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A well-known conjecture, often attributed to Ryser, states 
that the cover number of an r-partite r-uniform hypergraph is 
at most r− 1 times larger than its matching number. Despite 
considerable effort, particularly in the intersecting case, this 
conjecture remains wide open, motivating the pursuit of 
variants of the original conjecture. Recently, Bustamante and 
Stein and, independently, Király and Tóthmérész considered 
the problem under the assumption that the hypergraph is t-
intersecting, conjecturing that the cover number τ(H) of such 
a hypergraph H is at most r−t. In these papers, it was proven 
that the conjecture is true for r ≤ 4t −1, but also that it need 
not be sharp; when r = 5 and t = 2, one has τ(H) ≤ 2.
We extend these results in two directions. First, for all t ≥ 2
and r ≤ 3t − 1, we prove a tight upper bound on the cover 
number of these hypergraphs, showing that they in fact satisfy 
τ(H) ≤ �(r − t)/2� + 1. Second, we extend the range of t for 
which the conjecture is known to be true, showing that it holds 
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for all r ≤ 36
7 t −5. We also introduce several related variations 

on this theme. As a consequence of our tight bounds, we 
resolve the problem for k-wise t-intersecting hypergraphs, for 
all k ≥ 3 and t ≥ 1. We further give bounds on the cover 
numbers of strictly t-intersecting hypergraphs and the s-cover 
numbers of t-intersecting hypergraphs.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We define an r-uniform hypergraph H to be r-partite if one can partition the vertex 
set into r parts, say V (H) = P1 � · · · � Pr, such that for all e ∈ E(H) and all j ∈ [r], we 
have |e ∩Pj | = 1. For 1 ≤ t ≤ r−1, an r-uniform hypergraph is t-intersecting if |e ∩f | ≥ t

for all e, f ∈ E(H). We will refer to r-uniform r-partite t-intersecting hypergraphs as 
(r, t)-graphs throughout.

For an r-uniform hypergraph H, a set of vertices C ⊂ V (H) is a cover of the hyper-
graph if C ∩ e �= ∅ for all e ∈ E(H). The cover number of the hypergraph, denoted τ(H), 
is the smallest cardinality of a cover for the hypergraph. Our goal is to bound the cover 
numbers of (r, t)-graphs.

Definition 1.1. We define the following extremal function:

Ryser(r, t) = max {τ(H) : H is an (r, t)-graph}.

The problem is motivated by an old unsolved conjecture of Ryser from around 1970, 
first appearing in the PhD thesis of his student Henderson [20] (see [4] for more on 
the history of this conjecture), which claims that the cover number of any r-uniform 
r-partite hypergraph H satisfies τ(H) ≤ (r − 1)ν(H). Here, ν(H) denotes the matching 
number of the hypergraph, that is, the size of the largest set of pairwise disjoint edges. 
When r = 2, this is a statement about bipartite graphs, and is equivalent to the classic 
theorem of König [25]. Although Ryser’s Conjecture has attracted significant attention 
over the years, the only other resolved case is r = 3. This was proven via topological 
methods by Aharoni [3], with the extremal hypergraphs classified by Haxell, Narins and 
Szabó [18].

In this latter result, it was shown that the extremal hypergraphs with ν(H) = ν ≥ 2
can essentially be decomposed into ν extremal intersecting hypergraphs. Thus, much 
research in this direction has focused on intersecting hypergraphs.5 Here we have ν(H) =
1, and Ryser’s Conjecture asserts Ryser(r, 1) ≤ r− 1. Further motivation for considering 

5 Although recent constructions of Abu-Khazneh [1], for ν = 2 and r = 4, and Bishnoi and Pepe [5], for 
ν ≥ 2 and all r ≥ 4 with r − 1 a prime power, show that one cannot simply reduce the general case to the 
intersecting one.

http://creativecommons.org/licenses/by/4.0/
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the intersecting case comes from a connection with a conjecture of Gyárfás [17] which 
states that the vertices of any r-edge-coloured clique can be covered by at most r − 1
monochromatic trees. Indeed, this conjecture in the setting of coloured complete graphs 
is in fact equivalent to Ryser’s conjecture for intersecting hypergraphs, see e.g. [22]. 
Not much more is known even in this simpler setting; Tuza [30] proved the conjecture 
for r ≤ 5, but it remains otherwise open. The apparent difficulty of this conjecture is 
perhaps explained by the abundance of extremal constructions: the classic example of 
truncated projective planes shows Ryser(r, 1) ≥ r − 1 whenever r − 1 is a prime power, 
while Abu-Khazneh, Barát, Pokrovskiy and Szabó [2] construct exponentially (in 

√
r) 

many non-isomorphic minimal examples whenever r− 2 is a prime power. For general r, 
Haxell and Scott [19] construct nearly-extremal intersecting hypergraphs; more precisely, 
they show Ryser(r, 1) ≥ r − 4 for all r large enough.

This led Bustamante and Stein [6] and, independently, Király and Tóthmérész [23]
to investigate what occurs when we impose the stricter condition of the hypergraph H
being t-intersecting. In this case, any subset of r − t + 1 vertices from an edge must 
form a cover, and so we trivially have τ(H) ≤ r − t + 1. While one can construct r-
uniform t-intersecting hypergraphs attaining this bound, it was conjectured that, as in 
Ryser’s Conjecture, one can do better when the hypergraph is also r-partite; that is, 
when considering (r, t)-graphs.

Conjecture 1.2 (Bustamante–Stein [6], Király–Tóthmérész [23]). For all 1 ≤ t ≤ r − 1, 
we have

Ryser(r, t) ≤ r − t.

Note that while Ryser’s Conjecture for intersecting hypergraphs is a special case 
(t = 1), it in fact implies Conjecture 1.2. Indeed, Ryser(r, t) ≤ Ryser(r − t + 1, 1) since 
deleting t − 1 parts and removing the deleted vertices from each edge leaves us with an 
(r − t + 1, 1)-graph, which, by Ryser’s Conjecture, should have a cover of size at most 
r − t.

Therefore, one might hope to be able to make progress on Conjecture 1.2 for larger 
values of t, and indeed, results have been obtained when t is linear in r. Bustamante 
and Stein [6] proved the conjecture for r ≤ 2t + 2, with Király and Tóthmérész [23]
extending this to r ≤ 4t −1. With regards to lower bounds on Ryser(r, t), the conjecture 
is trivially tight for t = r − 1, and Bustamante and Stein [6] showed that it is also 
tight for t = r − 2. However, they demonstrated that it is not always best possible 
by proving Ryser(5, 2) = 2. More generally, they proved Ryser(r, t) ≥ Ryser(� rt �, 1) by 
observing that replacing every vertex of an (r′, 1)-graph with a set of t vertices gives 
an (r′t, t)-graph. Given the aforementioned results on Ryser’s conjecture, this shows 
Ryser(r, t) ≥ �r/t� − 1 for many pairs (r, t), and Bustamante and Stein suggested this 
lower bound should be closer to the truth than the upper bound of Conjecture 1.2.
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1.1. Our results

Our first result shows that the lower bound of Bustamante and Stein is, in fact, 
far from optimal. Indeed, we provide a construction, valid for all t and r, that greatly 
improves on the previous lower bound when t ≥ 3.

Theorem 1.3. For all 1 ≤ t ≤ r we have

Ryser(r, t) ≥
⌊
r − t

2

⌋
+ 1.

