
Evaluating Data Distribution Based Concept Drift Detectors

Konsta Kanniainen1

Supervisors: Jan Rellermeyer1, Lorena Poenaru-Olaru1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 29, 2023

Name of the student: Konsta Kanniainen
Final project course: CSE3000 Research Project
Thesis committee: Jan Rellermeyer, Lorena Poenaru-Olaru, Jesse Krijthe

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Various techniques have been studied to handle un-
expected changes in data streams, a phenomenon
called concept drift. When the incoming data is not
labeled and the labels are also not obtainable with
a reasonable effort, detecting these drifts becomes
less trivial. This study evaluates how well two data
distribution based label-independent drift detection
methods, SyncStream and Statistical Change De-
tection for Multi-Dimensional Data, detect concept
drift. This is done by implementing the algorithms
and evaluating them side by side on both synthetic
and real-world datasets. The metrics used for syn-
thetic datasets are False Positive Rate and Latency;
for real-world datasets, Accuracy is used instead of
Latency. The experiments show that both drift de-
tectors perform significantly worse on real-world
than on synthetic data.

1 Introduction
Machine learning models that are deployed to handle a stream
of new incoming data after an initial training often suffer
from a drop in performance over time [1]. One reason for
this is that the data used in the initial training of the model
is no longer representative of the current state of the data
source. This is called concept drift. One way to check for
concept drift is to simply look for drops in model accuracy,
but this assumes labels to be available at the time of evalua-
tion, which may be costly, inconvenient, or even impossible.
Label-independent concept drift detectors aim to tackle this
problem by various techniques, but are so far not researched
as extensively as label-dependent detectors [2].

Data distribution based drift detectors consider the distri-
bution of the input data and detect changes in it [2]. This is
done by comparing recent data to reference data with a dis-
tribution distance measure [2], [3]. Depending on the tech-
nique, a method to estimate the expected spread of the data
may be needed to compute a critical region for the test statis-
tic [3], [4]. Song et al. have proposed a distance measure as
well as a variance estimation procedure for multi-dimensional
data [4], and parts of the SyncStream algorithm also use dis-
tribution difference metrics to detect drifts [5]. What these
studies have in common is the lack of published implementa-
tions for reproduction and further research.

The research question evaluated in this study is:
• How well do data distribution based concept drift detec-

tors identify concept drift in case of synthetic/real-world
data?

An important step in approaching the research question is
to select data distribution based concept drift detectors for
which no implementations are currently available and imple-
ment them. Enabled by this, the main contributions of this
paper are the performance measurements and side-by-side
comparisons of data distribution based drift detectors on both
synthetic and real-world data. The implementations are also
published1.

1https://github.com/konstaka/cse3000-research-project

The related works, including drift detectors implemented
in this study, are explored in Section 2. Section 3 walks
through the implementations of the selected detectors and de-
scribes the setup, and Section 4 contains results from the per-
formance experiments. Section 5 discusses the results and
weighs them against existing research. Section 6 concludes
the paper with a recap of the findings and contributions.

2 Related Work
Concept drift detectors can roughly be divided into two cate-
gories; label-dependent and label-independent [1]. Data dis-
tribution based detectors belong to the label-independent cat-
egory, the distinguishing feature being that they do not need
ground true labels to function. Label-independent drift detec-
tors are typically more expensive computation-wise [2]. One
common reason to research and employ them anyway is that,
in practice, true labels are in many cases expensive or impos-
sible to collect in a reasonable time frame [1].

A recent survey on concept drift detectors examined over
130 different algorithms [2]. In addition to fully label-
dependent and fully label-independent algorithms, the sur-
vey identified a category of semi-supervised drift detectors,
in which some incoming data is provided a ground true la-
bel to help evaluating the drift. It was concluded that label-
independent and semi-supervised drift detectors have been
studied relatively little compared to label-dependent ones.

In the process of determining drift by measuring data dis-
tribution change, two sets of data are needed for comparison.
This typically means defining a fixed reference window and a
sliding test window over the data [2]. The exact setup of these
windows, however, is either algorithm-specific or left to the
user to decide on; they might overlap, or both of them might
slide. After determining the windows to compare, a dissimi-
larity test is then applied to them and the significance of the
result is assessed to determine if it meets the desired criteria.
Both of these steps can be done in several ways.

Several data distribution based concept drift detectors have
been published [2], of which we selected SyncStream and
Statistical Change Detection for Multi-Dimensional Data
(SCD) to be implemented in this study.

