revised Selected Papers. Vol. 9603. Lecture Notes in Computer

Science. Springer, 2016, pp. 22–40. doi: 10.1007/978-3-662-54970-4_2.

[46] Foivi Mouzakiti. “Cooperation between Financial Intelligence Units in the European Union:

Stuck in the middle between the General Data Protection Regulation and the Police Data

Protection Directive”. In: New Journal of European Criminal Law 11.3 (2020), pp. 351–374. doi:

10.1177/2032284420943303.

[47] Transactie Monitoring Nederland. TMNL in brief. July 2024. url: https://tmnl.nl/en/about-
tmnl/tmnl-in-brief/ (visited on 07/01/2024).

[48] NOS. “Autoriteit Persoonsgegevens kritisch over database betaalgegevens: ‘Bancair sleepnet’”. nl.

In: NOS Nieuws (Oct. 21, 2022). url: https://nos.nl/l/2449281 (visited on 07/01/2024).

[49] Célio Porsius Martins. “Private cycle detection in financial transactions”. English. MA thesis. Delft:

Delft University of Technology, Jan. 2023. (Visited on 02/09/2024).

[50] Xiafei Qiu et al. “Real-time constrained cycle detection in large dynamic graphs”. en. In: Proceedings
of the VLDB Endowment 11.12 (Aug. 2018), pp. 1876–1888. issn: 2150-8097. doi: 10.14778/3229863.
3229874. (Visited on 02/12/2024).

[51] Jian Ren and Jie Wu. “Survey on anonymous communications in computer networks”. In: Computer
Communications 33.4 (2010), pp. 420–431. issn: 0140-3664. doi: 10.1016/j.comcom.2009.11.009.

[52] M Salomon. Illicit Financial Flows to and from 148 Developing Countries: 2006-2015. Washington, DC,

Jan. 2019. url: https://gfintegrity.org/report/2019-iff-update/ (visited on 06/13/2024).

[53] Oliver Schirokauer, Damian Weber, and Thomas Denny. “Discrete logarithms: The effectiveness of

the index calculus method”. In: Algorithmic Number Theory. Ed. by Henri Cohen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1996, pp. 337–361. isbn: 978-3-540-70632-8.

https://www.thomsonreuters.com/en/press-releases/2017/october/thomson-reuters-2017-global-kyc-surveys-attest-to-even-greater-compliance-pain-points.html
https://www.thomsonreuters.com/en/press-releases/2017/october/thomson-reuters-2017-global-kyc-surveys-attest-to-even-greater-compliance-pain-points.html
https://www.thomsonreuters.com/en/press-releases/2017/october/thomson-reuters-2017-global-kyc-surveys-attest-to-even-greater-compliance-pain-points.html
https://doi.org/10.1109/BigData.2013.6691683
https://doi.org/10.1353/jod.2018.0006
https://doi.org/10.1353/jod.2018.0006
https://doi.org/10.5281/ZENODO.56210
https://eprint.iacr.org/2024/349
https://doi.org/10.1016/j.ribaf.2016.07.024
https://doi.org/10.1007/978-3-662-54970-4_2
https://doi.org/10.1177/2032284420943303
https://tmnl.nl/en/about-tmnl/tmnl-in-brief/
https://tmnl.nl/en/about-tmnl/tmnl-in-brief/
https://nos.nl/l/2449281
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.1016/j.comcom.2009.11.009
https://gfintegrity.org/report/2019-iff-update/

References 35

[54] Adi Shamir. “How to share a secret”. In: Commun. ACM 22.11 (Nov. 1979), pp. 612–613. issn:

0001-0782. doi: 10.1145/359168.359176.

[55] Nigel P Smart. Cryptography: An Introduction. en. 3rd ed. Maidenhead, England: McGraw Hill

Higher Education, Sept. 2002.

[56] Michele Starnini et al. “Smurf-Based Anti-money Laundering in Time-Evolving Transaction

Networks”. en. In: Machine Learning and Knowledge Discovery in Databases. Applied Data Science
Track. Ed. by Yuxiao Dong et al. Vol. 12978. Series Title: Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2021, pp. 171–186. doi: 10.1007/978-3-030-86514-6_11.
(Visited on 02/19/2024).

[57] Statista. Europe: number of banks by country 2024. en. Accessed: 2024-2-21. 2024. url: https:
//www.statista.com/statistics/940867/number-of-banks-in-europe-by-country/.

[58] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal on computing 1.2

(1972), pp. 146–160.

[59] S. Toueg. An All-pairs Shortest Path Distributed Algorithm. IBM RC. IBM Thomas J. Watson Research

Division, 1980.

[60] Benjámin Villányi. Money Laundering: History, Regulations, and Techniques. Apr. 2021. doi: 10.1093/
acrefore/9780190264079.013.708.

[61] Marc Vorstermans. “Secure Graph Algorithms and Oblivious Data Structures for Multiparty

Computation”. English. MA thesis. Eindhoven: Eindhoven University of Technology, Mar. 2023.

[62] Stefan Wüller et al. “Using Secure Graph Algorithms for the Privacy-Preserving Identification of

Optimal Bartering Opportunities”. In: Proceedings of the 2017 on Workshop on Privacy in the Electronic
Society. CCS ’17. ACM, Oct. 2017. doi: 10.1145/3139550.3139557. url: http://dx.doi.org/10.
1145/3139550.3139557.

[63] Andrew C. Yao. “Protocols for secure computations”. In: 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982). 1982, pp. 160–164. doi: 10.1109/SFCS.1982.38.

https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-030-86514-6_11
https://www.statista.com/statistics/940867/number-of-banks-in-europe-by-country/
https://www.statista.com/statistics/940867/number-of-banks-in-europe-by-country/
https://doi.org/10.1093/acrefore/9780190264079.013.708
https://doi.org/10.1093/acrefore/9780190264079.013.708
https://doi.org/10.1145/3139550.3139557
http://dx.doi.org/10.1145/3139550.3139557
http://dx.doi.org/10.1145/3139550.3139557
https://doi.org/10.1109/SFCS.1982.38

	Preface
	Summary
	Introduction
	Emergence of Money Laundering
	Transaction Graphs
	Research Objective
	Contribution
	Outline

	Preliminaries
	Graph Theory
	Cycle Detection Algorithms
	Shortest Path Algorithms
	Decentralised Networks
	Security Model
	Multi-Party Computation
	Number Theory
	Cryptographic Primitives

	Related Work
	Private Cycle Detection in Financial Transactions
	Pattern Matching
	Graph Algorithms with MPC
	Secure Shortest Path Algorithms
	Anomaly Detection
	Topology Hiding Communication

	Decentralised Cycle Detection
	Protocol Architecture
	Initiating Instances
	Propagating Forward Messages
	Echoing Responses
	Tracing Cycles

	Analysis
	Security Analysis
	Complexity Analysis
	Performance Evaluation

	Discussion
	Revisited Research Objective
	Future Work
	Concluding Remarks

	References