We next prove a matching upper bound when t is large, showing that when r is less 
than thrice t, the true value of Ryser(r, t) is half the bound of Conjecture 1.2.

Theorem 1.4. For t, r ∈ N such that t + 1 ≤ r ≤ 3t − 1, we have

Ryser(r, t) =
⌊
r − t

2

⌋
+ 1.

Theorem 1.3 gives the lower bound needed for Theorem 1.4, and hence all that is 
required is a matching upper bound. In fact, using different arguments, we are able to 
prove a few upper bounds on Ryser(r, t). The theorem below collects the best upper 
bounds (excluding the trivial Ryser(r, t) ≤ r − t + 1) that we have in various ranges of 
the parameters.

Theorem 1.5. Let 1 ≤ t ≤ r. Then

Ryser(r, t) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
r−t
2
⌋

+ 1 if t ≤ r ≤ 3t− 1,
2r − 5t + 2 if 3t ≤ r ≤ 26t

7 ,⌊ 9r−14t
8

⌋
+ 2 if 26t

7 ≤ r ≤ 5t− 2,⌊ 15r−44t
8

⌋
+ 3 if 5t− 1 ≤ r ≤ 52t−13

9 .

In particular, the first case of the theorem gives the upper bound needed for Theo-
rem 1.4. To visualise our results, it helps to focus on the asymptotics when t is linear 
in r. To this end, we define the function f(α) := lim

r→∞
Ryser(r,αr)

r . Theorem 1.5 can then 

be seen as a piecewise linear upper bound on f(α). Fig. 1 summarises our knowledge of 
f(α): we know it exactly for α ≥ 1

3 , while we can still strongly restrict f(α) for smaller 
values of α.

In particular, we extend the results of Bustamante and Stein [6] and Király and 
Tóthmérész [23] by showing Conjecture 1.2 continues to hold for smaller values of t, and 
that it is not tight in most of these cases.
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Fig. 1. The asymptotics of Ryser(r, αr).

Corollary 1.6. Conjecture 1.2 holds for all but eight pairs6 (r, t) satisfying r ≤ 36t−17
7 . 

Furthermore, the conjecture is not tight (that is, Ryser(r, t) ≤ r − t − 1) for all but 50
pairs where t + 3 ≤ r ≤ 36t−25

7 .

The value of 36t−17
7 comes from comparing when the upper bound on Ryser(r, t) in 

the fourth range of Theorem 1.5 falls strictly below r − t + 1, using the fact that the 
cover number must be an integer. This comparison describes exactly when our bounds 
become trivial for all large values of r and t. However, for small values of r and t, we may 
fall in other ranges and so have to check a finite number of cases for exceptions. In doing 
so, we note that for certain values of (r, t) we must appeal to the previously mentioned 
result of Király and Tóthmérész [23] who proved the conjecture whenever r ≤ 4t − 1. 
The range and exceptions for when the conjecture is not tight are also calculated in a 
similar manner, using Theorem 1.5.

These results beg the question of what the true value of Ryser(r, t) should be; we 
discuss this further in Section 3, and propose a new conjecture in Conjecture 3.1.

1.2. k-wise intersecting hypergraphs

In the above results, we require that all pairwise intersections of the edges of the 
hypergraphs have size at least t. A natural stronger condition is to impose the same 
restriction on all k-wise intersections of edges, rather than just pairwise. This setting 
has often been studied in the extremal combinatorics literature. Frankl [11] first studied 
such hypergraphs, determining the maximum number of edges possible when all k-wise 
intersections are non-empty. Sós [28] then raised the problem of finding the largest hy-
pergraphs where the sizes of all k-wise intersections lie in some set L, and various results 

6 The exceptional pairs, for which Conjecture 1.2 remains open, are (12, 3), (13, 3), (16, 4), (17, 4),
(18, 4), (22, 5), (23, 5) and (28, 6).
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in this direction were obtained by Füredi [13], Vu [31,32], Grolmusz [15], Grolmusz and 
Sudakov [16], Füredi and Sudakov [14] and Szabó and Vu [29].

We say a hypergraph H is k-wise t-intersecting if, for any edges e1, e2, . . . , ek ∈ E(H), 
we have |∩k

i=1ei| ≥ t. Following Ryser’s Conjecture, we study how much smaller a cover 
one is guaranteed to find in r-uniform r-partite hypergraphs satisfying the more re-
strictive condition of being k-wise t-intersecting. In a stroke of serendipity, the range 
of intersection sizes for which Theorem 1.4 holds is precisely what is needed to give an 
exact answer in this setting.

Theorem 1.7. Let H be an r-uniform r-partite k-wise t-intersecting hypergraph. If k ≥ 3
and t ≥ 1, or k = 2 and t > r

3 , then

τ(H) ≤
⌊
r − t

k

⌋
+ 1,

and this bound is best possible.

Organisation of the paper We prove the above theorems in the following section: the 
lower bound of Theorem 1.3 is derived in Section 2.1, the upper bounds of Theorem 1.5
are proven in Section 2.2, and Theorem 1.7 is deduced in Section 2.3. Thereafter we 
suggest several directions for further research in Section 3 by presenting initial results 
on variants of the problem where we require the hypergraphs to be strictly t-intersecting 
or we try to cover each edge of an (r, t)-graph at least s times.

2. Proofs of the main results

In this section we prove our main results, Theorems 1.3, 1.5 and 1.7, by establishing 
lower (Section 2.1) and upper (Section 2.2) bounds on the extremal function Ryser(r, t), 
and then extending them to k-wise t-intersecting hypergraphs (Section 2.3).

2.1. Lower bound construction

To obtain the lower bound, and thereby prove Theorem 1.3, we need to construct 
(r, t)-graphs with large cover numbers. The hypergraphs we consider are of the following 
form.

Definition 2.1. For 0 ≤ � ≤ r − 1, we define Hr
� to be the following r-uniform r-partite 

hypergraph. Let m =
(

r
r−�

)
and fix some ordering 

( [r]
r−�

)
= {S1, . . . , Sm} of the (r − �)-

subsets of [r]. We define

V (Hr
� ) := {0, 1, . . . ,m} × [r] and E(Hr

� ) := {ei : i ∈ [m]},

where ei = {(0, j) : j ∈ Si} ∪ {(i, j) : j ∈ [r] \ Si}, for each i ∈ [m].
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Note that Hr
� is indeed r-partite with parts Pj = {(i, j) : 0 ≤ i ≤ m} for 1 ≤ j ≤ r. 

We now show that choosing � appropriately gives a construction verifying Theorem 1.3.

Proposition 2.2. For 0 ≤ � ≤ � r−1
2 �, Hr

� is (r − 2�)-intersecting with τ(Hr
�) = � + 1.

Proof. To see that Hr
� is (r−2�)-intersecting, observe that each edge of Hr

� misses exactly 
� vertices from the set L0 = {(0, j) : j ∈ [r]}. It then follows that, for any two edges 
ei, ei′ ∈ E(Hr

� ), we have

|ei ∩ ei′ | ≥ |ei ∩ ei′ ∩ L0| ≥ |L0| − 2� = r − 2�.