2.1 SyncStream
SyncStream is a data stream mining algorithm that stores past
prototypes in a special tree structure [5]. In addition to this,
it has two strategies for explicitly detecting abrupt concept
drift. The first strategy employs principal component analy-
sis to reduce the covariance matrix of each window of data
into a principal eigenvector. The angle between the eigenvec-
tors of two consecutive windows is calculated and a drift is
reported if this angle is sufficiently large. 60 degrees is used
by the authors as a threshold. The second strategy is a gen-
eralized Wilcoxon test, also called the Brunner Munzel test.
It ranks the data by each feature in both windows separately
and in the unified window and examines the differences in
these ranks. With window sizes of over 20 data points, this
test statistic follows the standard normal distribution, and a
user-supplied p-value can directly be used to define signifi-
cance. The authors use p=0.01 (two-tailed). These strategies
are combined with an OR-clause to determine drift.

https://github.com/konstaka/cse3000-research-project


2.2 SCD
SCD, also referred to as the density test, takes aside a ran-
domly selected half of the fixed reference window and trains
a kernel density estimator on it, defining a kernel at each data
point but with the restriction that no data point is considered
to be generated by its own kernel [4]. In order to get a good
model, the bandwidths are optimised individually by a spe-
cial expectation maximization process defined in the paper.
The resulting estimator is then tried on the remaining half of
the reference window and the test window, respectively. Put
simply, in this algorithm concept drift is defined as the differ-
ence between the likelihoods of these windows of data being
generated by the trained estimator. The significance of this
difference is determined by bootstrapping the remaining half
of the reference window to obtain sample variances, which
are used to estimate the variance of the underlying data dis-
tribution. With this, the critical value for the test statistic is
determined based on a given p-value; p=0.08 is used by the
authors. The test is designed to be run in both directions for
maximum power, in which case the p-value is halved for both
runs, but the reverse direction is only tried for a batch if the
test in the main direction does not already find a drift in it.

3 Methodology
3.1 Implementations of concept drift detectors
SyncStream adaptations
The drift detection methods of SyncStream are included as
part of the full algorithm, considering two consecutive test
batches at a time [5]. The first test batch is compared to the
reference data. SyncStream applies both of the techniques
on label-wise collections and tests for distribution changes
within each label. Since implementing the full SyncStream
algorithm was not in scope for this study, and we assume
that labels are not available in the test data, we needed a way
around this requirement.

The first attempt at tackling this included training a simple
classifier that would predict a label for each item in a test
batch before the drift detectors examined it. This was tried
only on the synthetic data, each type of dataset requiring a
different classifier. One dataset was also experimented with in
a supervised manner, relaxing the assumption of unavailable
labels. While the results obtained with these experiments are
included for completeness, another, improved approach came
up later, keeping the process label-independent.

The second approach was to leverage the idea that as the
SyncStream methods were designed to detect distribution
changes within the labels, it could be viable within the origi-
nal, combined stream as well. This lead to applying the drift
detection techniques on whole consecutive test batches with-
out grouping them by label first.

Finally, the framework for evaluating the detectors on real-
world datasets required that the batches are measured one by
one against a fixed reference batch. Due to this, the final
adaptation of both SyncStream methods was to compare all
test batches against the reference data instead of the previous
test batch. A parameter was included in the function to switch
between these two modes, and both of them are evaluated on
the synthetic datasets.

SyncStream: PCA
We used PCA from the scikit-learn Python package2 to get
the principal eigenvector of the feature covariance matrix of
each test batch and computed the angle change between con-
secutive batches using NumPy [6]. In the original study, 60
degrees was used as a threshold value for detecting a drift [5],
but after experiments on our synthetic datasets, we chose 30
degrees as a threshold, effectively calibrating this method on
the SEA dataset. This angle represents how much the covari-
ances of the feature pairs shift between the batches. The dif-
ference in the observed suitable threshold may be due to the
datasets used or simply a byproduct of adapting the method
outside of its intended context as part of an online learning
algorithm.

SyncStream: Wilcoxon test
The adapted version of the Wilcoxon test used in SyncStream
was not found to be present in available libraries, so most of it
had to be implemented from scratch. This included methods
for computing a midrank, the difference in midranks between
the batches, and the feature-wise rank difference sum within
a batch. Rankdata from the SciPy package3 was used to com-
pute feature-wise ranks for the data. To define significance,
the same two-tailed p-value of 0.01 was used as in the origi-
nal study [5]. As the test statistic follows a standard normal
distribution, this effectively meant setting a threshold value
of 2.575 for the absolute value of the test statistic.

SCD
The size of most datasets in the original SCD study were in
the scale of thousands rather than tens or hundreds of thou-
sands like in our study [4]. This meant that the expectation
maximization process for estimating individual bandwidths
for each kernel proved to be too computationally expensive
for the scope of this paper. Instead, we chose the Scott
method, which the authors compared their process to, to be
used as a drop-in replacement. This enabled the use of an
existing library implementation of kernel density estimation,
namely gaussian kde from the SciPy package4. Other SciPy
and scikit-learn functions were also used where applicable
throughout the implementation. A preliminary implementa-
tion of the expectation maximization procedure, while aban-
doned from the evaluations due to the performance issues, is
included in the published code for possible future use.