We now establish the cover number of Hr
� . Assume for a contradiction that Hr

� has a 
cover C ⊂ V (Hr

� ) of size c ≤ �. First we show that we may assume that C ⊂ L0. Indeed, 
if v = (i, j) ∈ C for some i ≥ 1, then the only edge that could contain v is ei. If we 
replace v with any vertex in ei ∩ L0, the modified set C has not increased in size and 
still covers Hr

� .
Since |C| = c ≤ �, we have |L0 \ C| ≥ r − � and hence there exists an i∗ ∈ [m] such 

that {0} ×Si∗ ⊆ L0 \C. Then ei∗ ∩C = ∅, contradicting the fact that C is a cover. Thus 
τ(Hr

� ) ≥ � +1. To see we have equality, note that any subset of � +1 vertices in L0 forms 
a cover. �

The key property needed in the above proof is that, for each subset S ⊆ L0 of size 
r−�, there is an edge of Hr

� intersecting L0 exactly at the vertices of S. Our construction 
is edge-minimal with respect to this key property, and further ensures that all vertices 
not in L0 have degree at most one, leading to an easy proof of the cover number.

However, as long as the key property is maintained, there is great flexibility in how 
the rest of the hypergraph is constructed. For instance, one can instead make it vertex-
minimal, having parts of size � +1 rather than 

(
r

r−�

)
+1, so that each part Pj also forms 

a minimum vertex cover. We omit the details of this construction for the sake of brevity, 
as we already have all we need to prove Theorem 1.3.

Proof of Theorem 1.3. Set � = � r−t
2 �. By Proposition 2.2, Hr

� is (r − 2�)-intersecting, 
and as r − 2� ≥ t, it follows that Hr

� is an (r, t)-graph. The proposition further asserts 
that τ(Hr

� ) = � + 1, and thus

Ryser(r, t) ≥ τ(Hr
� ) =

⌊
r − t

2

⌋
+ 1. �

2.2. Upper bounds

In this section we prove Theorem 1.5. These upper bounds are derived from a sequence 
of results obtained by considering configurations of two or three edges of the hypergraph. 
Before proceeding, we fix some notation that will be useful in what follows.
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Definition 2.3. Let H be an r-uniform r-partite hypergraph with parts Pj for 1 ≤ j ≤ r. 
Suppose that e1, . . . , ek ∈ E(H). Then for v ∈ V (H), we define

d(v; e1, . . . , ek) = |{i ∈ [k] : v ∈ ei}|

to be the degree of v with respect to the k edges e1, . . . , ek. Also, given a vertex subset 
C ⊆ V (H) not wholly containing any part Pj , we define

ΔH(C; e1, . . . , ek) =
r∑

j=1
max

v∈Pj\C
d(v; e1, . . . , ek)

to be the maximum sum of degrees (with respect to e1, . . . , ek) when we take one vertex 
from each part and avoid C.

The utility of this definition comes from the following easy observation, which we use 
repeatedly in the subsequent proofs.

Observation 2.4. Suppose that H is an r-uniform r-partite hypergraph, C ⊂ V (H) and 
e1, . . . , ek ∈ E(H) are edges of H. Now if f ∈ E(H) and f ∩ C = ∅, we have

k∑
i=1

|f ∩ ei| ≤ ΔH(C; e1, . . . , ek). (1)

Consequently, if H is t-intersecting and ΔH(C; e1, . . . , ek) ≤ kt − 1, then C is a cover 
for H. Indeed, there can be no f ∈ E(H) disjoint from C, as by (1) and the pigeonhole 
principle, there would be some i ∈ [k] for which |ei ∩ f | ≤ t − 1, contradicting H being 
t-intersecting.

Armed with this observation, we can prove upper bounds on the cover numbers of 
(r, t)-graphs. In the following lemma, we begin by constructing a cover consisting of 
vertices lying in two edges of such a hypergraph.

Lemma 2.5. Let H be an (r, t)-graph, let e1, e2 ∈ E(H), and set t′ = |e1 ∩ e2| ≥ t. Then

τ(H) ≤

⎧⎨
⎩
⌊
r−t′

2

⌋
+ t′ − t + 1 if r − 2t + 1 ≤ t′ ≤ r,

2r − 4t− t′ + 2 if t ≤ t′ ≤ r − 2t.

Proof. Let the parts of H be Pj for j ∈ [r]. If t′ ≥ r− 2t + 1 then s = � r−t′

2 �+ t′ − t + 1
satisfies 1 ≤ s ≤ t′. We claim that an arbitrary set C1 of s vertices from e1 ∩ e2 is a 
cover. Indeed,
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ΔH(C1; e1, e2) =
∑
j∈[r]:

e1∩Pj=e2∩Pj ,
e1∩Pj 	⊆C1

2+
∑
j∈[r]:

e1∩Pj 	=e2∩Pj

1 = 2|(e1∩e2)\C1|+r−t′ = r+t′−2s ≤ 2t−1,

and thus the conclusion follows from Observation 2.4.
Now consider the case where t′ ≤ r − 2t. Without loss of generality, we may assume 

the intersection of e1 and e2 is contained in the first t′ parts, labelling the vertices of 
e1 as {u1, . . . , ur} and of e2 as {u1, . . . , ut′ , vt′+1, . . . , vr}, where uj , vj ∈ Pj for all j. 
Letting

C2 = {u1, . . . , ut′} ∪
r−2t+1⋃
j=t′+1

{uj , vj},

we have ΔH(C2; e1, e2) = 2t − 1. By Observation 2.4, we can again deduce that τ(H) ≤
|C2| = 2(r − 2t + 1) − t′ = 2r − 4t − t′ + 2. �

Lemma 2.5 will suffice to prove the first two parts of Theorem 1.5. For the latter 
parts, we shall need to consider covers consisting of vertices lying in three edges instead. 
Before proceeding, though, we present a reformulation of Lemma 2.5 that will be more 
convenient for later proofs.

Corollary 2.6. Let η ∈ N and let H be an (r, t)-graph such that τ(H) ≥ η + 1. Then, for 
all e, f ∈ E(H), we have that either

(i) |e ∩ f | ≥ 2η + 2t − r, or
(ii) |e ∩ f | ≤ 2r − 4t − η + 1.

Proof. Let e, f ∈ E(H) be an arbitrary pair of edges of H and take t′ = |e ∩ f |. If 
t′ ≥ r− 2t + 1, then we claim that in fact t′ ≥ 2η+ 2t − r. Indeed, if t′ ≤ 2η+ 2t − r− 1, 
then Lemma 2.5 implies that

τ(H) ≤
⌊
r − t′

2

⌋
+ t′ − t + 1 ≤ r + t′

2 − t + 1 ≤ η + 1
2 ,

a contradiction.
Hence, if (i) is not satisfied for t′ = |e ∩ f |, we must have t′ ≤ r − 2t. By Lemma 2.5, 

it follows that η + 1 ≤ τ(H) ≤ 2r − 4t − t′ + 2, from which we deduce that t′ ≤
2r − 4t − η + 1. �

The following lemma is the analogue of Lemma 2.5 when constructing covers from 
vertices that lie in three fixed edges, as opposed to only using two edges.

Lemma 2.7. Let r ≥ 3t, let H be an (r, t)-graph, and let e1, e2, e3 ∈ E(H). Set t1 =
|e1 ∩ e2 ∩ e3| and t2 = |e1 ∩ e2 \ e3| + |e1 ∩ e3 \ e2| + |e2 ∩ e3 \ e1|. Then
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τ(H) ≤

⎧⎪⎪⎨
⎪⎪⎩

1
3 (2t1 + t2 + r − 3t + 3) if r − 3t + 1 + t2 ≤ t1 ≤ r,

r − 3t + 1 + t2 if r − 3t + 1 − t2 ≤ t1 ≤ r − 3t + 1 + t2,

3r − 2t1 − t2 − 9t + 3 if 0 ≤ t1 ≤ r − 3t + 1 − t2.

Proof. Observe that t1 counts the number of vertices that are in all three edges, while 
t2 counts the number of vertices in precisely two of the three edges. Let T = e1 ∩ e2 ∩ e3
be the set of t1 vertices contained in all three edges and let D be the set of t2 vertices 
contained in exactly two of the three edges. When building a transversal of the parts that 
intersects e1, e2 and e3 as much as possible, it is optimal to choose as many vertices from 
T as possible, followed by vertices from D. Therefore, to minimise ΔH(C; e1, e2, e3), we 
will choose C so as to first block the vertices in T , followed by those in D.

Let us first consider the case when t1 ≥ r − 3t + 1 + t2. Setting s1 = t1 −⌊ 1
3 (t1 − t2 − r + 3t− 1)

⌋
≤ 1

3 (2t1 + t2 + r − 3t + 3), note that 1 ≤ s1 ≤ t1. Taking 
C1 to be an arbitrary subset of T of size s1, we have

ΔH(C1; e1, e2, e3) = 3|(e1 ∩ e2 ∩ e3) \ C1| + 2t2 + (r − t1 − t2) ≤ 3t− 1,

since we cannot select a vertex of e1 ∪ e2 ∪ e3 in the s1 parts spanned by C1. It thus 
follows from Observation 2.4 that C1 is a cover for H, giving the claimed bound on τ(H).

Next, suppose r−3t +1 ≤ t1 ≤ r−3t +1 + t2, and set s2 = r−3t +1 + t2 − t1, noting 
that 0 ≤ s2 ≤ t2. Take C2 = T ∪ S2, where S2 is a subset of D of size s2. Consider a 
transversal of the parts that is disjoint from C2. There are t2−s2 parts (those intersecting 
D \ S2) in which the transversal could intersect up to two of the three edges e1, e2 and 
e3. In all other parts the transversal can intersect at most one of the three edges and 
there are t1 parts (those that intersect T ) in which the transversal must be disjoint from 
all three edges. Thus

ΔH(C2; e1, e2, e3) = 2(t2 − s2) + (r − t1 − (t2 − s2)) = 3t− 1,

and so, by Observation 2.4, C2 covers H, showing τ(H) ≤ |C2| = r − 3t + 1 + t2.
In the range r− 3t +1 − t2 ≤ t1 ≤ r− 3t, set s3 = r− 3t +1 − t1, whence 1 ≤ s3 ≤ t2. 

We define D′ to be the t2 vertices which are contained in exactly one of the edges e1, e2
and e3 and lie in parts which intersect D. Now take C3 = T ∪ D ∪ S3 where S3 is an 
arbitrary subset of D′ of size s3. A transversal disjoint from C3 can then only meet the 
edges e1, e2 and e3 in the t2 − s3 vertices of D′ \ S3, as well as in the r − t1 − t2 parts 
where the three edges are pairwise disjoint. We therefore have

ΔH(C3; e1, e2, e3) = (t2 − s3) + (r − t1 − t2) = 3t− 1,

and so Observation 2.4 implies C3 is a cover of the stated size.
Finally, we are left with the case when t1 ≤ r − 3t + 1 − t2, for which we set s4 =

r − 3t + 1 − t1 − t2. Take C4 = T ∪ D ∪ D′ ∪ S4, where D and D′ are defined as 
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above and S4 consists of the 3s4 vertices of e1 ∪ e2 ∪ e3 from s4 of the parts where the 
edges e1, e2 and e3 are pairwise disjoint. Then any transversal disjoint from C4 can only 
meet the three edges in the r − t1 − t2 − s4 parts not spanned by C4, from which it 
follows that ΔH(C4; e1, e2, e3) = 3t − 1. By Observation 2.4, C4 is a cover of H, and so 
τ(H) ≤ |C4| = t1 + 2t2 + 3s4 = 3r − 2t1 − t2 − 9t + 3. �

By applying Lemma 2.7 in conjunction with Corollary 2.6, we will prove the following 
upper bounds on the cover numbers of (r, t)-graphs.

Proposition 2.8. For all t ≥ 1 and r ≥ 3t, we have

Ryser(r, t) ≤
{⌈ 5r−10t+2

4
⌉

+
⌈ 6t−r−1

8
⌉

if 3t ≤ r ≤ 5t− 2,⌈ 3r−1
4

⌉
+
⌈ 9r−44t+13

8
⌉

if 5t− 1 ≤ r ≤ 52t−13
9 .

Before proving this proposition, we observe that we have the necessary bounds to 
establish our main result.

Proof of Theorem 1.5. We prove the theorem by induction on r−t. For the base case, we 
have t = r. Trivially, an (r, r)-graph can have at most one edge, and thus can be covered 
by a single vertex. Thus Ryser(r, r) = 1, as stated in the first case of the theorem.

For the induction step, suppose r − t ≥ 1, and let H be an (r, t)-graph of maximum 
cover number, so that Ryser(r, t) = τ(H). As previously stated, we shall use Lemma 2.5
to prove the first two cases of the theorem. To this end, let e1, e2 ∈ E(H) be a pair of 
edges with the smallest intersection. We may assume that |e1 ∩ e2| = t, as otherwise 
H is in fact an (r, t + 1)-graph, and we are done by induction (as our upper bound on 
Ryser(r, t) is decreasing in t).

Applying Lemma 2.5 with the edges e1 and e2, we have t′ = t, from which it follows 
that

Ryser(r, t) = τ(H) ≤
{⌊

r−t
2
⌋

+ 1 if r − 2t + 1 ≤ t ≤ r,

2r − 5t + 2 if t ≤ r − 2t.

Simplifying the ranges for which these bounds hold, we see that the first is valid when 
r ≤ 3t − 1, as required for the first case of the theorem, while the second bound above 
is valid provided r ≥ 3t.

The latter two cases of the theorem are direct consequences of Proposition 2.8, which 
we can apply whenever r ≥ 3t. To simplify the bounds, we estimate the ceiling terms, 
obtaining

⌈
5r − 10t + 2

4

⌉
+

⌈
6t− r − 1

8

⌉
≤ 5r − 10t + 5

4 + 6t− r + 6
8 = 9r − 14t

8 + 2

and
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⌈
3r − 1

4

⌉
+

⌈
9r − 44t + 13

8

⌉
≤ 3r + 2

4 + 9r − 44t + 20
8 = 15r − 44t

8 + 3.

That is, Proposition 2.8 implies that whenever r ≥ 3t, we have

Ryser(r, t) ≤
{

9r−14t
8 + 2 if 3t ≤ r ≤ 5t− 2,

15r−44t
8 + 3 if 5t− 1 ≤ r ≤ 52t−13

9 .

This matches the latter two cases of Theorem 1.5. Finally, we note that the bound 
9r−14t

8 + 2 improves the earlier bound of 2r − 5t + 2 whenever r ≥ 26
7 t, justifying the 

endpoints of the ranges of the second and third cases in the theorem. �
All that remains is the proof of Proposition 2.8, which we delay no further.