Further, in the interest of making the algorithm run faster
still, the estSize parameter was toned down from the origi-
nal 4000 to 30, with the additional restriction that the stan-
dard deviation of the variance estimates changes less than 1%
between iterations [4]. This may reduce the quality of the
variance estimate, namely by making the bootstrap percentile
method work with less estimates to pick from. However,
this also makes the expensive variance estimation step, which
has to be done once per reference batch, run significantly

2scikit-learn version 1.0.2 https://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.PCA.html

3scipy version 1.9.1 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.rankdata.html

4scipy version 1.9.1 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.gaussian kde.html
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faster. Since the detector produced a perfect score on the SEA
datasets even with this change and the distribution of the esti-
mates always settled within a few iterations after 30 estimates
in our experiments, we consider the effect negligible for our
purposes. The expensive part of the step is parallelizable, so
this is something worth revisiting in possible future imple-
mentations.

SCD faced limitations with some datasets. With Airlines,
it could not run at all on a laptop with a 6-core Intel i7-9750H
processor and 16 GB of memory; the Python3 kernel consis-
tently died while trying. We note that this detector, due to the
expensive kernel density estimator it uses, is not well suited
for very large datasets.

With the other real-world datasets, linear algebra errors
emerged. To address these, a PCA preprocessing step was
used on Elect2 and on the bidirectional runs of Weather with-
out reducing dimensions. The same problem arose on the
AGRAW datasets with one-hot encoding, and the last ex-
periments showed that this method should also work there.
Due to the sparse nature of the Spam dataset, dimensions
had to be reduced even further than the rank of the train-
ing data matrix (1276) for the detector to work even in one
direction. We used PCA from sklearn.decomposition, with
n components=100 for Spam. Furthermore, the experiments
on Spam are made with an inverted test statistic, as this arose
as an interesting pattern during the experiments.

For some experiments, SCD was only run in one direction
due to computation costs. Bidirectional mode uses more time
to train a KDE on each test batch and thus it was used when
the initial experiments showed that the result could be im-
proved by enhancing the power of the test, which is what the
bidirectional mode of SCD was designed to do [4].

3.2 Description of datasets
See Table 1 for the dataset dimensions.

Synthetic datasets
Three synthetic datasets, SEA, AGRAW1, and AGRAW2, as
described in [1], were used for developing and evaluating the
drift detectors. Each contains 100,000 rows, generated so that
each dataset contains a concept drift starting at row 55,000. In
addition to abrupt concept drift, versions with gradual drifts
of sizes 500, 1000, 5000, 10000, and 20000 rows were used.

Of these datasets, SEA only contains numerical features,
while both the AGRAW datasets contain numerical as well as
categorical features. The categorical features were encoded
with TargetEncoder from the category encoders Python pack-
age5, as well as OneHotEncoder and OrdinalEncoder from
scikit-learn6, using the training data for fitting. Further, all
features were scaled to between 0 and 1 using MinMaxScaler
from scikit-learn7. Some experiments without the scaler are
included for comparison.

5category encoders version 2.5.1.post0 https://contrib.
scikit-learn.org/category encoders/

6scikit-learn version 1.0.2 https://scikit-learn.org/stable/
modules/classes.html#module-sklearn.preprocessing

7scikit-learn version 1.0.2 https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.MinMaxScaler.html

Dataset # rows # features
SEA 100000 3

AGRAW1 100000 9
AGRAW2 100000 9
Airlines 539383 4
Elect2 45312 8

Weather 18159 8
Spam 4405 10727

Table 1: Dataset dimensions.

Figure 1: Experiment setup. [1]

Real-world datasets
Four real-world datasets were used; Airlines [7], Elect2 [8],
Weather [9], and Spam [10]. Airlines contains both numeri-
cal and categorical features, while Elect2, Spam, and Weather
only contain numerical features. Airlines is a dataset of flight
details, labeled by if the flight was delayed or not. Elect2 con-
tains electricity market data, predicting if the price is going up
or down on a given day. Weather contains daily weather de-
tails and is labeled by whether it was raining or not. Spam is
a collection created from the spam assassin corpus, each col-
umn corresponding to a word and each row representing an
e-mail, labeled by if it was spam or not. Categorical features
were encoded using all three encoders, and all datasets were
tried with and without MinMaxScaler.

3.3 Data setup
To set the stage for the experiments, all datasets were split
into reference data and testing batches to simulate consuming
a data stream after initial training. See Fig. 1 for illustra-
tion of the data setup. Each synthetic dataset was known to
start drifting at row 55,000; for real-world datasets, a process
examining model accuracies was used to determine the drifts.

The first 30% of each synthetic dataset was taken as ref-
erence data. Within this subset we could assume that the
labels were known and use them for the purposes of train-
ing and defining baselines. The rest of the data was divided
into equal-sized test batches with each containing 10% of the
whole dataset. Each of the synthetic datasets was therefore
known to start drifting in test batch 3.

For the real-world datasets, batching was dataset-specific
and defining the drifts was done by scoring the test batches on
classifiers trained on the respective training sets. Threshold
for deciding if the batch contained a drift was determined by
either cross-validation or time-based splitting; one standard
deviation was removed from the expected accuracy.