Proof of Proposition 2.8. In the first case, let r and t be such that 3t ≤ r ≤ 5t − 2, and 
define

x =
⌈

5r − 10t + 2
4

⌉
and z =

⌈
6t− r − 1

8

⌉
.

Note that

1 ≤ z ≤ t and 0 ≤ x ≤ r − t, (2)

using here that 3t ≤ r ≤ 5t − 2. Suppose for contradiction that H is an (r, t)-graph with 
τ(H) ≥ x + z + 1. Applying Corollary 2.6, any pair of edges e, f ∈ E(H) must satisfy

|e ∩ f | ≥ 2x + 2z + 2t− r or |e ∩ f | ≤ 2r − 4t− x− z + 1. (3)

Now take e1, e2 ∈ E(H) to be two edges such that |e1 ∩ e2| = t (again, we may assume 
such a pair exists, as otherwise H is an (r, t + 1)-graph and we obtain a stronger bound 
on τ(H)). Let Z ⊆ e1 ∩ e2 be a set of z vertices and X ⊆ e1 \ e2 a set of x vertices, 
noting that this is possible due to (2). We take Y = X ∪ Z and note that Y intersects 
both e1 and e2 (as z ≥ 1) and is not a cover as it has size exactly x + z and we assumed 
that τ(H) ≥ x + z + 1. Therefore, there exists an edge e3 ∈ E(H) such that e3 ∩ Y = ∅. 
We define a, b, c ∈ N as follows:

a = |e1 ∩ e2 \ e3|, b = |e1 ∩ e3 \ e2| and c = |e2 ∩ e3 \ e1|.

Observe that |e1 ∩ e2 ∩ e3| = t − a. Using the fact that e3 ∩ Y = ∅, we can derive some 
bounds on the parameters a, b and c. Indeed, since e3 is disjoint from Z, a ≥ z. As 
|e1∩e3| = b +(t −a) ≥ t, we must further have b ≥ a, while considering |e2∩e3| similarly 
shows c ≥ a. Finally, as e3 is disjoint from X, we must have b ≤ r − t − x. Putting this 
all together, we have
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z ≤ a ≤ b ≤ r − t− x and a ≤ c. (4)

A further restriction on the parameters comes from considering |e2∩ e3| = (t −a) + c. 
We have from (4) that b ≥ z and, since H is r-partite, in each of the b parts which 
contain vertices of e1 ∩ e3 \ e2, there are no vertices which lie in e2 ∩ e3. Moreover e3 and 
e2 are also disjoint in the z parts which host vertices of Z. Thus we can conclude that

t + c− a = |e2 ∩ e3| ≤ r − b− z ≤ r − 2z.

Due to the fact that

2x + 2z + 2t− r ≥ 5r − 6t + 3
4 >

5r − 6t + 1
4 ≥ r − 2z, (5)

it follows from (3) that we must in fact have

t + c− a = |e2 ∩ e3| ≤ 2r − 4t− x− z + 1. (6)

We now look to apply Lemma 2.7 to the three edges e1, e2 and e3 to show that τ(H) ≤
x +z, thus reaching a contradiction. To this end, note that in the notation of Lemma 2.7, 
we have t1 = t − a and t2 = a + b + c. First suppose that our parameters fall into the 
first range given by the upper bound in Lemma 2.7. That is, t −a ≥ r−3t +1 +a + b + c

or, rearranging,

2a + b + c ≤ 4t− r − 1. (7)

We then have that

τ(H) ≤ r + b + c− a− t + 3
3 ≤ 3t− 3a + 2

3 ≤ 3t + 2
3 ≤ x + z, (8)

using (7) in the second inequality, the fact that a ≥ 0 in the third and the fact that 
r ≥ 3t in the last inequality.

Now we turn to the second case of Lemma 2.7 and observe that the given bound is

τ(H) ≤ r − 3t + 1 + a + b + c

≤ r − 3t + 1 + a + b + (2r − 5t− x− z + 1 + a)

≤ 3r − 8t + 2 − x− z + 3b

≤ 3r − 8t + 2 − x− z + 3(r − t− x)

= 6r − 11t− 4x− z + 2,

where we used (6) to bound c in the second inequality, and the bounds a ≤ b and 
b ≤ r − t − x from (4) in the third and fourth inequalities respectively. One has that



14 A. Bishnoi et al. / Journal of Combinatorial Theory, Series A 179 (2021) 105366
5x + 2z ≥ 5
(

5r − 10t + 2
4

)
+ 2

(
6t− r − 1

8

)
≥ 6r − 11t + 2, (9)

and hence τ(H) ≤ x + z in this case too.
Finally, in the third case of Lemma 2.7, we have

τ(H) ≤ 3r − 11t + 3 + a− b− c ≤ 3r − 11t + 3 − a ≤ 3r − 11t + 3 − z,

using (4) to bound b, c ≥ a in the second inequality and a ≥ z in the last inequality. As

x + 2z ≥ 5r − 10t + 2
4 + 6t− r − 1

4 = r − t + 1
4 ≥ 3r − 11t + 3 (10)

for all r ≤ 5t − 2, we can conclude that τ(H) ≤ x + z in this case as well. Therefore, we 
have shown τ(H) ≤ x + z, providing the contradiction needed to complete the proof of 
the first bound.

The proof of the second bound is almost identical to that of the first and so we omit 
the details. The difference here comes as we define x and z as follows:

x =
⌈

3r − 1
4

⌉
and z =

⌈
9r − 44t + 13

8

⌉
.

The rest of the proof goes through verbatim and one simply has to check that the 
inequalities (2), (5), (8), (9) and (10) all hold. One has to use the fact that 5t − 1 ≤
r ≤ 52t−13

9 in order to prove (2), (5) and (8). The lower bound on r is necessary for (5)
to hold, whilst the upper bound on r is necessary so that the upper bound on z in (2)
always holds. Given this, we can again conclude τ(H) ≤ x + z. �
2.3. k-wise intersecting hypergraphs

As we shall show now, our exact results for Ryser(r, t) allow us to obtain tight bounds 
on the cover numbers of k-wise t-intersecting r-uniform r-partite hypergraphs.

Proof of Theorem 1.7. We prove the upper bound by induction on k. The base case, 
when k = 2 (and t > r

3 ), is the first case of Theorem 1.5.
For the induction step, we have k ≥ 3 and t ≥ 1. Given k−1 edges e1, . . . , ek−1 ∈ E(H), 

let U = ∩k−1
i=1 ei. The k-wise intersection condition implies that every edge meets U in at 

least t elements. Thus, if B is obtained by removing t − 1 elements from U , B must be 
a cover for H.