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/
https://scikit-learn.org/stable/modules/classes.html##module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/classes.html##module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


For Airlines, the first 179794 rows were used for training,
and the batches were to be 17000 rows long to represent daily
batches. The classifier used was KNeighborsClassifier from
sklearn.neighbors. Time-based splitting was used to deter-
mine expected accuracy, this is considered a preferred method
over cross-validation [11]. A modified cross-validation tech-
nique using sequential rows for testing was initially used,
but abandoned due to inconsistent and irreproducible results.
Thus, four batches were removed from the end of the training
data to be used for validation and the features were scaled.
With all three encoders, only batch 1 was classified not drift-
ing for the purposes of this study. This could be an indication
of model overfitting, so we verified this on RandomForest-
Classifier from sklearn.ensemble. These experiments showed
notable overfitting; the model accuracy was much higher on
the part used for training than on the rest of the reference data.
This pattern was absent with the kNN model, so we assume
that the accuracy drop for nearly all test batches of Airlines is
more likely due to concept drift than overfitting. See Fig. 2
for illustration.

For Elect2, the first 15104 were used for training. Since
each row represents a day, a batch size of 365 meant yearly
batches. After comparing multiple classifiers, the one se-
lected here was AdaBoostClassifier from sklearn.ensemble.
A modified cross-validation technique with 365 random rows
left for validation each time was used, and the defining result
was an average of 40 runs. Features were scaled. This gave
a mix of drifting and non-drifting batches throughout, with a
notable long stretch of drifting batches in the middle of the
data, suggesting a recurring concept drift.

With the Weather dataset, we employed two batching
strategies; monthly and yearly, corresponding to batch sizes
of 30 and 365. The dataset was examined with a multitude of
classifiers, SVC from sklearn.svm being selected for the defi-
nitions as it was the best performer on the yearly batches. The
above described cross-validation method was similarly used
here, taking an average of at least 10 runs and until the stan-
dard error of the measured accuracies dropped under 0.05.
The first 6053 rows were used for training and the features
were scaled. A mix of drifting and non-drifting batches was,
again, found throughout the testing data for both monthly and
yearly batches, like in the Elect2 dataset.

For the Spam dataset, RandomForestClassifier was used
after trying out a few others. The features were not scaled.
The first 1468 rows were used for training and batch sizes
were set to 100, 50, and 20 for three different experiments. In
each batching strategy, the modified cross-validation strategy
yielded notably different results than time-based splitting, the
latter classifying significantly more batches as drifts. While
both are included in the published implementations, we chose
the versions with time-based splitting for these definitions,
as it is expected to be produce more accurate results [11].
The drift behavior of Spam resembles that of Airlines, in that
the model initially performs decently but exhibits a consistent
trend of decreasing accuracy over time.

Figure 2: Experiments were done to rule out overfitting in the kNN
model used to determine drifts in Airlines. The first 6 batches were
used for training. The random forest model on the left shows notable
overfitting, whereas the kNN model on the right does not.

3.4 Evaluation metrics
Synthetic data
To evaluate performance in terms of false alarms, we use
False Positive Rate (FPRs). This is the number of test
batches erroneously flagged as containing a drift before the
drift actually happened, divided by the total amount of non-
drifting test batches before the (first) drift in the dataset [1].
In other words, FPRs is the ratio at which the detector flags
non-drifting batches before any drift occurs.

The other measure for synthetic datasets in this study is
Latency. This is defined as the distance in batches between
the first test batch flagged as containing a drift at of after the
drift occurs and the batch actually containing the drift, di-
vided by the amount of batches remaining in the dataset after
the start of the drift [1]. If no drift is ever detected or is only
detected before the drift actually happened (false positive),
latency is considered ”Not Detected” and encoded as 1 for
computations. Detecting only the last test batch in a dataset
also results in a latency of 1; we consider these results equal
in terms of usefulness of the detector.

Ideally, FPRs and latency would both be as low as pos-
sible. An example of a dataset of 7 test batches containing
an abrupt concept drift in batch 3 and the detector flagging
batches 2, 3, and 4 would have a false positive rate of 0.5
(batch 1 was not flagged, but batch 2 was, despite not contain-
ing a drift) and a latency of 0 (drift was detected on time at
batch 3). Another example of a similar dataset with 7 batches
but containing a gradual drift that spans over batches 3 and 4,
with the detector flagging only batch 4, would result in a
FPRs of 0 and a latency of 0.25 (as the detection was late by
one batch from the start of the drift with 4 batches left after it
in the dataset). This study is limited to producing these mea-
surements on the selected drift detectors and datasets. The
appropriate thresholds for them are therefore out of scope.

Real-world data
In real-world datasets we recognise that there may be more
than one drift in the data. Every test batch is therefore evalu-
ated with the detectors and flagged as drift or no drift. False
Positive Rate (FPRrw) is again used, but it now means
the ratio of erroneously flagged drifts to the total number of
known non-drifting batches as defined by the accuracy com-
putation methods. The other measure for real-world datasets,
Accuracy, is defined as the ratio of correctly detected drifts
to all known drifts. So while FPRrw is still ideally low,
accuracy is now desired to be as high as possible.