If there are k−1 edges whose intersection has size at most 
⌊
r−t
k

⌋
+ t, we are done. We 

may therefore assume H is (k − 1)-wise t′-intersecting, where t′ =
⌊
r−t
k

⌋
+ t + 1. Note 

that if k = 3, then

t′ =
⌊
r − t

⌋
+ t + 1 ≥ r + 2t

>
r
.
3 3 3
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Hence, by induction, τ(H) ≤
⌊
r−t′

k−1

⌋
+ 1. Define integers a, b such that 0 ≤ b ≤ k − 1

and r − t = ak + b and note that it follows from the definition of t′ that t′ = a + t + 1. 
We then have
⌊
r − t′

k − 1

⌋
+ 1 =

⌊
r − a− t− 1

k − 1

⌋
+ 1 =

⌊
a(k − 1) + b− 1

k − 1

⌋
+ 1 ≤ a + 1 =

⌊
r − t

k

⌋
+ 1,

completing the induction.
To finish, we show that the bound is best possible. Setting � =

⌊
r−t
k

⌋
, consider the 

hypergraph Hr
� from Definition 2.1. To see that Hr

� is k-wise t-intersecting, observe that 
each edge misses � vertices of the form (0, j). Hence, in the intersection of k edges, we 
can miss at most k� of these r vertices, and thus the k edges must intersect in at least 
r−k� ≥ t vertices, as required. By Proposition 2.2, τ(Hr

� ) = � +1 =
⌊
r−t
k

⌋
+1, matching 

the upper bound. �
3. Further variants and open problems

In this paper, we have studied Ryser’s Conjecture for t-intersecting hypergraphs. In 
particular, we have shown Ryser(r, t) = � r−t

2 �+ 1 whenever r ≤ 3t − 1, and have proved 
Conjecture 1.2 for all but finitely many pairs (r, t) satisfying r ≤ 36t−17

7 . Given these 
results, it is natural to ask what happens when r is larger with respect to t.

Since the upper bounds of Theorem 1.5 are obtained by considering configurations of 
two and three edges (Lemmas 2.5 and 2.7 respectively), the obvious next step is to prove 
an analogous result for configurations of four edges. However, as one increases the number 
of edges in the configuration, the number of variables (representing the intersections of 
these edges) grows exponentially and one has much less control over the values that these 
sizes of intersections can have. Indeed, even with just four edges, we could not see a way 
to channel our ideas to get a stronger upper bound.

Another approach to understanding the behaviour of Ryser(r, t) is to try and de-
termine the value of the function for small values of r and t, using this as a testing 
ground for new ideas to give more general proofs. We considered the smallest open 
cases: 3 ≤ Ryser(6, 2) ≤ 4 and 3 ≤ Ryser(7, 2) ≤ 5, where the lower bounds follow from 
Theorem 1.3, the upper bound on Ryser(6, 2) follows from Theorem 1.5 and the upper 
bound on Ryser(7, 2) follows from the work of Király and Tóthmérész [23]. We man-
aged to improve these upper bounds, showing that Ryser(6, 2) = 3 and Ryser(7, 2) ≤ 4. 
Unfortunately, the arguments for these two new bounds required ad hoc methods and, 
as we doubt such arguments will lead to a significantly wider range of results, we have 
chosen to omit these proofs.

With regards to the broader picture, we concede that it may be challenging to resolve 
Conjecture 1.2 in full, since the case t = 1 is the intersecting case of Ryser’s Conjecture 
itself. As discretion is the better part of valour, one might restrict one’s attention to t ≥ 2
and seek in these cases to prove the conjecture and, with a bit more ambition, to fully 
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determine Ryser(r, t). In this range, given the lack of a better construction, Theorem 1.4, 
and the k-wise result of Theorem 1.7, we propose the following conjecture.

Conjecture 3.1. For all 2 ≤ t ≤ r,

Ryser(r, t) =
⌊
r − t

2

⌋
+ 1.

If we are to be honest, it is only a proper (but non-empty) subset of the authors 
that fully believes in this conjecture. That said, we are all happy to pose it, in the 
hopes of provoking the community into finding a proof or a counterexample. Should the 
conjecture be true, it would represent a marked difference between the intersecting and 
t-intersecting (t ≥ 2) versions of Ryser’s Conjecture. Though this may be surprising at 
first sight, such discrepancies are not unheard of in extremal combinatorics.

At the very least, the determination of the asymptotic behaviour of Ryser(r, t) when 
t is linear in r is an intriguing question in its own right, and even just reducing the 
grey area in Fig. 1 seems to require new ideas. This further motivates the pursuit of 
Ryser-type problems for various other classes of hypergraphs commonly studied in the 
field, some of which we outline below. We believe that the techniques and constructions 
used in answering these questions could shed further light on Conjecture 3.1 and perhaps 
even on Ryser’s Conjecture.7

3.1. Strictly t-intersecting hypergraphs

One advantage of the construction of Bustamante and Stein [6], in which each vertex 
of the truncated projective plane is replaced by a set of t vertices, is that it is regular. 
On the other hand, in our construction for Theorem 1.3, while the majority of vertices 
are in at most one edge, some vertices have very large degree. This begs the question of 
whether or not one can find a regular construction matching our bound, but, as we shall 
now show, the great irregularity is necessary for the cover number of the hypergraph to 
be large.

To start, observe that if H is a d-regular (r, t)-graph, and Vi is any one of the r parts, 
then H has exactly d|Vi| edges, since each edge meets Vi in exactly one vertex. Since any 
set S ⊂ V (H) can cover at most d|S| edges, it follows that τ(H) ≥ |Vi|; that is, the parts 
are minimum covers. Therefore, maximising the cover number of d-regular (r, t)-graphs 
is equivalent to maximising the number of vertices in such graphs.

An upper bound was provided by Frankl and Füredi [12], with a short proof later given 
by Calderbank [7]: they proved that any regular t-intersecting r-uniform hypergraph can 
have at most (r2 − r + t)/t vertices. In the r-partite setting, it follows that we have a 
part of size at most (r − 1)/t + 1/r < r/t, and hence this is an upper bound on the 

7 For instance, our proof that Ryser(6, 2) = 3 reduced the problem to the strictly 2-intersecting case, and 
our proof that Ryser(7, 2) ≤ 4 used a double counting argument inspired by the proof of Lemma 3.3 below.



A. Bishnoi et al. / Journal of Combinatorial Theory, Series A 179 (2021) 105366 17
cover number of any regular (r, t)-graph. Note that for t ≥ 3 this is significantly smaller 
than the lower bound of Theorem 1.3, showing that the added condition of regularity 
considerably restricts the cover number of (r, t)-graphs.

Frankl and Füredi [12] and Calderbank [7] further showed that the hypergraphs achiev-
ing equality in their bound are precisely the symmetric 2-(v, r, t) designs, a class of 
hypergraphs we now define.

Definition 3.2. Given v, r, t ∈ N, a 2-(v, r, t) design is an r-uniform hypergraph on v
vertices with the property that any two vertices share exactly t common edges. The 
design is symmetric if it has exactly v edges.

Note that designs are never r-partite, since two vertices in the same part could not 
have any common edges. One might therefore hope for an even smaller upper bound if 
the hypergraph is also r-partite, but the construction of Bustamante and Stein shows 
that there can be regular (r, t)-graphs with cover number r/t − 1, and so there is not 
much room for improvement in general.8

Still, when it comes to (r, t)-graphs, our next result shows that one can obtain strong 
upper bounds on the cover number even if the condition of regularity is weakened to just 
having some control over the minimum and maximum degrees.

Lemma 3.3. Let Δ be the maximum degree and δ the minimum degree of an (r, t)-graph 
H. Then

τ(H) ≤
(

Δ − 1
δ

)
r

t
− Δ − δ − 1

δ
.