Method SEA Agraw1 Agraw2

PCA (kNN) (0.5, 0.0)
PCA (kNN, 5000) (0.6, 0.0)
PCA (kNN, gradual) (0.5, 0.25)
PCA (RF) (0.0, 1.0) (0.0, 1.0)
Wilc. (RF) (0.0, 1.0) (0.0, 1.0)
PCA (supervised) (0.5, 0.0) (0.0, 1.0) (0.0, 1.0)
PCA (sv., gradual) (0.5, 0.25)

Table 2: Drift detection performance on the synthetic datasets, mea-
sured in False Positive Rate and Latency (FPRs, L). These experi-
mental methods are included here for completeness. They all use the
previous test batch as reference, and are evaluated on abrupt drifts,
except two on gradual drifts (20000 rows). The features were not
scaled, and the encoder was always TargetEncoder. The models used
to simulate the SyncStream environment were KNeighborsClassi-
fier with k=13 and RandomForestClassifier with default parameters.
One experiment was done on batch size of 5000 instead of the de-
fault 10000 to rule out the effect of partly drifting batches.

4 Results
Evaluation results are shown in the tables. For SyncStream
methods, PCA and Wilc. are used as labels for the PCA strat-
egy and the rank sum test strategy respectively. Results with
the fixed reference adaptation are marked with fixed and the
original, continuous version with cont.. Different encoders
are marked with ohe, oe, and te for OneHotEncoder, Ordi-
nalEncoder and TargetEncoder respectively and experiments
without MinMaxScaler are marked with u. The metrics are
combined in the same cells as (FPRs, L) for synthetic and
(FPRrw, Acc) for real-world datasets. Cells are left empty
in case of missing results, or, in case of the SEA dataset, not
using encoders. The final results were converted from the ini-
tial Python output into LaTeX tables using Node.js scripts.

Experiments on preliminary SyncStream implementations
that were tried with the synthetic datasets but later abandoned
in favor of better functioning ones are displayed in Table 2.
They include two methods of predicting labels for grouping
the test batches by label. One of the methods was also tried
with a different batch size. Finally, the PCA method was also
tried in a supervised manner, so the test labels were used for
grouping. These methods resulted in arbitrary behavior of the
test statistics and were thus unusable.

4.1 Synthetic data
Abrupt drift
Table 3 displays the detectors’ drift detection performance
on abruptly drifting synthetic datasets. This was the starting
point of the experiments, and for completeness it shows more
of the methods that were initially tried before moving on to
other datasets. Unscaled versions were mostly not included
further, as we found almost no difference in the initial runs
and using the scaler would be expected to work better [1].
Initial results also lead us to abandon one-hot encoding for
the Wilcoxon test and ordinal encoding for the others.

The drift in the SEA dataset could be detected by all detec-
tors, while the AGRAW datasets proved to be more difficult.
The PCA method does not work on them at all. The Wilcoxon

Method SEA Agraw1 Agraw2

PCA (cont., oe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., oe) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.25)
PCA (cont., te, u) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (cont., te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, oe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, oe) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (1.0, 0.0) (1.0, 0.0)
PCA (fixed, te, u) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe, u) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., ohe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te, u) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, oe, u) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, oe) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, ohe) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, te, u) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., oe, u) (0.0, 1.0) (0.0, 1.0)
SCD (unidir., oe) (0.0, 1.0) (0.0, 1.0)
SCD (unidir., ohe, u) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., ohe) (0.0, 1.0) (0.0, 1.0)
SCD (unidir., te, u) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
SCD (unidir., te) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
SCD (bidir., te, u) (0.0, 1.0) (0.0, 0.75)
SCD (bidir., te) (0.0, 1.0) (0.0, 0.75)

Table 3: Abrupt drift detection performance on the synthetic
datasets, as False Positive Rate and Latency (FPRs, L). Unidi-
rectional SCD uses PCA preprocessing on AGRAW with one-hot
and target encoders.

Method SEA Agraw1 Agraw2

PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.25)
PCA (cont., te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (1.0, 0.0) (1.0, 0.0)
PCA (fixed, te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, oe) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
SCD (bidir., te) (0.0, 1.0) (0.0, 0.75)

Table 4: 500 rows wide gradual drift detection performance on the
synthetic datasets, as False Positive Rate and Latency (FPRs, L).



Method SEA Agraw1 Agraw2

PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.25)
PCA (cont., te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (1.0, 0.0) (1.0, 0.0)
PCA (fixed, te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, oe) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
SCD (bidir., te) (0.0, 1.0) (0.0, 1.0)

Table 5: 1000 rows wide gradual drift detection performance on
the synthetic datasets, measured in False Positive Rate and Latency
(FPRs, L).

Method SEA Agraw1 Agraw2

PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.0)
PCA (cont., te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (0.5, 0.0) (1.0, 0.0)
PCA (fixed, te) (0.0, 0.25) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, oe) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
SCD (bidir., te) (0.0, 1.0) (0.0, 0.75)

Table 6: 5000 rows wide gradual drift detection performance on
the synthetic datasets, measured in False Positive Rate and Latency
(FPRs, L).