Proof. Let m be the total number of edges in H, and let e be one such edge. Double-
counting pairs (v, f) where f ∈ E(H) \ {e} and v ∈ e ∩ f , we get r(Δ − 1) ≥ (m − 1)t, 
or

(Δ − 1) r
t

+ 1 ≥ m. (11)

Let u be a vertex of maximum degree Δ and let P be the part of the r-partition that 
contains u. Since every edge is incident to a unique vertex in P , by looking at the edges 
incident to each vertex in P we get

m ≥ (|P | − 1)δ + Δ ≥ (τ(H) − 1)δ + Δ, (12)

where the final inequality follows from the fact that P is a vertex cover. Combining the 
upper and lower bounds on m then gives the desired result. �
8 Using the truncated projective plane for some prime power q, the Bustamante-Stein construction gives 

d-regular (r, t)-graphs with cover number τ(H) = d = r/t − 1 = q. For other values of the parameters d, r
and t, it may be possible to obtain better upper bounds. For instance, Corollary 3.5 gives a stronger bound 
when d < r/t − 1.
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In particular, this restricts the cover number of d-regular (r, t)-graphs, and, if d < r, 
the bound we obtain is smaller than that derived from Frankl and Füredi [12] and 
Calderbank [7]. As with their results, we can characterise the hypergraphs achieving 
equality, for which we require a couple more design-theoretic definitions.

Definition 3.4. Given a hypergraph H, the dual hypergraph HD has V (HD) = E(H) and

E(HD) = {{e ∈ E(H) : u ∈ e} : u ∈ V (H)};

that is, we transpose the incidence relation between vertices and edges. Also, we say a 
2-(v, r, t) design is resolvable if its edges can be partitioned into perfect matchings.

Now we can state our result for the regular setting.

Corollary 3.5. If H is a d-regular (r, t)-graph, then

τ(H) ≤ r

t
− r

dt
+ 1

d
,

with equality if and only if H is the dual of a resolvable 2-(v, d, t) design.

For example, for a prime power q and dimensions 1 ≤ k < n, the k-dimensional affine 
subspaces in Fn

q form a resolvable 2-(qn, qk, 
(
n−1
k−1

)
q
) design,9 whose dual is therefore 

a tight construction for Corollary 3.5.10 In fact, we have a rich and storied variety 
of extremal constructions, as the study of resolvable designs dates back to Kirkman’s 
famous schoolgirl problem [24] from 1857, which asked for resolvable 2-(15, 3, 1) designs. 
This was greatly generalised by Ray-Chaudhuri and Wilson [26,27], who showed the 
existence of resolvable designs of all uniformities r whenever v is sufficiently large and 
the trivial divisibility conditions are satisfied. More recently, Keevash [21] resolved some 
long-standing conjectures by extending these results to designs of greater strength, while 
results of Ferber and Kwan [9] suggest that, when v ≡ 3 (mod 6), almost all of the 
exponentially (in v2) many 2-(v, 3, 1) designs should be resolvable.

Proof of Corollary 3.5. The upper bound follows immediately from Lemma 3.3 by sub-
stituting Δ = δ = d.

For the characterisation of equality, first observe that the inequality (11) is always 
tight if and only if any two edges of H share exactly t vertices, in which case we say H
is strictly t-intersecting. Next, we note that the inequalities in (12) are always tight in 
the regular setting; the first because all degrees are equal to d, and the second because, 

9 Where 
(n−1
k−1

)
q

= (qn−1−1)(qn−2−1)...(qn−k+1−1)
(qk−1−1)(qk−2−1)...(q−1) is the Gaussian binomial coefficient, which counts the 

number of k-dimensional spaces that contain a given pair of points.
10 When n = 2, the dual is the truncated projective plane, and thus this construction generalises the classic 
tight construction for Ryser’s Conjecture.
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as argued at the beginning of Section 3.1, a part is always a minimum cover in a regular 
r-partite r-uniform hypergraph. Thus we see that we have equality if and only if H is 
strictly t-intersecting.

Now suppose H is d-regular (r, t)-graph that is strictly t-intersecting, and consider the 
dual hypergraph HD. Since every vertex of H has degree d, every edge of HD contains d
vertices. Furthermore, as every pair of edges in H shares t vertices, every pair of vertices 
in HD have t common edges. Thus HD is a 2-(v, d, t) design, where v is the number 
of edges in H. Finally, since each edge of H contains exactly one vertex from any of 
the r parts, a part corresponds to a perfect matching in HD, with every vertex covered 
exactly once. Hence, since H is r-partite, the edges of HD can be partitioned into r
perfect matchings; that is, HD is resolvable.

Conversely, the same reasoning shows that the dual H of a resolvable 2-(v, d, t) design 
gives a strictly t-intersecting d-regular r-partite r-uniform hypergraph with v edges, 
where r is the number of perfect matchings in the resolution of the design. From our 
above remarks, this implies the dual achieves equality in the upper bound on τ(H). �

In the above proof, we saw that for a regular (r, t)-graph to have as large a cover 
number as possible, it must be strictly t-intersecting, with every pair of edges meeting in 
exactly t vertices. It is therefore natural to ask what happens when we drop the condi-
tion of regularity, and only require the (r, t)-graph be strictly t-intersecting. Such study 
has previously been carried out in the setting of Ryser’s Conjecture for (1-)intersecting 
families.

Recall that Ryser’s Conjecture for intersecting r-partite hypergraphs was proved by 
Tuza [30] for all r ≤ 5. Francetić, Herke, McKay and Wanless [10] showed that if we re-
strict ourselves to linear (that is, strictly 1-intersecting) hypergraphs, then the conjecture 
is true for all r ≤ 9. Inspired by this, we prove Conjecture 1.2 for strictly t-intersecting 
hypergraphs for a much wider range of parameters r and t than covered by Corollary 1.6.

Theorem 3.6. Let t ≥ 1 and t < r ≤ t2+3t −1 be integers. If H is a strictly t-intersecting 
r-partite hypergraph, then τ(H) ≤ r − t.

Proof. For the sake of contradiction, suppose τ ≥ r − t + 1, and, for the sake of conve-
nience, let δ = δ(H), Δ = Δ(H) and τ = τ(H).

Let v be an arbitrary vertex of H and let e be an edge through v. Since τ ≥ r− t + 1, 
we have that for every set S of r− t vertices in e \ {v}, there exists an edge f of H with 
e ∩ f ⊆ e \S. Since H is t-intersecting and |e \S| = t, we must have e ∩ f = e \S, which 
in particular implies that v ∈ f . This shows that d(v) ≥

(
r−1
r−t

)
+ 1, and, since v was 

arbitrary, we get δ ≥
(
r−1
r−t

)
+ 1. Solving the inequality in Lemma 3.3 for Δ, we obtain

Δ ≥ δ(τ − 1)
r/t− 1 + 1,

which, upon substituting δ ≥
(
r−1) + 1 and τ ≥ r − t + 1, yields
r−t
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Δ ≥ t

(
r − 1
r − t

)
+ t + 1.

Now let u be a vertex of degree d(u) = Δ and let f0 be an edge through u. There are (
r−1
t−1

)
=

(
r−1
r−t

)
choices of t-subsets of f0 containing u, and every edge f ′ �= f0 through 

u intersects f0 in one of these sets. Since there are at least t
(
r−1
r−t

)
+ t edges through u

other than f0, by the pigeonhole principle there must exist a t-subset S of f0 containing 
u for which there are at least t + 1 edges f1, . . . , ft+1 with f0 ∩ fi = S for all i. Since H
is strictly t-intersecting, we further have fi ∩ fj = S for all i �= j.