Method SEA Agraw1 Agraw2

PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.25)
PCA (cont., te) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (1.0, 0.0) (1.0, 0.0)
PCA (fixed, te) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 0.25) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
Wilc. (fixed, oe) (0.0, 0.75) (0.0, 0.25)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.25)
SCD (unidir., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
SCD (bidir., te) (0.0, 1.0) (0.0, 1.0)

Table 7: 10000 rows wide gradual drift detection performance on
the synthetic datasets, measured in False Positive Rate and Latency
(FPRs, L).

Method SEA Agraw1 Agraw2

PCA (cont., ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (cont., ohe) (1.0, 0.0) (1.0, 0.0)
PCA (cont., te) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe, u) (0.0, 1.0) (0.0, 1.0)
PCA (fixed, ohe) (1.0, 0.0) (1.0, 0.0)
PCA (fixed, te) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., oe) (0.0, 1.0) (0.0, 1.0)
Wilc. (cont., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
Wilc. (fixed, oe) (0.0, 1.0) (0.0, 0.5)
Wilc. (fixed, te) (0.0, 0.0) (0.0, 1.0) (0.0, 0.5)
SCD (unidir., te) (0.0, 0.0) (0.0, 1.0) (0.0, 1.0)
SCD (bidir., te) (0.0, 1.0) (0.0, 1.0)

Table 8: 20000 rows wide gradual drift detection performance on
the synthetic datasets, measured in False Positive Rate and Latency
(FPRs, L).

Figure 3: Example of difference in the Wilcoxon test results between
abruptly drifting SEA and AGRAW datasets using a fixed reference,
TargetEncoder and MinMaxScaler. On the left is the result on SEA.
The test statistic raises noticeably above the critical value immedi-
ately and no false positives are reported. In the middle is the result
on AGRAW1. The test statistic stays high after the drift, but is not
significant and not distinguishable from the non-drifting batch 1. On
the right, the test manages to detect the drift in AGRAW2, albeit late.

Figure 4: Illustration of the SCD results on abruptly drifting syn-
thetic datasets. On the left is SEA (scaled), where it works as ex-
pected. In the middle is a bidirectional run on AGRAW2 (TargetEn-
coder, unscaled) where the test statistic grows in the wrong direction.
The teal-colored bars and the purple line represent the reverse tests.
On the right is the same AGRAW2 dataset with the same setup, but
unidirectional and with PCA preprocessing added. The test statistic
now behaves expectedly and the drift is detected correctly.

Figure 5: Similarities between the model accuracy and the inverted
SCD test statistic on the Spam dataset with batch size 100. On the
left, accuracies from the model used to define the drifts; on the right,
the inverted test statistic follows the same general trend.



test manages to detect the drift in AGRAW2, one batch late,
when using the fixed reference adaptation and some other en-
coder than one-hot. Overall, in a lot of cases, the Wilcoxon
test does produce some signal for the drift, but it fails to be
significant - see Fig. 3 for an example.

SCD exhibits some unexpected behavior on the AGRAW
datasets as the test statistic grows in the positive direction
when examining the drifting batches. Bidirectional mode
slightly increased the performance by bringing the test statis-
tic back to zero and into negative values faster - it still detects
the drift considerably late. Finally, introducing PCA prepro-
cessing - initially to fix the linear algebra errors from one-
hot encoding - made the test statistic behave expectedly. See
Fig. 4 for an illustration of the SCD results.

Gradual drift
Tables 4, 5, 6, 7, and 8 show the results on gradually drift-
ing synthetic datasets of widths 500, 1000, 5000, 10000, and
20000, respectively. Most results for the gradual drifts follow
the same pattern as for the abrupt drift. With drifts of 10000
and 20000 rows, we see that the PCA method stops working.
SCD and Wilcoxon test both detect all drifts in SEA perfectly.

4.2 Real-world data
Results for the real-world datasets are shown in Tables 9, 10,
11, and 12 for Airlines, Elect2, Weather, and Spam, respec-
tively. They differ significantly from those on the synthetic
data. As a highlight, the Wilcoxon test had a zero false pos-
itive rate while also having an accuracy of 0.76 on Airlines
with TargetEncoder.

False positive rate increased for SCD when run in bidirec-
tional mode on the Weather dataset, although running in two
directions was not supposed to do this [4]. This does not seem
to be because of the PCA preprocessing; the effect was to be
seen already before that was introduced.

On the other hand, with the PCA preprocessing down to
100 components, SCD displays the same kind of inverted be-
havior on Spam than it does without the preprocessing on
AGRAW. Averages of 10 runs showed that by flipping the
sign on the test statistic, SCD could detect the majority of
drifts in Spam with batch size 100 while keeping the false
positive rate well under 0.5. The results are included as inter-
esting findings in Table 12. See also Fig. 5 for visualization.

5 Discussion
5.1 Synthetic data
Performance under abrupt drift
The PCA method performed rather poorly, but was very
fast to run and thus the easiest to experiment with. On the
AGRAW datasets, the measured eigenvector angles do not
suggest any signal that could be found by improving the
method. Since the method required adapting the threshold
value to even work with SEA, its usability is questionable.

While performing decently on SEA, the behavior of SCD
on the AGRAW datasets was unexpected; the test statistic
is supposed to grow in the negative direction when the de-
tector encounters a drift, as indeed happens with the SEA
dataset [4]. It seemed as if the detection performance of SCD

Method Airlines

PCA (fixed, oe, u) (0.0, 0.0)
PCA (fixed, ohe, u) (0.0, 0.0)
PCA (fixed, te, u) (0.0, 0.0)
PCA (fixed, oe) (1.0, 0.29)
PCA (fixed, ohe) (0.0, 0.095)
PCA (fixed, te) (0.0, 0.048)
Wilc. (fixed, oe, u) (1.0, 0.67)
Wilc. (fixed, ohe, u) (0.0, 0.67)
Wilc. (fixed, te, u) (0.0, 0.76)
Wilc. (fixed, oe) (1.0, 0.67)
Wilc. (fixed, ohe) (0.0, 0.67)
Wilc. (fixed, te) (0.0, 0.76)

Table 9: Drift detection performance on the Airlines dataset, mea-
sured in False Positive Rate and Accuracy (FPRrw, Acc).

Method Elect2

PCA (fixed, u) (0.48, 0.54)
PCA (fixed) (1.0, 1.0)
Wilc. (fixed, u) (1.0, 0.93)
Wilc. (fixed) (1.0, 0.71)
SCD (unidir., u) (1.0, 1.0)
SCD (unidir.) (1.0, 1.0)

Table 10: Drift detection performance on the Elect2 dataset, mea-
sured in False Positive Rate and Accuracy (FPRrw, Acc). SCD
uses PCA for preprocessing.

Method Weather (monthly) Weather (yearly)

PCA (fixed, u) (0.95, 0.97) (0.67, 0.56)
PCA (fixed) (0.90, 0.96) (0.27, 0.056)
Wilc. (fixed, u) (0.84, 0.87) (0.53, 0.61)
Wilc. (fixed) (0.84, 0.87) (0.53, 0.61)
SCD (unidir., u) (0.18, 0.18) (0.37, 0.51)
SCD (unidir.) (0.16, 0.16) (0.37, 0.52)
SCD (bidir., u) (0.99, 1.0) (0.80, 0.83)
SCD (bidir.) (0.99, 1.0) (1.0, 0.94)

Table 11: Drift detection performance on the Weather dataset, mea-
sured in False Positive Rate and Accuracy (FPRrw, Acc). Monthly
and yearly batching was used. Unidirectional SCD is averaged over
10 runs. Bidirectional SCD uses PCA for preprocessing.

Method Spam (100) Spam (50) Spam (20)

PCA (fixed, u) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0)
PCA (fixed) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0)
Wilc. (fixed, u) (1.0, 1.0) (1.0, 0.98) (0.88, 0.96)
Wilc. (fixed) (1.0, 1.0) (1.0, 0.98) (0.88, 0.96)
SCD (unidir., u) (.20, .63) (.22, .45) (.0022, .039)
SCD (unidir.) (.34, .69) (.16, .35) (.0, .049)

Table 12: Drift detection performance on the Spam dataset, mea-
sured in False Positive Rate and Accuracy (FPRrw, Acc). Differ-
ent batch sizes were used. SCD uses PCA preprocessing with 100
components and inverted test statistic and is averaged over 10 runs.



would be notably improved for the AGRAW datasets if the
sign of the test statistic was flipped. However, when fixing
the one-hot encoding with the PCA preprocessing method,
the test statistic actually did function as expected. This lead
to an experiment with the PCA preprocessing and TargetEn-
coder, and that indeed works: with this setup, SCD is able
to detect both AGRAW drifts perfectly, making it the only
detector in this study to do so in all three synthetic datasets.

It was expected that these methods could be slow [2]. As
noted before, SCD is indeed very expensive to run; it does not
scale well when the training set is any larger than a few thou-
sand rows. With our implementation and using a recent lap-
top, one unidirectional pass over a one-hot encoded and PCA-
preprocessed AGRAW dataset averaged 42 minutes. Target
encoding reduced that to 11 minutes, which seems to directly
correlate with the number of columns. However, the Sync-
Stream methods were still faster by an order of magnitude.

Performance under gradual drift
None of the detectors displayed significantly different perfor-
mance on gradual drift compared to abrupt drift, the only ex-
ception being PCA when encountering drifts of 10000 rows
and wider. In short, if a detector worked well on the abrupt
version of a dataset, it worked on the gradual versions too.

The Wilcoxon test displayed better performance with the
fixed reference adaptation on the AGRAW2 dataset. Part
of the reason for this seems to be that it failed to meet the
significance criteria whenever the change was too subtle, so
when the reference batch contained some already-drifting
data. This was the case in all our experiments on synthetic
datasets, as the drifts always started in the middle of the batch.