We claim that S is a vertex cover. If not, there exists an edge e such that e ∩fi ⊆ fi\S
for all 0 ≤ i ≤ t + 1. Since f0 \ S, . . . , ft+1 \ S are disjoint sets, and e can only contain 
one vertex from each part of the r-partition, we get t(t + 2) ≤ r − t, contradicting our 
upper bound on r.

Thus, we have a vertex cover S of size t. Since Conjecture 1.2 is known for r ≤ 2t, it 
follows that τ ≤ r − t, contradicting our original supposition that τ ≥ r − t + 1. �

Although the restriction of being strictly t-intersecting allows us to prove the bound 
from Conjecture 1.2 for a wider range of parameters (r, t), we believe this is far from 
tight. Indeed, in this setting, we even lack constructions that come close to the smaller 
bound of Theorem 1.3. The best constructions we have found thus far are the duals 
of resolvable designs, as given in Corollary 3.5. As these are also regular, their cover 
numbers are smaller than rt , significantly smaller than the upper bound of Theorem 3.6.

Problem 1. Prove that τ(H) ≤ r
t for any strictly t-intersecting r-partite r-uniform hy-

pergraph H, or find constructions with larger cover numbers.

3.2. s-covers

Another new direction is to ask for more from our vertex covers – rather than just 
intersecting each edge, we could ask for a set that meets every edge in many vertices.

Definition 3.7. Let H be an (r, t)-graph. For s ≥ 1, we define an s-cover of H to be a set 
B ⊆ V (H) such that |B ∩ e| ≥ s for every e ∈ E(H). We further define

τs(H) = min{|B| : B is an s-cover of H}.

Observe that τ1(H) = τ(H). We can then generalise Ryser’s Conjecture (in the inter-
secting case) by asking for the maximum of τs(H) over all (r, t)-graphs. If s ≤ t, then, 
since every pair of edges intersects in at least t vertices, any edge e ∈ E(H) is an s-cover, 
and so we always have τs(H) ≤ r.

However, the problem is ill-posed if s > t. For arbitrary n ∈ N, we can take H be 
the complete r-partite r-graph with parts V1, . . . , Vr, where |V1| = . . . = |Vt| = 1 and 
|Vt+1| = . . . = |Vr| = n. It is then easy to see that τs(H) = (s − t)n + t, and therefore 
τs(H) is unbounded for (r, t)-graphs. We shall thus require 1 ≤ s ≤ t ≤ r.
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Definition 3.8. Given integers 1 ≤ s ≤ t ≤ r, define

Rysers(r, t) = max{τs(H) : H is an (r, t)-graph}.

The case s = 1 is obviously what we have been talking about all along, and the 
following lemma shows how we can leverage our constructions from that case to obtain 
lower bounds when s ≥ 2.

Lemma 3.9. For all 1 ≤ s ≤ t ≤ r and a ≥ 1,

Rysers+a(r + a, t + a) ≥ Rysers(r, t) + a.

Proof. Let H′ be an (r, t)-graph with τs(H) = Rysers(r, t). Form H by adding the same 
set S of a vertices to each edge of H′. H is then an (r + a, t + a)-graph. Let B be a 
smallest (s + a)-cover of H. By removing a elements from B, including all members of 
B ∩ S, we obtain an s-cover B′ of H′. Hence we must have |B′| ≥ τs(H′) = Rysers(r, t), 
and thus Rysers+a(r + a, t + a) ≥ τs+a(H) = |B| ≥ Rysers(r, t) + a. �

The next proposition extends Theorem 1.4 to the case when s ≥ 2.

Proposition 3.10. If r ≤ 3t − 2s, then

Rysers(r, t) =
⌊
r − t

2

⌋
+ s.

Proof. The lower bound, valid for all 1 ≤ s ≤ t ≤ r, is an easy consequence of Lemma 3.9
and Theorem 1.3:

Rysers(r, t) ≥ Ryser1(r − s + 1, t− s + 1) + s− 1 ≥
⌊
r − t

2

⌋
+ s.

For the upper bound, let t ≥ r+2s
3 . Let H be an (r, t)-graph, and let t′ ≥ t be the 

minimum size of an intersection of two edges. We will show τs(H) ≤ τ ′ =
⌊
r−t′

2

⌋
+ s. 

Let e1 and e2 be two edges intersecting in exactly t′ elements, and let S = e1 ∩ e2. By 
our bound on t, we have t′ ≥ τ ′.

Let B be a set of τ ′ elements from S. We claim that B is an s-cover. Indeed, suppose 
there was some e3 ∈ E(H) with |B∩e3| ≤ s −1. Then e3 can contain at most s −1 +t′−τ ′

elements from S. In all parts outside S, e3 intersects e1 ∪ e2 in at most one vertex. Thus

|e1 ∩ e3| + |e2 ∩ e3| ≤ 2(s− 1 + t′ − τ ′) + r − t′ = r + 2s + t′ − 2τ ′ − 2 ≤ 2t′ − 1,

which contradicts e3 intersecting both e1 and e2 in at least t′ elements. �
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Observe that the lower bound was proved using Lemma 3.9, reducing the problem 
to the s = 1 case via Rysers(r, t) ≥ Ryser(r − s + 1, t − s + 1). When s = t, this also 
reduces the problem to the classic setting, where we have much stronger lower bounds. 
Here we know that, whenever r − t is a prime power, Ryser(r − t + 1, 1) ≥ r − t, 
and thus Rysert(r, t) ≥ r − 1. The constructions of Haxell and Scott [19] further show 
Rysert(r, t) ≥ r − 4 for all sufficiently large r.

Our final result uses the construction of Bustamante and Stein [6] to significantly 
improve the lower bound for large r, whenever s > t

2 .

Proposition 3.11. Let 1 ≤ s ≤ t and suppose r = t(q + 1) for some prime power q. Then

Rysers(r, t) ≥ s
(r
t
− 1

)
.

Proof. Let H′ be the truncated projective plane of order q, which is a q-regular (q+1, 1)-
graph with q2 edges, and let H be the hypergraph obtained by replacing each vertex of 
H′ with a set of t vertices. H is then a q-regular (t(q + 1), t)-graph with q2 edges.

Since each vertex covers q edges, to cover all of the edges at least s times, we require 
at least sq

2

q = sq = s 
(
r
t − 1

)
vertices. Thus Rysers(r, t) ≥ τs(H) ≥ s 

(
r
t − 1

)
. �

It remains an open problem to find matching upper bounds in these ranges.

Problem 2. Determine Rysers(r, t), at least asymptotically, when r is large and 1 < s < t.

Note added in proof During the publication of our manuscript, it was brought to our 
attention that the t = 1 case of Theorem 1.7 (when k ≥ 3) was earlier proven by 
Király [22], in the context of monochromatic components in edge-coloured hypergraphs. 
As observed by DeBiasio (personal communication), Király’s theorem can be used as a 
base case for induction on t, providing an alternative proof of Theorem 1.7 for k ≥ 3. For 
more information on various generalisations of Ryser’s Conjecture, we refer the reader 
to the recent survey of DeBiasio, Kamel, McCourt and Sheats [8].
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