The performance of SCD on AGRAW improved consider-
ably with abrupt drift when the PCA preprocessing method
was introduced. However, due to time constraints this was
not tried on the gradual drifts.

5.2 Performance on real-world data
The detectors did not perform well on the real-world datasets.
In addition to some setups refusing to run at all due to issues
with data, we saw only rare occasions of FPRrw of under 0.5
combined with Acc of over 0.5, meaning the detector would
consistently beat flipping a coin.

The SyncStream algorithm originally achieved accuracy
scores of over 0.8 when evaluated on a Spam dataset and an
Electricity dataset [5]. However, this measured the perfor-
mance of the full classification algorithm, and we took the
detection methods out of that context, so the results are not
comparable as such. It is worth noticing that a lot of the
false alarms from the PCA method had almost 180 degree
angle differences. This suggests that the principal eigenvec-
tor probably just flipped its direction, which is not necessarily
an indication of a significant shift in the data.

Like on the non-preprocessed AGRAW datasets, SCD
starts to produce reasonable results on Spam if the test statis-
tic is inverted. Again, this is not supposed to happen, but
our experimental results show this tendency on more than one
dataset, so this is something future research should address.

In the Elect2 dataset, day represents the day of week and
is considered a numerical feature in this study. However, the

relation between electricity price and day of week may not be
ordinal in nature. For any future research with this dataset,
we suggest trying to treat day as a categorical feature.

One important point to consider is how to define concept
drift. We took an approach that is concerned with model ac-
curacy, but concept drift can also be defined simply as change
in the data distribution [2]. Although it often is the case, this
is not strictly the same as decreasing quality of the attached
model. In this survey paper, the authors observe that the dis-
tribution could change without affecting the model - called
virtual drift - and the quality could also deteriorate without a
change in the distribution - called actual drift. Furthermore,
they conclude that in real-world data we should expect to find
a combination of these. We note that it is therefore not too
surprising that drift detection algorithms based on data dis-
tribution may not perform optimally in such scenarios since
they can only capture the virtual component of the drift.

6 Conclusions and Future Work
The research question of this study was ”How well do data
distribution based concept drift detectors identify concept
drift in case of synthetic/real-world data”. As concluded by
Poenaru-Olaru et al., research on label-independent, such as
data distribution based, concept drift detectors is currently
hindered by the lack of available implementations of such
detectors [1]. In this study we implemented drift detec-
tion methods from two studies: the PCA and Wilcoxon test
techniques of SyncStream [5], and SCD, also called density
test [4]. The performance of these detectors was evaluated
on both synthetic and real-world data. We publish our imple-
mentations for future research to verify and build on.

Our results show that performance on synthetic datasets is
no guarantee for performance on real-world data. This sug-
gests that for real-world applications it is not recommended to
develop these algorithms with synthetic datasets. It was also
found that in addition to encoding and scaling, preprocessing
the data with PCA can have a significant effect on the drift
detection performance.

Concept drift in real-world data can in most cases be split
into two components: virtual drift and actual drift [2]. Virtual
drift means a drift in the data distribution without an effect
on the decision boundary; thus leaving the attached model
unaffected by the change. We should therefore expect a data
distribution based detector to report a false positive on a vir-
tual drift. Actual drift means a drift of the decision boundary,
thus deteriorating the quality of the attached machine learn-
ing model without a change in the data distribution. This kind
of drift would now go undetected by a data distribution based
detector. Considering this, quantifying to what extent virtual
drift and actual drift occur together in real-world data sources
could be an interesting line of research.
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Responsible Research
General ethical rules for scientific research require that it
should be conducted responsibly, which includes not only
considering the rights and consent of all participants, but also
making an effort for the contributions to be verifiable and
reproducible. Maintaining good reproducibility in computer
science research, preferably by publishing source code when-
ever possible, reduces unnecessary work in further research
as well as helps in building a critical peer community.

New data is not collected in this study; however, with
the goal of benchmarking several drift detectors on the same
datasets, the context of this paper is centered around repro-
ducibility. We specifically implement algorithms that were
previously published only in pseudocode and publish our own
code in our personal GitHub repositories to avoid losing ac-
cess after graduating. The file format for publishing the im-
plementations was chosen to be .ipynb, which is widely used
in the machine learning field. These factors make it signif-
icantly easier for future studies to reproduce our work and
build on top of it.

According to the FAIR principles, research objects should
be made ”Findable, Accessible, Interoperable and Reusable”
by both humans and machines [12]. Good commenting, file
and variable naming, and other documentation is all there-
fore important to consider when publishing code and datasets.
However, we make the case that even ambiguously docu-
mented or incomplete code would in many cases be better
than no code when it comes to verification and reproduction.

To counter publication bias, we paid attention to includ-
ing any insignificant, negative, and suboptimal results. These
were obtained e.g. by trying out different encoders and data
partitioning methods.
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